# include # include # include # include using namespace std; # include "sine_transform.hpp" //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int *seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; double *r; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r[i] = ( double ) ( *seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double *sine_transform_data ( int n, double d[] ) //****************************************************************************80 // // Purpose: // // SINE_TRANSFORM_DATA does a sine transform on a vector of data. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, integer N, the number of data points. // // Input, double D[N], the vector of data. // // Output, double SINE_TRANSFORM_DATA[N], the sine transform coefficients. // { double angle; int i; int j; double pi = 3.141592653589793; double *s; s = new double[n]; for ( i = 0; i < n; i++ ) { s[i] = 0.0; for ( j = 0; j < n; j++ ) { angle = pi * ( double ) ( ( i + 1 ) * ( j + 1 ) ) / ( double ) ( n + 1 ); s[i] = s[i] + sin ( angle ) * d[j]; } s[i] = s[i] * sqrt ( 2.0 / ( double ) ( n + 1 ) ); } return s; } //****************************************************************************80 double *sine_transform_function ( int n, double a, double b, double f ( double x ) ) //****************************************************************************80 // // Purpose: // // SINE_TRANSFORM_FUNCTION does a sine transform on functional data. // // Discussion: // // The interval [A,B] is divided into N+1 intervals using N+2 points, // which are indexed by 0 through N+1. // // The original function F(X) is regarded as the sum of a linear function // F1 that passes through (A,F(A)) and (B,F(B)), and a function F2 // which is 0 at A and B. // // The sine transform coefficients for F2 are then computed. // // To recover the interpolant of F(X), it is necessary to combine the // linear part F1 with the sine transform interpolant: // // Interp(F)(X) = F1(X) + F2(X) // // This can be done by calling SINE_TRANSFORM_INTERPOLANT(). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of data points. // // Input, double A, B, the interval endpoints. // // Input, double F ( double X ), a pointer to the function. // // Output, SINE_TRANSFORM_FUNCTION[N], the sine transform coefficients. // { double angle; double *f2; double fa; double fb;; int i; int j; double pi = 3.141592653589793; double *s; double x; fa = f ( a ); fb = f ( b ); f2 = new double[n]; for ( i = 0; i < n; i++ ) { x = ( ( double ) ( n - i ) * a + ( double ) ( i + 1 ) * b ) / ( double ) ( n + 1 ); f2[i] = f ( x ) - ( ( b - x ) * fa + ( x - a ) * fb ) / ( b - a ); } s = new double[n]; for ( i = 0; i < n; i++ ) { s[i] = 0.0; for ( j = 0; j < n; j++ ) { angle = pi * ( double ) ( ( i + 1 ) * ( j + 1 ) ) / ( double ) ( n + 1 ); s[i] = s[i] + sin ( angle ) * f2[j]; } s[i] = s[i] * sqrt ( 2.0 / ( double ) ( n + 1 ) ); } delete [] f2; return s; } //****************************************************************************80 double *sine_transform_interpolant ( int n, double a, double b, double fa, double fb, double s[], int nx, double x[] ) //****************************************************************************80 // // Purpose: // // SINE_TRANSFORM_INTERPOLANT evaluates the sine transform interpolant. // // Discussion: // // The interval [A,B] is divided into N+1 intervals using N+2 points, // which are indexed by 0 through N+1. // // The original function F(X) is regarded as the sum of a linear function // F1 that passes through (A,F(A)) and (B,F(B)), and a function F2 // which is 0 at A and B. // // The function F2 has been approximated using the sine transform, // and the interpolant is then evaluated as: // // Interp(F)(X) = F1(X) + F2(X) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of terms in the approximation. // // Input, double A, B, the interval over which the approximant // was defined. // // Input, double FA, FB, the function values at A and B. // // Input, double S[N], the approximant coefficients. // // Input, int NX, the number of evaluation points. // // Input, double X[NX], the evaluation points. // // Output, double SINE_TRANSFORM_INTERPOLANT[NX], the value of the interpolant. // { double angle; double f1; double f2; int i; int j; double pi = 3.141592653589793; double *value; value = new double[nx]; for ( i = 0; i < nx; i++ ) { f1 = ( ( b - x[i] ) * fa + ( x[i] - a ) * fb ) / ( b - a ); f2 = 0.0; for ( j = 0; j < n; j++ ) { angle = ( double ) ( j + 1 ) * ( x[i] - a ) * pi / ( b - a ); f2 = f2 + s[j] * sin ( angle ); } f2 = f2 * sqrt ( 2.0 / ( double ) ( n + 1 ) ); value[i] = f1 + f2; } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }