# include "sandia_rules.hpp" # include "sandia_sgmg.hpp" # include # include # include # include namespace webbur { //****************************************************************************80 void product_mixed_growth_weight ( int dim_num, int order_1d[], int order_nd, void ( *gw_compute_weights[] ) ( int order, int dim, double w[] ), double weight_nd[] ) //****************************************************************************80 // // Purpose: // // PRODUCT_MIXED_GROWTH_WEIGHT computes the weights of a mixed product rule. // // Discussion: // // This routine computes the weights for a quadrature rule which is // a product of 1D rules of varying order and kind. // // The user must preallocate space for the output array WEIGHT_ND. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 November 2011 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int ORDER_1D[DIM_NUM], the order of the 1D rules. // // Input, int ORDER_ND, the order of the product rule. // // Input, void ( *GW_COMPUTE_WEIGHTS[] ) ( int order, double w[] ), // an array of pointers to functions which return the 1D quadrature weights // associated with each spatial dimension. // // Output, double WEIGHT_ND[ORDER_ND], the product rule weights. // { int dim; int i; double *weight_1d; for ( i = 0; i < order_nd; i++ ) { weight_nd[i] = 1.0; } for ( dim = 0; dim < dim_num; dim++ ) { weight_1d = new double[order_1d[dim]]; gw_compute_weights[dim] ( order_1d[dim], dim, weight_1d ); webbur::r8vec_direct_product2 ( dim, order_1d[dim], weight_1d, dim_num, order_nd, weight_nd ); delete [] weight_1d; } return; } //****************************************************************************80 void sgmg_index ( int dim_num, int level_max, int point_num, int point_total_num, int sparse_unique_index[], int growth, int ( *gw_compute_order[] ) ( int level, int growth ), int sparse_order[], int sparse_index[] ) //****************************************************************************80 // // Purpose: // // SGMG_INDEX indexes a sparse grid of mixed 1D rules. // // Discussion: // // For each "unique" point in the sparse grid, we return its INDEX and ORDER. // // That is, for the I-th unique point P, we determine the product grid which // first generated this point, and and we return in SPARSE_ORDER the orders // of the 1D rules in that grid, and in SPARSE_INDEX the component // indexes in those rules that generated this specific point. // // For instance, say P was first generated by a rule which was a 3D product // of a 9th order CC rule and and a 15th order GL rule, and and that to // generate P, we used the 7-th point of the CC rule and and the 3rh point // of the GL rule. Then the SPARSE_ORDER information would be (9,15) and // the SPARSE_INDEX information would be (7,3). This, combined with the // information in RULE, is enough to regenerate the value of P. // // The user must preallocate space for the output arrays SPARSE_ORDER and // SPARSE_INDEX. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2012 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL_MAX, the maximum value of LEVEL. // // Input, int POINT_NUM, the number of unique points // in the grid. // // Input, int POINT_TOTAL_NUM, the total number of points in the grid. // // Input, int SPARSE_UNIQUE_INDEX[POINT_TOTAL_NUM], associates each // point in the grid with its unique representative. // // Input, int GROWTH, the growth rule. // 0, slow; // 1, moderate; // 2, full. // // Input, int ( *GW_COMPUTE_ORDER[] ) ( int level, int growth ), // an array of pointers to functions which return the order of the // 1D quadrature rule of a given level and growth rule. // // Output, int SPARSE_ORDER[DIM_NUM*POINT_NUM], lists, // for each point, the order of the 1D rules used in the grid that // generated it. // // Output, int SPARSE_INDEX[DIM_NUM*POINT_NUM)] lists, for // each point, its index in each of the 1D rules in the grid that generated // it. The indices are 1-based. // { int dim; int h; int level; int *level_1d; int level_min; bool more_grids; bool more_points; int *order_1d; int point_count; int *point_index; int point_unique; int t; // // Special cases. // if ( level_max < 0 ) { return; } if ( level_max == 0 ) { for ( dim = 0; dim < dim_num; dim++ ) { sparse_order[dim+0*dim_num] = 1; sparse_index[dim+0*dim_num] = 1; } return; } point_count = 0; // // The outer loop generates values of LEVEL. // level_1d = new int[dim_num]; order_1d = new int[dim_num]; point_index = new int[dim_num]; level_min = webbur::i4_max ( 0, level_max + 1 - dim_num ); for ( level = level_min; level <= level_max; level++ ) { // // The middle loop generates a GRID, // based on the next partition that adds up to LEVEL. // more_grids = false; h = 0; t = 0; for ( ; ; ) { webbur::comp_next ( level, dim_num, level_1d, &more_grids, &h, &t ); for ( dim = 0; dim < dim_num; dim++ ) { order_1d[dim] = gw_compute_order[dim] ( level_1d[dim], growth ); } // // The inner loop generates a POINT of the GRID of the LEVEL. // more_points = false; for ( ; ; ) { webbur::vec_colex_next3 ( dim_num, order_1d, point_index, &more_points ); if ( !more_points ) { break; } point_unique = sparse_unique_index[point_count]; for ( dim = 0; dim < dim_num; dim++ ) { sparse_order[dim+point_unique*dim_num] = order_1d[dim]; } for ( dim = 0; dim < dim_num; dim++ ) { sparse_index[dim+point_unique*dim_num] = point_index[dim]; } point_count = point_count + 1; } if ( !more_grids ) { break; } } } delete [] level_1d; delete [] order_1d; delete [] point_index; return; } //****************************************************************************80 void sgmg_point ( int dim_num, int level_max, void ( *gw_compute_points[] ) ( int order, int dim, double x[] ), int point_num, int sparse_order[], int sparse_index[], int growth, int ( *gw_compute_order[] ) ( int level, int growth ), double sparse_point[] ) //****************************************************************************80 // // Purpose: // // SGMG_POINT computes the points of a sparse grid rule. // // Discussion: // // The sparse grid is the logical sum of low degree product rules. // // Each product rule is the product of 1D factor rules. // // The user specifies: // * the spatial dimension of the quadrature region, // * the level that defines the Smolyak grid. // * the quadrature rules. // * the number of points. // // The user must preallocate space for the output array SPARSE_POINT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2012 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL_MAX, controls the size of the final sparse grid. // // Input, void ( *GW_COMPUTE_POINTS[] ) ( int order, int dim, double x[] ), // an array of pointers to functions which return the 1D quadrature points // associated with each spatial dimension. // // Input, int POINT_NUM, the number of points in the grid, // as determined by SGMG_SIZE. // // Input, int SPARSE_ORDER[DIM_NUM*POINT_NUM], lists, for each point, // the order of the 1D rules used in the grid that generated it. // // Input, int SPARSE_INDEX[DIM_NUM*POINT_NUM], lists, for each point, // its index in each of the 1D rules in the grid that generated it. // The indices are 1-based. // // Input, int GROWTH, the growth rule. // 0, slow; // 1, moderate; // 2, full. // // Input, int ( *GW_COMPUTE_ORDER[] ) ( int level, int growth ), // an array of pointers to functions which return the order of the // 1D quadrature rule of a given level and growth rule. // // Output, double SPARSE_POINT[DIM_NUM*POINT_NUM], the points. // { int dim; int level; int order; int point; double *points; for ( point = 0; point < point_num; point++ ) { for ( dim = 0; dim < dim_num; dim++ ) { sparse_point[dim+point*dim_num] = webbur::r8_huge ( ); } } // // Compute the point coordinates. // for ( dim = 0; dim < dim_num; dim++ ) { for ( level = 0; level <= level_max; level++ ) { order = gw_compute_order[dim] ( level, growth ); points = new double[order]; gw_compute_points[dim] ( order, dim, points ); for ( point = 0; point < point_num; point++ ) { if ( sparse_order[dim+point*dim_num] == order ) { sparse_point[dim+point*dim_num] = points[sparse_index[dim+point*dim_num]-1]; } } delete [] points; } } return; } //****************************************************************************80 int sgmg_size ( int dim_num, int level_max, void ( *gw_compute_points[] ) ( int order, int dim, double x[] ), double tol, int growth, int ( *gw_compute_order[] ) ( int level, int growth ) ) //****************************************************************************80 // // Purpose: // // SGMG_SIZE sizes a sparse grid, discounting duplicates. // // Discussion: // // The sparse grid is the logical sum of product grids with total LEVEL // between LEVEL_MIN and LEVEL_MAX. // // Depending on the 1D rules involved, there may be many duplicate points // in the sparse grid. // // This routine counts the unique points in the sparse grid. It does this // in a straightforward way, by actually generating all the points, and // comparing them, with a tolerance for equality. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2012 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL_MAX, the maximum value of LEVEL. // // Input, void ( *GW_COMPUTE_POINTS[] ) ( int order, int dim, double x[] ), // an array of pointers to functions which return the 1D quadrature points // associated with each spatial dimension. // // Input, double TOL, a tolerance for point equality. // // Input, int GROWTH, the growth rule. // 0, slow; // 1, moderate; // 2, full. // // Input, int ( *GW_COMPUTE_ORDER[] ) ( int level, int growth ), // an array of pointers to functions which return the order of the // 1D quadrature rule of a given level and growth rule. // // Output, int SGMG_SIZE, the number of unique points. // { int dim; int h; int level; int *level_1d; int level_min; bool more_grids; bool more_points; int order; int *order_1d; int point; int *point_index; int point_num; int point_total_num; int point_total_num2; double *points; int seed; int *sparse_total_index; int *sparse_total_order; double *sparse_total_point; int t; // // Special cases. // if ( level_max < 0 ) { point_num = -1; return point_num; } if ( level_max == 0 ) { point_num = 1; return point_num; } // // Get total number of points, including duplicates. // point_total_num = webbur::sgmg_size_total ( dim_num, level_max, growth, gw_compute_order ); // // Generate SPARSE_TOTAL_ORDER and SPARSE_TOTAL_INDEX arrays // for the TOTAL set of points. // sparse_total_order = new int[dim_num*point_total_num]; sparse_total_index = new int[dim_num*point_total_num]; point_total_num2 = 0; // // The outer loop generates values of LEVEL. // level_1d = new int[dim_num]; order_1d = new int[dim_num]; point_index = new int[dim_num]; level_min = webbur::i4_max ( 0, level_max + 1 - dim_num ); for ( level = level_min; level <= level_max; level++ ) { // // The middle loop generates a GRID, // based on the next partition that adds up to LEVEL. // more_grids = false; h = 0; t = 0; for ( ; ; ) { webbur::comp_next ( level, dim_num, level_1d, &more_grids, &h, &t ); for ( dim = 0; dim < dim_num; dim++ ) { order_1d[dim] = gw_compute_order[dim] ( level_1d[dim], growth ); } // // The inner loop generates a POINT of the GRID of the LEVEL. // more_points = false; for ( ; ; ) { webbur::vec_colex_next3 ( dim_num, order_1d, point_index, &more_points ); if ( !more_points ) { break; } for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_order[dim+point_total_num2*dim_num] = order_1d[dim]; } for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_index[dim+point_total_num2*dim_num] = point_index[dim]; } point_total_num2 = point_total_num2 + 1; } if ( !more_grids ) { break; } } } delete [] level_1d; delete [] order_1d; delete [] point_index; // // Now compute the coordinates of the TOTAL set of points. // sparse_total_point = new double[dim_num*point_total_num]; for ( point = 0; point < point_total_num; point++ ) { for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_point[dim+point*dim_num] = webbur::r8_huge ( ); } } // // Compute the point coordinates. // for ( dim = 0; dim < dim_num; dim++ ) { for ( level = 0; level <= level_max; level++ ) { order = gw_compute_order[dim] ( level, growth ); points = new double[order]; gw_compute_points[dim] ( order, dim, points ); for ( point = 0; point < point_total_num; point++ ) { if ( sparse_total_order[dim+point*dim_num] == order ) { sparse_total_point[dim+point*dim_num] = points[sparse_total_index[dim+point*dim_num]-1]; } } delete [] points; } } // // Count the tolerably unique columns. // seed = 123456789; point_num = webbur::point_radial_tol_unique_count ( dim_num, point_total_num, sparse_total_point, tol, &seed ); delete [] sparse_total_index; delete [] sparse_total_order; delete [] sparse_total_point; return point_num; } //****************************************************************************80 int sgmg_size_total ( int dim_num, int level_max, int growth, int ( *gw_compute_order[] ) ( int level, int growth ) ) //****************************************************************************80 // // Purpose: // // SGMG_SIZE_TOTAL sizes a sparse grid, counting duplicates. // // Discussion: // // The sparse grid is the logical sum of product grids with total LEVEL // between LEVEL_MIN and LEVEL_MAX. // // In some cases, the same point may occur in different product grids // used to form the sparse grid. // // This routine counts the total number of points used to construct the // sparse grid; if the same point occurs several times, each occurrence // is added to the sum. // // This computation is useful in order to be able to allocate enough // space for the full set of points, before they are compressed by removing // duplicates. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2012 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL_MAX, the maximum value of LEVEL. // // Input, int GROWTH, the growth rule. // 0, slow; // 1, moderate; // 2, full. // // Input, int ( *GW_COMPUTE_ORDER[] ) ( int level, int growth ), // an array of pointers to functions which return the order of the // 1D quadrature rule of a given level and growth rule. // // Output, int SGMG_SIZE_TOTAL, the number of points, including repetitions. // { int dim; int h; int level; int *level_1d; int level_min; bool more_grids; int order_nd; int point_total_num; int t; // // Special case. // if ( level_max == 0 ) { point_total_num = 1; return point_total_num; } point_total_num = 0; level_1d = new int[dim_num]; // // The outer loop generates values of LEVEL. // level_min = webbur::i4_max ( 0, level_max + 1 - dim_num ); for ( level = level_min; level <= level_max; level++ ) { // // The middle loop generates a GRID, // based on the next partition that adds up to LEVEL. // more_grids = false; h = 0; t = 0; for ( ; ; ) { webbur::comp_next ( level, dim_num, level_1d, &more_grids, &h, &t ); order_nd = 1; for ( dim = 0; dim < dim_num; dim++ ) { order_nd = order_nd * gw_compute_order[dim] ( level_1d[dim], growth ); } point_total_num = point_total_num + order_nd; if ( !more_grids ) { break; } } } delete [] level_1d; return point_total_num; } //****************************************************************************80 void sgmg_unique_index ( int dim_num, int level_max, void ( *gw_compute_points[] ) ( int order, int dim, double x[] ), double tol, int point_num, int point_total_num, int growth, int ( *gw_compute_order[] ) ( int level, int growth ), int sparse_unique_index[] ) //****************************************************************************80 // // Purpose: // // SGMG_UNIQUE_INDEX maps nonunique to unique points. // // Discussion: // // The sparse grid usually contains many points that occur in more // than one product grid. // // When generating the point locations, it is easy to realize that a point // has already been generated. // // But when it's time to compute the weights of the sparse grids, it is // necessary to handle situations in which weights corresponding to // the same point generated in multiple grids must be collected together. // // This routine generates ALL the points, including their multiplicities, // and figures out a mapping from them to the collapsed set of unique points. // // This mapping can then be used during the weight calculation so that // a contribution to the weight gets to the right place. // // The user must preallocate space for the output array SPARSE_UNIQUE_INDEX. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2012 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL_MAX, the maximum value of LEVEL. // // Input, void ( *GW_COMPUTE_POINTS[] ) ( int order, int dim, double x[] ), // an array of pointers to functions which return the 1D quadrature points // associated with each spatial dimension. // // Input, double TOL, a tolerance for point equality. // // Input, int POINT_NUM, the number of unique points // in the grid. // // Input, int POINT_TOTAL_NUM, the total number of points // in the grid. // // Input, int GROWTH, the growth rule. // 0, slow; // 1, moderate; // 2, full. // // Input, int ( *GW_COMPUTE_ORDER[] ) ( int level, int growth ), // an array of pointers to functions which return the order of the // 1D quadrature rule of a given level and growth rule. // // Output, int SPARSE UNIQUE_INDEX[POINT_TOTAL_NUM], lists, // for each (nonunique) point, the corresponding index of the same point in // the unique listing. // { int dim; int h; int level; int *level_1d; int level_min; bool more_grids; bool more_points; int order; int *order_1d; int point; int *point_index; int point_num2; int point_total_num2; double *points; int rep; int seed; int *sparse_total_index; int *sparse_total_order; double *sparse_total_point; int t; int *undx; // // Special cases. // if ( level_max < 0 ) { return; } if ( level_max == 0 ) { sparse_unique_index[0] = 0; return; } // // Generate SPARSE_TOTAL_ORDER and SPARSE_TOTAL_INDEX arrays // for the TOTAL set of points. // sparse_total_order = new int[dim_num*point_total_num]; sparse_total_index = new int[dim_num*point_total_num]; point_total_num2 = 0; // // The outer loop generates values of LEVEL. // level_1d = new int[dim_num]; order_1d = new int[dim_num]; point_index = new int[dim_num]; level_min = webbur::i4_max ( 0, level_max + 1 - dim_num ); for ( level = level_min; level <= level_max; level++ ) { // // The middle loop generates a GRID, // based on the next partition that adds up to LEVEL. // more_grids = false; h = 0; t = 0; for ( ; ; ) { webbur::comp_next ( level, dim_num, level_1d, &more_grids, &h, &t ); for ( dim = 0; dim < dim_num; dim++ ) { order_1d[dim] = gw_compute_order[dim] ( level_1d[dim], growth ); } // // The inner loop generates a POINT of the GRID of the LEVEL. // more_points = false; for ( ; ; ) { webbur::vec_colex_next3 ( dim_num, order_1d, point_index, &more_points ); if ( !more_points ) { break; } for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_order[dim+point_total_num2*dim_num] = order_1d[dim]; } for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_index[dim+point_total_num2*dim_num] = point_index[dim]; } point_total_num2 = point_total_num2 + 1; } if ( !more_grids ) { break; } } } delete [] level_1d; delete [] order_1d; delete [] point_index; // // Now compute the coordinates of the TOTAL set of points. // sparse_total_point = new double[dim_num*point_total_num]; for ( point = 0; point < point_total_num; point++ ) { for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_point[dim+point*dim_num] = webbur::r8_huge ( ); } } // // Compute the point coordinates. // for ( dim = 0; dim < dim_num; dim++ ) { for ( level = 0; level <= level_max; level++ ) { order = gw_compute_order[dim] ( level, growth ); points = new double[order]; gw_compute_points[dim] ( order, dim, points ); for ( point = 0; point < point_total_num; point++ ) { if ( sparse_total_order[dim+point*dim_num] == order ) { sparse_total_point[dim+point*dim_num] = points[sparse_total_index[dim+point*dim_num]-1]; } } delete [] points; } } // // Merge points that are too close. // seed = 123456789; undx = new int[point_num]; point_num2 = webbur::point_radial_tol_unique_index ( dim_num, point_total_num, sparse_total_point, tol, &seed, undx, sparse_unique_index ); for ( point = 0; point < point_total_num; point++ ) { rep = undx[sparse_unique_index[point]]; if ( point != rep ) { for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_point[dim+point*dim_num] = sparse_total_point[dim+rep*dim_num]; } } } // // Construct an index that indicates the "rank" of the unique points. // webbur::point_unique_index ( dim_num, point_total_num, sparse_total_point, point_num, undx, sparse_unique_index ); delete [] sparse_total_index; delete [] sparse_total_order; delete [] sparse_total_point; delete [] undx; return; } //****************************************************************************80 void sgmg_weight ( int dim_num, int level_max, void ( *gw_compute_weights[] ) ( int order, int dim, double w[] ), int point_num, int point_total_num, int sparse_unique_index[], int growth, int ( *gw_compute_order[] ) ( int level, int growth ), double sparse_weight[] ) //****************************************************************************80 // // Purpose: // // SGMG_WEIGHT: sparse grid weights for a mix of 1D rules. // // Discussion: // // The user must preallocate space for the output array SPARSE_WEIGHT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2012 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL_MAX, the maximum value of LEVEL. // // Input, void ( *GW_COMPUTE_WEIGHTS[] ) ( int order, int dim, double w[] ), // an array of pointers to functions which return the 1D quadrature weights // associated with each spatial dimension. // // Input, int POINT_NUM, the number of unique points // in the grid. // // Input, int POINT_TOTAL_NUM, the total number of points // in the grid. // // Input, int SPARSE UNIQUE_INDEX[POINT_TOTAL_NUM], lists, // for each (nonunique) point, the corresponding index of the same point in // the unique listing. // // Input, int GROWTH, the growth rule. // 0, slow; // 1, moderate; // 2, full. // // Input, int ( *GW_COMPUTE_ORDER[] ) ( int level, int growth ), // an array of pointers to functions which return the order of the // 1D quadrature rule of a given level and growth rule. // // Output, double SPARSE_WEIGHT[POINT_NUM], the weights // associated with the sparse grid points. // { double coeff; int dim; double *grid_weight; int h; int level; int *level_1d; int level_min; bool more_grids; int order; int *order_1d; int order_nd; int point; int point_total; int point_unique; int t; level_1d = new int[dim_num]; order_1d = new int[dim_num]; for ( point = 0; point < point_num; point++ ) { sparse_weight[point] = 0.0; } point_total = 0; level_min = webbur::i4_max ( 0, level_max + 1 - dim_num ); for ( level = level_min; level <= level_max; level++ ) { // // The middle loop generates the next partition LEVEL_1D(1:DIM_NUM) // that adds up to LEVEL. // more_grids = false; h = 0; t = 0; for ( ; ; ) { webbur::comp_next ( level, dim_num, level_1d, &more_grids, &h, &t ); // // Transform each 1D level to a corresponding 1D order. // for ( dim = 0; dim < dim_num; dim++ ) { order_1d[dim] = gw_compute_order[dim] ( level_1d[dim], growth ); } // // The product of the 1D orders gives us the number of points in this grid. // order_nd = webbur::i4vec_product ( dim_num, order_1d ); // // Compute the weights for this grid. // // The correct transfer of data from the product grid to the sparse grid // depends on the fact that the product rule weights are stored under colex // order of the points, and this is the same ordering implicitly used in // generating the SPARSE_UNIQUE_INDEX array. // grid_weight = new double[order_nd]; webbur::product_mixed_growth_weight ( dim_num, order_1d, order_nd, gw_compute_weights, grid_weight ); // // Compute Smolyak's binomial coefficient for this grid. // coeff = webbur::r8_mop ( level_max - level ) * webbur::r8_choose ( dim_num - 1, level_max - level ); // // Add these weights to the rule. // for ( order = 0; order < order_nd; order++ ) { point_unique = sparse_unique_index[point_total]; point_total = point_total + 1; sparse_weight[point_unique] = sparse_weight[point_unique] + coeff * grid_weight[order]; } delete [] grid_weight; if ( !more_grids ) { break; } } } delete [] level_1d; delete [] order_1d; return; } // // This final curly bracket closes the namespace. // }