# include "sandia_rules.hpp" # include "sandia_cubature.hpp" # include # include # include # include # include namespace webbur { //****************************************************************************80 double c1_geg_monomial_integral ( double alpha, int expon ) //****************************************************************************80 // // Purpose: // // C1_GEG_MONOMIAL_INTEGRAL: integral of monomial with Gegenbauer weight on C1. // // Discussion: // // C1_GEG is the interval [-1,+1] with the Gegenbauer weight function // // w(alpha;x) = (1-x^2)^alpha // // with -1.0 < alpha. // // value = integral ( -1 <= x <= +1 ) x^expon (1-x^2)^alpha dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the exponent of (1-X^2). // - 1.0 < ALPHA. // // Input, int EXPON, the exponent. // 0 <= EXPON. // // Output, double C1_GEG_MONOMIAL_INTEGRAL, the value of the integral. // { double arg1; double arg2; double arg3; double arg4; double c; double value; double value1; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "C1_GEG_MONOMIAL_INTEGRAL - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } if ( ( expon % 2 ) == 1 ) { value = 0.0; return value; } c = ( double ) ( expon ); arg1 = - alpha; arg2 = 1.0 + c; arg3 = 2.0 + alpha + c; arg4 = - 1.0; value1 = webbur::r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); value = 2.0 * webbur::r8_gamma ( 1.0 + c ) * webbur::r8_gamma ( 1.0 + alpha ) * value1 / webbur::r8_gamma ( 2.0 + alpha + c ); return value; } //****************************************************************************80 double c1_jac_monomial_integral ( double alpha, double beta, int expon ) //****************************************************************************80 // // Purpose: // // C1_JAC_MONOMIAL_INTEGRAL: integral of a monomial with Jacobi weight over C1. // // Discussion: // // value = integral ( -1 <= x <= +1 ) x^expon (1-x)^alpha (1+x)^beta dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the exponent of (1-X) in the weight factor. // // Input, double BETA, the exponent of (1+X) in the weight factor. // // Input, int EXPON, the exponent. // // Output, double C1_JAC_MONOMIAL_INTEGRAL, the value of the integral. // { double arg1; double arg2; double arg3; double arg4; double c; double s; double value; double value1; double value2; c = ( double ) ( expon ); if ( ( expon % 2 ) == 0 ) { s = +1.0; } else { s = -1.0; } arg1 = - alpha; arg2 = 1.0 + c; arg3 = 2.0 + beta + c; arg4 = - 1.0; value1 = webbur::r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); arg1 = - beta; arg2 = 1.0 + c; arg3 = 2.0 + alpha + c; arg4 = - 1.0; value2 = webbur::r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); value = webbur::r8_gamma ( 1.0 + c ) * ( s * webbur::r8_gamma ( 1.0 + beta ) * value1 / webbur::r8_gamma ( 2.0 + beta + c ) + webbur::r8_gamma ( 1.0 + alpha ) * value2 / webbur::r8_gamma ( 2.0 + alpha + c ) ); return value; } //****************************************************************************80 double c1_leg_monomial_integral ( int expon ) //****************************************************************************80 // // Purpose: // // C1_LEG_MONOMIAL_INTEGRAL: integral of monomial with Legendre weight on C1. // // Discussion: // // C1_LEG is the interval [-1,+1] with the Legendre weight function // // w(x) = 1. // // value = integral ( -1 <= x <= +1 ) x^expon dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // 0 <= EXPON. // // Output, double C1_LEG_MONOMIAL_INTEGRAL, the value of the integral. // { double value; if ( expon < 0 ) { std::cerr << "\n"; std::cerr << "C1_LEG_MONOMIAL_INTEGRAL - Fatal error!\n"; std::cerr << " EXPON < 0.\n"; std::exit ( 1 ); } if ( ( expon % 2 ) == 1 ) { value = 0.0; return value; } value = 2.0 / ( double) ( expon + 1 ); return value; } //****************************************************************************80 void cn_geg_01_1 ( int n, double alpha, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_GEG_01_1 implements a precision 1 rule for region CN_GEG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[[O], the weights. // { int expon; int i; int j; int k; double value2; double volume; double volume_1d; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_GEG_01_1 - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } expon = 0; volume_1d = webbur::c1_geg_monomial_integral ( alpha, expon ); volume = std::pow ( volume_1d, n ); expon = 1; value2 = webbur::c1_geg_monomial_integral ( alpha, expon ); webbur::r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = value2 / volume_1d; } w[k] = volume; return; } //****************************************************************************80 int cn_geg_01_1_size ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // CN_GEG_01_1_SIZE sizes a precision 1 rule for region CN_GEG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Output, int CN_GEG_01_1_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_GEG_01_1_SIZE - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } o = 1; return o; } //****************************************************************************80 void cn_geg_02_xiu ( int n, double alpha, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_GEG_02_XIU implements the Xiu precision 2 rule for region CN_GEG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 March 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; double c1; double coef; double delta0; int expon; double gamma0; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_GEG_02_XIU - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = std::sqrt ( 2.0 ) * std::cos ( arg ); i = i + 1; x[i+j*n] = std::sqrt ( 2.0 ) * std::sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = webbur::r8_mop ( j ); i = i + 1; } } gamma0 = 1.0; delta0 = 0.0; c1 = 1.0 / ( 2.0 * alpha + 3.0 ); for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( std::sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } expon = 0; volume_1d = webbur::c1_geg_monomial_integral ( alpha, expon ); volume = std::pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int cn_geg_02_xiu_size ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // CN_GEG_02_XIU_SIZE sizes the Xiu precision 2 rule for region CN_GEG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Output, int CN_GEG_02_XIU_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_GEG_02_XIU_SIZE - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } o = n + 1; return o; } //****************************************************************************80 void cn_geg_03_xiu ( int n, double alpha, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_GEG_03_XIU implements the Xiu precision 3 rule for region CN_GEG. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; int expon; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_GEG_03_XIU - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( ( 2 * r - 1 ) * ( j + 1 ) ) * pi / ( double ) ( n ); x[i+j*n] = std::sqrt ( 2.0 ) * std::cos ( arg ) / std::sqrt ( 2.0 * alpha + 3.0 ); i = i + 1; x[i+j*n] = std::sqrt ( 2.0 ) * std::sin ( arg ) / std::sqrt ( 2.0 * alpha + 3.0 ); i = i + 1; } if ( i < n ) { x[i+j*n] = std::sqrt ( 2.0 ) * webbur::r8_mop ( j + 1 ) / std::sqrt ( 2.0 * alpha + 3.0 ); if ( n == 1 ) { x[i+j*n] = x[i+j*n] / std::sqrt ( 2.0 ); } i = i + 1; } } expon = 0; volume_1d = webbur::c1_geg_monomial_integral ( alpha, expon ); volume = std::pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int cn_geg_03_xiu_size ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // CN_GEG_03_XIU_SIZE sizes the Xiu precision 3 rule for region CN_GEG. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Output, int CN_GEG_03_XIU_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_GEG_03_XIU_SIZE - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } o = 2 * n; return o; } //****************************************************************************80 double cn_geg_monomial_integral ( int n, double alpha, int expon[] ) //****************************************************************************80 // // Purpose: // // CN_GEG_MONOMIAL_INTEGRAL: integral of monomial with Gegenbauer weight on CN. // // Discussion: // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // value = integral ( CN ) // product ( 1 <= i <= n ) x(I)^expon(i) (1-x(i)^2)^alpha dx(i) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of (1-X). // -1.0 < ALPHA. // // Input, int EXPON[N], the exponents. // // Output, double CN_GEG_MONOMIAL_INTEGRA, the value of the integral. // { int i; double value; double value2; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_GEG_MONOMIAL_INTEGRAL - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } value = 1.0; for ( i = 0; i < n; i++ ) { value2 = c1_geg_monomial_integral ( alpha, expon[i] ); value = value * value2; } return value; } //****************************************************************************80 void cn_jac_01_1 ( int n, double alpha, double beta, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_JAC_01_1 implements a precision 1 rule for region CN_JAC. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // CN is the cube [-1,+1]^N with the Jacobi (beta) weight function // // w(alpha,beta;x) = product ( 1 <= i <= n ) (1-x(i))^beta (1+x(i))^alpha. // // with -1 < alpha, -1 < beta. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, BETA, the parameters. // -1.0 < ALPHA, -1.0 < BETA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int expon; int i; int k; double value2; double volume; double volume_1d; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_JAC_01_1 - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } if ( beta <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_JAC_01_1 - Fatal error!\n"; std::cerr << " BETA <= -1.0\n"; std::exit ( 1 ); } expon = 0; volume_1d = webbur::c1_jac_monomial_integral ( alpha, beta, expon ); volume = std::pow ( volume_1d, n ); expon = 1; value2 = c1_jac_monomial_integral ( alpha, beta, expon ); webbur::r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = value2 / volume_1d; } w[k] = volume; return; } //****************************************************************************80 int cn_jac_01_1_size ( int n, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // CN_JAC_01_1_SIZE sizes a precision 1 rule for region CN_JAC. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // CN is the cube [-1,+1]^N with the Jacobi (beta) weight function // // w(alpha,beta;x) = product ( 1 <= i <= n ) (1-x(i))^beta (1+x(i))^alpha. // // with -1 < alpha, -1 < beta. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, BETA, the parameters. // -1.0 < ALPHA, -1.0 < BETA. // // Output, int CN_JAC_01_1_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_JAC_01_1_SIZE - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } if ( beta <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_JAC_01_1_SIZE - Fatal error!\n"; std::cerr << " BETA <= -1.0\n"; std::exit ( 1 ); } o = 1; return o; } //****************************************************************************80 void cn_jac_02_xiu ( int n, double alpha, double beta, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_JAC_02_XIU implements the Xiu precision 2 rule for region CN_JAC. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // CN is the cube [-1,+1]^N with the Jacobi (beta) weight function // // w(alpha,beta;x) = product ( 1 <= i <= n ) (1-x(i))^beta (1+x(i))^alpha. // // with -1 < alpha, -1 < beta. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 March 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, BETA, the parameters. // -1.0 < ALPHA, -1.0 < BETA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; double c1; double coef; double delta0; int expon; double gamma0; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_JAC_02_XIU - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } if ( beta <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_JAC_02_XIU - Fatal error!\n"; std::cerr << " BETA <= -1.0\n"; std::exit ( 1 ); } for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = std::sqrt ( 2.0 ) * std::cos ( arg ); i = i + 1; x[i+j*n] = std::sqrt ( 2.0 ) * std::sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = webbur::r8_mop ( j ); i = i + 1; } } gamma0 = ( alpha + beta + 2.0 ) / 2.0; delta0 = ( alpha - beta ) / 2.0; c1 = 2.0 * ( alpha + 1.0 ) * ( beta + 1.0 ) / ( alpha + beta + 3.0 ) / ( alpha + beta + 2.0 ); for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( std::sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } expon = 0; volume_1d = webbur::c1_jac_monomial_integral ( alpha, beta, expon ); volume = std::pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int cn_jac_02_xiu_size ( int n, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // CN_JAC_02_XIU_SIZE sizes the Xiu precision 2 rule for region CN_JAC. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // CN is the cube [-1,+1]^N with the Jacobi (beta) weight function // // w(alpha,beta;x) = product ( 1 <= i <= n ) (1-x(i))^beta (1+x(i))^alpha. // // with -1 < alpha, -1 < beta. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, BETA, the parameters. // -1.0 < ALPHA, -1.0 < BETA. // // Output, int CN_JAC_02_XIU_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_JAC_02_XIU_SIZE - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } if ( beta <= -1.0 ) { std::cerr << "\n"; std::cerr << "CN_JAC_02_XIU_SIZE - Fatal error!\n"; std::cerr << " BETA <= -1.0\n"; std::exit ( 1 ); } o = n + 1; return o; } //****************************************************************************80 double cn_jac_monomial_integral ( int n, double alpha, double beta, int expon[] ) //****************************************************************************80 // // Purpose: // // CN_JAC_MONOMIAL_INTEGRAL: integral of a monomial with Jacobi weight over CN. // // Discussion: // // value = integral ( CN ) // product ( 1 <= i <= n ) x(I)^expon(i) (1-x(i))^alpha (1+x(i))^beta dx(i) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of (1-X) in the weight factor. // // Input, double BETA, the exponent of (1+X) in the weight factor. // // Input, int EXPON[N], the exponents. // // Output, double CN_JAC_MONOMIAL_INTEGRAL, the value of the integral. // { int i; double value; double value2; value = 1.0; for ( i = 0; i < n; i++ ) { value2 = c1_jac_monomial_integral ( alpha, beta, expon[i] ); value = value * value2; } return value; } //****************************************************************************80 void cn_leg_01_1 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_01_1 implements the midpoint rule for region CN_LEG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int expon; int k; double volume; double volume_1d; expon = 0; volume_1d = webbur::c1_leg_monomial_integral ( expon ); volume = std::pow ( volume_1d, n ); webbur::r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; w[k] = volume; return; } //****************************************************************************80 int cn_leg_01_1_size ( int n ) //****************************************************************************80 // // Purpose: // // CN_LEG_01_1_SIZE sizes the midpoint rule for region CN_LEG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Output, int CN_LEG_01_1_SIZE, the order. // { int o; o = 1; return o; } //****************************************************************************80 void cn_leg_02_xiu ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_02_XIU implements the Xiu precision 2 rule for region CN_LEG. // // Discussion: // // This is the same as the Stroud rule CN:2-1. // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; double c1; double coef; double delta0; int expon; double gamma0; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = std::sqrt ( 2.0 ) * std::cos ( arg ); i = i + 1; x[i+j*n] = std::sqrt ( 2.0 ) * std::sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = webbur::r8_mop ( j ); i = i + 1; } } gamma0 = 1.0; delta0 = 0.0; c1 = 1.0 / 3.0; for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( std::sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } expon = 0; volume_1d = webbur::c1_leg_monomial_integral ( expon ); volume = std::pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int cn_leg_02_xiu_size ( int n ) //****************************************************************************80 // // Purpose: // // CN_LEG_02_XIU_SIZE sizes the Xiu precision 2 rule for region CN_LEG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int CN_LEG_02_XIU_SIZE, the order. // { int o; o = n + 1; return o; } //****************************************************************************80 void cn_leg_03_1 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_03_1 implements the Stroud rule CN:3-1 for region CN_LEG. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // The necessary treatment of the final coordinate of points when // N is odd seems to vary from what Stroud declares! // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; int expon; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; expon = 0; volume_1d = webbur::c1_leg_monomial_integral ( expon ); volume = std::pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( ( 2 * r - 1 ) * ( j + 1 ) ) * pi / ( double ) ( n ); x[i+j*n] = std::sqrt ( 2.0 ) * std::cos ( arg ) / std::sqrt ( 3.0 ); i = i + 1; x[i+j*n] = std::sqrt ( 2.0 ) * std::sin ( arg ) / std::sqrt ( 3.0 ); i = i + 1; } // // The following code does not correspond to what Stroud declares. // if ( i < n ) { if ( n == 1 ) { x[i+j*n] = webbur::r8_mop ( j + 1 ) / std::sqrt ( 3.0 ); } else { x[i+j*n] = std::sqrt ( 2.0 ) * webbur::r8_mop ( j + 1 ) / std::sqrt ( 3.0 ); } i = i + 1; } } for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int cn_leg_03_1_size ( int n ) //****************************************************************************80 // // Purpose: // // CN_LEG_03_1_SIZE sizes the Stroud rule CN:3-1 for region CN_LEG. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int CN_LEG_03_1_SIZE, the order. // { int o; o = 2 * n; return o; } //****************************************************************************80 void cn_leg_03_xiu ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_03_XIU implements the Xiu precision 3 rule for region CN_LEG. // // Discussion: // // This rule is identical to the Stroud rule CN:3-1. // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; int expon; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( ( 2 * r - 1 ) * ( j + 1 ) ) * pi / ( double ) ( n ); x[i+j*n] = std::sqrt ( 2.0 ) * std::cos ( arg ) / std::sqrt ( 3.0 ); i = i + 1; x[i+j*n] = std::sqrt ( 2.0 ) * std::sin ( arg ) / std::sqrt ( 3.0 ); i = i + 1; } if ( i < n ) { x[i+j*n] = std::sqrt ( 2.0 ) * webbur::r8_mop ( j + 1 ) / std::sqrt ( 3.0 ); if ( n == 1 ) { x[i+j*n] = x[i+j*n] / std::sqrt ( 2.0 ); } i = i + 1; } } expon = 0; volume_1d = webbur::c1_leg_monomial_integral ( expon ); volume = std::pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int cn_leg_03_xiu_size ( int n ) //****************************************************************************80 // // Purpose: // // CN_LEG_03_XIU_SIZE sizes the Xiu precision 3 rule for region CN_LEG. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int CN_LEG_03_XIU_SIZE, the order. // { int o; o = 2 * n; return o; } //****************************************************************************80 void cn_leg_05_1 ( int n, int option, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_05_1 implements the Stroud rule CN:5-1 for region CN_LEG. // // Discussion: // // The rule has order // // O = N^2 + N + 2. // // The rule has precision P = 5. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // N must be 4, 5, or 6. // // Input, int OPTION, is only used in case N = 4 or 5. // In that case, OPTION should be 1 or 2 to select the // two available variants of the rule. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a; double arg; double b; double c; double eta; int expon; double gamma; int i; int i1; int i2; int k; double lambda; double mu; double volume; double volume_1d; double xsi; if ( n < 4 || 6 < n ) { std::cerr << "\n"; std::cerr << "CN_LEG_05_1 - Fatal error!\n"; std::cerr << " The value of N must be 4, 5, or 6.\n"; std::exit ( 1 ); } if ( n == 4 || n == 5 ) { if ( option < 1 || 2 < option ) { std::cerr << "\n"; std::cerr << "CN_LEG_05_1 - Fatal error!\n"; std::cerr << " When N = 4 or 5, the value of OPTION must be 1 or 2.\n"; std::exit ( 1 ); } } expon = 0; volume_1d = webbur::c1_leg_monomial_integral ( expon ); volume = std::pow ( volume_1d, n ); if ( n == 4 && option == 1 ) { eta = 0.778984505799815E+00; lambda = 1.284565137874656E+00; xsi = - 0.713647298819253E+00; mu = - 0.715669761974162E+00; gamma = 0.217089151000943E+00; a = 0.206186096875899E-01 * volume; b = 0.975705820221664E-02 * volume; c = 0.733921929172573E-01 * volume; } else if ( n == 4 && option == 2 ) { eta = 0.546190755827425E+00; lambda = 0.745069130115661E+00; xsi = - 0.413927294508700E+00; mu = - 0.343989637454535E+00; gamma = 1.134017894600344E+00; a = 0.853094758323323E-01 * volume; b = 0.862099000096395E-01 * volume; c = 0.116418206881849E-01 * volume; } else if ( n == 5 && option == 1 ) { eta = 0.522478547481276E+00; lambda = 0.936135175985774E+00; xsi = - 0.246351362101519E+00; mu = - 0.496308106093758E+00; gamma = 0.827180176822930E+00; a = 0.631976901960153E-01 * volume; b = 0.511464127430166E-01 * volume; c = 0.181070246088902E-01 * volume; } else if ( n == 5 && option == 2 ) { eta = 0.798317301388741E+00; lambda = 0.637344273885728E+00; xsi = - 0.455245909918377E+00; mu = - 1.063446229997311E+00; gamma = 0.354482076665770E+00; a = 0.116952384292206E-01 * volume; b = 0.701731258612708E-01 * volume; c = 0.137439132264426E-01 * volume; } else if ( n == 6 ) { eta = 0.660225291773525E+00; lambda = 1.064581294844754E+00; xsi = 0.000000000000000E+00; mu = - 0.660225291773525E+00; gamma = 0.660225291773525E+00; a = 0.182742214532872E-01 * volume; b = 0.346020761245675E-01 * volume; c = 0.182742214532872E-01 * volume; } k = -1; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = eta; } w[k] = a; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = - eta; } w[k] = a; for ( i1 = 0; i1 < n; i1++ ) { k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = xsi; } x[i1+k*n] = lambda; w[k] = b; } for ( i1 = 0; i1 < n; i1++ ) { k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = - xsi; } x[i1+k*n] = - lambda; w[k] = b; } for ( i1 = 0; i1 < n - 1; i1++ ) { for ( i2 = i1 + 1; i2 < n; i2++ ) { k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = gamma; } x[i1+k*n] = mu; x[i2+k*n] = mu; w[k] = c; } } for ( i1 = 0; i1 < n - 1; i1++ ) { for ( i2 = i1 + 1; i2 < n; i2++ ) { k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = - gamma; } x[i1+k*n] = - mu; x[i2+k*n] = - mu; w[k] = c; } } return; } //****************************************************************************80 int cn_leg_05_1_size ( int n ) //****************************************************************************80 // // Purpose: // // CN_LEG_05_1_SIZE sizes the Stroud rule CN:5-1 for region CN_LEG. // // Discussion: // // The rule has order // // O = N^2 + N + 2. // // The rule has precision P = 5. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int CN_LEG_05_1_SIZE, the order. // { int o; o = n * n + n + 2; return o; } //****************************************************************************80 void cn_leg_05_2 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_05_2 implements the Stroud rule CN:5-2 for region CN_LEG. // // Discussion: // // The rule has order // // O = 2 N^2 + 1. // // The rule has precision P = 5. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // N must be at least 2. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double b0; double b1; double b2; int expon; int i; int i1; int i2; int k; double r; double volume; double volume_1d; if ( n < 2 ) { std::cerr << "\n"; std::cerr << "CN_LEG_05_2 - Fatal error!\n"; std::cerr << " N must be at least 2.\n"; std::exit ( 1 ); } expon = 0; volume_1d = webbur::c1_leg_monomial_integral ( expon ); volume = std::pow ( volume_1d, n ); b0 = ( double ) ( 25 * n * n - 115 * n + 162 ) * volume / 162.0; b1 = ( double ) ( 70 - 25 * n ) * volume / 162.0; b2 = 25.0 * volume / 324.0; r = std::sqrt ( 3.0 / 5.0 ); k = - 1; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } w[k] = b0; for ( i1 = 0; i1 < n; i1++ ) { k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } x[i1+k*n] = + r; w[k] = b1; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } x[i1+k*n] = - r; w[k] = b1; } for ( i1 = 0; i1 < n - 1; i1++ ) { for ( i2 = i1 + 1; i2 < n; i2++ ) { k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } x[i1+k*n] = + r; x[i2+k*n] = + r; w[k] = b2; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } x[i1+k*n] = + r; x[i2+k*n] = - r; w[k] = b2; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } x[i1+k*n] = - r; x[i2+k*n] = + r; w[k] = b2; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } x[i1+k*n] = - r; x[i2+k*n] = - r; w[k] = b2; } } return; } //****************************************************************************80 int cn_leg_05_2_size ( int n ) //****************************************************************************80 // // Purpose: // // CN_LEG_05_2_SIZE sizes the Stroud rule CN:5-2 for region CN_LEG. // // Discussion: // // The rule has order // // O = 2 N^2 + 1. // // The rule has precision P = 5. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int CN_LEG_05_2_SIZE, the order. // { int o; o = 2 * n * n + 1; return o; } //****************************************************************************80 double cn_leg_monomial_integral ( int n, int expon[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_MONOMIAL_INTEGRAL: integral of monomial with Legendre weight on CN. // // Discussion: // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // value = integral ( CN ) product ( 1 <= i <= n ) x(I)^expon(i) dx(i) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, int EXPON(N), the exponents. // // Output, double CN_LEG_MONOMIAL_INTEGRAL, the value of the integral. // { int i; double value; double value2; value = 1.0; for ( i = 0; i < n; i++ ) { value2 = c1_leg_monomial_integral ( expon[i] ); value = value * value2; } return value; } //****************************************************************************80 void en_her_01_1 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_HER_01_1 implements the Stroud rule 1.1 for region EN_HER. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // EN_HER is the entire N-dimensional space with weight function // // w(x) = product ( 1 <= i <= n ) ( exp ( - x(i)^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int k; double pi = 3.141592653589793E+00; double volume; double volume_1d; volume_1d = std::sqrt ( pi ); volume = std::pow ( volume_1d, n ); webbur::r8vec_zero ( n * o, x ); k = 0; // // 1 point. // w[k] = volume; return; } //****************************************************************************80 int en_her_01_1_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_HER_01_1_SIZE sizes the Stroud rule 1.1 for region EN_HER. // // Discussion: // // The rule has order O = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_HER_01_1_SIZE, the order. // { int o; o = 1; return o; } //****************************************************************************80 void en_her_02_xiu ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_HER_02_XIU implements the Xiu precision 2 rule for region EN_HER. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // EN_HER is the entire N-dimensional space with weight function // // w(x) = product ( 1 <= i <= n ) ( exp ( - x(i)^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 March 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; double c1; double delta0; double gamma0; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = std::sqrt ( 2.0 ) * std::cos ( arg ); i = i + 1; x[i+j*n] = std::sqrt ( 2.0 ) * std::sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = webbur::r8_mop ( j ); i = i + 1; } } gamma0 = 2.0; delta0 = 0.0; c1 = 1.0; for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( std::sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } volume_1d = std::sqrt ( pi ); volume = pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int en_her_02_xiu_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_HER_02_XIU_SIZE sizes the Xiu precision 2 rule for region EN_HER. // // Discussion: // // The rule has order O = N + 1; // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_HER_01_1_SIZE, the order. // { int o; o = n + 1; return o; } //****************************************************************************80 void en_her_03_1 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_HER_03_1 implements the Stroud rule 3.1 for region EN_HER. // // Discussion: // // The rule has order O = 2 * N. // // The rule has precision P = 3. // // EN_HER is the entire N-dimensional space with weight function // // w(x) = product ( 1 <= i <= n ) ( exp ( - x(i)^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a; int i; int k; double pi = 3.141592653589793; double r; double volume; double volume_1d; volume_1d = std::sqrt ( pi ); volume = std::pow ( volume_1d, n ); a = volume / ( double ) ( o ); r = std::sqrt ( ( double ) ( n ) / 2.0 ); webbur::r8vec_zero ( n * o, x ); k = - 1; // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - r; w[k] = a; k = k + 1; x[i+k*n] = + r; w[k] = a; } return; } //****************************************************************************80 int en_her_03_1_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_HER_03_1_SIZE sizes the Stroud rule 3.1 for region EN_HER. // // Discussion: // // The rule has order O = 2 * N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_HER_03_1_SIZE, the order. // { int o; o = 2 * n; return o; } //****************************************************************************80 void en_her_03_xiu ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_HER_03_XIU implements the Xiu precision 3 rule for region EN_HER. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // EN_HER is the entire N-dimensional space with weight function // // w(x) = product ( 1 <= i <= n ) ( exp ( - x(i)^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( ( 2 * r - 1 ) * ( j + 1 ) ) * pi / ( double ) ( n ); x[i+j*n] = std::cos ( arg ); i = i + 1; x[i+j*n] = std::sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = webbur::r8_mop ( j + 1 ); if ( n == 1 ) { x[i+j*n] = x[i+j*n] / std::sqrt ( 2.0 ); } i = i + 1; } } volume_1d = std::sqrt ( pi ); volume = std::pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int en_her_03_xiu_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_HER_03_XIU_SIZE sizes the Xiu precision 3 rule for region EN_HER. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // EN_HER is the entire N-dimensional space with weight function // // w(x) = product ( 1 <= i <= n ) ( exp ( - x(i)^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_HER_XIU_SIZE, the order. // { int o; o = 2 * n; return o; } //****************************************************************************80 void en_her_05_1 ( int n, int option, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_HER_05_1 implements the Stroud rule 5.1 for region EN_HER. // // Discussion: // // The rule has order O = N^2 + N + 2. // // The rule has precision P = 5. // // EN_HER is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // For N = 3, 5 and 6, there are two versions of the rule, chosen by setting // the OPTION variable to 1 or 2. // // Versions of this rule are only available for N = 2 through 7. // // There is a typographical error in the reference. // For the second version of the rule for N = 2, the line // gamma = 0.313300683022281E+00 // should read // gamma = 0.312200683022281E+00 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // 2 <= N <= 7. // // Input, int OPTION, selects option 1 or 2. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a; double b; double c; double eta; double gamma; int i; int i1; int j; int k; double lambda; double mu; double pi = 3.141592653589793E+00; double volume; double volume_1d; double xsi; if ( n < 2 || 7 < n ) { std::cerr << "\n"; std::cerr << "EN_HER_05_1 - Fatal error!\n"; std::cerr << " 2 <= N <= 7 required.\n"; std::exit ( 1 ); } if ( option < 1 || 2 < option ) { std::cerr << "\n"; std::cerr << "EN_HER_05_1 - Fatal error!\n"; std::cerr << " 1 <= OPTION <= 2 required.\n"; std::exit ( 1 ); } if ( option == 2 ) { if ( n != 3 && n != 5 && n != 6 ) { std::cerr << "\n"; std::cerr << "EN_HER_05_1 - Fatal error!\n"; std::cerr << " OPTION = 2 requires N = 3, 5 or 6.\n"; std::exit ( 1 ); } } volume_1d = std::sqrt ( pi ); volume = std::pow ( volume_1d, n ); if ( n == 2 ) { eta = 0.446103183094540E+00; lambda = 0.136602540378444E+01; xsi = - 0.366025403784439E+00; mu = 0.198167882945871E+01; gamma = 0.000000000000000E+00; a = 0.328774019778636E+00 * volume; b = 0.833333333333333E-01 * volume; c = 0.455931355469736E-02 * volume; } else if ( n == 3 && option == 1 ) { eta = 0.476731294622796E+00; lambda = 0.935429018879534E+00; xsi = - 0.731237647787132E+00; mu = 0.433155309477649E+00; gamma = 0.266922328697744E+01; a = 0.242000000000000E+00 * volume; b = 0.810000000000000E-01 * volume; c = 0.500000000000000E-02 * volume; } // // The value of gamma that follows corrects an error in the reference. // else if ( n == 3 && option == 2 ) { eta = 0.476731294622796E+00; lambda = 0.128679320334269E+01; xsi = - 0.379873463323979E+00; mu = - 0.192386729447751E+01; gamma = 0.312200683022281E+00; a = 0.242000000000000E+00 * volume; b = 0.810000000000000E-01 * volume; c = 0.500000000000000E-02 * volume; } else if ( n == 4 ) { eta = 0.523945658287507E+00; lambda = 0.119433782552719E+01; xsi = - 0.398112608509063E+00; mu = - 0.318569372920112E+00; gamma = 0.185675837424096E+01; a = 0.155502116982037E+00 * volume; b = 0.777510584910183E-01 * volume; c = 0.558227484231506E-02 * volume; } else if ( n == 5 && option == 1 ) { eta = 0.214972564378798E+01; lambda = 0.464252986016289E+01; xsi = - 0.623201054093728E+00; mu = - 0.447108700673434E+00; gamma = 0.812171426076311E+00; a = 0.487749259189752E-03 * volume; b = 0.487749259189752E-03 * volume; c = 0.497073504444862E-01 * volume; } else if ( n == 5 && option == 2 ) { eta = 0.615369528365158E+00; lambda = 0.132894698387445E+01; xsi = - 0.178394363877324E+00; mu = - 0.745963266507289E+00; gamma = 0.135503972310817E+01; a = 0.726415024414905E-01 * volume; b = 0.726415024414905E-01 * volume; c = 0.641509853510569E-02 * volume; } else if ( n == 6 && option == 1 ) { eta = 0.100000000000000E+01; lambda = 0.141421356237309E+01; xsi = 0.000000000000000E+00; mu = - 0.100000000000000E+01; gamma = 0.100000000000000E+01; a = 0.781250000000000E-02 * volume; b = 0.625000000000000E-01 * volume; c = 0.781250000000000E-02 * volume; } else if ( n == 6 && option == 2 ) { eta = 0.100000000000000E+01; lambda = 0.942809041582063E+00; xsi = - 0.471404520791032E+00; mu = - 0.166666666666667E+01; gamma = 0.333333333333333E+00; a = 0.781250000000000E-02 * volume; b = 0.625000000000000E-01 * volume; c = 0.781250000000000E-02 * volume; } else if ( n == 7 ) { eta = 0.000000000000000E+00; lambda = 0.959724318748357E+00; xsi = - 0.772326488820521E+00; mu = - 0.141214270131942E+01; gamma = 0.319908106249452E+00; a = 0.111111111111111E+00 * volume; b = 0.138888888888889E-01 * volume; c = 0.138888888888889E-01 * volume; } webbur::r8vec_zero ( n * o, x ); k = - 1; // // 2 points. // k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - eta; } w[k] = a; k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = + eta; } w[k] = a; // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - xsi; } x[i+k*n] = - lambda; w[k] = b; k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = + xsi; } x[i+k*n] = + lambda; w[k] = b; } // // 2 * ( N * ( N - 1 ) / 2 ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - gamma; } x[i+k*n] = - mu; x[j+k*n] = - mu; w[k] = c; k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = + gamma; } x[i+k*n] = + mu; x[j+k*n] = + mu; w[k] = c; } } return; } //****************************************************************************80 int en_her_05_1_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_HER_05_1_SIZE sizes the Stroud rule 5.1 for region EN_HER. // // Discussion: // // The rule has order O = N^2 + N + 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_HER_05_1_SIZE, the order. // { int o; o = n * n + n + 2; return o; } //****************************************************************************80 void en_her_05_2 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_HER_05_2 implements the Stroud rule 5.2 for region EN_HER. // // Discussion: // // The rule has order O = 2 * N^2 + 1. // // The rule has precision P = 5. // // EN_HER is the entire N-dimensional space with weight function // // w(x) = product ( 1 <= i <= n ) ( exp ( - x(i)^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a; double b; double c; int i; int j; int k; double pi = 3.141592653589793; double r; double s; double volume; double volume_1d; volume_1d = std::sqrt ( pi ); volume = std::pow ( volume_1d, n ); a = 2.0E+00 * volume / ( double ) ( n + 2 ); b = ( double ) ( 4 - n ) * volume / 2.0 / ( double ) ( ( n + 2 ) * ( n + 2 ) ); c = volume / ( double ) ( ( n + 2 ) * ( n + 2 ) ); r = std::sqrt ( ( double ) ( n + 2 ) / 2.0 ); s = std::sqrt ( ( double ) ( n + 2 ) / 4.0 ); webbur::r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; w[k] = a; // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - r; w[k] = b; k = k + 1; x[i+k*n] = + r; w[k] = b; } // // 4 * ( N * ( N - 1 ) / 2 ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - s; x[j+k*n] = - s; w[k] = c; k = k + 1; x[i+k*n] = - s; x[j+k*n] = + s; w[k] = c; k = k + 1; x[i+k*n] = + s; x[j+k*n] = - s; w[k] = c; k = k + 1; x[i+k*n] = + s; x[j+k*n] = + s; w[k] = c; } } return; } //****************************************************************************80 int en_her_05_2_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_HER_05_2_SIZE sizes the Stroud rule 5.2 for region EN_HER. // // Discussion: // // The rule has order O = 2 * N^2 + 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_HER_01_1_SIZE, the order. // { int o; o = 2 * n * n + 1; return o; } //****************************************************************************80 double en_her_monomial_integral ( int n, int alpha[] ) //****************************************************************************80 // // Purpose: // // EN_HER_MONOMIAL_INTEGRAL evaluates monomial integrals in EN_HER. // // Discussion: // // ALPHA is the set of polynomial exponents. // // EN_HER is the entire N-dimensional space with weight function // // w(x) = product ( 1 <= i <= n ) ( exp ( - x(i)^2 ) // // The integral to be evaluated is // // value = integral ( EN ) x(1)^alpha(1) * x(2)^alpha(2) * ... // * x(n)^alpha(n) * w(x) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int ALPHA[N], the polynomial exponents. // 0 <= ALPHA[*]. // // Output, double EN_HER_MONOMIAL_INTEGRAL, the value of the integral. // { double arg; int i; double value; for ( i = 0; i < n; i++ ) { if ( alpha[i] < 0 ) { std::cerr << "\n"; std::cerr << "EN_HER_MONOMIAL_INTEGRAL - Fatal error//\n"; std::cerr << " ALPHA[" << i << "] < 0.\n"; std::exit ( 1 ); } } value = 1.0; for ( i = 0; i < n; i++ ) { if ( ( alpha[i] % 2 == 1 ) ) { value = 0.0; break; } else { arg = ( ( double ) ( alpha[i] + 1 ) ) / 2.0; value = value * webbur::r8_gamma ( arg ); } } return value; } //****************************************************************************80 double ep1_glg_monomial_integral ( int expon, double alpha ) //****************************************************************************80 // // Purpose: // // EP1_GLG_MONOMIAL_INTEGRAL: integral of monomial with GLG weight on EP1. // // Discussion: // // EP1_GLG is the interval [0,+oo) with generalized Laguerre weight function: // // w(alpha;x) = x^alpha exp ( - x ) // // value = integral ( 0 <= x < +oo ) x^expon x^alpha exp ( - x ) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // 0 <= EXPON. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Output, double EP1_GLG_MONOMIAL_INTEGRAL, the value of the integral. // { double arg; double exact; arg = alpha + ( double ) ( expon + 1 ); exact = webbur::r8_gamma ( arg ); return exact; } //****************************************************************************80 double ep1_lag_monomial_integral ( int expon ) //****************************************************************************80 // // Purpose: // // EP1_LAG_MONOMIAL_INTEGRAL: integral of monomial with Laguerre weight on EP1. // // Discussion: // // EP1 is the interval [0,+oo) with exponential or Laguerre weight function: // // w(x) = exp ( - x ) // // value = integral ( 0 <= x < oo ) x^expon exp ( - x ) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // 0 <= EXPON. // // Output, double EP1_LAG_MONOMIAL_INTEGRAL, the value of the integral. // { double value; value = webbur::r8_factorial ( expon ); return value; } //****************************************************************************80 void epn_glg_01_1 ( int n, double alpha, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EPN_GLG_01_1 implements a precision 1 rule for region EPN_GLG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // EPN_GLG is the N-dimensional positive space [0,+oo)^N with generalized // Laguerre weight function: // // w(alpha;x) = product ( 1 <= i <= n ) x(i)^alpha exp ( - x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int expon; int i; int k; double value2; double volume; double volume_1d; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "EPN_GLG_01_1 - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } expon = 0; volume_1d = webbur::ep1_glg_monomial_integral ( expon, alpha ); volume = std::pow ( volume_1d, n ); expon = 1; value2 = webbur::ep1_glg_monomial_integral ( expon, alpha ); webbur::r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = value2 / volume_1d; } w[k] = volume; return; } //****************************************************************************80 int epn_glg_01_1_size ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // EPN_GLG_01_1_SIZE sizes a precision 1 rule for region EPN_GLG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // EPN_GLG is the N-dimensional positive space [0,+oo)^N with generalized // Laguerre weight function: // // w(alpha;x) = product ( 1 <= i <= n ) x(i)^alpha exp ( - x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Output, int EPN_GLG_01_1_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "EPN_GLG_01_1_SIZE - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } o = 1; return o; } //****************************************************************************80 void epn_glg_02_xiu ( int n, double alpha, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EPN_GLG_02_XIU implements the Xiu precision 2 rule for region EPN_GLG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // EPN_GLG is the N-dimensional positive space [0,+oo)^N with generalized // Laguerre weight function: // // w(alpha;x) = product ( 1 <= i <= n ) x(i)^alpha exp ( - x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 March 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; double c1; double coef; double delta0; int expon; double gamma0; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "EPN_GLG_02_XIU - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = std::sqrt ( 2.0 ) * std::cos ( arg ); i = i + 1; x[i+j*n] = std::sqrt ( 2.0 ) * std::sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = webbur::r8_mop ( j ); i = i + 1; } } gamma0 = - 1.0; delta0 = alpha + 1.0; c1 = - alpha - 1.0; for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( std::sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } expon = 0; volume_1d = webbur::ep1_glg_monomial_integral ( expon, alpha ); volume = std::pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int epn_glg_02_xiu_size ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // EPN_GLG_02_XIU_SIZE sizes the Xiu precision 2 rule for region EPN_GLG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // EPN_GLG is the N-dimensional positive space [0,+oo)^N with generalized // Laguerre weight function: // // w(alpha;x) = product ( 1 <= i <= n ) x(i)^alpha exp ( - x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Output, int EPN_GLG_02_XIU_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "EPN_GLG_02_XIUI_SIZE - Fatal error!\n"; std::cerr << " ALPHA <= -1.0\n"; std::exit ( 1 ); } o = n + 1; return o; } //****************************************************************************80 double epn_glg_monomial_integral ( int n, int expon[], double alpha ) //****************************************************************************80 // // Purpose: // // EPN_GLG_MONOMIAL_INTEGRAL: integral of monomial with GLG weight on EPN. // // Discussion: // // EPN_GLG is the N-dimensional positive space [0,+oo)^N with generalized // Laguerre weight function: // // w(alpha;x) = product ( 1 <= i <= n ) x(i)^alpha exp ( - x(i) ) // // value = integral ( EPN ) // product ( 1 <= i <= n ) x(I)^expon(i) x(i)^alpha exp ( - x(i) ) dx(i) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, int EXPON[N], the exponents. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Output, double EPN_GLG_MONOMIAL_INTEGRAL, the value of the integral. // { int i; double value; double value2; value = 1.0; for ( i = 0; i < n; i++ ) { value2 = webbur::ep1_glg_monomial_integral ( expon[i], alpha ); value = value * value2; } return value; } //****************************************************************************80 void epn_lag_01_1 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EPN_LAG_01_1 implements a precision 1 rule for region EPN_LAG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // EPN is the N-dimensional positive space [0,+oo)^N with exponential // or Laguerre weight function: // // w(x(1:n)) = exp ( - sum ( x(1:n) ) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int expon; int i; int k; double value2; double volume; double volume_1d; expon = 0; volume_1d = webbur::ep1_lag_monomial_integral ( expon ); volume = std::pow ( volume_1d, n ); expon = 1; value2 = webbur::ep1_lag_monomial_integral ( expon ); webbur::r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = value2 / volume_1d; } w[k] = volume; return; } //****************************************************************************80 int epn_lag_01_1_size ( int n ) //****************************************************************************80 // // Purpose: // // EPN_LAG_01_1_SIZE sizes a precision 1 rule for region EPN_LAG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // EPN is the N-dimensional positive space [0,+oo)^N with exponential // or Laguerre weight function: // // w(x(1:n)) = exp ( - sum ( x(1:n) ) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EPN_LOG_01_1_SIZE, the order. // { int o; o = 1; return o; } //****************************************************************************80 void epn_lag_02_xiu ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EPN_LAG_02_XIU implements the Xiu precision 2 rule for region EPN_LAG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // EPN is the N-dimensional positive space [0,+oo)^N with exponential // or Laguerre weight function: // // w(x(1:n)) = exp ( - sum ( x(1:n) ) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 March 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; double c1; double coef; double delta0; int expon; double gamma0; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = std::sqrt ( 2.0 ) * std::cos ( arg ); i = i + 1; x[i+j*n] = std::sqrt ( 2.0 ) * std::sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = webbur::r8_mop ( j ); i = i + 1; } } gamma0 = - 1.0; delta0 = 1.0; c1 = - 1.0; for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( std::sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } expon = 0; volume_1d = webbur::ep1_lag_monomial_integral ( expon ); volume = std::pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int epn_lag_02_xiu_size ( int n ) //****************************************************************************80 // // Purpose: // // EPN_LAG_02_XIU_SIZE sizes the Xiu precision 2 rule for region EPN_LAG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // EPN is the N-dimensional positive space [0,+oo)^N with exponential // or Laguerre weight function: // // w(x(1:n)) = exp ( - sum ( x(1:n) ) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EPN_LAG_02_XIU_SIZE, the order. // { int o; o = n + 1; return o; } //****************************************************************************80 double epn_lag_monomial_integral ( int n, int expon[] ) //****************************************************************************80 // // Purpose: // // EPN_LAG_MONOMIAL_INTEGRAL: integral of monomial with Laguerre weight on EPN. // // Discussion: // // EPN is the N-dimensional positive space [0,+oo)^N with exponential // or Laguerre weight function: // // w(x(1:n)) = exp ( - sum ( x(1:n) ) ) // // value = integral ( EPN ) // product ( 1 <= i <= n ) x(I)^expon(i) exp ( -x(i) ) dx(i) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, int EXPON(N), the exponents. // // Output, double EPN_LAG_MONOMIAL_VALUE, the value of the integral. // { int i; double value; double value2; value = 1.0; for ( i = 0; i < n; i++ ) { value2 = webbur::ep1_lag_monomial_integral ( expon[i] ); value = value * value2; } return value; } //****************************************************************************80 void gw_02_xiu ( int n, int o, double gamma0, double delta0, double c1, double volume_1d, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // GW_02_XIU implements the Golub-Welsch version of the Xiu rule. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // It is assumed that the integral is over an N-dimensional region, // and has the form // // Integral f(x) w(x) dx // // where w(x) is separable into identical and independent components: // // w(x) = v(x1) * v(x2) * ... * v(xn) // // Associated with the weight function v(x), we assume there is a // family of orthogonal polynomials satisfying a three-term recurrence // of the form: // // x P(n,x) = An * P(n+1,x) + Bn * P(n,x) + Cn * P(n-1,x) // // with P(0,x) = 1, and P(-1,x) = 0. // // This routine can construct the desired quadrature rule by knowing // the values of C1, used in the definition of P2, the values // GAMMA0 = 1/A0 and DELTA0 = - B0/A0, for which it is the case that // P(1,X) = GAMMA0 * X + DELTA0, and the value of VOLUME_1D, that is, // the 1D integral of v(x) over the region. // // Note the values for the following standard polynomial families: // // Chebyshev Type 1 // V(X) = 1 / sqrt ( 1 - X^2 ) // Interval = [-1,+1] // GAMMA0 = 1.0 // DELTA0 = 0.0 // C1 = 1/2 // VOLUME_1D = PI // // Chebyshev Type 2 // V(X) = sqrt ( 1 - X^2 ) // Interval = [-1,+1] // GAMMA0 = 2.0 // DELTA0 = 0.0 // C1 = 1/2 // VOLUME_1D = PI / 2 // // Gegenbauer // V(X) = ( 1 - X^2 )^A // Interval = [-1,+1] // GAMMA0 = 2 * A + 1 // DELTA0 = 0.0 // C1 = ( 2 * A + 1 ) / ( 2 A + 3 ) // VOLUME_1D = sqrt ( PI ) * Gamma(A+1) / Gamma(A+3/2) // // Gegenbauer* (Removes singularity at ALPHA = -0.5): // V(X) = ( 1 - X^2 )^A // Interval = [-1,+1] // GAMMA0 = 1 // DELTA0 = 0.0 // C1 = 1 / ( 2 A + 3 ) // VOLUME_1D = sqrt ( PI ) * Gamma(A+1) / Gamma(A+3/2) // // Generalized Hermite // V(X) = |x|^A exp ( - x^2 ) // Interval = (-oo,+oo) // GAMMA0 = 2 // DELTA0 = 0 // C1 = 2+2A // VOLUME_1D = Gamma((A+1)/2) // // Generalized Laguerre // V(X) = x^A exp ( - x ) // Interval = [0,+oo) // GAMMA0 = -1.0 // DELTA0 = A+1.0 // C1 = -A-1.0 // VOLUME_1D = Gamma(A+1) // // Hermite (physicist) // V(X) = exp ( - x^2 ) // Interval = (-oo,+oo) // GAMMA0 = 2.0 // DELTA0 = 0.0 // C1 = 1.0 // VOLUME_1D = sqrt ( PI ) // // Hermite (probabilist) // V(X) = exp ( - x^2 / 2 ) // Interval = (-oo,+oo) // GAMMA0 = 1.0 // DELTA0 = 0.0 // C1 = 1.0 // VOLUME_1D = sqrt ( 2 PI ) // // Jacobi // V(X) = (1-x)^A (1+x)^B // Interval = [-1,+1] // GAMMA0 = (A+B+2)/2 // DELTA0 = (A-B)/2 // C1 = 2(A+1)(B+1)/(A+B+3)/(A+B+2) // VOLUME_1D = 2^(A+B+1) * Gamma(A+1) * Gamma(B+1) / ( A+B+1) / Gamma(A+B+1) // // Laguerre // V(X) = exp ( - x ) // Interval = [0,+oo) // GAMMA0 = -1.0 // DELTA0 = 1.0 // C1 = -1.0 // VOLUME_1D = 1.0 // // Legendre // V(X) = 1.0 // Interval = [-1,+1] // GAMMA0 = 1.0 // DELTA0 = 0.0 // C1 = 1/3 // VOLUME_1D = 2.0 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 March 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Input, double GAMMA0, the ratio 1 / A0. // // Input, double DELTA0, the ratio B0 / A0. // // Input, double C1, the coefficient of P(0,X) in the definition of P(2,X). // // Input, double VOLUME_1D, the 1D integral of V(X). // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; int i; int j; double pi = 3.141592653589793; int r; for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = std::sqrt ( 2.0 ) * std::cos ( arg ); i = i + 1; x[i+j*n] = std::sqrt ( 2.0 ) * std::sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = webbur::r8_mop ( j ); i = i + 1; } } // // Adjust for the GW rule. // for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( std::sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } // // The weights are equal. // for ( j = 0; j < o; j++ ) { w[j] = std::pow ( volume_1d, n ) / ( double ) ( o ); } return; } //****************************************************************************80 int gw_02_xiu_size ( int n ) //****************************************************************************80 // // Purpose: // // GW_02_XIU_SIZE sizes the Golub Welsch version of the Xiu rule. // // Discussion: // // The rule has order O = N + 1; // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 February 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int GW_02_XIU_SIZE, the order. // { int o; o = n + 1; return o; } //****************************************************************************80 double *monomial_value ( int dim_num, int point_num, double x[], int expon[] ) //****************************************************************************80 // // Purpose: // // MONOMIAL_VALUE evaluates a monomial. // // Discussion: // // This routine evaluates a monomial of the form // // product ( 1 <= dim <= dim_num ) x(dim)^expon(dim) // // where the exponents are nonnegative integers. Note that // if the combination 0^0 is encountered, it should be treated // as 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 May 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int POINT_NUM, the number of points at which the // monomial is to be evaluated. // // Input, double X[DIM_NUM*POINT_NUM], the point coordinates. // // Input, int EXPON[DIM_NUM], the exponents. // // Output, double MONOMIAL_VALUE[POINT_NUM], the value of the monomial. // { int dim; int point; double *value; value = new double[point_num]; for ( point = 0; point < point_num; point++ ) { value[point] = 1.0; } for ( dim = 0; dim < dim_num; dim++ ) { if ( 0 != expon[dim] ) { for ( point = 0; point < point_num; point++ ) { value[point] = value[point] * std::pow ( x[dim+point*dim_num], expon[dim] ); } } } return value; } }