# include # include # include # include # include "sphere_lebedev_rule.hpp" using namespace std; //****************************************************************************80 int available_table ( int rule ) //****************************************************************************80 // // Purpose: // // AVAILABLE_TABLE returns the availability of a Lebedev rule. // // Modified: // // 12 September 2010 // // Author: // // John Burkardt // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Input, int RULE, the index of the rule, between 1 and 65. // // Output, int AVAILABLE_TABLE, the availability of the rule. // * -1, there is no such rule; // * 0, there is such a rule, but it is not available in this library. // * 1, the rule is available in this library. // { int rule_max = 65; int table[65] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 }; int value; if ( rule < 1 ) { value = - 1; } else if ( rule_max < rule ) { value = - 1; } else { value = table[rule-1]; } return value; } //****************************************************************************80 int gen_oh ( int code, double a, double b, double v, double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // GEN_OH generates points under OH symmetry. // // Discussion: // // Given a point on a sphere, specified by A and B, this routine generates // all the equivalent points under OH symmetry, making grid points with // weight V. // // The variable NUM is increased by the number of different points // generated. // // Depending on CODE, there are from 6 to 48 different but equivalent // points that are generated: // // CODE=1: (0,0,1) etc ( 6 points) // CODE=2: (0,A,A) etc, A=1/sqrt(2) ( 12 points) // CODE=3: (A,A,A) etc, A=1/sqrt(3) ( 8 points) // CODE=4: (A,A,B) etc, B=sqrt(1-2 A^2) ( 24 points) // CODE=5: (A,B,0) etc, B=sqrt(1-A^2), A input ( 24 points) // CODE=6: (A,B,C) etc, C=sqrt(1-A^2-B^2), A, B input ( 48 points) // // Modified: // // 11 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Input, int CODE, selects the symmetry group. // // Input/output, int &NUM, the number of points. This is incremented // upon output by the number of points generated on this call. // // Input, double A, B, information that may be needed to // generate the coordinates of the points (for code = 5 or 6 only). // // Input, double V, the weight to be assigned the points. // // Output, double X[*], Y[*], Z[*], W[*], the coordinates // and weights of the symmetric points generated on this call. // // Output, int GEN_OH, the number of points generated on this call. // { double c; int num; if ( code == 1 ) { a = 1.0; x[0] = a; y[0] = 0.0; z[0] = 0.0; w[0] = v; x[1] = -a; y[1] = 0.0; z[1] = 0.0; w[1] = v; x[2] = 0.0; y[2] = a; z[2] = 0.0; w[2] = v; x[3] = 0.0; y[3] = -a; z[3] = 0.0; w[3] = v; x[4] = 0.0; y[4] = 0.0; z[4] = a; w[4] = v; x[5] = 0.0; y[5] = 0.0; z[5] = -a; w[5] = v; num = 6; } else if ( code == 2 ) { a = sqrt ( 0.5 ); x[0] = 0; y[0] = a; z[0] = a; w[0] = v; x[1] = 0; y[1] = -a; z[1] = a; w[1] = v; x[2] = 0; y[2] = a; z[2] = -a; w[2] = v; x[3] = 0; y[3] = -a; z[3] = -a; w[3] = v; x[4] = a; y[4] = 0; z[4] = a; w[4] = v; x[5] = -a; y[5] = 0; z[5] = a; w[5] = v; x[6] = a; y[6] = 0; z[6] = -a; w[6] = v; x[7] = -a; y[7] = 0; z[7] = -a; w[7] = v; x[8] = a; y[8] = a; z[8] = 0; w[8] = v; x[9] = -a; y[9] = a; z[9] = 0; w[9] = v; x[10] = a; y[10] = -a; z[10] = 0; w[10] = v; x[11] = -a; y[11] = -a; z[11] = 0; w[11] = v; num = 12; } else if ( code == 3 ) { a = sqrt ( 1.0 / 3.0 ); x[0] = a; y[0] = a; z[0] = a; w[0] = v; x[1] = -a; y[1] = a; z[1] = a; w[1] = v; x[2] = a; y[2] = -a; z[2] = a; w[2] = v; x[3] = -a; y[3] = -a; z[3] = a; w[3] = v; x[4] = a; y[4] = a; z[4] = -a; w[4] = v; x[5] = -a; y[5] = a; z[5] = -a; w[5] = v; x[6] = a; y[6] = -a; z[6] = -a; w[6] = v; x[7] = -a; y[7] = -a; z[7] = -a; w[7] = v; num = 8; } else if ( code == 4 ) { b = sqrt ( 1.0 - 2.0 * a * a ); x[0] = a; y[0] = a; z[0] = b; w[0] = v; x[1] = -a; y[1] = a; z[1] = b; w[1] = v; x[2] = a; y[2] = -a; z[2] = b; w[2] = v; x[3] = -a; y[3] = -a; z[3] = b; w[3] = v; x[4] = a; y[4] = a; z[4] = -b; w[4] = v; x[5] = -a; y[5] = a; z[5] = -b; w[5] = v; x[6] = a; y[6] = -a; z[6] = -b; w[6] = v; x[7] = -a; y[7] = -a; z[7] = -b; w[7] = v; x[8] = a; y[8] = b; z[8] = a; w[8] = v; x[9] = -a; y[9] = b; z[9] = a; w[9] = v; x[10] = a; y[10] = -b; z[10] = a; w[10] = v; x[11] = -a; y[11] = -b; z[11] = a; w[11] = v; x[12] = a; y[12] = b; z[12] = -a; w[12] = v; x[13] = -a; y[13] = b; z[13] = -a; w[13] = v; x[14] = a; y[14] = -b; z[14] = -a; w[14] = v; x[15] = -a; y[15] = -b; z[15] = -a; w[15] = v; x[16] = b; y[16] = a; z[16] = a; w[16] = v; x[17] = -b; y[17] = a; z[17] = a; w[17] = v; x[18] = b; y[18] = -a; z[18] = a; w[18] = v; x[19] = -b; y[19] = -a; z[19] = a; w[19] = v; x[20] = b; y[20] = a; z[20] = -a; w[20] = v; x[21] = -b; y[21] = a; z[21] = -a; w[21] = v; x[22] = b; y[22] = -a; z[22] = -a; w[22] = v; x[23] = -b; y[23] = -a; z[23] = -a; w[23] = v; num = 24; } else if ( code == 5 ) { b = sqrt ( 1.0 - a * a ); x[0] = a; y[0] = b; z[0] = 0; w[0] = v; x[1] = -a; y[1] = b; z[1] = 0; w[1] = v; x[2] = a; y[2] = -b; z[2] = 0; w[2] = v; x[3] = -a; y[3] = -b; z[3] = 0; w[3] = v; x[4] = b; y[4] = a; z[4] = 0; w[4] = v; x[5] = -b; y[5] = a; z[5] = 0; w[5] = v; x[6] = b; y[6] = -a; z[6] = 0; w[6] = v; x[7] = -b; y[7] = -a; z[7] = 0; w[7] = v; x[8] = a; y[8] = 0; z[8] = b; w[8] = v; x[9] = -a; y[9] = 0; z[9] = b; w[9] = v; x[10] = a; y[10] = 0; z[10] = -b; w[10] = v; x[11] = -a; y[11] = 0; z[11] = -b; w[11] = v; x[12] = b; y[12] = 0; z[12] = a; w[12] = v; x[13] = -b; y[13] = 0; z[13] = a; w[13] = v; x[14] = b; y[14] = 0; z[14] = -a; w[14] = v; x[15] = -b; y[15] = 0; z[15] = -a; w[15] = v; x[16] = 0; y[16] = a; z[16] = b; w[16] = v; x[17] = 0; y[17] = -a; z[17] = b; w[17] = v; x[18] = 0; y[18] = a; z[18] = -b; w[18] = v; x[19] = 0; y[19] = -a; z[19] = -b; w[19] = v; x[20] = 0; y[20] = b; z[20] = a; w[20] = v; x[21] = 0; y[21] = -b; z[21] = a; w[21] = v; x[22] = 0; y[22] = b; z[22] = -a; w[22] = v; x[23] = 0; y[23] = -b; z[23] = -a; w[23] = v; num = 24; } else if ( code == 6 ) { c = sqrt ( 1.0 - a * a - b * b ); x[0] = a; y[0] = b; z[0] = c; w[0] = v; x[1] = -a; y[1] = b; z[1] = c; w[1] = v; x[2] = a; y[2] = -b; z[2] = c; w[2] = v; x[3] = -a; y[3] = -b; z[3] = c; w[3] = v; x[4] = a; y[4] = b; z[4] = -c; w[4] = v; x[5] = -a; y[5] = b; z[5] = -c; w[5] = v; x[6] = a; y[6] = -b; z[6] = -c; w[6] = v; x[7] = -a; y[7] = -b; z[7] = -c; w[7] = v; x[8] = a; y[8] = c; z[8] = b; w[8] = v; x[9] = -a; y[9] = c; z[9] = b; w[9] = v; x[10] = a; y[10] = -c; z[10] = b; w[10] = v; x[11] = -a; y[11] = -c; z[11] = b; w[11] = v; x[12] = a; y[12] = c; z[12] = -b; w[12] = v; x[13] = -a; y[13] = c; z[13] = -b; w[13] = v; x[14] = a; y[14] = -c; z[14] = -b; w[14] = v; x[15] = -a; y[15] = -c; z[15] = -b; w[15] = v; x[16] = b; y[16] = a; z[16] = c; w[16] = v; x[17] = -b; y[17] = a; z[17] = c; w[17] = v; x[18] = b; y[18] = -a; z[18] = c; w[18] = v; x[19] = -b; y[19] = -a; z[19] = c; w[19] = v; x[20] = b; y[20] = a; z[20] = -c; w[20] = v; x[21] = -b; y[21] = a; z[21] = -c; w[21] = v; x[22] = b; y[22] = -a; z[22] = -c; w[22] = v; x[23] = -b; y[23] = -a; z[23] = -c; w[23] = v; x[24] = b; y[24] = c; z[24] = a; w[24] = v; x[25] = -b; y[25] = c; z[25] = a; w[25] = v; x[26] = b; y[26] = -c; z[26] = a; w[26] = v; x[27] = -b; y[27] = -c; z[27] = a; w[27] = v; x[28] = b; y[28] = c; z[28] = -a; w[28] = v; x[29] = -b; y[29] = c; z[29] = -a; w[29] = v; x[30] = b; y[30] = -c; z[30] = -a; w[30] = v; x[31] = -b; y[31] = -c; z[31] = -a; w[31] = v; x[32] = c; y[32] = a; z[32] = b; w[32] = v; x[33] = -c; y[33] = a; z[33] = b; w[33] = v; x[34] = c; y[34] = -a; z[34] = b; w[34] = v; x[35] = -c; y[35] = -a; z[35] = b; w[35] = v; x[36] = c; y[36] = a; z[36] = -b; w[36] = v; x[37] = -c; y[37] = a; z[37] = -b; w[37] = v; x[38] = c; y[38] = -a; z[38] = -b; w[38] = v; x[39] = -c; y[39] = -a; z[39] = -b; w[39] = v; x[40] = c; y[40] = b; z[40] = a; w[40] = v; x[41] = -c; y[41] = b; z[41] = a; w[41] = v; x[42] = c; y[42] = -b; z[42] = a; w[42] = v; x[43] = -c; y[43] = -b; z[43] = a; w[43] = v; x[44] = c; y[44] = b; z[44] = -a; w[44] = v; x[45] = -c; y[45] = b; z[45] = -a; w[45] = v; x[46] = c; y[46] = -b; z[46] = -a; w[46] = v; x[47] = -c; y[47] = -b; z[47] = -a; w[47] = v; num = 48; } else { cerr << "\n"; cerr << "GEN_OH - Fatal error!\n"; cerr << " Illegal value of code.\n"; exit ( 1 ); } return num; } //****************************************************************************80 void ld_by_order ( int order, double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD_BY_ORDER returns a Lebedev angular grid given its order. // // Discussion: // // Only a certain set of such rules are available through this function. // // Modified: // // 13 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Input, int ORDER, the order of the rule. // // Output, double X[ORDER], Y[ORDER], Z[ORDER], W[ORDER], the coordinates // and weights of the points. // { if ( order == 6 ) { ld0006 ( x, y, z, w ); } else if ( order == 14 ) { ld0014 ( x, y, z, w ); } else if ( order == 26 ) { ld0026 ( x, y, z, w ); } else if ( order == 38 ) { ld0038 ( x, y, z, w ); } else if ( order == 50 ) { ld0050 ( x, y, z, w ); } else if ( order == 74 ) { ld0074 ( x, y, z, w ); } else if ( order == 86 ) { ld0086 ( x, y, z, w ); } else if ( order == 110 ) { ld0110 ( x, y, z, w ); } else if ( order == 146 ) { ld0146 ( x, y, z, w ); } else if ( order == 170 ) { ld0170 ( x, y, z, w ); } else if ( order == 194 ) { ld0194 ( x, y, z, w ); } else if ( order == 230 ) { ld0230 ( x, y, z, w ); } else if ( order == 266 ) { ld0266 ( x, y, z, w ); } else if ( order == 302 ) { ld0302 ( x, y, z, w ); } else if ( order == 350 ) { ld0350 ( x, y, z, w ); } else if ( order == 434 ) { ld0434 ( x, y, z, w ); } else if ( order == 590 ) { ld0590 ( x, y, z, w ); } else if ( order == 770 ) { ld0770 ( x, y, z, w ); } else if ( order == 974 ) { ld0974 ( x, y, z, w ); } else if ( order == 1202 ) { ld1202 ( x, y, z, w ); } else if ( order == 1454 ) { ld1454 ( x, y, z, w ); } else if ( order == 1730 ) { ld1730 ( x, y, z, w ); } else if ( order == 2030 ) { ld2030 ( x, y, z, w ); } else if ( order == 2354 ) { ld2354 ( x, y, z, w ); } else if ( order == 2702 ) { ld2702 ( x, y, z, w ); } else if ( order == 3074 ) { ld3074 ( x, y, z, w ); } else if ( order == 3470 ) { ld3470 ( x, y, z, w ); } else if ( order == 3890 ) { ld3890 ( x, y, z, w ); } else if ( order == 4334 ) { ld4334 ( x, y, z, w ); } else if ( order == 4802 ) { ld4802 ( x, y, z, w ); } else if ( order == 5294 ) { ld5294 ( x, y, z, w ); } else if ( order == 5810 ) { ld5810 ( x, y, z, w ); } else { cerr << "\n"; cerr << "LD_BY_ORDER - Fatal error!\n"; cerr << " Unexpected value of ORDER.\n"; exit ( 1 ); } return; } //****************************************************************************80 void ld0006 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0006 computes the 6 point Lebedev angular grid. // // Modified: // // 11 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.1666666666666667; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); return; } //****************************************************************************80 void ld0014 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0014 computes the 14 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.6666666666666667e-1; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.7500000000000000e-1; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0026 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0026 computes the 26 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.4761904761904762e-1; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.3809523809523810e-1; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.3214285714285714e-1; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0038 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0038 computes the 38 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.9523809523809524e-2; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.3214285714285714e-1; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4597008433809831; v = 0.2857142857142857e-1; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0050 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0050 computes the 50 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.1269841269841270e-1; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.2257495590828924e-1; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.2109375000000000e-1; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3015113445777636; v = 0.2017333553791887e-1; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0074 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0074 computes the 74 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.5130671797338464e-3; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.1660406956574204e-1; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = -0.2958603896103896e-1; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4803844614152614; v = 0.2657620708215946e-1; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3207726489807764; v = 0.1652217099371571e-1; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0086 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0086 computes the 86 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.1154401154401154e-1; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.1194390908585628e-1; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3696028464541502; v = 0.1111055571060340e-1; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6943540066026664; v = 0.1187650129453714e-1; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3742430390903412; v = 0.1181230374690448e-1; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0110 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0110 computes the 110 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.3828270494937162e-2; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.9793737512487512e-2; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1851156353447362; v = 0.8211737283191111e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6904210483822922; v = 0.9942814891178103e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3956894730559419; v = 0.9595471336070963e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4783690288121502; v = 0.9694996361663028e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0146 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0146 computes the 146 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.5996313688621381e-3; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.7372999718620756e-2; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.7210515360144488e-2; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6764410400114264; v = 0.7116355493117555e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4174961227965453; v = 0.6753829486314477e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1574676672039082; v = 0.7574394159054034e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1403553811713183; b = 0.4493328323269557; v = 0.6991087353303262e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0170 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0170 computes the 170 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.5544842902037365e-2; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.6071332770670752e-2; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.6383674773515093e-2; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2551252621114134; v = 0.5183387587747790e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6743601460362766; v = 0.6317929009813725e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4318910696719410; v = 0.6201670006589077e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2613931360335988; v = 0.5477143385137348e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4990453161796037; b = 0.1446630744325115; v = 0.5968383987681156e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0194 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0194 computes the 194 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.1782340447244611e-2; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.5716905949977102e-2; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.5573383178848738e-2; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6712973442695226; v = 0.5608704082587997e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2892465627575439; v = 0.5158237711805383e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4446933178717437; v = 0.5518771467273614e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1299335447650067; v = 0.4106777028169394e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3457702197611283; v = 0.5051846064614808e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1590417105383530; b = 0.8360360154824589; v = 0.5530248916233094e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0230 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0230 computes the 230 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = -0.5522639919727325e-1; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.4450274607445226e-2; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4492044687397611; v = 0.4496841067921404e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2520419490210201; v = 0.5049153450478750e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6981906658447242; v = 0.3976408018051883e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6587405243460960; v = 0.4401400650381014e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4038544050097660e-1; v = 0.1724544350544401e-1; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5823842309715585; v = 0.4231083095357343e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3545877390518688; v = 0.5198069864064399e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2272181808998187; b = 0.4864661535886647; v = 0.4695720972568883e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0266 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0266 computes the 266 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = -0.1313769127326952e-2; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = -0.2522728704859336e-2; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.4186853881700583e-2; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7039373391585475; v = 0.5315167977810885e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1012526248572414; v = 0.4047142377086219e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4647448726420539; v = 0.4112482394406990e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3277420654971629; v = 0.3595584899758782e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6620338663699974; v = 0.4256131351428158e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8506508083520399; v = 0.4229582700647240e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3233484542692899; b = 0.1153112011009701; v = 0.4080914225780505e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2314790158712601; b = 0.5244939240922365; v = 0.4071467593830964e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0302 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0302 computes the 302 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.8545911725128148e-3; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.3599119285025571e-2; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3515640345570105; v = 0.3449788424305883e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6566329410219612; v = 0.3604822601419882e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4729054132581005; v = 0.3576729661743367e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9618308522614784e-1; v = 0.2352101413689164e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2219645236294178; v = 0.3108953122413675e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7011766416089545; v = 0.3650045807677255e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2644152887060663; v = 0.2982344963171804e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5718955891878961; v = 0.3600820932216460e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2510034751770465; b = 0.8000727494073952; v = 0.3571540554273387e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1233548532583327; b = 0.4127724083168531; v = 0.3392312205006170e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0350 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0350 computes the 350 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.3006796749453936e-2; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.3050627745650771e-2; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7068965463912316; v = 0.1621104600288991e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4794682625712025; v = 0.3005701484901752e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1927533154878019; v = 0.2990992529653774e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6930357961327123; v = 0.2982170644107595e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3608302115520091; v = 0.2721564237310992e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6498486161496169; v = 0.3033513795811141e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1932945013230339; v = 0.3007949555218533e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3800494919899303; v = 0.2881964603055307e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2899558825499574; b = 0.7934537856582316; v = 0.2958357626535696e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9684121455103957e-1; b = 0.8280801506686862; v = 0.3036020026407088e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1833434647041659; b = 0.9074658265305127; v = 0.2832187403926303e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0434 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0434 computes the 434 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.5265897968224436e-3; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.2548219972002607e-2; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.2512317418927307e-2; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6909346307509111; v = 0.2530403801186355e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1774836054609158; v = 0.2014279020918528e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4914342637784746; v = 0.2501725168402936e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6456664707424256; v = 0.2513267174597564e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2861289010307638; v = 0.2302694782227416e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7568084367178018e-1; v = 0.1462495621594614e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3927259763368002; v = 0.2445373437312980e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8818132877794288; v = 0.2417442375638981e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9776428111182649; v = 0.1910951282179532e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2054823696403044; b = 0.8689460322872412; v = 0.2416930044324775e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5905157048925271; b = 0.7999278543857286; v = 0.2512236854563495e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5550152361076807; b = 0.7717462626915901; v = 0.2496644054553086e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9371809858553722; b = 0.3344363145343455 ; v = 0.2236607760437849e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0590 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0590 computes the 590 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.3095121295306187e-3; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.1852379698597489e-2; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7040954938227469; v = 0.1871790639277744e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6807744066455243; v = 0.1858812585438317e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6372546939258752; v = 0.1852028828296213e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5044419707800358; v = 0.1846715956151242e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4215761784010967; v = 0.1818471778162769e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3317920736472123; v = 0.1749564657281154e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2384736701421887; v = 0.1617210647254411e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1459036449157763; v = 0.1384737234851692e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6095034115507196e-1; v = 0.9764331165051050e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6116843442009876; v = 0.1857161196774078e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3964755348199858; v = 0.1705153996395864e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1724782009907724; v = 0.1300321685886048e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5610263808622060; b = 0.3518280927733519; v = 0.1842866472905286e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4742392842551980; b = 0.2634716655937950; v = 0.1802658934377451e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5984126497885380; b = 0.1816640840360209; v = 0.1849830560443660e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3791035407695563; b = 0.1720795225656878; v = 0.1713904507106709e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2778673190586244; b = 0.8213021581932511e-1; v = 0.1555213603396808e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5033564271075117; b = 0.8999205842074875e-1; v = 0.1802239128008525e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0770 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0770 computes the 770 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.2192942088181184e-3; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.1436433617319080e-2; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.1421940344335877e-2; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5087204410502360e-1; v = 0.6798123511050502e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1228198790178831; v = 0.9913184235294912e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2026890814408786; v = 0.1180207833238949e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2847745156464294; v = 0.1296599602080921e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3656719078978026; v = 0.1365871427428316e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4428264886713469; v = 0.1402988604775325e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5140619627249735; v = 0.1418645563595609e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6306401219166803; v = 0.1421376741851662e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6716883332022612; v = 0.1423996475490962e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6979792685336881; v = 0.1431554042178567e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1446865674195309; v = 0.9254401499865368e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3390263475411216; v = 0.1250239995053509e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5335804651263506; v = 0.1394365843329230e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6944024393349413e-1; b = 0.2355187894242326; v = 0.1127089094671749e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2269004109529460; b = 0.4102182474045730; v = 0.1345753760910670e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8025574607775339e-1; b = 0.6214302417481605; v = 0.1424957283316783e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1467999527896572; b = 0.3245284345717394; v = 0.1261523341237750e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1571507769824727; b = 0.5224482189696630; v = 0.1392547106052696e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2365702993157246; b = 0.6017546634089558; v = 0.1418761677877656e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7714815866765732e-1; b = 0.4346575516141163; v = 0.1338366684479554e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3062936666210730; b = 0.4908826589037616; v = 0.1393700862676131e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3822477379524787; b = 0.5648768149099500; v = 0.1415914757466932e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld0974 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD0974 computes the 974 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.1438294190527431e-3; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.1125772288287004e-2; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4292963545341347e-1; v = 0.4948029341949241e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1051426854086404; v = 0.7357990109125470e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1750024867623087; v = 0.8889132771304384e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2477653379650257; v = 0.9888347838921435e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3206567123955957; v = 0.1053299681709471e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3916520749849983; v = 0.1092778807014578e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4590825874187624; v = 0.1114389394063227e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5214563888415861; v = 0.1123724788051555e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6253170244654199; v = 0.1125239325243814e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6637926744523170; v = 0.1126153271815905e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6910410398498301; v = 0.1130286931123841e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7052907007457760; v = 0.1134986534363955e-2; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1236686762657990; v = 0.6823367927109931e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2940777114468387; v = 0.9454158160447096e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4697753849207649; v = 0.1074429975385679e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6334563241139567; v = 0.1129300086569132e-2; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5974048614181342e-1; b = 0.2029128752777523; v = 0.8436884500901954e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1375760408473636; b = 0.4602621942484054; v = 0.1075255720448885e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3391016526336286; b = 0.5030673999662036; v = 0.1108577236864462e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1271675191439820; b = 0.2817606422442134; v = 0.9566475323783357e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2693120740413512; b = 0.4331561291720157; v = 0.1080663250717391e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1419786452601918; b = 0.6256167358580814; v = 0.1126797131196295e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6709284600738255e-1; b = 0.3798395216859157; v = 0.1022568715358061e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7057738183256172e-1; b = 0.5517505421423520; v = 0.1108960267713108e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2783888477882155; b = 0.6029619156159187; v = 0.1122790653435766e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1979578938917407; b = 0.3589606329589096; v = 0.1032401847117460e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2087307061103274; b = 0.5348666438135476; v = 0.1107249382283854e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4055122137872836; b = 0.5674997546074373; v = 0.1121780048519972e-2; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld1202 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD1202 computes the 1202 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.1105189233267572e-3; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.9205232738090741e-3; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.9133159786443561e-3; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3712636449657089e-1; v = 0.3690421898017899e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9140060412262223e-1; v = 0.5603990928680660e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1531077852469906; v = 0.6865297629282609e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2180928891660612; v = 0.7720338551145630e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2839874532200175; v = 0.8301545958894795e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3491177600963764; v = 0.8686692550179628e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4121431461444309; v = 0.8927076285846890e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4718993627149127; v = 0.9060820238568219e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5273145452842337; v = 0.9119777254940867e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6209475332444019; v = 0.9128720138604181e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6569722711857291; v = 0.9130714935691735e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6841788309070143; v = 0.9152873784554116e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7012604330123631; v = 0.9187436274321654e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1072382215478166; v = 0.5176977312965694e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2582068959496968; v = 0.7331143682101417e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4172752955306717; v = 0.8463232836379928e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5700366911792503; v = 0.9031122694253992e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9827986018263947; b = 0.1771774022615325; v = 0.6485778453163257e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9624249230326228; b = 0.2475716463426288; v = 0.7435030910982369e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9402007994128811; b = 0.3354616289066489; v = 0.7998527891839054e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9320822040143202; b = 0.3173615246611977; v = 0.8101731497468018e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9043674199393299; b = 0.4090268427085357; v = 0.8483389574594331e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8912407560074747; b = 0.3854291150669224; v = 0.8556299257311812e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8676435628462708; b = 0.4932221184851285; v = 0.8803208679738260e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8581979986041619; b = 0.4785320675922435; v = 0.8811048182425720e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8396753624049856; b = 0.4507422593157064; v = 0.8850282341265444e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8165288564022188; b = 0.5632123020762100; v = 0.9021342299040653e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8015469370783529; b = 0.5434303569693900; v = 0.9010091677105086e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7773563069070351; b = 0.5123518486419871; v = 0.9022692938426915e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7661621213900394; b = 0.6394279634749102; v = 0.9158016174693465e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7553584143533510; b = 0.6269805509024392; v = 0.9131578003189435e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7344305757559503; b = 0.6031161693096310; v = 0.9107813579482705e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7043837184021765; b = 0.5693702498468441; v = 0.9105760258970126e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld1454 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD1454 computes the 1454 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.7777160743261247e-4; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.7557646413004701e-3; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3229290663413854e-1; v = 0.2841633806090617e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8036733271462222e-1; v = 0.4374419127053555e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1354289960531653; v = 0.5417174740872172e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1938963861114426; v = 0.6148000891358593e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2537343715011275; v = 0.6664394485800705e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3135251434752570; v = 0.7025039356923220e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3721558339375338; v = 0.7268511789249627e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4286809575195696; v = 0.7422637534208629e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4822510128282994; v = 0.7509545035841214e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5320679333566263; v = 0.7548535057718401e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6172998195394274; v = 0.7554088969774001e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6510679849127481; v = 0.7553147174442808e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6777315251687360; v = 0.7564767653292297e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6963109410648741; v = 0.7587991808518730e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7058935009831749; v = 0.7608261832033027e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9955546194091857; v = 0.4021680447874916e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9734115901794209; v = 0.5804871793945964e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9275693732388626; v = 0.6792151955945159e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8568022422795103; v = 0.7336741211286294e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7623495553719372; v = 0.7581866300989608e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5707522908892223; b = 0.4387028039889501; v = 0.7538257859800743e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5196463388403083; b = 0.3858908414762617; v = 0.7483517247053123e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4646337531215351; b = 0.3301937372343854; v = 0.7371763661112059e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4063901697557691; b = 0.2725423573563777; v = 0.7183448895756934e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3456329466643087; b = 0.2139510237495250; v = 0.6895815529822191e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2831395121050332; b = 0.1555922309786647; v = 0.6480105801792886e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2197682022925330; b = 0.9892878979686097e-1; v = 0.5897558896594636e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1564696098650355; b = 0.4598642910675510e-1; v = 0.5095708849247346e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6027356673721295; b = 0.3376625140173426; v = 0.7536906428909755e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5496032320255096; b = 0.2822301309727988; v = 0.7472505965575118e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4921707755234567; b = 0.2248632342592540; v = 0.7343017132279698e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4309422998598483; b = 0.1666224723456479; v = 0.7130871582177445e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3664108182313672; b = 0.1086964901822169; v = 0.6817022032112776e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2990189057758436; b = 0.5251989784120085e-1; v = 