# include # include # include # include # include # include # include using namespace std; # include "sparse_grid_gl.hpp" //****************************************************************************80 void comp_next ( int n, int k, int a[], bool *more, int *h, int *t ) //****************************************************************************80 // // Purpose: // // COMP_NEXT computes the compositions of the integer N into K parts. // // Discussion: // // A composition of the integer N into K parts is an ordered sequence // of K nonnegative integers which sum to N. The compositions (1,2,1) // and (1,1,2) are considered to be distinct. // // The routine computes one composition on each call until there are no more. // For instance, one composition of 6 into 3 parts is // 3+2+1, another would be 6+0+0. // // On the first call to this routine, set MORE = FALSE. The routine // will compute the first element in the sequence of compositions, and // return it, as well as setting MORE = TRUE. If more compositions // are desired, call again, and again. Each time, the routine will // return with a new composition. // // However, when the LAST composition in the sequence is computed // and returned, the routine will reset MORE to FALSE, signaling that // the end of the sequence has been reached. // // This routine originally used a SAVE statement to maintain the // variables H and T. I have decided that it is safer // to pass these variables as arguments, even though the user should // never alter them. This allows this routine to safely shuffle // between several ongoing calculations. // // // There are 28 compositions of 6 into three parts. This routine will // produce those compositions in the following order: // // I A // - --------- // 1 6 0 0 // 2 5 1 0 // 3 4 2 0 // 4 3 3 0 // 5 2 4 0 // 6 1 5 0 // 7 0 6 0 // 8 5 0 1 // 9 4 1 1 // 10 3 2 1 // 11 2 3 1 // 12 1 4 1 // 13 0 5 1 // 14 4 0 2 // 15 3 1 2 // 16 2 2 2 // 17 1 3 2 // 18 0 4 2 // 19 3 0 3 // 20 2 1 3 // 21 1 2 3 // 22 0 3 3 // 23 2 0 4 // 24 1 1 4 // 25 0 2 4 // 26 1 0 5 // 27 0 1 5 // 28 0 0 6 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2008 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt. // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms for Computers and Calculators, // Second Edition, // Academic Press, 1978, // ISBN: 0-12-519260-6, // LC: QA164.N54. // // Parameters: // // Input, int N, the integer whose compositions are desired. // // Input, int K, the number of parts in the composition. // // Input/output, int A[K], the parts of the composition. // // Input/output, bool *MORE. // Set MORE = FALSE on first call. It will be reset to TRUE on return // with a new composition. Each new call returns another composition until // MORE is set to FALSE when the last composition has been computed // and returned. // // Input/output, int *H, *T, two internal parameters needed for the // computation. The user should allocate space for these in the calling // program, include them in the calling sequence, but never alter them! // { int i; if ( !( *more ) ) { *t = n; *h = 0; a[0] = n; for ( i = 1; i < k; i++ ) { a[i] = 0; } } else { if ( 1 < *t ) { *h = 0; } *h = *h + 1; *t = a[*h-1]; a[*h-1] = 0; a[0] = *t - 1; a[*h] = a[*h] + 1; } *more = ( a[k-1] != n ); return; } //****************************************************************************80 void gl_abscissa ( int dim_num, int point_num, int grid_index[], int grid_base[], double grid_point[] ) //****************************************************************************80 // // Purpose: // // GL_ABSCISSA sets abscissas for multidimensional Gauss-Legendre quadrature. // // Discussion: // // The "nesting" as it occurs for Gauss-Legendre sparse grids simply // involves the use of a specified set of permissible orders for the // rule. // // The X array lists the (complete) Gauss-Legendre abscissas for rules // of order 1, 3, 7, 15, 31, 63 or 127, in order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int POINT_NUM, the number of points. // // Input, int GRID_INDEX[DIM_NUM*POINT_NUM], the index of the abscissa // from the Gauss-Legendre rule, for each dimension and point. // // Input, int GRID_BASE[DIM_NUM], the number of points used in the // Gauss-Legendre rule for a given dimension. // // Output, double GRID_POINT[DIM_NUM], the grid points of // Gauss-Legendre abscissas. // { int dim; int level; int point; int pointer; int skip[8] = { 0, 1, 4, 11, 26, 57, 120, 247 }; double x[247] = { 0.0E+00, - 0.774596669241483377035853079956E+00, 0.0E+00, 0.774596669241483377035853079956E+00, - 0.949107912342758524526189684048E+00, - 0.741531185599394439863864773281E+00, - 0.405845151377397166906606412077E+00, 0.0E+00, 0.405845151377397166906606412077E+00, 0.741531185599394439863864773281E+00, 0.949107912342758524526189684048E+00, - 0.987992518020485428489565718587E+00, - 0.937273392400705904307758947710E+00, - 0.848206583410427216200648320774E+00, - 0.724417731360170047416186054614E+00, - 0.570972172608538847537226737254E+00, - 0.394151347077563369897207370981E+00, - 0.201194093997434522300628303395E+00, 0.0E+00, 0.201194093997434522300628303395E+00, 0.394151347077563369897207370981E+00, 0.570972172608538847537226737254E+00, 0.724417731360170047416186054614E+00, 0.848206583410427216200648320774E+00, 0.937273392400705904307758947710E+00, 0.987992518020485428489565718587E+00, -0.99708748181947707454263838179654, -0.98468590966515248400211329970113, -0.96250392509294966178905249675943, -0.93075699789664816495694576311725, -0.88976002994827104337419200908023, -0.83992032014626734008690453594388, -0.78173314841662494040636002019484, -0.71577678458685328390597086536649, -0.64270672292426034618441820323250, -0.56324916140714926272094492359516, -0.47819378204490248044059403935649, -0.38838590160823294306135146128752, -0.29471806998170161661790389767170, -0.19812119933557062877241299603283, -0.99555312152341520325174790118941E-01, 0.00000000000000000000000000000000, 0.99555312152341520325174790118941E-01, 0.19812119933557062877241299603283, 0.29471806998170161661790389767170, 0.38838590160823294306135146128752, 0.47819378204490248044059403935649, 0.56324916140714926272094492359516, 0.64270672292426034618441820323250, 0.71577678458685328390597086536649, 0.78173314841662494040636002019484, 0.83992032014626734008690453594388, 0.88976002994827104337419200908023, 0.93075699789664816495694576311725, 0.96250392509294966178905249675943, 0.98468590966515248400211329970113, 0.99708748181947707454263838179654, -0.99928298402912378050701628988630E+00, -0.99622401277797010860209018267357E+00, -0.99072854689218946681089469460884E+00, -0.98280881059372723486251140727639E+00, -0.97248403469757002280196067864927E+00, -0.95977944975894192707035416626398E+00, -0.94472613404100980296637531962798E+00, -0.92736092062184320544703138132518E+00, -0.90772630277853155803695313291596E+00, -0.88587032850785342629029845731337E+00, -0.86184648236412371953961183943106E+00, -0.83571355431950284347180776961571E+00, -0.80753549577345676005146598636324E+00, -0.77738126299037233556333018991104E+00, -0.74532464831784741782932166103759E+00, -0.71144409958484580785143153770401E+00, -0.67582252811498609013110331596954E+00, -0.63854710582136538500030695387338E+00, -0.59970905187762523573900892686880E+00, -0.55940340948628501326769780007005E+00, -0.51772881329003324812447758452632E+00, -0.47478724799480439992221230985149E+00, -0.43068379879511160066208893391863E+00, -0.38552639421224789247761502227440E+00, -0.33942554197458440246883443159432E+00, -0.29249405858625144003615715555067E+00, -0.24484679324595336274840459392483E+00, -0.19660034679150668455762745706572E+00, -0.14787278635787196856983909655297E+00, -0.98783356446945279529703669453922E-01, -0.49452187116159627234233818051808E-01, 0.00000000000000000000000000000000E+00, 0.49452187116159627234233818051808E-01, 0.98783356446945279529703669453922E-01, 0.14787278635787196856983909655297E+00, 0.19660034679150668455762745706572E+00, 0.24484679324595336274840459392483E+00, 0.29249405858625144003615715555067E+00, 0.33942554197458440246883443159432E+00, 0.38552639421224789247761502227440E+00, 0.43068379879511160066208893391863E+00, 0.47478724799480439992221230985149E+00, 0.51772881329003324812447758452632E+00, 0.55940340948628501326769780007005E+00, 0.59970905187762523573900892686880E+00, 0.63854710582136538500030695387338E+00, 0.67582252811498609013110331596954E+00, 0.71144409958484580785143153770401E+00, 0.74532464831784741782932166103759E+00, 0.77738126299037233556333018991104E+00, 0.80753549577345676005146598636324E+00, 0.83571355431950284347180776961571E+00, 0.86184648236412371953961183943106E+00, 0.88587032850785342629029845731337E+00, 0.90772630277853155803695313291596E+00, 0.92736092062184320544703138132518E+00, 0.94472613404100980296637531962798E+00, 0.95977944975894192707035416626398E+00, 0.97248403469757002280196067864927E+00, 0.98280881059372723486251140727639E+00, 0.99072854689218946681089469460884E+00, 0.99622401277797010860209018267357E+00, 0.99928298402912378050701628988630E+00, -0.99982213041530614629963254927125E+00, -0.99906293435531189513828920479421E+00, -0.99769756618980462107441703193392E+00, -0.99572655135202722663543337085008E+00, -0.99315104925451714736113079489080E+00, -0.98997261459148415760778669967548E+00, -0.98619317401693166671043833175407E+00, -0.98181502080381411003346312451200E+00, -0.97684081234307032681744391886221E+00, -0.97127356816152919228894689830512E+00, -0.96511666794529212109082507703391E+00, -0.95837384942523877114910286998060E+00, -0.95104920607788031054790764659636E+00, -0.94314718462481482734544963026201E+00, -0.93467258232473796857363487794906E+00, -0.92563054405623384912746466814259E+00, -0.91602655919146580931308861741716E+00, -0.90586645826182138280246131760282E+00, -0.89515640941708370896904382642451E+00, -0.88390291468002656994525794802849E+00, -0.87211280599856071141963753428864E+00, -0.85979324109774080981203134414483E+00, -0.84695169913409759845333931085437E+00, -0.83359597615489951437955716480123E+00, -0.81973418036507867415511910167470E+00, -0.80537472720468021466656079404644E+00, -0.79052633423981379994544995252740E+00, -0.77519801587020238244496276354566E+00, -0.75939907785653667155666366659810E+00, -0.74313911167095451292056688997595E+00, -0.72642798867407268553569290153270E+00, -0.70927585412210456099944463906757E+00, -0.69169312100770067015644143286666E+00, -0.67369046373825048534668253831602E+00, -0.65527881165548263027676505156852E+00, -0.63646934240029724134760815684175E+00, -0.61727347512685828385763916340822E+00, -0.59770286357006522938441201887478E+00, -0.57776938897061258000325165713764E+00, -0.55748515286193223292186190687872E+00, -0.53686246972339756745816636353452E+00, -0.51591385950424935727727729906662E+00, -0.49465204002278211739494017368636E+00, -0.47308991924540524164509989939699E+00, -0.45124058745026622733189858020729E+00, -0.42911730928019337626254405355418E+00, -0.40673351568978256340867288124339E+00, -0.38410279579151693577907781452239E+00, -0.36123888860586970607092484346723E+00, -0.33815567472039850137600027657095E+00, -0.31486716786289498148601475374890E+00, -0.29138750639370562079451875284568E+00, -0.26773094472238862088834352027938E+00, -0.24391184465391785797071324453138E+00, -0.21994466666968754245452337866940E+00, -0.19584396114861085150428162519610E+00, -0.17162435953364216500834492248954E+00, -0.14730056544908566938932929319807E+00, -0.12288734577408297172603365288567E+00, -0.98399521677698970751091751509101E-01, -0.73851959621048545273440409360569E-01, -0.49259562331926630315379321821927E-01, -0.24637259757420944614897071846088E-01, 0.00000000000000000000000000000000E+00, 0.24637259757420944614897071846088E-01, 0.49259562331926630315379321821927E-01, 0.73851959621048545273440409360569E-01, 0.98399521677698970751091751509101E-01, 0.12288734577408297172603365288567E+00, 0.14730056544908566938932929319807E+00, 0.17162435953364216500834492248954E+00, 0.19584396114861085150428162519610E+00, 0.21994466666968754245452337866940E+00, 0.24391184465391785797071324453138E+00, 0.26773094472238862088834352027938E+00, 0.29138750639370562079451875284568E+00, 0.31486716786289498148601475374890E+00, 0.33815567472039850137600027657095E+00, 0.36123888860586970607092484346723E+00, 0.38410279579151693577907781452239E+00, 0.40673351568978256340867288124339E+00, 0.42911730928019337626254405355418E+00, 0.45124058745026622733189858020729E+00, 0.47308991924540524164509989939699E+00, 0.49465204002278211739494017368636E+00, 0.51591385950424935727727729906662E+00, 0.53686246972339756745816636353452E+00, 0.55748515286193223292186190687872E+00, 0.57776938897061258000325165713764E+00, 0.59770286357006522938441201887478E+00, 0.61727347512685828385763916340822E+00, 0.63646934240029724134760815684175E+00, 0.65527881165548263027676505156852E+00, 0.67369046373825048534668253831602E+00, 0.69169312100770067015644143286666E+00, 0.70927585412210456099944463906757E+00, 0.72642798867407268553569290153270E+00, 0.74313911167095451292056688997595E+00, 0.75939907785653667155666366659810E+00, 0.77519801587020238244496276354566E+00, 0.79052633423981379994544995252740E+00, 0.80537472720468021466656079404644E+00, 0.81973418036507867415511910167470E+00, 0.83359597615489951437955716480123E+00, 0.84695169913409759845333931085437E+00, 0.85979324109774080981203134414483E+00, 0.87211280599856071141963753428864E+00, 0.88390291468002656994525794802849E+00, 0.89515640941708370896904382642451E+00, 0.90586645826182138280246131760282E+00, 0.91602655919146580931308861741716E+00, 0.92563054405623384912746466814259E+00, 0.93467258232473796857363487794906E+00, 0.94314718462481482734544963026201E+00, 0.95104920607788031054790764659636E+00, 0.95837384942523877114910286998060E+00, 0.96511666794529212109082507703391E+00, 0.97127356816152919228894689830512E+00, 0.97684081234307032681744391886221E+00, 0.98181502080381411003346312451200E+00, 0.98619317401693166671043833175407E+00, 0.98997261459148415760778669967548E+00, 0.99315104925451714736113079489080E+00, 0.99572655135202722663543337085008E+00, 0.99769756618980462107441703193392E+00, 0.99906293435531189513828920479421E+00, 0.99982213041530614629963254927125E+00 }; for ( dim = 0; dim < dim_num; dim++ ) { if ( grid_base[dim] < 0 ) { cout << "\n"; cout << "GL_ABSCISSA - Fatal error!\n"; cout << " Some base values are less than 0.\n"; exit ( 1 ); } } for ( dim = 0; dim < dim_num; dim++ ) { if ( 63 < grid_base[dim] ) { cout << "\n"; cout << "GL_ABSCISSA - Fatal error!\n"; cout << " Some base values are greater than 63.\n"; exit ( 1 ); } } for ( point = 0; point < point_num; point++ ) { for ( dim = 0; dim < dim_num; dim++ ) { level = i4_log_2 ( grid_base[dim] + 1 ); pointer = skip[level] + ( grid_index[dim+point*dim_num] + grid_base[dim] ); grid_point[dim+point*dim_num] = x[pointer]; } } return; } //****************************************************************************80 void gl_weights ( int order, double weight[] ) //****************************************************************************80 // // Purpose: // // GL_WEIGHTS returns weights for certain Gauss-Legendre quadrature rules. // // Discussion: // // The allowed orders are 1, 3, 7, 15, 31, 63 and 127. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order of the rule. // ORDER must be 1, 3, 7, 15, 31, 63 or 127. // // Output, double WEIGHT[ORDER], the weights. // The weights are positive, symmetric and should sum to 2. // { if ( order == 1 ) { weight[1-1] = 2.0E+00; } else if ( order == 3 ) { weight[1-1] = 5.0E+00 / 9.0E+00; weight[2-1] = 8.0E+00 / 9.0E+00; weight[3-1] = 5.0E+00 / 9.0E+00; } else if ( order == 7 ) { weight[1-1] = 0.129484966168869693270611432679E+00; weight[2-1] = 0.279705391489276667901467771424E+00; weight[3-1] = 0.381830050505118944950369775489E+00; weight[4-1] = 0.417959183673469387755102040816E+00; weight[5-1] = 0.381830050505118944950369775489E+00; weight[6-1] = 0.279705391489276667901467771424E+00; weight[7-1] = 0.129484966168869693270611432679E+00; } else if ( order == 15 ) { weight[1-1] = 0.307532419961172683546283935772E-01; weight[2-1] = 0.703660474881081247092674164507E-01; weight[3-1] = 0.107159220467171935011869546686E+00; weight[4-1] = 0.139570677926154314447804794511E+00; weight[5-1] = 0.166269205816993933553200860481E+00; weight[6-1] = 0.186161000015562211026800561866E+00; weight[7-1] = 0.198431485327111576456118326444E+00; weight[8-1] = 0.202578241925561272880620199968E+00; weight[9-1] = 0.198431485327111576456118326444E+00; weight[10-1] = 0.186161000015562211026800561866E+00; weight[11-1] = 0.166269205816993933553200860481E+00; weight[12-1] = 0.139570677926154314447804794511E+00; weight[13-1] = 0.107159220467171935011869546686E+00; weight[14-1] = 0.703660474881081247092674164507E-01; weight[15-1] = 0.307532419961172683546283935772E-01; } else if ( order == 31 ) { weight[ 1-1] = 0.74708315792487746093913218970494E-02; weight[ 2-1] = 0.17318620790310582463552990782414E-01; weight[ 3-1] = 0.27009019184979421800608642617676E-01; weight[ 4-1] = 0.36432273912385464024392008749009E-01; weight[ 5-1] = 0.45493707527201102902315857856518E-01; weight[ 6-1] = 0.54103082424916853711666259085477E-01; weight[ 7-1] = 0.62174786561028426910343543686657E-01; weight[ 8-1] = 0.69628583235410366167756126255124E-01; weight[ 9-1] = 0.76390386598776616426357674901331E-01; weight[10-1] = 0.82392991761589263903823367431962E-01; weight[11-1] = 0.87576740608477876126198069695333E-01; weight[12-1] = 0.91890113893641478215362871607150E-01; weight[13-1] = 0.95290242912319512807204197487597E-01; weight[14-1] = 0.97743335386328725093474010978997E-01; weight[15-1] = 0.99225011226672307874875514428615E-01; weight[16-1] = 0.99720544793426451427533833734349E-01; weight[17-1] = 0.99225011226672307874875514428615E-01; weight[18-1] = 0.97743335386328725093474010978997E-01; weight[19-1] = 0.95290242912319512807204197487597E-01; weight[20-1] = 0.91890113893641478215362871607150E-01; weight[21-1] = 0.87576740608477876126198069695333E-01; weight[22-1] = 0.82392991761589263903823367431962E-01; weight[23-1] = 0.76390386598776616426357674901331E-01; weight[24-1] = 0.69628583235410366167756126255124E-01; weight[25-1] = 0.62174786561028426910343543686657E-01; weight[26-1] = 0.54103082424916853711666259085477E-01; weight[27-1] = 0.45493707527201102902315857856518E-01; weight[28-1] = 0.36432273912385464024392008749009E-01; weight[29-1] = 0.27009019184979421800608642617676E-01; weight[30-1] = 0.17318620790310582463552990782414E-01; weight[31-1] = 0.74708315792487746093913218970494E-02; } else if ( order == 63 ) { weight[ 1-1] = 0.18398745955770837880499331680577E-02; weight[ 2-1] = 0.42785083468637618661951422543371E-02; weight[ 3-1] = 0.67102917659601362519069109850892E-02; weight[ 4-1] = 0.91259686763266563540586445877022E-02; weight[ 5-1] = 0.11519376076880041750750606118707E-01; weight[ 6-1] = 0.13884612616115610824866086365937E-01; weight[ 7-1] = 0.16215878410338338882283672974995E-01; weight[ 8-1] = 0.18507464460161270409260545805144E-01; weight[ 9-1] = 0.20753761258039090775341953421471E-01; weight[10-1] = 0.22949271004889933148942319561770E-01; weight[11-1] = 0.25088620553344986618630138068443E-01; weight[12-1] = 0.27166574359097933225189839439413E-01; weight[13-1] = 0.29178047208280526945551502154029E-01; weight[14-1] = 0.31118116622219817508215988557189E-01; weight[15-1] = 0.32982034883779341765683179672459E-01; weight[16-1] = 0.34765240645355877697180504642788E-01; weight[17-1] = 0.36463370085457289630452409787542E-01; weight[18-1] = 0.38072267584349556763638324927889E-01; weight[19-1] = 0.39587995891544093984807928149202E-01; weight[20-1] = 0.41006845759666398635110037009072E-01; weight[21-1] = 0.42325345020815822982505485403028E-01; weight[22-1] = 0.43540267083027590798964315704401E-01; weight[23-1] = 0.44648638825941395370332669516813E-01; weight[24-1] = 0.45647747876292608685885992608542E-01; weight[25-1] = 0.46535149245383696510395418746953E-01; weight[26-1] = 0.47308671312268919080604988338844E-01; weight[27-1] = 0.47966421137995131411052756195132E-01; weight[28-1] = 0.48506789097883847864090099145802E-01; weight[29-1] = 0.48928452820511989944709361549215E-01; weight[30-1] = 0.49230380423747560785043116988145E-01; weight[31-1] = 0.49411833039918178967039646116705E-01; weight[32-1] = 0.49472366623931020888669360420926E-01; weight[33-1] = 0.49411833039918178967039646116705E-01; weight[34-1] = 0.49230380423747560785043116988145E-01; weight[35-1] = 0.48928452820511989944709361549215E-01; weight[36-1] = 0.48506789097883847864090099145802E-01; weight[37-1] = 0.47966421137995131411052756195132E-01; weight[38-1] = 0.47308671312268919080604988338844E-01; weight[39-1] = 0.46535149245383696510395418746953E-01; weight[40-1] = 0.45647747876292608685885992608542E-01; weight[41-1] = 0.44648638825941395370332669516813E-01; weight[42-1] = 0.43540267083027590798964315704401E-01; weight[43-1] = 0.42325345020815822982505485403028E-01; weight[44-1] = 0.41006845759666398635110037009072E-01; weight[45-1] = 0.39587995891544093984807928149202E-01; weight[46-1] = 0.38072267584349556763638324927889E-01; weight[47-1] = 0.36463370085457289630452409787542E-01; weight[48-1] = 0.34765240645355877697180504642788E-01; weight[49-1] = 0.32982034883779341765683179672459E-01; weight[50-1] = 0.31118116622219817508215988557189E-01; weight[51-1] = 0.29178047208280526945551502154029E-01; weight[52-1] = 0.27166574359097933225189839439413E-01; weight[53-1] = 0.25088620553344986618630138068443E-01; weight[54-1] = 0.22949271004889933148942319561770E-01; weight[55-1] = 0.20753761258039090775341953421471E-01; weight[56-1] = 0.18507464460161270409260545805144E-01; weight[57-1] = 0.16215878410338338882283672974995E-01; weight[58-1] = 0.13884612616115610824866086365937E-01; weight[59-1] = 0.11519376076880041750750606118707E-01; weight[60-1] = 0.91259686763266563540586445877022E-02; weight[61-1] = 0.67102917659601362519069109850892E-02; weight[62-1] = 0.42785083468637618661951422543371E-02; weight[63-1] = 0.18398745955770837880499331680577E-02; } else if ( order == 127 ) { weight[ 1-1] = 0.45645726109586654495731936146574E-03; weight[ 2-1] = 0.10622766869538486959954760554099E-02; weight[ 3-1] = 0.16683488125171936761028811985672E-02; weight[ 4-1] = 0.22734860707492547802810838362671E-02; weight[ 5-1] = 0.28772587656289004082883197417581E-02; weight[ 6-1] = 0.34792893810051465908910894094105E-02; weight[ 7-1] = 0.40792095178254605327114733456293E-02; weight[ 8-1] = 0.46766539777779034772638165662478E-02; weight[ 9-1] = 0.52712596565634400891303815906251E-02; weight[ 10-1] = 0.58626653903523901033648343751367E-02; weight[ 11-1] = 0.64505120486899171845442463868748E-02; weight[ 12-1] = 0.70344427036681608755685893032552E-02; weight[ 13-1] = 0.76141028256526859356393930849227E-02; weight[ 14-1] = 0.81891404887415730817235884718726E-02; weight[ 15-1] = 0.87592065795403145773316804234385E-02; weight[ 16-1] = 0.93239550065309714787536985834029E-02; weight[ 17-1] = 0.98830429087554914716648010899606E-02; weight[ 18-1] = 0.10436130863141005225673171997668E-01; weight[ 19-1] = 0.10982883090068975788799657376065E-01; weight[ 20-1] = 0.11522967656921087154811609734510E-01; weight[ 21-1] = 0.12056056679400848183529562144697E-01; weight[ 22-1] = 0.12581826520465013101514365424172E-01; weight[ 23-1] = 0.13099957986718627426172681912499E-01; weight[ 24-1] = 0.13610136522139249906034237533759E-01; weight[ 25-1] = 0.14112052399003395774044161633613E-01; weight[ 26-1] = 0.14605400905893418351737288078952E-01; weight[ 27-1] = 0.15089882532666922992635733981431E-01; weight[ 28-1] = 0.15565203152273955098532590262975E-01; weight[ 29-1] = 0.16031074199309941802254151842763E-01; weight[ 30-1] = 0.16487212845194879399346060358146E-01; weight[ 31-1] = 0.16933342169871654545878815295200E-01; weight[ 32-1] = 0.17369191329918731922164721250350E-01; weight[ 33-1] = 0.17794495722974774231027912900351E-01; weight[ 34-1] = 0.18208997148375106468721469154479E-01; weight[ 35-1] = 0.18612443963902310429440419898958E-01; weight[ 36-1] = 0.19004591238555646611148901044533E-01; weight[ 37-1] = 0.19385200901246454628112623489471E-01; weight[ 38-1] = 0.19754041885329183081815217323169E-01; weight[ 39-1] = 0.20110890268880247225644623956287E-01; weight[ 40-1] = 0.20455529410639508279497065713301E-01; weight[ 41-1] = 0.20787750081531811812652137291250E-01; weight[ 42-1] = 0.21107350591688713643523847921658E-01; weight[ 43-1] = 0.21414136912893259295449693233545E-01; weight[ 44-1] = 0.21707922796373466052301324695331E-01; weight[ 45-1] = 0.21988529885872983756478409758807E-01; weight[ 46-1] = 0.22255787825930280235631416460158E-01; weight[ 47-1] = 0.22509534365300608085694429903050E-01; weight[ 48-1] = 0.22749615455457959852242553240982E-01; weight[ 49-1] = 0.22975885344117206754377437838947E-01; weight[ 50-1] = 0.23188206663719640249922582981729E-01; weight[ 51-1] = 0.23386450514828194170722043496950E-01; weight[ 52-1] = 0.23570496544381716050033676844306E-01; weight[ 53-1] = 0.23740233018760777777714726703424E-01; weight[ 54-1] = 0.23895556891620665983864481754172E-01; weight[ 55-1] = 0.24036373866450369675132086026456E-01; weight[ 56-1] = 0.24162598453819584716522917710986E-01; weight[ 57-1] = 0.24274154023278979833195063936748E-01; weight[ 58-1] = 0.24370972849882214952813561907241E-01; weight[ 59-1] = 0.24452996155301467956140198471529E-01; weight[ 60-1] = 0.24520174143511508275183033290175E-01; weight[ 61-1] = 0.24572466031020653286354137335186E-01; weight[ 62-1] = 0.24609840071630254092545634003360E-01; weight[ 63-1] = 0.24632273575707679066033370218017E-01; weight[ 64-1] = 0.24639752923961094419579417477503E-01; weight[ 65-1] = 0.24632273575707679066033370218017E-01; weight[ 66-1] = 0.24609840071630254092545634003360E-01; weight[ 67-1] = 0.24572466031020653286354137335186E-01; weight[ 68-1] = 0.24520174143511508275183033290175E-01; weight[ 69-1] = 0.24452996155301467956140198471529E-01; weight[ 70-1] = 0.24370972849882214952813561907241E-01; weight[ 71-1] = 0.24274154023278979833195063936748E-01; weight[ 72-1] = 0.24162598453819584716522917710986E-01; weight[ 73-1] = 0.24036373866450369675132086026456E-01; weight[ 74-1] = 0.23895556891620665983864481754172E-01; weight[ 75-1] = 0.23740233018760777777714726703424E-01; weight[ 76-1] = 0.23570496544381716050033676844306E-01; weight[ 77-1] = 0.23386450514828194170722043496950E-01; weight[ 78-1] = 0.23188206663719640249922582981729E-01; weight[ 79-1] = 0.22975885344117206754377437838947E-01; weight[ 80-1] = 0.22749615455457959852242553240982E-01; weight[ 81-1] = 0.22509534365300608085694429903050E-01; weight[ 82-1] = 0.22255787825930280235631416460158E-01; weight[ 83-1] = 0.21988529885872983756478409758807E-01; weight[ 84-1] = 0.21707922796373466052301324695331E-01; weight[ 85-1] = 0.21414136912893259295449693233545E-01; weight[ 86-1] = 0.21107350591688713643523847921658E-01; weight[ 87-1] = 0.20787750081531811812652137291250E-01; weight[ 88-1] = 0.20455529410639508279497065713301E-01; weight[ 89-1] = 0.20110890268880247225644623956287E-01; weight[ 90-1] = 0.19754041885329183081815217323169E-01; weight[ 91-1] = 0.19385200901246454628112623489471E-01; weight[ 92-1] = 0.19004591238555646611148901044533E-01; weight[ 93-1] = 0.18612443963902310429440419898958E-01; weight[ 94-1] = 0.18208997148375106468721469154479E-01; weight[ 95-1] = 0.17794495722974774231027912900351E-01; weight[ 96-1] = 0.17369191329918731922164721250350E-01; weight[ 97-1] = 0.16933342169871654545878815295200E-01; weight[ 98-1] = 0.16487212845194879399346060358146E-01; weight[ 99-1] = 0.16031074199309941802254151842763E-01; weight[100-1] = 0.15565203152273955098532590262975E-01; weight[101-1] = 0.15089882532666922992635733981431E-01; weight[102-1] = 0.14605400905893418351737288078952E-01; weight[103-1] = 0.14112052399003395774044161633613E-01; weight[104-1] = 0.13610136522139249906034237533759E-01; weight[105-1] = 0.13099957986718627426172681912499E-01; weight[106-1] = 0.12581826520465013101514365424172E-01; weight[107-1] = 0.12056056679400848183529562144697E-01; weight[108-1] = 0.11522967656921087154811609734510E-01; weight[109-1] = 0.10982883090068975788799657376065E-01; weight[110-1] = 0.10436130863141005225673171997668E-01; weight[111-1] = 0.98830429087554914716648010899606E-02; weight[112-1] = 0.93239550065309714787536985834029E-02; weight[113-1] = 0.87592065795403145773316804234385E-02; weight[114-1] = 0.81891404887415730817235884718726E-02; weight[115-1] = 0.76141028256526859356393930849227E-02; weight[116-1] = 0.70344427036681608755685893032552E-02; weight[117-1] = 0.64505120486899171845442463868748E-02; weight[118-1] = 0.58626653903523901033648343751367E-02; weight[119-1] = 0.52712596565634400891303815906251E-02; weight[120-1] = 0.46766539777779034772638165662478E-02; weight[121-1] = 0.40792095178254605327114733456293E-02; weight[122-1] = 0.34792893810051465908910894094105E-02; weight[123-1] = 0.28772587656289004082883197417581E-02; weight[124-1] = 0.22734860707492547802810838362671E-02; weight[125-1] = 0.16683488125171936761028811985672E-02; weight[126-1] = 0.10622766869538486959954760554099E-02; weight[127-1] = 0.45645726109586654495731936146574E-03; } else { cout << "\n"; cout << "GL_WEIGHTS - Fatal error!\n"; cout << " Illegal value of ORDER = " << order << "\n"; cout << " Legal values are 1, 3, 7, 15, 31, 63 and 127.\n"; exit ( 1 ); } return; } //****************************************************************************80 int i4_choose ( int n, int k ) //****************************************************************************80 // // Purpose: // // CHOOSE computes the binomial coefficient C(N,K). // // Discussion: // // The value is calculated in such a way as to avoid overflow and // roundoff. The calculation is done in integer arithmetic. // // The formula used is: // // C(N,K) = N! / ( K! * (N-K)! ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 May 2007 // // Author: // // John Burkardt // // Reference: // // ML Wolfson, HV Wright, // Algorithm 160: // Combinatorial of M Things Taken N at a Time, // Communications of the ACM, // Volume 6, Number 4, April 1963, page 161. // // Parameters: // // Input, int N, K, are the values of N and K. // // Output, int I4_CHOOSE, the number of combinations of N // things taken K at a time. // { int i; int mn; int mx; int value; mn = i4_min ( k, n - k ); if ( mn < 0 ) { value = 0; } else if ( mn == 0 ) { value = 1; } else { mx = i4_max ( k, n - k ); value = mx + 1; for ( i = 2; i <= mn; i++ ) { value = ( value * ( mx + i ) ) / i; } } return value; } //****************************************************************************80 int i4_log_2 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_2 returns the integer part of the logarithm base 2 of an I4. // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 1 // 3 1 // 4 2 // 5 2 // 7 2 // 8 3 // 9 3 // 1000 9 // 1024 10 // // Discussion: // // I4_LOG_2 ( I ) + 1 is the number of binary digits in I. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 2 is desired. // // Output, int I4_LOG_2, the integer part of the logarithm base 2 of // the absolute value of X. // { int i_abs; int two_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; two_pow = 2; i_abs = abs ( i ); while ( two_pow <= i_abs ) { value = value + 1; two_pow = two_pow * 2; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MAX, the larger of i1 and i2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the smaller of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of i1 and i2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_modp ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_MODP returns the nonnegative remainder of I4 division. // // Formula: // // If // NREM = I4_MODP ( I, J ) // NMULT = ( I - NREM ) / J // then // I = J * NMULT + NREM // where NREM is always nonnegative. // // Comments: // // The MOD function computes a result with the same sign as the // quantity being divided. Thus, suppose you had an angle A, // and you wanted to ensure that it was between 0 and 360. // Then mod(A,360) would do, if A was positive, but if A // was negative, your result would be between -360 and 0. // // On the other hand, I4_MODP(A,360) is between 0 and 360, always. // // Examples: // // I J MOD I4_MODP I4_MODP Factorization // // 107 50 7 7 107 = 2 * 50 + 7 // 107 -50 7 7 107 = -2 * -50 + 7 // -107 50 -7 43 -107 = -3 * 50 + 43 // -107 -50 -7 43 -107 = 3 * -50 + 43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number to be divided. // // Input, int J, the number that divides I. // // Output, int I4_MODP, the nonnegative remainder when I is // divided by J. // { int value; if ( j == 0 ) { cout << "\n"; cout << "I4_MODP - Fatal error!\n"; cout << " I4_MODP ( I, J ) called with J = " << j << "\n"; exit ( 1 ); } value = i % j; if ( value < 0 ) { value = value + abs ( j ); } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cout << "\n"; cout << "I4_POWER - Fatal error!\n"; cout << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cout << "\n"; cout << "I4_POWER - Fatal error!\n"; cout << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 string i4_to_string ( int i4, string format ) //****************************************************************************80 // // Purpose: // // I4_TO_STRING converts an I4 to a C++ string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int I4, an integer. // // Input, string FORMAT, the format string. // // Output, string I4_TO_STRING, the string. // { char i4_char[80]; string i4_string; sprintf ( i4_char, format.c_str ( ), i4 ); i4_string = string ( i4_char ); return i4_string; } //****************************************************************************80 int i4vec_product ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_PRODUCT multiplies the entries of an I4VEC. // // Example: // // A = ( 1, 2, 3, 4 ) // // I4VEC_PRODUCT = 24 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector // // Output, int I4VEC_PRODUCT, the product of the entries of A. // { int i; int product; product = 1; for ( i = 0; i < n; i++ ) { product = product * a[i]; } return product; } //****************************************************************************80 int *index_level_gl ( int level, int level_max, int dim_num, int point_num, int grid_index[], int grid_base[] ) //****************************************************************************80 // // Purpose: // // INDEX_LEVEL_GL: determine first level at which given index is generated. // // Discussion: // // We are constructing a sparse grid of Gauss-Legendre points. The grid // is built up of product grids, with a characteristic LEVEL. // // We are concerned with identifying points in this product grid which // have actually been generated previously, on a lower value of LEVEL. // // This routine determines the lowest value of LEVEL at which each of // the input points would be generated. // // In 1D, given LEVEL, the number of points is ORDER = 2**(LEVEL+1) + 1, // (except that LEVEL = 0 implies ORDER = 1//), the BASE is (ORDER-1)/2, // and the point INDEX values range from -BASE to +BASE. // // The values of INDEX and BASE allow us to determine the abstract // properties of the point. In particular, if INDEX is 0, the corresponding // Gauss-Legendre abscissa is 0, the special "nested" value we need // to take care of. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 September 2007 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, int LEVEL, the level at which these points were // generated. LEVEL_MIN <= LEVEL <= LEVEL_MAX. // // Input, int LEVEL_MAX, the maximum level. // // Input, int DIM_NUM, the spatial dimension. // // Input, int POINT_NUM, the number of points to be tested. // // Input, int GRID_INDEX[DIM_NUM*POINT_NUM], the indices of the // points to be tested. // // Input, int GRID_BASE[DIM_NUM], the "base", which is essentially // the denominator of the index. // // Output, int INDEX_LEVEL_GL[POINT_NUM], the value of LEVEL at // which the point would first be generated. This will be the same as // the input value of LEVEL, unless the point has an INDEX of 0 and // a corresponding BASE that is NOT zero. // { int dim; int *grid_level; int level_min; int point; grid_level = new int[point_num]; level_min = i4_max ( 0, level_max + 1 - dim_num ); // // If a point has a DIM-th component whose INDEX is 0, then the // value of LEVEL at which this point would first be generated is // less than LEVEL, unless the DIM-th component of GRID_BASE is 0. // for ( point = 0; point < point_num; point++ ) { grid_level[point] = i4_max ( level, level_min ); for ( dim = 0; dim < dim_num; dim++ ) { if ( grid_index[dim+point*dim_num] == 0 ) { grid_level[point] = i4_max ( grid_level[point] - grid_base[dim], level_min ); } } } return grid_level; } //****************************************************************************80 void level_to_order_open ( int dim_num, int level[], int order[] ) //****************************************************************************80 // // Purpose: // // LEVEL_TO_ORDER_OPEN converts a level to an order for open rules. // // Discussion: // // Sparse grids can naturally be nested. A natural scheme is to use // a series of one-dimensional rules arranged in a series of "levels" // whose order roughly doubles with each step. // // The arrangement described here works naturally for the Fejer Type 1, // Fejer Type 2, Newton Cotes Open, Newton Cotes Half Open, // and Gauss-Patterson rules. It also can be used, partially, to describe // the growth of Gauss-Legendre rules. // // The idea is that we start with LEVEL = 0, ORDER = 1 indicating the single // point at the center, and for all values afterwards, we use the relationship // // ORDER = 2**(LEVEL+1) - 1. // // The following table shows how the growth will occur: // // Level Order // // 0 1 // 1 3 = 4 - 1 // 2 7 = 8 - 1 // 3 15 = 16 - 1 // 4 31 = 32 - 1 // 5 63 = 64 - 1 // // For the Fejer Type 1, Fejer Type 2, Newton Cotes Open, // Newton Cotes Open Half, and Gauss-Patterson rules, the point growth is // nested. If we have ORDER points on a particular LEVEL, the next level // includes all these old points, plus ORDER+1 new points, formed in the // gaps between successive pairs of old points plus an extra point at each // end. // // Level Order = New + Old // // 0 1 = 1 + 0 // 1 3 = 2 + 1 // 2 7 = 4 + 3 // 3 15 = 8 + 7 // 4 31 = 16 + 15 // 5 63 = 32 + 31 // // If we use a series of Gauss-Legendre rules, then there is almost no // nesting, except that the central point is shared. If we insist on // producing a comparable series of such points, then the "nesting" behavior // is as follows: // // Level Order = New + Old // // 0 1 = 1 + 0 // 1 3 = 2 + 1 // 2 7 = 6 + 1 // 3 15 = 14 + 1 // 4 31 = 30 + 1 // 5 63 = 62 + 1 // // Moreover, if we consider ALL the points used in such a set of "nested" // Gauss-Legendre rules, then we must sum the "NEW" column, and we see that // we get roughly twice as many points as for the truly nested rules. // // In this routine, we assume that a vector of levels is given, // and the corresponding orders are desired. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2007 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL[DIM_NUM], the nesting level. // // Output, int ORDER[DIM_NUM], the order (number of points) // of the rule. // { int dim; for ( dim = 0; dim < dim_num; dim++ ) { if ( level[dim] < 0 ) { order[dim] = -1; } else if ( level[dim] == 0 ) { order[dim] = 1; } else { order[dim] = i4_power ( 2, level[dim] + 1 ) - 1 ; } } return; } //****************************************************************************80 double monomial_int01 ( int dim_num, int expon[] ) //****************************************************************************80 // // Purpose: // // MONOMIAL_INT01 returns the integral of a monomial over the [0,1] hypercube. // // Discussion: // // This routine evaluates a monomial of the form // // product ( 1 <= dim <= dim_num ) x(dim)^expon(dim) // // where the exponents are nonnegative integers. Note that // if the combination 0^0 is encountered, it should be treated // as 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int EXPON[DIM_NUM], the exponents. // // Output, double MONOMIAL_INT01, the value of the integral of the // monomial. // { int dim; double value; value = 1.0; for ( dim = 0; dim < dim_num; dim++ ) { value = value / ( double ) ( expon[dim] + 1 ); } return value; } //****************************************************************************80 double monomial_quadrature ( int dim_num, int expon[], int point_num, double weight[], double x[] ) //****************************************************************************80 // // Purpose: // // MONOMIAL_QUADRATURE applies a quadrature rule to a monomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int EXPON[DIM_NUM], the exponents. // // Input, int POINT_NUM, the number of points in the rule. // // Input, double WEIGHT[POINT_NUM], the quadrature weights. // // Input, double X[DIM_NUM*POINT_NUM], the quadrature points. // // Output, double MONOMIAL_QUADRATURE, the quadrature error. // { double exact; int point; double quad; double quad_error; double scale; double *value; // // Get the exact value of the integral of the unscaled monomial. // scale = monomial_int01 ( dim_num, expon ); // // Evaluate the monomial at the quadrature points. // value = monomial_value ( dim_num, point_num, x, expon ); // // Compute the weighted sum and divide by the exact value. // quad = 0.0; for ( point = 0; point < point_num; point++ ) { quad = quad + weight[point] * value[point]; } quad = quad / scale; // // Error: // exact = 1.0; quad_error = fabs ( quad - exact ); delete [] value; return quad_error; } //****************************************************************************80 double *monomial_value ( int dim_num, int point_num, double x[], int expon[] ) //****************************************************************************80 // // Purpose: // // MONOMIAL_VALUE evaluates a monomial. // // Discussion: // // This routine evaluates a monomial of the form // // product ( 1 <= dim <= dim_num ) x(dim)^expon(dim) // // where the exponents are nonnegative integers. Note that // if the combination 0^0 is encountered, it should be treated // as 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int POINT_NUM, the number of points at which the // monomial is to be evaluated. // // Input, double X[DIM_NUM*POINT_NUM], the point coordinates. // // Input, int EXPON[DIM_NUM], the exponents. // // Output, double MONOMIAL_VALUE[POINT_NUM], the value of the monomial. // { int dim; int point; double *value; value = new double[point_num]; for ( point = 0; point < point_num; point++ ) { value[point] = 1.0; } for ( dim = 0; dim < dim_num; dim++ ) { if ( 0 != expon[dim] ) { for ( point = 0; point < point_num; point++ ) { value[point] = value[point] * pow ( x[dim+point*dim_num], expon[dim] ); } } } return value; } //****************************************************************************80 int *multigrid_index_z ( int dim_num, int order_1d[], int order_nd ) //****************************************************************************80 // // Purpose: // // MULTIGRID_INDEX_Z returns an indexed multidimensional grid. // // Discussion: // // For dimension DIM, the number of points is ORDER_1D[DIM]. // // We assume that ORDER_1D[DIM] is an odd number, // ORDER_1D[DIM] = N = 2 * M + 1 // so that the points have coordinates // -M/M, -(M-1)/M, ..., -1/M, 0/M, 1/M, 2/M, 3/M, ..., (M-1)/M, M/M. // and we index them as // -M, -(M-1), -1, 0, 1, 2, 3, ..., M-1, M. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2007 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, int DIM_NUM, the spatial dimension of the points. // // Input, int ORDER_1D[DIM_NUM], the order of the // rule in each dimension. // // Input, int ORDER_ND, the product of the entries of ORDER_1D. // // Output, int INDX[DIM_NUM*ORDER_ND], the indices of the points in // the grid. The second dimension of this array is equal to the // product of the entries of ORDER_1D. // { int *a; int dim; bool more; int p; int *indx; indx = new int[dim_num*order_nd]; a = new int[dim_num]; more = false; p = 0; for ( ; ; ) { vec_colex_next2 ( dim_num, order_1d, a, &more ); if ( !more ) { break; } // // The values of A(DIM) are between 0 and ORDER_1D(DIM)-1 = N - 1 = 2 * M. // Subtracting M sets the range to -M to +M, as we wish. // for ( dim = 0; dim < dim_num; dim++ ) { indx[dim+p*dim_num] = a[dim] - ( order_1d[dim] - 1 ) / 2; } p = p + 1; } delete [] a; return indx; } //****************************************************************************80 double *product_weight_gl ( int dim_num, int order_1d[], int order_nd ) //****************************************************************************80 // // Purpose: // // PRODUCT_WEIGHT_GL: weights for a product Gauss-Legendre rule. // // Discussion: // // This routine computes the weights for a quadrature rule which is // a product of 1D Gauss-Legendre rules of varying order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 September 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int ORDER_1D[DIM_NUM], the order of the 1D rules. // // Input, int ORDER_ND, the order of the product rule. // // Output, double PRODUCT_WEIGHT_GL[ORDER_ND], the product rule weights. // { int dim; int order; double *w_1d; double *w_nd; w_nd = new double[order_nd]; for ( order = 0; order < order_nd; order++ ) { w_nd[order] = 1.0; } for ( dim = 0; dim < dim_num; dim++ ) { w_1d = new double[order_1d[dim]]; gl_weights ( order_1d[dim], w_1d ); r8vec_direct_product2 ( dim, order_1d[dim], w_1d, dim_num, order_nd, w_nd ); delete [] w_1d; } return w_nd; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the table data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; return; } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(24) << setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 void r8vec_direct_product2 ( int factor_index, int factor_order, double factor_value[], int factor_num, int point_num, double w[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DIRECT_PRODUCT2 creates a direct product of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // To explain what is going on here, suppose we had to construct // a multidimensional quadrature rule as the product of K rules // for 1D quadrature. // // The product rule will be represented as a list of points and weights. // // The J-th item in the product rule will be associated with // item J1 of 1D rule 1, // item J2 of 1D rule 2, // ..., // item JK of 1D rule K. // // In particular, // X(J) = ( X(1,J1), X(2,J2), ..., X(K,JK)) // and // W(J) = W(1,J1) * W(2,J2) * ... * W(K,JK) // // So we can construct the quadrature rule if we can properly // distribute the information in the 1D quadrature rules. // // This routine carries out that task for the weights W. // // Another way to do this would be to compute, one by one, the // set of all possible indices (J1,J2,...,JK), and then index // the appropriate information. An advantage of the method shown // here is that you can process the K-th set of information and // then discard it. // // Example: // // Rule 1: // Order = 4 // W(1:4) = ( 2, 3, 5, 7 ) // // Rule 2: // Order = 3 // W(1:3) = ( 11, 13, 17 ) // // Rule 3: // Order = 2 // W(1:2) = ( 19, 23 ) // // Product Rule: // Order = 24 // W(1:24) = // ( 2 * 11 * 19 ) // ( 3 * 11 * 19 ) // ( 4 * 11 * 19 ) // ( 7 * 11 * 19 ) // ( 2 * 13 * 19 ) // ( 3 * 13 * 19 ) // ( 5 * 13 * 19 ) // ( 7 * 13 * 19 ) // ( 2 * 17 * 19 ) // ( 3 * 17 * 19 ) // ( 5 * 17 * 19 ) // ( 7 * 17 * 19 ) // ( 2 * 11 * 23 ) // ( 3 * 11 * 23 ) // ( 5 * 11 * 23 ) // ( 7 * 11 * 23 ) // ( 2 * 13 * 23 ) // ( 3 * 13 * 23 ) // ( 5 * 13 * 23 ) // ( 7 * 13 * 23 ) // ( 2 * 17 * 23 ) // ( 3 * 17 * 23 ) // ( 5 * 17 * 23 ) // ( 7 * 17 * 23 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 April 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int FACTOR_INDEX, the index of the factor being processed. // The first factor processed must be factor 0. // // Input, int FACTOR_ORDER, the order of the factor. // // Input, double FACTOR_VALUE[FACTOR_ORDER], the factor values for // factor FACTOR_INDEX. // // Input, int FACTOR_NUM, the number of factors. // // Input, int POINT_NUM, the number of elements in the direct product. // // Input/output, double W[POINT_NUM], the elements of the // direct product, which are built up gradually. // // Local Parameters: // // Local, integer START, the first location of a block of values to set. // // Local, integer CONTIG, the number of consecutive values to set. // // Local, integer SKIP, the distance from the current value of START // to the next location of a block of values to set. // // Local, integer REP, the number of blocks of values to set. // { static int contig = 0; int i; int j; int k; static int rep = 0; static int skip = 0; int start; if ( factor_index == 0 ) { contig = 1; skip = 1; rep = point_num; for ( i = 0; i < point_num; i++ ) { w[i] = 1.0; } } rep = rep / factor_order; skip = skip * factor_order; for ( j = 0; j < factor_order; j++ ) { start = 0 + j * contig; for ( k = 1; k <= rep; k++ ) { for ( i = start; i < start + contig; i++ ) { w[i] = w[i] * factor_value[j]; } start = start + skip; } } contig = contig * factor_order; return; } //****************************************************************************80 int s_len_trim ( char *s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 April 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, a pointer to a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; char *t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' ) { return n; } t--; n--; } return n; } //****************************************************************************80 void sparse_grid_gl ( int dim_num, int level_max, int point_num, double grid_weight[], double grid_point[] ) //****************************************************************************80 // // Purpose: // // SPARSE_GRID_GL computes a sparse grid of Gauss-Legendre points. // // Discussion: // // The quadrature rule is associated with a sparse grid derived from // a Smolyak construction using a 1D Gauss-Legendre quadrature rule. // // The user specifies: // * the spatial dimension of the quadrature region, // * the level that defines the Smolyak grid. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL_MAX, controls the size of the final sparse grid. // // Input, int POINT_NUM, the number of points in the grid, as determined // by SPARSE_GRID_GL_SIZE. // // Output, double GRID_WEIGHT[POINT_NUM], the weights. // // Output, double GRID_POINT[DIM_NUM*POINT_NUM], the points. // { int coeff; int dim; int *grid_base2; int *grid_index2; int *grid_level; double *grid_point_temp; double *grid_weight2; int h; int level; int *level_1d; int level_min; bool more; int *order_1d; int order_nd; int order_max; int point; int point_num2; int point2; int point3; int t; for ( point = 0; point < point_num; point++ ) { grid_weight[point] = 0.0; } // // The outer loop generates LEVELs from LEVEL_MIN to LEVEL_MAX. // point_num2 = 0; level_min = i4_max ( 0, level_max + 1 - dim_num ); grid_base2 = new int[dim_num]; level_1d = new int[dim_num]; order_1d = new int[dim_num]; for ( level = level_min; level <= level_max; level++ ) { // // The middle loop generates the next partition LEVEL_1D(1:DIM_NUM) // that adds up to LEVEL. // more = false; h = 0; t = 0; for ( ; ; ) { comp_next ( level, dim_num, level_1d, &more, &h, &t ); // // Transform each 1D level to a corresponding 1D order. // The relationship is the same as for other OPEN rules. // The GL rule differs from the other OPEN rules only in the nesting behavior. // level_to_order_open ( dim_num, level_1d, order_1d ); for ( dim = 0; dim < dim_num; dim++ ) { grid_base2[dim] = ( order_1d[dim] - 1 ) / 2; } // // The product of the 1D orders gives us the number of points in this grid. // order_nd = i4vec_product ( dim_num, order_1d ); // // Compute the weights for this product grid. // grid_weight2 = product_weight_gl ( dim_num, order_1d, order_nd ); // // Now determine the coefficient of the weight. // coeff = i4_power ( -1, level_max - level ) * i4_choose ( dim_num - 1, level_max - level ); // // The inner (hidden) loop generates all points corresponding to given grid. // The grid indices will be between -M to +M, where 2*M + 1 = ORDER_1D(DIM). // grid_index2 = multigrid_index_z ( dim_num, order_1d, order_nd ); // // Determine the first level of appearance of each of the points. // This allows us to flag certain points as being repeats of points // generated on a grid of lower level. // // This is SLIGHTLY tricky. // grid_level = index_level_gl ( level, level_max, dim_num, order_nd, grid_index2, grid_base2 ); // // Only keep those points which first appear on this level. // for ( point = 0; point < order_nd; point++ ) { // // Either a "new" point (increase count, create point, create weight) // if ( grid_level[point] == level ) { gl_abscissa ( dim_num, 1, grid_index2+point*dim_num, grid_base2, grid_point+point_num2*dim_num ); grid_weight[point_num2] = ( double ) ( coeff ) * grid_weight2[point]; point_num2 = point_num2 + 1; } // // or an already existing point (create point temporarily, find match, // add weight to matched point's weight). // else { grid_point_temp = new double[dim_num]; gl_abscissa ( dim_num, 1, grid_index2+point*dim_num, grid_base2, grid_point_temp ); for ( point2 = 0; point2 < point_num2; point2++ ) { point3 = point2; for ( dim = 0; dim < dim_num; dim++ ) { if ( grid_point[dim+point2*dim_num] != grid_point_temp[dim] ) { point3 = -1; break; } } if ( point3 == point2 ) { break; } } if ( point3 == -1 ) { cout << "\n"; cout << "SPARSE_GRID_GL - Fatal error!\n"; cout << " Could not match point.\n"; exit ( 1 ); } grid_weight[point3] = grid_weight[point3] + ( double ) ( coeff ) * grid_weight2[point]; } } delete [] grid_index2; delete [] grid_level; delete [] grid_weight2; if ( !more ) { break; } } } delete [] grid_base2; delete [] level_1d; delete [] order_1d; return; } //****************************************************************************80 void sparse_grid_gl_index ( int dim_num, int level_max, int point_num, int grid_index [], int grid_base[] ) //****************************************************************************80 // // Purpose: // // SPARSE_GRID_GL_INDEX indexes the points forming a sparse grid of GL points. // // Discussion: // // The sparse grid is assumed to be formed from 1D Gauss-Legendre rules // of ODD order, which have the property that only the central abscissa, // X = 0.0, is "nested". // // The necessary dimensions of GRID_INDEX can be determined by // calling SPARSE_GRID_GL_SIZE first. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL_MAX, the maximum value of LEVEL. // // Input, int POINT_NUM, the total number of points in the grids. // // Output, int GRID_INDEX[DIM_NUM*POINT_NUM], a list of // point indices, representing a subset of the product grid of level // LEVEL_MAX, representing (exactly once) each point that will show up in a // sparse grid of level LEVEL_MAX. // // Output, int GRID_BASE[DIM_NUM*POINT_NUM], a list of // the orders of the Gauss-Legendre rules associated with each point and dimension. // { int dim; int factor; int *grid_base2; int *grid_index2; int *grid_level; int h; int j; int level; int *level_1d; int level_min; bool more; int *order_1d; int order_nd; int point; int point_num2; int t; // // The outer loop generates LEVELs from LEVEL_MIN to LEVEL_MAX. // point_num2 = 0; level_min = i4_max ( 0, level_max + 1 - dim_num ); grid_base2 = new int[dim_num]; level_1d = new int[dim_num]; order_1d = new int[dim_num]; for ( level = level_min; level <= level_max; level++ ) { // // The middle loop generates the next partition LEVEL_1D(1:DIM_NUM) // that adds up to LEVEL. // more = false; h = 0; t = 0; for ( ; ; ) { comp_next ( level, dim_num, level_1d, &more, &h, &t ); // // Transform each 1D level to a corresponding 1D order. // level_to_order_open ( dim_num, level_1d, order_1d ); for ( dim = 0; dim < dim_num; dim++ ) { grid_base2[dim] = ( order_1d[dim] - 1 ) / 2; } // // The product of the 1D orders gives us the number of points in this grid. // order_nd = i4vec_product ( dim_num, order_1d ); // // The inner (hidden) loop generates all points corresponding to given grid. // grid_index2 = multigrid_index_z ( dim_num, order_1d, order_nd ); // // Determine the first level of appearance of each of the points. // This allows us to flag certain points as being repeats of points // generated on a grid of lower level. // // This is SLIGHTLY tricky. // grid_level = index_level_gl ( level, level_max, dim_num, order_nd, grid_index2, grid_base2 ); // // Only keep those points which first appear on this level. // for ( point = 0; point < order_nd; point++ ) { if ( grid_level[point] == level ) { for ( dim = 0; dim < dim_num; dim++ ) { grid_index[dim+point_num2*dim_num] = grid_index2[dim+point*dim_num]; grid_base[dim+point_num2*dim_num] = grid_base2[dim]; } point_num2 = point_num2 + 1; } } delete [] grid_index2; delete [] grid_level; if ( !more ) { break; } } } delete [] grid_base2; delete [] level_1d; delete [] order_1d; return; } //****************************************************************************80 int sparse_grid_gl_size ( int dim_num, int level_max ) //****************************************************************************80 // // Purpose: // // SPARSE_GRID_GL_SIZE sizes a sparse grid of Gauss-Legendre points. // // Discussion: // // The grid is defined as the sum of the product rules whose LEVEL // satisfies: // // LEVEL_MIN <= LEVEL <= LEVEL_MAX. // // where LEVEL_MAX is user specified, and // // LEVEL_MIN = max ( 0, LEVEL_MAX + 1 - DIM_NUM ). // // The grids are only very weakly nested, since Gauss-Legendre rules // only have the origin in common. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL_MAX, the maximum value of LEVEL. // // Output, int SPARSE_GRID_GL_SIZE, the number of points in the grid. // { int dim; int h; int level; int *level_1d; int level_min; bool more; int num; int *order_1d; int order_nd; int point_num; int t; // // Special case. // if ( level_max == 0 ) { point_num = 1; return point_num; } // // The outer loop generates LEVELs from 0 to LEVEL_MAX. // point_num = 0; level_min = i4_max ( 0, level_max + 1 - dim_num ); level_1d = new int[dim_num]; order_1d = new int[dim_num]; for ( level = level_min; level <= level_max; level++ ) { // // The middle loop generates the next partition that adds up to LEVEL. // more = false; h = 0; t = 0; for ( ; ; ) { comp_next ( level, dim_num, level_1d, &more, &h, &t ); // // Transform each 1D level to a corresponding 1D order. // level_to_order_open ( dim_num, level_1d, order_1d ); for ( dim = 0; dim < dim_num; dim++ ) { // // If we can reduce the level in this dimension by 1 and // still not go below LEVEL_MIN. // if ( level_min < level && 1 < order_1d[dim] ) { order_1d[dim] = order_1d[dim] - 1; } } point_num = point_num + i4vec_product ( dim_num, order_1d ); if ( !more ) { break; } } } delete [] level_1d; delete [] order_1d; return point_num; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 void vec_colex_next2 ( int dim_num, int base[], int a[], bool *more ) //****************************************************************************80 // // Purpose: // // VEC_COLEX_NEXT2 generates vectors in colex order. // // Discussion: // // The vectors are produced in colexical order, starting with // // (0, 0, ...,0), // (1, 0, ...,0), // ... // (BASE(1)-1,0, ...,0) // // (0, 1, ...,0) // (1, 1, ...,0) // ... // (BASE(1)-1,1, ...,0) // // (0, 2, ...,0) // (1, 2, ...,0) // ... // (BASE(1)-1,BASE(2)-1,...,BASE(DIM_NUM)-1). // // Examples: // // DIM_NUM = 2, // BASE = { 3, 3 } // // 0 0 // 1 0 // 2 0 // 0 1 // 1 1 // 2 1 // 0 2 // 1 2 // 2 2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 May 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int BASE[DIM_NUM], the bases to be used in each dimension. // In dimension I, entries will range from 0 to BASE[I]-1. // // Output, int A[DIM_NUM], the next vector. // // Input/output, bool *MORE. Set this variable false before // the first call. On return, MORE is TRUE if another vector has // been computed. If MORE is returned FALSE, ignore the output // vector and stop calling the routine. // { int i; if ( !( *more ) ) { for ( i = 0; i < dim_num; i++ ) { a[i] = 0; } *more = true; } else { for ( i = 0; i < dim_num; i++ ) { a[i] = a[i] + 1; if ( a[i] < base[i] ) { return; } a[i] = 0; } *more = false; } return; }