# include "sandia_rules.hpp" # include "sandia_sgmga.hpp" # include # include # include # include namespace webbur { //****************************************************************************80 double *sandia_sgmga_aniso_balance ( double alpha_max, int dim_num, double level_weight[] ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_ANISO_BALANCE "balances" an anisotropic weight vector. // // Discussion: // // The entries in LEVEL_WEIGHT are essentially arbitrary nonnegative numbers. // // The ratio between two entries indicates their relative importance. // For instance, // // LEVEL_WEIGHT(1) / LEVEL_WEIGHT(2) = 10 // // means that variable 2 is 10 times more important than variable 1. // Here, being 10 times more important means that we will generate 10 levels // of sparse grid in direction 2 as we generate 1 level in direction 1. // // Under this interpretation, a ratio of 10 already indicates an extreme // imbalanace in the variables, since 10 sparse grid levels in the second // variable corresponds roughly to approximating x^1 only, and // all of y^1 through y^10. A ratio higher than this seems unreasonable. // // Therefore, this function tries to take a somewhat arbitrary level weight // vector, and produce a "balanced" level weight vector with the properties // that the mininum entry is 1 (representing the item of most importance) // and the maximum entry is ALPHA_MAX. A reasonable value of ALPHA_MAX // might be 10 or even 5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2010 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, double ALPHA_MAX, the maximum legal value of // LEVEL_WEIGHT, after all entries have been divided by the minimum // nonzero entry. 1 <= ALPHA_MAX. // // Input, int DIM_NUM, the spatial dimension. // // Input, double LEVEL_WEIGHT[DIM_NUM], the anisotropic weights. // The values must be positive. // // Output, double SANDIA_SGMGA_ANISO_BALANCE[DIM_NUM], the balanced // anisotropic weights. The smallest nonzero entry is 1.0 and // no entry is greater than ALPHA_MAX. // { int dim; double *level_weight2; double level_weight_min; int nonzero_num; if ( alpha_max < 1.0 ) { std::cerr << "\n"; std::cerr << "SANDIA_SGMGA_ANISO_BALANCE - Fatal error!\n"; std::cerr << " ALPHA_MAX < 1.0\n"; std::exit ( 1 ); } // // Find the smallest nonzero entry. // level_weight_min = webbur::r8_huge ( ); nonzero_num = 0; for ( dim = 0; dim < dim_num; dim++ ) { if ( 0.0 < level_weight[dim] ) { if ( level_weight[dim] < level_weight_min ) { level_weight_min = level_weight[dim]; nonzero_num = nonzero_num + 1; } } } if ( nonzero_num == 0 ) { std::cerr << "\n"; std::cerr << "SANDIA_SGMGA_ANISO_BALANCE - Fatal error!\n"; std::cerr << " Could not find a positive entry in LEVEL_WEIGHT.\n"; std::exit ( 1 ); } // // Rescale so the smallest nonzero entry is 1. // level_weight2 = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { level_weight2[dim] = level_weight[dim] / level_weight_min; } // // Set the maximum entry to no more than ALPHA_MAX. // for ( dim = 0; dim < dim_num; dim++ ) { level_weight2[dim] = webbur::r8_min ( alpha_max, level_weight2[dim] ); } return level_weight2; } //****************************************************************************80 void sandia_sgmga_aniso_normalize ( int option, int dim_num, double level_weight[] ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_ANISO_NORMALIZE normalizes the anisotropic weight vector. // // Discussion: // // It is convenient for the user to initialize the anisotropic weight // vector with any set of positive values. These values are to be used // as coefficients of the 1D levels, to evaluate an expression which // determines which 1D levels will be included in a given rule. // // This means that a relatively LARGE coefficient forces the corresponding // level to be relatively SMALL. This is perhaps the opposite of what // a user might expect. If a user wishes to use an importance vector, // so that a relatively large importance should correspond to more levels, // and hence more points, in that dimension, then the function // SANDIA_SGMGA_IMPORTANCE_TO_ANISO should be called first! // // Since the weights only represent the relative importance of the // components, they may be multiplied by any (positive) scale factor. // Nonetheless, it may be convenient to choose a particular normalization // for the weights. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 November 2009 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int OPTION, the normalization option. // 0, no scaling is applied. // 1, the weights are scaled so that the minimum nonzero entry is 1. // 2, the weights are scaled so that they sum to DIM_NUM. // // Input, int DIM_NUM, the spatial dimension. // // Input/output, double LEVEL_WEIGHT[DIM_NUM], the anisotropic // weights. The input values must be strictly positive. // On output, these have been normalized. // { int dim; int found; double level_weight_min; double level_weight_sum; // // Option 0, no normalization. // if ( option == 0 ) { } // // Option 1, the minimum nonzero entry is 1. // else if ( option == 1 ) { level_weight_min = webbur::r8_huge ( ); found = 0; for ( dim = 0; dim < dim_num; dim++ ) { if ( 0.0 < level_weight[dim] ) { if ( level_weight[dim] < level_weight_min ) { level_weight_min = level_weight[dim]; found = found + 1; } } } if ( found == 0 ) { std::cerr << "\n"; std::cerr << "SANDIA_SGMGA_ANISO_NORMALIZE - Fatal error!\n"; std::cerr << " Could not find a positive entry in LEVEL_WEIGHT.\n"; std::exit ( 1 ); } for ( dim = 0; dim < dim_num; dim++ ) { level_weight[dim] = level_weight[dim] / level_weight_min; } } // // Option 2, rescale so sum of weights is DIM_NUM. // else if ( option == 2 ) { level_weight_sum = webbur::r8vec_sum ( dim_num, level_weight ); if ( level_weight_sum <= 0.0 ) { std::cerr << "\n"; std::cerr << "SANDIA_SGMGA_ANISO_NORMALIZE - Fatal error!\n"; std::cerr << " Sum of level weights is not positive.\n"; std::exit ( 1 ); } for ( dim = 0; dim < dim_num; dim++ ) { level_weight[dim] = ( ( double ) ( dim_num ) * level_weight[dim] ) / level_weight_sum; } } return; } //****************************************************************************80 void sandia_sgmga_importance_to_aniso ( int dim_num, double importance[], double level_weight[] ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_IMPORTANCE_TO_ANISO: importance to anisotropic weight. // // Discussion: // // To specify the anisotropy of a multidimensional problem, the user is // allowed to specify an "importance vector". This vector can contain // any set of positive values. These values represent the relative // importance of each dimension. These values, with a suitable normalization, // will be used to evaluate a constraint of the following form: // // QMIN < Level(1) / Importance(1) + Level(2) / Importance(2) + ... // Level(N) / Importance(N) <= QMAX // // and a set of levels that satisfies this constraint will then be included // in a given anistotropic sparse grid rule. Thus, increasing the // importance value of a particular dimension allows larger level values // in that dimension to satisfy the constraint. // // The program actually works with coefficients LEVEL_WEIGHT that are // the inverse of the importance vector entries, with a suitable // normalization. This function is supplied to convert between the // more natural "importance vector" and the internally useful // "level_weight" vector. // // This function converts the importance vector to an unnormalized // anisotropy weight vector. // // Note that some (but not all) of the IMPORTANCE vector entries may be zero. // This indicates that the corresponding dimension is of "zero" or // rather "minimal" importance. In such a case, only a one-point quadrature // rule will be applied for that dimension, no matter what sparse grid // level is requested for the overall problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 November 2009 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, double IMPORTANCE[DIM_NUM], the importance vector. // All entries must be nonnegative, and at least one must be positive. // // Output, double LEVEL_WEIGHT[DIM_NUM], the anisotropic // weights. // { int dim; int found; double level_weight_norm; for ( dim = 0; dim < dim_num; dim++ ) { if ( importance[dim] < 0.0 ) { std::cerr << "\n"; std::cerr << "SANDIA_SGMGA_IMPORTANCE_TO_ANISO - Fatal error!\n"; std::cerr << " Some IMPORTANCE entries are not positive.\n"; std::exit ( 1 ); } } found = 0; for ( dim = 0; dim < dim_num; dim++ ) { if ( 0.0 < importance[dim] ) { level_weight[dim] = 1.0 / importance[dim]; found = found + 1; } else { level_weight[dim] = 0.0; } } if ( found == 0 ) { std::cerr << "\n"; std::cerr << "SANDIA_SGMGA_IMPORTANCE_TO_ANISO - Fatal error!\n"; std::cerr << " No importance entry is positive.\n"; std::exit ( 1 ); } return; } //****************************************************************************80 void sandia_sgmga_index ( int dim_num, double level_weight[], int level_max, int point_num, int point_total_num, int sparse_unique_index[], int growth, int ( *gw_compute_order[] ) ( int level, int growth ), int sparse_order[], int sparse_index[] ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_INDEX indexes an SANDIA_SGMGA grid. // // Discussion: // // For each "unique" point in the sparse grid, we return its INDEX and ORDER. // // That is, for the I-th unique point P, we determine the product grid which // first generated this point, and and we return in SPARSE_ORDER the orders // of the 1D rules in that grid, and and in SPARSE_INDEX the component // indexes in those rules that generated this specific point. // // For instance, say P was first generated by a rule which was a 3D product // of a 9th order CC rule and and a 15th order GL rule, and and that to // generate P, we used the 7-th point of the CC rule and and the 3rh point // of the GL rule. Then the SPARSE_ORDER information would be (9,15) and // the SPARSE_INDEX information would be (7,3). This, combined with the // information in RULE, is enough to regenerate the value of P. // // The user must preallocate space for the output arrays SPARSE_ORDER and // SPARSE_INDEX. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2012 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, double LEVEL_WEIGHT[DIM_NUM], the anisotropic weights. // // Input, int LEVEL_MAX, the maximum value of LEVEL. // // Input, int POINT_NUM, the number of unique points // in the grid. // // Input, int POINT_TOTAL_NUM, the total number of points in the grid. // // Input, int SPARSE_UNIQUE_INDEX[POINT_TOTAL_NUM], associates each // point in the grid with its unique representative. // // Input, int GROWTH, the growth rule. // 0, slow; // 1, moderate; // 2, full. // // Input, int ( *GW_COMPUTE_ORDER[] ) ( int level, int growth ), // an array of pointers to functions which return the order of the // 1D quadrature rule of a given level and growth rule. // // Output, int SPARSE_ORDER[DIM_NUM*POINT_NUM], lists, // for each point, the order of the 1D rules used in the grid that // generated it. // // Output, int SPARSE_INDEX[DIM_NUM*POINT_NUM)] lists, for // each point, its index in each of the 1D rules in the grid that generated // it. The indices are 1-based. // { double coef; int dim; int *level_1d; int *level_1d_max; double level_weight_min_pos; bool more_grids; bool more_points; int *order_1d; int point; int point_count; int *point_index; int point_unique; double q_max; double q_min; // // Special cases. // if ( level_max < 0 ) { return; } if ( level_max == 0 ) { point = 0; for ( dim = 0; dim < dim_num; dim++ ) { sparse_order[dim+point*dim_num] = 1; sparse_index[dim+point*dim_num] = 1; } return; } // // Initialize the INDEX and ORDER arrays to -1 to help catch errors. // for ( point = 0; point < point_num; point++ ) { for ( dim = 0; dim < dim_num; dim++ ) { sparse_order[dim+point*dim_num] = -1; sparse_index[dim+point*dim_num] = -1; } } point_count = 0; level_1d = new int[dim_num]; level_1d_max = new int[dim_num]; order_1d = new int[dim_num]; point_index = new int[dim_num]; // // Initialization for SANDIA_SGMGA_VCN_ORDERED. // level_weight_min_pos = webbur::r8vec_min_pos ( dim_num, level_weight ); q_min = ( double ) ( level_max ) * level_weight_min_pos - webbur::r8vec_sum ( dim_num, level_weight ); q_max = ( double ) ( level_max ) * level_weight_min_pos; for ( dim = 0; dim < dim_num; dim++ ) { if ( 0.0 < level_weight[dim] ) { level_1d_max[dim] = webbur::r8_floor ( q_max / level_weight[dim] ) + 1; if ( q_max <= ( level_1d_max[dim] - 1 ) * level_weight[dim] ) { level_1d_max[dim] = level_1d_max[dim] - 1; } } else { level_1d_max[dim] = 0; } } more_grids = false; // // Seek all vectors LEVEL_1D which satisfy the constraint: // // LEVEL_MAX * LEVEL_WEIGHT_MIN_POS - sum ( LEVEL_WEIGHT ) // < sum ( 0 <= I < DIM_NUM ) LEVEL_WEIGHT[I] * LEVEL_1D[I] // <= LEVEL_MAX * LEVEL_WEIGHT_MIN_POS. // for ( ; ; ) { webbur::sandia_sgmga_vcn_ordered ( dim_num, level_weight, level_1d_max, level_1d, q_min, q_max, &more_grids ); if ( !more_grids ) { break; } // // Compute the combinatorial coefficient. // coef = webbur::sandia_sgmga_vcn_coef ( dim_num, level_weight, level_1d, q_max ); if ( coef == 0.0 ) { continue; } // // Transform each 1D level to a corresponding 1D order. // for ( dim = 0; dim < dim_num; dim++ ) { order_1d[dim] = gw_compute_order[dim] ( level_1d[dim], growth ); } // // The inner loop generates a POINT of the GRID of the LEVEL. // more_points = false; for ( ; ; ) { webbur::vec_colex_next3 ( dim_num, order_1d, point_index, &more_points ); if ( !more_points ) { break; } point_unique = sparse_unique_index[point_count]; for ( dim = 0; dim < dim_num; dim++ ) { sparse_order[dim+point_unique*dim_num] = order_1d[dim]; } for ( dim = 0; dim < dim_num; dim++ ) { sparse_index[dim+point_unique*dim_num] = point_index[dim]; } point_count = point_count + 1; } } delete [] level_1d; delete [] level_1d_max; delete [] order_1d; delete [] point_index; return; } //****************************************************************************80 void sandia_sgmga_point ( int dim_num, double level_weight[], int level_max, void ( *gw_compute_points[] ) ( int order, int dim, double x[] ), int point_num, int sparse_order[], int sparse_index[], int growth, int ( *gw_compute_order[] ) ( int level, int growth ), double sparse_point[] ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_POINT computes the points of an SANDIA_SGMGA rule. // // Discussion: // // The sparse grid is the logical sum of low degree product rules. // // Each product rule is the product of 1D factor rules. // // The user specifies: // * the spatial dimension of the quadrature region, // * the level that defines the Smolyak grid. // * the quadrature rules. // * the number of points. // // The user must preallocate space for the output array SPARSE_POINT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2012 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, double LEVEL_WEIGHT[DIM_NUM], the anisotropic weights. // // Input, int LEVEL_MAX, controls the size of the final sparse grid. // // Input, void ( *GW_COMPUTE_POINTS[] ) ( int order, int dim, double x[] ), // an array of pointers to functions which return the 1D quadrature points // associated with each spatial dimension for which a Golub Welsch rule // is used. // // Input, int POINT_NUM, the number of points in the grid, // as determined by SANDIA_SGMGA_SIZE. // // Input, int SPARSE_ORDER[DIM_NUM*POINT_NUM], lists, for each point, // the order of the 1D rules used in the grid that generated it. // // Input, int SPARSE_INDEX[DIM_NUM*POINT_NUM], lists, for each point, // its index in each of the 1D rules in the grid that generated it. // The indices are 1-based. // // Input, int GROWTH, the growth rule. // 0, slow; // 1, moderate; // 2, full. // // Input, int ( *GW_COMPUTE_ORDER[] ) ( int level, int growth ), // an array of pointers to functions which return the order of the // 1D quadrature rule of a given level and growth rule. // // Output, double SPARSE_POINT[DIM_NUM*POINT_NUM], the points. // { int dim; int level; int *level_1d_max; double level_weight_min_pos; int order; int point; double *points; double q_max; for ( point = 0; point < point_num; point++ ) { for ( dim = 0; dim < dim_num; dim++ ) { sparse_point[dim+point*dim_num] = - webbur::r8_huge ( ); } } // // Compute the point coordinates. // level_1d_max = new int[dim_num]; level_weight_min_pos = webbur::r8vec_min_pos ( dim_num, level_weight ); q_max = ( double ) ( level_max ) * level_weight_min_pos; for ( dim = 0; dim < dim_num; dim++ ) { if ( 0.0 < level_weight[dim] ) { level_1d_max[dim] = webbur::r8_floor ( q_max / level_weight[dim] ) + 1; if ( q_max <= ( level_1d_max[dim] - 1 ) * level_weight[dim] ) { level_1d_max[dim] = level_1d_max[dim] - 1; } } else { level_1d_max[dim] = 0; } for ( level = 0; level <= level_1d_max[dim]; level++ ) { order = gw_compute_order[dim] ( level, growth ); points = new double[order]; gw_compute_points[dim] ( order, dim, points ); for ( point = 0; point < point_num; point++ ) { if ( sparse_order[dim+point*dim_num] == order ) { sparse_point[dim+point*dim_num] = points[sparse_index[dim+point*dim_num]-1]; } } delete [] points; } } // // Check to see if we missed any points. // for ( point = 0; point < point_num; point++ ) { for ( dim = 0; dim < dim_num; dim++ ) { if ( sparse_point[dim+point*dim_num] == - webbur:: r8_huge ( ) ) { std::cerr << "\n"; std::cerr << "SANDIA_SGMGA_POINT - Fatal error!\n"; std::cerr << " At least one point component was not assigned.\n"; std::cerr << " POINT = " << point << "\n"; std::cerr << " DIM = " << dim << "\n"; std::cerr << " SPARSE_ORDER(DIM,POINT) = " << sparse_order[dim+point*dim_num] << "\n"; std::cerr << " LEVEL_WEIGHT(DIM) = " << level_weight[dim] << "\n"; std::exit ( 1 ); } } } delete [] level_1d_max; return; } //****************************************************************************80 void sandia_sgmga_product_weight ( int dim_num, int order_1d[], int order_nd, void ( *gw_compute_weights[] ) ( int order, int dim, double w[] ), double weight_nd[] ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_PRODUCT_WEIGHT computes the weights of a mixed product rule. // // Discussion: // // This routine computes the weights for a quadrature rule which is // a product of 1D rules of varying order and kind. // // The user must preallocate space for the output array WEIGHT_ND. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 November 2011 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int ORDER_1D[DIM_NUM], the order of the 1D rules. // // Input, int ORDER_ND, the order of the product rule. // // Input, void ( *GW_COMPUTE_WEIGHTS[] ) ( int order, int dim, double w[] ), // an array of pointers to functions which return the 1D quadrature weights // associated with each spatial dimension for which a Golub Welsch rule // is used. // // Output, double WEIGHT_ND[ORDER_ND], the product rule weights. // { int dim; int i; double *weight_1d; for ( i = 0; i < order_nd; i++ ) { weight_nd[i] = 1.0; } for ( dim = 0; dim < dim_num; dim++ ) { weight_1d = new double[order_1d[dim]]; gw_compute_weights[dim] ( order_1d[dim], dim, weight_1d ); webbur::r8vec_direct_product2 ( dim, order_1d[dim], weight_1d, dim_num, order_nd, weight_nd ); delete [] weight_1d; } return; } //****************************************************************************80 int sandia_sgmga_size ( int dim_num, double level_weight[], int level_max, void ( *gw_compute_points[] ) ( int order, int dim, double x[] ), double tol, int growth, int ( *gw_compute_order[] ) ( int level, int growth ) ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_SIZE sizes an SANDIA_SGMGA grid, discounting duplicates. // // Discussion: // // The sparse grid is the logical sum of product grids that satisfy // a particular constraint. // // Depending on the 1D rules involved, there may be many duplicate points // in the sparse grid. // // This function counts the unique points in the sparse grid. It does this // in a straightforward way, by actually generating all the points, and // comparing them, with a tolerance for equality. // // This function has been modified to automatically omit points for which // the "combinatorial coefficient" is zero, since such points would have // a weight of zero in the grid. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2012 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, double LEVEL_WEIGHT[DIM_NUM], the anisotropic weights. // // Input, int LEVEL_MAX, the maximum value of LEVEL. // // Input, void ( *GW_COMPUTE_POINTS[] ) ( int order, int dim, double x[] ), // an array of pointers to functions which return the 1D quadrature points // associated with each spatial dimension for which a Golub Welsch rule // is used. // // Input, double TOL, a tolerance for point equality. // // Input, int GROWTH, the growth rule. // 0, slow; // 1, moderate; // 2, full. // // Input, int ( *GW_COMPUTE_ORDER[] ) ( int level, int growth ), // an array of pointers to functions which return the order of the // 1D quadrature rule of a given level and growth rule. // // Output, int SANDIA_SGMGA_SIZE, the number of unique points. // { double coef; int dim; int level; int *level_1d; int *level_1d_max; double level_weight_min_pos; bool more_grids; bool more_points; int order; int *order_1d; int point; int *point_index; int point_num; int point_total_num; int point_total_num2; double *points; double q_max; double q_min; int seed; int *sparse_total_index; int *sparse_total_order; double *sparse_total_point; // // Special cases. // if ( level_max < 0 ) { point_num = -1; return point_num; } if ( level_max == 0 ) { point_num = 1; return point_num; } // // Get total number of points, including duplicates. // point_total_num = webbur::sandia_sgmga_size_total ( dim_num, level_weight, level_max, growth, gw_compute_order ); // // Generate SPARSE_TOTAL_ORDER and SPARSE_TOTAL_INDEX arrays // for the TOTAL set of points. // sparse_total_order = new int[dim_num*point_total_num]; sparse_total_index = new int[dim_num*point_total_num]; point_total_num2 = 0; level_1d = new int[dim_num]; level_1d_max = new int[dim_num]; order_1d = new int[dim_num]; point_index = new int[dim_num]; // // Initialization for SANDIA_SGMGA_VCN_ORDERED. // level_weight_min_pos = webbur::r8vec_min_pos ( dim_num, level_weight ); q_min = ( double ) ( level_max ) * level_weight_min_pos - webbur::r8vec_sum ( dim_num, level_weight ); q_max = ( double ) ( level_max ) * level_weight_min_pos; for ( dim = 0; dim < dim_num; dim++ ) { if ( 0.0 < level_weight[dim] ) { level_1d_max[dim] = webbur::r8_floor ( q_max / level_weight[dim] ) + 1; if ( q_max <= ( level_1d_max[dim] - 1 ) * level_weight[dim] ) { level_1d_max[dim] = level_1d_max[dim] - 1; } } else { level_1d_max[dim] = 0; } } more_grids = false; // // Seek all vectors LEVEL_1D which satisfy the constraint: // // LEVEL_MAX * LEVEL_WEIGHT_MIN_POS - sum ( LEVEL_WEIGHT ) // < sum ( 0 <= I < DIM_NUM ) LEVEL_WEIGHT[I] * LEVEL_1D[I] // <= LEVEL_MAX * LEVEL_WEIGHT_MIN_POS. // for ( ; ; ) { webbur::sandia_sgmga_vcn_ordered ( dim_num, level_weight, level_1d_max, level_1d, q_min, q_max, &more_grids ); if ( !more_grids ) { break; } // // Compute the combinatorial coefficient. // coef = webbur::sandia_sgmga_vcn_coef ( dim_num, level_weight, level_1d, q_max ); if ( coef == 0.0 ) { continue; } // // Transform each 1D level to a corresponding 1D order. // for ( dim = 0; dim < dim_num; dim++ ) { order_1d[dim] = gw_compute_order[dim] ( level_1d[dim], growth ); } // // The inner loop generates a POINT of the GRID of the LEVEL. // more_points = false; for ( ; ; ) { webbur::vec_colex_next3 ( dim_num, order_1d, point_index, &more_points ); if ( !more_points ) { break; } for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_order[dim+point_total_num2*dim_num] = order_1d[dim]; } for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_index[dim+point_total_num2*dim_num] = point_index[dim]; } point_total_num2 = point_total_num2 + 1; } } delete [] level_1d; delete [] order_1d; delete [] point_index; // // Now compute the coordinates of the TOTAL set of points. // sparse_total_point = new double[dim_num*point_total_num]; for ( point = 0; point < point_total_num; point++ ) { for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_point[dim+point*dim_num] = webbur::r8_huge ( ); } } // // Compute the point coordinates. // level_1d_max = new int[dim_num]; level_weight_min_pos = webbur::r8vec_min_pos ( dim_num, level_weight ); q_max = ( double ) ( level_max ) * level_weight_min_pos; for ( dim = 0; dim < dim_num; dim++ ) { if ( 0.0 < level_weight[dim] ) { level_1d_max[dim] = webbur::r8_floor ( q_max / level_weight[dim] ) + 1; if ( q_max <= ( level_1d_max[dim] - 1 ) * level_weight[dim] ) { level_1d_max[dim] = level_1d_max[dim] - 1; } } else { level_1d_max[dim] = 0; } for ( level = 0; level <= level_1d_max[dim]; level++ ) { order = gw_compute_order[dim] ( level, growth ); points = new double[order]; gw_compute_points[dim] ( order, dim, points ); for ( point = 0; point < point_total_num; point++ ) { if ( sparse_total_order[dim+point*dim_num] == order ) { sparse_total_point[dim+point*dim_num] = points[sparse_total_index[dim+point*dim_num]-1]; } } delete [] points; } } // // Count the tolerably unique columns. // seed = 123456789; point_num = webbur::point_radial_tol_unique_count ( dim_num, point_total_num, sparse_total_point, tol, &seed ); delete [] level_1d_max; delete [] sparse_total_index; delete [] sparse_total_order; delete [] sparse_total_point; return point_num; } //****************************************************************************80 int sandia_sgmga_size_total ( int dim_num, double level_weight[], int level_max, int growth, int ( *gw_compute_order[] ) ( int level, int growth ) ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_SIZE_TOTAL sizes an SANDIA_SGMGA grid, counting duplicates. // // Discussion: // // This routine returns the total point count for an SANDIA_SGMGA // ( Sparse Grid of Mixed type with Growth rule and Anisotropic weights). // // The sparse grid is the logical sum of product grids. // // The sparse grid has an associated integer index LEVEL_MAX, whose lowest // value is 0. LEVEL_MAX = 0 indicates the sparse grid made up of one product // grid, which in turn is the product of 1D factor grids of the lowest level. // This usually means the sparse grid with LEVEL_MAX equal to 0 is a // one point grid. // // We can assign a level to each factor grid, and hence a LEVEL vector // to the corresponding product grid, and a weighted index // LEVEL_GRID (which will in general be a real number): // // LEVEL_GRID = sum ( 1 <= I <= DIM_NUM ) LEVEL_WEIGHT(I) * LEVEL(I) // // The product grid will participate in the formation of the sparse grid // if it satisfies the following weighted constraint: // // LEVEL_MAX - DIM_NUM < LEVEL_GRID <= LEVEL_MAX // // This routine determines the total number of abscissas in all the // product rules used to form the SANDIA_SGMGA associated with the index LEVEL_MAX. // The count disregards duplication. If the same multidimensional abcsissa // occurs in two different product rules that are part of the SANDIA_SGMGA, then // that single abcissa is counted twice. // // This computation is useful in cases where the entire set of abscissas // is going to be generated, preparatory to compression to finding, indexing // and merging the duplicate abcissass. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2012 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, double LEVEL_WEIGHT[DIM_NUM], the anisotropic weights. // // Input, int LEVEL_MAX, the maximum value of LEVEL. // // Input, int GROWTH, the growth rule. // 0, slow; // 1, moderate; // 2, full. // // Input, int ( *GW_COMPUTE_ORDER[] ) ( int level, int growth ), // an array of pointers to functions which return the order of the // 1D quadrature rule of a given level and growth rule. // // Output, int SANDIA_SGMGA_SIZE_TOTAL, the number of points // including repetitions. // { double coef; int dim; int *level_1d; int *level_1d_max; double level_weight_min_pos; bool more_grids; int *order_1d; int point_total_num; double q_max; double q_min; // // Special case. // if ( level_max == 0 ) { point_total_num = 1; return point_total_num; } point_total_num = 0; level_1d = new int[dim_num]; level_1d_max = new int[dim_num]; order_1d = new int[dim_num]; // // Initialization for SANDIA_SGMGA_VCN_ORDERED. // level_weight_min_pos = webbur::r8vec_min_pos ( dim_num, level_weight ); q_min = ( double ) ( level_max ) * level_weight_min_pos - webbur::r8vec_sum ( dim_num, level_weight ); q_max = ( double ) ( level_max ) * level_weight_min_pos; for ( dim = 0; dim < dim_num; dim++ ) { if ( 0.0 < level_weight[dim] ) { level_1d_max[dim] = webbur::r8_floor ( q_max / level_weight[dim] ) + 1; if ( q_max <= ( level_1d_max[dim] - 1 ) * level_weight[dim] ) { level_1d_max[dim] = level_1d_max[dim] - 1; } } else { level_1d_max[dim] = 0; } } more_grids = false; // // Seek all vectors LEVEL_1D which satisfy the constraint: // // LEVEL_MAX * LEVEL_WEIGHT_MIN_POS - sum ( LEVEL_WEIGHT ) // < sum ( 0 <= I < DIM_NUM ) LEVEL_WEIGHT[I] * LEVEL_1D[I] // <= LEVEL_MAX * LEVEL_WEIGHT_MIN_POS. // for ( ; ; ) { webbur::sandia_sgmga_vcn_ordered ( dim_num, level_weight, level_1d_max, level_1d, q_min, q_max, &more_grids ); if ( !more_grids ) { break; } // // Compute the combinatorial coefficient. // coef = webbur::sandia_sgmga_vcn_coef ( dim_num, level_weight, level_1d, q_max ); if ( coef == 0.0 ) { continue; } // // Transform each 1D level to a corresponding 1D order. // for ( dim = 0; dim < dim_num; dim++ ) { order_1d[dim] = gw_compute_order[dim] ( level_1d[dim], growth ); } point_total_num = point_total_num + webbur::i4vec_product ( dim_num, order_1d ); } delete [] level_1d; delete [] level_1d_max; delete [] order_1d; return point_total_num; } //****************************************************************************80 void sandia_sgmga_unique_index ( int dim_num, double level_weight[], int level_max, void ( *gw_compute_points[] ) ( int order, int dim, double x[] ), double tol, int point_num, int point_total_num, int growth, int ( *gw_compute_order[] ) ( int level, int growth ), int sparse_unique_index[] ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_UNIQUE_INDEX maps nonunique to unique points. // // Discussion: // // The sparse grid usually contains many points that occur in more // than one product grid. // // When generating the point locations, it is easy to realize that a point // has already been generated. // // But when it's time to compute the weights of the sparse grids, it is // necessary to handle situations in which weights corresponding to // the same point generated in multiple grids must be collected together. // // This routine generates ALL the points, including their multiplicities, // and figures out a mapping from them to the collapsed set of unique points. // // This mapping can then be used during the weight calculation so that // a contribution to the weight gets to the right place. // // The user must preallocate space for the output array SPARSE_UNIQUE_INDEX. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2012 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL_MAX, the maximum value of LEVEL. // // Input, double LEVEL_WEIGHT[DIM_NUM], the anisotropic weights. // // Input, void ( *GW_COMPUTE_POINTS[] ) ( int order, int dim, double x[] ), // an array of pointers to functions which return the 1D quadrature points // associated with each spatial dimension for which a Golub Welsch rule // is used. // // Input, double TOL, a tolerance for point equality. // // Input, int POINT_NUM, the number of unique points // in the grid. // // Input, int POINT_TOTAL_NUM, the total number of points // in the grid. // // Input, int GROWTH, the growth rule. // 0, slow; // 1, moderate; // 2, full. // // Input, int ( *GW_COMPUTE_ORDER[] ) ( int level, int growth ), // an array of pointers to functions which return the order of the // 1D quadrature rule of a given level and growth rule. // Output, int SPARSE UNIQUE_INDEX[POINT_TOTAL_NUM], lists, // for each (nonunique) point, the corresponding index of the same point in // the unique listing. // { double coef; int dim; int level; int *level_1d; int *level_1d_max; double level_weight_min_pos; bool more_grids; bool more_points; int order; int *order_1d; int point; int *point_index; int point_num2; int point_total_num2; double *points; double q_max; double q_min; int rep; int seed; int *sparse_total_index; int *sparse_total_order; double *sparse_total_point; int *undx; // // Special cases. // if ( level_max < 0 ) { return; } if ( level_max == 0 ) { sparse_unique_index[0] = 0; return; } // // Generate SPARSE_TOTAL_ORDER and SPARSE_TOTAL_INDEX arrays // for the TOTAL set of points. // sparse_total_order = new int[dim_num*point_total_num]; sparse_total_index = new int[dim_num*point_total_num]; level_1d = new int[dim_num]; level_1d_max = new int[dim_num]; order_1d = new int[dim_num]; point_index = new int[dim_num]; point_total_num2 = 0; // // Initialization for SANDIA_SGMGA_VCN_ORDERED. // level_weight_min_pos = webbur::r8vec_min_pos ( dim_num, level_weight ); q_min = ( double ) ( level_max ) * level_weight_min_pos - webbur::r8vec_sum ( dim_num, level_weight ); q_max = ( double ) ( level_max ) * level_weight_min_pos; for ( dim = 0; dim < dim_num; dim++ ) { if ( 0.0 < level_weight[dim] ) { level_1d_max[dim] = webbur::r8_floor ( q_max / level_weight[dim] ) + 1; if ( q_max <= ( level_1d_max[dim] - 1 ) * level_weight[dim] ) { level_1d_max[dim] = level_1d_max[dim] - 1; } } else { level_1d_max[dim] = 0; } } more_grids = false; // // Seek all vectors LEVEL_1D which satisfy the constraint: // // LEVEL_MAX * LEVEL_WEIGHT_MIN_POS - sum ( LEVEL_WEIGHT ) // < sum ( 0 <= I < DIM_NUM ) LEVEL_WEIGHT[I] * LEVEL_1D[I] // <= LEVEL_MAX * LEVEL_WEIGHT_MIN_POS. // for ( ; ; ) { webbur::sandia_sgmga_vcn_ordered ( dim_num, level_weight, level_1d_max, level_1d, q_min, q_max, &more_grids ); if ( !more_grids ) { break; } // // Compute the combinatorial coefficient. // coef = webbur::sandia_sgmga_vcn_coef ( dim_num, level_weight, level_1d, q_max ); if ( coef == 0.0 ) { continue; } // // Transform each 1D level to a corresponding 1D order. // for ( dim = 0; dim < dim_num; dim++ ) { order_1d[dim] = gw_compute_order[dim] ( level_1d[dim], growth ); } // // The inner loop generates a POINT of the GRID of the LEVEL. // more_points = false; for ( ; ; ) { webbur::vec_colex_next3 ( dim_num, order_1d, point_index, &more_points ); if ( !more_points ) { break; } for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_order[dim+point_total_num2*dim_num] = order_1d[dim]; } for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_index[dim+point_total_num2*dim_num] = point_index[dim]; } point_total_num2 = point_total_num2 + 1; } } delete [] level_1d; delete [] level_1d_max; delete [] order_1d; delete [] point_index; // // Now compute the coordinates of the TOTAL set of points. // sparse_total_point = new double[dim_num*point_total_num]; for ( point = 0; point < point_total_num; point++ ) { for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_point[dim+point*dim_num] = webbur::r8_huge ( ); } } // // Compute the point coordinates. // level_1d_max = new int[dim_num]; level_weight_min_pos = webbur::r8vec_min_pos ( dim_num, level_weight ); q_max = ( double ) ( level_max ) * level_weight_min_pos; for ( dim = 0; dim < dim_num; dim++ ) { if ( 0.0 < level_weight[dim] ) { level_1d_max[dim] = webbur::r8_floor ( q_max / level_weight[dim] ) + 1; if ( q_max <= ( level_1d_max[dim] - 1 ) * level_weight[dim] ) { level_1d_max[dim] = level_1d_max[dim] - 1; } } else { level_1d_max[dim] = 0; } for ( level = 0; level <= level_1d_max[dim]; level++ ) { order = gw_compute_order[dim] ( level, growth ); points = new double[order]; gw_compute_points[dim] ( order, dim, points ); for ( point = 0; point < point_total_num; point++ ) { if ( sparse_total_order[dim+point*dim_num] == order ) { sparse_total_point[dim+point*dim_num] = points[sparse_total_index[dim+point*dim_num]-1]; } } delete [] points; } } // // Merge points that are too close. // seed = 123456789; undx = new int[point_num]; point_num2 = webbur::point_radial_tol_unique_index ( dim_num, point_total_num, sparse_total_point, tol, &seed, undx, sparse_unique_index ); for ( point = 0; point < point_total_num; point++ ) { rep = undx[sparse_unique_index[point]]; if ( point != rep ) { for ( dim = 0; dim < dim_num; dim++ ) { sparse_total_point[dim+point*dim_num] = sparse_total_point[dim+rep*dim_num]; } } } // // Construct an index that indicates the "rank" of the unique points. // webbur::point_unique_index ( dim_num, point_total_num, sparse_total_point, point_num, undx, sparse_unique_index ); delete [] sparse_total_index; delete [] sparse_total_order; delete [] sparse_total_point; delete [] undx; return; } //****************************************************************************80 void sandia_sgmga_vcn ( int n, double w[], int x[], double q_min, double q_max, bool *more ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_VCN returns the next constrained vector. // // Discussion: // // This function is intended to replace the "naive" version, now called // SANDIA_SGMGA_VCN_NAIVE, which is too slow for high dimensional problems. // // For nonnegative vectors X of dimension N, and nonnegative // weights W, we define: // // Q = sum ( 1 <= I <= N ) W(I) * X(I) // // and seek X satisfying the constraint: // // Q_MIN < Q <= Q_MAX // // This routine returns, one at a time exactly those X which satisfy // the constraint. No attempt is made to return the X values in // any particular order as far as Q goes. // // Example: // // W 4.0 3.0 5.0 // MIN 16.0 0 0 0 // --- ---- ----------- // 1 20.0 5 0 0 // 2 19.0 4 1 0 // 3 18.0 3 2 0 // 4 17.0 2 3 0 // 5 20.0 2 4 0 // 6 19.0 1 5 0 // 7 18.0 0 6 0 // 8 17.0 3 0 1 // 9 20.0 3 1 1 // 10 19.0 2 2 1 // 11 18.0 1 3 1 // 12 17.0 0 4 1 // 13 20.0 0 5 1 // 14 18.0 2 0 2 // 15 17.0 1 1 2 // 16 20.0 1 2 2 // 17 19.0 0 3 2 // 18 19.0 1 0 3 // 19 18.0 0 1 3 // 20 20.0 0 0 4 // --- ---- ---------- // MAX 20.0 6 7 5 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 May 2010 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int N, the dimension of the vector. // // Input, double W[N], the weights, which should be nonnegative. // At least one weight must be positive. // // Input/output, int X[N]. On first call, with // MORE = FALSE, the input value of X is not important. On subsequent calls, // the input value of X should be the output value from the previous call. // On output, (with MORE = TRUE), the value of X will be the "next" // vector in the reverse lexicographical list of vectors that satisfy // the condition. However, on output with MORE = FALSE, the vector // X is meaningless, because there are no more vectors in the list. // // Input, double Q_MIN, Q_MAX, the lower and upper limits on the sum. // // Input/output, bool *MORE. On input, if the user has set MORE // FALSE, the user is requesting the initiation of a new sequence // of values. If MORE is TRUE, then the user is requesting "more" // values in the current sequence. On output, if MORE is TRUE, // then another value was found and returned in X, but if MORE is // FALSE, then there are no more values in the sequence, and X is // NOT the next value. // { static int dir; int i; static int n2; static int nstart; double t; static int *xmax; static int xmin; // // Initialization for first call. // // Allocate XMAX to remember the currently maximum possible value for each X. // // Locate NSTART, the index of the first nonzero weight. // The algorithm is easier to program if the last index we look at // has a nonzero weight, so that it can always make up the remainder. // if ( !(*more) ) { xmax = new int[n]; nstart = - 1; for ( i = 0; i < n; i++ ) { if ( 0.0 < w[i] ) { nstart = i; break; } } // // Theoretically, we could even handle the case where all weights are zero. // That case is ruled out elsewhere in this software, so I will not try // to deal with it here for now. // if ( nstart == - 1 ) { std::cerr << "\n"; std::cerr << " SANDIA_SGMGA_VCN - Fatal error!\n"; std::cerr << " No weight is positive.\n"; std::exit ( 1 ); } // // Initialize X to zero, even the indices we ignore. // for ( i = 0; i < n; i++ ) { x[i] = 0; } // // N2 points to our current index of interest. // n2 = n; dir = - 1; *more = true; } // // Look for the next solution vector X. // for ( ; ; ) { // // If no more, the search is terminated. // if ( !(*more) ) { break; } // // DIR = -1, decrement N2, and, if possible, set X[N2] to XMIN. // DIR = 0, hold N2 at current value, and see if we can increment X[N2]. // else if ( dir == - 1 || dir == 0 ) { if ( dir == - 1 ) { n2 = n2 - 1; } if ( w[n2] == 0.0 ) { xmin = 0; xmax[n2] = 0; } else if ( nstart < n2 ) { xmin = 0; t = q_max; for ( i = n2 + 1; i < n; i++ ) { t = t - w[i] * ( double ) x[i]; } xmax[n2] = webbur::r8_floor ( t / w[n2] ); } else if ( n2 == nstart && dir == - 1 ) { t = q_min; for ( i = n2 + 1; i < n; i++ ) { t = t - w[i] * ( double ) x[i]; } xmin = webbur::r8_ceiling ( t / w[n2] ); if ( xmin < 0 ) { xmin = 0; } t = 0.0; for ( i = 0; i < n2; i++ ) { t = t + w[i] * ( double ) x[i]; } t = t + w[n2] * xmin; for ( i = n2 + 1; i < n; i++ ) { t = t + w[i] * ( double ) x[i]; } if ( t <= q_min ) { xmin = xmin + 1; } x[n2] = xmin; t = q_max; for ( i = n2 + 1; i < n; i++ ) { t = t - w[i] * ( double ) x[i]; } xmax[n2] = webbur::r8_floor ( t / w[n2] ); } if ( xmax[n2] < xmin ) { dir = + 1; } else { if ( n2 == nstart ) { if ( dir == - 1 ) { dir = 0; break; } else if ( dir == 0 ) { x[n2] = x[n2] + 1; if ( x[n2] <= xmax[n2] ) { break; } else { dir = + 1; } } } else { x[n2] = xmin; } } } // // DIR = + 1: // Try moving backwards to find an index N2 whose X we can increment. // else if ( dir == + 1 ) { for ( ; ; ) { if ( n2 == n - 1 ) { dir = 0; *more = false; delete [] xmax; break; } n2 = n2 + 1; if ( 0.0 < w[n2] ) { if ( x[n2] < xmax[n2] ) { x[n2] = x[n2] + 1; dir = - 1; break; } } } } } return; } //****************************************************************************80 double sandia_sgmga_vcn_coef ( int dim_num, double level_weight[], int x[], double q_max ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_VCN_COEF returns the "next" constrained vector's coefficient. // // Discussion: // // The related code "SANDIA_SGMGA_VCN_COEF_NAIVE" represents a "naive" // approach to this calculation. This code carries out the same calculation, but tries // to avoid the potential explosion in work that is exponential in the // spatial dimension for the naive approach. // // We are considering integer vectors X of dimension DIM_NUM for which // the functional // // Q(X) = sum ( 1 <= I <= DIM_NUM ) LEVEL_WEIGHT(I) * X(I) // // satisfies the "Q" constraint: // // Q_MIN < Q(X) <= Q_MAX // // where LEVEL_WEIGHT is a vector of (essentially) positive weights. // Some, but not all of the entries of LEVEL_WEIGHT might be zero; // in that case, the corresponding values of X never vary, and do not // play a part in the following computation. // // Supposing we have a suitable vector X, we now wish to count the // number of distinct vectors Y which also satisfy the Q constraint // as well as the following "binary" constraint: // // Y(I) = X(I) + B(I) // // where every entry of B is 0 or 1. // // Clearly, there are 2^DIM_NUM vectors Y which satisfy the binary // constraint, and a naive calculation would simply generate each // possible Y, evaluate Q(Y), and if Y satisfies the Q constraint, // add it to the count. // // But if we are considering even moderately large values of DIM_NUM, // say 20 <= DIM_NUM, then the mere task of generating all possible // Y vectors is burdensome. If there are in fact likely to be only // a few satisfactory Y vectors, (which depends on the values of // Q_MAX and LEVEL_WEIGHT, of course) then it may be possible to // find and count them more rapidly. // // This function attempts a more rapid computation by carrying out the // search in a particular order, and realizing that, in certain cases, // if a particular value Y* does not satisfy the Q constraint, then // a consecutive sequence of Y's following Y* also cannot satisfy the // constraint, and hence the search can jump over them. // // Example: // // DIM_NUM = 3 // LEVEL_WEIGHT 3.0 2.0 1.0 // Q_MAX 6.0 // // U = unsigned count // S = signed count returned as COEF // // # U S X1 X2 X3 // // 1 8 0 0 0 0 // 2 7 1 0 0 1 // 3 6 0 0 0 2 // 4 5 -1 0 0 3 // 5 3 -1 0 0 4 // 6 2 0 0 0 5 // 7 1 1 0 0 6 // 8 6 0 0 1 0 // 9 5 -1 0 1 1 // 10 3 -1 0 1 2 // 11 2 0 0 1 3 // 12 1 1 0 1 4 // 13 3 -1 0 2 0 // 14 2 0 0 2 1 // 15 1 1 0 2 2 // 16 1 1 0 3 0 // 17 5 -1 1 0 0 // 18 3 -1 1 0 1 // 19 2 0 1 0 2 // 20 1 1 1 0 3 // 21 2 0 1 1 0 // 22 1 1 1 1 1 // 23 1 1 2 0 0 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 May 2010 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, double LEVEL_WEIGHT[DIM_NUM], the weights. // // Input, int X[DIM_NUM], satisfies the Q constraint. // // Input, double Q_MAX, the Q constraint maximum. // // Output, double SANDIA_SGMGA_VCN_COEF, the combinatorial coefficient. // { int *b; int b_sum; int c; double coef; int i; int j; double q; c = 0; b = new int[dim_num]; for ( i = 0; i < dim_num; i++ ) { b[i] = 0; } for ( ; ; ) { // // Generate the next binary perturbation. // i = - 1; while ( i < dim_num - 1 ) { i = i + 1; // // If LEVEL_WEIGHT(I) == 0, B(I) is fixed at 0. Next I. // if ( level_weight[i] == 0.0 ) { } // // If B(I) is 1, set it to 0. Next I. // else if ( b[i] == 1 ) { b[i] = 0; } // // B(I) is 0. Convert it to 1. // else { b[i] = 1; for ( ; ; ) { // // Does X + B satisfy the Q_MAX constraint? // q = 0.0; for ( j = 0; j < dim_num; j++ ) { q = q + level_weight[j] * ( double ) ( x[j] + b[j] ); } if ( q <= q_max ) { break; } // // If Q(X+B) now exceeds QMAX, B is rejected. But we can also skip // all perturbations which agree with B through the I-th position. // To skip to the next "interesting" candidate, we essentially carry // out binary addition between B and a vector B' which has a single 1 // in the I-th position. // b[i] = 0; while ( i < dim_num - 1 ) { i = i + 1; if ( level_weight[i] == 0.0 ) { } else if ( b[i] == 1 ) { b[i] = 0; } else { b[i] = 1; break; } } } break; } } b_sum = 0; for ( j = 0; j < dim_num; j++ ) { b_sum = b_sum + b[j]; } // // X+B is another solution to be counted. // c = c + 1 - 2 * ( b_sum % 2 ); // // We're done if we've got back to 0. // if ( b_sum == 0 ) { break; } } coef = ( double ) ( c ); delete [] b; return coef; } //****************************************************************************80 double sandia_sgmga_vcn_coef_naive ( int dim_num, double level_weight[], int x_max[], int x[], double q_min, double q_max ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_VCN_COEF_NAIVE: "next" constrained vector's coefficient. // // Discussion: // // This function uses a naive approach to the computation, resulting in // a set of 2^DIM_NUM tasks. Hence it is not suitable for cases where // DIM_NUM is moderately large. The function SANDIA_SGMGA_VCN_COEF carries out // a more complicated but more efficient algorithm for the same computation. // // We are given a vector X of dimension DIM_NUM which satisfies: // the following constraint: // // sum ( 1 <= I <= DIM_NUM ) LEVEL_WEIGHT(I) * X(I) <= Q_MAX // // This routine computes the appropriate coefficient for X in the // anisotropic sparse grid scheme. // // The coefficient is calculated as follows: // // Let B be a binary vector of length DIM_NUM, and let ||B|| represent // the sum of the entries of B. // // Coef = sum ( all B such that X+B satisfies constraints ) (-1)^||B|| // // Since X+0 satisfies the constraint, there is always at least one // summand. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 May 2010 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int DIM_NUM, the number of components in the vector. // // Input, double LEVEL_WEIGHT[DIM_NUM], the anisotropic weights. // // Input, int X_MAX[DIM_NUM], the maximum values allowed in each component. // // Input, int X[DIM_NUM], a point which satisifies the constraints. // // Input, double Q_MIN, Q_MAX, the lower and upper limits on the sum. // // Output, double SANDIA_SGMGA_VCN_COEF_NAIVE, the combinatorial coefficient. // { int *b; int b_sum; double coef; int i; double q; bool too_big; b = new int[dim_num]; for ( i = 0; i < dim_num; i++ ) { b[i] = 0; } coef = 1.0; for ( ; ; ) { // // Generate the next binary perturbation. // webbur::binary_vector_next ( dim_num, b ); b_sum = webbur::i4vec_sum ( dim_num, b ); // // We're done if we've got back to 0. // if ( b_sum == 0 ) { break; } // // Does it satisfy the XMAX constraint? // (THIS CHECK IS SURPRISINGLY NECESSARY, PARTLY BECAUSE OF ZERO WEIGHT). // too_big = false; for ( i = 0; i < dim_num; i++ ) { if ( x_max[i] < x[i] + b[i] ) { too_big = true; break; } } if ( too_big ) { continue; } // // Does it satisfy the Q_MAX constraint? // q = 0.0; for ( i = 0; i < dim_num; i++ ) { q = q + level_weight[i] * ( double ) ( x[i] + b[i] ); } if ( q <= q_max ) { coef = coef + webbur::r8_mop ( b_sum ); } } delete [] b; return coef; } //****************************************************************************80 void sandia_sgmga_vcn_naive ( int dim_num, double level_weight[], int x_max[], int x[], double q_min, double q_max, bool *more ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_VCN_NAIVE returns the next constrained vector. // // Discussion: // // This function uses a naive algorithm, which quickly becomes unsuitable // for higher dimensions. The function SANDIA_SGMGA_VCN is an attempt at // a more efficient calculation of the same quantities. // // We consider vectors X of dimension DIM_NUM satisfying: // // 0 <= X(1:DIM_NUM) <= X_MAX(1:DIM_NUM). // // and define // // Q = sum ( 1 <= I <= DIM_NUM ) LEVEL_WEIGHT(I) * X(I) // // and seek X satisfying the constraint: // // Q_MIN < Q <= Q_MAX // // For sparse grid applications, we compute // // LEVEL_WEIGHT_MIN_POS = minimum positive entry in LEVEL_WEIGHT // // and assume there is an underlying LEVEL used to index the sets of // constrained vectors, and that // // Q_MAX = LEVEL * LEVEL_WEIGHT_MIN_POS // Q_MIN = LEVEL - LEVEL_WEIGHT_MIN_POS * sum ( LEVEL_WEIGHT(:) ) // X_MAX(I) = LEVEL * LEVEL_WEIGHT_MIN_POS / LEVEL_WEIGHT(I) // // This routine returns, one at a time exactly those X which satisfy // the constraint. No attempt is made to return the X values in // any particular order as far as Q goes. // // Example: // // LEVEL_WEIGHT: 1.000000 1.000000 // // Q_MIN: 0.000000 // Q_MAX: 2.000000 // X_MAX: 2 2 // // 1 1.000000 1 0 // 2 2.000000 2 0 // 3 1.000000 0 1 // 4 2.000000 1 1 // 5 2.000000 0 2 // // LEVEL_WEIGHT: 1.000000 2.000000 // // Q_MIN: -1.000000 // Q_MAX: 2.000000 // X_MAX: 2 1 // // 1 0.000000 0 0 // 2 1.000000 1 0 // 3 2.000000 2 0 // 4 2.000000 0 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 October 2009 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int DIM_NUM, the number of components in the vector. // // Input, double LEVEL_WEIGHT[DIM_NUM], the anisotropic weights. // // Input, int X_MAX[DIM_NUM], the maximum values allowed in each component. // // Input/output, int X[DIM_NUM]. On first call (with MORE = FALSE), // the input value of X is not important. On subsequent calls, the // input value of X should be the output value from the previous call. // On output, (with MORE = TRUE), the value of X will be the "next" // vector in the reverse lexicographical list of vectors that satisfy // the condition. However, on output with MORE = FALSE, the vector // X is meaningless, because there are no more vectors in the list. // // Input, double Q_MIN, Q_MAX, the lower and upper // limits on the sum. // // Input/output, bool *MORE. On input, if the user has set MORE // FALSE, the user is requesting the initiation of a new sequence // of values. If MORE is TRUE, then the user is requesting "more" // values in the current sequence. On output, if MORE is TRUE, // then another value was found and returned in X, but if MORE is // FALSE, then there are no more values in the sequence, and X is // NOT the next value. // { int i; int j; double q; if ( ! ( *more ) ) { *more = true; for ( i = 0; i < dim_num; i++ ) { x[i] = 0; } q = 0.0; for ( i = 0; i < dim_num; i++ ) { q = q + level_weight[i] * ( double ) ( x[i] ); } if ( q_min < q && q <= q_max ) { return; } } for ( ; ; ) { j = 0; for ( ; ; ) { if ( x[j] < x_max[j] ) { break; } if ( dim_num - 1 <= j ) { *more = false; return; } j = j + 1; } x[j] = x[j] + 1; for ( i = 0; i < j; i++ ) { x[i] = 0; } q = 0.0; for ( i = 0; i < dim_num; i++ ) { q = q + level_weight[i] * ( double ) ( x[i] ); } if ( q_min < q && q <= q_max ) { break; } } return; } //****************************************************************************80 void sandia_sgmga_vcn_ordered ( int dim_num, double level_weight[], int x_max[], int x[], double q_min, double q_max, bool *more ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_VCN_ORDERED returns the "next" constrained vector, with ordering. // // Discussion: // // We consider vectors X of dimension DIM_NUM satisfying: // // 0 <= X(1:DIM_NUM) <= X_MAX(1:DIM_NUM). // // and define // // Q = sum ( 1 <= I <= DIM_NUM ) LEVEL_WEIGHT(I) * X(I) // // and seek X's satisfying the constraint: // // Q_MIN < Q <= Q_MAX // // For sparse grid applications, we compute // // LEVEL_WEIGHT_MIN_POS = minimum positive entry in LEVEL_WEIGHT // // and assume there is an underlying LEVEL used to index the sets of // constrained vectors, and that // // Q_MAX = LEVEL * LEVEL_WEIGHT_MIN_POS // Q_MIN = LEVEL - LEVEL_WEIGHT_MIN_POS * sum ( LEVEL_WEIGHT(:) ) // X_MAX(I) = LEVEL * LEVEL_WEIGHT_MIN_POS / LEVEL_WEIGHT(I) // // This function returns, one at a time exactly those X which satisfy // the constraint. // // A weak ordering is imposed on the solution vectors. This function // subdivides the range Q_MIN through Q_MAX into subintervals of width 1, so // that the X vectors returned are roughly sorted (or at least binned) // by Q value. // // Example: // // If the weights are also integral, then the X vectors are in fact SORTED // by Q value: // // LEVEL_WEIGHT: 1.000000 1.000000 // Q_MIN: 0.000000 // Q_MAX: 2.000000 // X_MAX: 2 2 // // 1 1.000000 1 0 // 2 1.000000 0 1 // 3 2.000000 2 0 // 4 2.000000 1 1 // 5 2.000000 0 2 // // When the weights are not integral, then the X values are only BINNED // by Q value, that is, we first get all X's with Q values between Q_MIN // and Q_MIN+1, then Q_MIN+1 to Q_MIN+2 and so on, as demonstrated here: // // LEVEL_WEIGHT: 1.5 1 // Q_MIN: 0.5 // Q_MAX: 3 // X_MAX: 2 3 // // 1 1.5 1 0 // 2 1 0 1 // 3 2.5 1 1 // 4 2 0 2 // 5 3 2 0 // 6 3 0 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 October 2009 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int DIM_NUM, the number of components in the vector. // // Input, double LEVEL_WEIGHT[DIM_NUM], the anisotropic weights. // // Input, int X_MAX[DIM_NUM], the maximum values allowed in each component. // // Input/output, int X[DIM_NUM]. On first call (with MORE = FALSE), // the input value of X is not important. On subsequent calls, the // input value of X should be the output value from the previous call. // On output, (with MORE = TRUE), the value of X will be the "next" // vector in the reverse lexicographical list of vectors that satisfy // the condition. However, on output with MORE = FALSE, the vector // X is meaningless, because there are no more vectors in the list. // // Input, double Q_MIN, Q_MAX, the lower and upper // limits on the sum. // // Input/output, bool *MORE. On input, if the user has set MORE // FALSE, the user is requesting the initiation of a new sequence // of values. If MORE is TRUE, then the user is requesting "more" // values in the current sequence. On output, if MORE is TRUE, // then another value was found and returned in X, but if MORE is // FALSE, then there are no more values in the sequence, and X is // NOT the next value. // { double q; static double q_max2; static double q_min2; // // On first call, initialize the subrange. // if ( !(*more) ) { q_min2 = q_min; q_max2 = webbur::r8_min ( q_min + 1.0, q_max ); } // // Call a lower level function to search the subrange. // for ( ; ; ) { webbur::sandia_sgmga_vcn ( dim_num, level_weight, x, q_min2, q_max2, more ); // // If another solution was found, return it. // if ( *more ) { return; } // // If the current subrange is exhausted, try to move to the next one. // if ( q_max2 < q_max ) { q_min2 = q_max2; q_max2 = webbur::r8_min ( q_max2 + 1.0, q_max ); } // // If there are no more subranges, we're done. // else { break; } } return; } //****************************************************************************80 void sandia_sgmga_vcn_ordered_naive ( int dim_num, double level_weight[], int x_max[], int x[], double q_min, double q_max, bool *more ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_VCN_ORDERED_NAIVE returns the "next" constrained vector, with ordering. // // Discussion: // // We consider vectors X of dimension DIM_NUM satisfying: // // 0 <= X(1:DIM_NUM) <= X_MAX(1:DIM_NUM). // // and define // // Q = sum ( 1 <= I <= DIM_NUM ) LEVEL_WEIGHT(I) * X(I) // // and seek X's satisfying the constraint: // // Q_MIN < Q <= Q_MAX // // For sparse grid applications, we compute // // LEVEL_WEIGHT_MIN_POS = minimum positive entry in LEVEL_WEIGHT // // and assume there is an underlying LEVEL used to index the sets of // constrained vectors, and that // // Q_MAX = LEVEL * LEVEL_WEIGHT_MIN_POS // Q_MIN = LEVEL - LEVEL_WEIGHT_MIN_POS * sum ( LEVEL_WEIGHT(:) ) // X_MAX(I) = LEVEL * LEVEL_WEIGHT_MIN_POS / LEVEL_WEIGHT(I) // // This function returns, one at a time exactly those X which satisfy // the constraint. // // A weak ordering is imposed on the solution vectors. This function // subdivides the range Q_MIN through Q_MAX into subintervals of width 1, so // that the X vectors returned are roughly sorted (or at least binned) // by Q value. // // Example: // // If the weights are also integral, then the X vectors are in fact SORTED // by Q value: // // LEVEL_WEIGHT: 1.000000 1.000000 // Q_MIN: 0.000000 // Q_MAX: 2.000000 // X_MAX: 2 2 // // 1 1.000000 1 0 // 2 1.000000 0 1 // 3 2.000000 2 0 // 4 2.000000 1 1 // 5 2.000000 0 2 // // When the weights are not integral, then the X values are only BINNED // by Q value, that is, we first get all X's with Q values between Q_MIN // and Q_MIN+1, then Q_MIN+1 to Q_MIN+2 and so on, as demonstrated here: // // LEVEL_WEIGHT: 1.5 1 // Q_MIN: 0.5 // Q_MAX: 3 // X_MAX: 2 3 // // 1 1.5 1 0 // 2 1 0 1 // 3 2.5 1 1 // 4 2 0 2 // 5 3 2 0 // 6 3 0 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 October 2009 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int DIM_NUM, the number of components in the vector. // // Input, double LEVEL_WEIGHT[DIM_NUM], the anisotropic weights. // // Input, int X_MAX[DIM_NUM], the maximum values allowed in each component. // // Input/output, int X[DIM_NUM]. On first call (with MORE = FALSE), // the input value of X is not important. On subsequent calls, the // input value of X should be the output value from the previous call. // On output, (with MORE = TRUE), the value of X will be the "next" // vector in the reverse lexicographical list of vectors that satisfy // the condition. However, on output with MORE = FALSE, the vector // X is meaningless, because there are no more vectors in the list. // // Input, double Q_MIN, Q_MAX, the lower and upper // limits on the sum. // // Input/output, bool *MORE. On input, if the user has set MORE // FALSE, the user is requesting the initiation of a new sequence // of values. If MORE is TRUE, then the user is requesting "more" // values in the current sequence. On output, if MORE is TRUE, // then another value was found and returned in X, but if MORE is // FALSE, then there are no more values in the sequence, and X is // NOT the next value. // { double q; static double q_max2; static double q_min2; // // On first call, initialize the subrange. // if ( !(*more) ) { q_min2 = q_min; q_max2 = webbur::r8_min ( q_min + 1.0, q_max ); } // // Call a lower level function to search the subrange. // for ( ; ; ) { webbur::sandia_sgmga_vcn_naive ( dim_num, level_weight, x_max, x, q_min2, q_max2, more ); // // If another solution was found, return it. // if ( *more ) { return; } // // If the current subrange is exhausted, try to move to the next one. // if ( q_max2 < q_max ) { q_min2 = q_max2; q_max2 = webbur::r8_min ( q_max2 + 1.0, q_max ); } // // If there are no more subranges, we're done. // else { break; } } return; } //****************************************************************************80 void sandia_sgmga_weight ( int dim_num, double level_weight[], int level_max, void ( *gw_compute_weights[] ) ( int order, int dim, double w[] ), int point_num, int point_total_num, int sparse_unique_index[], int growth, int ( *gw_compute_order[] ) ( int level, int growth ), double sparse_weight[] ) //****************************************************************************80 // // Purpose: // // SANDIA_SGMGA_WEIGHT computes weights for an SANDIA_SGMGA grid. // // Discussion: // // The user must preallocate space for the output array SPARSE_WEIGHT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2012 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Fabio Nobile, Raul Tempone, Clayton Webster, // An Anisotropic Sparse Grid Stochastic Collocation Method for Partial // Differential Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2411-2442. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, double LEVEL_WEIGHT[DIM_NUM], the anisotropic weights. // // Input, int LEVEL_MAX, the maximum value of LEVEL. // // Input, void ( *GW_COMPUTE_WEIGHTS[] ) ( int order, int dim, double w[] ), // an array of pointers to functions which return the 1D quadrature weights // associated with each spatial dimension for which a Golub Welsch rule // is used. // // Input, int POINT_NUM, the number of unique points // in the grid. // // Input, int POINT_TOTAL_NUM, the total number of points // in the grid. // // Input, int SPARSE UNIQUE_INDEX[POINT_TOTAL_NUM], lists, // for each (nonunique) point, the corresponding index of the same point in // the unique listing. // // Input, int GROWTH, the growth rule. // 0, slow; // 1, moderate; // 2, full. // // Input, int ( *GW_COMPUTE_ORDER[] ) ( int level, int growth ), // an array of pointers to functions which return the order of the // 1D quadrature rule of a given level and growth rule. // // Output, double SPARSE_WEIGHT[POINT_NUM], the weights // associated with the sparse grid points. // { double coef; int dim; double *grid_weight; int level; int *level_1d; int *level_1d_max; double level_weight_min_pos; bool more_grids; int order; int *order_1d; int order_nd; int point; int point_total; int point_unique; double q_max; double q_min; for ( point = 0; point < point_num; point++ ) { sparse_weight[point] = 0.0; } point_total = 0; level_1d = new int[dim_num]; order_1d = new int[dim_num]; level_1d_max = new int[dim_num]; // // Initialization for SANDIA_SGMGA_VCN_ORDERED. // level_weight_min_pos = webbur::r8vec_min_pos ( dim_num, level_weight ); q_min = ( double ) ( level_max ) * level_weight_min_pos - webbur::r8vec_sum ( dim_num, level_weight ); q_max = ( double ) ( level_max ) * level_weight_min_pos; for ( dim = 0; dim < dim_num; dim++ ) { if ( 0.0 < level_weight[dim] ) { level_1d_max[dim] = webbur::r8_floor ( q_max / level_weight[dim] ) + 1; if ( q_max <= ( level_1d_max[dim] - 1 ) * level_weight[dim] ) { level_1d_max[dim] = level_1d_max[dim] - 1; } } else { level_1d_max[dim] = 0; } } more_grids = false; // // Seek all vectors LEVEL_1D which satisfy the constraint: // // LEVEL_MAX * LEVEL_WEIGHT_MIN_POS - sum ( LEVEL_WEIGHT ) // < sum ( 0 <= I < DIM_NUM ) LEVEL_WEIGHT[I] * LEVEL_1D[I] // <= LEVEL_MAX * LEVEL_WEIGHT_MIN_POS. // for ( ; ; ) { webbur::sandia_sgmga_vcn_ordered ( dim_num, level_weight, level_1d_max, level_1d, q_min, q_max, &more_grids ); if ( !more_grids ) { break; } // // Compute the combinatorial coefficient. // coef = webbur::sandia_sgmga_vcn_coef ( dim_num, level_weight, level_1d, q_max ); if ( coef == 0.0 ) { continue; } // // Transform each 1D level to a corresponding 1D order. // for ( dim = 0; dim < dim_num; dim++ ) { order_1d[dim] = gw_compute_order[dim] ( level_1d[dim], growth ); } // // The product of the 1D orders gives us the number of points in this grid. // order_nd = webbur::i4vec_product ( dim_num, order_1d ); // // Compute the weights for this grid. // // The correct transfer of data from the product grid to the sparse grid // depends on the fact that the product rule weights are stored under colex // order of the points, and this is the same ordering implicitly used in // generating the SPARSE_UNIQUE_INDEX array. // grid_weight = new double[order_nd]; webbur::sandia_sgmga_product_weight ( dim_num, order_1d, order_nd, gw_compute_weights, grid_weight ); // // Add these weights to the rule. // for ( order = 0; order < order_nd; order++ ) { point_unique = sparse_unique_index[point_total]; point_total = point_total + 1; sparse_weight[point_unique] = sparse_weight[point_unique] + coef * grid_weight[order]; } delete [] grid_weight; } delete [] level_1d; delete [] level_1d_max; delete [] order_1d; return; } // // This final curly bracket closes the namespace. // }