# include # include # include # include # include # include using namespace std; # include "simplex_coordinates.hpp" //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = + x; } else { value = - x; } return value; } //****************************************************************************80 double r8_factorial ( int n ) //****************************************************************************80 // // Purpose: // // R8_FACTORIAL computes the factorial of N. // // Discussion: // // factorial ( N ) = product ( 1 <= I <= N ) I // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 January 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the factorial function. // If N is less than 1, the function value is returned as 1. // // Output, double R8_FACTORIAL, the factorial of N. // { int i; double value; value = 1.0; for ( i = 1; i <= n; i++ ) { value = value * ( double ) ( i ); } return value; } //****************************************************************************80 double r8mat_det ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_DET computes the determinant of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 October 2005 // // Author: // // Original FORTRAN77 version by Helmut Spaeth // C++ version by John Burkardt // // Reference: // // Helmut Spaeth, // Cluster Analysis Algorithms // for Data Reduction and Classification of Objects, // Ellis Horwood, 1980, page 125-127. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N*N], the matrix whose determinant is desired. // // Output, double R8MAT_DET, the determinant of the matrix. // { double *b; double det; int i; int j; int k; int kk; int m; double temp; b = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { b[i+j*n] = a[i+j*n]; } } det = 1.0; for ( k = 1; k <= n; k++ ) { m = k; for ( kk = k+1; kk <= n; kk++ ) { if ( r8_abs ( b[m-1+(k-1)*n] ) < r8_abs ( b[kk-1+(k-1)*n] ) ) { m = kk; } } if ( m != k ) { det = -det; temp = b[m-1+(k-1)*n]; b[m-1+(k-1)*n] = b[k-1+(k-1)*n]; b[k-1+(k-1)*n] = temp; } det = det * b[k-1+(k-1)*n]; if ( b[k-1+(k-1)*n] != 0.0 ) { for ( i = k+1; i <= n; i++ ) { b[i-1+(k-1)*n] = -b[i-1+(k-1)*n] / b[k-1+(k-1)*n]; } for ( j = k+1; j <= n; j++ ) { if ( m != k ) { temp = b[m-1+(j-1)*n]; b[m-1+(j-1)*n] = b[k-1+(j-1)*n]; b[k-1+(j-1)*n] = temp; } for ( i = k+1; i <= n; i++ ) { b[i-1+(j-1)*n] = b[i-1+(j-1)*n] + b[i-1+(k-1)*n] * b[k-1+(j-1)*n]; } } } } delete [] b; return det; } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, string TITLE, a title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i - 1 << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j - 1 << ":"; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8mat_zero_new ( int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_ZERO_NEW returns a new zeroed R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Output, double R8MAT_ZERO[M*N], the new zeroed matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } return a; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double r8vec_norm ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM returns the L2 norm of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // The vector L2 norm is defined as: // // R8VEC_NORM = sqrt ( sum ( 1 <= I <= N ) A(I)**2 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 March 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in A. // // Input, double A[N], the vector whose L2 norm is desired. // // Output, double R8VEC_NORM, the L2 norm of A. // { int i; double v; v = 0.0; for ( i = 0; i < n; i++ ) { v = v + a[i] * a[i]; } v = sqrt ( v ); return v; } //****************************************************************************80 double r8vec_sum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SUM returns the sum of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_SUM, the sum of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i]; } return value; } //****************************************************************************80 double *simplex_coordinates1 ( int n ) //****************************************************************************80 // // Purpose: // // SIMPLEX_COORDINATES1 computes the Cartesian coordinates of simplex vertices. // // Discussion: // // The simplex will have its centroid at 0; // // The sum of the vertices will be zero. // // The distance of each vertex from the origin will be 1. // // The length of each edge will be constant. // // The dot product of the vectors defining any two vertices will be - 1 / N. // This also means the angle subtended by the vectors from the origin // to any two distinct vertices will be arccos ( - 1 / N ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Output, double SIMPLEX_COORDINATES1[N*(N+1)], the coordinates of the vertices // of a simplex in N dimensions. // { int i; int ii; int j; double s; double *x; x = r8mat_zero_new ( n, n + 1 ); for ( i = 0; i < n; i++ ) { // // Set X(I,I) so that sum ( X(1:I,I)**2 ) = 1. // s = 0.0; for ( ii = 0; ii < i; ii++ ) { s = s + x[ii+i*n] * x[ii+i*n]; } x[i+i*n] = sqrt ( 1.0 - s ); // // Set X(I,J) for J = I+1 to N+1 by using the fact that XI dot XJ = - 1 / N // for ( j = i + 1; j < n + 1; j++ ) { s = 0.0; for ( ii = 0; ii < i; ii++ ) { s = s + x[ii+i*n] * x[ii+j*n]; } x[i+j*n] = ( - 1.0 / ( double ) ( n ) - s ) / x[i+i*n]; } } return x; } //****************************************************************************80 double *simplex_coordinates2 ( int n ) //****************************************************************************80 // // Purpose: // // SIMPLEX_COORDINATES2 computes the Cartesian coordinates of simplex vertices. // // Discussion: // // This routine uses a simple approach to determining the coordinates of // the vertices of a regular simplex in n dimensions. // // We want the vertices of the simplex to satisfy the following conditions: // // 1) The centroid, or average of the vertices, is 0. // 2) The distance of each vertex from the centroid is 1. // By 1), this is equivalent to requiring that the sum of the squares // of the coordinates of any vertex be 1. // 3) The distance between any pair of vertices is equal (and is not zero.) // 4) The dot product of any two coordinate vectors for distinct vertices // is -1/N; equivalently, the angle subtended by two distinct vertices // from the centroid is arccos ( -1/N). // // Note that if we choose the first N vertices to be the columns of the // NxN identity matrix, we are almost there. By symmetry, the last column // must have all entries equal to some value A. Because the square of the // distance between the last column and any other column must be 2 (because // that's the distance between any pair of columns), we deduce that // (A-1)^2 + (N-1)*A^2 = 2, hence A = (1-sqrt(1+N))/N. Now compute the // centroid C of the vertices, and subtract that, to center the simplex // around the origin. Finally, compute the norm of one column, and rescale // the matrix of coordinates so each vertex has unit distance from the origin. // // This approach devised by John Burkardt, 19 September 2010. What, // I'm not the first? // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Output, double SIMPLEX_COORDINATES2[N*(N+1)], the coordinates of the vertices // of a simplex in N dimensions. // { double a; double c; int i; int j; double s; double *x; x = r8mat_zero_new ( n, n + 1 ); for ( i = 0; i < n; i++ ) { x[i+i*n] = 1.0; } a = ( 1.0 - sqrt ( 1.0 + ( double ) ( n ) ) ) / ( double ) ( n ); for ( i = 0; i < n; i++ ) { x[i+n*n] = a; } // // Now adjust coordinates so the centroid is at zero. // for ( i = 0; i < n; i++ ) { c = 0.0; for ( j = 0; j < n + 1; j++ ) { c = c + x[i+j*n]; } c = c / ( double ) ( n + 1 ); for ( j = 0; j < n + 1; j++ ) { x[i+j*n] = x[i+j*n] - c; } } // // Now scale so each column has norm 1. // s = 0.0; for ( i = 0; i < n; i++ ) { s = s + x[i+0*n] * x[i+0*n]; } s = sqrt ( s ); for ( j = 0; j < n + 1; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = x[i+j*n] / s; } } return x; } //****************************************************************************80 double simplex_volume ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // SIMPLEX_VOLUME computes the volume of a simplex. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double X[N*(N+1)], the coordinates of the vertices // of a simplex in N dimensions. // // Output, double SIMPLEX_VOLUME, the volume of the simplex. // { double *a; double det; int i; int j; double volume; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = x[i+j*n]; } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = a[i+j*n] - x[i+n*n]; } } det = r8mat_det ( n, a ); volume = r8_abs ( det ); for ( i = 1; i <= n; i++ ) { volume = volume / ( double ) ( i ); } delete [] a; return volume; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }