# include # include # include # include # include # include using namespace std; # include "sparse_grid_hw.hpp" //****************************************************************************80 int cce_order ( int l ) //****************************************************************************80 // // Purpose: // // CCE_ORDER: order of a Clenshaw-Curtis Exponential rule from the level. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 February 2014 // // Author: // // John Burkardt. // // Parameters: // // Input, int L, the level of the rule. // 1 <= L. // // Output, int CCE_ORDER, the order of the rule. // { int n; if ( l < 1 ) { cerr << "\n"; cerr << "CCE_ORDER - Fatal error!\n"; cerr << " 1 <= L required.\n"; cerr << " Input L = " << l << "\n"; exit ( 1 ); } else if ( l == 1 ) { n = 1; } else { n = i4_power ( 2, l - 1 ) + 1; } return n; } //****************************************************************************80 int ccl_order ( int l ) //****************************************************************************80 // // Purpose: // // CCL_ORDER computes the order of a CCL rule from the level. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2014 // // Author: // // John Burkardt. // // Parameters: // // Input, int L, the level of the rule. // 1 <= L. // // Output, int CCL_ORDER, the order of the rule. // { int n; if ( l < 1 ) { cerr << "\n"; cerr << "CCL_ORDER - Fatal error!\n"; cerr << " 1 <= L required.\n"; cerr << " Input L = " << l << "\n"; exit ( 1 ); } n = 2 * l - 1; return n; } //****************************************************************************80 int ccs_order ( int l ) //****************************************************************************80 // // Purpose: // // CCS_ORDER: order of a "slow growth" Clenshaw Curtis quadrature rule. // // Discussion: // // Our convention is that the abscissas are numbered from left to right. // // The rule is defined on [0,1]. // // The integral to approximate: // // Integral ( 0 <= X <= 1 ) F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ) // // The input value L requests a rule of precision at least 2*L-1. // // In order to preserve nestedness, this function returns the order // of a rule which is the smallest value of the form 1+2^E which // is greater than or equal to 2*L-1. // // L 2*L-1 N // -- ----- -- // 1 1 1 // 2 3 3 // 3 5 5 // 4 7 9 // 5 9 9 // 6 11 17 // 7 13 17 // 8 15 17 // 9 17 17 // 10 19 33 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int L, the level of the rule. // 1 <= L. // // Output, int CCS_ORDER, the appropriate order. // { int n; if ( l < 1 ) { cerr << "\n"; cerr << "CCS_ORDER - Fatal error!\n"; cerr << " Illegal value of L = " << l << "\n"; exit ( 1 ); } // // Find the order N that satisfies the precision requirement. // if ( l == 1 ) { n = 1; } else { n = 3; while ( n < 2 * l - 1 ) { n = 2 * n - 1; } } return n; } //****************************************************************************80 void cc ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CC computes a Clenshaw Curtis quadrature rule based on order. // // Discussion: // // Our convention is that the abscissas are numbered from left to right. // // The rule is defined on [0,1]. // // The integral to approximate: // // Integral ( 0 <= X <= 1 ) F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the rule. // 1 <= N. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { double b; int i; int j; double pi = 3.141592653589793; double theta; if ( n < 1 ) { cerr << "\n"; cerr << "CC - Fatal error!\n"; cerr << " Illegal value of N = " << n << "\n"; exit ( 1 ); } if ( n == 1 ) { x[0] = 0.0; w[0] = 2.0; } else { for ( i = 0; i < n; i++ ) { x[i] = cos ( ( double ) ( n - 1 - i ) * pi / ( double ) ( n - 1 ) ); } x[0] = -1.0; if ( ( n % 2 ) == 1 ) { x[(n+1)/2-1] = 0.0; } x[n-1] = +1.0; for ( i = 0; i < n; i++ ) { theta = ( double ) ( i ) * pi / ( double ) ( n - 1 ); w[i] = 1.0; for ( j = 1; j <= ( n - 1 ) / 2; j++ ) { if ( 2 * j == ( n - 1 ) ) { b = 1.0; } else { b = 2.0; } w[i] = w[i] - b * cos ( 2.0 * ( double ) ( j ) * theta ) / ( double ) ( 4 * j * j - 1 ); } } w[0] = w[0] / ( double ) ( n - 1 ); for ( j = 1; j < n - 1; j++ ) { w[j] = 2.0 * w[j] / ( double ) ( n - 1 ); } w[n-1] = w[n-1] / ( double ) ( n - 1 ); } // // Transform from [-1,+1] to [0,1]. // rule_adjust ( -1.0, +1.0, 0.0, 1.0, n, x, w ); return; } //****************************************************************************80 double cpu_time ( ) //****************************************************************************80 // // Purpose: // // CPU_TIME reports the elapsed CPU time. // // Discussion: // // The data available to this routine through "CLOCK" is not very reliable, // and hence the values of CPU_TIME returned should not be taken too // seriously, especially when short intervals are being timed. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double CPU_TIME, the current total elapsed CPU time in second. // { double value; value = ( double ) clock ( ) / ( double ) CLOCKS_PER_SEC; return value; } //****************************************************************************80 double fn_integral ( int d ) //****************************************************************************80 // // Purpose: // // FN_INTEGRAL is the integral of the Hermite test function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // John Burkardt. // // Parameters: // // Input, int D, the spatial dimension. // // Output, double FN_INTEGRAL, the integral value. // { int exponent = 6; double value; value = ( double ) ( i4_factorial2 ( exponent - 1 ) ); return value; } //****************************************************************************80 double *fn_value ( int d, int n, double x[] ) //****************************************************************************80 // // Purpose: // // FN_VALUE is a Hermite test function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 May 2012 // // Author: // // John Burkardt. // // Parameters: // // Input, int D, the spatial dimension. // // Input, int N, the number of points. // // Input, double X[D*N], the points. // // Output, double FN_VALUE[N], the function values. // { int exponent = 6; double *fx; int i; fx = new double[n]; for ( i = 0; i < n; i++ ) { fx[i] = pow ( x[0+i*d], exponent ); } return fx; } //****************************************************************************80 double fu_integral ( int d ) //****************************************************************************80 // // Purpose: // // FU_INTEGRAL is the integral of the test function for the [0,1]^D interval. // // Discussion: // // The same function, integrated over [-1,+1]^D, has an integral // that is 2^D times larger. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // John Burkardt. // // Parameters: // // Input, int D, the spatial dimension. // // Output, double FU_INTEGRAL, the integral value. // { double value; value = pow ( 0.5 * erf ( 0.5 / sqrt ( 2.0 ) ), d ); return value; } //****************************************************************************80 double *fu_value ( int d, int n, double x[] ) //****************************************************************************80 // // Purpose: // // FU_VALUE is a sample function for the [0,1]^D interval. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // John Burkardt. // // Parameters: // // Input, int D, the spatial dimension. // // Input, int N, the number of points. // // Input, double X[D*N], the points. // // Output, double FU_VALUE[N], the function values. // { double *fx; int i; int j; double pi = 3.141592653589793; fx = new double[n]; for ( j = 0; j < n; j++ ) { fx[j] = 1.0; for ( i = 0; i < d; i++ ) { fx[j] = fx[j] * exp ( - pow ( x[i+j*d] / 2.0, 2 ) / 2.0 ) / 2.0 / sqrt ( 2.0 * pi ); } } return fx; } //****************************************************************************80 int *get_seq ( int d, int norm, int seq_num ) //****************************************************************************80 // // Purpose: // // GET_SEQ generates all positive integer D-vectors that sum to NORM. // // Discussion: // // This function computes a list, in reverse dictionary order, of // all D-vectors of positive values that sum to NORM. // // For example, call get_seq ( 3, 5, 6, fs ) returns // // 3 1 1 // 2 2 1 // 2 1 2 // 1 3 1 // 1 2 2 // 1 1 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // Original MATLAB version by Florian Heiss, Viktor Winschel. // C++ version by John Burkardt. // // Reference: // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Parameters: // // Input, int D, the dimension. // 1 <= D. // // Input, int NORM, the value that each row must sum to. // D <= NORM. // // Input, int SEQ_NUM, the number of rows of FS. // // Output, int GET_SEQ[SEQ_NUM*D]. Each row of FS represents // one vector with all elements positive and summing to NORM. // { int a; int c; int *fs; int i; int row; int *seq; seq = new int[d]; fs = new int[seq_num*d]; if ( norm < d ) { cerr << "\n"; cerr << "GET_SEQ - Fatal error!\n"; cerr << " NORM = " << norm << " < D = " << "\n"; exit ( 1 ) ; } for ( i = 0; i < d; i++ ) { seq[i] = 0; } // // The algorithm is written to work with vectors whose minimum value is // allowed to be zero. So we subtract D from NORM at the beginning and // then increment the result vectors by 1 at the end! // a = norm - d; seq[0] = a; row = 0; for ( i = 0; i < d; i++ ) { fs[row+i*seq_num] = seq[i] + 1; } c = 0; while ( seq[d-1] < a ) { if ( c == d - 1 ) { for ( i = c - 1; 0 <= i; i-- ) { c = i; if ( seq[i] != 0 ) { break; } } } seq[c] = seq[c] - 1; c = c + 1; seq[c] = a; for ( i = 0; i < c; i++ ) { seq[c] = seq[c] - seq[i]; } if ( c < d - 1 ) { for ( i = c + 1; i < d; i++ ) { seq[i] = 0; } } row = row + 1; for ( i = 0; i < d; i++ ) { fs[row+i*seq_num] = seq[i] + 1; } } delete [] seq; return fs; } //****************************************************************************80 void gqn ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // GQN provides data for Gauss quadrature with a normal weight. // // Discussion: // // This data assumes integration over the interval (-oo,+oo) with // weight function w(x) = exp(-x*x/2)/sqrt(2*pi). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 December 2012 // // Author: // // Original MATLAB version by Florian Heiss, Viktor Winschel. // C++ version by John Burkardt. // // Reference: // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Parameters: // // Input, int N, the number of points and weights. // 1 <= N <= 25. // // Output, double X[N], the nodes. // // Output, double W[N], the weights. // { double x01[1] = { 0.00000000000000000 }; double w01[1] = { 1.00000000000000000 }; double x02[2] = { -1.00000000000000000, 1.00000000000000000 }; double w02[2] = { 0.50000000000000000, 0.50000000000000000 }; double x03[3] = { -1.73205080756887719, 0.00000000000000000, 1.73205080756887719 }; double w03[3] = { 0.166666666666666741, 0.66666666666666663, 0.166666666666666741 }; double x04[4] = { -2.33441421833897733, -0.741963784302725915, 0.741963784302725915, 2.33441421833897733 }; double w04[4] = { 0.0458758547680684983, 0.454124145231931453, 0.454124145231931453, 0.0458758547680684983 }; double x05[5] = { -2.85697001387280558, -1.35562617997426593, 0.00000000000000000, 1.35562617997426593, 2.85697001387280558 }; double w05[5] = { 0.011257411327720691, 0.22207592200561263, 0.533333333333333437, 0.22207592200561263, 0.011257411327720691 }; double x06[6] = { -3.32425743355211933, -1.88917587775371087, -0.616706590192594217, 0.616706590192594217, 1.88917587775371087, 3.32425743355211933 }; double w06[6] = { 0.00255578440205624308, 0.0886157460419145226, 0.408828469556029195, 0.408828469556029195, 0.0886157460419145226, 0.00255578440205624308 }; double x07[7] = { -3.75043971772574247, -2.36675941073454155, -1.15440539473996817, 0.00000000000000000, 1.15440539473996817, 2.36675941073454155, 3.75043971772574247 }; double w07[7] = { 0.000548268855972218754, 0.0307571239675864909, 0.240123178605012505, 0.457142857142857573, 0.240123178605012505, 0.0307571239675864909, 0.000548268855972218754 }; double x08[8] = { -4.14454718612589446, -2.80248586128754162, -1.63651904243510815, -0.539079811351375171, 0.539079811351375171, 1.63651904243510815, 2.80248586128754162, 4.14454718612589446 }; double w08[8] = { 0.000112614538375367836, 0.00963522012078826297, 0.117239907661758971, 0.373012257679077364, 0.373012257679077364, 0.117239907661758971, 0.00963522012078826297, 0.000112614538375367836 }; double x09[9] = { -4.51274586339978256, -3.20542900285647026, -2.07684797867783022, -1.02325566378913257, 0.00000000000000000, 1.02325566378913257, 2.07684797867783022, 3.20542900285647026, 4.51274586339978256 }; double w09[9] = { 2.23458440077465626E-05, 0.0027891413212317675, 0.0499164067652179688, 0.244097502894939089, 0.406349206349206848, 0.244097502894939089, 0.0499164067652179688, 0.0027891413212317675, 2.23458440077465626E-05 }; double x10[10] = { -4.85946282833231269, -3.58182348355192692, -2.48432584163895465, -1.46598909439115821, -0.484935707515497638, 0.484935707515497638, 1.46598909439115821, 2.48432584163895465, 3.58182348355192692, 4.85946282833231269 }; double w10[10] = { 4.3106526307183106E-06, 0.000758070934312219725, 0.0191115805007703171, 0.135483702980267295, 0.344642334932019401, 0.344642334932019401, 0.135483702980267295, 0.0191115805007703171, 0.000758070934312219725, 4.3106526307183106E-06 }; double x11[11] = { -5.18800122437487143, -3.93616660712997746, -2.8651231606436447, -1.87603502015484591, -0.928868997381063877, 0.00000000000000000, 0.928868997381063877, 1.87603502015484591, 2.8651231606436447, 3.93616660712997746, 5.18800122437487143 }; double w11[11] = { 8.12184979021490357E-07, 0.000195671930271223244, 0.0067202852355372697, 0.0661387460710576441, 0.242240299873970027, 0.369408369408369575, 0.242240299873970027, 0.0661387460710576441, 0.0067202852355372697, 0.000195671930271223244, 8.12184979021490357E-07 }; double x12[12] = { -5.50090170446774795, -4.27182584793228148, -3.22370982877009737, -2.25946445100079929, -1.34037519715161668, -0.444403001944139009, 0.444403001944139009, 1.34037519715161668, 2.25946445100079929, 3.22370982877009737, 4.27182584793228148, 5.50090170446774795 }; double w12[12] = { 1.49992716763715968E-07, 4.83718492259060763E-05, 0.00220338068753318491, 0.0291166879123641378, 0.146967048045329951, 0.321664361512830066, 0.321664361512830066, 0.146967048045329951, 0.0291166879123641378, 0.00220338068753318491, 4.83718492259060763E-05, 1.49992716763715968E-07 }; double x13[13] = { -5.8001672523865011, -4.59139844893652072, -3.56344438028163468, -2.62068997343221488, -1.7254183795882394, -0.856679493519450053, 0.00000000000000000, 0.856679493519450053, 1.7254183795882394, 2.62068997343221488, 3.56344438028163468, 4.59139844893652072, 5.8001672523865011 }; double w13[13] = { 2.72262764280590389E-08, 1.15265965273338848E-05, 0.000681236350442926191, 0.0117705605059965426, 0.0791689558604501409, 0.237871522964135884, 0.340992340992341492, 0.237871522964135884, 0.0791689558604501409, 0.0117705605059965426, 0.000681236350442926191, 1.15265965273338848E-05, 2.72262764280590389E-08 }; double x14[14] = { -6.08740954690129144, -4.89693639734556463, -3.88692457505976963, -2.96303657983866753, -2.08834474570194439, -1.24268895548546432, -0.412590457954601808, 0.412590457954601808, 1.24268895548546432, 2.08834474570194439, 2.96303657983866753, 3.88692457505976963, 4.89693639734556463, 6.08740954690129144 }; double w14[14] = { 4.86816125774838718E-09, 2.66099134406763342E-06, 0.00020033955376074381, 0.00442891910694740657, 0.0386501088242534319, 0.154083339842513656, 0.302634626813019447, 0.302634626813019447, 0.154083339842513656, 0.0386501088242534319, 0.00442891910694740657, 0.00020033955376074381, 2.66099134406763342E-06, 4.86816125774838718E-09 }; double x15[15] = { -6.36394788882983775, -5.19009359130478209, -4.19620771126901548, -3.28908242439876641, -2.43243682700975805, -1.60671006902873015, -0.799129068324548109, 0.00000000000000000, 0.799129068324548109, 1.60671006902873015, 2.43243682700975805, 3.28908242439876641, 4.19620771126901548, 5.19009359130478209, 6.36394788882983775 }; double w15[15] = { 8.58964989963318053E-10, 5.97541959792059611E-07, 5.64214640518901565E-05, 0.00156735750354995707, 0.0173657744921376159, 0.0894177953998444436, 0.232462293609732223, 0.318259518259518204, 0.232462293609732223, 0.0894177953998444436, 0.0173657744921376159, 0.00156735750354995707, 5.64214640518901565E-05, 5.97541959792059611E-07, 8.58964989963318053E-10 }; double x16[16] = { -6.63087819839312953, -5.47222570594934332, -4.49295530252001196, -3.60087362417154866, -2.76024504763070189, -1.95198034571633361, -1.1638291005549648, -0.386760604500557381, 0.386760604500557381, 1.1638291005549648, 1.95198034571633361, 2.76024504763070189, 3.60087362417154866, 4.49295530252001196, 5.47222570594934332, 6.63087819839312953 }; double w16[16] = { 1.49781472316183141E-10, 1.30947321628682029E-07, 1.53000321624872858E-05, 0.000525984926573909786, 0.0072669376011847411, 0.0472847523540140674, 0.158338372750949252, 0.286568521238012408, 0.286568521238012408, 0.158338372750949252, 0.0472847523540140674, 0.0072669376011847411, 0.000525984926573909786, 1.53000321624872858E-05, 1.30947321628682029E-07, 1.49781472316183141E-10 }; double x17[17] = { -6.88912243989533302, -5.74446007865940711, -4.77853158962998403, -3.90006571719801043, -3.07379717532819408, -2.28101944025298886, -1.50988330779674085, -0.751842600703896302, 0.00000000000000000, 0.751842600703896302, 1.50988330779674085, 2.28101944025298886, 3.07379717532819408, 3.90006571719801043, 4.77853158962998403, 5.74446007865940711, 6.88912243989533302 }; double w17[17] = { 2.58431491937491514E-11, 2.80801611793057831E-08, 4.0126794479798725E-06, 0.000168491431551339447, 0.00285894606228464989, 0.023086657025711152, 0.0974063711627180806, 0.226706308468978768, 0.299538370126607556, 0.226706308468978768, 0.0974063711627180806, 0.023086657025711152, 0.00285894606228464989, 0.000168491431551339447, 4.0126794479798725E-06, 2.80801611793057831E-08, 2.58431491937491514E-11 }; double x18[18] = { -7.13946484914647961, -6.00774591135959746, -5.05407268544274046, -4.1880202316294044, -3.37473653577809074, -2.59583368891124033, -1.83977992150864567, -1.09839551809150127, -0.365245755507697667, 0.365245755507697667, 1.09839551809150127, 1.83977992150864567, 2.59583368891124033, 3.37473653577809074, 4.1880202316294044, 5.05407268544274046, 6.00774591135959746, 7.13946484914647961 }; double w18[18] = { 4.41658876935870775E-12, 5.90548847883654844E-09, 1.02155239763698159E-06, 5.17989614411619621E-05, 0.00106548479629164959, 0.0105165177519413525, 0.0548966324802226541, 0.160685303893512627, 0.272783234654287887, 0.272783234654287887, 0.160685303893512627, 0.0548966324802226541, 0.0105165177519413525, 0.00106548479629164959, 5.17989614411619621E-05, 1.02155239763698159E-06, 5.90548847883654844E-09, 4.41658876935870775E-12 }; double x19[19] = { -7.38257902403043165, -6.2628911565132519, -5.32053637733603857, -4.46587262683103159, -3.66441654745063827, -2.89805127651575356, -2.15550276131693508, -1.4288766760783731, -0.712085044042379933, 0.00000000000000000, 0.712085044042379933, 1.4288766760783731, 2.15550276131693508, 2.89805127651575356, 3.66441654745063827, 4.46587262683103159, 5.32053637733603857, 6.2628911565132519, 7.38257902403043165 }; double w19[19] = { 7.4828300540572308E-13, 1.22037084844747862E-09, 2.53222003209286807E-07, 1.53511459546667444E-05, 0.000378502109414267593, 0.00450723542034203555, 0.0286666910301184956, 0.103603657276143998, 0.220941712199143658, 0.283773192751521075, 0.220941712199143658, 0.103603657276143998, 0.0286666910301184956, 0.00450723542034203555, 0.000378502109414267593, 1.53511459546667444E-05, 2.53222003209286807E-07, 1.22037084844747862E-09, 7.4828300540572308E-13 }; double x20[20] = { -7.61904854167975909, -6.51059015701365507, -5.57873880589320148, -4.73458133404605519, -3.9439673506573163, -3.18901481655339003, -2.45866361117236787, -1.74524732081412703, -1.04294534880275092, -0.346964157081355917, 0.346964157081355917, 1.04294534880275092, 1.74524732081412703, 2.45866361117236787, 3.18901481655339003, 3.9439673506573163, 4.73458133404605519, 5.57873880589320148, 6.51059015701365507, 7.61904854167975909 }; double w20[20] = { 1.25780067243793047E-13, 2.4820623623151838E-10, 6.12749025998295973E-08, 4.40212109023086457E-06, 0.000128826279961928981, 0.00183010313108049175, 0.0139978374471010428, 0.0615063720639760295, 0.161739333984000255, 0.26079306344955544, 0.26079306344955544, 0.161739333984000255, 0.0615063720639760295, 0.0139978374471010428, 0.00183010313108049175, 0.000128826279961928981, 4.40212109023086457E-06, 6.12749025998295973E-08, 2.4820623623151838E-10, 1.25780067243793047E-13 }; double x21[21] = { -7.84938289511382248, -6.75144471871746088, -5.82938200730447065, -4.99496394478202532, -4.21434398168842161, -3.46984669047537642, -2.75059298105237326, -2.0491024682571628, -1.35976582321123041, -0.678045692440644054, 0.00000000000000000, 0.678045692440644054, 1.35976582321123041, 2.0491024682571628, 2.75059298105237326, 3.46984669047537642, 4.21434398168842161, 4.99496394478202532, 5.82938200730447065, 6.75144471871746088, 7.84938289511382248 }; double w21[21] = { 2.09899121956566525E-14, 4.97536860412174643E-11, 1.45066128449307397E-08, 1.22535483614825217E-06, 4.21923474255158655E-05, 0.000708047795481537364, 0.00643969705140877684, 0.0339527297865428387, 0.10839228562641938, 0.215333715695059824, 0.270260183572877066, 0.215333715695059824, 0.10839228562641938, 0.0339527297865428387, 0.00643969705140877684, 0.000708047795481537364, 4.21923474255158655E-05, 1.22535483614825217E-06, 1.45066128449307397E-08, 4.97536860412174643E-11, 2.09899121956566525E-14 }; double x22[22] = { -8.07402998402171157, -6.98598042401881525, -6.07307495112289786, -5.2477244337144251, -4.47636197731086849, -3.74149635026651772, -3.03240422783167629, -2.34175999628770803, -1.6641248391179071, -0.995162422271215541, -0.331179315715273814, 0.331179315715273814, 0.995162422271215541, 1.6641248391179071, 2.34175999628770803, 3.03240422783167629, 3.74149635026651772, 4.47636197731086849, 5.2477244337144251, 6.07307495112289786, 6.98598042401881525, 8.07402998402171157 }; double w22[22] = { 3.47946064787714279E-15, 9.84137898234601051E-12, 3.36651415945821088E-09, 3.31985374981400429E-07, 1.33459771268087124E-05, 0.000262283303255964159, 0.00280876104757721073, 0.0175690728808057736, 0.0671963114288898905, 0.161906293413675378, 0.250243596586935013, 0.250243596586935013, 0.161906293413675378, 0.0671963114288898905, 0.0175690728808057736, 0.00280876104757721073, 0.000262283303255964159, 1.33459771268087124E-05, 3.31985374981400429E-07, 3.36651415945821088E-09, 9.84137898234601051E-12, 3.47946064787714279E-15 }; double x23[23] = { -8.29338602741735365, -7.21465943505186225, -6.31034985444839958, -5.49347398647179475, -4.73072419745147332, -4.00477532173330442, -3.30504002175296518, -2.62432363405918201, -1.9573275529334242, -1.29987646830397896, -0.648471153534495803, 0.00000000000000000, 0.648471153534495803, 1.29987646830397896, 1.9573275529334242, 2.62432363405918201, 3.30504002175296518, 4.00477532173330442, 4.73072419745147332, 5.49347398647179475, 6.31034985444839958, 7.21465943505186225, 8.29338602741735365 }; double w23[23] = { 5.73238316780208728E-16, 1.92293531156779128E-12, 7.67088886239990765E-10, 8.77506248386171607E-08, 4.08997724499215494E-06, 9.34081860903129835E-05, 0.00116762863749786134, 0.00857967839146566401, 0.0388671837034809467, 0.112073382602620911, 0.209959669577542613, 0.258509740808839039, 0.209959669577542613, 0.112073382602620911, 0.0388671837034809467, 0.00857967839146566401, 0.00116762863749786134, 9.34081860903129835E-05, 4.08997724499215494E-06, 8.77506248386171607E-08, 7.67088886239990765E-10, 1.92293531156779128E-12, 5.73238316780208728E-16 }; double x24[24] = { -8.50780351919525835, -7.43789066602166304, -6.54167500509863409, -5.73274717525120092, -4.97804137463912078, -4.26038360501990532, -3.56930676407356096, -2.89772864322331403, -2.24046785169175244, -1.59348042981642024, -0.953421922932109256, -0.317370096629452314, 0.317370096629452314, 0.953421922932109256, 1.59348042981642024, 2.24046785169175244, 2.89772864322331403, 3.56930676407356096, 4.26038360501990532, 4.97804137463912078, 5.73274717525120092, 6.54167500509863409, 7.43789066602166304, 8.50780351919525835 }; double w24[24] = { 9.39019368904192022E-17, 3.71497415276241595E-13, 1.71866492796486901E-10, 2.26746167348046514E-08, 1.21765974544258296E-06, 3.20950056527459886E-05, 0.000464718718779397633, 0.00397660892918131129, 0.0211263444089670287, 0.0720693640171784361, 0.161459512867000249, 0.240870115546640562, 0.240870115546640562, 0.161459512867000249, 0.0720693640171784361, 0.0211263444089670287, 0.00397660892918131129, 0.000464718718779397633, 3.20950056527459886E-05, 1.21765974544258296E-06, 2.26746167348046514E-08, 1.71866492796486901E-10, 3.71497415276241595E-13, 9.39019368904192022E-17 }; double x25[25] = { -8.71759767839958855, -7.65603795539307619, -6.76746496380971685, -5.96601469060670198, -5.21884809364427937, -4.50892992296728501, -3.82590056997249173, -3.16277567938819271, -2.51447330395220581, -1.8770583699478387, -1.24731197561678919, -0.622462279186076106, 0.00000000000000000, 0.622462279186076106, 1.24731197561678919, 1.8770583699478387, 2.51447330395220581, 3.16277567938819271, 3.82590056997249173, 4.50892992296728501, 5.21884809364427937, 5.96601469060670198, 6.76746496380971685, 7.65603795539307619, 8.71759767839958855 }; double w25[25] = { 1.53003899799868247E-17, 7.10210303700392527E-14, 3.79115000047718706E-11, 5.7380238688993763E-09, 3.53015256024549785E-07, 1.06721949052025363E-05, 0.0001777669069265266, 0.00175785040526379608, 0.0108567559914623159, 0.0433799701676449712, 0.114880924303951637, 0.204851025650340413, 0.248169351176485475, 0.204851025650340413, 0.114880924303951637, 0.0433799701676449712, 0.0108567559914623159, 0.00175785040526379608, 0.0001777669069265266, 1.06721949052025363E-05, 3.53015256024549785E-07, 5.7380238688993763E-09, 3.79115000047718706E-11, 7.10210303700392527E-14, 1.53003899799868247E-17 }; if ( n == 1 ) { r8vec_copy ( n, x01, x ); r8vec_copy ( n, w01, w ); } else if ( n == 2 ) { r8vec_copy ( n, x02, x ); r8vec_copy ( n, w02, w ); } else if ( n == 3 ) { r8vec_copy ( n, x03, x ); r8vec_copy ( n, w03, w ); } else if ( n == 4 ) { r8vec_copy ( n, x04, x ); r8vec_copy ( n, w04, w ); } else if ( n == 5 ) { r8vec_copy ( n, x05, x ); r8vec_copy ( n, w05, w ); } else if ( n == 6 ) { r8vec_copy ( n, x06, x ); r8vec_copy ( n, w06, w ); } else if ( n == 7 ) { r8vec_copy ( n, x07, x ); r8vec_copy ( n, w07, w ); } else if ( n == 8 ) { r8vec_copy ( n, x08, x ); r8vec_copy ( n, w08, w ); } else if ( n == 9 ) { r8vec_copy ( n, x09, x ); r8vec_copy ( n, w09, w ); } else if ( n == 10 ) { r8vec_copy ( n, x10, x ); r8vec_copy ( n, w10, w ); } else if ( n == 11 ) { r8vec_copy ( n, x11, x ); r8vec_copy ( n, w11, w ); } else if ( n == 12 ) { r8vec_copy ( n, x12, x ); r8vec_copy ( n, w12, w ); } else if ( n == 13 ) { r8vec_copy ( n, x13, x ); r8vec_copy ( n, w13, w ); } else if ( n == 14 ) { r8vec_copy ( n, x14, x ); r8vec_copy ( n, w14, w ); } else if ( n == 15 ) { r8vec_copy ( n, x15, x ); r8vec_copy ( n, w15, w ); } else if ( n == 16 ) { r8vec_copy ( n, x16, x ); r8vec_copy ( n, w16, w ); } else if ( n == 17 ) { r8vec_copy ( n, x17, x ); r8vec_copy ( n, w17, w ); } else if ( n == 18 ) { r8vec_copy ( n, x18, x ); r8vec_copy ( n, w18, w ); } else if ( n == 19 ) { r8vec_copy ( n, x19, x ); r8vec_copy ( n, w19, w ); } else if ( n == 20 ) { r8vec_copy ( n, x20, x ); r8vec_copy ( n, w20, w ); } else if ( n == 21 ) { r8vec_copy ( n, x21, x ); r8vec_copy ( n, w21, w ); } else if ( n == 22 ) { r8vec_copy ( n, x22, x ); r8vec_copy ( n, w22, w ); } else if ( n == 23 ) { r8vec_copy ( n, x23, x ); r8vec_copy ( n, w23, w ); } else if ( n == 24 ) { r8vec_copy ( n, x24, x ); r8vec_copy ( n, w24, w ); } else if ( n == 25 ) { r8vec_copy ( n, x25, x ); r8vec_copy ( n, w25, w ); } else { cerr << "\n"; cerr << "GQN - Fatal error!\n"; cerr << " Value of N must be between 1 and 25.\n"; exit ( 1 ); } return; } //****************************************************************************80 int gqn_order ( int l ) //****************************************************************************80 // // Purpose: // // GQN_ORDER computes the order of a GQN rule from the level. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // John Burkardt. // // Parameters: // // Input, int L, the level of the rule. // 1 <= L. // // Output, int GQN_ORDER, the order of the rule. // { int n; if ( l < 1 ) { cerr << "\n"; cerr << "GQN_ORDER - Fatal error!\n"; cerr << " 1 <= L required.\n"; cerr << " Input L = " << l << "\n"; exit ( 1 ); } else if ( l <= 25 ) { n = l; } else { cerr << "\n"; cerr << "GQN_ORDER - Fatal error!\n"; cerr << " L <= 25 required.\n"; cerr << " Input L = " << l << "\n"; exit ( 1 ); } return n; } //****************************************************************************80 int gqn2_order ( int l ) //****************************************************************************80 // // Purpose: // // GQN2_ORDER computes the order of a GQN rule from the level. // // Discussion: // // For this version of the order routine, we have // // n = 2 * l - 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 February 2014 // // Author: // // John Burkardt. // // Parameters: // // Input, int L, the level of the rule. // 1 <= L. // // Output, int GQN_ORDER2, the order of the rule. // { int n; if ( l < 1 ) { cerr << "\n"; cerr << "GQN_ORDER2 - Fatal error!\n"; cerr << " 1 <= L required.\n"; cerr << " Input L = " << l << "\n"; exit ( 1 ); } else if ( l <= 13 ) { n = 2 * l - 1; } else { cerr << "\n"; cerr << "GQN_ORDER2 - Fatal error!\n"; cerr << " L <= 13 required.\n"; cerr << " Input L = " << l << "\n"; exit ( 1 ); } return n; } //****************************************************************************80 void gqu ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // GQU provides data for Gauss quadrature with a uniform weight. // // Discussion: // // This data assumes integration over the interval [0,1] with // weight function w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 December 2012 // // Author: // // John Burkardt. // // Reference: // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Parameters: // // Input, int N, the number of points and weights. // 1 <= N <= 25. // // Output, double X[N], the nodes. // // Output, double W[N], the weights. // { double x01[1] = { 0.500000000000000000 }; double w01[1] = { 1.000000000000000000 }; double x02[2] = { 0.211324865405187134, 0.788675134594812866 }; double w02[2] = { 0.500000000000000000, 0.500000000000000000 }; double x03[3] = { 0.112701665379258298, 0.500000000000000000, 0.887298334620741702 }; double w03[3] = { 0.277777777777777124, 0.444444444444445697, 0.277777777777777124 }; double x04[4] = { 0.0694318442029737692, 0.330009478207571871, 0.669990521792428129, 0.930568155797026231 }; double w04[4] = { 0.173927422568724843, 0.326072577431275157, 0.326072577431275157, 0.173927422568724843 }; double x05[5] = { 0.0469100770306680737, 0.230765344947158502, 0.500000000000000000, 0.769234655052841498, 0.953089922969331926 }; double w05[5] = { 0.118463442528091739, 0.239314335249685012, 0.284444444444446554, 0.239314335249685012, 0.118463442528091739 }; double x06[6] = { 0.033765242898423975, 0.169395306766867648, 0.380690406958401506, 0.619309593041598494, 0.830604693233132352, 0.966234757101576025 }; double w06[6] = { 0.0856622461895818338, 0.180380786524070719, 0.233956967286347461, 0.233956967286347461, 0.180380786524070719, 0.0856622461895818338 }; double x07[7] = { 0.0254460438286208124, 0.12923440720030277, 0.297077424311301463, 0.500000000000000000, 0.702922575688698537, 0.87076559279969723, 0.974553956171379188 }; double w07[7] = { 0.0647424830844317012, 0.139852695744639349, 0.190915025252560905, 0.2089795918367362, 0.190915025252560905, 0.139852695744639349, 0.0647424830844317012 }; double x08[8] = { 0.0198550717512319119, 0.101666761293186525, 0.237233795041835505, 0.408282678752175054, 0.591717321247824946, 0.762766204958164495, 0.898333238706813475, 0.980144928248768088 }; double w08[8] = { 0.0506142681451851803, 0.111190517226687935, 0.156853322938944689, 0.181341891689182133, 0.181341891689182133, 0.156853322938944689, 0.111190517226687935, 0.0506142681451851803 }; double x09[9] = { 0.0159198802461869571, 0.0819844463366821152, 0.193314283649704821, 0.337873288298095487, 0.500000000000000000, 0.662126711701904513, 0.806685716350295179, 0.918015553663317885, 0.984080119753813043 }; double w09[9] = { 0.0406371941807845832, 0.0903240803474292531, 0.130305348201468441, 0.156173538520002264, 0.165119677500630752, 0.156173538520002264, 0.130305348201468441, 0.0903240803474292531, 0.0406371941807845832 }; double x10[10] = { 0.0130467357414141283, 0.0674683166555076763, 0.160295215850487782, 0.283302302935376393, 0.42556283050918442, 0.57443716949081558, 0.716697697064623607, 0.839704784149512218, 0.932531683344492324, 0.986953264258585872 }; double w10[10] = { 0.0333356721543420012, 0.0747256745752905988, 0.109543181257991576, 0.13463335965499873, 0.147762112357377129, 0.147762112357377129, 0.13463335965499873, 0.109543181257991576, 0.0747256745752905988, 0.0333356721543420012 }; double x11[11] = { 0.010885670926971569, 0.0564687001159522861, 0.134923997212975322, 0.240451935396594152, 0.365228422023827548, 0.500000000000000000, 0.634771577976172452, 0.759548064603405848, 0.865076002787024678, 0.943531299884047714, 0.989114329073028431 }; double w11[11] = { 0.0278342835580849164, 0.0627901847324526252, 0.0931451054638675197, 0.11659688229599563, 0.131402272255123881, 0.136462543388950863, 0.131402272255123881, 0.11659688229599563, 0.0931451054638675197, 0.0627901847324526252, 0.0278342835580849164 }; double x12[12] = { 0.00921968287664043373, 0.0479413718147625456, 0.115048662902847654, 0.206341022856691314, 0.316084250500909936, 0.437383295744265488, 0.562616704255734512, 0.683915749499090064, 0.793658977143308686, 0.884951337097152346, 0.952058628185237454, 0.990780317123359566 }; double w12[12] = { 0.0235876681932543145, 0.0534696629976592758, 0.0800391642716734436, 0.101583713361533282, 0.116746268269177805, 0.124573522906701886, 0.124573522906701886, 0.116746268269177805, 0.101583713361533282, 0.0800391642716734436, 0.0534696629976592758, 0.0235876681932543145 }; double x13[13] = { 0.00790847264070593248, 0.0412008003885109275, 0.0992109546333450609, 0.178825330279829942, 0.275753624481776649, 0.384770842022432613, 0.500000000000000000, 0.615229157977567387, 0.724246375518223351, 0.821174669720170058, 0.900789045366654939, 0.958799199611489072, 0.992091527359294068 }; double w13[13] = { 0.0202420023826562281, 0.0460607499188643785, 0.0694367551098938746, 0.0890729903809732021, 0.103908023768444616, 0.113141590131449032, 0.116275776615437407, 0.113141590131449032, 0.103908023768444616, 0.0890729903809732021, 0.0694367551098938746, 0.0460607499188643785, 0.0202420023826562281 }; double x14[14] = { 0.00685809565159378742, 0.0357825581682131855, 0.0863993424651174902, 0.156353547594157316, 0.24237568182092295, 0.340443815536055183, 0.445972525646328166, 0.554027474353671834, 0.659556184463944817, 0.75762431817907705, 0.843646452405842684, 0.91360065753488251, 0.964217441831786815, 0.993141904348406213 }; double w14[14] = { 0.0175597301658745736, 0.0400790435798802913, 0.0607592853439517105, 0.0786015835790969952, 0.0927691987389691608, 0.102599231860648107, 0.107631926731579161, 0.107631926731579161, 0.102599231860648107, 0.0927691987389691608, 0.0786015835790969952, 0.0607592853439517105, 0.0400790435798802913, 0.0175597301658745736 }; double x15[15] = { 0.0060037409897573113, 0.0313633037996470243, 0.0758967082947863414, 0.137791134319914965, 0.214513913695730585, 0.302924326461218252, 0.399402953001282701, 0.500000000000000000, 0.600597046998717299, 0.697075673538781748, 0.785486086304269415, 0.862208865680085035, 0.924103291705213659, 0.968636696200352976, 0.993996259010242689 }; double w15[15] = { 0.0153766209980574341, 0.0351830237440541593, 0.0535796102335861571, 0.0697853389630773147, 0.083134602908497196, 0.0930805000077812861, 0.0992157426635560391, 0.101289120962780907, 0.0992157426635560391, 0.0930805000077812861, 0.083134602908497196, 0.0697853389630773147, 0.0535796102335861571, 0.0351830237440541593, 0.0153766209980574341 }; double x16[16] = { 0.00529953250417503074, 0.0277124884633836999, 0.0671843988060840669, 0.122297795822498445, 0.191061877798678115, 0.270991611171386371, 0.359198224610370542, 0.452493745081181231, 0.547506254918818769, 0.640801775389629458, 0.729008388828613629, 0.808938122201321885, 0.877702204177501555, 0.932815601193915933, 0.9722875115366163, 0.994700467495824969 }; double w16[16] = { 0.0135762297058759553, 0.0311267619693239538, 0.0475792558412465455, 0.062314485627767105, 0.0747979944082885623, 0.0845782596975014622, 0.0913017075224620001, 0.0947253052275344315, 0.0947253052275344315, 0.0913017075224620001, 0.0845782596975014622, 0.0747979944082885623, 0.062314485627767105, 0.0475792558412465455, 0.0311267619693239538, 0.0135762297058759553 }; double x17[17] = { 0.00471226234279131795, 0.024662239115616158, 0.0598804231365070994, 0.109242998051599316, 0.171164420391654692, 0.243654731456761531, 0.324384118273061794, 0.410757909252076114, 0.500000000000000000, 0.589242090747923886, 0.675615881726938206, 0.756345268543238469, 0.828835579608345308, 0.890757001948400684, 0.940119576863492901, 0.975337760884383842, 0.995287737657208682 }; double w17[17] = { 0.01207415143427314, 0.0277297646869936118, 0.0425180741585896443, 0.0559419235967020534, 0.0675681842342628902, 0.0770228805384053083, 0.0840020510782251428, 0.0882813526834964474, 0.0897232351781034193, 0.0882813526834964474, 0.0840020510782251428, 0.0770228805384053083, 0.0675681842342628902, 0.0559419235967020534, 0.0425180741585896443, 0.0277297646869936118, 0.01207415143427314 }; double x18[18] = { 0.00421741578953449547, 0.022088025214301199, 0.0536987667512220934, 0.0981475205137384288, 0.154156478469823388, 0.22011458446302623, 0.294124419268578685, 0.374056887154247231, 0.457612493479132354, 0.542387506520867646, 0.625943112845752769, 0.705875580731421315, 0.77988541553697377, 0.845843521530176612, 0.901852479486261571, 0.946301233248777907, 0.977911974785698801, 0.995782584210465505 }; double w18[18] = { 0.0108080067632407191, 0.0248572744474849679, 0.0382128651274446646, 0.0504710220531437159, 0.061277603355739306, 0.0703214573353254518, 0.0773423375631328014, 0.0821382418729165037, 0.084571191481571939, 0.084571191481571939, 0.0821382418729165037, 0.0773423375631328014, 0.0703214573353254518, 0.061277603355739306, 0.0504710220531437159, 0.0382128651274446646, 0.0248572744474849679, 0.0108080067632407191 }; double x19[19] = { 0.00379657807820787951, 0.0198959239325849913, 0.048422048192590994, 0.0886426717314285906, 0.139516911332385307, 0.19972734766915945, 0.267714629312019503, 0.341717950018185057, 0.419820677179887358, 0.500000000000000000, 0.580179322820112642, 0.658282049981814943, 0.732285370687980497, 0.80027265233084055, 0.860483088667614693, 0.911357328268571409, 0.951577951807409006, 0.980104076067415009, 0.99620342192179212 }; double w19[19] = { 0.00973089411486243415, 0.0224071133828498206, 0.0345222713688206687, 0.0457450108112251244, 0.0557833227736671128, 0.064376981269668232, 0.0713033510868034126, 0.0763830210329299597, 0.0794844216969773365, 0.0805272249243919463, 0.0794844216969773365, 0.0763830210329299597, 0.0713033510868034126, 0.064376981269668232, 0.0557833227736671128, 0.0457450108112251244, 0.0345222713688206687, 0.0224071133828498206, 0.00973089411486243415 }; double x20[20] = { 0.00343570040745255767, 0.0180140363610430398, 0.0438827858743370269, 0.0804415140888905533, 0.126834046769924602, 0.181973159636742432, 0.244566499024586381, 0.313146955642290226, 0.386107074429177466, 0.461736739433251331, 0.538263260566748669, 0.613892925570822534, 0.686853044357709774, 0.755433500975413619, 0.818026840363257568, 0.873165953230075398, 0.919558485911109447, 0.956117214125662973, 0.98198596363895696, 0.996564299592547442 }; double w20[20] = { 0.0088070035695753026, 0.0203007149001935561, 0.0313360241670545686, 0.0416383707883524329, 0.0509650599086203179, 0.0590972659807592476, 0.0658443192245883463, 0.0710480546591911871, 0.0745864932363019956, 0.0763766935653631129, 0.0763766935653631129, 0.0745864932363019956, 0.0710480546591911871, 0.0658443192245883463, 0.0590972659807592476, 0.0509650599086203179, 0.0416383707883524329, 0.0313360241670545686, 0.0203007149001935561, 0.0088070035695753026 }; double x21[21] = { 0.00312391468980521836, 0.0163865807168468436, 0.0399503329247996586, 0.0733183177083414073, 0.115780018262161111, 0.166430597901293886, 0.224190582056390086, 0.287828939896280556, 0.355989341598799469, 0.427219072919552412, 0.500000000000000000, 0.572780927080447588, 0.644010658401200531, 0.712171060103719444, 0.775809417943609914, 0.833569402098706114, 0.884219981737838889, 0.926681682291658593, 0.960049667075200341, 0.983613419283153156, 0.996876085310194782 }; double w21[21] = { 0.00800861412888644909, 0.018476894885426285, 0.0285672127134286406, 0.0380500568141897075, 0.0467222117280169935, 0.0543986495835743558, 0.06091570802686435, 0.0661344693166688452, 0.0699436973955366581, 0.0722622019949851341, 0.073040566824845346, 0.0722622019949851341, 0.0699436973955366581, 0.0661344693166688452, 0.06091570802686435, 0.0543986495835743558, 0.0467222117280169935, 0.0380500568141897075, 0.0285672127134286406, 0.018476894885426285,0.00800861412888644909 }; double x22[22] = { 0.0028527072588003799, 0.0149697510822857094, 0.036521613906413064, 0.0670937111398499653, 0.106091597010395944, 0.152756368406658627, 0.206179798246544199, 0.265322081006621469, 0.329032089553957907, 0.396069786655889322, 0.465130363340138908, 0.534869636659861092, 0.603930213344110678, 0.670967910446042093, 0.734677918993378531, 0.793820201753455801, 0.847243631593341373, 0.893908402989604056, 0.932906288860150035, 0.963478386093586936, 0.985030248917714291, 0.99714729274119962 }; double w22[22] = { 0.00731399764913532799, 0.0168874507924071104, 0.0261466675763416916, 0.0348982342122602998, 0.0429708031085339753, 0.0502070722214406004, 0.0564661480402697119, 0.0616261884052562506, 0.0655867523935313168, 0.0682707491730076971, 0.0696259364278161291, 0.0696259364278161291, 0.0682707491730076971, 0.0655867523935313168, 0.0616261884052562506, 0.0564661480402697119, 0.0502070722214406004, 0.0429708031085339753, 0.0348982342122602998, 0.0261466675763416916, 0.0168874507924071104, 0.00731399764913532799 }; double x23[23] = { 0.00261533250122392147, 0.013728764390942394, 0.0335144565869919253, 0.061623820864779244, 0.0975557991905799948, 0.140669318434024859, 0.190195062118176939, 0.245249261076996294, 0.304849480984854537, 0.367932159514827495, 0.433371587850766904, 0.500000000000000000, 0.566628412149233096, 0.632067840485172505, 0.695150519015145463, 0.754750738923003706, 0.809804937881823061, 0.859330681565975141, 0.902444200809420005, 0.938376179135220756, 0.966485543413008075, 0.986271235609057606, 0.997384667498776079 }; double w23[23] = { 0.0067059297435702412, 0.015494002928489686, 0.0240188358655423692, 0.0321162107042629943, 0.0396407058883595509, 0.0464578830300175633, 0.052446045732270824, 0.057498320111205814, 0.0615245421533648154, 0.06445286109404115, 0.0662310197023484037, 0.0668272860930531759, 0.0662310197023484037, 0.06445286109404115, 0.0615245421533648154, 0.057498320111205814, 0.052446045732270824, 0.0464578830300175633, 0.0396407058883595509, 0.0321162107042629943, 0.0240188358655423692, 0.015494002928489686, 0.0067059297435702412 }; double x24[24] = { 0.00240639000148934468, 0.0126357220143452631, 0.0308627239986336566, 0.0567922364977995198, 0.0899990070130485265, 0.129937904210722821, 0.175953174031512227, 0.227289264305580163, 0.283103246186977464, 0.342478660151918302, 0.404440566263191803, 0.467971553568697241, 0.532028446431302759, 0.595559433736808197, 0.657521339848081698, 0.716896753813022536, 0.772710735694419837, 0.824046825968487773, 0.870062095789277179, 0.910000992986951474, 0.94320776350220048, 0.969137276001366343, 0.987364277985654737, 0.997593609998510655 }; double w24[24] = { 0.00617061489999283508, 0.014265694314466934, 0.0221387194087098796, 0.0296492924577183847, 0.0366732407055402054, 0.0430950807659766927, 0.0488093260520570393, 0.0537221350579829143, 0.0577528340268628829, 0.0608352364639017928, 0.0629187281734143178, 0.0639690976733762462, 0.0639690976733762462, 0.0629187281734143178, 0.0608352364639017928, 0.0577528340268628829, 0.0537221350579829143, 0.0488093260520570393, 0.0430950807659766927, 0.0366732407055402054, 0.0296492924577183847, 0.0221387194087098796, 0.014265694314466934,0.00617061489999283508 }; double x25[25] = { 0.00222151510475088187, 0.0116680392702412927, 0.0285127143855128384, 0.052504001060862393, 0.0832786856195830705, 0.120370368481321099, 0.163216815763265854, 0.211168534879388581, 0.263498634277142485, 0.319413847095306069, 0.378066558139505737, 0.438567653694644788, 0.500000000000000000, 0.561432346305355212, 0.621933441860494263, 0.680586152904693931, 0.736501365722857515, 0.788831465120611419, 0.836783184236734146, 0.879629631518678901, 0.91672131438041693, 0.947495998939137607, 0.971487285614487162, 0.988331960729758707, 0.997778484895249118 }; double w25[25] = { 0.00569689925051255347, 0.0131774933075161083, 0.0204695783506531476, 0.0274523479879176906, 0.0340191669061785454, 0.0400703501675005319, 0.0455141309914819034, 0.0502679745335253628, 0.0542598122371318672, 0.0574291295728558623, 0.0597278817678924615, 0.0611212214951551217, 0.061588026863357799, 0.0611212214951551217, 0.0597278817678924615, 0.0574291295728558623, 0.0542598122371318672, 0.0502679745335253628, 0.0455141309914819034, 0.0400703501675005319, 0.0340191669061785454, 0.0274523479879176906, 0.0204695783506531476, 0.0131774933075161083, 0.00569689925051255347 }; if ( n == 1 ) { r8vec_copy ( n, x01, x ); r8vec_copy ( n, w01, w ); } else if ( n == 2 ) { r8vec_copy ( n, x02, x ); r8vec_copy ( n, w02, w ); } else if ( n == 3 ) { r8vec_copy ( n, x03, x ); r8vec_copy ( n, w03, w ); } else if ( n == 4 ) { r8vec_copy ( n, x04, x ); r8vec_copy ( n, w04, w ); } else if ( n == 5 ) { r8vec_copy ( n, x05, x ); r8vec_copy ( n, w05, w ); } else if ( n == 6 ) { r8vec_copy ( n, x06, x ); r8vec_copy ( n, w06, w ); } else if ( n == 7 ) { r8vec_copy ( n, x07, x ); r8vec_copy ( n, w07, w ); } else if ( n == 8 ) { r8vec_copy ( n, x08, x ); r8vec_copy ( n, w08, w ); } else if ( n == 9 ) { r8vec_copy ( n, x09, x ); r8vec_copy ( n, w09, w ); } else if ( n == 10 ) { r8vec_copy ( n, x10, x ); r8vec_copy ( n, w10, w ); } else if ( n == 11 ) { r8vec_copy ( n, x11, x ); r8vec_copy ( n, w11, w ); } else if ( n == 12 ) { r8vec_copy ( n, x12, x ); r8vec_copy ( n, w12, w ); } else if ( n == 13 ) { r8vec_copy ( n, x13, x ); r8vec_copy ( n, w13, w ); } else if ( n == 14 ) { r8vec_copy ( n, x14, x ); r8vec_copy ( n, w14, w ); } else if ( n == 15 ) { r8vec_copy ( n, x15, x ); r8vec_copy ( n, w15, w ); } else if ( n == 16 ) { r8vec_copy ( n, x16, x ); r8vec_copy ( n, w16, w ); } else if ( n == 17 ) { r8vec_copy ( n, x17, x ); r8vec_copy ( n, w17, w ); } else if ( n == 18 ) { r8vec_copy ( n, x18, x ); r8vec_copy ( n, w18, w ); } else if ( n == 19 ) { r8vec_copy ( n, x19, x ); r8vec_copy ( n, w19, w ); } else if ( n == 20 ) { r8vec_copy ( n, x20, x ); r8vec_copy ( n, w20, w ); } else if ( n == 21 ) { r8vec_copy ( n, x21, x ); r8vec_copy ( n, w21, w ); } else if ( n == 22 ) { r8vec_copy ( n, x22, x ); r8vec_copy ( n, w22, w ); } else if ( n == 23 ) { r8vec_copy ( n, x23, x ); r8vec_copy ( n, w23, w ); } else if ( n == 24 ) { r8vec_copy ( n, x24, x ); r8vec_copy ( n, w24, w ); } else if ( n == 25 ) { r8vec_copy ( n, x25, x ); r8vec_copy ( n, w25, w ); } else { cerr << "\n"; cerr << "GQU - Fatal error!\n"; cerr << " Value of N must be between 1 and 25.\n"; exit ( 1 ); } return; } //****************************************************************************80 int gqu_order ( int l ) //****************************************************************************80 // // Purpose: // // GQU_ORDER computes the order of a GQU rule from the level. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // John Burkardt. // // Parameters: // // Input, int L, the level of the rule. // 1 <= L <= 25. // // Output, int GQU_ORDER, the order of the rule. // { int n; if ( l < 1 ) { cerr << "\n"; cerr << "GQU_ORDER - Fatal error!\n"; cerr << " L <= 25 required.\n"; cerr << " Input L = " << l << "\n"; exit ( 1 ); } else if ( l <= 25 ) { n = l; } else { cerr << "\n"; cerr << "GQU_ORDER - Fatal error!\n"; cerr << " L <= 25 required.\n"; cerr << " Input L = " << l << "\n"; exit ( 1 ); } return n; } //****************************************************************************80 int i4_choose ( int n, int k ) //****************************************************************************80 // // Purpose: // // I4_CHOOSE computes the binomial coefficient C(N,K). // // Discussion: // // The value is calculated in such a way as to avoid overflow and // roundoff. The calculation is done in integer arithmetic. // // The formula used is: // // C(N,K) = N! / ( K! * (N-K)! ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2013 // // Author: // // John Burkardt // // Reference: // // ML Wolfson, HV Wright, // Algorithm 160: // Combinatorial of M Things Taken N at a Time, // Communications of the ACM, // Volume 6, Number 4, April 1963, page 161. // // Parameters: // // Input, int N, K, the values of N and K. // // Output, int I4_CHOOSE, the number of combinations of N // things taken K at a time. // { int i; int mn; int mx; int value; mn = k; if ( n - k < mn ) { mn = n - k; } if ( mn < 0 ) { value = 0; } else if ( mn == 0 ) { value = 1; } else { mx = k; if ( mx < n - k ) { mx = n - k; } value = mx + 1; for ( i = 2; i <= mn; i++ ) { value = ( value * ( mx + i ) ) / i; } } return value; } //****************************************************************************80 int i4_factorial2 ( int n ) //****************************************************************************80 // // Purpose: // // I4_FACTORIAL2 computes the double factorial function. // // Discussion: // // FACTORIAL2( N ) = Product ( N * (N-2) * (N-4) * ... * 2 ) (N even) // = Product ( N * (N-2) * (N-4) * ... * 1 ) (N odd) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the double factorial function. // If N is less than 1, I4_FACTORIAL2 is returned as 1. // // Output, int I4_FACTORIAL2, the value of the double factorial function. // { int n_copy; int value; if ( n < 1 ) { value = 1; return value; } n_copy = n; value = 1; while ( 1 < n_copy ) { value = value * n_copy; n_copy = n_copy - 2; } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_mop ( int i ) //****************************************************************************80 // // Purpose: // // I4_MOP returns the I-th power of -1 as an I4 value. // // Discussion: // // An I4 is an int value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the power of -1. // // Output, int I4_MOP, the I-th power of -1. // { int value; if ( ( i % 2 ) == 0 ) { value = 1; } else { value = -1; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 void i4mat_print ( int m, int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4MAT_PRINT prints an I4MAT. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { i4mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void i4mat_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_PRINT_SOME prints some of an I4MAT. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of INCX. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col:"; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(6) << j - 1; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to INCX) entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ":"; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(6) << a[i-1+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 int *i4vec_cum0_new ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_CUM0_NEW computes the cumulutive sum of the entries of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // This routine returns a vector of length N+1, with the first value // being 0. // // Example: // // Input: // // A = (/ 1, 2, 3, 4 /) // // Output: // // A_CUM = (/ 0, 1, 3, 6, 10 /) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 December 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector to be summed. // // Output, int I4VEC_CUM0_NEW[N+1], the cumulative sum of the entries of A. // { int *a_cum; int i; a_cum = new int[n+1]; a_cum[0] = 0; for ( i = 1; i <= n; i++ ) { a_cum[i] = a_cum[i-1] + a[i-1]; } return a_cum; } //****************************************************************************80 void i4vec_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(8) << a[i] << "\n"; } return; } //****************************************************************************80 int i4vec_product ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_PRODUCT multiplies the entries of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // Input: // // A = ( 1, 2, 3, 4 ) // // Output: // // I4VEC_PRODUCT = 24 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector // // Output, int I4VEC_PRODUCT, the product of the entries of A. // { int i; int product; product = 1; for ( i = 0; i < n; i++ ) { product = product * a[i]; } return product; } //****************************************************************************80 int i4vec_sum ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SUM sums the entries of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // Input: // // A = ( 1, 2, 3, 4 ) // // Output: // // I4VEC_SUM = 10 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector to be summed. // // Output, int I4VEC_SUM, the sum of the entries of A. // { int i; int sum; sum = 0; for ( i = 0; i < n; i++ ) { sum = sum + a[i]; } return sum; } //****************************************************************************80 void i4vec_transpose_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_TRANSPOSE_PRINT prints an I4VEC "transposed". // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // A = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 } // TITLE = "My vector: " // // My vector: 1 2 3 4 5 // 6 7 8 9 10 // 11 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; int ihi; int ilo; int title_len; title_len = title.length ( ); for ( ilo = 1; ilo <= n; ilo = ilo + 5 ) { ihi = i4_min ( ilo + 5 - 1, n ); if ( ilo == 1 ) { cout << title; } else { for ( i = 1; i <= title_len; i++ ) { cout << " "; } } for ( i = ilo; i <= ihi; i++ ) { cout << setw(12) << a[i-1]; } cout << "\n"; } return; } ///****************************************************************************80 void kpn ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // KPN provides data for Kronrod-Patterson quadrature with a normal weight. // // Discussion: // // This data assumes integration over the interval (-oo,+oo) with // weight function w(x) = exp(-x*x/2)/sqrt(2*pi). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 December 2012 // // Author: // // Original MATLAB version by Florian Heiss, Viktor Winschel. // C++ version by John Burkardt. // // Reference: // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Alan Genz, Bradley Keister, // Fully symmetric interpolatory rules for multiple integrals // over infinite regions with Gaussian weight, // Journal of Computational and Applied Mathematics, // Volume 71, 1996, pages 299-309. // // Thomas Patterson, // The optimal addition of points to quadrature formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order of the rule. // // Output, double X[N], the nodes. // // Output, double W[N], the weights. // { double x01[1] = { 0.0000000000000000 }; double w01[1] = { 1.0000000000000000}; double x03[3] = { -1.73205080756887719, 0.000000000000000000, 1.73205080756887719 }; double w03[3] = { 0.166666666666666657, 0.66666666666666663, 0.166666666666666657}; double x07[7] = { -4.18495601767273229, -1.73205080756887719, -0.741095349994540853, 0.00000000000000000, 0.741095349994540853, 1.73205080756887719, 4.18495601767273229 }; double w07[7] = { 0.000695684158369139867, 0.138553274729749237, 0.13137860698313561, 0.458744868257491889, 0.13137860698313561, 0.138553274729749237, 0.000695684158369139867 }; double x09[9] = { -4.18495601767273229, -2.86127957605705818, -1.73205080756887719, -0.741095349994540853, 0.00000000000000000, 0.741095349994540853, 1.73205080756887719, 2.86127957605705818, 4.18495601767273229 }; double w09[9] = { 9.42694575565174701E-05, 0.00799632547089352934, 0.0948509485094851251, 0.270074329577937755, 0.253968253968254065, 0.270074329577937755, 0.0948509485094851251, 0.00799632547089352934, 9.42694575565174701E-05 }; double x17[17] = { -6.36339449433636961, -5.18701603991365623, -4.18495601767273229, -2.86127957605705818, -2.59608311504920231, -1.73205080756887719, -1.23042363402730603, -0.741095349994540853, 0.00000000000000000, 0.741095349994540853, 1.23042363402730603, 1.73205080756887719, 2.59608311504920231, 2.86127957605705818, 4.18495601767273229, 5.18701603991365623, 6.36339449433636961 }; double w17[17] = { 2.11364995054242569E-08, -8.20492075415092169E-07, 0.000105637836154169414, 0.00703348023782790748, 0.0019656770938777492, 0.0886810021520280101, 0.0141926548264493645, 0.254561232041712215, 0.266922230335053023, 0.254561232041712215, 0.0141926548264493645, 0.0886810021520280101, 0.0019656770938777492, 0.00703348023782790748, 0.000105637836154169414, -8.20492075415092169E-07, 2.11364995054242569E-08 }; double x19[19] = { -6.36339449433636961, -5.18701603991365623, -4.18495601767273229, -3.20533379449919442, -2.86127957605705818, -2.59608311504920231, -1.73205080756887719, -1.23042363402730603, -0.741095349994540853, 0.0000000000000000, 0.741095349994540853, 1.23042363402730603, 1.73205080756887719, 2.59608311504920231, 2.86127957605705818, 3.20533379449919442, 4.18495601767273229, 5.18701603991365623, 6.36339449433636961 }; double w19[19] = { 8.62968460222986318E-10, 6.09480873146898402E-07, 6.01233694598479965E-05, 0.00288488043650675591, -0.00633722479337375712, 0.0180852342547984622, 0.0640960546868076103, 0.0611517301252477163, 0.208324991649608771, 0.303467199854206227, 0.208324991649608771, 0.0611517301252477163, 0.0640960546868076103, 0.0180852342547984622, -0.00633722479337375712, 0.00288488043650675591, 6.01233694598479965E-05, 6.09480873146898402E-07, 8.62968460222986318E-10 }; double x31[31] = { -9.0169397898903032, -7.98077179859056063, -7.12210670080461661, -6.36339449433636961, -5.18701603991365623, -4.18495601767273229, -3.63531851903727832, -3.20533379449919442, -2.86127957605705818, -2.59608311504920231, -2.23362606167694189, -1.73205080756887719, -1.23042363402730603, -0.741095349994540853, -0.248992297579960609, 0.00000000000000000, 0.248992297579960609, 0.741095349994540853, 1.23042363402730603, 1.73205080756887719, 2.23362606167694189, 2.59608311504920231, 2.86127957605705818, 3.20533379449919442, 3.63531851903727832, 4.18495601767273229, 5.18701603991365623, 6.36339449433636961, 7.12210670080461661, 7.98077179859056063, 9.0169397898903032 }; double w31[31] = { 1.26184642808151181E-15, -1.4840835740298868E-13, 5.11580531055042083E-12, 7.92982678648693382E-10, 6.14358432326179133E-07, 5.94749611639316215E-05, 1.50442053909142189E-05, 0.00272984304673340016, -0.00556100630683581572, 0.0165924926989360101, 0.00176084755813180017, 0.0617185325658671791, 0.0654173928360925611, 0.199688635117345498, 0.0281281015400331666, 0.25890005324151566, 0.0281281015400331666, 0.199688635117345498, 0.0654173928360925611, 0.0617185325658671791, 0.00176084755813180017, 0.0165924926989360101, -0.00556100630683581572, 0.00272984304673340016, 1.50442053909142189E-05, 5.94749611639316215E-05, 6.14358432326179133E-07, 7.92982678648693382E-10, 5.11580531055042083E-12, -1.4840835740298868E-13, 1.26184642808151181E-15 }; double x33[33] = { -9.0169397898903032, -7.98077179859056063, -7.12210670080461661, -6.36339449433636961, -5.69817776848810986, -5.18701603991365623, -4.18495601767273229, -3.63531851903727832, -3.20533379449919442, -2.86127957605705818, -2.59608311504920231, -2.23362606167694189, -1.73205080756887719, -1.23042363402730603, -0.741095349994540853, -0.248992297579960609, 0.00000000000000000, 0.248992297579960609, 0.741095349994540853, 1.23042363402730603, 1.73205080756887719, 2.23362606167694189, 2.59608311504920231, 2.86127957605705818, 3.20533379449919442, 3.63531851903727832, 4.18495601767273229, 5.18701603991365623, 5.69817776848810986, 6.36339449433636961, 7.12210670080461661, 7.98077179859056063, 9.0169397898903032 }; double w33[33] = { -9.93139132868224651E-16, 2.66406251662316506E-13, -1.93413050008809555E-11, 1.5542195992782658E-09, -1.34860173485429301E-08, 6.90862611791137378E-07, 5.56911589810814793E-05, 8.32360452957667447E-05, 0.00212022595595963252, -0.00277121890077892431, 0.01152924706539879, 0.00735301102049550764, 0.0546775561434630422, 0.0774436027462994808, 0.176075987415714591, 0.103876871255742839, 0.139110222363380387, 0.103876871255742839, 0.176075987415714591, 0.0774436027462994808, 0.0546775561434630422, 0.00735301102049550764, 0.01152924706539879, -0.00277121890077892431, 0.00212022595595963252, 8.32360452957667447E-05, 5.56911589810814793E-05, 6.90862611791137378E-07, -1.34860173485429301E-08, 1.5542195992782658E-09, -1.93413050008809555E-11, 2.66406251662316506E-13, -9.93139132868224651E-16 }; double x35[35] = { -9.0169397898903032, -7.98077179859056063, -7.12210670080461661, -6.36339449433636961, -5.69817776848810986, -5.18701603991365623, -4.73643308595229673, -4.18495601767273229, -3.63531851903727832, -3.20533379449919442, -2.86127957605705818, -2.59608311504920231, -2.23362606167694189, -1.73205080756887719, -1.23042363402730603, -0.741095349994540853, -0.248992297579960609, 0.00000000000000000, 0.248992297579960609, 0.741095349994540853, 1.23042363402730603, 1.73205080756887719, 2.23362606167694189, 2.59608311504920231, 2.86127957605705818, 3.20533379449919442, 3.63531851903727832, 4.18495601767273229, 4.73643308595229673, 5.18701603991365623, 5.69817776848810986, 6.36339449433636961, 7.12210670080461661, 7.98077179859056063, 9.0169397898903032 }; double w35[35] = { 1.05413265823340136E-18, 5.45004126506381281E-15, 3.09722235760629949E-12, 4.60117603486559168E-10, 2.13941944795610622E-08, 2.46764213457981401E-07, 2.73422068011878881E-06, 3.57293481989753322E-05, 0.000275242141167851312, 0.000818953927502267349, 0.00231134524035220713, 0.00315544626918755127, 0.015673473751851151, 0.0452736854651503914, 0.0923647267169863534, 0.148070831155215854, 0.191760115888044341, 0.000514894508069213769, 0.191760115888044341, 0.148070831155215854, 0.0923647267169863534, 0.0452736854651503914, 0.015673473751851151, 0.00315544626918755127, 0.00231134524035220713, 0.000818953927502267349, 0.000275242141167851312, 3.57293481989753322E-05, 2.73422068011878881E-06, 2.46764213457981401E-07, 2.13941944795610622E-08, 4.60117603486559168E-10, 3.09722235760629949E-12, 5.45004126506381281E-15, 1.05413265823340136E-18 }; if ( n == 1 ) { r8vec_copy ( n, x01, x ); r8vec_copy ( n, w01, w ); } else if ( n == 3 ) { r8vec_copy ( n, x03, x ); r8vec_copy ( n, w03, w ); } else if ( n == 7 ) { r8vec_copy ( n, x07, x ); r8vec_copy ( n, w07, w ); } else if ( n == 9 ) { r8vec_copy ( n, x09, x ); r8vec_copy ( n, w09, w ); } else if ( n == 17 ) { r8vec_copy ( n, x17, x ); r8vec_copy ( n, w17, w ); } else if ( n == 19 ) { r8vec_copy ( n, x19, x ); r8vec_copy ( n, w19, w ); } else if ( n == 31 ) { r8vec_copy ( n, x31, x ); r8vec_copy ( n, w31, w ); } else if ( n == 33 ) { r8vec_copy ( n, x33, x ); r8vec_copy ( n, w33, w ); } else if ( n == 35 ) { r8vec_copy ( n, x35, x ); r8vec_copy ( n, w35, w ); } else { cerr << "\n"; cerr << "KPN - Fatal error!\n"; cerr << " Illegal value of N.\n"; exit ( 1 ); } return; } //****************************************************************************80 int kpn_order ( int l ) //****************************************************************************80 // // Purpose: // // KPN_ORDER computes the order of a KPN rule from the level. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // John Burkardt. // // Parameters: // // Input, int L, the level of the rule. // 1 <= L <= 25 // // Output, int KPN_ORDER, the order of the rule. // { int n; if ( l < 1 ) { cerr << "\n"; cerr << "KPN_ORDER - Fatal error!\n"; cerr << " 1 <= L <= 25 required.\n"; cerr << " Input L = " << l << "\n"; exit ( 1 ); } else if ( l == 1 ) { n = 1; } else if ( l <= 3 ) { n = 3; } else if ( l == 4 ) { n = 7; } else if ( l <= 8 ) { n = 9; } else if ( l == 9 ) { n = 17; } else if ( l <= 15 ) { n = 19; } else if ( l == 16 ) { n = 31; } else if ( l == 17 ) { n = 33; } else if ( l <= 25 ) { n = 35; } else { cerr << "\n"; cerr << "KPN_ORDER - Fatal error!\n"; cerr << " 1 <= L <= 25 required.\n"; cerr << " Input L = " << l << "\n"; exit ( 1 ); } return n; } //****************************************************************************80 void kpu ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // KPU provides data for Kronrod-Patterson quadrature with a uniform weight. // // Discussion: // // This data assumes integration over the interval [0,1] with // weight function w(x) = 1. // // This data was originally supplied with only 7 digit accuracy. // It has been replaced by higher accuracy data, which is defined over [-1,+1], // but adjusted to the interval [0,1] before return. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 December 2012 // // Author: // // John Burkardt. // // Reference: // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Alan Genz, Bradley Keister, // Fully symmetric interpolatory rules for multiple integrals // over infinite regions with Gaussian weight, // Journal of Computational and Applied Mathematics, // Volume 71, 1996, pages 299-309. // // Thomas Patterson, // The optimal addition of points to quadrature formulae, // Mathematics of Computation, // Volume 22, Number 104, October 1968, pages 847-856. // // Parameters: // // Input, int N, the order of the rule. // Only 1, 3, 7, 15, 31 and 63 are legal input values for N. // // Output, double X[N], the nodes. // // Output, double W[N], the weights. // { int i; double x01[1] = { 0.0000000 }; double w01[1] = { 2.0000000 }; double x03[3] = { -0.77459666924148337704, 0.0, 0.77459666924148337704 }; double w03[3] = { 0.555555555555555555556, 0.888888888888888888889, 0.555555555555555555556 }; double x07[7] = { -0.96049126870802028342, -0.77459666924148337704, -0.43424374934680255800, 0.0, 0.43424374934680255800, 0.77459666924148337704, 0.96049126870802028342 }; double w07[7] = { 0.104656226026467265194, 0.268488089868333440729, 0.401397414775962222905, 0.450916538658474142345, 0.401397414775962222905, 0.268488089868333440729, 0.104656226026467265194 }; double x15[15] = { -0.99383196321275502221, -0.96049126870802028342, -0.88845923287225699889, -0.77459666924148337704, -0.62110294673722640294, -0.43424374934680255800, -0.22338668642896688163, 0.0, 0.22338668642896688163, 0.43424374934680255800, 0.62110294673722640294, 0.77459666924148337704, 0.88845923287225699889, 0.96049126870802028342, 0.99383196321275502221 }; double w15[15] = { 0.0170017196299402603390, 0.0516032829970797396969, 0.0929271953151245376859, 0.134415255243784220360, 0.171511909136391380787, 0.200628529376989021034, 0.219156858401587496404, 0.225510499798206687386, 0.219156858401587496404, 0.200628529376989021034, 0.171511909136391380787, 0.134415255243784220360, 0.0929271953151245376859, 0.0516032829970797396969, 0.0170017196299402603390 }; double x31[31] = { -0.99909812496766759766, -0.99383196321275502221, -0.98153114955374010687, -0.96049126870802028342, -0.92965485742974005667, -0.88845923287225699889, -0.83672593816886873550, -0.77459666924148337704, -0.70249620649152707861, -0.62110294673722640294, -0.53131974364437562397, -0.43424374934680255800, -0.33113539325797683309, -0.22338668642896688163, -0.11248894313318662575, 0.0, 0.11248894313318662575, 0.22338668642896688163, 0.33113539325797683309, 0.43424374934680255800, 0.53131974364437562397, 0.62110294673722640294, 0.70249620649152707861, 0.77459666924148337704, 0.83672593816886873550, 0.88845923287225699889, 0.92965485742974005667, 0.96049126870802028342, 0.98153114955374010687, 0.99383196321275502221, 0.99909812496766759766 }; double w31[31] = { 0.00254478079156187441540, 0.00843456573932110624631, 0.0164460498543878109338, 0.0258075980961766535646, 0.0359571033071293220968, 0.0464628932617579865414, 0.0569795094941233574122, 0.0672077542959907035404, 0.0768796204990035310427, 0.0857559200499903511542, 0.0936271099812644736167, 0.100314278611795578771, 0.105669893580234809744, 0.109578421055924638237, 0.111956873020953456880, 0.112755256720768691607, 0.111956873020953456880, 0.109578421055924638237, 0.105669893580234809744, 0.100314278611795578771, 0.0936271099812644736167, 0.0857559200499903511542, 0.0768796204990035310427, 0.0672077542959907035404, 0.0569795094941233574122, 0.0464628932617579865414, 0.0359571033071293220968, 0.0258075980961766535646, 0.0164460498543878109338, 0.00843456573932110624631, 0.00254478079156187441540 }; double x63[63] = { -0.99987288812035761194, -0.99909812496766759766, -0.99720625937222195908, -0.99383196321275502221, -0.98868475754742947994, -0.98153114955374010687, -0.97218287474858179658, -0.96049126870802028342, -0.94634285837340290515, -0.92965485742974005667, -0.91037115695700429250, -0.88845923287225699889, -0.86390793819369047715, -0.83672593816886873550, -0.80694053195021761186, -0.77459666924148337704, -0.73975604435269475868, -0.70249620649152707861, -0.66290966002478059546, -0.62110294673722640294, -0.57719571005204581484, -0.53131974364437562397, -0.48361802694584102756, -0.43424374934680255800, -0.38335932419873034692, -0.33113539325797683309, -0.27774982202182431507, -0.22338668642896688163, -0.16823525155220746498, -0.11248894313318662575, -0.056344313046592789972, 0.0, 0.056344313046592789972, 0.11248894313318662575, 0.16823525155220746498, 0.22338668642896688163, 0.27774982202182431507, 0.33113539325797683309, 0.38335932419873034692, 0.43424374934680255800, 0.48361802694584102756, 0.53131974364437562397, 0.57719571005204581484, 0.62110294673722640294, 0.66290966002478059546, 0.70249620649152707861, 0.73975604435269475868, 0.77459666924148337704, 0.80694053195021761186, 0.83672593816886873550, 0.86390793819369047715, 0.88845923287225699889, 0.91037115695700429250, 0.92965485742974005667, 0.94634285837340290515, 0.96049126870802028342, 0.97218287474858179658, 0.98153114955374010687, 0.98868475754742947994, 0.99383196321275502221, 0.99720625937222195908, 0.99909812496766759766, 0.99987288812035761194 }; double w63[63] = { 0.000363221481845530659694, 0.00126515655623006801137, 0.00257904979468568827243, 0.00421763044155885483908, 0.00611550682211724633968, 0.00822300795723592966926, 0.0104982469096213218983, 0.0129038001003512656260, 0.0154067504665594978021, 0.0179785515681282703329, 0.0205942339159127111492, 0.0232314466399102694433, 0.0258696793272147469108, 0.0284897547458335486125, 0.0310735511116879648799, 0.0336038771482077305417, 0.0360644327807825726401, 0.0384398102494555320386, 0.0407155101169443189339, 0.0428779600250077344929, 0.0449145316536321974143, 0.0468135549906280124026, 0.0485643304066731987159, 0.0501571393058995374137, 0.0515832539520484587768, 0.0528349467901165198621, 0.0539054993352660639269, 0.0547892105279628650322, 0.0554814043565593639878, 0.0559784365104763194076, 0.0562776998312543012726, 0.0563776283603847173877, 0.0562776998312543012726, 0.0559784365104763194076, 0.0554814043565593639878, 0.0547892105279628650322, 0.0539054993352660639269, 0.0528349467901165198621, 0.0515832539520484587768, 0.0501571393058995374137, 0.0485643304066731987159, 0.0468135549906280124026, 0.0449145316536321974143, 0.0428779600250077344929, 0.0407155101169443189339, 0.0384398102494555320386, 0.0360644327807825726401, 0.0336038771482077305417, 0.0310735511116879648799, 0.0284897547458335486125, 0.0258696793272147469108, 0.0232314466399102694433, 0.0205942339159127111492, 0.0179785515681282703329, 0.0154067504665594978021, 0.0129038001003512656260, 0.0104982469096213218983, 0.00822300795723592966926, 0.00611550682211724633968, 0.00421763044155885483908, 0.00257904979468568827243, 0.00126515655623006801137, 0.000363221481845530659694 }; if ( n == 1 ) { r8vec_copy ( n, x01, x ); r8vec_copy ( n, w01, w ); } else if ( n == 3 ) { r8vec_copy ( n, x03, x ); r8vec_copy ( n, w03, w ); } else if ( n == 7 ) { r8vec_copy ( n, x07, x ); r8vec_copy ( n, w07, w ); } else if ( n == 15 ) { r8vec_copy ( n, x15, x ); r8vec_copy ( n, w15, w ); } else if ( n == 31 ) { r8vec_copy ( n, x31, x ); r8vec_copy ( n, w31, w ); } else if ( n == 63 ) { r8vec_copy ( n, x63, x ); r8vec_copy ( n, w63, w ); } else { cerr << "\n"; cerr << "KPU - Fatal error!\n"; cerr << " Illegal value of N.\n"; exit ( 1 ); } // // The rule as stored is for the interval [-1,+1]. // Adjust it to the interval [0,1]. // rule_adjust ( -1.0, +1.0, 0.0, 1.0, n, x, w ); return; } //****************************************************************************80 int kpu_order ( int l ) //****************************************************************************80 // // Purpose: // // KPU_ORDER computes the order of a KPU rule from the level. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // John Burkardt. // // Parameters: // // Input, int L, the level of the rule. // 1 <= L <= 25 // // Output, int KPU_ORDER, the order of the rule. // { int n; if ( l < 1 ) { cerr << "\n"; cerr << "KPU_ORDER - Fatal error!\n"; cerr << " 1 <= L <= 25 required.\n"; cerr << " Input L = " << l << "\n"; exit ( 1 ); } else if ( l == 1 ) { n = 1; } else if ( l <= 3 ) { n = 3; } else if ( l <= 6 ) { n = 7; } else if ( l <= 12 ) { n = 15; } else if ( l <= 24 ) { n = 31; } else if ( l <= 25 ) { n = 63; } else { cerr << "\n"; cerr << "KPU_ORDER - Fatal error!\n"; cerr << " 1 <= L <= 25 required.\n"; cerr << " Input L = " << l << "\n"; exit ( 1 ); } return n; } //****************************************************************************80 int num_seq ( int n, int k ) //****************************************************************************80 // // Purpose: // // NUM_SEQ returns the number of compositions of the integer N into K parts. // // Discussion: // // A composition of the integer N into K parts is an ordered sequence // of K nonnegative integers which sum to N. The compositions (1,2,1) // and (1,1,2) are considered to be distinct. // // The 28 compositions of 6 into three parts are: // // 6 0 0, 5 1 0, 5 0 1, 4 2 0, 4 1 1, 4 0 2, // 3 3 0, 3 2 1, 3 1 2, 3 0 3, 2 4 0, 2 3 1, // 2 2 2, 2 1 3, 2 0 4, 1 5 0, 1 4 1, 1 3 2, // 1 2 3, 1 1 4, 1 0 5, 0 6 0, 0 5 1, 0 4 2, // 0 3 3, 0 2 4, 0 1 5, 0 0 6. // // The formula for the number of compositions of N into K parts is // // Number = ( N + K - 1 )! / ( N! * ( K - 1 )! ) // // Describe the composition using N '1's and K-1 dividing lines '|'. // The number of distinct permutations of these symbols is the number // of compositions. This is equal to the number of permutations of // N+K-1 things, with N identical of one kind and K-1 identical of another. // // Thus, for the above example, we have: // // Number = ( 6 + 3 - 1 )! / ( 6! * (3-1)! ) = 28 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms for Computers and Calculators, // Second Edition, // Academic Press, 1978, // ISBN: 0-12-519260-6, // LC: QA164.N54. // // Parameters: // // Input, int N, the integer whose compositions are desired. // // Input, int K, the number of parts in the composition. // // Output, int NUM_SEQ, the number of compositions of N // into K parts. // { int value; value = i4_choose ( n + k - 1, n ); return value; } //****************************************************************************80 void nwspgr ( void rule ( int n, double x[], double w[] ), int rule_order ( int l ), int dim, int k, int r_size, int &s_size, double nodes[], double weights[] ) //****************************************************************************80 // // Purpose: // // NWSPGR generates nodes and weights for sparse grid integration. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2013 // // Author: // // Original MATLAB version by Florian Heiss, Viktor Winschel. // C++ version by John Burkardt. // // Reference: // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Parameters: // // Input, void RULE ( int n, double x[], double w[] ), the name of a function // which is given the order N and returns the points X and weights W of the // corresponding 1D quadrature rule. // // Input, int RULE_ORDER ( int l ), the name of a function which // is given the level L and returns the order N of the corresponding 1D rule. // // Input, int DIM, the spatial dimension. // // Input, int K, the level of the sparse rule. // // Input, int R_SIZE, the "size" of the sparse rule. // // Output, int &S_SIZE, the size of the sparse rule, after // duplicate points have been merged. // // Output, double NODES[DIM*R_SIZE], the nodes of the sparse rule. // // Output, double WEIGHTS[R_SIZE], the weights of the sparse rule. // { int bq; int equal; int i; int *is; int j; int j2; int *keep; int level; int *lr; int maxq; int minq; int n; int *n1d; int n1d_total; int nc; int np; int *nr; int q; int r; int *roff; int *rq; int seq_num; double t; double *w; double *w1d; int *w1d_off; double *wc; double *wp; double *wr; double *x; double *x1d; int *x1d_off; double *xc; double *xp; double *xr; for ( j = 0; j < r_size; j++ ) { for ( i = 0; i < dim; i++ ) { nodes[i+j*dim] = 0.0; } } for ( j = 0; j < r_size; j++ ) { weights[j] = 0.0; } // // Create cell arrays that will contain the points and weights // for levels 1 through K. // n1d = new int[k]; x1d_off = new int[k+1]; w1d_off = new int[k+1]; x1d_off[0] = 0; w1d_off[0] = 0; for ( level = 1; level <= k; level++ ) { n = rule_order ( level ); n1d[level-1] = n; x1d_off[level] = x1d_off[level-1] + n; w1d_off[level] = w1d_off[level-1] + n; } n1d_total = x1d_off[k]; // // Calculate all the 1D rules needed. // x1d = new double[n1d_total]; w1d = new double[n1d_total]; for ( level = 1; level <= k; level++ ) { n = n1d[level-1]; x = new double[n]; w = new double[n]; rule ( n, x, w ); r8cvv_rset ( n1d_total, x1d, k, x1d_off, level - 1, x ); r8cvv_rset ( n1d_total, w1d, k, w1d_off, level - 1, w ); delete [] x; delete [] w; } // // Construct the sparse grid. // minq = i4_max ( 0, k - dim ); maxq = k - 1; // // Q is the level total. // lr = new int[dim]; nr = new int[dim]; r = 0; for ( q = minq; q <= maxq; q++ ) { // // BQ is the combinatorial coefficient applied to the component // product rules which have level Q. // bq = i4_mop ( maxq - q ) * i4_choose ( dim - 1, dim + q - k ); // // Compute the D-dimensional row vectors that sum to DIM+Q. // seq_num = num_seq ( q, dim ); is = get_seq ( dim, q + dim, seq_num ); // // Allocate new rows for nodes and weights. // rq = new int[seq_num]; for ( j = 0; j < seq_num; j++ ) { rq[j] = 1; for ( i = 0; i < dim; i++ ) { level = is[j+i*seq_num] - 1; rq[j] = rq[j] * n1d[level]; } } // // Generate every product rule whose level total is Q. // for ( j2 = 0; j2 < seq_num; j2++ ) { for ( i = 0; i < dim; i++ ) { lr[i] = is[j2+i*seq_num]; } for ( i = 0; i < dim; i++ ) { nr[i] = rule_order ( lr[i] ); } roff = r8cvv_offset ( dim, nr ); nc = i4vec_sum ( dim, nr ); wc = new double[nc]; xc = new double[nc]; // // Corrected first argument in calls to R8CVV to N1D_TOTAL, // 19 April 2013. // for ( i = 0; i < dim; i++ ) { xr = r8cvv_rget_new ( n1d_total, x1d, k, x1d_off, lr[i] - 1 ); wr = r8cvv_rget_new ( n1d_total, w1d, k, w1d_off, lr[i] - 1 ); r8cvv_rset ( nc, xc, dim, roff, i, xr ); r8cvv_rset ( nc, wc, dim, roff, i, wr ); delete [] wr; delete [] xr; } np = rq[j2]; wp = new double[np]; xp = new double[dim*np]; tensor_product_cell ( nc, xc, wc, dim, nr, roff, np, xp, wp ); // // Append the new nodes and weights to the arrays. // for ( j = 0; j < np; j++ ) { for ( i = 0; i < dim; i++ ) { nodes[i+(r+j)*dim] = xp[i+j*dim]; } } for ( j = 0; j < np; j++ ) { weights[r+j] = bq * wp[j]; } // // Update the count. // r = r + rq[j2]; delete [] roff; delete [] wc; delete [] wp; delete [] xc; delete [] xp; } delete [] is; delete [] rq; } delete [] lr; delete [] n1d; delete [] nr; delete [] w1d; delete [] w1d_off; delete [] x1d; delete [] x1d_off; // // Reorder the rule so the points are in ascending lexicographic order. // rule_sort ( dim, r_size, nodes, weights ); // // Suppress duplicate points and merge weights. // r = 0; for ( j = 1; j < r_size; j++ ) { equal = 1; for ( i = 0; i < dim; i++ ) { if ( nodes[i+r*dim] != nodes[i+j*dim] ) { equal = 0; break; } } if ( equal ) { weights[r] = weights[r] + weights[j]; } else { r = r + 1; weights[r] = weights[j]; for ( i = 0; i < dim; i++ ) { nodes[i+r*dim] = nodes[i+j*dim]; } } } r = r + 1; s_size = r; // // Zero out unneeded entries. // for ( j = r; j < r_size; j++ ) { for ( i = 0; i < dim; i++ ) { nodes[i+j*dim] = 0.0; } } for ( j = r; j < r_size; j++ ) { weights[j] = 0.0; } // // Normalize the weights to sum to 1. // t = r8vec_sum ( r, weights ); for ( j = 0; j < r; j++ ) { weights[j] = weights[j] / t; } return; } //****************************************************************************80 int nwspgr_size ( int rule_order ( int l ), int dim, int k ) //****************************************************************************80 // // Purpose: // // NWSPGR_SIZE determines the size of a sparse grid rule. // // Discussion: // // This routine does a "raw" count, that is, it does not notice that many // points may be repeated, in which case, the size of the rule could be // reduced by merging repeated points and combining the corresponding weights. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 December 2012 // // Author: // // John Burkardt. // // Reference: // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Parameters: // // Input, int RULE_ORDER ( int l ), the name of a function which // is given the level L and returns the order N of the corresponding rule. // // Input, int DIM, the dimension of the integration problem. // // Input, int K, the level. When using the built in 1D // rules, the resulting sparse grid will be exact for polynomials up to total // order 2*K-1. When using the built-in quadrature rules, the maximum value // of K that is available is 25. // // Output, int NWSPGR_SIZE, the "size" of the rule, that is, // the number of weights and multidimensional quadrature points that will // be needed. The size of the rule will be reduced when duplicate points // are merged. // { int i; int *is; int j; int level; int maxq; int minq; int n; int *n1d; int n1d_total; int q; int r_size; int *rq; int seq_num; // // Determine the size of each 1D rule. // n1d = new int[k]; for ( level = 1; level <= k; level++ ) { n = rule_order ( level ); n1d[level-1] = n; } n1d_total = i4vec_sum ( k, n1d ); // // Go through the motions of generating the rules. // minq = i4_max ( 0, k - dim ); maxq = k - 1; r_size = 0; for ( q = minq; q <= maxq; q++ ) { // // Compute the D-dimensional vectors that sum to Q+DIM. // seq_num = num_seq ( q, dim ); is = get_seq ( dim, q + dim, seq_num ); // // Determine the size of each rule. // rq = new int[seq_num]; for ( j = 0; j < seq_num; j++ ) { rq[j] = 1; for ( i = 0; i < dim; i++ ) { rq[j] = rq[j] * n1d[is[j+i*seq_num]-1]; } } // // Add the sizes to the total. // r_size = r_size + i4vec_sum ( seq_num, rq ); delete [] is; delete [] rq; } delete [] n1d; return r_size; } //****************************************************************************80 void quad_rule_print ( int m, int n, double x[], double w[], string title ) //****************************************************************************80 // // Purpose: // // QUAD_RULE_PRINT prints a multidimensional quadrature rule. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double X[M*N], the abscissas. // // Input, double W[N], the weights. // // Input, string TITLE, a title for the rule. // { int i; int j; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( j = 0; j < n; j++ ) { cout << " " << setw(2) << j << " " << setw(10) << w[j] << " * f ("; for ( i = 0; i < m; i++ ) { cout << x[i+j*m]; if ( i < m - 1 ) { cout << ","; } else { cout << " )\n"; } } } return; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = + x; } else { value = - x; } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 int *r8cvv_offset ( int m, int nr[] ) //****************************************************************************80 // // Purpose: // // R8CVV_OFFSET determines the row offsets of an R8CVV. // // Discussion: // // An R8CVV is a "vector of vectors" of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in the array. // // Input, int NR[M], the row sizes. // // Output, int R8CVV_OFFSET[M+1], the row offsets. // { int i; int *roff; roff = new int[m+1]; roff[0] = 0; for ( i = 0; i < m; i++ ) { roff[i+1] = roff[i] + nr[i]; } return roff; } //****************************************************************************80 void r8cvv_print ( int mn, double a[], int m, int roff[], string title ) //****************************************************************************80 // // Purpose: // // R8CVV_PRINT prints an R8CVV. // // Discussion: // // An R8CVV is a "vector of vectors" of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int MN, the size of the cell array. // // Input, double A[MN], the cell array. // // Input, int M, the number of rows in the array. // // Input, int ROFF[M+1], the row offsets. // // Input, string TITLE, a title. // { int i; int j; int k; int k1; int k2; int khi; int klo; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < m; i++ ) { k1 = roff[i]; k2 = roff[i+1]; for ( klo = k1; klo < k2; klo = klo + 5 ) { khi = i4_min ( klo + 5, k2 ); if ( klo == k1 ) { cout << setw(5) << i; } else { cout << " "; } cout << " "; for ( k = klo; k < khi; k++ ) { cout << setw(14) << a[k]; } cout << "\n"; } } return; } //****************************************************************************80 double *r8cvv_rget_new ( int mn, double a[], int m, int roff[], int i ) //****************************************************************************80 // // Purpose: // // R8CVV_RGET_NEW gets row I from an R8CVV. // // Discussion: // // An R8CVV is a "vector of vectors" of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int MN, the size of the cell array. // // Input, double A[MN], the cell array. // // Input, int M, the number of rows in the array. // // Input, int ROFF[M+1], the row offsets. // // Input, int I, the row. // 0 <= I < M. // // Output, double R8CVV_RGET_NEW[NR[I]], the value of A(I,*). // { double *ai; int j; int k1; int k2; int nv; k1 = roff[i]; k2 = roff[i+1]; nv = k2 - k1; ai = new double[nv]; for ( j = 0; j < nv; j++ ) { ai[j] = a[k1+j]; } return ai; } //****************************************************************************80 void r8cvv_rset ( int mn, double a[], int m, int roff[], int i, double ai[] ) //****************************************************************************80 // // Purpose: // // R8CVV_RSET sets row I from an R8CVV. // // Discussion: // // An R8CVV is a "vector of vectors" of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int MN, the size of the cell array. // // Input/output, double A[MN], the cell array. // // Input, int M, the number of rows in the array. // // Input, int ROFF[M+1], the row offsets. // // Input, int I, the row. // 0 <= I < M. // // Input, double AI[NR[I]], the new value of A(I,*). // { int j; int k1; int k2; int nv; k1 = roff[i]; k2 = roff[i+1]; nv = k2 - k1; for ( j = 0; j < nv; j++ ) { a[k1+j] = ai[j]; } return; } //****************************************************************************80 double *r8mat_normal_01_new ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8MAT_NORMAL_01_NEW returns a unit pseudonormal R8MAT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int M, N, the number of rows and columns in the array. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, double R8MAT_NORMAL_01_NEW[M*N], the array of pseudonormal values. // { double *r; r = r8vec_normal_01_new ( m * n, seed ); return r; } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, string TITLE, a title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i - 1 << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j - 1 << ":"; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8mat_uniform_01_new ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_01_NEW returns a unit pseudorandom R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8's, stored as a vector // in column-major order. // // This routine implements the recursion // // seed = 16807 * seed mod ( 2^31 - 1 ) // unif = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Philip Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0, otherwise the output value of SEED // will still be 0, and R8_UNIFORM will be 0. On output, SEED has // been updated. // // Output, double R8MAT_UNIFORM_01_NEW[M*N], a matrix of pseudorandom values. // { int i; int j; int k; double *r; r = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } r[i+j*m] = ( double ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 void r8vec_copy ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_COPY copies an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], the vector to be copied. // // Output, double A2[N], the copy of A1. // { int i; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return; } //****************************************************************************80 void r8vec_direct_product ( int factor_index, int factor_order, double factor_value[], int factor_num, int point_num, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DIRECT_PRODUCT creates a direct product of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // To explain what is going on here, suppose we had to construct // a multidimensional quadrature rule as the product of K rules // for 1D quadrature. // // The product rule will be represented as a list of points and weights. // // The J-th item in the product rule will be associated with // item J1 of 1D rule 1, // item J2 of 1D rule 2, // ..., // item JK of 1D rule K. // // In particular, // X(J) = ( X(1,J1), X(2,J2), ..., X(K,JK)) // and // W(J) = W(1,J1) * W(2,J2) * ... * W(K,JK) // // So we can construct the quadrature rule if we can properly // distribute the information in the 1D quadrature rules. // // This routine carries out that task. // // Another way to do this would be to compute, one by one, the // set of all possible indices (J1,J2,...,JK), and then index // the appropriate information. An advantage of the method shown // here is that you can process the K-th set of information and // then discard it. // // Example: // // Rule 1: // Order = 4 // X(1:4) = ( 1, 2, 3, 4 ) // // Rule 2: // Order = 3 // X(1:3) = ( 10, 20, 30 ) // // Rule 3: // Order = 2 // X(1:2) = ( 100, 200 ) // // Product Rule: // Order = 24 // X(1:24) = // ( 1, 10, 100 ) // ( 2, 10, 100 ) // ( 3, 10, 100 ) // ( 4, 10, 100 ) // ( 1, 20, 100 ) // ( 2, 20, 100 ) // ( 3, 20, 100 ) // ( 4, 20, 100 ) // ( 1, 30, 100 ) // ( 2, 30, 100 ) // ( 3, 30, 100 ) // ( 4, 30, 100 ) // ( 1, 10, 200 ) // ( 2, 10, 200 ) // ( 3, 10, 200 ) // ( 4, 10, 200 ) // ( 1, 20, 200 ) // ( 2, 20, 200 ) // ( 3, 20, 200 ) // ( 4, 20, 200 ) // ( 1, 30, 200 ) // ( 2, 30, 200 ) // ( 3, 30, 200 ) // ( 4, 30, 200 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 April 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int FACTOR_INDEX, the index of the factor being processed. // The first factor processed must be factor 0. // // Input, int FACTOR_ORDER, the order of the factor. // // Input, double FACTOR_VALUE[FACTOR_ORDER], the factor values // for factor FACTOR_INDEX. // // Input, int FACTOR_NUM, the number of factors. // // Input, int POINT_NUM, the number of elements in the direct product. // // Input/output, double X[FACTOR_NUM*POINT_NUM], the elements of the // direct product, which are built up gradually. // // Local Parameters: // // Local, int START, the first location of a block of values to set. // // Local, int CONTIG, the number of consecutive values to set. // // Local, int SKIP, the distance from the current value of START // to the next location of a block of values to set. // // Local, int REP, the number of blocks of values to set. // { static int contig = 0; int i; int j; int k; static int rep = 0; static int skip = 0; int start; if ( factor_index == 0 ) { contig = 1; skip = 1; rep = point_num; for ( j = 0; j < point_num; j++ ) { for ( i = 0; i < factor_num; i++ ) { x[i+j*factor_num] = 0.0; } } } rep = rep / factor_order; skip = skip * factor_order; for ( i = 0; i < factor_order; i++ ) { start = 0 + i * contig; for ( k = 1; k <= rep; k++ ) { for ( j = start; j < start + contig; j++ ) { x[factor_index+j*factor_num] = factor_value[i]; } start = start + skip; } } contig = contig * factor_order; return; } //****************************************************************************80 void r8vec_direct_product2 ( int factor_index, int factor_order, double factor_value[], int factor_num, int point_num, double w[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DIRECT_PRODUCT2 creates a direct product of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // To explain what is going on here, suppose we had to construct // a multidimensional quadrature rule as the product of K rules // for 1D quadrature. // // The product rule will be represented as a list of points and weights. // // The J-th item in the product rule will be associated with // item J1 of 1D rule 1, // item J2 of 1D rule 2, // ..., // item JK of 1D rule K. // // In particular, // X(J) = ( X(1,J1), X(2,J2), ..., X(K,JK)) // and // W(J) = W(1,J1) * W(2,J2) * ... * W(K,JK) // // So we can construct the quadrature rule if we can properly // distribute the information in the 1D quadrature rules. // // This routine carries out that task for the weights W. // // Another way to do this would be to compute, one by one, the // set of all possible indices (J1,J2,...,JK), and then index // the appropriate information. An advantage of the method shown // here is that you can process the K-th set of information and // then discard it. // // Example: // // Rule 1: // Order = 4 // W(1:4) = ( 2, 3, 5, 7 ) // // Rule 2: // Order = 3 // W(1:3) = ( 11, 13, 17 ) // // Rule 3: // Order = 2 // W(1:2) = ( 19, 23 ) // // Product Rule: // Order = 24 // W(1:24) = // ( 2 * 11 * 19 ) // ( 3 * 11 * 19 ) // ( 4 * 11 * 19 ) // ( 7 * 11 * 19 ) // ( 2 * 13 * 19 ) // ( 3 * 13 * 19 ) // ( 5 * 13 * 19 ) // ( 7 * 13 * 19 ) // ( 2 * 17 * 19 ) // ( 3 * 17 * 19 ) // ( 5 * 17 * 19 ) // ( 7 * 17 * 19 ) // ( 2 * 11 * 23 ) // ( 3 * 11 * 23 ) // ( 5 * 11 * 23 ) // ( 7 * 11 * 23 ) // ( 2 * 13 * 23 ) // ( 3 * 13 * 23 ) // ( 5 * 13 * 23 ) // ( 7 * 13 * 23 ) // ( 2 * 17 * 23 ) // ( 3 * 17 * 23 ) // ( 5 * 17 * 23 ) // ( 7 * 17 * 23 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 April 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int FACTOR_INDEX, the index of the factor being processed. // The first factor processed must be factor 0. // // Input, int FACTOR_ORDER, the order of the factor. // // Input, double FACTOR_VALUE[FACTOR_ORDER], the factor values for // factor FACTOR_INDEX. // // Input, int FACTOR_NUM, the number of factors. // // Input, int POINT_NUM, the number of elements in the direct product. // // Input/output, double W[POINT_NUM], the elements of the // direct product, which are built up gradually. // // Local Parameters: // // Local, integer START, the first location of a block of values to set. // // Local, integer CONTIG, the number of consecutive values to set. // // Local, integer SKIP, the distance from the current value of START // to the next location of a block of values to set. // // Local, integer REP, the number of blocks of values to set. // { static int contig = 0; int i; int j; int k; static int rep = 0; static int skip = 0; int start; if ( factor_index == 0 ) { contig = 1; skip = 1; rep = point_num; for ( i = 0; i < point_num; i++ ) { w[i] = 1.0; } } rep = rep / factor_order; skip = skip * factor_order; for ( j = 0; j < factor_order; j++ ) { start = 0 + j * contig; for ( k = 1; k <= rep; k++ ) { for ( i = start; i < start + contig; i++ ) { w[i] = w[i] * factor_value[j]; } start = start + skip; } } contig = contig * factor_order; return; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double *r8vec_normal_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_NORMAL_01_NEW returns a unit pseudonormal R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // The standard normal probability distribution function (PDF) has // mean 0 and standard deviation 1. // // This routine can generate a vector of values on one call. It // has the feature that it should provide the same results // in the same order no matter how we break up the task. // // Before calling this routine, the user may call RANDOM_SEED // in order to set the seed of the random number generator. // // The Box-Muller method is used, which is efficient, but // generates an even number of values each time. On any call // to this routine, an even number of new values are generated. // Depending on the situation, one value may be left over. // In that case, it is saved for the next call. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of values desired. If N is negative, // then the code will flush its internal memory; in particular, // if there is a saved value to be used on the next call, it is // instead discarded. This is useful if the user has reset the // random number seed, for instance. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_NORMAL_01_NEW[N], a sample of the standard normal PDF. // // Local parameters: // // Local, int MADE, records the number of values that have // been computed. On input with negative N, this value overwrites // the return value of N, so the user can get an accounting of // how much work has been done. // // Local, double R[N+1], is used to store some uniform random values. // Its dimension is N+1, but really it is only needed to be the // smallest even number greater than or equal to N. // // Local, int SAVED, is 0 or 1 depending on whether there is a // single saved value left over from the previous call. // // Local, int X_LO, X_HI, records the range of entries of // X that we need to compute. This starts off as 1:N, but is adjusted // if we have a saved value that can be immediately stored in X(1), // and so on. // // Local, double Y, the value saved from the previous call, if // SAVED is 1. // { int i; int m; static int made = 0; double pi = 3.141592653589793; double *r; static int saved = 0; double *x; int x_hi; int x_lo; static double y = 0.0; // // I'd like to allow the user to reset the internal data. // But this won't work properly if we have a saved value Y. // I'm making a crock option that allows the user to signal // explicitly that any internal memory should be flushed, // by passing in a negative value for N. // if ( n < 0 ) { made = 0; saved = 0; y = 0.0; return NULL; } else if ( n == 0 ) { return NULL; } x = new double[n]; // // Record the range of X we need to fill in. // x_lo = 1; x_hi = n; // // Use up the old value, if we have it. // if ( saved == 1 ) { x[0] = y; saved = 0; x_lo = 2; } // // Maybe we don't need any more values. // if ( x_hi - x_lo + 1 == 0 ) { } // // If we need just one new value, do that here to avoid null arrays. // else if ( x_hi - x_lo + 1 == 1 ) { r = r8vec_uniform_01_new ( 2, seed ); x[x_hi-1] = sqrt ( -2.0 * log ( r[0] ) ) * cos ( 2.0 * pi * r[1] ); y = sqrt ( -2.0 * log ( r[0] ) ) * sin ( 2.0 * pi * r[1] ); saved = 1; made = made + 2; delete [] r; } // // If we require an even number of values, that's easy. // else if ( ( x_hi - x_lo + 1 ) % 2 == 0 ) { m = ( x_hi - x_lo + 1 ) / 2; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2*m-2; i = i + 2 ) { x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); x[x_lo+i ] = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * pi * r[i+1] ); } made = made + x_hi - x_lo + 1; delete [] r; } // // If we require an odd number of values, we generate an even number, // and handle the last pair specially, storing one in X(N), and // saving the other for later. // else { x_hi = x_hi - 1; m = ( x_hi - x_lo + 1 ) / 2 + 1; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2*m-4; i = i + 2 ) { x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); x[x_lo+i ] = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * pi * r[i+1] ); } i = 2*m - 2; x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); y = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * pi * r[i+1] ); saved = 1; made = made + x_hi - x_lo + 2; delete [] r; } return x; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double r8vec_sum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SUM returns the sum of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_SUM, the sum of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i]; } return value; } //****************************************************************************80 void r8vec_transpose_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_TRANSPOSE_PRINT prints an R8VEC "transposed". // // Discussion: // // An R8VEC is a vector of R8's. // // Example: // // A = (/ 1.0, 2.1, 3.2, 4.3, 5.4, 6.5, 7.6, 8.7, 9.8, 10.9, 11.0 /) // TITLE = 'My vector: ' // // My vector: // // 1.0 2.1 3.2 4.3 5.4 // 6.5 7.6 8.7 9.8 10.9 // 11.0 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 November 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; int ihi; int ilo; cout << "\n"; cout << title << "\n"; cout << "\n"; if ( n <= 0 ) { cout << " (Empty)\n"; return; } for ( ilo = 0; ilo < n; ilo = ilo + 5 ) { ihi = i4_min ( ilo + 5, n ); for ( i = ilo; i < ihi; i++ ) { cout << " " << setw(12) << a[i]; } cout << "\n"; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void rule_adjust ( double a, double b, double c, double d, int n, double x[], double w[] ) //****************************************************************************80 // // Purposse: // // RULE_ADJUST adjusts a 1D quadrature rule from [A,B] to [C,D]. // // Discussion: // // This function is only appropriate for cases involving finite intervals // and a uniform weighting function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 February 2014 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the left and right endpoints of the // original interval. // // Input, double C, D, the left and right endpoints of the // new interval. // // Input, int N, the order of the rule. // 1 <= N. // // Input/output, double X[N], the abscissas. // // Input/output, double W[N], the weights. // { int i; double s; for ( i = 0; i < n; i++ ) { x[i] = ( ( b - x[i] ) * c + ( x[i] - a ) * d ) / ( b - a ); } s = ( d - c ) / ( b - a ); for ( i = 0; i < n; i++ ) { w[i] = s * w[i]; } return; } //****************************************************************************80 void rule_sort ( int m, int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // RULE_SORT sorts a multidimensional quadrature rule. // // Discussion: // // This routine reorders the items in the rule so that the points // occur in increasing lexicographic order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, double X[M*N], W[N]. // The points and weights. // { int i; int indx; int isgn; int j1; int j2; double t; double ww; if ( m <= 0 ) { return; } if ( n <= 1 ) { return; } // // Initialize. // indx = 0; isgn = 0; j1 = 0; j2 = 0; // // Call the external heap sorter. // while ( 1 ) { sort_heap_external ( n, indx, j1, j2, isgn ); // // Interchange columns J1 and J2. // if ( 0 < indx ) { for ( i = 0; i < m; i++ ) { t = x[i+(j1-1)*m]; x[i+(j1-1)*m] = x[i+(j2-1)*m]; x[i+(j2-1)*m] = t; } ww = w[j1-1]; w[j1-1] = w[j2-1]; w[j2-1] = ww; } // // Compare columns J1 and J2. // else if ( indx < 0 ) { isgn = 0; for ( i = 0; i < m; i++ ) { if ( x[i+(j1-1)*m] < x[i+(j2-1)*m] ) { isgn = -1; break; } else if ( x[i+(j2-1)*m] < x[i+(j1-1)*m] ) { isgn = +1; break; } } } // // The columns are sorted. // else if ( indx == 0 ) { break; } } return; } //****************************************************************************80 void sort_heap_external ( int n, int &indx, int &i, int &j, int isgn ) //****************************************************************************80 // // Purpose: // // SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. // // Discussion: // // The actual list is not passed to the routine. Hence it may // consist of integers, reals, numbers, names, etc. The user, // after each return from the routine, will be asked to compare or // interchange two items. // // The current version of this code mimics the FORTRAN version, // so the values of I and J, in particular, are FORTRAN indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2013 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the length of the input list. // // Input/output, int &INDX. // The user must set INDX to 0 before the first call. // On return, // if INDX is greater than 0, the user must interchange // items I and J and recall the routine. // If INDX is less than 0, the user is to compare items I // and J and return in ISGN a negative value if I is to // precede J, and a positive value otherwise. // If INDX is 0, the sorting is done. // // Output, int &I, &J. On return with INDX positive, // elements I and J of the user's list should be // interchanged. On return with INDX negative, elements I // and J are to be compared by the user. // // Input, int ISGN. On return with INDX negative, the // user should compare elements I and J of the list. If // item I is to precede item J, set ISGN negative, // otherwise set ISGN positive. // { static int i_save = 0; static int j_save = 0; static int k = 0; static int k1 = 0; static int n1 = 0; // // INDX = 0: This is the first call. // if ( indx == 0 ) { i_save = 0; j_save = 0; k = n / 2; k1 = k; n1 = n; } // // INDX < 0: The user is returning the results of a comparison. // else if ( indx < 0 ) { if ( indx == -2 ) { if ( isgn < 0 ) { i_save = i_save + 1; } j_save = k1; k1 = i_save; indx = -1; i = i_save; j = j_save; return; } if ( 0 < isgn ) { indx = 2; i = i_save; j = j_save; return; } if ( k <= 1 ) { if ( n1 == 1 ) { i_save = 0; j_save = 0; indx = 0; } else { i_save = n1; j_save = 1; n1 = n1 - 1; indx = 1; } i = i_save; j = j_save; return; } k = k - 1; k1 = k; } // // 0 < INDX: the user was asked to make an interchange. // else if ( indx == 1 ) { k1 = k; } for ( ; ; ) { i_save = 2 * k1; if ( i_save == n1 ) { j_save = k1; k1 = i_save; indx = -1; i = i_save; j = j_save; return; } else if ( i_save <= n1 ) { j_save = i_save + 1; indx = -2; i = i_save; j = j_save; return; } if ( k <= 1 ) { break; } k = k - 1; k1 = k; } if ( n1 == 1 ) { i_save = 0; j_save = 0; indx = 0; i = i_save; j = j_save; } else { i_save = n1; j_save = 1; n1 = n1 - 1; indx = 1; i = i_save; j = j_save; } return; } //****************************************************************************80 int symmetric_sparse_size ( int nr, int dim, double nodes[], double x0 ) //****************************************************************************80 // // Purpose: // // SYMMETRIC_SPARSE_SIZE sizes a symmetric sparse rule. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2012 // // Author: // // John Burkardt. // // Reference: // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Parameters: // // Input, int DIM, the dimension. // // Input, int NR, the dimension of the rule in the // positive orthant. // // Input, double NODES[NR*DIM], the nodes for the positive orthant. // // Input, double X0, the point of symmetry for the 1D rule, // typically 0. // // Output, int SYMMETRIC_SPARSE_SIZE, the dimension of the rule // when "unfolded" to the full space. // { int count; int j; int nr2; int r; // // Count the size of the full rule. // nr2 = 0; for ( r = 0; r < nr; r++ ) { count = 1; for ( j = 0; j < dim; j++ ) { if ( nodes[r+j*nr] != x0 ) { count = 2 * count; } } nr2 = nr2 + count; } return nr2; } //****************************************************************************80 void tensor_product ( int d, int order1d[], int n1d, double x1d[], double w1d[], int n, double xnd[], double wnd[] ) //****************************************************************************80 // // Purpose: // // TENSOR_PRODUCT generates a tensor product quadrature rule. // // Discussion: // // The Kronecker product of an K by L matrix A and an M by N matrix B // is the K*M by L*N matrix formed by // // a(1,1) * B, a(1,2) * B, ..., a(1,l) * B // a(2,1) * B, a(2,2) * B, ..., a(2,l) * B // .......... .......... .... .......... // a(k,1) * B, a(k,2) * B, ..., a(k,l) * B // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 December 2012 // // Author: // // Original MATLAB version by Florian Heiss, Viktor Winschel. // C++ version by John Burkardt. // // Reference: // // Florian Heiss, Viktor Winschel, // Likelihood approximation by numerical integration on sparse grids, // Journal of Econometrics, // Volume 144, 2008, pages 62-80. // // Parameters: // // Input, int D, the spatial dimension. // // Input, int ORDER1D[D], the order of each 1D rule. // // Input, int N1D, the number of 1D items. // // Input, double X1D[N1D], the 1D nodes. // // Input, double W1D[N1D], the 1D weights. // // Input, int N, the number of N-dimensional items. // // Output, double XND[D*N], the nodes. // // Output, double WND[N], the weights. // { int i; int i1; int i2; // // Compute the weights. // i2 = -1; for ( i = 0; i < d; i++ ) { i1 = i2 + 1; i2 = i2 + order1d[i]; r8vec_direct_product2 ( i, order1d[i], w1d+i1, d, n, wnd ); } // // Compute the points. // i2 = -1; for ( i = 0; i < d; i++ ) { i1 = i2 + 1; i2 = i2 + order1d[i]; r8vec_direct_product ( i, order1d[i], x1d+i1, d, n, xnd ); } return; } //****************************************************************************80 void tensor_product_cell ( int nc, double xc[], double wc[], int dim, int nr[], int roff[], int np, double xp[], double wp[] ) //****************************************************************************80 // // Purpose: // // TENSOR_PRODUCT_CELL generates a tensor product quadrature rule. // // Discussion: // // The Kronecker product of an K by L matrix A and an M by N matrix B // is the K*M by L*N matrix formed by // // a(1,1) * B, a(1,2) * B, ..., a(1,l) * B // a(2,1) * B, a(2,2) * B, ..., a(2,l) * B // .......... .......... .... .......... // a(k,1) * B, a(k,2) * B, ..., a(k,l) * B // // The 1D factors are stored in a kind of cell array structure. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 December 2012 // // Author: // // John Burkardt. // // Parameters: // // Input, int NC, the number of items in the cell arrays. // // Input, double XC[NC], a cell array containing points for // 1D rules. // // Input, double WC[NC], a cell array containing weights for // 1D rules. // // Input, int DIM, the spatial dimension. // // Input, int NR[DIM], the length of each row of the // cell array. // // Input, int ROFF[DIM+1], offsets for the cell arrays. // // Input, int NP, the number of points in the product rule. // // Output, double XP[DIM*NP], the nodes. // // Output, double WP[NP], the weights. // { int i; int n1d; double *w1d; double *x1d; // // Compute the weights. // for ( i = 0; i < dim; i++ ) { n1d = nr[i]; w1d = r8cvv_rget_new ( nc, wc, dim, roff, i ); r8vec_direct_product2 ( i, n1d, w1d, dim, np, wp ); delete [] w1d; } // // Compute the points. // for ( i = 0; i < dim; i++ ) { n1d = nr[i]; x1d = r8cvv_rget_new ( nc, xc, dim, roff, i ); r8vec_direct_product ( i, n1d, x1d, dim, np, xp ); delete [] x1d; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }