# include # include # include # include # include # include using namespace std; # include "random_data.hpp" //****************************************************************************80 double arc_cosine ( double c ) //****************************************************************************80 // // Purpose: // // ARC_COSINE computes the arc cosine function, with argument truncation. // // Discussion: // // If you call your system ACOS routine with an input argument that is // outside the range [-1.0, 1.0 ], you may get an unpleasant surprise. // This routine truncates arguments outside the range. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2002 // // Author: // // John Burkardt // // Parameters: // // Input, double C, the argument, the cosine of an angle. // // Output, double ARC_COSINE, an angle whose cosine is C. // { double angle; double pi = 3.141592653589793; if ( c <= -1.0 ) { angle = pi; } else if ( 1.0 <= c ) { angle = 0.0; } else { angle = acos ( c ); } return angle; } //****************************************************************************80 double *bad_in_simplex01 ( int dim_num, int point_num, int &seed ) //****************************************************************************80 // // Purpose: // // BAD_IN_SIMPLEX01 is a "bad" (nonuniform) sampling of the unit simplex. // // Discussion: // // The interior of the unit DIM_NUM-dimensional simplex is the set of // points X(1:DIM_NUM) such that each X(I) is nonnegative, and // sum(X(1:DIM_NUM)) <= 1. // // Any point in the unit simplex CAN be chosen by this algorithm. // // However, the points that are chosen tend to be clustered near // the centroid. // // This routine is supplied as an example of "bad" sampling. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int POINT_NUM, the number of points. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double BAD_IN_SIMPLEX01[DIM_NUM*POINT_NUM], the points. // { double *e; double e_sum; int i; int j; double *x; x = new double[dim_num*point_num]; for ( j = 0; j < point_num; j++ ) { e = r8vec_uniform_01_new ( dim_num + 1, seed ); e_sum = r8vec_sum ( dim_num + 1, e ); for ( i = 0; i < dim_num; i++ ) { x[i+j*dim_num] = e[i] / e_sum; } delete [] e; } return x; } //****************************************************************************80 double *brownian ( int dim_num, int n, int &seed ) //****************************************************************************80 // // Purpose: // // BROWNIAN creates Brownian motion points. // // Discussion: // // A starting point is generated at the origin. The next point // is generated at a uniformly random angle and a (0,1) normally // distributed distance from the previous point. // // It is up to the user to rescale the data, if desired. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input, int &SEED, a seed for the random number generator. // // Output, double BROWNIAN[DIM_NUM*N], the Brownian motion points. // { double *direction; int i; int j; double r; double *x; direction = new double[dim_num]; x = new double[dim_num*n]; // // Initial point. // j = 0; for ( i = 0; i < dim_num; i++ ) { x[i+j*dim_num] = 0.0; } // // Generate angles and steps. // for ( j = 1; j < n; j++ ) { r = r8_normal_01 ( seed ); r = fabs ( r ); direction_uniform_nd ( dim_num, seed, direction ); for ( i = 0; i < dim_num; i++ ) { x[i+j*dim_num] = x[i+(j-1)*dim_num] + r * direction[i]; } } delete [] direction; return x; } //****************************************************************************80 void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy ) //****************************************************************************80 // // Purpose: // // DAXPY computes constant times a vector plus a vector. // // Discussion: // // This routine uses unrolled loops for increments equal to one. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 May 2005 // // Author: // // FORTRAN77 original version by Jack Dongarra. // C++ version by John Burkardt. // // Reference: // // Dongarra, Moler, Bunch, Stewart, // LINPACK User's Guide, // SIAM, 1979. // // Lawson, Hanson, Kincaid, Krogh, // Basic Linear Algebra Subprograms for Fortran Usage, // Algorithm 539, // ACM Transactions on Mathematical Software, // Volume 5, Number 3, September 1979, pages 308-323. // // Parameters: // // Input, int N, the number of elements in DX and DY. // // Input, double DA, the multiplier of DX. // // Input, double DX[*], the first vector. // // Input, int INCX, the increment between successive entries of DX. // // Input/output, double DY[*], the second vector. // On output, DY[*] has been replaced by DY[*] + DA * DX[*]. // // Input, int INCY, the increment between successive entries of DY. // { int i; int ix; int iy; int m; if ( n <= 0 ) { return; } if ( da == 0.0 ) { return; } // // Code for unequal increments or equal increments // not equal to 1. // if ( incx != 1 || incy != 1 ) { if ( 0 <= incx ) { ix = 0; } else { ix = ( - n + 1 ) * incx; } if ( 0 <= incy ) { iy = 0; } else { iy = ( - n + 1 ) * incy; } for ( i = 0; i < n; i++ ) { dy[iy] = dy[iy] + da * dx[ix]; ix = ix + incx; iy = iy + incy; } } // // Code for both increments equal to 1. // else { m = n % 4; for ( i = 0; i < m; i++ ) { dy[i] = dy[i] + da * dx[i]; } for ( i = m; i < n; i = i + 4 ) { dy[i ] = dy[i ] + da * dx[i ]; dy[i+1] = dy[i+1] + da * dx[i+1]; dy[i+2] = dy[i+2] + da * dx[i+2]; dy[i+3] = dy[i+3] + da * dx[i+3]; } } return; } //****************************************************************************80 double ddot ( int n, double dx[], int incx, double dy[], int incy ) //****************************************************************************80 // // Purpose: // // DDOT forms the dot product of two vectors. // // Discussion: // // This routine uses unrolled loops for increments equal to one. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 May 2005 // // Author: // // FORTRAN77 original version by Jack Dongarra. // C++ version by John Burkardt. // // Reference: // // Dongarra, Moler, Bunch, Stewart, // LINPACK User's Guide, // SIAM, 1979. // // Lawson, Hanson, Kincaid, Krogh, // Basic Linear Algebra Subprograms for Fortran Usage, // Algorithm 539, // ACM Transactions on Mathematical Software, // Volume 5, Number 3, September 1979, pages 308-323. // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double DX[*], the first vector. // // Input, int INCX, the increment between successive entries in DX. // // Input, double DY[*], the second vector. // // Input, int INCY, the increment between successive entries in DY. // // Output, double DDOT, the sum of the product of the corresponding // entries of DX and DY. // { double dtemp; int i; int ix; int iy; int m; dtemp = 0.0; if ( n <= 0 ) { return dtemp; } // // Code for unequal increments or equal increments // not equal to 1. // if ( incx != 1 || incy != 1 ) { if ( 0 <= incx ) { ix = 0; } else { ix = ( - n + 1 ) * incx; } if ( 0 <= incy ) { iy = 0; } else { iy = ( - n + 1 ) * incy; } for ( i = 0; i < n; i++ ) { dtemp = dtemp + dx[ix] * dy[iy]; ix = ix + incx; iy = iy + incy; } } // // Code for both increments equal to 1. // else { m = n % 5; for ( i = 0; i < m; i++ ) { dtemp = dtemp + dx[i] * dy[i]; } for ( i = m; i < n; i = i + 5 ) { dtemp = dtemp + dx[i ] * dy[i ] + dx[i+1] * dy[i+1] + dx[i+2] * dy[i+2] + dx[i+3] * dy[i+3] + dx[i+4] * dy[i+4]; } } return dtemp; } //****************************************************************************80 double *dge_mxv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // DGE_MXV multiplies a DGE matrix times a vector. // // Discussion: // // The DGE storage format is used for a general M by N matrix. A physical storage // space is made for each logical entry. The two dimensional logical // array is mapped to a vector, in which storage is by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the SGE matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double DGE_MXV[M], the product A * x. // { double *b; int i; int j; b = new double[m]; for ( i = 0; i < m; i++ ) { b[i] = 0.0; for ( j = 0; j < n; j++ ) { b[i] = b[i] + a[i+j*m] * x[j]; } } return b; } //****************************************************************************80 void direction_uniform_nd ( int dim_num, int &seed, double w[] ) //****************************************************************************80 // // Purpose: // // DIRECTION_UNIFORM_ND generates a random direction vector in ND. // // Discussion: // // This is actually simply a random point on the unit sphere in ND. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double W[DIM_NUM], a random direction vector, with unit norm. // { int i; double norm; // // Sample the standard normal distribution. // r8vec_normal_01 ( dim_num, seed, w ); // // Compute the length of the vector. // norm = 0.0; for ( i = 0; i < dim_num; i++ ) { norm = norm + w[i] * w[i]; } norm = sqrt ( norm ); // // Normalize the vector. // for ( i = 0; i < dim_num; i++ ) { w[i] = w[i] / norm; } return; } //****************************************************************************80 double *dut_mxv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // DUT_MXV multiplies an DUT matrix times a vector. // // Discussion: // // The DUT storage format is used for an M by N upper triangular matrix, // and allocates space even for the zero entries. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the DUT matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double DUT_MXV[M], the product A * x. // { double *b; int i; int j; b = new double[m]; for ( i = 0; i < m; i++ ) { b[i] = 0.0; for ( j = i; j < n; j++ ) { b[i] = b[i] + a[i+j*m] * x[j]; } } return b; } //****************************************************************************80 unsigned long get_seed ( ) //****************************************************************************80 // // Purpose: // // GET_SEED returns a random seed for the random number generator. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 September 2003 // // Author: // // John Burkardt // // Parameters: // // Output, unsigned long GET_SEED, a random seed value. // { # define UNSIGNED_LONG_MAX 4294967295UL time_t clock; int i; int hours; int minutes; int seconds; struct tm *lt; static unsigned long seed = 0; time_t tloc; // // If the internal seed is 0, generate a value based on the time. // if ( seed == 0 ) { clock = time ( &tloc ); lt = localtime ( &clock ); // // Extract HOURS. // hours = lt->tm_hour; // // In case of 24 hour clocks, shift so that HOURS is between 1 and 12. // if ( 12 < hours ) { hours = hours - 12; } // // Move HOURS to 0, 1, ..., 11 // hours = hours - 1; minutes = lt->tm_min; seconds = lt->tm_sec; seed = seconds + 60 * ( minutes + 60 * hours ); // // We want values in [1,43200], not [0,43199]. // seed = seed + 1; // // Remap SEED from [1,43200] to [1,UNSIGNED_LONG_MAX]. // seed = ( unsigned long ) ( ( ( double ) seed ) * ( ( double ) UNSIGNED_LONG_MAX ) / ( 60.0 * 60.0 * 12.0 ) ); } // // Never use a seed of 0. // if ( seed == 0 ) { seed = 1; } return seed; # undef UNSIGNED_LONG_MAX } //****************************************************************************80 double *grid_in_cube01 ( int dim_num, int n, int center, int &seed ) //****************************************************************************80 // // Purpose: // // GRID_IN_CUBE01 generates a grid dataset in the unit hypercube. // // Discussion: // // N points are needed in a DIM_NUM dimensional space. // // The points are to lie on a uniform grid of side N_SIDE. // // Unless the N = N_SIDE^DIM_NUM for some N_SIDE, we can't use all the // points on a grid. What we do is find the smallest N_SIDE // that's big enough, and randomly omit some points. // // If N_SIDE is 4, then the choices in 1D are: // // A: 0, 1/3, 2/3, 1 // B: 1/5, 2/5, 3/5, 4/5 // C: 0, 1/4, 2/4, 3/4 // D: 1/4, 2/4, 3/4, 1 // E: 1/8, 3/8, 5/8, 7/8 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of points. // // Input, int CENTER, specifies the 1D grid centering: // 1: first point is 0.0, last point is 1.0; // 2: first point is 1/(N+1), last point is N/(N+1); // 3: first point is 0, last point is (N-1)/N; // 4: first point is 1/N, last point is 1; // 5: first point is 1/(2*N), last point is (2*N-1)/(2*N); // // Input/output, int &SEED, a seed for the random number generator. // // Output, double GRID_IN_CUBE01[DIM_NUM*N], the points. // { int i; int j; int n_grid; int n_side; double *r; int rank; int *rank_list; int *tuple; // // Find the dimension of the smallest grid with N points. // n_side = grid_side ( dim_num, n ); // // We need to select N points out of N_SIDE^DIM_NUM set. // n_grid = ( int ) pow ( ( double ) n_side, dim_num ); // // Generate a random subset of N items from a set of size N_GRID. // rank_list = new int[n]; ksub_random2 ( n_grid, n, seed, rank_list ); // // Must make one dummy call to TUPLE_NEXT_FAST with RANK = -1. // rank = -1; tuple = new int[dim_num]; tuple_next_fast ( n_side, dim_num, rank, tuple ); // // Now generate the appropriate indices, and "center" them. // r = new double[dim_num*n]; for ( j = 0; j < n; j++ ) { rank = rank_list[j] - 1; tuple_next_fast ( n_side, dim_num, rank, tuple ); if ( center == 1 ) { for ( i = 0; i < dim_num; i++ ) { r[i+j*dim_num] = ( double ) ( tuple[i] - 1 ) / ( double ) ( n_side - 1 ); } } else if ( center == 2 ) { for ( i = 0; i < dim_num; i++ ) { r[i+j*dim_num] = ( double ) ( tuple[i] ) / ( double ) ( n_side + 1 ); } } else if ( center == 3 ) { for ( i = 0; i < dim_num; i++ ) { r[i+j*dim_num] = ( double ) ( tuple[i] - 1 ) / ( double ) ( n_side ); } } else if ( center == 4 ) { for ( i = 0; i < dim_num; i++ ) { r[i+j*dim_num] = ( double ) ( tuple[i] ) / ( double ) ( n_side ); } } else if ( center == 5 ) { for ( i = 0; i < dim_num; i++ ) { r[i+j*dim_num] = ( double ) ( 2 * tuple[i] - 1 ) / ( double ) ( 2 * n_side ); } } } delete [] rank_list; delete [] tuple; return r; } //****************************************************************************80 int grid_side ( int dim_num, int n ) //****************************************************************************80 // // Purpose: // // GRID_SIDE finds the smallest DIM_NUM dimensional grid containing at least N points. // // Discussion: // // Each coordinate of the grid will have N_SIDE distinct values. // Thus the total number of points in the grid is N_SIDE**DIM_NUM. // This routine seeks the smallest N_SIDE such that N <= N_SIDE**DIM_NUM. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of points. // // Output, int GRID_SIDE, the length of one side of the smallest // grid in DIM_NUM dimensions that contains at least N points. // { double exponent; int n_grid; int n_side; if ( n <= 0 ) { n_side = 0; return n_side; } if ( dim_num <= 0 ) { n_side = -1; return n_side; } exponent = 1.0 / ( double ) dim_num; n_side = ( int ) pow ( n, exponent ); if ( pow ( ( double ) n_side, ( double ) dim_num ) < n ) { n_side = n_side + 1; } return n_side; } //****************************************************************************80 bool halham_dim_num_check ( int dim_num ) //****************************************************************************80 // // Purpose: // // HALHAM_DIM_NUM_CHECK checks DIM_NUM for a Halton or Hammersley sequence. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // DIM_NUM must be positive. // // Output, bool HALHAM_DIM_NUM_CHECK, is true if DIM_NUM is legal. // { bool value; if ( dim_num < 1 ) { cerr << "\n"; cerr << "HALHAM_DIM_NUM_CHECK - Fatal error!\n"; cerr << " DIM_NUM < 0."; cerr << " DIM_NUM = " << dim_num << "\n"; exit ( 1 ); } value = true; return value; } //****************************************************************************80 bool halham_leap_check ( int dim_num, int leap[] ) //****************************************************************************80 // // Purpose: // // HALHAM_LEAP_CHECK checks LEAP for a Halton or Hammersley sequence. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEAP[DIM_NUM], the successive jumps in the sequence. // Each entry must be greater than 0. // // Output, bool HALHAM_LEAP_CHECK, is true if LEAP is legal. // { int i; bool value; value = true; for ( i = 0; i < dim_num; i++ ) { if ( leap[i] < 1 ) { cerr << "\n"; cerr << "HALHAM_LEAP_CHECK - Fatal error!\n"; cerr << " Leap entries must be greater than 0.\n"; cerr << " leap[" << i << "] = " << leap[i] << "\n"; exit ( 1 ); } } return value; } //****************************************************************************80 bool halham_n_check ( int n ) //****************************************************************************80 // // Purpose: // // HALHAM_N_CHECK checks N for a Halton or Hammersley sequence. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of the subsequence. // N must be positive. // // Output, bool HALHAM_N_CHECK, is true if N is legal. // { bool value; if ( n < 1 ) { cerr << "\n"; cerr << "HALHAM_N_CHECK - Fatal error!\n"; cerr << " N < 0."; cerr << " N = " << n << "\n"; exit ( 1 ); } value = true; return value; } //****************************************************************************80 bool halham_seed_check ( int dim_num, int seed[] ) //****************************************************************************80 // // Purpose: // // HALHAM_SEED_CHECK checks SEED for a Halton or Hammersley sequence. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int SEED[DIM_NUM], the sequence index // corresponding to STEP = 0. Each entry must be 0 or greater. // // Output, bool HALHAM_SEED_CHECK, is true if SEED is legal. // { int i; bool value; value = true; for ( i = 0; i < dim_num; i++ ) { if ( seed[i] < 0 ) { cerr << "\n"; cerr << "HALHAM_SEED_CHECK - Fatal error!\n"; cerr << " SEED entries must be nonnegative.\n"; cerr << " seed[" << i << "] = " << seed[i] << "\n"; exit ( 1 ); } } return value; } //****************************************************************************80 bool halham_step_check ( int step ) //****************************************************************************80 // // Purpose: // // HALHAM_STEP_CHECK checks STEP for a Halton or Hammersley sequence. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int STEP, the index of the subsequence element. // STEP must be 1 or greater. // // Output, bool HALHAM_STEP_CHECK, is true if STEP is legal. // { int i; bool value; if ( step < 0 ) { cerr << "\n"; cerr << "HALHAM_STEP_CHECK - Fatal error!\n"; cerr << " STEP < 0."; cerr << " STEP = " << step << "\n"; exit ( 1 ); } value = true; return value; } //****************************************************************************80 bool halton_base_check ( int dim_num, int base[] ) //****************************************************************************80 // // Purpose: // // HALTON_BASE_CHECK is TRUE if BASE is legal. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 July 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int BASE[DIM_NUM], the Halton bases. // Each base must be greater than 1. // // Output, bool HALTON_BASE_CHECK. // { int i; bool value; value = true; for ( i = 0; i < dim_num; i++ ) { if ( base[i] <= 1 ) { cerr << "\n"; cerr << "HALTON_BASE_CHECK - Fatal error!\n"; cerr << " Bases must be greater than 1.\n"; cerr << " base[" << i << "] = " << base[i] << "\n"; exit ( 1 ); } } return value; } //****************************************************************************80 double *halton_in_circle01_accept ( int dim_num, int n, int &seed ) //****************************************************************************80 // // Purpose: // // HALTON_IN_CIRCLE01_ACCEPT accepts Halton points in a unit circle. // // Discussion: // // The acceptance/rejection method is used. // // The unit circle is centered at the origin and has radius 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double HALTON_IN_CIRCLE01_ACCEPT[DIM_NUM*N], the points. // { int *base; int have; int i; int j; int *leap; int *seed_vec; int step; double total; double *u; double *x; base = new int[dim_num]; leap = new int[dim_num]; seed_vec = new int[dim_num]; u = new double[dim_num]; x = new double[dim_num*n]; have = 0; for ( i = 0; i < dim_num; i++ ) { seed_vec[i] = 0; } for ( i = 0; i < dim_num; i++ ) { leap[i] = 1; } for ( i = 0; i < dim_num; i++ ) { base[i] = prime ( i + 1 ); } while ( have < n ) { step = seed; i4_to_halton ( dim_num, step, seed_vec, leap, base, u ); seed = seed + 1; total = 0.0; for ( i = 0; i < dim_num; i++ ) { u[i] = 2.0 * u[i] - 1.0; total = total + u[i] * u[i]; } if ( total <= 1.0 ) { for ( i = 0; i < dim_num; i++ ) { x[i+have*dim_num] = u[i]; } have = have + 1; } } delete [] base; delete [] leap; delete [] seed_vec; delete [] u; return x; # undef DIM_NUM } //****************************************************************************80 double *halton_in_circle01_map ( int dim_num, int n, int &seed ) //****************************************************************************80 // // Purpose: // // HALTON_IN_CIRCLE01_MAP maps Halton points into a unit circle. // // Discussion: // // The unit circle is centered at the origin and has radius 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double HALTON_IN_CIRCLE01_MAP[DIM_NUM*N], the points. // { # define PI 3.141592653589793 int base[1]; int j; int leap[1]; double *r; double rval; int step; int seed_vec[1]; double *t; double *x; r = new double[n]; t = new double[n]; x = new double[dim_num*n]; step = 0; seed_vec[0] = seed; leap[0] = 1; base[0] = prime ( 1 ); i4_to_halton_sequence ( 1, n, step, seed_vec, leap, base, r ); for ( j = 0; j < n; j++ ) { r[j] = sqrt ( r[j] ); } step = 0; seed_vec[0] = seed; leap[0] = 1; base[0] = prime ( 2 ); i4_to_halton_sequence ( 1, n, step, seed_vec, leap, base, t ); for ( j = 0; j < n; j++ ) { t[j] = 2.0 * PI * t[j]; } for ( j = 0; j < n; j++ ) { x[0+j*dim_num] = r[j] * cos ( t[j] ); x[1+j*dim_num] = r[j] * sin ( t[j] ); } seed = seed + n; delete [] r; delete [] t; return x; # undef PI } //****************************************************************************80 double *halton_in_cube01 ( int dim_num, int n, int &seed ) //****************************************************************************80 // // Purpose: // // HALTON_IN_CUBE01 generates Halton points in the unit hypercube. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of elements. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double HALTON_IN_CUBE01[DIM_NUM*N], the points // { int *base; int i; int *leap; int *seed_vec; int step; double *x; base = new int[dim_num]; leap = new int[dim_num]; seed_vec = new int[dim_num]; x = new double[dim_num*n]; step = seed; for ( i = 0; i < dim_num; i++ ) { seed_vec[i] = 0; } for ( i = 0; i < dim_num; i++ ) { leap[i] = 1; } for ( i = 0; i < dim_num; i++ ) { base[i] = prime ( i + 1 ); } i4_to_halton_sequence ( dim_num, n, step, seed_vec, leap, base, x ); seed = seed + n; delete [] base; delete [] leap; delete [] seed_vec; return x; } //****************************************************************************80 bool hammersley_base_check ( int dim_num, int base[] ) //****************************************************************************80 // // Purpose: // // HAMMERSLEY_BASE_CHECK is TRUE if BASE is legal. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 July 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int BASE[DIM_NUM], the bases. // // Output, bool HAMMERSLEY_BASE_CHECK. { int i; bool value; value = true; for ( i = 0; i < dim_num; i++ ) { if ( base[i] == 0 || base[i] == 1 ) { cerr << "\n"; cerr << "HAMMERSLEY_BASE_CHECK - Fatal error!\n"; cerr << " Bases may not be 0 or 1.\n"; i4vec_transpose_print ( dim_num, base, "BASE: " ); exit ( 1 ); } } return value; } //****************************************************************************80 double *hammersley_in_cube01 ( int dim_num, int n, int &seed ) //****************************************************************************80 // // Purpose: // // HAMMERSLEY_IN_CUBE01 computes Hammersley points in the unit hypercube. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of elements. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double HAMMERSLEY_IN_CUBE01[DIM_NUM*N], the points. // { int *base; int i; int *leap; int *seed_vec; int step; double *x; base = new int[dim_num]; leap = new int[dim_num]; seed_vec = new int[dim_num]; x = new double[dim_num*n]; step = seed; for ( i = 0; i < dim_num; i++ ) { seed_vec[i] = 0; } for ( i = 0; i < dim_num; i++ ) { leap[i] = 1; } base[0] = -n; for ( i = 1; i < dim_num; i++ ) { base[i] = prime ( i ); } i4_to_hammersley_sequence ( dim_num, n, step, seed_vec, leap, base, x ); seed = seed + n; delete [] base; delete [] leap; delete [] seed_vec; return x; } //****************************************************************************80 int i4_factorial ( int n ) //****************************************************************************80 // // Purpose: // // I4_FACTORIAL returns N!. // // Discussion: // // N! = Product ( 1 <= I <= N ) I // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the factorial function. // 0 <= N. // // Output, int I4_FACTORIAL, the factorial of N. // { int fact; int i; // // Check. // if ( n < 0 ) { cerr << "\n"; cerr << "I4_FACTORIAL - Fatal error!\n"; cerr << " N < 0.\n"; exit ( 1 ); } fact = 1; for ( i = 2; i <= n; i++ ) { fact = fact * i; } return fact; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // // { if ( i2 < i1 ) { return i1; } else { return i2; } } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the smaller of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // // { if ( i1 < i2 ) { return i1; } else { return i2; } } //****************************************************************************80 int i4_modp ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_MODP returns the nonnegative remainder of I4 division. // // Discussion: // // If // NREM = I4_MODP ( I, J ) // NMULT = ( I - NREM ) / J // then // I = J * NMULT + NREM // where NREM is always nonnegative. // // The MOD function computes a result with the same sign as the // quantity being divided. Thus, suppose you had an angle A, // and you wanted to ensure that it was between 0 and 360. // Then mod(A,360) would do, if A was positive, but if A // was negative, your result would be between -360 and 0. // // On the other hand, I4_MODP(A,360) is between 0 and 360, always. // // Example: // // I J MOD I4_MODP I4_MODP Factorization // // 107 50 7 7 107 = 2 * 50 + 7 // 107 -50 7 7 107 = -2 * -50 + 7 // -107 50 -7 43 -107 = -3 * 50 + 43 // -107 -50 -7 43 -107 = 3 * -50 + 43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number to be divided. // // Input, int J, the number that divides I. // // Output, int I4_MODP, the nonnegative remainder when I is // divided by J. // { int value; if ( j == 0 ) { cerr << "\n"; cerr << "I4_MODP - Fatal error!\n"; cerr << " I4_MODP ( I, J ) called with J = " << j << "\n"; exit ( 1 ); } value = i % j; if ( value < 0 ) { value = value + abs ( j ); } return value; } //****************************************************************************80 void i4_to_halton ( int dim_num, int step, int seed[], int leap[], int base[], double r[] ) //****************************************************************************80 // // Purpose: // // I4_TO_HALTON computes one element of a leaped Halton subsequence. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 July 2004 // // Author: // // John Burkardt // // Reference: // // J H Halton, // On the efficiency of certain quasi-random sequences of points // in evaluating multi-dimensional integrals, // Numerische Mathematik, // Volume 2, 1960, pages 84-90. // // J H Halton and G B Smith, // Algorithm 247: Radical-Inverse Quasi-Random Point Sequence, // Communications of the ACM, // Volume 7, 1964, pages 701-702. // // Ladislav Kocis and William Whiten, // Computational Investigations of Low-Discrepancy Sequences, // ACM Transactions on Mathematical Software, // Volume 23, Number 2, 1997, pages 266-294. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // 1 <= DIM_NUM is required. // // Input, int STEP, the index of the subsequence element. // 0 <= STEP is required. // // Input, int SEED[DIM_NUM], the Halton sequence index corresponding // to STEP = 0. // 0 <= SEED(1:DIM_NUM) is required. // // Input, int LEAP[DIM_NUM], the successive jumps in the Halton sequence. // 1 <= LEAP(1:DIM_NUM) is required. // // Input, int BASE[DIM_NUM], the Halton bases. // 1 < BASE(1:DIM_NUM) is required. // // Output, double R[DIM_NUM], the STEP-th element of the leaped // Halton subsequence. // { double base_inv; int digit; int i; int seed2; // // Check the input. // if ( !halham_dim_num_check ( dim_num ) ) { exit ( 1 ); } if ( !halham_step_check ( step ) ) { exit ( 1 ); } if ( !halham_seed_check ( dim_num, seed ) ) { exit ( 1 ); } if ( !halham_leap_check ( dim_num, leap ) ) { exit ( 1 ); } if ( !halton_base_check ( dim_num, base ) ) { exit ( 1 ); } // // Calculate the data. // for ( i = 0; i < dim_num; i++ ) { seed2 = seed[i] + step * leap[i]; r[i] = 0.0; base_inv = 1.0 / ( ( double ) base[i] ); while ( seed2 != 0 ) { digit = seed2 % base[i]; r[i] = r[i] + ( ( double ) digit ) * base_inv; base_inv = base_inv / ( ( double ) base[i] ); seed2 = seed2 / base[i]; } } return; } //****************************************************************************80 void i4_to_halton_sequence ( int dim_num, int n, int step, int seed[], int leap[], int base[], double r[] ) //****************************************************************************80 // // Purpose: // // I4_TO_HALTON_SEQUENCE computes N elements of a leaped Halton subsequence. // // Discussion: // // The DIM_NUM-dimensional Halton sequence is really DIM_NUM separate // sequences, each generated by a particular base. // // This routine selects elements of a "leaped" subsequence of the // Halton sequence. The subsequence elements are indexed by a // quantity called STEP, which starts at 0. The STEP-th subsequence // element is simply element // // SEED(1:DIM_NUM) + STEP * LEAP(1:DIM_NUM) // // of the original Halton sequence. // // // The data to be computed has two dimensions. // // The number of data items is DIM_NUM * N, where DIM_NUM is the spatial dimension // of each element of the sequence, and N is the number of elements of the sequence. // // The data is stored in a one dimensional array R. The first element of the // sequence is stored in the first DIM_NUM entries of R, followed by the DIM_NUM entries // of the second element, and so on. // // In particular, the J-th element of the sequence is stored in entries // 0+(J-1)*DIM_NUM through (DIM_NUM-1) + (J-1)*DIM_NUM. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 July 2004 // // Author: // // John Burkardt // // Reference: // // J H Halton, // On the efficiency of certain quasi-random sequences of points // in evaluating multi-dimensional integrals, // Numerische Mathematik, // Volume 2, 1960, pages 84-90. // // J H Halton and G B Smith, // Algorithm 247: Radical-Inverse Quasi-Random Point Sequence, // Communications of the ACM, // Volume 7, 1964, pages 701-702. // // Ladislav Kocis and William Whiten, // Computational Investigations of Low-Discrepancy Sequences, // ACM Transactions on Mathematical Software, // Volume 23, Number 2, 1997, pages 266-294. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of elements of the sequence. // // Input, int STEP, the index of the subsequence element. // 0 <= STEP is required // // Input, int SEED[DIM_NUM], the Halton sequence index corresponding // to STEP = 0. // // Input, int LEAP[DIM_NUM], the succesive jumps in the Halton sequence. // // Input, int BASE[DIM_NUM], the Halton bases. // // Output, double R[DIM_NUM*N], the next N elements of the // leaped Halton subsequence, beginning with element STEP. // { double base_inv; int digit; int i; int j; int *seed2; // // Check the input. // if ( !halham_dim_num_check ( dim_num ) ) { exit ( 1 ); } if ( !halham_n_check ( n ) ) { exit ( 1 ); } if ( !halham_step_check ( step ) ) { exit ( 1 ); } if ( !halham_seed_check ( dim_num, seed ) ) { exit ( 1 ); } if ( !halham_leap_check ( dim_num, leap ) ) { exit ( 1 ); } if ( !halton_base_check ( dim_num, base ) ) { exit ( 1 ); } // // Calculate the data. // seed2 = new int[n]; for ( i = 0; i < dim_num; i++ ) { for ( j = 0; j < n; j++ ) { seed2[j] = seed[i] + ( step + j ) * leap[i]; } for ( j = 0; j < n; j++ ) { r[i+j*dim_num] = 0.0; } for ( j = 0; j < n; j++ ) { base_inv = 1.0 / ( ( double ) base[i] ); while ( seed2[j] != 0 ) { digit = seed2[j] % base[i]; r[i+j*dim_num] = r[i+j*dim_num] + ( ( double ) digit ) * base_inv; base_inv = base_inv / ( ( double ) base[i] ); seed2[j] = seed2[j] / base[i]; } } } delete [] seed2; return; } //****************************************************************************80 void i4_to_hammersley ( int dim_num, int step, int seed[], int leap[], int base[], double r[] ) //****************************************************************************80 // // Purpose: // // I4_TO_HAMMERSLEY computes one element of a leaped Hammersley subsequence. // // Discussion: // // The DIM_NUM-dimensional Hammersley sequence is really DIM_NUM separate // sequences, each generated by a particular base. If the base is // greater than 1, a standard 1-dimensional // van der Corput sequence is generated. But if the base is // negative, this is a signal that the much simpler sequence J/(-BASE) // is to be generated. For the standard Hammersley sequence, the // first spatial coordinate uses a base of (-N), and subsequent // coordinates use bases of successive primes (2, 3, 5, 7, 11, ...). // This program allows the user to specify any combination of bases, // included nonprimes and repeated values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 September 2004 // // Author: // // John Burkardt // // Reference: // // J M Hammersley, // Monte Carlo methods for solving multivariable problems, // Proceedings of the New York Academy of Science, // Volume 86, 1960, pages 844-874. // // Ladislav Kocis and William Whiten, // Computational Investigations of Low-Discrepancy Sequences, // ACM Transactions on Mathematical Software, // Volume 23, Number 2, 1997, pages 266-294. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // 1 <= DIM_NUM is required. // // Input, int STEP, the index of the subsequence element. // 0 <= STEP is required. // // Input, int SEED[DIM_NUM], the Hammersley sequence index corresponding // to STEP = 0. // 0 <= SEED(1:DIM_NUM) is required. // // Input, int LEAP[DIM_NUM], the successive jumps in the Hammersley sequence. // 1 <= LEAP(1:DIM_NUM) is required. // // Input, int BASE[DIM_NUM], the Hammersley bases. // // Output, double R[DIM_NUM], the STEP-th element of the leaped // Hammersley subsequence. // { # define FIDDLE 0.0 double base_inv; int digit; int i; int seed2; int temp; // // Check the input. // if ( !halham_dim_num_check ( dim_num ) ) { exit ( 1 ); } if ( !halham_step_check ( step ) ) { exit ( 1 ); } if ( !halham_seed_check ( dim_num, seed ) ) { exit ( 1 ); } if ( !halham_leap_check ( dim_num, seed ) ) { exit ( 1 ); } if ( !hammersley_base_check ( dim_num, base ) ) { exit ( 1 ); } // // Calculate the data. // for ( i = 0; i < dim_num; i++ ) { if ( 1 < base[i] ) { seed2 = seed[i] + step * leap[i]; r[i] = 0.0; base_inv = 1.0 / ( ( double ) base[i] ); while ( seed2 != 0 ) { digit = seed2 % base[i]; r[i] = r[i] + ( ( double ) digit ) * base_inv; base_inv = base_inv / ( ( double ) base[i] ); seed2 = seed2 / base[i]; } } // // In the following computation, the value of FIDDLE can be: // // 0, for the sequence 0/N, 1/N, ..., N-1/N // 1, for the sequence 1/N, 2/N, ..., N/N // 1/2, for the sequence 1/(2N), 3/(2N), ..., (2*N-1)/(2N) // else { temp = ( seed[i] + step * leap[i] ) % ( -base[i] ); r[i] = ( ( double ) ( temp ) + FIDDLE ) / ( double ) ( -base[i] ); } } return; # undef FIDDLE } //****************************************************************************80 void i4_to_hammersley_sequence ( int dim_num, int n, int step, int seed[], int leap[], int base[], double r[] ) //****************************************************************************80 // // Purpose: // // I4_TO_HAMMERSLEY_SEQUENCE computes N elements of a leaped Hammersley subsequence. // // Discussion: // // The DIM_NUM-dimensional Hammersley sequence is really DIM_NUM separate // sequences, each generated by a particular base. If the base is // greater than 1, a standard 1-dimensional // van der Corput sequence is generated. But if the base is // negative, this is a signal that the much simpler sequence J/(-BASE) // is to be generated. For the standard Hammersley sequence, the // first spatial coordinate uses a base of (-N), and subsequent // coordinates use bases of successive primes (2, 3, 5, 7, 11, ...). // This program allows the user to specify any combination of bases, // included nonprimes and repeated values. // // This routine selects elements of a "leaped" subsequence of the // Hammersley sequence. The subsequence elements are indexed by a // quantity called STEP, which starts at 0. The STEP-th subsequence // element is simply element // // SEED(1:DIM_NUM) + STEP * LEAP(1:DIM_NUM) // // of the original Hammersley sequence. // // // The data to be computed has two dimensions. // // The number of data items is DIM_NUM * N, where DIM_NUM is the spatial dimension // of each element of the sequence, and N is the number of elements of the sequence. // // The data is stored in a one dimensional array R. The first element of the // sequence is stored in the first DIM_NUM entries of R, followed by the DIM_NUM entries // of the second element, and so on. // // In particular, the J-th element of the sequence is stored in entries // 0+(J-1)*DIM_NUM through (DIM_NUM-1) + (J-1)*DIM_NUM. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 September 2004 // // Author: // // John Burkardt // // Reference: // // J M Hammersley, // Monte Carlo methods for solving multivariable problems, // Proceedings of the New York Academy of Science, // Volume 86, 1960, pages 844-874. // // Ladislav Kocis and William Whiten, // Computational Investigations of Low-Discrepancy Sequences, // ACM Transactions on Mathematical Software, // Volume 23, Number 2, 1997, pages 266-294. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of elements of the sequence. // // Input, int STEP, the index of the subsequence element. // 0 <= STEP is required // // Input, int SEED[DIM_NUM], the Hammersley sequence index corresponding // to STEP = 0. // // Input, int LEAP[DIM_NUM], the succesive jumps in the Hammersley sequence. // // Input, int BASE[DIM_NUM], the Hammersley bases. // // Output, double R[DIM_NUM*N], the next N elements of the // leaped Hammersley subsequence, beginning with element STEP. // { # define FIDDLE 0.0 double base_inv; int digit; int i; int j; int *seed2; int temp; // // Check the input. // if ( !halham_dim_num_check ( dim_num ) ) { exit ( 1 ); } if ( !halham_n_check ( n ) ) { exit ( 1 ); } if ( !halham_step_check ( step ) ) { exit ( 1 ); } if ( !halham_seed_check ( dim_num, seed ) ) { exit ( 1 ); } if ( !halham_leap_check ( dim_num, leap ) ) { exit ( 1 ); } if ( !hammersley_base_check ( dim_num, base ) ) { exit ( 1 ); } // // Calculate the data. // seed2 = new int[n]; for ( i = 0; i < dim_num; i++ ) { if ( 1 < base[i] ) { for ( j = 0; j < n; j++ ) { seed2[j] = seed[i] + ( step + j ) * leap[i]; } for ( j = 0; j < n; j++ ) { r[i+j*dim_num] = 0.0; } for ( j = 0; j < n; j++ ) { base_inv = 1.0 / ( ( double ) base[i] ); while ( seed2[j] != 0 ) { digit = seed2[j] % base[i]; r[i+j*dim_num] = r[i+j*dim_num] + ( ( double ) digit ) * base_inv; base_inv = base_inv / ( ( double ) base[i] ); seed2[j] = seed2[j] / base[i]; } } } // // In the following computation, the value of FIDDLE can be: // // 0, for the sequence 0/N, 1/N, ..., N-1/N // 1, for the sequence 1/N, 2/N, ..., N/N // 1/2, for the sequence 1/(2N), 3/(2N), ..., (2*N-1)/(2N) // else { for ( j = 0; j < n; j++ ) { temp = ( seed[i] + ( step + j ) * leap[i] ) % ( -base[i] ); r[i+j*dim_num] = ( ( double ) ( temp ) + FIDDLE ) / ( double ) ( -base[i] ); } } } delete [] seed2; return; # undef FIDDLE } //****************************************************************************80 int i4_uniform_ab ( int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM_AB returns a scaled pseudorandom I4 between A and B. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM, a number between A and B. // { int c; int i4_huge = 2147483647; int k; float r; int value; if ( seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } return value; } //****************************************************************************80 void i4vec_transpose_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_TRANSPOSE_PRINT prints an I4VEC "transposed". // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // A = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 } // TITLE = "My vector: " // // My vector: 1 2 3 4 5 // 6 7 8 9 10 // 11 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title to be printed first. // TITLE may be blank or NULL. // { int i; int ihi; int ilo; int title_len; if ( 0 < s_len_trim ( title ) ) { title_len = title.length ( ); for ( ilo = 1; ilo <= n; ilo = ilo + 5 ) { ihi = i4_min ( ilo + 5 - 1, n ); if ( ilo == 1 ) { cout << title; } else { for ( i = 1; i <= title_len; i++ ) { cout << " "; } } for ( i = ilo; i <= ihi; i++ ) { cout << setw(12) << a[i-1]; } cout << "\n"; } } else { for ( ilo = 1; ilo <= n; ilo = ilo + 5 ) { ihi = i4_min ( ilo + 5 - 1, n ); for ( i = ilo; i <= ihi; i++ ) { cout << setw(12) << a[i-1]; } cout << "\n"; } } return; } //****************************************************************************80 void ksub_random2 ( int n, int k, int &seed, int a[] ) //****************************************************************************80 // // Purpose: // // KSUB_RANDOM2 selects a random subset of size K from a set of size N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 May 2003 // // Author: // // FORTRAN77 original version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt. // // Reference: // // A Nijenhuis and H Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the size of the set from which subsets are drawn. // // Input, int K, number of elements in desired subsets. K must // be between 0 and N. // // Input/output, int &SEED, a seed for the random number generator. // // Output, int A[K]. A(I) is the I-th element of the // output set. The elements of A are in order. // { int available; int candidate; int have; int need; double r; if ( k < 0 || n < k ) { cerr << "\n"; cerr << "KSUB_RANDOM2 - Fatal error!\n"; cerr << " N = " << n << "\n"; cerr << " K = " << k << "\n"; cerr << " but 0 <= K <= N is required!\n"; exit ( 1 ); } if ( k == 0 ) { return; } need = k; have = 0; available = n; candidate = 0; for ( ; ; ) { candidate = candidate + 1; r = r8_uniform_01 ( seed ); if ( r * ( double ) available <= ( double ) need ) { need = need - 1; a[have] = candidate; have = have + 1; if ( need <= 0 ) { break; } } available = available - 1; } return; } //****************************************************************************80 double *normal ( int dim_num, int n, double r[], double mu[], int &seed ) //****************************************************************************80 // // Purpose: // // NORMAL creates normally distributed points in DIM_NUM space. // // Discussion: // // The multivariate normal distribution for the DIM_NUM dimensional vector X // has the form: // // pdf(X) = (2*pi*det(V))^(-DIM_NUM/2) * exp(-0.5*(X-MU)'*inverse(V)*(X-MU)) // // where MU is the mean vector, and V is a positive definite symmetric // matrix called the variance-covariance matrix. // // This routine requires that the user supply the upper triangular // Cholesky factor R, which has the property that // // V = R' * R // // This factorization always exists if V is actually symmetric and // positive definite. This factorization can be computed by the // routine SPO_FA. // // The user also supplies the mean vector MU. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input, double R[DIM_NUM*DIM_NUM], the upper triangular Cholesky factor // of the variance-covariance matrix. // // Input, double MU[DIM_NUM], the mean vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double NORMAL[DIM_NUM*N], the random points. // { int i; int j; int k; double *v; double *x; v = new double[dim_num]; x = new double[dim_num*n]; // // Get a matrix V of normal data. // Compute X = MU + R' * V. // We actually carry out this computation in the equivalent form X' * R. // for ( j = 0; j < n; j++ ) { r8vec_normal_01 ( dim_num, seed, v ); for ( i = 0; i < dim_num; i++ ) { x[i+j*dim_num] = mu[i]; for ( k = 0; k <= i; k++ ) { x[i+j*dim_num] = x[i+j*dim_num] + v[k] * r[k+i*dim_num]; } } } delete [] v; return x; } //****************************************************************************80 double *normal_circular ( int dim_num, int n, int &seed ) //****************************************************************************80 // // Purpose: // // NORMAL_CIRCULAR creates circularly normal points in 2 space. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964, page 936. // // Parameters: // // Input, int DIM_NUM, the dimension of the space, which must be 2. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double NORMAL_CIRULAR[DIM_NUM*N], the random points. // { # define PI 3.141592653589793 int j; double *r; double *t; double *x; r = new double[n]; t = new double[n]; x = new double[dim_num*n]; // // The angle varies uniformly from 0 to 2 pi. // r8vec_uniform_01 ( n, seed, t ); for ( j = 0; j < n; j++ ) { t[j] = 2.0 * PI * t[j]; } // // The radius is normally distributed. // r8vec_normal_01 ( n, seed, r ); for ( j = 0; j < n; j++ ) { x[0+j*dim_num] = r[j] * cos ( t[j] ); x[1+j*dim_num] = r[j] * sin ( t[j] ); } delete [] r; delete [] t; return x; # undef PI } //****************************************************************************80 double *normal_multivariate ( int m, int n, double r[], double mu[], int &seed ) //****************************************************************************80 // // Purpose: // // NORMAL_MULTIVARIATE samples a multivariate normal distribution. // // Discussion: // // The multivariate normal distribution for the M dimensional vector X // has the form: // // pdf(X) = (2*pi*det(V))^(-M/2) * exp(-0.5*(X-MU)'*inverse(V)*(X-MU)) // // where MU is the mean vector, and V is a positive definite symmetric // matrix called the variance-covariance matrix. // // This routine samples points associated with the M dimensional // normal distribution with mean MU and covariance matrix V. // // This routine requires that the user supply the upper triangular // Cholesky factor R of V, which has the property that // // V = R' * R // // This factorization always exists if V is actually symmetric and // positive definite. This factorization can be computed by the // routine R8PO_FA. // // The user also supplies the mean vector MU. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Reference: // // Russell Cheng, // Random Variate Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, pages 167-168. // // Parameters: // // Input, int M, the dimension of the space. // // Input, int N, the number of points. // // Input, double R[M*M], the upper triangular Cholesky factor // of the variance-covariance matrix. // // Input, double MU[M], the mean vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double NORMAL_MULTIVARIATE[DIM_NUM*N], corresponding // points associated with the multivariate normal distribution. // { int i; int j; int k; double *v; double *x; v = new double[m]; x = new double[m*n]; // // Compute X = MU + R' * V. // We actually carry out this computation in the equivalent form MU + V' * R. // for ( j = 0; j < n; j++ ) { r8vec_normal_01 ( m, seed, v ); for ( i = 0; i < m; i++ ) { x[i+j*m] = mu[i]; for ( k = 0; k <= i; k++ ) { x[i+j*m] = x[i+j*m] + v[k] * r[k+i*m]; } } } delete [] v; return x; } //****************************************************************************80 double *normal_simple ( int dim_num, int n, int &seed ) //****************************************************************************80 // // Purpose: // // NORMAL_SIMPLE creates normally distributed points in DIM_NUM space. // // Discussion: // // The multivariate normal distribution has the form: // // f(x) = (2*pi*det(V))^(-DIM_NUM/2) * exp(-0.5*(x-mu)'*inverse(V)*(x-mu)) // // where mu is the mean vector, and V is a positive definite symmetric // matrix called the variance-covariance matrix. // // This routine implements the simplest version of a multivariate // normal distribution. The variance-covariance matrix is the identity, // and the mean vector is entirely zero. Thus, a sample on N points // is simply DIM_NUM*N scalar values generated under the univariate // normal distribution with zero mean and unit variance. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double NORMAL_SIMPLE[DIM_NUM*N], the random points. // { double *x; x = new double[dim_num*n]; r8vec_normal_01 ( dim_num * n, seed, x ); return x; } //****************************************************************************80 double *polygon_centroid_2d ( int n, double v[] ) //****************************************************************************80 // // Purpose: // // POLYGON_CENTROID_2D computes the centroid of a polygon in 2D. // // Formula: // // Denoting the centroid coordinates by CENTROID, then // // CENTROID(1) = Integral ( Polygon interior ) x dx dy / Area ( Polygon ) // CENTROID(2) = Integral ( Polygon interior ) y dx dy / Area ( Polygon ). // // Green's theorem states that // // Integral ( Polygon boundary ) ( M dx + N dy ) = // Integral ( Polygon interior ) ( dN/dx - dM/dy ) dx dy. // // Using M = 0 and N = x * x / 2, we get: // // CENTROID(1) = 0.5 * Integral ( Polygon boundary ) x * x dy, // // which becomes // // CENTROID(1) = 1/6 Sum ( 1 <= I <= N ) // ( X(I+1) + X(I) ) * ( X(I) * Y(I+1) - X(I+1) * Y(I)) // // where, when I = N, the index "I+1" is replaced by 1. // // A similar calculation gives us a formula for CENTROID(2). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2004 // // Author: // // John Burkardt // // Reference: // // Gerard Bashein and Paul Detmer, // Centroid of a Polygon, // Graphics Gems IV, edited by Paul Heckbert, // AP Professional, 1994. // // Parameters: // // Input, int N, the number of sides of the polygonal shape. // // Input, double V[2*N], the coordinates of the vertices // of the shape. // // Output, double POLYGON_CENTROID_2D[2], the coordinates of the // centroid of the shape. // { double area; double *centroid; int i; int ip1; double temp; // area = 0.0; centroid = new double[2]; centroid[0] = 0.0; centroid[1] = 0.0; for ( i = 0; i < n; i++ ) { if ( i < n-1 ) { ip1 = i + 1; } else { ip1 = 0; } temp = ( v[0+i*2] * v[1+ip1*2] - v[0+ip1*2] * v[1+i*2] ); area = area + temp; centroid[0] = centroid[0] + ( v[0+ip1*2] + v[0+i*2] ) * temp; centroid[1] = centroid[1] + ( v[1+ip1*2] + v[1+i*2] ) * temp; } area = area / 2.0; centroid[0] = centroid[0] / ( 6.0 * area ); centroid[1] = centroid[1] / ( 6.0 * area ); return centroid; } //****************************************************************************80 int prime ( int n ) //****************************************************************************80 // // Purpose: // // PRIME returns any of the first PRIME_MAX prime numbers. // // Discussion: // // PRIME_MAX is 1600, and the largest prime stored is 13499. // // Thanks to Bart Vandewoestyne for pointing out a typo, 18 February 2005. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 February 2005 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964, pages 870-873. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, pages 95-98. // // Parameters: // // Input, int N, the index of the desired prime number. // In general, is should be true that 0 <= N <= PRIME_MAX. // N = -1 returns PRIME_MAX, the index of the largest prime available. // N = 0 is legal, returning PRIME = 1. // // Output, int PRIME, the N-th prime. If N is out of range, PRIME // is returned as -1. // { # define PRIME_MAX 1600 int npvec[PRIME_MAX] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973,10007, 10009,10037,10039,10061,10067,10069,10079,10091,10093,10099, 10103,10111,10133,10139,10141,10151,10159,10163,10169,10177, 10181,10193,10211,10223,10243,10247,10253,10259,10267,10271, 10273,10289,10301,10303,10313,10321,10331,10333,10337,10343, 10357,10369,10391,10399,10427,10429,10433,10453,10457,10459, 10463,10477,10487,10499,10501,10513,10529,10531,10559,10567, 10589,10597,10601,10607,10613,10627,10631,10639,10651,10657, 10663,10667,10687,10691,10709,10711,10723,10729,10733,10739, 10753,10771,10781,10789,10799,10831,10837,10847,10853,10859, 10861,10867,10883,10889,10891,10903,10909,10937,10939,10949, 10957,10973,10979,10987,10993,11003,11027,11047,11057,11059, 11069,11071,11083,11087,11093,11113,11117,11119,11131,11149, 11159,11161,11171,11173,11177,11197,11213,11239,11243,11251, 11257,11261,11273,11279,11287,11299,11311,11317,11321,11329, 11351,11353,11369,11383,11393,11399,11411,11423,11437,11443, 11447,11467,11471,11483,11489,11491,11497,11503,11519,11527, 11549,11551,11579,11587,11593,11597,11617,11621,11633,11657, 11677,11681,11689,11699,11701,11717,11719,11731,11743,11777, 11779,11783,11789,11801,11807,11813,11821,11827,11831,11833, 11839,11863,11867,11887,11897,11903,11909,11923,11927,11933, 11939,11941,11953,11959,11969,11971,11981,11987,12007,12011, 12037,12041,12043,12049,12071,12073,12097,12101,12107,12109, 12113,12119,12143,12149,12157,12161,12163,12197,12203,12211, 12227,12239,12241,12251,12253,12263,12269,12277,12281,12289, 12301,12323,12329,12343,12347,12373,12377,12379,12391,12401, 12409,12413,12421,12433,12437,12451,12457,12473,12479,12487, 12491,12497,12503,12511,12517,12527,12539,12541,12547,12553, 12569,12577,12583,12589,12601,12611,12613,12619,12637,12641, 12647,12653,12659,12671,12689,12697,12703,12713,12721,12739, 12743,12757,12763,12781,12791,12799,12809,12821,12823,12829, 12841,12853,12889,12893,12899,12907,12911,12917,12919,12923, 12941,12953,12959,12967,12973,12979,12983,13001,13003,13007, 13009,13033,13037,13043,13049,13063,13093,13099,13103,13109, 13121,13127,13147,13151,13159,13163,13171,13177,13183,13187, 13217,13219,13229,13241,13249,13259,13267,13291,13297,13309, 13313,13327,13331,13337,13339,13367,13381,13397,13399,13411, 13417,13421,13441,13451,13457,13463,13469,13477,13487,13499 }; if ( n == -1 ) { return PRIME_MAX; } else if ( n == 0 ) { return 1; } else if ( n <= PRIME_MAX ) { return npvec[n-1]; } else { cerr << "\n"; cerr << "PRIME - Fatal error!\n"; cerr << " Unexpected input value of n = " << n << "\n"; exit ( 1 ); } return 0; # undef PRIME_MAX } //****************************************************************************80 float r4_abs ( float x ) //****************************************************************************80 // // Purpose: // // R4_ABS returns the absolute value of an R4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the quantity whose absolute value is desired. // // Output, float R4_ABS, the absolute value of X. // { float value; if ( 0.0 <= x ) { value = x; } else { value = -x; } return value; } //****************************************************************************80 int r4_nint ( float x ) //****************************************************************************80 // // Purpose: // // R4_NINT returns the nearest integer to an R4. // // Example: // // X R4_NINT // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the value. // // Output, int R4_NINT, the nearest integer to X. // { int value; if ( x < 0.0 ) { value = - ( int ) ( r4_abs ( x ) + 0.5 ); } else { value = ( int ) ( r4_abs ( x ) + 0.5 ); } return value; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output double R8_MAX, the maximum of X and Y. // { if ( y < x ) { return x; } else { return y; } } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output double R8_MIN, the minimum of X and Y. // { if ( x < y ) { return x; } else { return y; } } //****************************************************************************80 int r8_nint ( double x ) //****************************************************************************80 // // Purpose: // // R8_NINT returns the nearest integer to a double precision real value. // // Example: // // X R8_NINT // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the real value. // // Output, int R8_NINT, the nearest integer to X. // { int s; if ( x < 0.0 ) { s = -1; } else { s = 1; } return ( s * ( int ) ( fabs ( x ) + 0.5 ) ); } //****************************************************************************80 double r8_normal_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_NORMAL_01 samples the standard normal probability distribution. // // Discussion: // // The standard normal probability distribution function (PDF) has // mean 0 and standard deviation 1. // // The Box-Muller method is used, which is efficient, but // generates two values at a time. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input/output, int SEED, a seed for the random number generator. // // Output, double R8_NORMAL_01, a normally distributed random value. // { double pi = 3.141592653589793; double r1; double r2; static int used = -1; double x; static double y = 0.0; if ( used == -1 ) { used = 0; } // // If we've used an even number of values so far, generate two more, // return one, and save one. // if ( ( used % 2 )== 0 ) { for ( ; ; ) { r1 = r8_uniform_01 ( seed ); if ( r1 != 0.0 ) { break; } } r2 = r8_uniform_01 ( seed ); x = sqrt ( -2.0 * log ( r1 ) ) * cos ( 2.0 * pi * r2 ); y = sqrt ( -2.0 * log ( r1 ) ) * sin ( 2.0 * pi * r2 ); } else { x = y; } used = used + 1; return x; } //****************************************************************************80 double r8_pi ( ) //****************************************************************************80 // // Purpose: // // R8_PI returns the value of PI to 16 digits. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2004 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_PI, the value of PI. // { return 3.141592653589793; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double *r8mat_normal_01_new ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8MAT_NORMAL_01_NEW returns a unit pseudonormal R8MAT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int M, N, the number of rows and columns in the array. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, double R8MAT_NORMAL_01_NEW[M*N], the array of pseudonormal values. // { double *r; r = r8vec_normal_01_new ( m * n, seed ); return r; } //****************************************************************************80 void r8mat_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT prints an R8MAT, with an optional title. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*M] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Input, string TITLE, a title to be printed. // { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT_SOME prints some of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title for the matrix. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8mat_uniform_01_new ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_01_NEW returns a unit pseudorandom R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8's, stored as a vector // in column-major order. // // This routine implements the recursion // // seed = 16807 * seed mod ( 2^31 - 1 ) // unif = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Philip Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0, otherwise the output value of SEED // will still be 0, and R8_UNIFORM will be 0. On output, SEED has // been updated. // // Output, double R8MAT_UNIFORM_01_NEW[M*N], a matrix of pseudorandom values. // { int i; int j; int k; double *r; r = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } r[i+j*m] = ( double ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file with no header. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the table data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; return; } // // Write the data. // For greater precision, try // // output << " " << setw(24) << setprecision(16) << table[i+j*m]; // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(10) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 int r8po_fa ( double a[], int lda, int n ) //****************************************************************************80 // // Purpose: // // R8PO_FA factors a real symmetric positive definite matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 May 2005 // // Author: // // FORTRAN77 original version by Dongarra, Moler, Bunch, Stewart. // C++ version by John Burkardt. // // Reference: // // Dongarra, Moler, Bunch and Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // ISBN 0-89871-172-X // // Parameters: // // Input/output, double A[LDA*N]. On input, the symmetric matrix // to be factored. Only the diagonal and upper triangle are used. // On output, an upper triangular matrix R so that A = R'*R // where R' is the transpose. The strict lower triangle is unaltered. // If INFO /= 0, the factorization is not complete. // // Input, int LDA, the leading dimension of the array A. // // Input, int N, the order of the matrix. // // Output, int R8PO_FA, error flag. // 0, for normal return. // K, signals an error condition. The leading minor of order K is not // positive definite. // { int info; int j; int k; double s; double t; for ( j = 1; j <= n; j++ ) { s = 0.0; for ( k = 1; k <= j-1; k++ ) { t = a[k-1+(j-1)*lda] - ddot ( k-1, a+0+(k-1)*lda, 1, a+0+(j-1)*lda, 1 ); t = t / a[k-1+(k-1)*lda]; a[k-1+(j-1)*lda] = t; s = s + t * t; } s = a[j-1+(j-1)*lda] - s; if ( s <= 0.0 ) { info = j; return info; } a[j-1+(j-1)*lda] = sqrt ( s ); } info = 0; return info; } //****************************************************************************80 void r8po_sl ( double a[], int lda, int n, double b[] ) //****************************************************************************80 // // Purpose: // // R8PO_SL solves a linear system factored by R8PO_FA. // // Discussion: // // A division by zero will occur if the input factor contains // a zero on the diagonal. Technically this indicates // singularity but it is usually caused by improper subroutine // arguments. It will not occur if the subroutines are called // correctly and INFO == 0. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 May 2005 // // Author: // // FORTRAN77 original version by Dongarra, Moler, Bunch, Stewart. // C++ version by John Burkardt. // // Reference: // // Dongarra, Moler, Bunch and Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // ISBN 0-89871-172-X // // Parameters: // // Input, double A[LDA*N], the output from R8PO_FA. // // Input, int LDA, the leading dimension of the array A. // // Input, int N, the order of the matrix. // // Input/output, double B[N]. On input, the right hand side. // On output, the solution. // { int k; double t; // // Solve R' * Y = B. // for ( k = 1; k <= n; k++ ) { t = ddot ( k-1, a+0+(k-1)*lda, 1, b, 1 ); b[k-1] = ( b[k-1] - t ) / a[k-1+(k-1)*lda]; } // // Solve R * X = Y. // for ( k = n; 1 <= k; k-- ) { b[k-1] = b[k-1] / a[k-1+(k-1)*lda]; t = -b[k-1]; daxpy ( k-1, t, a+0+(k-1)*lda, 1, b, 1 ); } return; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double r8vec_norm ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM returns the L2 norm of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // The vector L2 norm is defined as: // // R8VEC_NORM = sqrt ( sum ( 1 <= I <= N ) A(I)**2 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 March 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in A. // // Input, double A[N], the vector whose L2 norm is desired. // // Output, double R8VEC_NORM, the L2 norm of A. // { int i; double v; v = 0.0; for ( i = 0; i < n; i++ ) { v = v + a[i] * a[i]; } v = sqrt ( v ); return v; } //****************************************************************************80 void r8vec_normal_01 ( int n, int &seed, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORMAL_01 samples the standard normal probability distribution. // // Discussion: // // The standard normal probability distribution function (PDF) has // mean 0 and standard deviation 1. // // This routine can generate a vector of values on one call. It // has the feature that it should provide the same results // in the same order no matter how we break up the task. // // Before calling this routine, the user may call RANDOM_SEED // in order to set the seed of the random number generator. // // The Box-Muller method is used, which is efficient, but // generates an even number of values each time. On any call // to this routine, an even number of new values are generated. // Depending on the situation, one value may be left over. // In that case, it is saved for the next call. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of values desired. If N is negative, // then the code will flush its internal memory; in particular, // if there is a saved value to be used on the next call, it is // instead discarded. This is useful if the user has reset the // random number seed, for instance. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double X[N], a sample of the standard normal PDF. // { int i; int m; double pi = 3.141592653589793; double *r; static int made = 0; static int saved = 0; int xhi; int xlo; static double y = 0.0; // // I'd like to allow the user to reset the random number seed. // But this won't work properly if we have a saved value Y. // I'm making a crock option that allows the user to signal // explicitly that any internal memory should be flushed, // by passing in a negative value for N. // if ( n < 0 ) { made = 0; saved = 0; y = 0.0; return; } else if ( n == 0 ) { return; } // // Record the range of X we need to fill in. // xlo = 1; xhi = n; // // Use up the old value, if we have it. // if ( saved == 1 ) { x[0] = y; saved = 0; xlo = 2; } // // If we don't need any more values, return. // if ( xhi - xlo + 1 == 0 ) { return; } r = new double[n+1]; // // If we need just one new value, do that here to avoid null arrays. // if ( xhi - xlo + 1 == 1 ) { r8vec_uniform_01 ( 2, seed, r ); x[xhi-1] = sqrt ( -2.0 * log ( r[0] ) ) * cos ( 2.0 * pi * r[1] ); y = sqrt ( -2.0 * log ( r[0] ) ) * sin ( 2.0 * pi * r[1] ); saved = 1; made = made + 2; } // // If we require an even number of values, that's easy. // else if ( ( ( xhi-xlo+1) % 2 ) == 0 ) { m = ( xhi-xlo+1 ) / 2; r8vec_uniform_01 ( 2*m, seed, r ); for ( i = 0; i < 2*m; i = i + 2 ) { x[xlo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); x[xlo+i] = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * pi * r[i+1] ); } made = made + xhi - xlo + 1; } // // If we require an odd number of values, we generate an even number, // and handle the last pair specially, storing one in X(N), and // saving the other for later. // else { xhi = xhi - 1; m = ( xhi-xlo+1 ) / 2 + 1; r8vec_uniform_01 ( 2*m, seed, r ); for ( i = 0; i < 2*m-2; i = i + 2 ) { x[xlo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); x[xlo+i ] = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * pi * r[i+1] ); } x[n-1] = sqrt ( -2.0 * log ( r[2*m-2] ) ) * cos ( 2.0 * pi * r[2*m-1] ); y = sqrt ( -2.0 * log ( r[2*m-2] ) ) * sin ( 2.0 * pi * r[2*m-1] ); saved = 1; made = made + xhi - xlo + 2; } delete [] r; return; } //****************************************************************************80 double *r8vec_normal_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_NORMAL_01_NEW returns a unit pseudonormal R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // The standard normal probability distribution function (PDF) has // mean 0 and standard deviation 1. // // This routine can generate a vector of values on one call. It // has the feature that it should provide the same results // in the same order no matter how we break up the task. // // Before calling this routine, the user may call RANDOM_SEED // in order to set the seed of the random number generator. // // The Box-Muller method is used, which is efficient, but // generates an even number of values each time. On any call // to this routine, an even number of new values are generated. // Depending on the situation, one value may be left over. // In that case, it is saved for the next call. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of values desired. If N is negative, // then the code will flush its internal memory; in particular, // if there is a saved value to be used on the next call, it is // instead discarded. This is useful if the user has reset the // random number seed, for instance. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_NORMAL_01_NEW[N], a sample of the standard normal PDF. // // Local parameters: // // Local, int MADE, records the number of values that have // been computed. On input with negative N, this value overwrites // the return value of N, so the user can get an accounting of // how much work has been done. // // Local, double R[N+1], is used to store some uniform random values. // Its dimension is N+1, but really it is only needed to be the // smallest even number greater than or equal to N. // // Local, int SAVED, is 0 or 1 depending on whether there is a // single saved value left over from the previous call. // // Local, int X_LO, X_HI, records the range of entries of // X that we need to compute. This starts off as 1:N, but is adjusted // if we have a saved value that can be immediately stored in X(1), // and so on. // // Local, double Y, the value saved from the previous call, if // SAVED is 1. // { int i; int m; static int made = 0; double pi = 3.141592653589793; double *r; static int saved = 0; double *x; int x_hi; int x_lo; static double y = 0.0; // // I'd like to allow the user to reset the internal data. // But this won't work properly if we have a saved value Y. // I'm making a crock option that allows the user to signal // explicitly that any internal memory should be flushed, // by passing in a negative value for N. // if ( n < 0 ) { made = 0; saved = 0; y = 0.0; return NULL; } else if ( n == 0 ) { return NULL; } x = new double[n]; // // Record the range of X we need to fill in. // x_lo = 1; x_hi = n; // // Use up the old value, if we have it. // if ( saved == 1 ) { x[0] = y; saved = 0; x_lo = 2; } // // Maybe we don't need any more values. // if ( x_hi - x_lo + 1 == 0 ) { } // // If we need just one new value, do that here to avoid null arrays. // else if ( x_hi - x_lo + 1 == 1 ) { r = r8vec_uniform_01_new ( 2, seed ); x[x_hi-1] = sqrt ( -2.0 * log ( r[0] ) ) * cos ( 2.0 * pi * r[1] ); y = sqrt ( -2.0 * log ( r[0] ) ) * sin ( 2.0 * pi * r[1] ); saved = 1; made = made + 2; delete [] r; } // // If we require an even number of values, that's easy. // else if ( ( x_hi - x_lo + 1 ) % 2 == 0 ) { m = ( x_hi - x_lo + 1 ) / 2; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2*m-2; i = i + 2 ) { x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); x[x_lo+i ] = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * pi * r[i+1] ); } made = made + x_hi - x_lo + 1; delete [] r; } // // If we require an odd number of values, we generate an even number, // and handle the last pair specially, storing one in X(N), and // saving the other for later. // else { x_hi = x_hi - 1; m = ( x_hi - x_lo + 1 ) / 2 + 1; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2*m-4; i = i + 2 ) { x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); x[x_lo+i ] = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * pi * r[i+1] ); } i = 2*m - 2; x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); y = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * pi * r[i+1] ); saved = 1; made = made + x_hi - x_lo + 2; delete [] r; } return x; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title to be printed first. // TITLE may be blank. // { int i; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double r8vec_sum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SUM returns the sum of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_SUM, the sum of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i]; } return value; } //****************************************************************************80 void r8vec_uniform_01 ( int n, int &seed, double r[] ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01 returns a unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double *r8vec_zero_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZERO_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZERO_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 unsigned long random_initialize ( unsigned long seed ) //****************************************************************************80 // // Purpose: // // RANDOM_INITIALIZE initializes the RANDOM random number generator. // // Discussion: // // If you don't initialize RANDOM, the random number generator, // it will behave as though it were seeded with value 1. // This routine will either take a user-specified seed, or // (if the user passes a 0) make up a "random" one. In either // case, the seed is passed to SRANDOM (the appropriate routine // to call when setting the seed for RANDOM). The seed is also // returned to the user as the value of the function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, unsigned long SEED, is either 0, which means that the user // wants this routine to come up with a seed, or nonzero, in which // case the user has supplied the seed. // // Output, unsigned long RANDOM_INITIALIZE, is the value of the seed // passed to SRANDOM, which is either the user's input value, or if // that was zero, the value selected by this routine. // { # define DEBUG 0 if ( seed != 0 ) { if ( DEBUG ) { cout << "\n"; cout << "RANDOM_INITIALIZE\n"; cout << " Initialize RANDOM with user SEED = " << seed << "\n"; } } else { seed = get_seed ( ); if ( DEBUG ) { cout << "\n"; cout << "RANDOM_INITIALIZE\n"; cout << " Initialize RANDOM with arbitrary SEED = " << seed << "\n"; } } // // Now set the seed. // srandom ( seed ); return seed; # undef DEBUG } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 void scale_from_simplex01 ( int dim_num, int n, double t[], double x[] ) //****************************************************************************80 // // Purpose: // // SCALE_FROM_SIMPLEX01 rescales data from a unit to non-unit simplex. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Reference: // // Reuven Rubinstein, // Monte Carlo Optimization, Simulation, and Sensitivity // of Queueing Networks, // Krieger, 1992, // ISBN: 0894647644, // LC: QA298.R79. // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input, double T[DIM_NUM*(DIM_NUM+1)], the coordinates of the DIM_NUM+1 // points that define the simplex. T[0:DIM_NUM-1,0] corresponds to the // origin, and T[0:DIM_NUM-1,J] will be the image of the J-th unit // coordinate vector. // // Input/output, double X[DIM_NUM*N], the data to be modified. // { double *a; int i; int j; double *v; a = new double[dim_num*dim_num]; v = new double[dim_num]; for ( j = 0; j < dim_num; j++ ) { for ( i = 0; i < dim_num; i++ ) { a[i+j*dim_num] = t[i+j*(dim_num+1)] - t[i+0*(dim_num+1)]; } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < dim_num; i++ ) { v[i] = x[i+j*dim_num]; } for ( i = 0; i < dim_num; i++ ) { x[i+j*dim_num] = t[i+0*(dim_num+1)]; for ( j = 0; j < n; j++ ) { x[i+j*dim_num] = x[i+j*dim_num] + a[i+j*dim_num] * v[j]; } } } delete [] a; delete [] v; return; } //****************************************************************************80 void scale_to_ball01 ( int dim_num, int n, double x[] ) //****************************************************************************80 // // Purpose: // // SCALE_TO_BALL01 translates and rescales data to fit within the unit ball. // // Discussion: // // Completely arbitrary input data is given. // // The average of the data is computed, and taken as the coordinates // of the center C of a sphere. The radius R of that sphere is the // distance from the center to the furthest point in the data set. // // Then each point is transformed to the ball of center 0 and radius // 1 by subtracting C and dividing by R: // // X(1:DIM_NUM,J) -> ( X(1:DIM_NUM,J) - C(1:DIM_NUM) ) / R // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input/output, double X[DIM_NUM*N], the data to be modified. // { int i; int j; double r; double scale; double *xave; // // Determine the center. // xave = new double[dim_num]; for ( i = 0; i < dim_num; i++ ) { xave[i] = 0.0; for ( j = 0; j < n; j++ ) { xave[i] = xave[i] + x[i+j*dim_num]; } xave[i] = xave[i] / ( double ) n; } // // Determine the maximum distance of any point from the center. // for ( j = 0; j < n; j++ ) { r = 0.0; for ( i = 0; i < dim_num; i++ ) { r = r + pow ( x[i+j*dim_num] - xave[i], 2 ); } if ( scale < r ) { scale = r ; } } scale = sqrt ( scale ); if ( 0.0 < scale ) { for ( j = 0; j < n; j++ ) { for ( i = 0; i < dim_num; i++) { x[i+j*dim_num] = ( x[i+j*dim_num] - xave[i] ) / scale; } } } else { for ( j = 0; j < n; j++ ) { for ( i = 0; i < dim_num; i++) { x[i+j*dim_num] = 0.0; } } } delete [] xave; return; } //****************************************************************************80 void scale_to_block01 ( int dim_num, int n, double x[] ) //****************************************************************************80 // // Purpose: // // SCALE_TO_BLOCK01 translates and rescales data to fit in the unit block. // // Discussion: // // The minimum and maximum coordinate values M1(I) and M2(I) are // determined, and the maximum of M2(I) - M1(I) is used to scale // all the coordinates by the same factor. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input/output, double X[DIM_NUM*N], the data to be modified. // { int i; int j; double *xmax; double *xmin; double xrange; double xrange2; xmax = new double[dim_num]; xmin = new double[dim_num]; // // Determine the extremes in each dimension. // xrange = 0.0; for ( i = 0; i < dim_num; i++ ) { xmin[i] = x[i+0*dim_num]; xmax[i] = x[i+0*dim_num]; for ( j = 1; j < n; j++ ) { xmin[i] = r8_min ( xmin[i], x[i+j*dim_num] ); xmax[i] = r8_max ( xmax[i], x[i+j*dim_num] ); } xrange = r8_max ( xrange, xmax[i] - xmin[i] ); } // // Extend all the extremes so that the range is the same in each dimension. // for ( i = 0; i < dim_num; i++ ) { xrange2 = xrange - ( xmax[i] - xmin[i] ); xmax[i] = xmax[i] + 0.5 * xrange2; xmin[i] = xmin[i] - 0.5 * xrange2; } // // Now map the data to [0,1], using a single dilation factor // for all dimensions. // if ( 0.0 == xrange ) { for ( j = 0; j < n; j++ ) { for ( i = 0; i < dim_num; i++ ) { x[i+j*dim_num] = 0.5; } } } else { for ( j = 0; j < n; j++ ) { for ( i = 0; i < dim_num; i++ ) { x[i+j*dim_num] = ( x[i+j*dim_num] - xmin[i] ) / xrange; } } } delete [] xmax; delete [] xmin; return; } //****************************************************************************80 void scale_to_cube01 ( int dim_num, int n, double x[] ) //****************************************************************************80 // // Purpose: // // SCALE_TO_CUBE01 translates and rescales data to the unit hypercube. // // Discussion: // // In each coordinate dimension I, the minimum and maximum coordinate // values M1(I) and M2(I) are determined. // // Then, in each coordinate, the points are rescaled as // // X(I) -> ( X(I) - M1(I) ) / ( M2(I) - M1(I) ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input/output, double X[DIM_NUM*N], the data to be modified. // { int i; int j; double xmax; double xmin; for ( i = 0; i < dim_num; i++ ) { xmin = x[i+0*dim_num]; xmax = x[i+0*dim_num]; for ( j = 1; j < n; j++ ) { if ( x[i+j*dim_num] < xmin ) { xmin = x[i+j*dim_num]; } if ( xmax < x[i+j*dim_num] ) { xmax = x[i+j*dim_num]; } } if ( 0.0 < xmax - xmin ) { for ( j = 0; j < n; j++ ) { x[i+j*dim_num] = ( x[i+j*dim_num] - xmin ) / ( xmax - xmin ); } } else { for ( j = 0; j < n; j++ ) { x[i+j*dim_num] = 0.0; } } } return; } //****************************************************************************80 double stri_angles_to_area ( double r, double a, double b, double c ) //****************************************************************************80 // // Purpose: // // STRI_ANGLES_TO_AREA computes the area of a spherical triangle. // // Discussion: // // A sphere centered at 0 in 3D satisfies the equation: // // X**2 + Y**2 + Z**2 = R**2 // // A spherical triangle is specified by three points on the surface // of the sphere. // // The area formula is known as Girard's formula. // // The area of a spherical triangle is: // // AREA = ( A + B + C - PI ) * R**2 // // where A, B and C are the (surface) angles of the triangle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the sphere. // // Input, double A, B, C, the angles of the triangle. // // Output, double STRI_ANGLES_TO_AREA_3D, the area of the spherical triangle. // { double area; double pi = 3.141592653589793; area = r * r * ( a + b + c - pi ); return area; } //****************************************************************************80 void stri_sides_to_angles ( double r, double as, double bs, double cs, double *a, double *b, double *c ) //****************************************************************************80 // // Purpose: // // STRI_SIDES_TO_ANGLES computes spherical triangle angles. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the sphere. // // Input, double AS, BS, CS, the (geodesic) length of the sides of the // triangle. // // Output, double *A, *B, *C, the spherical angles of the triangle. // Angle A is opposite the side of length AS, and so on. // { double asu; double bsu; double csu; double ssu; double tan_a2; double tan_b2; double tan_c2; asu = as / r; bsu = bs / r; csu = cs / r; ssu = ( asu + bsu + csu ) / 2.0; tan_a2 = sqrt ( ( sin ( ssu - bsu ) * sin ( ssu - csu ) ) / ( sin ( ssu ) * sin ( ssu - asu ) ) ); *a = 2.0 * atan ( tan_a2 ); tan_b2 = sqrt ( ( sin ( ssu - asu ) * sin ( ssu - csu ) ) / ( sin ( ssu ) * sin ( ssu - bsu ) ) ); *b = 2.0 * atan ( tan_b2 ); tan_c2 = sqrt ( ( sin ( ssu - asu ) * sin ( ssu - bsu ) ) / ( sin ( ssu ) * sin ( ssu - csu ) ) ); *c = 2.0 * atan ( tan_c2 ); return; } //****************************************************************************80 void stri_vertices_to_sides ( double r, double v1[3], double v2[3], double v3[3], double *as, double *bs, double *cs ) //****************************************************************************80 // // Purpose: // // STRI_VERTICES_TO_SIDES_3D computes spherical triangle sides. // // Discussion: // // We can use the ACOS system call here, but the ARC_COSINE routine // will automatically take care of cases where the input argument is // (usually slightly) out of bounds. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the sphere. // // Input, double V1[3], V2[3], V3[3], the vertices of the spherical // triangle. // // Output, double *AS, *BS, *CS, the (geodesic) length of the sides of the // triangle. // { *as = r * arc_cosine ( r8vec_dot_product ( 3, v2, v3 ) / ( r * r ) ); *bs = r * arc_cosine ( r8vec_dot_product ( 3, v3, v1 ) / ( r * r ) ); *cs = r * arc_cosine ( r8vec_dot_product ( 3, v1, v2 ) / ( r * r ) ); return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double triangle_area_2d ( double t[2*3] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_AREA_2D computes the area of a triangle in 2D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the vertices of the triangle. // // Output, double TRIANGLE_AREA_2D, the area of the triangle. AREA will // be nonnegative. // { double area; area = fabs ( 0.5 * ( t[0+0*2] * ( t[1+2*2] - t[1+1*2] ) + t[0+1*2] * ( t[1+0*2] - t[1+2*2] ) + t[0+2*2] * ( t[1+1*2] - t[1+0*2] ) ) ); return area; } //****************************************************************************80 void tuple_next_fast ( int m, int n, int rank, int x[] ) //****************************************************************************80 // // Purpose: // // TUPLE_NEXT_FAST computes the next element of a tuple space, "fast". // // Discussion: // // The elements are N vectors. Each entry is constrained to lie // between 1 and M. The elements are produced one at a time. // The first element is // (1,1,...,1) // and the last element is // (M,M,...,M) // Intermediate elements are produced in lexicographic order. // // Example: // // N = 2, // M = 3 // // INPUT OUTPUT // ------- ------- // Rank X // ---- ---- // -1 -1 -1 // // 0 1 1 // 1 1 2 // 2 1 3 // 3 2 1 // 4 2 2 // 5 2 3 // 6 3 1 // 7 3 2 // 8 3 3 // 9 1 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the maximum entry in each component. // M must be greater than 0. // // Input, int N, the number of components. // N must be greater than 0. // // Input, integer RANK, indicates the rank of the tuples. // Typically, 0 <= RANK < N**M; values larger than this are legal // and meaningful, and are equivalent to the corresponding value // MOD N**M. If RANK < 0, this indicates that this is the first // call for the given values of (M,N). Initialization is done, // and X is set to a dummy value. // // Output, int X[N], the next tuple, or a dummy value if initialization // is being done. // { static int *base = NULL; int i; // if ( rank < 0 ) { if ( m <= 0 ) { cerr << "\n"; cerr << "TUPLE_NEXT_FAST - Fatal error!\n"; cerr << " The value M <= 0 is not legal.\n"; cerr << " M = " << m << "\n"; exit ( 1 ); } if ( n <= 0 ) { cerr << "\n"; cerr << "TUPLE_NEXT_FAST - Fatal error!\n"; cerr << " The value N <= 0 is not legal.\n"; cerr << " N = " << n << "\n"; exit ( 1 ); } if ( base ) { delete [] base; } base = new int[n]; base[n-1] = 1; for ( i = n-2; 0 <= i; i-- ) { base[i] = base[i+1] * m; } for ( i = 0; i < n; i++ ) { x[i] = -1; } } else { for ( i = 0; i < n; i++ ) { x[i] = ( ( rank / base[i] ) % m ) + 1; } } return; } //****************************************************************************80 double *uniform_in_annulus ( double pc[], double r1, double r2, int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_ANNULUS samples a circular annulus. // // Discussion: // // A circular annulus with center PC, inner radius R1 and // outer radius R2, is the set of points P so that // // R1^2 <= (P(1)-PC(1))^2 + (P(2)-PC(2))^2 <= R2^2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 August 2005 // // Author: // // John Burkardt // // Reference: // // Peter Shirley, // Nonuniform Random Point Sets Via Warping, // Graphics Gems, Volume III, // edited by David Kirk, // AP Professional, 1992, // ISBN: 0122861663, // LC: T385.G6973. // // Parameters: // // Input, double PC[2], the center. // // Input, double R1, R2, the inner and outer radii. // // Input, int N, the number of points to generate. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_IN_ANNULUS[2*N], sample points. // { # define DIM_NUM 2 # define PI 3.141592653589793 int j; double *p; double r; double theta; double u; double v; p = new double[DIM_NUM*n]; for ( j = 0; j < n; j++ ) { u = r8_uniform_01 ( seed ); theta = u * 2.0 * PI; v = r8_uniform_01 ( seed ); r = sqrt ( ( 1.0 - v ) * r1 * r1 + v * r2 * r2 ); p[0+j*2] = pc[0] + r * cos ( theta ); p[1+j*2] = pc[1] + r * sin ( theta ); } return p; # undef DIM_NUM # undef PI } //****************************************************************************80 double *uniform_in_annulus_accept ( double pc[], double r1, double r2, int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_ANNULUS_ACCEPT accepts points in an annulus. // // Discussion: // // A circular annulus with center PC, inner radius R1 and // outer radius R2, is the set of points P so that // // R1^2 <= (P(1)-PC(1))^2 + (P(2)-PC(2))^2 <= R2^2 // // The acceptance/rejection method is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double PC[2], the center. // // Input, double R1, R2, the inner and outer radii. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_IN_ANNULUS_ACCEPT[2*N], the points. // { # define DIM_NUM 2 int i; int j; double *p; double r_squared; double u[DIM_NUM]; if ( r2 <= r1 ) { cerr << "\n"; cerr << "UNIFORM_IN_ANNULUS_ACCEPT - Fatal error!\n"; cerr << " R2 <= R1.\n"; exit ( 1 ); } p = new double[DIM_NUM*n]; // // Generate points in a square of "radius" R2. // Accept those points which lie inside the circle of radius R2, and outside // the circle of radius R1. // for ( j = 0; j < n; j++ ) { for ( ; ; ) { r8vec_uniform_01 ( DIM_NUM, seed, u ); for ( i = 0; i < DIM_NUM; i++ ) { u[i] = ( 2.0 * u[i] - 1.0 ) * r2; } r_squared = 0.0; for ( i = 0; i < DIM_NUM; i++ ) { r_squared = r_squared + u[i] * u[i]; } if ( r1 * r1 <= r_squared && r_squared <= r2 * r2 ) { break; } } for ( i = 0; i < DIM_NUM; i++ ) { p[i+j*DIM_NUM] = pc[i] + u[i]; } } return p; # undef DIM_NUM } //****************************************************************************80 double *uniform_in_annulus_sector ( double pc[], double r1, double r2, double theta1, double theta2, int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_ANNULUS_SECTOR samples an annular sector in 2D. // // Discussion: // // An annular sector with center PC, inner radius R1 and // outer radius R2, and angles THETA1, THETA2, is the set of points // P so that // // R1^2 <= (P(1)-PC(1))^2 + (P(2)-PC(2))^2 <= R2^2 // // and // // THETA1 <= THETA ( P - PC ) <= THETA2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 August 2005 // // Author: // // John Burkardt // // Reference: // // Peter Shirley, // Nonuniform Random Point Sets Via Warping, // Graphics Gems, Volume III, // edited by David Kirk, // AP Professional, 1992, // ISBN: 0122861663, // LC: T385.G6973. // // Parameters: // // Input, double PC[2], the center. // // Input, double R1, R2, the inner and outer radii. // // Input, double THETA1, THETA2, the angles. // // Input, int N, the number of points to generate. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_IN_ANNULUS_SECTOR[2*N], sample points. // { # define DIM_NUM 2 int j; double *p; double r; double theta; double u; double v; p = new double[DIM_NUM*n]; for ( j = 0; j < n; j++ ) { u = r8_uniform_01 ( seed ); theta = ( 1.0 - u ) * theta1 + u * theta2; v = r8_uniform_01 ( seed ); r = sqrt ( ( 1.0 - v ) * r1 * r1 + v * r2 * r2 ); p[0+j*2] = pc[0] + r * cos ( theta ); p[1+j*2] = pc[1] + r * sin ( theta ); } return p; # undef DIM_NUM } //****************************************************************************80 double *uniform_in_circle01_map ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_CIRCLE01_MAP maps uniform points into the unit circle. // // Discussion: // // The unit circle is centered at the origin and has radius 1. // // This routine is valid for spatial dimension DIM_NUM = 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_IN_CIRCLE01_MAP[DIM_NUM*N], the points. // { # define DIM_NUM 2 # define PI 3.141592653589793 int j; double *r; double *t; double *x; r = new double[n]; t = new double[n]; x = new double[DIM_NUM*n]; for ( j = 0; j < n; j++ ) { r[j] = r8_uniform_01 ( seed ); r[j] = sqrt ( r[j] ); } for ( j = 0; j < n; j++ ) { t[j] = 2.0 * PI * r8_uniform_01 ( seed ); } for ( j = 0; j < n; j++ ) { x[0+j*DIM_NUM] = r[j] * cos ( t[j] ); x[1+j*DIM_NUM] = r[j] * sin ( t[j] ); } delete [] r; delete [] t; return x; # undef DIM_NUM # undef PI } //****************************************************************************80 double *uniform_in_cube01 ( int dim_num, int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_CUBE01 creates uniform points in the unit hypercube. // // Discussion: // // The unit hypercube is defined as points all of whose components are between // 0 and 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_IN_CUBE01[DIM_NUM*N], the points. // { int i; int j; double *x; x = new double[dim_num*n]; r8vec_uniform_01 ( dim_num*n, seed, x ); return x; } //****************************************************************************80 double *uniform_in_ellipsoid_map ( int dim_num, int n, double a[], double r, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_ELLIPSOID_MAP maps uniform points into an ellipsoid. // // Discussion: // // The points X in the ellipsoid are described by a DIM_NUM by DIM_NUM positive // definite symmetric matrix A, and a "radius" R, such that // // X' * A * X <= R * R // // The algorithm computes the Cholesky factorization of A: // // A = U' * U. // // A set of uniformly random points Y is generated, satisfying: // // Y' * Y <= R * R. // // The appropriate points in the ellipsoid are found by solving // // U * X = Y // // Thanks to Dr Karl-Heinz Keil for pointing out that the original // coding was actually correct only if A was replaced by its inverse. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 May 2005 // // Author: // // John Burkardt // // Reference: // // Reuven Rubinstein, // Monte Carlo Optimization, Simulation, and Sensitivity // of Queueing Networks, // Krieger, 1992, // ISBN: 0894647644, // LC: QA298.R79. // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input, double A[DIM_NUM*DIM_NUM], the matrix that describes the ellipsoid. // // Input, double R, the right hand side of the ellipsoid equation. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_IN_ELLIPSOID_MAP[DIM_NUM*N], the points. // { int i; int info; int j; int k; double *u; double *x; // // Get the upper triangular Cholesky factor U of A. // u = new double[dim_num*dim_num]; for ( j = 0; j < dim_num; j++ ) { for ( i = 0; i < dim_num; i++ ) { u[i+j*dim_num] = a[i+j*dim_num]; } } info = r8po_fa ( u, dim_num, dim_num ); if ( info != 0 ) { cerr << "\n"; cerr << "UNIFORM_IN_ELLIPSOID_MAP - Fatal error!\n"; cerr << " R8PO_FA reports that the matrix A\n"; cerr << " is not positive definite symmetric.\n"; exit ( 1 ); } // // Get the points Y that satisfy Y' * Y <= R * R. // x = uniform_in_sphere01_map ( dim_num, n, seed ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < dim_num; i++ ) { x[i+j*dim_num] = r * x[i+j*dim_num]; } } // // Solve U * X = Y. // for ( j = 0; j < n; j++ ) { r8po_sl ( u, dim_num, dim_num, x+j*dim_num ); } delete [] u; return x; } //****************************************************************************80 double *uniform_in_parallelogram_map ( double v1[2], double v2[2], double v3[2], int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_PARALLELOGRAM_MAP maps uniform points into a parallelogram. // // Discussion: // // The parallelogram is defined by three vertices, V1, V2 and V3. // The missing vertex V4 is equal to V2+V3-V1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Reference: // // Greg Turk, // Generating Random Points in a Triangle, // in Graphics Gems, // edited by Andrew Glassner, // AP Professional, 1990, pages 24-28. // // Parameters: // // Input, double V1[2], V2[2], V3[2], the vertices. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_IN_PARALLELOGRAM_MAP[2*N], the points. // { # define DIM_NUM 2 int i; int j; double r; double s; double *x; x = new double[DIM_NUM*n]; for ( j = 0; j < n; j++ ) { r = r8_uniform_01 ( seed ); s = r8_uniform_01 ( seed ); for ( i = 0; i < DIM_NUM; i++ ) { x[i+j*DIM_NUM] = ( 1.0 - r - s ) * v1[i] + r * v2[i] + s * v3[i]; } } return x; # undef DIM_NUM } //****************************************************************************80 double *uniform_in_polygon_map ( int nv, double v[], int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_POLYGON_MAP maps uniform points into a polygon. // // Discussion: // // If the polygon is regular, or convex, or at least star-shaped, // this routine will work. // // This routine assumes that all points between the centroid and // any point on the boundary lie within the polygon. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NV, the number of vertices. // // Input, double V[2*NV], the vertices of the polygon, listed in // clockwise or counterclockwise order. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_IN_POLYGON_MAP[2*N], the points. // { # define DIM_NUM 2 double *area; double *centroid; int i; int ip1; int j; int k; double r[DIM_NUM]; double t[2*3]; int triangle; int triangle_p1; double total; double u; double *x; area = new double[nv]; x = new double[DIM_NUM*n]; // // Find the centroid. // centroid = polygon_centroid_2d ( nv, v ); // // Determine the areas of each triangle. // total = 0.0; for ( i = 0; i < nv; i++ ) { if ( i < nv-1 ) { ip1 = i + 1; } else { ip1 = 0; } t[0+0*2] = v[0+i*2]; t[1+0*2] = v[1+i*2]; t[0+1*2] = v[0+ip1*2]; t[1+1*2] = v[1+ip1*2]; t[0+2*2] = centroid[0]; t[1+2*2] = centroid[1]; area[i] = triangle_area_2d ( t ); total = total + area[i]; } // // Normalize the areas. // for ( i = 0; i < nv; i++ ) { area[i] = area[i] / total; } // // Replace each area by the sum of itself and all previous ones. // for ( i = 1; i < nv; i++ ) { area[i] = area[i] + area[i-1]; } for ( j = 0; j < n; j++ ) { // // Choose a triangle T at random, based on areas. // u = r8_uniform_01 ( seed ); for ( k = 0; k < nv; k++ ) { if ( u <= area[k] ) { triangle = k; break; } } // // Now choose a point at random in the triangle. // if ( triangle < nv-1 ) { triangle_p1 = triangle + 1; } else { triangle_p1 = 0; } r8vec_uniform_01 ( DIM_NUM, seed, r ); if ( 1.0 < r[0] + r[1] ) { r[0] = 1.0 - r[0]; r[1] = 1.0 - r[1]; } for ( i = 0; i < DIM_NUM; i++ ) { x[i+j*DIM_NUM] = ( 1.0 - r[0] - r[1] ) * v[i+DIM_NUM*triangle] + r[0] * v[i+DIM_NUM*triangle_p1] + r[1] * centroid[i]; } } delete [] area; delete [] centroid; return x; # undef M } //****************************************************************************80 double *uniform_in_sector_map ( double r1, double r2, double t1, double t2, int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_SECTOR_MAP maps uniform points into a circular sector. // // Discussion: // // The sector lies between circles with center at 0 and radius R1 and R2, // and between rays from the center at the angles T1 and T2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2004 // // Author: // // John Burkardt // // Reference: // // Peter Shirley, // Nonuniform Random Point Sets Via Warping, // Graphics Gems, Volume III, // edited by David Kirk, // AP Professional, 1992, // ISBN: 0122861663, // LC: T385.G6973. // // Parameters: // // Input, double R1, R2, the two radii. // // Input, double T1, T2, the two angles, which should // be measured in radians, with T1 < T2. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_IN_SECTOR_MAP[2*N], the points. // { # define DIM_NUM 2 int j; double *r; double *t; double *u; double *v; double *x; x = new double[DIM_NUM*n]; r = new double[n]; t = new double[n]; u = new double[n]; v = new double[n]; r8vec_uniform_01 ( n, seed, u ); r8vec_uniform_01 ( n, seed, v ); for ( j = 0; j < n; j++ ) { t[j] = ( 1.0 - u[j] ) * t1 + u[j] * t2; r[j] = sqrt ( ( 1.0 - v[j] ) * r1 * r1 + v[j] * r2 * r2 ); x[0+j*DIM_NUM] = r[j] * cos ( t[j] ); x[1+j*DIM_NUM] = r[j] * sin ( t[j] ); } delete [] r; delete [] t; delete [] u; delete [] v; return x; # undef DIM_NUM } //****************************************************************************80 double *uniform_in_simplex01_map ( int dim_num, int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_SIMPLEX01 maps uniform points into the unit simplex. // // Discussion: // // The interior of the unit DIM_NUM dimensional simplex is the set of points X(1:DIM_NUM) // such that each X(I) is nonnegative, and sum(X(1:DIM_NUM)) <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Reference: // // Reuven Rubinstein, // Monte Carlo Optimization, Simulation, and Sensitivity // of Queueing Networks, // Krieger, 1992, // ISBN: 0894647644, // LC: QA298.R79. // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_IN_SIMPLEX01_MAP[DIM_NUM*N], the points. // { double *e; int i; int j; double total; double *x; // // The construction begins by sampling DIM_NUM+1 points from the // exponential distribution with parameter 1. // e = new double[dim_num+1]; x = new double[dim_num*n]; for ( j = 0; j < n; j++ ) { r8vec_uniform_01 ( dim_num+1, seed, e ); for ( i = 0; i <= dim_num; i++ ) { e[i] = -log ( e[i] ); } total = 0.0; for ( i = 0; i <= dim_num; i++ ) { total = total + e[i]; } for ( i = 0; i < dim_num; i++ ) { x[i+dim_num*j] = e[i] / total; } } delete [] e; return x; } //****************************************************************************80 double *uniform_in_sphere01_map ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_SPHERE01_MAP maps uniform points into the unit sphere. // // Discussion: // // The sphere has center 0 and radius 1. // // We first generate a point ON the sphere, and then distribute it // IN the sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 August 2014 // // Author: // // John Burkardt // // Reference: // // Russell Cheng, // Random Variate Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, pages 168. // // Reuven Rubinstein, // Monte Carlo Optimization, Simulation, and Sensitivity // of Queueing Networks, // Krieger, 1992, // ISBN: 0894647644, // LC: QA298.R79. // // Parameters: // // Input, int M, the dimension of the space. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double X[M*N], the points. // { double exponent; int i; int j; double norm; double r; double *v; double *x; exponent = 1.0 / ( double ) ( m ); x = new double[m*n]; for ( j = 0; j < n; j++ ) { // // Fill a vector with normally distributed values. // v = r8vec_normal_01_new ( m, seed ); // // Compute the length of the vector. // norm = r8vec_norm ( m, v ); // // Normalize the vector. // for ( i = 0; i < m; i++ ) { v[i] = v[i] / norm; } // // Now compute a value to map the point ON the sphere INTO the sphere. // r = r8_uniform_01 ( seed ); r = pow ( r, exponent ); for ( i = 0; i < m; i++ ) { x[i+j*m] = r * v[i]; } delete [] v; } return x; } //****************************************************************************80 double *uniform_in_tetrahedron ( double v[], int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_TETRAHEDRON returns uniform points in a tetrahedron. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 August 2009 // // Author: // // John Burkardt // // Reference: // // Claudio Rocchini, Paolo Cignoni, // Generating Random Points in a Tetrahedron, // Journal of Graphics Tools, // Volume 5, Number 5, 2000, pages 9-12. // // Parameters: // // Input, double V[3*4], the vertices of the tetrahedron. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double UNIFORM_IN_TETRAHEDRON[3*N], the points. // { double c[4]; int i; int j; int k; double t; double *x; x = new double[3*n]; for ( j = 0; j < n; j++ ) { r8vec_uniform_01 ( 3, seed, c ); if ( 1.0 < c[0] + c[1] ) { c[0] = 1.0 - c[0]; c[1] = 1.0 - c[1]; } if ( 1.0 < c[1] + c[2] ) { t = c[2]; c[2] = 1.0 - c[0] - c[1]; c[1] = 1.0 - t; } else if ( 1.0 < c[0] + c[1] + c[2] ) { t = c[2]; c[2] = c[0] + c[1] + c[2] - 1.0; c[0] = 1.0 - c[1] - t; } c[3] = 1.0 - c[0] - c[1] - c[2]; for ( i = 0; i < 3; i++ ) { x[i+j*3] = 0.0; for ( k = 0; k < 4; k++ ) { x[i+j*3] = x[i+j*3] + v[i+k*3] * c[k]; } } } return x; } //****************************************************************************80 double *uniform_in_triangle_map1 ( double v1[2], double v2[2], double v3[2], int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_TRIANGLE_MAP1 maps uniform points into a triangle. // // Discussion: // // This routine uses Turk's rule 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Reference: // // Greg Turk, // Generating Random Points in a Triangle, // in Graphics Gems, // edited by Andrew Glassner, // AP Professional, 1990, pages 24-28. // // Parameters: // // Input, double V1[2], V2[2], V3[2], the vertices. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_IN_TRIANGLE_MAP1[2*N], the points. // { # define DIM_NUM 2 double a; double b; double c; int i; int j; double r[DIM_NUM]; double total; double *x; x = new double[DIM_NUM*n]; for ( j = 0; j < n; j++ ) { r8vec_uniform_01 ( DIM_NUM, seed, r ); r[1] = sqrt ( r[1] ); a = 1.0 - r[1]; b = ( 1.0 - r[0] ) * r[1]; c = r[0] * r[1]; for ( i = 0; i < DIM_NUM; i++ ) { x[i+j*DIM_NUM] = a * v1[i] + b * v2[i] + c * v3[i]; } } return x; # undef DIM_NUM } //****************************************************************************80 double *uniform_in_triangle_map2 ( double v1[2], double v2[2], double v3[2], int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_TRIANGLE_MAP2 maps uniform points into a triangle. // // Discussion: // // The triangle is defined by three vertices. // // This routine uses Turk's rule 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Reference: // // Greg Turk, // Generating Random Points in a Triangle, // in Graphics Gems, // edited by Andrew Glassner, // AP Professional, 1990, pages 24-28. // // Parameters: // // Input, double V1[2], V2[2], V3[2], the vertices. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_IN_TRIANGLE_MAP2[2*N], the points. // { # define DIM_NUM 2 int i; int j; double r[DIM_NUM]; double total; double *x; x = new double[DIM_NUM*n]; for ( j = 0; j < n; j++ ) { r8vec_uniform_01 ( DIM_NUM, seed, r ); if ( 1.0 < r[0] + r[1] ) { r[0] = 1.0 - r[0]; r[1] = 1.0 - r[1]; } for ( i = 0; i < DIM_NUM; i++ ) { x[i+j*DIM_NUM] = ( 1.0 - r[0] - r[1] ) * v1[i] + r[0] * v2[i] + r[1] * v3[i]; } } return x; # undef DIM_NUM } //****************************************************************************80 double *uniform_in_triangle01_map ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_IN_TRIANGLE01_MAP maps uniform points into the unit triangle. // // Discussion: // // The triangle is defined by the three vertices (1,0), (0,1) and (0,0). // Because this is a right triangle, it is easy to generate sample points. // In the case of a general triangle, more care must be taken. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number geneator. // // Output, double UNIFORM_IN_TRIANGLE01_MAP[2*N], the points. // { # define DIM_NUM 2 int i; int j; double r[DIM_NUM]; double total; double *x; x = new double[DIM_NUM*n]; for ( j = 0; j < n; j++ ) { r8vec_uniform_01 ( DIM_NUM, seed, r ); total = 0.0; for ( i = 0; i < DIM_NUM; i++ ) { total = total + r[i]; } if ( 1.0 < total ) { for ( i = 0; i < DIM_NUM; i++ ) { r[i] = 1.0 - r[i]; } } for ( i = 0; i < DIM_NUM; i++ ) { x[i+j*DIM_NUM] = r[i]; } } return x; # undef DIM_NUM } //****************************************************************************80 double *uniform_on_cube ( int m, int n, double c[], double r, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_ON_CUBE returns random points on the surface of a cube. // // Discussion: // // The cube is assumed to be aligned with the coordinate axes. // // The cube has center C and radius R. Any point on the surface of // the cube is described by // // X = C + R * PM // // where PM is an M-dimensional vector whose entries are between // -1 and +1, and for which at least one value has norm 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 April 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // 1 <= M. // // Input, int N, the number of points. // // Input, double C[M], the coordinates of the center. // // Input, double R, the radius. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double UNIFORM_ON_CUBE[M*N], the coordinates of N points, chosen // uniformly at random from the surface of the M-cube of center C and // radius R. // { int i; int j; int k; double *x; // // Choose random points within the cube of radius 1. // x = r8mat_uniform_01_new ( m, n, seed ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { x[i+j*m] = 2.0 * x[i+j*m] - 1.0; } } // // For each point, select a coordinate at random, and set it to +1 or -1. // for ( j = 0; j < n; j++ ) { i = i4_uniform_ab ( 0, m - 1, seed ); k = i4_uniform_ab ( 0, 1, seed ); if ( k == 0 ) { x[i+j*m] = 1.0; } else { x[i+j*m] = -1.0; } } // // Shift by C and scale by R. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { x[i+j*m] = c[i] + r * x[i+j*m]; } } return x; } //****************************************************************************80 double *uniform_on_cube01 ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_ON_CUBE01 returns random points on the surface of the unit cube. // // Discussion: // // The cube is assumed to be aligned with the coordinate axes. // // The cube has center at the origin and radius 1. Any point on the surface // of the cube is described by // // X = PM // // where PM is an M-dimensional vector whose entries are between // -1 and +1, and for which at least one value has norm 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 April 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // 1 <= M. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double UNIFORM_ON_CUBE[M*N], the coordinates of N points, chosen // uniformly at random from the surface of the unit M-cube. // { int i; int j; int k; double *x; // // Choose random points within the cube of radius 1. // x = r8mat_uniform_01_new ( m, n, seed ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { x[i+j*m] = 2.0 * x[i+j*m] - 1.0; } } // // For each point, select a coordinate at random, and set it to +1 or -1. // for ( j = 0; j < n; j++ ) { i = i4_uniform_ab ( 0, m - 1, seed ); k = i4_uniform_ab ( 0, 1, seed ); if ( k == 0 ) { x[i+j*m] = 1.0; } else { x[i+j*m] = -1.0; } } return x; } //****************************************************************************80 double *uniform_on_ellipsoid_map ( int dim_num, int n, double a[], double r, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_ON_ELLIPSOID_MAP maps uniform points onto an ellipsoid. // // Discussion: // // The points X on the ellipsoid are described by a DIM_NUM by DIM_NUM // positive definite symmetric matrix A, and a "radius" R, such that // // X' * A * X = R * R // // The algorithm computes the Cholesky factorization of A: // // A = U' * U. // // A set of uniformly random points Y is generated, satisfying: // // Y' * Y = R * R. // // The appropriate points in the ellipsoid are found by solving // // U * X = Y // // Thanks to Dr Karl-Heinz Keil for pointing out that the original // coding was actually correct only if A was replaced by its inverse. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 May 2005 // // Author: // // John Burkardt // // Reference: // // Reuven Rubinstein, // Monte Carlo Optimization, Simulation, and Sensitivity // of Queueing Networks, // Krieger, 1992, // ISBN: 0894647644, // LC: QA298.R79. // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input, double A[DIM_NUM*DIM_NUM], the matrix that describes the ellipsoid. // // Input, double R, the right hand side of the ellipsoid equation. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_ON_ELLIPSOID_MAP[DIM_NUM*N], the points. // { int i; int info; int j; int k; double *u; double *x; // // Get the factor U. // u = new double[dim_num*dim_num]; for ( j = 0; j < dim_num; j++ ) { for ( i = 0; i < dim_num; i++ ) { u[i+j*dim_num] = a[i+j*dim_num]; } } info = r8po_fa ( a, dim_num, dim_num ); if ( info != 0 ) { cerr << "\n"; cerr << "UNIFORM_ON_ELLIPSOID_MAP - Fatal error!\n"; cerr << " R8PO_FA reports that the matrix A \n"; cerr << " is not positive definite symmetric.\n"; exit ( 1 ); } // // Get the points Y that satisfy Y' * Y = R * R. // x = uniform_on_sphere01_map ( dim_num, n, seed ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < dim_num; i++ ) { x[i+j*dim_num] = r * x[i+j*dim_num]; } } // // Solve U * X = Y. // for ( j = 0; j < n; j++ ) { r8po_sl ( u, dim_num, dim_num, x+j*dim_num ); } delete [] u; return x; } //****************************************************************************80 double *uniform_on_hemisphere01_phong ( int n, int m, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_ON_HEMISPHERE01_PHONG maps uniform points onto the unit hemisphere. // // Discussion: // // The sphere has center 0 and radius 1. // // The Phong density is used, with exponent M: // // rho ( theta, phi; m ) = ( m + 1 ) * cos ( phi )**M / ( 2 * pi ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 August 2005 // // Author: // // John Burkardt // // Reference: // // Peter Shirley, // Nonuniform Random Point Sets Via Warping, // Graphics Gems, Volume III, // edited by David Kirk, // AP Professional, 1992, // ISBN: 0122861663, // LC: T385.G6973. // // Parameters: // // Input, int N, the number of points. // // Input, int M, the Phong exponent. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_ON_HEMISPHERE01_PHONG[3*N], the points. // { # define DIM_NUM 3 # define PI 3.141592653589793 int j; double phi; double power; double theta; double *x; x = new double[DIM_NUM*n]; power = 1.0 / ( double ) ( m + 1 ); for ( j = 0; j < n; j++ ) { phi = r8_uniform_01 ( seed ); phi = acos ( pow ( 1.0 - phi, power ) ); theta = r8_uniform_01 ( seed ); theta = 2.0 * PI * theta; x[0+j*DIM_NUM] = cos ( theta ) * sin ( phi ); x[1+j*DIM_NUM] = sin ( theta ) * sin ( phi ); x[2+j*DIM_NUM] = cos ( phi ); } return x; # undef DIM_NUM # undef PI } //****************************************************************************80 double *uniform_on_simplex01_map ( int dim_num, int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_ON_SIMPLEX01_MAP maps uniform points onto the unit simplex. // // Discussion: // // The surface of the unit DIM_NUM-dimensional simplex is the set of points // X(1:DIM_NUM) such that each X(I) is nonnegative, // every X(I) is no greater than 1, and // // ( X(I) = 0 for some I, or sum ( X(1:DIM_NUM) ) = 1. ) // // In DIM_NUM dimensions, there are DIM_NUM sides, and one main face. // This code picks a point uniformly with respect to "area". // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Reference: // // Reuven Rubinstein, // Monte Carlo Optimization, Simulation, and Sensitivity // of Queueing Networks, // Krieger, 1992, // ISBN: 0894647644, // LC: QA298.R79. // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_ON_SIMPLEX01_MAP[DIM_NUM*N], the points. // { double area1; double area2; double *e; int i; int j; double r; double total; double u; double *x; // // The construction begins by sampling DIM_NUM points from the // exponential distribution with parameter 1. // e = new double[dim_num]; x = new double[dim_num*n]; for ( j = 0; j < n; j++ ) { r8vec_uniform_01 ( dim_num, seed, e ); for ( i = 0; i < dim_num; i++ ) { e[i] = -log ( e[i] ); } total = 0.0; for ( i = 0; i < dim_num; i++ ) { total = total + e[i]; } // // Based on their relative areas, choose a side of the simplex, // or the main face. // for ( i = 0; i < dim_num; i++ ) { x[i+j*dim_num] = e[i] / total; } area1 = sqrt ( ( double ) dim_num ); area2 = ( double ) dim_num; r = r8_uniform_01 ( seed ); if ( area1 / ( area1 + area2 ) < r ) { i = i4_uniform_ab ( 0, dim_num-1, seed ); x[i+j*dim_num] = 0.0; } } delete [] e; return x; } //****************************************************************************80 double *uniform_on_sphere01_map ( int dim_num, int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_ON_SPHERE01_MAP maps uniform points onto the unit sphere. // // Discussion: // // The sphere has center 0 and radius 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 November 2010 // // Author: // // John Burkardt // // Reference: // // Russell Cheng, // Random Variate Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, pages 168. // // Reuven Rubinstein, // Monte Carlo Optimization, Simulation, and Sensitivity // of Queueing Networks, // Krieger, 1992, // ISBN: 0894647644, // LC: QA298.R79. // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_ON_SPHERE01_MAP[DIM_NUM*N], the points. // { int i; int j; double norm; double *x; x = r8mat_normal_01_new ( dim_num, n, seed ); for ( j = 0; j < n; j++ ) { // // Compute the length of the vector. // norm = 0.0; for ( i = 0; i < dim_num; i++ ) { norm = norm + x[i+j*dim_num] * x[i+j*dim_num]; } norm = sqrt ( norm ); // // Normalize the vector. // for ( i = 0; i < dim_num; i++ ) { x[i+j*dim_num] = x[i+j*dim_num] / norm; } } return x; } //****************************************************************************80 double *uniform_on_sphere01_patch_tp ( int n, double phi1, double phi2, double theta1, double theta2, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_ON_SPHERE01_PATCH_TP maps uniform points to a spherical TP patch. // // Discussion: // // The sphere has center 0 and radius 1. // // A sphere TP patch on the surface of the unit sphere contains those // points with radius R = 1 and angles (THETA,PHI) such that // // 0.0 <= THETA1 <= THETA <= THETA2 <= 2 * PI // 0.0 <= PHI1 <= PHI <= PHI2 <= PI // // mapped to // // X = cos ( THETA ) * sin ( PHI ) // Y = sin ( THETA ) * sin ( PHI ) // Z = cos ( PHI ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2010 // // Author: // // John Burkardt // // Reference: // // Peter Shirley, // Nonuniform Random Point Sets Via Warping, // Graphics Gems, Volume III, // edited by David Kirk, // AP Professional, 1992, // ISBN: 0122861663, // LC: T385.G6973. // // Parameters: // // Input, int N, the number of points. // // Input, double PHI1, PHI2, the latitudinal angle range. // // Input, double THETA1, THETA2, the longitudinal angle range. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_ON_SPHERE01_PATCH_TP[2*N], the TP points. // { int j; double *tp; tp = r8mat_uniform_01_new ( 2, n, seed ); for ( j = 0; j < n; j++ ) { tp[0+j*2] = ( 1.0 - tp[0+j*2] ) * theta1 + tp[0+j*2] * theta2; tp[1+j*2] = acos ( ( 1.0 - tp[1+j*2] ) * cos ( phi1 ) + tp[1+j*2] * cos ( phi2 ) ); } return tp; } //****************************************************************************80 double *uniform_on_sphere01_patch_xyz ( int n, double phi1, double phi2, double theta1, double theta2, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_ON_SPHERE01_PATCH_XYZ maps uniform points to a spherical XYZ patch. // // Discussion: // // The sphere has center 0 and radius 1. // // A sphere XYZ patch on the surface of the unit sphere contains those // points with radius R = 1 and angles (THETA,PHI) such that // // 0.0 <= THETA1 <= THETA <= THETA2 <= 2 * PI // 0.0 <= PHI1 <= PHI <= PHI2 <= PI // // mapped to // // X = cos ( THETA ) * sin ( PHI ) // Y = sin ( THETA ) * sin ( PHI ) // Z = cos ( PHI ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 August 2005 // // Author: // // John Burkardt // // Reference: // // Peter Shirley, // Nonuniform Random Point Sets Via Warping, // Graphics Gems, Volume III, // edited by David Kirk, // AP Professional, 1992, // ISBN: 0122861663, // LC: T385.G6973. // // Parameters: // // Input, int N, the number of points. // // Input, double PHI1, PHI2, the latitudinal angle range. // // Input, double THETA1, THETA2, the longitudinal angle range. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_ON_SPHERE01_PATCH_XYZ[3*N], the points. // { # define DIM_NUM 3 int j; double phi; double theta; double *x; x = new double[DIM_NUM*n]; for ( j = 0; j < n; j++ ) { phi = r8_uniform_01 ( seed ); phi = acos ( ( 1.0 - phi ) * cos ( phi1 ) + phi * cos ( phi2 ) ); theta = r8_uniform_01 ( seed ); theta = ( 1.0 - theta ) * theta1 + theta * theta2; x[0+j*DIM_NUM] = cos ( theta ) * sin ( phi ); x[1+j*DIM_NUM] = sin ( theta ) * sin ( phi ); x[2+j*DIM_NUM] = cos ( phi ); } return x; # undef DIM_NUM } //****************************************************************************80 double *uniform_on_sphere01_triangle_xyz ( int n, double v1[], double v2[], double v3[], int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_ON_SPHERE01_TRIANGLE_XYZ: sample spherical triangle, XYZ coordinates. // // Discussion: // // The sphere has center 0 and radius 1. // // A spherical triangle on the surface of the unit sphere contains those // points with radius R = 1, bounded by the vertices V1, V2, V3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 August 2010 // // Author: // // John Burkardt // // Reference: // // James Arvo, // Stratified sampling of spherical triangles, // Computer Graphics Proceedings, Annual Conference Series, // ACM SIGGRAPH '95, pages 437-438, 1995. // // Parameters: // // Input, int N, the number of points. // // Input, double V1[3], V2[3], V3[3], the XYZ coordinates of // the vertices of the spherical triangle. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double UNIFORM_ON_SPHERE01_TRIANGLE_XYZ[3*N], the XYZ // coordinates of the sample points. // { double a; double alpha; double area; double area_hat; double b; double beta; double c; double gamma; int i; int j; double q; double r; double s; double t; double temp; double u; double v; double *v31; double *v4; double *v42; double w; double *x; double xsi1; double xsi2; double z; // // Compute the sides, angles, and area of the spherical triangle; // for now, we assume R = 1. // r = 1.0; stri_vertices_to_sides ( r, v1, v2, v3, &a, &b, &c ); stri_sides_to_angles ( r, a, b, c, &alpha, &beta, &gamma ); area = stri_angles_to_area ( r, alpha, beta, gamma ); x = new double[3*n]; v31 = new double[3]; v4 = new double[3]; v42 = new double[3]; for ( j = 0; j < n; j++ ) { // // Select the new area. // xsi1 = r8_uniform_01 ( seed ); area_hat = xsi1 * area; // // Compute the sine and cosine of the angle phi. // s = sin ( area_hat - alpha ); t = cos ( area_hat - alpha ); // // Compute the pair that determines beta_hat. // u = t - cos ( alpha ); v = s + sin ( alpha ) * cos ( c ); // // Q is the cosine of the new edge length b_hat. // q = ( ( v * t - u * s ) * cos ( alpha ) - v ) / ( ( v * s + u * t ) * sin ( alpha ) ); // // V31 = normalized ( V3 - ( V3 dot V1 ) * V1 ) // w = r8vec_dot_product ( 3, v3, v1 ); for ( i = 0; i < 3; i++ ) { v31[i] = v3[i] - w * v1[i]; } temp = r8vec_norm ( 3, v31 ); for ( i = 0; i < 3; i++ ) { v31[i] = v31[i] / temp; } // // V4 is the third vertex of the subtriangle V1, V2, V4. // for ( i = 0; i < 3; i++ ) { v4[i] = q * v1[i] + sqrt ( 1.0 - q * q ) * v31[i]; } // // Select cos theta, which will sample along the edge from V2 to V4. // xsi2 = r8_uniform_01 ( seed ); z = 1.0 - xsi2 * ( 1.0 - r8vec_dot_product ( 3, v4, v2 ) ); // // V42 = normalized ( V4 - ( V4 dot V2 ) * V2 ) // w = r8vec_dot_product ( 3, v4, v2 ); for ( i = 0; i < 3; i++ ) { v42[i] = v4[i] - w * v2[i]; } temp = r8vec_norm ( 3, v42 ); for ( i = 0; i < 3; i++ ) { v42[i] = v42[i] / temp; } // // Construct the point. // for ( i = 0; i < 3; i++ ) { x[i+j*3] = z * v2[i] + sqrt ( 1.0 - z * z ) * v42[i]; } } delete [] v31; delete [] v4; delete [] v42; return x; } //****************************************************************************80 double *uniform_on_triangle ( int n, double v[], int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_ON_TRIANGLE maps uniform points onto the boundary of a triangle. // // Discussion: // // The triangle is defined by the three vertices V1, V2, V3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 May 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of points. // // Input, double V[2*3], the vertices of the triangle. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double UNIFORM_ON_TRIANGLE[2*N], the points. // { int j; double l1; double l2; double l3; int m = 2; double r; double s; double t; double *x; l1 = sqrt ( pow ( v[0+1*2] - v[0+0*2], 2 ) + pow ( v[1+1*2] - v[1+0*2], 2 ) ); l2 = sqrt ( pow ( v[0+2*2] - v[0+1*2], 2 ) + pow ( v[1+2*2] - v[1+1*2], 2 ) ); l3 = sqrt ( pow ( v[0+0*2] - v[0+2*2], 2 ) + pow ( v[1+0*2] - v[1+2*2], 2 ) ); x = new double[m*n]; for ( j = 0; j < n; j++ ) { // // R can be regarded as the distance of the point on the perimeter, // as measured from the origin, along the perimeter. // r = ( l1 + l2 + l3 ) * r8_uniform_01 ( seed ); // // Case 1: between V1 and V2. // if ( r <= l1 ) { s = ( l1 - r ) / l1; t = r / l1; x[0+j*2] = s * v[0+0*2] + t * v[0+1*2]; x[1+j*2] = s * v[1+0*2] + t * v[1+1*2]; } // // Case 2: between V2 and V3. // else if ( r <= l1 + l2 ) { s = ( l2 - r + l1 ) / l2; t = ( r - l1 ) / l2; x[0+j*2] = s * v[0+1*2] + t * v[0+2*2]; x[1+j*2] = s * v[1+1*2] + t * v[1+2*2]; } // // Case 3: between V3 and V1. // else { s = ( l3 - r + l1 + l2 ) / l3; t = ( r - l1 - l2 ) / l3; x[0+j*2] = s * v[0+2*2] + t * v[0+0*2]; x[1+j*2] = s * v[1+2*2] + t * v[1+0*2]; } } return x; } //****************************************************************************80 double *uniform_on_triangle01 ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_ON_TRIANGLE01 maps uniform points onto the unit triangle. // // Discussion: // // The unit triangle is defined by the three vertices (1,0), (0,1) and (0,0). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 May 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of points. // // Input/output, int SEED, a seed for the random // number generator. // // Output, double X[2*N], the points. // { double a; double b; int j; int m = 2; double r; double s; double *x; s = sqrt ( 2.0 ); a = 1.0 / ( 2.0 + s ); b = ( 1.0 + s ) / ( 2.0 + s ); x = new double[m*n]; for ( j = 0; j < n; j++ ) { // // R can be regarded as the distance of the point on the perimeter, // as measured from the origin, along the perimeter. // r = ( 2.0 + s ) * r8_uniform_01 ( seed ); // // Case 1: between (0,0) and (1,0). // if ( r <= a ) { x[0+j*2] = 0.0; x[1+j*2] = r; } // // Case 2: between (1,0) and (0,1). // else if ( r <= b ) { x[0+j*2] = 1.0 - ( r - a ) * sqrt ( 2.0 ) / 2.0; x[1+j*2] = 0.0 + ( r - a ) * sqrt ( 2.0 ) / 2.0; } // // Case 3: between (0,1) and (0,0). // else { x[0+j*2] = 0.0; x[1+j*2] = 1.0 - ( r - b ); } } return x; } //****************************************************************************80 double *uniform_walk ( int dim_num, int n, int &seed ) //****************************************************************************80 // // Purpose: // // UNIFORM_WALK generates points on a uniform random walk. // // Discussion: // // The first point is at the origin. Uniform random numbers are // generated to determine the direction of the next step, which // is always of length 1, and in coordinate direction. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, int N, the number of points. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double UNIFORM_WALK[DIM_NUM*N], the points. // { double arg; double dir; int i; int j; double *x; x = new double[dim_num*n]; j = 0; for ( i = 0; i < dim_num; i++ ) { x[i+j*dim_num] = 0.0; } for ( j = 1; j < n; j++ ) { dir = r8_uniform_01 ( seed ); dir = ( double ) ( 2 * dim_num ) * ( dir - 0.5 ); for ( i = 0; i < dim_num; i++ ) { x[i+j*dim_num] = x[i+(j-1)*dim_num]; } arg = fabs ( dir ) + 0.5; i = r8_nint ( arg ); i = i4_min ( i, dim_num ); i = i4_max ( i, 1 ); i = i - 1; if ( dir < 0.0 ) { x[i+j*dim_num] = x[i+j*dim_num] - 1.0; } else { x[i+j*dim_num] = x[i+j*dim_num] + 1.0; } } return x; }