0.6380941145604121e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6268724013144998; b = 0.2297523657550023; v = 0.7550381377920310e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5707324144834607; b = 0.1723080607093800; v = 0.7478646640144802e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5096360901960365; b = 0.1140238465390513; v = 0.7335918720601220e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4438729938312456; b = 0.5611522095882537e-1; v = 0.7110120527658118e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6419978471082389; b = 0.1164174423140873; v = 0.7571363978689501e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5817218061802611; b = 0.5797589531445219e-1; v = 0.7489908329079234e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld1730 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD1730 computes the 1730 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.6309049437420976e-4; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.6398287705571748e-3; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.6357185073530720e-3; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2860923126194662e-1; v = 0.2221207162188168e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7142556767711522e-1; v = 0.3475784022286848e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1209199540995559; v = 0.4350742443589804e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1738673106594379; v = 0.4978569136522127e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2284645438467734; v = 0.5435036221998053e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2834807671701512; v = 0.5765913388219542e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3379680145467339; v = 0.6001200359226003e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3911355454819537; v = 0.6162178172717512e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4422860353001403; v = 0.6265218152438485e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4907781568726057; v = 0.6323987160974212e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5360006153211468; v = 0.6350767851540569e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6142105973596603; v = 0.6354362775297107e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6459300387977504; v = 0.6352302462706235e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6718056125089225; v = 0.6358117881417972e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6910888533186254; v = 0.6373101590310117e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7030467416823252; v = 0.6390428961368665e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8354951166354646e-1; v = 0.3186913449946576e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2050143009099486; v = 0.4678028558591711e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3370208290706637; v = 0.5538829697598626e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4689051484233963; v = 0.6044475907190476e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5939400424557334; v = 0.6313575103509012e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1394983311832261; b = 0.4097581162050343e-1; v = 0.4078626431855630e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1967999180485014; b = 0.8851987391293348e-1; v = 0.4759933057812725e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2546183732548967; b = 0.1397680182969819; v = 0.5268151186413440e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3121281074713875; b = 0.1929452542226526; v = 0.5643048560507316e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3685981078502492; b = 0.2467898337061562; v = 0.5914501076613073e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4233760321547856; b = 0.3003104124785409; v = 0.6104561257874195e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4758671236059246; b = 0.3526684328175033; v = 0.6230252860707806e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5255178579796463; b = 0.4031134861145713; v = 0.6305618761760796e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5718025633734589; b = 0.4509426448342351; v = 0.6343092767597889e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2686927772723415; b = 0.4711322502423248e-1; v = 0.5176268945737826e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3306006819904809; b = 0.9784487303942695e-1; v = 0.5564840313313692e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3904906850594983; b = 0.1505395810025273; v = 0.5856426671038980e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4479957951904390; b = 0.2039728156296050; v = 0.6066386925777091e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5027076848919780; b = 0.2571529941121107; v = 0.6208824962234458e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5542087392260217; b = 0.3092191375815670; v = 0.6296314297822907e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6020850887375187; b = 0.3593807506130276; v = 0.6340423756791859e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4019851409179594; b = 0.5063389934378671e-1; v = 0.5829627677107342e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4635614567449800; b = 0.1032422269160612; v = 0.6048693376081110e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5215860931591575; b = 0.1566322094006254; v = 0.6202362317732461e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5758202499099271; b = 0.2098082827491099; v = 0.6299005328403779e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6259893683876795; b = 0.2618824114553391; v = 0.6347722390609353e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5313795124811891; b = 0.5263245019338556e-1; v = 0.6203778981238834e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5893317955931995; b = 0.1061059730982005; v = 0.6308414671239979e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6426246321215801; b = 0.1594171564034221; v = 0.6362706466959498e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6511904367376113; b = 0.5354789536565540e-1; v = 0.6375414170333233e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld2030 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD2030 computes the 2030 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.4656031899197431e-4; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.5421549195295507e-3; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2540835336814348e-1; v = 0.1778522133346553e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6399322800504915e-1; v = 0.2811325405682796e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1088269469804125; v = 0.3548896312631459e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1570670798818287; v = 0.4090310897173364e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2071163932282514; v = 0.4493286134169965e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2578914044450844; v = 0.4793728447962723e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3085687558169623; v = 0.5015415319164265e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3584719706267024; v = 0.5175127372677937e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4070135594428709; v = 0.5285522262081019e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4536618626222638; v = 0.5356832703713962e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4979195686463577; v = 0.5397914736175170e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5393075111126999; v = 0.5416899441599930e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6115617676843916; v = 0.5419308476889938e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6414308435160159; v = 0.5416936902030596e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6664099412721607; v = 0.5419544338703164e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6859161771214913; v = 0.5428983656630975e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6993625593503890; v = 0.5442286500098193e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7062393387719380; v = 0.5452250345057301e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7479028168349763e-1; v = 0.2568002497728530e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1848951153969366; v = 0.3827211700292145e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3059529066581305; v = 0.4579491561917824e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4285556101021362; v = 0.5042003969083574e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5468758653496526; v = 0.5312708889976025e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6565821978343439; v = 0.5438401790747117e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1253901572367117; b = 0.3681917226439641e-1; v = 0.3316041873197344e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1775721510383941; b = 0.7982487607213301e-1; v = 0.3899113567153771e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2305693358216114; b = 0.1264640966592335; v = 0.4343343327201309e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2836502845992063; b = 0.1751585683418957; v = 0.4679415262318919e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3361794746232590; b = 0.2247995907632670; v = 0.4930847981631031e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3875979172264824; b = 0.2745299257422246; v = 0.5115031867540091e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4374019316999074; b = 0.3236373482441118; v = 0.5245217148457367e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4851275843340022; b = 0.3714967859436741; v = 0.5332041499895321e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5303391803806868; b = 0.4175353646321745; v = 0.5384583126021542e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5726197380596287; b = 0.4612084406355461; v = 0.5411067210798852e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2431520732564863; b = 0.4258040133043952e-1; v = 0.4259797391468714e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3002096800895869; b = 0.8869424306722721e-1; v = 0.4604931368460021e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3558554457457432; b = 0.1368811706510655; v = 0.4871814878255202e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4097782537048887; b = 0.1860739985015033; v = 0.5072242910074885e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4616337666067458; b = 0.2354235077395853; v = 0.5217069845235350e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5110707008417874; b = 0.2842074921347011; v = 0.5315785966280310e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5577415286163795; b = 0.3317784414984102; v = 0.5376833708758905e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6013060431366950; b = 0.3775299002040700; v = 0.5408032092069521e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3661596767261781; b = 0.4599367887164592e-1; v = 0.4842744917904866e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4237633153506581; b = 0.9404893773654421e-1; v = 0.5048926076188130e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4786328454658452; b = 0.1431377109091971; v = 0.5202607980478373e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5305702076789774; b = 0.1924186388843570; v = 0.5309932388325743e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5793436224231788; b = 0.2411590944775190; v = 0.5377419770895208e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6247069017094747; b = 0.2886871491583605; v = 0.5411696331677717e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4874315552535204; b = 0.4804978774953206e-1; v = 0.5197996293282420e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5427337322059053; b = 0.9716857199366665e-1; v = 0.5311120836622945e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5943493747246700; b = 0.1465205839795055; v = 0.5384309319956951e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6421314033564943; b = 0.1953579449803574; v = 0.5421859504051886e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6020628374713980; b = 0.4916375015738108e-1; v = 0.5390948355046314e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6529222529856881; b = 0.9861621540127005e-1; v = 0.5433312705027845e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld2354 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD2354 computes the 2354 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.3922616270665292e-4; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.4703831750854424e-3; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.4678202801282136e-3; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2290024646530589e-1; v = 0.1437832228979900e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5779086652271284e-1; v = 0.2303572493577644e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9863103576375984e-1; v = 0.2933110752447454e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1428155792982185; v = 0.3402905998359838e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1888978116601463; v = 0.3759138466870372e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2359091682970210; v = 0.4030638447899798e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2831228833706171; v = 0.4236591432242211e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3299495857966693; v = 0.4390522656946746e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3758840802660796; v = 0.4502523466626247e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4204751831009480; v = 0.4580577727783541e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4633068518751051; v = 0.4631391616615899e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5039849474507313; v = 0.4660928953698676e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5421265793440747; v = 0.4674751807936953e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6092660230557310; v = 0.4676414903932920e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6374654204984869; v = 0.4674086492347870e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6615136472609892; v = 0.4674928539483207e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6809487285958127; v = 0.4680748979686447e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6952980021665196; v = 0.4690449806389040e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7041245497695400; v = 0.4699877075860818e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6744033088306065e-1; v = 0.2099942281069176e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1678684485334166; v = 0.3172269150712804e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2793559049539613; v = 0.3832051358546523e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3935264218057639; v = 0.4252193818146985e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5052629268232558; v = 0.4513807963755000e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6107905315437531; v = 0.4657797469114178e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1135081039843524; b = 0.3331954884662588e-1; v = 0.2733362800522836e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1612866626099378; b = 0.7247167465436538e-1; v = 0.3235485368463559e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2100786550168205; b = 0.1151539110849745; v = 0.3624908726013453e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2592282009459942; b = 0.1599491097143677; v = 0.3925540070712828e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3081740561320203; b = 0.2058699956028027; v = 0.4156129781116235e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3564289781578164; b = 0.2521624953502911; v = 0.4330644984623263e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4035587288240703; b = 0.2982090785797674; v = 0.4459677725921312e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4491671196373903; b = 0.3434762087235733; v = 0.4551593004456795e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4928854782917489; b = 0.3874831357203437; v = 0.4613341462749918e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5343646791958988; b = 0.4297814821746926; v = 0.4651019618269806e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5732683216530990; b = 0.4699402260943537; v = 0.4670249536100625e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2214131583218986; b = 0.3873602040643895e-1; v = 0.3549555576441708e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2741796504750071; b = 0.8089496256902013e-1; v = 0.3856108245249010e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3259797439149485; b = 0.1251732177620872; v = 0.4098622845756882e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3765441148826891; b = 0.1706260286403185; v = 0.4286328604268950e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4255773574530558; b = 0.2165115147300408; v = 0.4427802198993945e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4727795117058430; b = 0.2622089812225259; v = 0.4530473511488561e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5178546895819012; b = 0.3071721431296201; v = 0.4600805475703138e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5605141192097460; b = 0.3508998998801138; v = 0.4644599059958017e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6004763319352512; b = 0.3929160876166931; v = 0.4667274455712508e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3352842634946949; b = 0.4202563457288019e-1; v = 0.4069360518020356e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3891971629814670; b = 0.8614309758870850e-1; v = 0.4260442819919195e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4409875565542281; b = 0.1314500879380001; v = 0.4408678508029063e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4904893058592484; b = 0.1772189657383859; v = 0.4518748115548597e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5375056138769549; b = 0.2228277110050294; v = 0.4595564875375116e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5818255708669969; b = 0.2677179935014386; v = 0.4643988774315846e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6232334858144959; b = 0.3113675035544165; v = 0.4668827491646946e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4489485354492058; b = 0.4409162378368174e-1; v = 0.4400541823741973e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5015136875933150; b = 0.8939009917748489e-1; v = 0.4514512890193797e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5511300550512623; b = 0.1351806029383365; v = 0.4596198627347549e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5976720409858000; b = 0.1808370355053196; v = 0.4648659016801781e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6409956378989354; b = 0.2257852192301602; v = 0.4675502017157673e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5581222330827514; b = 0.4532173421637160e-1; v = 0.4598494476455523e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6074705984161695; b = 0.9117488031840314e-1; v = 0.4654916955152048e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6532272537379033; b = 0.1369294213140155; v = 0.4684709779505137e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6594761494500487; b = 0.4589901487275583e-1; v = 0.4691445539106986e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld2702 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD2702 computes the 2702 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.2998675149888161e-4; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.4077860529495355e-3; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2065562538818703e-1; v = 0.1185349192520667e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5250918173022379e-1; v = 0.1913408643425751e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8993480082038376e-1; v = 0.2452886577209897e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1306023924436019; v = 0.2862408183288702e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1732060388531418; v = 0.3178032258257357e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2168727084820249; v = 0.3422945667633690e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2609528309173586; v = 0.3612790520235922e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3049252927938952; v = 0.3758638229818521e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3483484138084404; v = 0.3868711798859953e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3908321549106406; v = 0.3949429933189938e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4320210071894814; v = 0.4006068107541156e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4715824795890053; v = 0.4043192149672723e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5091984794078453; v = 0.4064947495808078e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5445580145650803; v = 0.4075245619813152e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6072575796841768; v = 0.4076423540893566e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6339484505755803; v = 0.4074280862251555e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6570718257486958; v = 0.4074163756012244e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6762557330090709; v = 0.4077647795071246e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6911161696923790; v = 0.4084517552782530e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7012841911659961; v = 0.4092468459224052e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7064559272410020; v = 0.4097872687240906e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6123554989894765e-1; v = 0.1738986811745028e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1533070348312393; v = 0.2659616045280191e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2563902605244206; v = 0.3240596008171533e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3629346991663361; v = 0.3621195964432943e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4683949968987538; v = 0.3868838330760539e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5694479240657952; v = 0.4018911532693111e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6634465430993955; v = 0.4089929432983252e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1033958573552305; b = 0.3034544009063584e-1; v = 0.2279907527706409e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1473521412414395; b = 0.6618803044247135e-1; v = 0.2715205490578897e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1924552158705967; b = 0.1054431128987715; v = 0.3057917896703976e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2381094362890328; b = 0.1468263551238858; v = 0.3326913052452555e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2838121707936760; b = 0.1894486108187886; v = 0.3537334711890037e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3291323133373415; b = 0.2326374238761579; v = 0.3700567500783129e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3736896978741460; b = 0.2758485808485768; v = 0.3825245372589122e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4171406040760013; b = 0.3186179331996921; v = 0.3918125171518296e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4591677985256915; b = 0.3605329796303794; v = 0.3984720419937579e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4994733831718418; b = 0.4012147253586509; v = 0.4029746003338211e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5377731830445096; b = 0.4403050025570692; v = 0.4057428632156627e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5737917830001331; b = 0.4774565904277483; v = 0.4071719274114857e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2027323586271389; b = 0.3544122504976147e-1; v = 0.2990236950664119e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2516942375187273; b = 0.7418304388646328e-1; v = 0.3262951734212878e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3000227995257181; b = 0.1150502745727186; v = 0.3482634608242413e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3474806691046342; b = 0.1571963371209364; v = 0.3656596681700892e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3938103180359209; b = 0.1999631877247100; v = 0.3791740467794218e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4387519590455703; b = 0.2428073457846535; v = 0.3894034450156905e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4820503960077787; b = 0.2852575132906155; v = 0.3968600245508371e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5234573778475101; b = 0.3268884208674639; v = 0.4019931351420050e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5627318647235282; b = 0.3673033321675939; v = 0.4052108801278599e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5996390607156954; b = 0.4061211551830290; v = 0.4068978613940934e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3084780753791947; b = 0.3860125523100059e-1; v = 0.3454275351319704e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3589988275920223; b = 0.7928938987104867e-1; v = 0.3629963537007920e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4078628415881973; b = 0.1212614643030087; v = 0.3770187233889873e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4549287258889735; b = 0.1638770827382693; v = 0.3878608613694378e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5000278512957279; b = 0.2065965798260176; v = 0.3959065270221274e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5429785044928199; b = 0.2489436378852235; v = 0.4015286975463570e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5835939850491711; b = 0.2904811368946891; v = 0.4050866785614717e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6216870353444856; b = 0.3307941957666609; v = 0.4069320185051913e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4151104662709091; b = 0.4064829146052554e-1; v = 0.3760120964062763e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4649804275009218; b = 0.8258424547294755e-1; v = 0.3870969564418064e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5124695757009662; b = 0.1251841962027289; v = 0.3955287790534055e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5574711100606224; b = 0.1679107505976331; v = 0.4015361911302668e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5998597333287227; b = 0.2102805057358715; v = 0.4053836986719548e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6395007148516600; b = 0.2518418087774107; v = 0.4073578673299117e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5188456224746252; b = 0.4194321676077518e-1; v = 0.3954628379231406e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5664190707942778; b = 0.8457661551921499e-1; v = 0.4017645508847530e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6110464353283153; b = 0.1273652932519396; v = 0.4059030348651293e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6526430302051563; b = 0.1698173239076354; v = 0.4080565809484880e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6167551880377548; b = 0.4266398851548864e-1; v = 0.4063018753664651e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6607195418355383; b = 0.8551925814238349e-1; v = 0.4087191292799671e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld3074 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD3074 computes the 3074 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.2599095953754734e-4; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.3603134089687541e-3; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.3586067974412447e-3; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1886108518723392e-1; v = 0.9831528474385880e-4; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4800217244625303e-1; v = 0.1605023107954450e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8244922058397242e-1; v = 0.2072200131464099e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1200408362484023; v = 0.2431297618814187e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1595773530809965; v = 0.2711819064496707e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2002635973434064; v = 0.2932762038321116e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2415127590139982; v = 0.3107032514197368e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2828584158458477; v = 0.3243808058921213e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3239091015338138; v = 0.3349899091374030e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3643225097962194; v = 0.3430580688505218e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4037897083691802; v = 0.3490124109290343e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4420247515194127; v = 0.3532148948561955e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4787572538464938; v = 0.3559862669062833e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5137265251275234; v = 0.3576224317551411e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5466764056654611; v = 0.3584050533086076e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6054859420813535; v = 0.3584903581373224e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6308106701764562; v = 0.3582991879040586e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6530369230179584; v = 0.3582371187963125e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6718609524611158; v = 0.3584353631122350e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6869676499894013; v = 0.3589120166517785e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6980467077240748; v = 0.3595445704531601e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7048241721250522; v = 0.3600943557111074e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5591105222058232e-1; v = 0.1456447096742039e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1407384078513916; v = 0.2252370188283782e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2364035438976309; v = 0.2766135443474897e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3360602737818170; v = 0.3110729491500851e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4356292630054665; v = 0.3342506712303391e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5321569415256174; v = 0.3491981834026860e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6232956305040554; v = 0.3576003604348932e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9469870086838469e-1; b = 0.2778748387309470e-1; v = 0.1921921305788564e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1353170300568141; b = 0.6076569878628364e-1; v = 0.2301458216495632e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1771679481726077; b = 0.9703072762711040e-1; v = 0.2604248549522893e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2197066664231751; b = 0.1354112458524762; v = 0.2845275425870697e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2624783557374927; b = 0.1750996479744100; v = 0.3036870897974840e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3050969521214442; b = 0.2154896907449802; v = 0.3188414832298066e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3472252637196021; b = 0.2560954625740152; v = 0.3307046414722089e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3885610219026360; b = 0.2965070050624096; v = 0.3398330969031360e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4288273776062765; b = 0.3363641488734497; v = 0.3466757899705373e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4677662471302948; b = 0.3753400029836788; v = 0.3516095923230054e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5051333589553359; b = 0.4131297522144286; v = 0.3549645184048486e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5406942145810492; b = 0.4494423776081795; v = 0.3570415969441392e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5742204122576457; b = 0.4839938958841502; v = 0.3581251798496118e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1865407027225188; b = 0.3259144851070796e-1; v = 0.2543491329913348e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2321186453689432; b = 0.6835679505297343e-1; v = 0.2786711051330776e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2773159142523882; b = 0.1062284864451989; v = 0.2985552361083679e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3219200192237254; b = 0.1454404409323047; v = 0.3145867929154039e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3657032593944029; b = 0.1854018282582510; v = 0.3273290662067609e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4084376778363622; b = 0.2256297412014750; v = 0.3372705511943501e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4499004945751427; b = 0.2657104425000896; v = 0.3448274437851510e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4898758141326335; b = 0.3052755487631557; v = 0.3503592783048583e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5281547442266309; b = 0.3439863920645423; v = 0.3541854792663162e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5645346989813992; b = 0.3815229456121914; v = 0.3565995517909428e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5988181252159848; b = 0.4175752420966734; v = 0.3578802078302898e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2850425424471603; b = 0.3562149509862536e-1; v = 0.2958644592860982e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3324619433027876; b = 0.7330318886871096e-1; v = 0.3119548129116835e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3785848333076282; b = 0.1123226296008472; v = 0.3250745225005984e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4232891028562115; b = 0.1521084193337708; v = 0.3355153415935208e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4664287050829722; b = 0.1921844459223610; v = 0.3435847568549328e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5078458493735726; b = 0.2321360989678303; v = 0.3495786831622488e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5473779816204180; b = 0.2715886486360520; v = 0.3537767805534621e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5848617133811376; b = 0.3101924707571355; v = 0.3564459815421428e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6201348281584888; b = 0.3476121052890973; v = 0.3578464061225468e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3852191185387871; b = 0.3763224880035108e-1; v = 0.3239748762836212e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4325025061073423; b = 0.7659581935637135e-1; v = 0.3345491784174287e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4778486229734490; b = 0.1163381306083900; v = 0.3429126177301782e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5211663693009000; b = 0.1563890598752899; v = 0.3492420343097421e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5623469504853703; b = 0.1963320810149200; v = 0.3537399050235257e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6012718188659246; b = 0.2357847407258738; v = 0.3566209152659172e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6378179206390117; b = 0.2743846121244060; v = 0.3581084321919782e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4836936460214534; b = 0.3895902610739024e-1; v = 0.3426522117591512e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5293792562683797; b = 0.7871246819312640e-1; v = 0.3491848770121379e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5726281253100033; b = 0.1187963808202981; v = 0.3539318235231476e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6133658776169068; b = 0.1587914708061787; v = 0.3570231438458694e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6515085491865307; b = 0.1983058575227646; v = 0.3586207335051714e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5778692716064976; b = 0.3977209689791542e-1; v = 0.3541196205164025e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6207904288086192; b = 0.7990157592981152e-1; v = 0.3574296911573953e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6608688171046802; b = 0.1199671308754309; v = 0.3591993279818963e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6656263089489130; b = 0.4015955957805969e-1; v = 0.3595855034661997e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld3470 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD3470 computes the 3470 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.2040382730826330e-4; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.3178149703889544e-3; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1721420832906233e-1; v = 0.8288115128076110e-4; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4408875374981770e-1; v = 0.1360883192522954e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7594680813878681e-1; v = 0.1766854454542662e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1108335359204799;; v = 0.2083153161230153e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1476517054388567; v = 0.2333279544657158e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1856731870860615; v = 0.2532809539930247e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2243634099428821; v = 0.2692472184211158e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2633006881662727; v = 0.2819949946811885e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3021340904916283; v = 0.2920953593973030e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3405594048030089; v = 0.2999889782948352e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3783044434007372; v = 0.3060292120496902e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4151194767407910; v = 0.3105109167522192e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4507705766443257; v = 0.3136902387550312e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4850346056573187; v = 0.3157984652454632e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5176950817792470; v = 0.3170516518425422e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5485384240820989; v = 0.3176568425633755e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6039117238943308; v = 0.3177198411207062e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6279956655573113; v = 0.3175519492394733e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6493636169568952; v = 0.3174654952634756e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6677644117704504; v = 0.3175676415467654e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6829368572115624; v = 0.3178923417835410e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6946195818184121; v = 0.3183788287531909e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7025711542057026; v = 0.3188755151918807e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7066004767140119; v = 0.3191916889313849e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5132537689946062e-1; v = 0.1231779611744508e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1297994661331225; v = 0.1924661373839880e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2188852049401307; v = 0.2380881867403424e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3123174824903457; v = 0.2693100663037885e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4064037620738195; v = 0.2908673382834366e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4984958396944782; v = 