22 December 2011 09:49:34 AM GM_RULE_PRB C++ version Test the GM_RULE library. TEST01 SIMPLEX_UNIT_TO_GENERAL maps points in the unit simplex to a general simplex. Here we consider a simplex in 2D, a triangle. The vertices of the general triangle are: 1 1 3 1 2 5 ( XSI ETA ) ( X Y ) 0 0 1 1 1 0 3 1 0 1 2 5 0.867886 0.0254803 2.76125 1.10192 0.138259 0.210636 1.48715 1.84254 0.202708 0.329918 1.73533 2.31967 0.112803 0.689309 1.91491 3.75723 0.642508 0.198073 2.48309 1.79229 0.844955 0.014506 2.70442 1.05802 0.346508 0.63118 2.3242 3.52472 0.0242126 0.292589 1.34101 2.17036 0.372621 0.0253558 1.7706 1.10142 0.408253 0.0761431 1.89265 1.30457 TEST02 SIMPLEX_UNIT_TO_GENERAL maps points in the unit simplex to a general simplex. Here we consider a simplex in 3D, a tetrahedron. The vertices of the general tetrahedron are: 1 1 1 3 1 1 1 4 1 1 1 5 ( XSI ETA MU ) ( X Y Z ) 0 0 0 1 1 1 1 0 0 3 1 1 0 1 0 1 4 1 0 0 1 1 1 5 0.653014 0.0191719 0.0802331 2.30603 1.05752 1.32093 0.122743 0.379417 0.189469 1.24549 2.13825 1.75787 0.436322 0.0635846 0.388548 1.87264 1.19075 2.55419 0.118269 0.0364603 0.029345 1.23654 1.10938 1.11738 0.0138444 0.134129 0.301972 1.02769 1.40239 2.20789 0.0207729 0.0237097 0.286511 1.04155 1.07113 2.14604 0.288996 0.0196653 0.466915 1.57799 1.059 2.86766 0.0792463 0.536617 0.149631 1.15849 2.60985 1.59852 0.0966452 0.51108 0.0596006 1.19329 2.53324 1.2384 0.366347 0.0599075 0.203121 1.73269 1.17972 1.81248 TEST03 GM_RULE_SIZE returns POINT_NUM, the number of points associated with a Grundmann-Moeller quadrature rule for the unit simplex of dimension DIM_NUM with rule index RULE and degree of exactness DEGREE = 2*RULE+1. DIM_NUM RULE DEGREE POINT_NUM 2 0 1 1 2 1 3 4 2 2 5 10 2 3 7 20 2 4 9 35 2 5 11 56 3 0 1 1 3 1 3 5 3 2 5 15 3 3 7 35 3 4 9 70 3 5 11 126 5 0 1 1 5 1 3 7 5 2 5 28 5 3 7 84 5 4 9 210 5 5 11 462 10 0 1 1 10 1 3 12 10 2 5 78 10 3 7 364 10 4 9 1365 10 5 11 4368 TEST04 GM_RULE_SET determines the weights and abscissas of a Grundmann-Moeller quadrature rule for the DIM_NUM dimensional simplex, using a rule of in index RULE, which will have degree of exactness 2*RULE+1. Here we use DIM_NUM = 3 RULE = 2 DEGREE = 5 POINT W X Y Z 1 0.304762 0.125 0.125 0.125 2 0.304762 0.375 0.125 0.125 3 0.304762 0.625 0.125 0.125 4 0.304762 0.125 0.375 0.125 5 0.304762 0.375 0.375 0.125 6 0.304762 0.125 0.625 0.125 7 0.304762 0.125 0.125 0.375 8 0.304762 0.375 0.125 0.375 9 0.304762 0.125 0.375 0.375 10 0.304762 0.125 0.125 0.625 11 -0.578571 0.166667 0.166667 0.166667 12 -0.578571 0.5 0.166667 0.166667 13 -0.578571 0.166667 0.5 0.166667 14 -0.578571 0.166667 0.166667 0.5 15 0.266667 0.25 0.25 0.25 TEST05 GM_RULE_SET determines the weights and abscissas of a Grundmann-Moeller quadrature rule for the DIM_NUM dimensional simplex, using a rule of in index RULE, which will have degree of exactness 2*RULE+1. In this test, we compute various rules, and simply report the number of points, and the sum of weights. DIM_NUM RULE POINT_NUM WEIGHT SUM 2 0 1 1 2 1 4 0.9999999999999998 2 2 10 0.9999999999999998 2 3 20 1.000000000000001 2 4 35 0.9999999999999998 2 5 56 1.000000000000006 3 0 1 1 3 1 5 1 3 2 15 0.9999999999999993 3 3 35 1.000000000000002 3 4 70 0.9999999999999917 3 5 126 0.999999999999994 5 0 1 1 5 1 7 0.9999999999999998 5 2 28 0.9999999999999983 5 3 84 0.9999999999999918 5 4 210 0.9999999999999998 5 5 462 1.000000000000103 10 0 1 1 10 1 12 1 10 2 78 0.9999999999999898 10 3 364 0.9999999999999676 10 4 1365 0.9999999999992277 10 5 4368 1.000000000006103 TEST06 GM_RULE_SET determines the weights and abscissas of a Grundmann-Moeller quadrature rule for the DIM_NUM dimensional simplex, using a rule of in index RULE, which will have degree of exactness 2*RULE+1. In this test, we write a rule to a file. Here we use DIM_NUM = 3 RULE = 2 DEGREE = 5 Wrote rule 2 to "gm2_3d_w.txt" and "gm2_3d_x.txt TEST07 GM_RULE_SET determines the weights and abscissas of a Grundmann-Moeller quadrature rule for the DIM_NUM dimensional simplex, using a rule of in index RULE, which will have degree of exactness 2*RULE+1. In this test, look at all the monomials up to some maximum degree, choose a few low order rules and determine the quadrature error for each. Here we use DIM_NUM = 5 Rule Order Quad_Error F(X) = X1^0 * X2^0 * X3^0 * X4^0 * X5^0 0 1 0 1 7 2.220446049250313e-16 2 28 1.665334536937735e-15 3 84 8.104628079763643e-15 F(X) = X1^1 * X2^0 * X3^0 * X4^0 * X5^0 0 1 1.110223024625157e-16 1 7 3.33066907387547e-16 2 28 2.220446049250313e-16 3 84 4.440892098500626e-16 F(X) = X1^0 * X2^1 * X3^0 * X4^0 * X5^0 0 1 1.110223024625157e-16 1 7 3.33066907387547e-16 2 28 2.220446049250313e-16 3 84 8.881784197001252e-16 F(X) = X1^0 * X2^0 * X3^1 * X4^0 * X5^0 0 1 1.110223024625157e-16 1 7 3.33066907387547e-16 2 28 2.220446049250313e-16 3 84 1.554312234475219e-15 F(X) = X1^0 * X2^0 * X3^0 * X4^1 * X5^0 0 1 1.110223024625157e-16 1 7 3.33066907387547e-16 2 28 2.220446049250313e-16 3 84 1.554312234475219e-15 F(X) = X1^0 * X2^0 * X3^0 * X4^0 * X5^1 0 1 1.110223024625157e-16 1 7 3.33066907387547e-16 2 28 2.220446049250313e-16 3 84 4.440892098500626e-16 F(X) = X1^2 * X2^0 * X3^0 * X4^0 * X5^0 0 1 0.4166666666666667 1 7 2.220446049250313e-16 2 28 1.332267629550188e-15 3 84 1.110223024625157e-14 F(X) = X1^1 * X2^1 * X3^0 * X4^0 * X5^0 0 1 0.1666666666666665 1 7 1.110223024625157e-16 2 28 1.110223024625157e-16 3 84 1.765254609153999e-14 F(X) = X1^0 * X2^2 * X3^0 * X4^0 * X5^0 0 1 0.4166666666666667 1 7 2.220446049250313e-16 2 28 1.332267629550188e-15 3 84 9.880984919163893e-15 F(X) = X1^1 * X2^0 * X3^1 * X4^0 * X5^0 0 1 0.1666666666666665 1 7 1.110223024625157e-16 2 28 1.110223024625157e-16 3 84 1.69864122767649e-14 F(X) = X1^0 * X2^1 * X3^1 * X4^0 * X5^0 0 1 0.1666666666666665 1 7 1.110223024625157e-16 2 28 4.440892098500626e-16 3 84 1.576516694967722e-14 F(X) = X1^0 * X2^0 * X3^2 * X4^0 * X5^0 0 1 0.4166666666666667 1 7 2.220446049250313e-16 2 28 1.332267629550188e-15 3 84 5.773159728050814e-15 F(X) = X1^1 * X2^0 * X3^0 * X4^1 * X5^0 0 1 0.1666666666666665 1 7 1.110223024625157e-16 2 28 4.440892098500626e-16 3 84 1.465494392505207e-14 F(X) = X1^0 * X2^1 * X3^0 * X4^1 * X5^0 0 1 0.1666666666666665 1 7 1.110223024625157e-16 2 28 1.110223024625157e-16 3 84 1.265654248072678e-14 F(X) = X1^0 * X2^0 * X3^1 * X4^1 * X5^0 0 1 0.1666666666666665 1 7 1.110223024625157e-16 2 28 1.110223024625157e-16 3 84 1.221245327087672e-14 F(X) = X1^0 * X2^0 * X3^0 * X4^2 * X5^0 0 1 0.4166666666666667 1 7 2.220446049250313e-16 2 28 1.332267629550188e-15 3 84 1.332267629550188e-15 F(X) = X1^1 * X2^0 * X3^0 * X4^0 * X5^1 0 1 0.1666666666666665 1 7 1.110223024625157e-16 2 28 1.110223024625157e-16 3 84 7.66053886991358e-15 F(X) = X1^0 * X2^1 * X3^0 * X4^0 * X5^1 0 1 0.1666666666666665 1 7 1.110223024625157e-16 2 28 1.110223024625157e-16 3 84 6.328271240363392e-15 F(X) = X1^0 * X2^0 * X3^1 * X4^0 * X5^1 0 1 0.1666666666666665 1 7 1.110223024625157e-16 2 28 4.440892098500626e-16 3 84 5.773159728050814e-15 F(X) = X1^0 * X2^0 * X3^0 * X4^1 * X5^1 0 1 0.1666666666666665 1 7 1.110223024625157e-16 2 28 1.110223024625157e-15 3 84 3.996802888650564e-15 F(X) = X1^0 * X2^0 * X3^0 * X4^0 * X5^2 0 1 0.4166666666666667 1 7 1.110223024625157e-16 2 28 2.220446049250313e-16 3 84 7.327471962526033e-15 F(X) = X1^3 * X2^0 * X3^0 * X4^0 * X5^0 0 1 0.7407407407407407 1 7 2.220446049250313e-16 2 28 2.220446049250313e-15 3 84 3.552713678800501e-15 F(X) = X1^2 * X2^1 * X3^0 * X4^0 * X5^0 0 1 0.2222222222222222 1 7 4.440892098500626e-16 2 28 1.332267629550188e-15 3 84 1.720845688168993e-14 F(X) = X1^1 * X2^2 * X3^0 * X4^0 * X5^0 0 1 0.2222222222222222 1 7 4.440892098500626e-16 2 28 1.332267629550188e-15 3 84 1.665334536937735e-14 F(X) = X1^0 * X2^3 * X3^0 * X4^0 * X5^0 0 1 0.7407407407407407 1 7 2.220446049250313e-16 2 28 1.665334536937735e-15 3 84 4.218847493575595e-15 F(X) = X1^2 * X2^0 * X3^1 * X4^0 * X5^0 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 1.332267629550188e-15 3 84 1.554312234475219e-14 F(X) = X1^1 * X2^1 * X3^1 * X4^0 * X5^0 0 1 0.5555555555555556 1 7 4.440892098500626e-16 2 28 4.440892098500626e-16 3 84 4.440892098500626e-16 F(X) = X1^0 * X2^2 * X3^1 * X4^0 * X5^0 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 8.881784197001252e-16 3 84 1.321165399303936e-14 F(X) = X1^1 * X2^0 * X3^2 * X4^0 * X5^0 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 1.332267629550188e-15 3 84 1.376676550535194e-14 F(X) = X1^0 * X2^1 * X3^2 * X4^0 * X5^0 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 1.332267629550188e-15 3 84 1.376676550535194e-14 F(X) = X1^0 * X2^0 * X3^3 * X4^0 * X5^0 0 1 0.7407407407407407 1 7 0 2 28 8.881784197001252e-16 3 84 4.662936703425657e-15 F(X) = X1^2 * X2^0 * X3^0 * X4^1 * X5^0 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 1.332267629550188e-15 3 84 1.321165399303936e-14 F(X) = X1^1 * X2^1 * X3^0 * X4^1 * X5^0 0 1 0.5555555555555556 1 7 4.440892098500626e-16 2 28 8.881784197001252e-16 3 84 4.440892098500626e-16 F(X) = X1^0 * X2^2 * X3^0 * X4^1 * X5^0 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 8.881784197001252e-16 3 84 1.076916333886402e-14 F(X) = X1^1 * X2^0 * X3^1 * X4^1 * X5^0 0 1 0.5555555555555556 1 7 4.440892098500626e-16 2 28 8.881784197001252e-16 3 84 4.440892098500626e-16 F(X) = X1^0 * X2^1 * X3^1 * X4^1 * X5^0 0 1 0.5555555555555556 1 7 4.440892098500626e-16 2 28 8.881784197001252e-16 3 84 6.661338147750939e-16 F(X) = X1^0 * X2^0 * X3^2 * X4^1 * X5^0 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 2.220446049250313e-16 3 84 7.882583474838611e-15 F(X) = X1^1 * X2^0 * X3^0 * X4^2 * X5^0 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 8.881784197001252e-16 3 84 9.103828801926284e-15 F(X) = X1^0 * X2^1 * X3^0 * X4^2 * X5^0 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 1.332267629550188e-15 3 84 8.43769498715119e-15 F(X) = X1^0 * X2^0 * X3^1 * X4^2 * X5^0 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 8.881784197001252e-16 3 84 7.882583474838611e-15 F(X) = X1^0 * X2^0 * X3^0 * X4^3 * X5^0 0 1 0.7407407407407407 1 7 0 2 28 5.551115123125783e-16 3 84 4.662936703425657e-15 F(X) = X1^2 * X2^0 * X3^0 * X4^0 * X5^1 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 1.332267629550188e-15 3 84 8.881784197001252e-15 F(X) = X1^1 * X2^1 * X3^0 * X4^0 * X5^1 0 1 0.5555555555555556 1 7 4.440892098500626e-16 2 28 8.881784197001252e-16 3 84 4.440892098500626e-16 F(X) = X1^0 * X2^2 * X3^0 * X4^0 * X5^1 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 1.332267629550188e-15 3 84 5.551115123125783e-15 F(X) = X1^1 * X2^0 * X3^1 * X4^0 * X5^1 0 1 0.5555555555555556 1 7 4.440892098500626e-16 2 28 8.881784197001252e-16 3 84 2.220446049250313e-16 F(X) = X1^0 * X2^1 * X3^1 * X4^0 * X5^1 0 1 0.5555555555555556 1 7 4.440892098500626e-16 2 28 4.440892098500626e-16 3 84 2.220446049250313e-16 F(X) = X1^0 * X2^0 * X3^2 * X4^0 * X5^1 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 8.881784197001252e-16 3 84 1.554312234475219e-15 F(X) = X1^1 * X2^0 * X3^0 * X4^1 * X5^1 0 1 0.5555555555555556 1 7 4.440892098500626e-16 2 28 8.881784197001252e-16 3 84 7.771561172376096e-16 F(X) = X1^0 * X2^1 * X3^0 * X4^1 * X5^1 0 1 0.5555555555555556 1 7 4.440892098500626e-16 2 28 8.881784197001252e-16 3 84 5.551115123125783e-16 F(X) = X1^0 * X2^0 * X3^1 * X4^1 * X5^1 0 1 0.5555555555555556 1 7 4.440892098500626e-16 2 28 8.881784197001252e-16 3 84 2.220446049250313e-16 F(X) = X1^0 * X2^0 * X3^0 * X4^2 * X5^1 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 8.881784197001252e-16 3 84 3.108624468950438e-15 F(X) = X1^1 * X2^0 * X3^0 * X4^0 * X5^2 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 8.881784197001252e-16 3 84 3.33066907387547e-15 F(X) = X1^0 * X2^1 * X3^0 * X4^0 * X5^2 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 8.881784197001252e-16 3 84 4.884981308350689e-15 F(X) = X1^0 * X2^0 * X3^1 * X4^0 * X5^2 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 8.881784197001252e-16 3 84 5.551115123125783e-15 F(X) = X1^0 * X2^0 * X3^0 * X4^1 * X5^2 0 1 0.2222222222222222 1 7 2.220446049250313e-16 2 28 8.881784197001252e-16 3 84 5.551115123125783e-15 F(X) = X1^0 * X2^0 * X3^0 * X4^0 * X5^3 0 1 0.7407407407407407 1 7 0 2 28 2.220446049250313e-16 3 84 2.886579864025407e-15 F(X) = X1^4 * X2^0 * X3^0 * X4^0 * X5^0 0 1 0.9027777777777778 1 7 0.1171875000000002 2 28 2.220446049250313e-15 3 84 1.110223024625157e-14 F(X) = X1^3 * X2^1 * X3^0 * X4^0 * X5^0 0 1 0.611111111111111 1 7 0.09375 2 28 4.440892098500626e-16 3 84 5.10702591327572e-15 F(X) = X1^2 * X2^2 * X3^0 * X4^0 * X5^0 0 1 0.4166666666666667 1 7 0.2031249999999999 2 28 2.664535259100376e-15 3 84 2.220446049250313e-16 F(X) = X1^1 * X2^3 * X3^0 * X4^0 * X5^0 0 1 0.611111111111111 1 7 0.09375 2 28 4.440892098500626e-16 3 84 5.10702591327572e-15 F(X) = X1^0 * X2^4 * X3^0 * X4^0 * X5^0 0 1 0.9027777777777778 1 7 0.1171875 2 28 1.998401444325282e-15 3 84 1.043609643147647e-14 F(X) = X1^3 * X2^0 * X3^1 * X4^0 * X5^0 0 1 0.611111111111111 1 7 0.09375 2 28 1.110223024625157e-15 3 84 5.10702591327572e-15 F(X) = X1^2 * X2^1 * X3^1 * X4^0 * X5^0 0 1 0.1666666666666665 1 7 0.03125000000000022 2 28 4.218847493575595e-15 3 84 2.220446049250313e-15 F(X) = X1^1 * X2^2 * X3^1 * X4^0 * X5^0 0 1 0.1666666666666665 1 7 0.03125000000000022 2 28 3.552713678800501e-15 3 84 2.442490654175344e-15 F(X) = X1^0 * X2^3 * X3^1 * X4^0 * X5^0 0 1 0.611111111111111 1 7 0.09375 2 28 1.110223024625157e-15 3 84 6.106226635438361e-15 F(X) = X1^2 * X2^0 * X3^2 * X4^0 * X5^0 0 1 0.4166666666666667 1 7 0.2031249999999999 2 28 1.998401444325282e-15 3 84 2.220446049250313e-16 F(X) = X1^1 * X2^1 * X3^2 * X4^0 * X5^0 0 1 0.1666666666666665 1 7 0.03125000000000022 2 28 4.218847493575595e-15 3 84 2.220446049250313e-15 F(X) = X1^0 * X2^2 * X3^2 * X4^0 * X5^0 0 1 0.4166666666666667 1 7 0.2031249999999999 2 28 1.998401444325282e-15 3 84 2.220446049250313e-15 F(X) = X1^1 * X2^0 * X3^3 * X4^0 * X5^0 0 1 0.611111111111111 1 7 0.09375 2 28 4.440892098500626e-16 3 84 4.662936703425657e-15 F(X) = X1^0 * X2^1 * X3^3 * X4^0 * X5^0 0 1 0.611111111111111 1 7 0.09375 2 28 4.440892098500626e-16 3 84 5.10702591327572e-15 F(X) = X1^0 * X2^0 * X3^4 * X4^0 * X5^0 0 1 0.9027777777777778 1 7 0.1171875 2 28 1.110223024625157e-15 3 84 8.215650382226158e-15 F(X) = X1^3 * X2^0 * X3^0 * X4^1 * X5^0 0 1 0.611111111111111 1 7 0.09375 2 28 1.110223024625157e-15 3 84 3.441691376337985e-15 F(X) = X1^2 * X2^1 * X3^0 * X4^1 * X5^0 0 1 0.1666666666666665 1 7 0.03125000000000022 2 28 2.664535259100376e-15 3 84 1.554312234475219e-15 F(X) = X1^1 * X2^2 * X3^0 * X4^1 * X5^0 0 1 0.1666666666666665 1 7 0.03125000000000022 2 28 3.552713678800501e-15 3 84 1.77635683940025e-15 F(X) = X1^0 * X2^3 * X3^0 * X4^1 * X5^0 0 1 0.611111111111111 1 7 0.09375 2 28 4.440892098500626e-16 3 84 3.885780586188048e-15 F(X) = X1^2 * X2^0 * X3^1 * X4^1 * X5^0 0 1 0.1666666666666665 1 7 0.03124999999999956 2 28 2.664535259100376e-15 3 84 1.554312234475219e-15 F(X) = X1^1 * X2^1 * X3^1 * X4^1 * X5^0 0 1 1.333333333333333 1 7 0.06249999999999956 2 28 1.77635683940025e-15 3 84 8.881784197001252e-16 F(X) = X1^0 * X2^2 * X3^1 * X4^1 * X5^0 0 1 0.1666666666666665 1 7 0.03124999999999956 2 28 2.664535259100376e-15 3 84 2.220446049250313e-15 F(X) = X1^1 * X2^0 * X3^2 * X4^1 * X5^0 0 1 0.1666666666666665 1 7 0.03125000000000022 2 28 2.220446049250313e-15 3 84 1.554312234475219e-15 F(X) = X1^0 * X2^1 * X3^2 * X4^1 * X5^0 0 1 0.1666666666666665 1 7 0.03125000000000022 2 28 2.220446049250313e-15 3 84 1.554312234475219e-15 F(X) = X1^0 * X2^0 * X3^3 * X4^1 * X5^0 0 1 0.611111111111111 1 7 0.09374999999999978 2 28 4.440892098500626e-16 3 84 3.108624468950438e-15 F(X) = X1^2 * X2^0 * X3^0 * X4^2 * X5^0 0 1 0.4166666666666667 1 7 0.2031249999999999 2 28 1.332267629550188e-15 3 84 1.110223024625157e-15 F(X) = X1^1 * X2^1 * X3^0 * X4^2 * X5^0 0 1 0.1666666666666665 1 7 0.03125000000000022 2 28 2.664535259100376e-15 3 84 8.881784197001252e-16 F(X) = X1^0 * X2^2 * X3^0 * X4^2 * X5^0 0 1 0.4166666666666667 1 7 0.2031249999999999 2 28 1.332267629550188e-15 3 84 1.110223024625157e-15 F(X) = X1^1 * X2^0 * X3^1 * X4^2 * X5^0 0 1 0.1666666666666665 1 7 0.03125000000000022 2 28 2.664535259100376e-15 3 84 1.554312234475219e-15 F(X) = X1^0 * X2^1 * X3^1 * X4^2 * X5^0 0 1 0.1666666666666665 1 7 0.03125000000000022 2 28 2.664535259100376e-15 3 84 8.881784197001252e-16 F(X) = X1^0 * X2^0 * X3^2 * X4^2 * X5^0 0 1 0.4166666666666667 1 7 0.2031249999999999 2 28 1.332267629550188e-15 3 84 2.220446049250313e-16 F(X) = X1^1 * X2^0 * X3^0 * X4^3 * X5^0 0 1 0.611111111111111 1 7 0.09374999999999978 2 28 4.440892098500626e-16 3 84 3.108624468950438e-15 F(X) = X1^0 * X2^1 * X3^0 * X4^3 * X5^0 0 1 0.611111111111111 1 7 0.09374999999999978 2 28 1.110223024625157e-15 3 84 3.885780586188048e-15 F(X) = X1^0 * X2^0 * X3^1 * X4^3 * X5^0 0 1 0.611111111111111 1 7 0.09374999999999978 2 28 4.440892098500626e-16 3 84 3.885780586188048e-15 F(X) = X1^0 * X2^0 * X3^0 * X4^4 * X5^0 0 1 0.9027777777777778 1 7 0.1171875 2 28 8.881784197001252e-16 3 84 1.998401444325282e-15 F(X) = X1^3 * X2^0 * X3^0 * X4^0 * X5^1 0 1 0.611111111111111 1 7 0.09375 2 28 1.110223024625157e-15 3 84 3.441691376337985e-15 F(X) = X1^2 * X2^1 * X3^0 * X4^0 * X5^1 0 1 0.1666666666666665 1 7 0.03125000000000022 2 28 2.664535259100376e-15 3 84 2.109423746787797e-15 F(X) = X1^1 * X2^2 * X3^0 * X4^0 * X5^1 0 1 0.1666666666666665 1 7 0.03125000000000022 2 28 2.664535259100376e-15 3 84 3.108624468950438e-15 F(X) = X1^0 * X2^3 * X3^0 * X4^0 * X5^1 0 1 0.611111111111111 1 7 0.09375 2 28 4.440892098500626e-16 3 84 1.998401444325282e-15 F(X) = X1^2 * X2^0 * X3^1 * X4^0 * X5^1 0 1 0.1666666666666665 1 7 0.03124999999999956 2 28 2.664535259100376e-15 3 84 2.442490654175344e-15 F(X) = X1^1 * X2^1 * X3^1 * X4^0 * X5^1 0 1 1.333333333333333 1 7 0.06250000000000078 2 28 1.77635683940025e-15 3 84 8.881784197001252e-16 F(X) = X1^0 * X2^2 * X3^1 * X4^0 * X5^1 0 1 0.1666666666666665 1 7 0.03124999999999956 2 28 2.220446049250313e-15 3 84 2.109423746787797e-15 F(X) = X1^1 * X2^0 * X3^2 * X4^0 * X5^1 0 1 0.1666666666666665 1 7 0.03124999999999956 2 28 2.220446049250313e-15 3 84 3.996802888650564e-15 F(X) = X1^0 * X2^1 * X3^2 * X4^0 * X5^1 0 1 0.1666666666666665 1 7 0.03124999999999956 2 28 2.220446049250313e-15 3 84 3.996802888650564e-15 F(X) = X1^0 * X2^0 * X3^3 * X4^0 * X5^1 0 1 0.611111111111111 1 7 0.09374999999999978 2 28 4.440892098500626e-16 3 84 3.441691376337985e-15 F(X) = X1^2 * X2^0 * X3^0 * X4^1 * X5^1 0 1 0.1666666666666665 1 7 0.03124999999999956 2 28 1.554312234475219e-15 3 84 2.220446049250313e-16 F(X) = X1^1 * X2^1 * X3^0 * X4^1 * X5^1 0 1 1.333333333333333 1 7 0.06250000000000078 2 28 1.77635683940025e-15 3 84 2.220446049250313e-16 F(X) = X1^0 * X2^2 * X3^0 * X4^1 * X5^1 0 1 0.1666666666666665 1 7 0.03124999999999956 2 28 2.220446049250313e-15 3 84 7.771561172376096e-16 F(X) = X1^1 * X2^0 * X3^1 * X4^1 * X5^1 0 1 1.333333333333333 1 7 0.06250000000000078 2 28 4.440892098500626e-16 3 84 1.332267629550188e-15 F(X) = X1^0 * X2^1 * X3^1 * X4^1 * X5^1 0 1 1.333333333333333 1 7 0.06250000000000078 2 28 1.77635683940025e-15 3 84 1.332267629550188e-15 F(X) = X1^0 * X2^0 * X3^2 * X4^1 * X5^1 0 1 0.1666666666666665 1 7 0.03124999999999956 2 28 1.554312234475219e-15 3 84 1.110223024625157e-15 F(X) = X1^1 * X2^0 * X3^0 * X4^2 * X5^1 0 1 0.1666666666666665 1 7 0.03124999999999956 2 28 1.554312234475219e-15 3 84 1.887379141862766e-15 F(X) = X1^0 * X2^1 * X3^0 * X4^2 * X5^1 0 1 0.1666666666666665 1 7 0.03124999999999956 2 28 1.554312234475219e-15 3 84 1.887379141862766e-15 F(X) = X1^0 * X2^0 * X3^1 * X4^2 * X5^1 0 1 0.1666666666666665 1 7 0.03124999999999956 2 28 1.554312234475219e-15 3 84 1.887379141862766e-15 F(X) = X1^0 * X2^0 * X3^0 * X4^3 * X5^1 0 1 0.611111111111111 1 7 0.09374999999999978 2 28 0 3 84 3.885780586188048e-15 F(X) = X1^2 * X2^0 * X3^0 * X4^0 * X5^2 0 1 0.4166666666666667 1 7 0.2031249999999999 2 28 6.661338147750939e-16 3 84 1.110223024625157e-16 F(X) = X1^1 * X2^1 * X3^0 * X4^0 * X5^2 0 1 0.1666666666666665 1 7 0.03125 2 28 1.554312234475219e-15 3 84 8.881784197001252e-16 F(X) = X1^0 * X2^2 * X3^0 * X4^0 * X5^2 0 1 0.4166666666666667 1 7 0.2031249999999999 2 28 6.661338147750939e-16 3 84 1.998401444325282e-15 F(X) = X1^1 * X2^0 * X3^1 * X4^0 * X5^2 0 1 0.1666666666666665 1 7 0.03125 2 28 8.881784197001252e-16 3 84 1.887379141862766e-15 F(X) = X1^0 * X2^1 * X3^1 * X4^0 * X5^2 0 1 0.1666666666666665 1 7 0.03125 2 28 8.881784197001252e-16 3 84 1.110223024625157e-15 F(X) = X1^0 * X2^0 * X3^2 * X4^0 * X5^2 0 1 0.4166666666666667 1 7 0.2031249999999999 2 28 6.661338147750939e-16 3 84 1.77635683940025e-15 F(X) = X1^1 * X2^0 * X3^0 * X4^1 * X5^2 0 1 0.1666666666666665 1 7 0.03125 2 28 2.220446049250313e-16 3 84 1.887379141862766e-15 F(X) = X1^0 * X2^1 * X3^0 * X4^1 * X5^2 0 1 0.1666666666666665 1 7 0.03125 2 28 2.220446049250313e-16 3 84 1.887379141862766e-15 F(X) = X1^0 * X2^0 * X3^1 * X4^1 * X5^2 0 1 0.1666666666666665 1 7 0.03125 2 28 2.220446049250313e-16 3 84 2.442490654175344e-15 F(X) = X1^0 * X2^0 * X3^0 * X4^2 * X5^2 0 1 0.4166666666666667 1 7 0.2031249999999999 2 28 6.661338147750939e-16 3 84 1.110223024625157e-15 F(X) = X1^1 * X2^0 * X3^0 * X4^0 * X5^3 0 1 0.611111111111111 1 7 0.09374999999999978 2 28 0 3 84 7.771561172376096e-16 F(X) = X1^0 * X2^1 * X3^0 * X4^0 * X5^3 0 1 0.611111111111111 1 7 0.09374999999999978 2 28 0 3 84 1.221245327087672e-15 F(X) = X1^0 * X2^0 * X3^1 * X4^0 * X5^3 0 1 0.611111111111111 1 7 0.09374999999999978 2 28 0 3 84 0 F(X) = X1^0 * X2^0 * X3^0 * X4^1 * X5^3 0 1 0.611111111111111 1 7 0.09374999999999978 2 28 4.440892098500626e-16 3 84 1.665334536937735e-15 F(X) = X1^0 * X2^0 * X3^0 * X4^0 * X5^4 0 1 0.9027777777777778 1 7 0.1171875 2 28 4.440892098500626e-16 3 84 5.773159728050814e-15 GM_RULE_PRB Normal end of execution. 22 December 2011 09:49:34 AM