0.3053914619381535e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5864975046021365; v = 0.3143916684147777e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6686711634580175; v = 0.3187042244055363e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8715738780835950e-1; b = 0.2557175233367578e-1; v = 0.1635219535869790e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1248383123134007; b = 0.5604823383376681e-1; v = 0.1968109917696070e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1638062693383378; b = 0.8968568601900765e-1; v = 0.2236754342249974e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2035586203373176; b = 0.1254086651976279; v = 0.2453186687017181e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2436798975293774; b = 0.1624780150162012; v = 0.2627551791580541e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2838207507773806; b = 0.2003422342683208; v = 0.2767654860152220e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3236787502217692; b = 0.2385628026255263; v = 0.2879467027765895e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3629849554840691; b = 0.2767731148783578; v = 0.2967639918918702e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4014948081992087; b = 0.3146542308245309; v = 0.3035900684660351e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4389818379260225; b = 0.3519196415895088; v = 0.3087338237298308e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4752331143674377; b = 0.3883050984023654; v = 0.3124608838860167e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5100457318374018; b = 0.4235613423908649; v = 0.3150084294226743e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5432238388954868; b = 0.4574484717196220; v = 0.3165958398598402e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5745758685072442; b = 0.4897311639255524; v = 0.3174320440957372e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1723981437592809; b = 0.3010630597881105e-1; v = 0.2182188909812599e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2149553257844597; b = 0.6326031554204694e-1; v = 0.2399727933921445e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2573256081247422; b = 0.9848566980258631e-1; v = 0.2579796133514652e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2993163751238106; b = 0.1350835952384266; v = 0.2727114052623535e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3407238005148000; b = 0.1725184055442181; v = 0.2846327656281355e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3813454978483264; b = 0.2103559279730725; v = 0.2941491102051334e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4209848104423343; b = 0.2482278774554860; v = 0.3016049492136107e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4594519699996300; b = 0.2858099509982883; v = 0.3072949726175648e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4965640166185930; b = 0.3228075659915428; v = 0.3114768142886460e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5321441655571562; b = 0.3589459907204151; v = 0.3143823673666223e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5660208438582166; b = 0.3939630088864310; v = 0.3162269764661535e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5980264315964364; b = 0.4276029922949089; v = 0.3172164663759821e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2644215852350733; b = 0.3300939429072552e-1; v = 0.2554575398967435e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3090113743443063; b = 0.6803887650078501e-1; v = 0.2701704069135677e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3525871079197808; b = 0.1044326136206709; v = 0.2823693413468940e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3950418005354029; b = 0.1416751597517679; v = 0.2922898463214289e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4362475663430163; b = 0.1793408610504821; v = 0.3001829062162428e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4760661812145854; b = 0.2170630750175722; v = 0.3062890864542953e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5143551042512103; b = 0.2545145157815807; v = 0.3108328279264746e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5509709026935597; b = 0.2913940101706601; v = 0.3140243146201245e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5857711030329428; b = 0.3274169910910705; v = 0.3160638030977130e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6186149917404392; b = 0.3623081329317265; v = 0.3171462882206275e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3586894569557064; b = 0.3497354386450040e-1; v = 0.2812388416031796e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4035266610019441; b = 0.7129736739757095e-1; v = 0.2912137500288045e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4467775312332510; b = 0.1084758620193165; v = 0.2993241256502206e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4883638346608543; b = 0.1460915689241772; v = 0.3057101738983822e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5281908348434601; b = 0.1837790832369980; v = 0.3105319326251432e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5661542687149311; b = 0.2212075390874021; v = 0.3139565514428167e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6021450102031452; b = 0.2580682841160985; v = 0.3161543006806366e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6360520783610050; b = 0.2940656362094121; v = 0.3172985960613294e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4521611065087196; b = 0.3631055365867002e-1; v = 0.2989400336901431e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4959365651560963; b = 0.7348318468484350e-1; v = 0.3054555883947677e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5376815804038283; b = 0.1111087643812648; v = 0.3104764960807702e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5773314480243768; b = 0.1488226085145408; v = 0.3141015825977616e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6148113245575056; b = 0.1862892274135151; v = 0.3164520621159896e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6500407462842380; b = 0.2231909701714456; v = 0.3176652305912204e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5425151448707213; b = 0.3718201306118944e-1; v = 0.3105097161023939e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5841860556907931; b = 0.7483616335067346e-1; v = 0.3143014117890550e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6234632186851500; b = 0.1125990834266120; v = 0.3168172866287200e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6602934551848843; b = 0.1501303813157619; v = 0.3181401865570968e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6278573968375105; b = 0.3767559930245720e-1; v = 0.3170663659156037e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6665611711264577; b = 0.7548443301360158e-1; v = 0.3185447944625510e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld3890 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD3890 computes the 3890 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.1807395252196920e-4; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.2848008782238827e-3; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.2836065837530581e-3; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1587876419858352e-1; v = 0.7013149266673816e-4; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4069193593751206e-1; v = 0.1162798021956766e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7025888115257997e-1; v = 0.1518728583972105e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1027495450028704; v = 0.1798796108216934e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1371457730893426; v = 0.2022593385972785e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1727758532671953; v = 0.2203093105575464e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2091492038929037; v = 0.2349294234299855e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2458813281751915; v = 0.2467682058747003e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2826545859450066; v = 0.2563092683572224e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3191957291799622; v = 0.2639253896763318e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3552621469299578; v = 0.2699137479265108e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3906329503406230; v = 0.2745196420166739e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4251028614093031; v = 0.2779529197397593e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4584777520111870; v = 0.2803996086684265e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4905711358710193; v = 0.2820302356715842e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5212011669847385; v = 0.2830056747491068e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5501878488737995; v = 0.2834808950776839e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6025037877479342; v = 0.2835282339078929e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6254572689549016; v = 0.2833819267065800e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6460107179528248; v = 0.2832858336906784e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6639541138154251; v = 0.2833268235451244e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6790688515667495; v = 0.2835432677029253e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6911338580371512; v = 0.2839091722743049e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6999385956126490; v = 0.2843308178875841e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7053037748656896; v = 0.2846703550533846e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4732224387180115e-1; v = 0.1051193406971900e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1202100529326803; v = 0.1657871838796974e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2034304820664855; v = 0.2064648113714232e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2912285643573002; v = 0.2347942745819741e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3802361792726768; v = 0.2547775326597726e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4680598511056146; v = 0.2686876684847025e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5528151052155599; v = 0.2778665755515867e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6329386307803041; v = 0.2830996616782929e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8056516651369069e-1; b = 0.2363454684003124e-1; v = 0.1403063340168372e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1156476077139389; b = 0.5191291632545936e-1; v = 0.1696504125939477e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1520473382760421; b = 0.8322715736994519e-1; v = 0.1935787242745390e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1892986699745931; b = 0.1165855667993712; v = 0.2130614510521968e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2270194446777792; b = 0.1513077167409504; v = 0.2289381265931048e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2648908185093273; b = 0.1868882025807859; v = 0.2418630292816186e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3026389259574136; b = 0.2229277629776224; v = 0.2523400495631193e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3400220296151384; b = 0.2590951840746235; v = 0.2607623973449605e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3768217953335510; b = 0.2951047291750847; v = 0.2674441032689209e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4128372900921884; b = 0.3307019714169930; v = 0.2726432360343356e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4478807131815630; b = 0.3656544101087634; v = 0.2765787685924545e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4817742034089257; b = 0.3997448951939695; v = 0.2794428690642224e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5143472814653344; b = 0.4327667110812024; v = 0.2814099002062895e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5454346213905650; b = 0.4645196123532293; v = 0.2826429531578994e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5748739313170252; b = 0.4948063555703345; v = 0.2832983542550884e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1599598738286342; b = 0.2792357590048985e-1; v = 0.1886695565284976e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1998097412500951; b = 0.5877141038139065e-1; v = 0.2081867882748234e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2396228952566202; b = 0.9164573914691377e-1; v = 0.2245148680600796e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2792228341097746; b = 0.1259049641962687; v = 0.2380370491511872e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3184251107546741; b = 0.1610594823400863; v = 0.2491398041852455e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3570481164426244; b = 0.1967151653460898; v = 0.2581632405881230e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3949164710492144; b = 0.2325404606175168; v = 0.2653965506227417e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4318617293970503; b = 0.2682461141151439; v = 0.2710857216747087e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4677221009931678; b = 0.3035720116011973; v = 0.2754434093903659e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5023417939270955; b = 0.3382781859197439; v = 0.2786579932519380e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5355701836636128; b = 0.3721383065625942; v = 0.2809011080679474e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5672608451328771; b = 0.4049346360466055; v = 0.2823336184560987e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5972704202540162; b = 0.4364538098633802; v = 0.2831101175806309e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2461687022333596; b = 0.3070423166833368e-1; v = 0.2221679970354546e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2881774566286831; b = 0.6338034669281885e-1; v = 0.2356185734270703e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3293963604116978; b = 0.9742862487067941e-1; v = 0.2469228344805590e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3697303822241377; b = 0.1323799532282290; v = 0.2562726348642046e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4090663023135127; b = 0.1678497018129336; v = 0.2638756726753028e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4472819355411712; b = 0.2035095105326114; v = 0.2699311157390862e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4842513377231437; b = 0.2390692566672091; v = 0.2746233268403837e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5198477629962928; b = 0.2742649818076149; v = 0.2781225674454771e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5539453011883145; b = 0.3088503806580094; v = 0.2805881254045684e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5864196762401251; b = 0.3425904245906614; v = 0.2821719877004913e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6171484466668390; b = 0.3752562294789468; v = 0.2830222502333124e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3350337830565727; b = 0.3261589934634747e-1; v = 0.2457995956744870e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3775773224758284; b = 0.6658438928081572e-1; v = 0.2551474407503706e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4188155229848973; b = 0.1014565797157954; v = 0.2629065335195311e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4586805892009344; b = 0.1368573320843822; v = 0.2691900449925075e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4970895714224235; b = 0.1724614851951608; v = 0.2741275485754276e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5339505133960747; b = 0.2079779381416412; v = 0.2778530970122595e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5691665792531440; b = 0.2431385788322288; v = 0.2805010567646741e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6026387682680377; b = 0.2776901883049853; v = 0.2822055834031040e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6342676150163307; b = 0.3113881356386632; v = 0.2831016901243473e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4237951119537067; b = 0.3394877848664351e-1; v = 0.2624474901131803e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4656918683234929; b = 0.6880219556291447e-1; v = 0.2688034163039377e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5058857069185980; b = 0.1041946859721635; v = 0.2738932751287636e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5443204666713996; b = 0.1398039738736393; v = 0.2777944791242523e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5809298813759742; b = 0.1753373381196155; v = 0.2806011661660987e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6156416039447128; b = 0.2105215793514010; v = 0.2824181456597460e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6483801351066604; b = 0.2450953312157051; v = 0.2833585216577828e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5103616577251688; b = 0.3485560643800719e-1; v = 0.2738165236962878e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5506738792580681; b = 0.7026308631512033e-1; v = 0.2778365208203180e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5889573040995292; b = 0.1059035061296403; v = 0.2807852940418966e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6251641589516930; b = 0.1414823925236026; v = 0.2827245949674705e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6592414921570178; b = 0.1767207908214530; v = 0.2837342344829828e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5930314017533384; b = 0.3542189339561672e-1; v = 0.2809233907610981e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6309812253390175; b = 0.7109574040369549e-1; v = 0.2829930809742694e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6666296011353230; b = 0.1067259792282730; v = 0.2841097874111479e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6703715271049922; b = 0.3569455268820809e-1; v = 0.2843455206008783e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld4334 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD4334 computes the 4334 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.1449063022537883e-4; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.2546377329828424e-3; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1462896151831013e-1; v = 0.6018432961087496e-4; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3769840812493139e-1; v = 0.1002286583263673e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6524701904096891e-1; v = 0.1315222931028093e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9560543416134648e-1; v = 0.1564213746876724e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1278335898929198; v = 0.1765118841507736e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1613096104466031; v = 0.1928737099311080e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1955806225745371; v = 0.2062658534263270e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2302935218498028; v = 0.2172395445953787e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2651584344113027; v = 0.2262076188876047e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2999276825183209; v = 0.2334885699462397e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3343828669718798; v = 0.2393355273179203e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3683265013750518; v = 0.2439559200468863e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4015763206518108; v = 0.2475251866060002e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4339612026399770; v = 0.2501965558158773e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4653180651114582; v = 0.2521081407925925e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4954893331080803; v = 0.2533881002388081e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5243207068924930; v = 0.2541582900848261e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5516590479041704; v = 0.2545365737525860e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6012371927804176; v = 0.2545726993066799e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6231574466449819; v = 0.2544456197465555e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6429416514181271; v = 0.2543481596881064e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6604124272943595; v = 0.2543506451429194e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6753851470408250; v = 0.2544905675493763e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6876717970626160; v = 0.2547611407344429e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6970895061319234; v = 0.2551060375448869e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7034746912553310; v = 0.2554291933816039e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7067017217542295; v = 0.2556255710686343e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4382223501131123e-1; v = 0.9041339695118195e-4; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1117474077400006; v = 0.1438426330079022e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1897153252911440; v = 0.1802523089820518e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2724023009910331; v = 0.2060052290565496e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3567163308709902; v = 0.2245002248967466e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4404784483028087; v = 0.2377059847731150e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5219833154161411; v = 0.2468118955882525e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5998179868977553; v = 0.2525410872966528e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6727803154548222; v = 0.2553101409933397e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7476563943166086e-1; b = 0.2193168509461185e-1; v = 0.1212879733668632e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1075341482001416; b = 0.4826419281533887e-1; v = 0.1472872881270931e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1416344885203259; b = 0.7751191883575742e-1; v = 0.1686846601010828e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1766325315388586; b = 0.1087558139247680; v = 0.1862698414660208e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2121744174481514; b = 0.1413661374253096; v = 0.2007430956991861e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2479669443408145; b = 0.1748768214258880; v = 0.2126568125394796e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2837600452294113; b = 0.2089216406612073; v = 0.2224394603372113e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3193344933193984; b = 0.2431987685545972; v = 0.2304264522673135e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3544935442438745; b = 0.2774497054377770; v = 0.2368854288424087e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3890571932288154; b = 0.3114460356156915; v = 0.2420352089461772e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4228581214259090; b = 0.3449806851913012; v = 0.2460597113081295e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4557387211304052; b = 0.3778618641248256; v = 0.2491181912257687e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4875487950541643; b = 0.4099086391698978; v = 0.2513528194205857e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5181436529962997; b = 0.4409474925853973; v = 0.2528943096693220e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5473824095600661; b = 0.4708094517711291; v = 0.2538660368488136e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5751263398976174; b = 0.4993275140354637; v = 0.2543868648299022e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1489515746840028; b = 0.2599381993267017e-1; v = 0.1642595537825183e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1863656444351767; b = 0.5479286532462190e-1; v = 0.1818246659849308e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2238602880356348; b = 0.8556763251425254e-1; v = 0.1966565649492420e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2612723375728160; b = 0.1177257802267011; v = 0.2090677905657991e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2984332990206190; b = 0.1508168456192700; v = 0.2193820409510504e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3351786584663333; b = 0.1844801892177727; v = 0.2278870827661928e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3713505522209120; b = 0.2184145236087598; v = 0.2348283192282090e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4067981098954663; b = 0.2523590641486229; v = 0.2404139755581477e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4413769993687534; b = 0.2860812976901373; v = 0.2448227407760734e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4749487182516394; b = 0.3193686757808996; v = 0.2482110455592573e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5073798105075426; b = 0.3520226949547602; v = 0.2507192397774103e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5385410448878654; b = 0.3838544395667890; v = 0.2524765968534880e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5683065353670530; b = 0.4146810037640963; v = 0.2536052388539425e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5965527620663510; b = 0.4443224094681121; v = 0.2542230588033068e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2299227700856157; b = 0.2865757664057584e-1; v = 0.1944817013047896e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2695752998553267; b = 0.5923421684485993e-1; v = 0.2067862362746635e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3086178716611389; b = 0.9117817776057715e-1; v = 0.2172440734649114e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3469649871659077; b = 0.1240593814082605; v = 0.2260125991723423e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3845153566319655; b = 0.1575272058259175; v = 0.2332655008689523e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4211600033403215; b = 0.1912845163525413; v = 0.2391699681532458e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4567867834329882; b = 0.2250710177858171; v = 0.2438801528273928e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4912829319232061; b = 0.2586521303440910; v = 0.2475370504260665e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5245364793303812; b = 0.2918112242865407; v = 0.2502707235640574e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5564369788915756; b = 0.3243439239067890; v = 0.2522031701054241e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5868757697775287; b = 0.3560536787835351; v = 0.2534511269978784e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6157458853519617; b = 0.3867480821242581; v = 0.2541284914955151e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3138461110672113; b = 0.3051374637507278e-1; v = 0.2161509250688394e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3542495872050569; b = 0.6237111233730755e-1; v = 0.2248778513437852e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3935751553120181; b = 0.9516223952401907e-1; v = 0.2322388803404617e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4317634668111147; b = 0.1285467341508517; v = 0.2383265471001355e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4687413842250821; b = 0.1622318931656033; v = 0.2432476675019525e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5044274237060283; b = 0.1959581153836453; v = 0.2471122223750674e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5387354077925727; b = 0.2294888081183837; v = 0.2500291752486870e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5715768898356105; b = 0.2626031152713945; v = 0.2521055942764682e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6028627200136111; b = 0.2950904075286713; v = 0.2534472785575503e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6325039812653463; b = 0.3267458451113286; v = 0.2541599713080121e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3981986708423407; b = 0.3183291458749821e-1; v = 0.2317380975862936e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4382791182133300; b = 0.6459548193880908e-1; v = 0.2378550733719775e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4769233057218166; b = 0.9795757037087952e-1; v = 0.2428884456739118e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5140823911194238; b = 0.1316307235126655; v = 0.2469002655757292e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5496977833862983; b = 0.1653556486358704; v = 0.2499657574265851e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5837047306512727; b = 0.1988931724126510; v = 0.2521676168486082e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6160349566926879; b = 0.2320174581438950; v = 0.2535935662645334e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6466185353209440; b = 0.2645106562168662; v = 0.2543356743363214e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4810835158795404; b = 0.3275917807743992e-1; v = 0.2427353285201535e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5199925041324341; b = 0.6612546183967181e-1; v = 0.2468258039744386e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5571717692207494; b = 0.9981498331474143e-1; v = 0.2500060956440310e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5925789250836378; b = 0.1335687001410374; v = 0.2523238365420979e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6261658523859670; b = 0.1671444402896463; v = 0.2538399260252846e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6578811126669331; b = 0.2003106382156076; v = 0.2546255927268069e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5609624612998100; b = 0.3337500940231335e-1; v = 0.2500583360048449e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5979959659984670; b = 0.6708750335901803e-1; v = 0.2524777638260203e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6330523711054002; b = 0.1008792126424850; v = 0.2540951193860656e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6660960998103972; b = 0.1345050343171794; v = 0.2549524085027472e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6365384364585819; b = 0.3372799460737052e-1; v = 0.2542569507009158e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6710994302899275; b = 0.6755249309678028e-1; v = 0.2552114127580376e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld4802 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD4802 computes the 4802 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.9687521879420705e-4; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.2307897895367918e-3; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.2297310852498558e-3; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2335728608887064e-1; v = 0.7386265944001919e-4; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4352987836550653e-1; v = 0.8257977698542210e-4; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6439200521088801e-1; v = 0.9706044762057630e-4; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9003943631993181e-1; v = 0.1302393847117003e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1196706615548473; v = 0.1541957004600968e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1511715412838134; v = 0.1704459770092199e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1835982828503801; v = 0.1827374890942906e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2165081259155405; v = 0.1926360817436107e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2496208720417563; v = 0.2008010239494833e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2827200673567900; v = 0.2075635983209175e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3156190823994346; v = 0.2131306638690909e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3481476793749115; v = 0.2176562329937335e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3801466086947226; v = 0.2212682262991018e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4114652119634011; v = 0.2240799515668565e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4419598786519751; v = 0.2261959816187525e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4714925949329543; v = 0.2277156368808855e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4999293972879466; v = 0.2287351772128336e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5271387221431248; v = 0.2293490814084085e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5529896780837761; v = 0.2296505312376273e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6000856099481712; v = 0.2296793832318756e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6210562192785175; v = 0.2295785443842974e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6401165879934240; v = 0.2295017931529102e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6571144029244334; v = 0.2295059638184868e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6718910821718863; v = 0.2296232343237362e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6842845591099010; v = 0.2298530178740771e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6941353476269816; v = 0.2301579790280501e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7012965242212991; v = 0.2304690404996513e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7056471428242644; v = 0.2307027995907102e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4595557643585895e-1; v = 0.9312274696671092e-4; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1049316742435023; v = 0.1199919385876926e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1773548879549274; v = 0.1598039138877690e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2559071411236127; v = 0.1822253763574900e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3358156837985898; v = 0.1988579593655040e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4155835743763893; v = 0.2112620102533307e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4937894296167472; v = 0.2201594887699007e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5691569694793316; v = 0.2261622590895036e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6405840854894251; v = 0.2296458453435705e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7345133894143348e-1; b = 0.2177844081486067e-1; v = 0.1006006990267000e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1009859834044931; b = 0.4590362185775188e-1; v = 0.1227676689635876e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1324289619748758; b = 0.7255063095690877e-1; v = 0.1467864280270117e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1654272109607127; b = 0.1017825451960684; v = 0.1644178912101232e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1990767186776461; b = 0.1325652320980364; v = 0.1777664890718961e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2330125945523278; b = 0.1642765374496765; v = 0.1884825664516690e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2670080611108287; b = 0.1965360374337889; v = 0.1973269246453848e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3008753376294316; b = 0.2290726770542238; v = 0.2046767775855328e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3344475596167860; b = 0.2616645495370823; v = 0.2107600125918040e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3675709724070786; b = 0.2941150728843141; v = 0.2157416362266829e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4001000887587812; b = 0.3262440400919066; v = 0.2197557816920721e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4318956350436028; b = 0.3578835350611916; v = 0.2229192611835437e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4628239056795531; b = 0.3888751854043678; v = 0.2253385110212775e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4927563229773636; b = 0.4190678003222840; v = 0.2271137107548774e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5215687136707969; b = 0.4483151836883852; v = 0.2283414092917525e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5491402346984905; b = 0.4764740676087880; v = 0.2291161673130077e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5753520160126075; b = 0.5034021310998277; v = 0.2295313908576598e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1388326356417754; b = 0.2435436510372806e-1; v = 0.1438204721359031e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1743686900537244; b = 0.5118897057342652e-1; v = 0.1607738025495257e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2099737037950268; b = 0.8014695048539634e-1; v = 0.1741483853528379e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2454492590908548; b = 0.1105117874155699; v = 0.1851918467519151e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2807219257864278; b = 0.1417950531570966; v = 0.1944628638070613e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3156842271975842; b = 0.1736604945719597; v = 0.2022495446275152e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3502090945177752; b = 0.2058466324693981; v = 0.2087462382438514e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3841684849519686; b = 0.2381284261195919; v = 0.2141074754818308e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4174372367906016; b = 0.2703031270422569; v = 0.2184640913748162e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4498926465011892; b = 0.3021845683091309; v = 0.2219309165220329e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4814146229807701; b = 0.3335993355165720; v = 0.2246123118340624e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5118863625734701; b = 0.3643833735518232; v = 0.2266062766915125e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5411947455119144; b = 0.3943789541958179; v = 0.2280072952230796e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5692301500357246; b = 0.4234320144403542; v = 0.2289082025202583e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5958857204139576; b = 0.4513897947419260; v = 0.2294012695120025e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2156270284785766; b = 0.2681225755444491e-1; v = 0.1722434488736947e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2532385054909710; b = 0.5557495747805614e-1; v = 0.1830237421455091e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2902564617771537; b = 0.8569368062950249e-1; v = 0.1923855349997633e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3266979823143256; b = 0.1167367450324135; v = 0.2004067861936271e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3625039627493614; b = 0.1483861994003304; v = 0.2071817297354263e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3975838937548699; b = 0.1803821503011405; v = 0.2128250834102103e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4318396099009774; b = 0.2124962965666424; v = 0.2174513719440102e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4651706555732742; b = 0.2445221837805913; v = 0.2211661839150214e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4974752649620969; b = 0.2762701224322987; v = 0.2240665257813102e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5286517579627517; b = 0.3075627775211328; v = 0.2262439516632620e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5586001195731895; b = 0.3382311089826877; v = 0.2277874557231869e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5872229902021319; b = 0.3681108834741399; v = 0.2287854314454994e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6144258616235123; b = 0.3970397446872839; v = 0.2293268499615575e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2951676508064861; b = 0.2867499538750441e-1; v = 0.1912628201529828e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3335085485472725; b = 0.5867879341903510e-1; v = 0.1992499672238701e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3709561760636381; b = 0.8961099205022284e-1; v = 0.2061275533454027e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4074722861667498; b = 0.1211627927626297; v = 0.2119318215968572e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4429923648839117; b = 0.1530748903554898; v = 0.2167416581882652e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4774428052721736; b = 0.1851176436721877; v = 0.2206430730516600e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5107446539535904; b = 0.2170829107658179; v = 0.2237186938699523e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5428151370542935; b = 0.2487786689026271; v = 0.2260480075032884e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5735699292556964; b = 0.2800239952795016; v = 0.2277098884558542e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6029253794562866; b = 0.3106445702878119; v = 0.2287845715109671e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6307998987073145; b = 0.3404689500841194; v = 0.2293547268236294e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3752652273692719; b = 0.2997145098184479e-1; v = 0.2056073839852528e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4135383879344028; b = 0.6086725898678011e-1; v = 0.2114235865831876e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4506113885153907; b = 0.9238849548435643e-1; v = 0.2163175629770551e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4864401554606072; b = 0.1242786603851851; v = 0.2203392158111650e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5209708076611709; b = 0.1563086731483386; v = 0.2235473176847839e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5541422135830122; b = 0.1882696509388506; v = 0.2260024141501235e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5858880915113817; b = 0.2199672979126059; v = 0.2277675929329182e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6161399390603444; b = 0.2512165482924867; v = 0.2289102112284834e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6448296482255090; b = 0.2818368701871888; v = 0.2295027954625118e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4544796274917948; b = 0.3088970405060312e-1; v = 0.2161281589879992e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4919389072146628; b = 0.6240947677636835e-1; v = 0.2201980477395102e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5279313026985183; b = 0.9430706144280313e-1; v = 0.2234952066593166e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5624169925571135; b = 0.1263547818770374; v = 0.2260540098520838e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5953484627093287; b = 0.1583430788822594; v = 0.2279157981899988e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6266730715339185; b = 0.1900748462555988; v = 0.2291296918565571e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6563363204278871; b = 0.2213599519592567; v = 0.2297533752536649e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5314574716585696; b = 0.3152508811515374e-1; v = 0.2234927356465995e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5674614932298185; b = 0.6343865291465561e-1; v = 0.2261288012985219e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6017706004970264; b = 0.9551503504223951e-1; v = 0.2280818160923688e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6343471270264178; b = 0.1275440099801196; v = 0.2293773295180159e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6651494599127802; b = 0.1593252037671960; v = 0.2300528767338634e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6050184986005704; b = 0.3192538338496105e-1; v = 0.2281893855065666e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6390163550880400; b = 0.6402824353962306e-1; v = 0.2295720444840727e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6711199107088448; b = 0.9609805077002909e-1; v = 0.2303227649026753e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6741354429572275; b = 0.3211853196273233e-1; v = 0.2304831913227114e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld5294 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD5294 computes the 5294 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.9080510764308163e-4; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.2084824361987793e-3; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2303261686261450e-1; v = 0.5011105657239616e-4; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3757208620162394e-1; v = 0.5942520409683854e-4; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5821912033821852e-1; v = 0.9564394826109721e-4; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8403127529194872e-1; v = 0.1185530657126338e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1122927798060578; v = 0.1364510114230331e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1420125319192987; v = 0.1505828825605415e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1726396437341978; v = 0.1619298749867023e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2038170058115696; v = 0.1712450504267789e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2352849892876508; v = 0.1789891098164999e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2668363354312461; v = 0.1854474955629795e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2982941279900452; v = 0.1908148636673661e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3295002922087076; v = 0.1952377405281833e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3603094918363593; v = 0.1988349254282232e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3905857895173920; v = 0.2017079807160050e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4202005758160837; v = 0.2039473082709094e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4490310061597227; v = 0.2056360279288953e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4769586160311491; v = 0.2068525823066865e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5038679887049750; v = 0.2076724877534488e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5296454286519961; v = 0.2081694278237885e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5541776207164850; v = 0.2084157631219326e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5990467321921213; v = 0.2084381531128593e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6191467096294587; v = 0.2083476277129307e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6375251212901849; v = 0.2082686194459732e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6540514381131168; v = 0.2082475686112415e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6685899064391510; v = 0.2083139860289915e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6810013009681648; v = 0.2084745561831237e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6911469578730340; v = 0.2087091313375890e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6988956915141736; v = 0.2089718413297697e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7041335794868720; v = 0.2092003303479793e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7067754398018567; v = 0.2093336148263241e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3840368707853623e-1; v = 0.7591708117365267e-4; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9835485954117399e-1; v = 0.1083383968169186e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1665774947612998; v = 0.1403019395292510e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2405702335362910; v = 0.1615970179286436e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3165270770189046; v = 0.1771144187504911e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3927386145645443; v = 0.1887760022988168e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4678825918374656; v = 0.1973474670768214e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5408022024266935; v = 0.2033787661234659e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6104967445752438; v = 0.2072343626517331e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6760910702685738; v = 0.2091177834226918e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6655644120217392e-1; b = 0.1936508874588424e-1; v = 0.9316684484675566e-4; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9446246161270182e-1; b = 0.4252442002115869e-1; v = 0.1116193688682976e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1242651925452509; b = 0.6806529315354374e-1; v = 0.1298623551559414e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1553438064846751; b = 0.9560957491205369e-1; v = 0.1450236832456426e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1871137110542670; b = 0.1245931657452888; v = 0.1572719958149914e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2192612628836257; b = 0.1545385828778978; v = 0.1673234785867195e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2515682807206955; b = 0.1851004249723368; v = 0.1756860118725188e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2838535866287290; b = 0.2160182608272384; v = 0.1826776290439367e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3159578817528521; b = 0.2470799012277111; v = 0.1885116347992865e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3477370882791392; b = 0.2781014208986402; v = 0.1933457860170574e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3790576960890540; b = 0.3089172523515731; v = 0.1973060671902064e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4097938317810200; b = 0.3393750055472244; v = 0.2004987099616311e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4398256572859637; b = 0.3693322470987730; v = 0.2030170909281499e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4690384114718480; b = 0.3986541005609877; v = 0.2049461460119080e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4973216048301053; b = 0.4272112491408562; v = 0.2063653565200186e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5245681526132446; b = 0.4548781735309936; v = 0.2073507927381027e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5506733911803888; b = 0.4815315355023251; v = 0.2079764593256122e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5755339829522475; b = 0.5070486445801855; v = 0.2083150534968778e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1305472386056362; b = 0.2284970375722366e-1; v = 0.1262715121590664e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1637327908216477; b = 0.4812254338288384e-1; v = 0.1414386128545972e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1972734634149637; b = 0.7531734457511935e-1; v = 0.1538740401313898e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2308694653110130; b = 0.1039043639882017; v = 0.1642434942331432e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2643899218338160; b = 0.1334526587117626; v = 0.1729790609237496e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2977171599622171; b = 0.1636414868936382; v = 0.1803505190260828e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3307293903032310; b = 0.1942195406166568; v = 0.1865475350079657e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3633069198219073; b = 0.2249752879943753; v = 0.1917182669679069e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3953346955922727; b = 0.2557218821820032; v = 0.1959851709034382e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4267018394184914; b = 0.2862897925213193; v = 0.1994529548117882e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4573009622571704; b = 0.3165224536636518; v = 0.2022138911146548e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4870279559856109; b = 0.3462730221636496; v = 0.2043518024208592e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5157819581450322; b = 0.3754016870282835; v = 0.2059450313018110e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5434651666465393; b = 0.4037733784993613; v = 0.2070685715318472e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5699823887764627; b = 0.4312557784139123; v = 0.2077955310694373e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5952403350947741; b = 0.4577175367122110; v = 0.2081980387824712e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2025152599210369; b = 0.2520253617719557e-1; v = 0.1521318610377956e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2381066653274425; b = 0.5223254506119000e-1; v = 0.1622772720185755e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2732823383651612; b = 0.8060669688588620e-1; v = 0.1710498139420709e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3080137692611118; b = 0.1099335754081255; v = 0.1785911149448736e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3422405614587601; b = 0.1399120955959857; v = 0.1850125313687736e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3758808773890420; b = 0.1702977801651705; v = 0.1904229703933298e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4088458383438932; b = 0.2008799256601680; v = 0.1949259956121987e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4410450550841152; b = 0.2314703052180836; v = 0.1986161545363960e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4723879420561312; b = 0.2618972111375892; v = 0.2015790585641370e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5027843561874343; b = 0.2920013195600270; v = 0.2038934198707418e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5321453674452458; b = 0.3216322555190551; v = 0.2056334060538251e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5603839113834030; b = 0.3506456615934198; v = 0.2068705959462289e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5874150706875146; b = 0.3789007181306267; v = 0.2076753906106002e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6131559381660038; b = 0.4062580170572782; v = 0.2081179391734803e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2778497016394506; b = 0.2696271276876226e-1; v = 0.1700345216228943e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3143733562261912; b = 0.5523469316960465e-1; v = 0.1774906779990410e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3501485810261827; b = 0.8445193201626464e-1; v = 0.1839659377002642e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3851430322303653; b = 0.1143263119336083; v = 0.1894987462975169e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4193013979470415; b = 0.1446177898344475; v = 0.1941548809452595e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4525585960458567; b = 0.1751165438438091; v = 0.1980078427252384e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4848447779622947; b = 0.2056338306745660; v = 0.2011296284744488e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5160871208276894; b = 0.2359965487229226; v = 0.2035888456966776e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5462112185696926; b = 0.2660430223139146; v = 0.2054516325352142e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5751425068101757; b = 0.2956193664498032; v = 0.2067831033092635e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6028073872853596; b = 0.3245763905312779; v = 0.2076485320284876e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6291338275278409; b = 0.3527670026206972; v = 0.2081141439525255e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3541797528439391; b = 0.2823853479435550e-1; v = 0.1834383015469222e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3908234972074657; b = 0.5741296374713106e-1; v = 0.1889540591777677e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4264408450107590; b = 0.8724646633650199e-1; v = 0.1936677023597375e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4609949666553286; b = 0.1175034422915616; v = 0.1976176495066504e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4944389496536006; b = 0.1479755652628428; v = 0.2008536004560983e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5267194884346086; b = 0.1784740659484352; v = 0.2034280351712291e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5577787810220990; b = 0.2088245700431244; v = 0.2053944466027758e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5875563763536670; b = 0.2388628136570763; v = 0.2068077642882360e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6159910016391269; b = 0.2684308928769185; v = 0.2077250949661599e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6430219602956268; b = 0.2973740761960252; v = 0.2082062440705320e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4300647036213646; b = 0.2916399920493977e-1; v = 0.1934374486546626e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4661486308935531; b = 0.5898803024755659e-1; v = 0.1974107010484300e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5009658555287261; b = 0.8924162698525409e-1; v = 0.2007129290388658e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5344824270447704; b = 0.1197185199637321; v = 0.2033736947471293e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5666575997416371; b = 0.1502300756161382; v = 0.2054287125902493e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5974457471404752; b = 0.1806004191913564; v = 0.2069184936818894e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6267984444116886; b = 0.2106621764786252; v = 0.2078883689808782e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6546664713575417; b = 0.2402526932671914; v = 0.2083886366116359e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5042711004437253; b = 0.2982529203607657e-1; v = 0.2006593275470817e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5392127456774380; b = 0.6008728062339922e-1; v = 0.2033728426135397e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5726819437668618; b = 0.9058227674571398e-1; v = 0.2055008781377608e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6046469254207278; b = 0.1211219235803400; v = 0.2070651783518502e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6350716157434952; b = 0.1515286404791580; v = 0.2080953335094320e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6639177679185454; b = 0.1816314681255552; v = 0.2086284998988521e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5757276040972253; b = 0.3026991752575440e-1; v = 0.2055549387644668e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6090265823139755; b = 0.6078402297870770e-1; v = 0.2071871850267654e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6406735344387661; b = 0.9135459984176636e-1; v = 0.2082856600431965e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6706397927793709; b = 0.1218024155966590; v = 0.2088705858819358e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6435019674426665; b = 0.3052608357660639e-1; v = 0.2083995867536322e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6747218676375681; b = 0.6112185773983089e-1; v = 0.2090509712889637e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 void ld5810 ( double *x, double *y, double *z, double *w ) //****************************************************************************80 // // Purpose: // // LD5810 computes the 5810 point Lebedev angular grid. // // Modified: // // 12 September 2010 // // Author: // // Dmitri Laikov // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Output, double X[N], Y[N], Z[N], W[N], the coordinates // and weights of the points. // { double a = 0.0; double b = 0.0; int n; double v; n = 0; v = 0.9735347946175486e-5; n = n + gen_oh ( 1, a, b, v, x + n, y + n, z + n, w + n ); v = 0.1907581241803167e-3; n = n + gen_oh ( 2, a, b, v, x + n, y + n, z + n, w + n ); v = 0.1901059546737578e-3; n = n + gen_oh ( 3, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1182361662400277e-1; v = 0.3926424538919212e-4; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3062145009138958e-1; v = 0.6667905467294382e-4; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5329794036834243e-1; v = 0.8868891315019135e-4; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7848165532862220e-1; v = 0.1066306000958872e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1054038157636201; v = 0.1214506743336128e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1335577797766211; v = 0.1338054681640871e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1625769955502252; v = 0.1441677023628504e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1921787193412792; v = 0.1528880200826557e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2221340534690548; v = 0.1602330623773609e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2522504912791132; v = 0.1664102653445244e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2823610860679697; v = 0.1715845854011323e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3123173966267560; v = 0.1758901000133069e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3419847036953789; v = 0.1794382485256736e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3712386456999758; v = 0.1823238106757407e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3999627649876828; v = 0.1846293252959976e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4280466458648093; v = 0.1864284079323098e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4553844360185711; v = 0.1877882694626914e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4818736094437834; v = 0.1887716321852025e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5074138709260629; v = 0.1894381638175673e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5319061304570707; v = 0.1898454899533629e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5552514978677286; v = 0.1900497929577815e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5981009025246183; v = 0.1900671501924092e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6173990192228116; v = 0.1899837555533510e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6351365239411131; v = 0.1899014113156229e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6512010228227200; v = 0.1898581257705106e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6654758363948120; v = 0.1898804756095753e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6778410414853370; v = 0.1899793610426402e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6881760887484110; v = 0.1901464554844117e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6963645267094598; v = 0.1903533246259542e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7023010617153579; v = 0.1905556158463228e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.7059004636628753; v = 0.1907037155663528e-3; n = n + gen_oh ( 4, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3552470312472575e-1; v = 0.5992997844249967e-4; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.9151176620841283e-1; v = 0.9749059382456978e-4; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1566197930068980; v = 0.1241680804599158e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2265467599271907; v = 0.1437626154299360e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2988242318581361; v = 0.1584200054793902e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3717482419703886; v = 0.1694436550982744e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4440094491758889; v = 0.1776617014018108e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5145337096756642; v = 0.1836132434440077e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5824053672860230; v = 0.1876494727075983e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6468283961043370; v = 0.1899906535336482e-3; n = n + gen_oh ( 5, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6095964259104373e-1; b = 0.1787828275342931e-1; v = 0.8143252820767350e-4; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.8811962270959388e-1; b = 0.3953888740792096e-1; v = 0.9998859890887728e-4; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1165936722428831; b = 0.6378121797722990e-1; v = 0.1156199403068359e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1460232857031785; b = 0.8985890813745037e-1; v = 0.1287632092635513e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1761197110181755; b = 0.1172606510576162; v = 0.1398378643365139e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2066471190463718; b = 0.1456102876970995; v = 0.1491876468417391e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2374076026328152; b = 0.1746153823011775; v = 0.1570855679175456e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2682305474337051; b = 0.2040383070295584; v = 0.1637483948103775e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2989653312142369; b = 0.2336788634003698; v = 0.1693500566632843e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3294762752772209; b = 0.2633632752654219; v = 0.1740322769393633e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3596390887276086; b = 0.2929369098051601; v = 0.1779126637278296e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3893383046398812; b = 0.3222592785275512; v = 0.1810908108835412e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4184653789358347; b = 0.3512004791195743; v = 0.1836529132600190e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4469172319076166; b = 0.3796385677684537; v = 0.1856752841777379e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4745950813276976; b = 0.4074575378263879; v = 0.1872270566606832e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5014034601410262; b = 0.4345456906027828; v = 0.1883722645591307e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5272493404551239; b = 0.4607942515205134; v = 0.1891714324525297e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5520413051846366; b = 0.4860961284181720; v = 0.1896827480450146e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5756887237503077; b = 0.5103447395342790; v = 0.1899628417059528e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1225039430588352; b = 0.2136455922655793e-1; v = 0.1123301829001669e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1539113217321372; b = 0.4520926166137188e-1; v = 0.1253698826711277e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1856213098637712; b = 0.7086468177864818e-1; v = 0.1366266117678531e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2174998728035131; b = 0.9785239488772918e-1; v = 0.1462736856106918e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2494128336938330; b = 0.1258106396267210; v = 0.1545076466685412e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2812321562143480; b = 0.1544529125047001; v = 0.1615096280814007e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3128372276456111; b = 0.1835433512202753; v = 0.1674366639741759e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3441145160177973; b = 0.2128813258619585; v = 0.1724225002437900e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3749567714853510; b = 0.2422913734880829; v = 0.1765810822987288e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4052621732015610; b = 0.2716163748391453; v = 0.1800104126010751e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4349335453522385; b = 0.3007127671240280; v = 0.1827960437331284e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4638776641524965; b = 0.3294470677216479; v = 0.1850140300716308e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4920046410462687; b = 0.3576932543699155; v = 0.1867333507394938e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5192273554861704; b = 0.3853307059757764; v = 0.1880178688638289e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5454609081136522; b = 0.4122425044452694; v = 0.1889278925654758e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5706220661424140; b = 0.4383139587781027; v = 0.1895213832507346e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5946286755181518; b = 0.4634312536300553; v = 0.1898548277397420e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.1905370790924295; b = 0.2371311537781979e-1; v = 0.1349105935937341e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2242518717748009; b = 0.4917878059254806e-1; v = 0.1444060068369326e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2577190808025936; b = 0.7595498960495142e-1; v = 0.1526797390930008e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2908724534927187; b = 0.1036991083191100; v = 0.1598208771406474e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3236354020056219; b = 0.1321348584450234; v = 0.1659354368615331e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3559267359304543; b = 0.1610316571314789; v = 0.1711279910946440e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3876637123676956; b = 0.1901912080395707; v = 0.1754952725601440e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4187636705218842; b = 0.2194384950137950; v = 0.1791247850802529e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4491449019883107; b = 0.2486155334763858; v = 0.1820954300877716e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4787270932425445; b = 0.2775768931812335; v = 0.1844788524548449e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5074315153055574; b = 0.3061863786591120; v = 0.1863409481706220e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5351810507738336; b = 0.3343144718152556; v = 0.1877433008795068e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5619001025975381; b = 0.3618362729028427; v = 0.1887444543705232e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5875144035268046; b = 0.3886297583620408; v = 0.1894009829375006e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6119507308734495; b = 0.4145742277792031; v = 0.1897683345035198e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2619733870119463; b = 0.2540047186389353e-1; v = 0.1517327037467653e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.2968149743237949; b = 0.5208107018543989e-1; v = 0.1587740557483543e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3310451504860488; b = 0.7971828470885599e-1; v = 0.1649093382274097e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3646215567376676; b = 0.1080465999177927; v = 0.1701915216193265e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3974916785279360; b = 0.1368413849366629; v = 0.1746847753144065e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4295967403772029; b = 0.1659073184763559; v = 0.1784555512007570e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4608742854473447; b = 0.1950703730454614; v = 0.1815687562112174e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4912598858949903; b = 0.2241721144376724; v = 0.1840864370663302e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5206882758945558; b = 0.2530655255406489; v = 0.1860676785390006e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5490940914019819; b = 0.2816118409731066; v = 0.1875690583743703e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5764123302025542; b = 0.3096780504593238; v = 0.1886453236347225e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6025786004213506; b = 0.3371348366394987; v = 0.1893501123329645e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6275291964794956; b = 0.3638547827694396; v = 0.1897366184519868e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3348189479861771; b = 0.2664841935537443e-1; v = 0.1643908815152736e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.3699515545855295; b = 0.5424000066843495e-1; v = 0.1696300350907768e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4042003071474669; b = 0.8251992715430854e-1; v = 0.1741553103844483e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4375320100182624; b = 0.1112695182483710; v = 0.1780015282386092e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4699054490335947; b = 0.1402964116467816; v = 0.1812116787077125e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5012739879431952; b = 0.1694275117584291; v = 0.1838323158085421e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5315874883754966; b = 0.1985038235312689; v = 0.1859113119837737e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5607937109622117; b = 0.2273765660020893; v = 0.1874969220221698e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5888393223495521; b = 0.2559041492849764; v = 0.1886375612681076e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6156705979160163; b = 0.2839497251976899; v = 0.1893819575809276e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6412338809078123; b = 0.3113791060500690; v = 0.1897794748256767e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4076051259257167; b = 0.2757792290858463e-1; v = 0.1738963926584846e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4423788125791520; b = 0.5584136834984293e-1; v = 0.1777442359873466e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4760480917328258; b = 0.8457772087727143e-1; v = 0.1810010815068719e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5085838725946297; b = 0.1135975846359248; v = 0.1836920318248129e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5399513637391218; b = 0.1427286904765053; v = 0.1858489473214328e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5701118433636380; b = 0.1718112740057635; v = 0.1875079342496592e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5990240530606021; b = 0.2006944855985351; v = 0.1887080239102310e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6266452685139695; b = 0.2292335090598907; v = 0.1894905752176822e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6529320971415942; b = 0.2572871512353714; v = 0.1898991061200695e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.4791583834610126; b = 0.2826094197735932e-1; v = 0.1809065016458791e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5130373952796940; b = 0.5699871359683649e-1; v = 0.1836297121596799e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5456252429628476; b = 0.8602712528554394e-1; v = 0.1858426916241869e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5768956329682385; b = 0.1151748137221281; v = 0.1875654101134641e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6068186944699046; b = 0.1442811654136362; v = 0.1888240751833503e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6353622248024907; b = 0.1731930321657680; v = 0.1896497383866979e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6624927035731797; b = 0.2017619958756061; v = 0.1900775530219121e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5484933508028488; b = 0.2874219755907391e-1; v = 0.1858525041478814e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.5810207682142106; b = 0.5778312123713695e-1; v = 0.1876248690077947e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6120955197181352; b = 0.8695262371439526e-1; v = 0.1889404439064607e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6416944284294319; b = 0.1160893767057166; v = 0.1898168539265290e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6697926391731260; b = 0.1450378826743251; v = 0.1902779940661772e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6147594390585488; b = 0.2904957622341456e-1; v = 0.1890125641731815e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6455390026356783; b = 0.5823809152617197e-1; v = 0.1899434637795751e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6747258588365477; b = 0.8740384899884715e-1; v = 0.1904520856831751e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); a = 0.6772135750395347; b = 0.2919946135808105e-1; v = 0.1905534498734563e-3; n = n + gen_oh ( 6, a, b, v, x + n, y + n, z + n, w + n ); n = n - 1; return; } //****************************************************************************80 int order_table ( int rule ) //****************************************************************************80 // // Purpose: // // ORDER_TABLE returns the order of a Lebedev rule. // // Modified: // // 11 September 2010 // // Author: // // John Burkardt // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Input, int RULE, the index of the rule, between 1 and 65. // // Output, int ORDER_TABLE, the order of the rule. // { int rule_max = 65; int table[65]= { 6, 14, 26, 38, 50, 74, 86, 110, 146, 170, 194, 230, 266, 302, 350, 386, 434, 482, 530, 590, 650, 698, 770, 830, 890, 974, 1046, 1118, 1202, 1274, 1358, 1454, 1538, 1622, 1730, 1814, 1910, 2030, 2126, 2222, 2354, 2450, 2558, 2702, 2810, 2930, 3074, 3182, 3314, 3470, 3590, 3722, 3890, 4010, 4154, 4334, 4466, 4610, 4802, 4934, 5090, 5294, 5438, 5606, 5810 }; int value; if ( rule < 1 ) { cerr << "\n"; cerr << "ORDER_TABLE - Fatal error!\n"; cerr << " RULE < 1.\n"; exit ( 1 ); } else if ( rule_max < rule ) { cerr << "\n"; cerr << "ORDER_TABLE - Fatal error!\n"; cerr << " RULE_MAX < RULE.\n"; exit ( 1 ); } value = table[rule-1]; return value; } //****************************************************************************80 int precision_table ( int rule ) //****************************************************************************80 // // Purpose: // // PRECISION_TABLE returns the precision of a Lebedev rule. // // Modified: // // 11 September 2010 // // Author: // // John Burkardt // // Reference: // // Vyacheslav Lebedev, Dmitri Laikov, // A quadrature formula for the sphere of the 131st // algebraic order of accuracy, // Russian Academy of Sciences Doklady Mathematics, // Volume 59, Number 3, 1999, pages 477-481. // // Parameters: // // Input, int RULE, the index of the rule, between 1 and 65. // // Output, int PRECISION_TABLE, the precision of the rule. // { int rule_max = 65; int table[65]= { 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131 }; int value; if ( rule < 1 ) { cerr << "\n"; cerr << "PRECISION_TABLE - Fatal error!\n"; cerr << " RULE < 1.\n"; exit ( 1 ); } else if ( rule_max < rule ) { cerr << "\n"; cerr << "PRECISION_TABLE - Fatal error!\n"; cerr << " RULE_MAX < RULE.\n"; exit ( 1 ); } value = table[rule-1]; return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 void xyz_to_tp ( double x, double y, double z, double *t, double *p ) //****************************************************************************80 // // Purpose: // // XYZ_TO_TP converts (X,Y,Z) to (Theta,Phi) coordinates on the unit sphere. // // Modified: // // 09 September 2010 // // Author: // // Dmitri Laikin // // Parameters: // // Input, double X, Y, Z, the Cartesian coordinates of a point // on the unit sphere. // // Output, double T, P, the Theta and Phi coordinates of // the point. // { double ang_x; double fact; double pi = 3.14159265358979323846; *p = acos ( z ); fact = sqrt ( x * x + y * y ); if ( 0 < fact ) { ang_x = acos ( x / fact ); } else { ang_x = acos ( x ); } if ( y < 0 ) { ang_x = - ang_x; } *t = ang_x; // // Convert to degrees. // *t = *t * 180.0 / pi; *p = *p * 180.0 / pi; return; }