# include # include # include # include # include # include using namespace std; # include "sphere_quad.hpp" //****************************************************************************80 double arc_cosine ( double c ) //****************************************************************************80 // // Purpose: // // ARC_COSINE computes the arc cosine function, with argument truncation. // // Discussion: // // If you call your system ACOS routine with an input argument that is // outside the range [-1.0, 1.0 ], you may get an unpleasant surprise. // This routine truncates arguments outside the range. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2002 // // Author: // // John Burkardt // // Parameters: // // Input, double C, the argument, the cosine of an angle. // // Output, double ARC_COSINE, an angle whose cosine is C. // { double angle; double pi = 3.141592653589793; if ( c <= -1.0 ) { angle = pi; } else if ( 1.0 <= c ) { angle = 0.0; } else { angle = acos ( c ); } return angle; } //****************************************************************************80 double arc_sine ( double s ) //****************************************************************************80 // // Purpose: // // ARC_SINE computes the arc sine function, with argument truncation. // // Discussion: // // If you call your system ASIN routine with an input argument that is // outside the range [-1.0, 1.0 ], you may get an unpleasant surprise. // This routine truncates arguments outside the range. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2002 // // Author: // // John Burkardt // // Parameters: // // Input, double S, the argument, the sine of an angle. // // Output, double ARC_SINE, an angle whose sine is S. // { double angle; double pi = 3.141592653589793; if ( s <= -1.0 ) { angle = - pi / 2.0; } else if ( 1.0 <= s ) { angle = pi / 2.0; } else { angle = asin ( s ); } return angle; } //****************************************************************************80 double atan4 ( double y, double x ) //****************************************************************************80 // // Purpose: // // ATAN4 computes the inverse tangent of the ratio Y / X. // // Discussion: // // ATAN4 returns an angle whose tangent is ( Y / X ), a job which // the built in functions ATAN and ATAN2 already do. // // However: // // * ATAN4 always returns a positive angle, between 0 and 2 PI, // while ATAN and ATAN2 return angles in the interval [-PI/2,+PI/2] // and [-PI,+PI] respectively; // // * ATAN4 accounts for the signs of X and Y, (as does ATAN2). The ATAN // function by contrast always returns an angle in the first or fourth // quadrants. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2002 // // Author: // // John Burkardt // // Parameters: // // Input, double Y, X, two quantities which represent the tangent of // an angle. If Y is not zero, then the tangent is (Y/X). // // Output, double ATAN4, an angle between 0 and 2 * PI, whose tangent is // (Y/X), and which lies in the appropriate quadrant so that the signs // of its cosine and sine match those of X and Y. // { double pi = 3.141592653589793; // // Special cases: // if ( x == 0.0 ) { if ( 0.0 < y ) { return ( pi / 2.0 ); } else if ( y < 0.0 ) { return ( 3.0 * pi / 2.0 ); } else if ( y == 0.0 ) { return ( 0.0 ); } } else if ( y == 0.0 ) { if ( 0.0 < x ) { return 0.0; } else if ( x < 0.0 ) { return pi; } } // // We assume that ATAN2 is reliable when both arguments are positive. // if ( 0.0 < x && 0.0 < y ) { return atan2 ( y, x ); } else if ( x < 0.0 && 0.0 < y ) { return ( pi - atan2 ( y, -x ) ); } else if ( x < 0.0 && y < 0.0 ) { return ( pi + atan2 ( -y, -x ) ); } else if ( 0.0 < x && y < 0.0 ) { return ( 2.0 * pi - atan2 ( -y, x ) ); } return 0.0; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the smaller of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 void i4vec_copy ( int n, int a1[], int a2[] ) //****************************************************************************80 // // Purpose: // // I4VEC_COPY copies an I4VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, int A1[N], the vector to be copied. // // Input, int A2[N], the copy of A1. // { int i; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return; } //****************************************************************************80 void icos_shape ( int point_num, int edge_num, int face_num, int face_order_max, double point_coord[], int edge_point[], int face_order[], int face_point[] ) //****************************************************************************80 // // Purpose: // // ICOS_SHAPE describes a icosahedron. // // Discussion: // // The input data required for this routine can be retrieved from // ICOS_SIZE. // // The vertices lie on the unit sphere. // // The dual of an icosahedron is the dodecahedron. // // The data has been rearranged from a previous assignment. // The STRIPACK program refuses to triangulate data if the first // three nodes are "collinear" on the sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int POINT_NUM, the number of points (12). // // Input, int EDGE_NUM, the number of edges (30). // // Input, int FACE_NUM, the number of faces (20). // // Input, int FACE_ORDER_MAX, the maximum number of vertices // per face (3). // // Output, double POINT_COORD[3*POINT_NUM], the point coordinates. // // Output, int EDGE_POINT[2*EDGE_NUM], the points that make up each // edge, listed in ascending order of their indexes. // // Output, int FACE_ORDER[FACE_NUM], the number of vertices per face. // // Output, int FACE_POINT[FACE_ORDER_MAX*FACE_NUM]; FACE_POINT(I,J) // contains the index of the I-th point in the J-th face. The // points are listed in the counter clockwise direction defined // by the outward normal at the face. The nodes of each face are // ordered so that the lowest index occurs first. The faces are // then sorted by nodes. // { # define DIM_NUM 3 # define EDGE_NUM 30 # define EDGE_ORDER 2 # define FACE_NUM 20 # define POINT_NUM 12 double phi = 0.5 * ( sqrt ( 5.0 ) + 1.0 ); double a = phi / sqrt ( 1.0 + phi * phi ); double b = 1.0 / sqrt ( 1.0 + phi * phi ); double z = 0.0; static int edge_point_save[EDGE_ORDER*EDGE_NUM] = { 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 2, 3, 2, 4, 2, 7, 2, 8, 3, 5, 3, 7, 3, 9, 4, 6, 4, 8, 4, 10, 5, 6, 5, 9, 5, 11, 6, 10, 6, 11, 7, 8, 7, 9, 7, 12, 8, 10, 8, 12, 9, 11, 9, 12, 10, 11, 10, 12, 11, 12 }; static int face_order_save[FACE_NUM] = { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }; static int face_point_save[3*FACE_NUM] = { 1, 2, 4, 1, 3, 2, 1, 4, 6, 1, 5, 3, 1, 6, 5, 2, 3, 7, 2, 7, 8, 2, 8, 4, 3, 5, 9, 3, 9, 7, 4, 8, 10, 4, 10, 6, 5, 6, 11, 5, 11, 9, 6, 10, 11, 7, 9, 12, 7, 12, 8, 8, 12, 10, 9, 11, 12, 10, 12, 11 }; int i; int j; static double point_coord_save[DIM_NUM*POINT_NUM] = { a, b, z, a, -b, z, b, z, a, b, z, -a, z, a, b, z, a, -b, z, -a, b, z, -a, -b, -b, z, a, -b, z, -a, -a, b, z, -a, -b, z }; r8vec_copy ( DIM_NUM * point_num, point_coord_save, point_coord ); i4vec_copy ( EDGE_ORDER * edge_num, edge_point_save, edge_point ); i4vec_copy ( face_num, face_order_save, face_order ); i4vec_copy ( face_order_max * face_num, face_point_save, face_point ); // // Rebase at 0. // for ( j = 0; j < edge_num; j++ ) { for ( i = 0; i < 2; i++ ) { edge_point[i+j*2] = edge_point[i+j*2] - 1; } } for ( j = 0; j < face_num; j++ ) { for ( i = 0; i < face_order_max; i++ ) { face_point[i+j*face_order_max] = face_point[i+j*face_order_max] - 1; } } return; # undef DIM_NUM # undef EDGE_NUM # undef EDGE_ORDER # undef FACE_NUM # undef POINT_NUM } //****************************************************************************80 void icos_size ( int *point_num, int *edge_num, int *face_num, int *face_order_max ) //****************************************************************************80 // // Purpose: // // ICOS_SIZE gives "sizes" for an icosahedron in 3D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 July 2007 // // Author: // // John Burkardt // // Parameters: // // Output, int *POINT_NUM, the number of points. // // Output, int *EDGE_NUM, the number of edges. // // Output, int *FACE_NUM, the number of faces. // // Output, int *FACE_ORDER_MAX, the maximum order of any face. // { *point_num = 12; *edge_num = 30; *face_num = 20; *face_order_max = 3; return; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = x; } else { value = -x; } return value; } //****************************************************************************80 double r8_gamma ( double x ) //****************************************************************************80 // // Purpose: // // R8_GAMMA evaluates Gamma(X) for a real argument. // // Discussion: // // The C MATH library includes a function GAMMA ( X ) which should be // invoked instead of this function. // // This routine calculates the gamma function for a real argument X. // // Computation is based on an algorithm outlined in reference 1. // The program uses rational functions that approximate the gamma // function to at least 20 significant decimal digits. Coefficients // for the approximation over the interval (1,2) are unpublished. // Those for the approximation for 12 <= X are from reference 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2008 // // Author: // // Original FORTRAN77 version by William Cody, Laura Stoltz. // C++ version by John Burkardt. // // Reference: // // William Cody, // An Overview of Software Development for Special Functions, // in Numerical Analysis Dundee, 1975, // edited by GA Watson, // Lecture Notes in Mathematics 506, // Springer, 1976. // // John Hart, Ward Cheney, Charles Lawson, Hans Maehly, // Charles Mesztenyi, John Rice, Henry Thatcher, // Christoph Witzgall, // Computer Approximations, // Wiley, 1968, // LC: QA297.C64. // // Parameters: // // Input, double X, the argument of the function. // // Output, double R8_GAMMA, the value of the function. // { double c[7] = { -1.910444077728E-03, 8.4171387781295E-04, -5.952379913043012E-04, 7.93650793500350248E-04, -2.777777777777681622553E-03, 8.333333333333333331554247E-02, 5.7083835261E-03 }; double eps = 2.22E-16; double fact; int i; int n; double p[8] = { -1.71618513886549492533811E+00, 2.47656508055759199108314E+01, -3.79804256470945635097577E+02, 6.29331155312818442661052E+02, 8.66966202790413211295064E+02, -3.14512729688483675254357E+04, -3.61444134186911729807069E+04, 6.64561438202405440627855E+04 }; bool parity; double pi = 3.1415926535897932384626434; double q[8] = { -3.08402300119738975254353E+01, 3.15350626979604161529144E+02, -1.01515636749021914166146E+03, -3.10777167157231109440444E+03, 2.25381184209801510330112E+04, 4.75584627752788110767815E+03, -1.34659959864969306392456E+05, -1.15132259675553483497211E+05 }; double res; double sqrtpi = 0.9189385332046727417803297; double sum; double value; double xbig = 171.624; double xden; double xinf = 1.79E+308; double xminin = 2.23E-308; double xnum; double y; double y1; double ysq; double z; parity = false; fact = 1.0; n = 0; y = x; // // Argument is negative. // if ( y <= 0.0 ) { y = - x; y1 = ( double ) ( int ) ( y ); res = y - y1; if ( res != 0.0 ) { if ( y1 != ( double ) ( int ) ( y1 * 0.5 ) * 2.0 ) { parity = true; } fact = - pi / sin ( pi * res ); y = y + 1.0; } else { res = xinf; value = res; return value; } } // // Argument is positive. // if ( y < eps ) { // // Argument < EPS. // if ( xminin <= y ) { res = 1.0 / y; } else { res = xinf; value = res; return value; } } else if ( y < 12.0 ) { y1 = y; // // 0.0 < argument < 1.0. // if ( y < 1.0 ) { z = y; y = y + 1.0; } // // 1.0 < argument < 12.0. // Reduce argument if necessary. // else { n = ( int ) ( y ) - 1; y = y - ( double ) ( n ); z = y - 1.0; } // // Evaluate approximation for 1.0 < argument < 2.0. // xnum = 0.0; xden = 1.0; for ( i = 0; i < 8; i++ ) { xnum = ( xnum + p[i] ) * z; xden = xden * z + q[i]; } res = xnum / xden + 1.0; // // Adjust result for case 0.0 < argument < 1.0. // if ( y1 < y ) { res = res / y1; } // // Adjust result for case 2.0 < argument < 12.0. // else if ( y < y1 ) { for ( i = 1; i <= n; i++ ) { res = res * y; y = y + 1.0; } } } else { // // Evaluate for 12.0 <= argument. // if ( y <= xbig ) { ysq = y * y; sum = c[6]; for ( i = 0; i < 6; i++ ) { sum = sum / ysq + c[i]; } sum = sum / y - y + sqrtpi; sum = sum + ( y - 0.5 ) * log ( y ); res = exp ( sum ); } else { res = xinf; value = res; return value; } } // // Final adjustments and return. // if ( parity ) { res = - res; } if ( fact != 1.0 ) { res = fact / res; } value = res; return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 double r8_uniform_01 ( int *seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int *SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { int i4_huge = 2147483647; int k; double r; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } // // Although SEED can be represented exactly as a 32 bit integer, // it generally cannot be represented exactly as a 32 bit real number. // r = ( double ) ( *seed ) * 4.656612875E-10; return r; } //****************************************************************************80 void r8vec_copy ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_COPY copies an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], the vector to be copied. // // Input, double A2[N], the copy of A1. // { int i; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double r8vec_norm ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM returns the L2 norm of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // The vector L2 norm is defined as: // // R8VEC_NORM = sqrt ( sum ( 1 <= I <= N ) A(I)**2 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 March 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in A. // // Input, double A[N], the vector whose L2 norm is desired. // // Output, double R8VEC_NORM, the L2 norm of A. // { int i; double v; v = 0.0; for ( i = 0; i < n; i++ ) { v = v + a[i] * a[i]; } v = sqrt ( v ); return v; } //****************************************************************************80 void r8vec_polarize ( int n, double a[], double p[], double a_normal[], double a_parallel[] ) //****************************************************************************80 // // Purpose: // // R8VEC_POLARIZE decomposes an R8VEC into normal and parallel components. // // Discussion: // // An R8VEC is a vector of R8's. // // The (nonzero) vector P defines a direction. // // The vector A can be written as the sum // // A = A_normal + A_parallel // // where A_parallel is a linear multiple of P, and A_normal // is perpendicular to P. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double A[N], the vector to be polarized. // // Input, double P[N], the polarizing direction. // // Output, double A_NORMAL[N], A_PARALLEL[N], the normal // and parallel components of A. // { double a_dot_p; int i; double p_norm; p_norm = r8vec_norm ( n, p ); if ( p_norm == 0.0 ) { for ( i = 0; i < n; i++ ) { a_normal[i] = a[i]; } for ( i = 0; i < n; i++ ) { a_parallel[i] = 0.0; } return; } a_dot_p = r8vec_dot_product ( n, a, p ) / p_norm; for ( i = 0; i < n; i++ ) { a_parallel[i] = a_dot_p * p[i] / p_norm; } for ( i = 0; i < n; i++ ) { a_normal[i] = a[i] - a_parallel[i]; } return; } //****************************************************************************80 double r8vec_sum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SUM returns the sum of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_SUM, the sum of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i]; } return value; } //****************************************************************************80 double sphere01_distance_xyz ( double xyz1[3], double xyz2[3] ) //****************************************************************************80 // // Purpose: // // SPHERE01_DISTANCE_XYZ computes great circle distances on a unit sphere. // // Discussion: // // XYZ coordinates are used. // // We assume the points XYZ1 and XYZ2 lie on the unit sphere. // // This computation is a special form of the Vincenty formula. // It should be less sensitive to errors associated with very small // or very large angular separations. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Reference: // // "Great-circle distance", // Wikipedia. // // Parameters: // // Input, double XYZ1[3], the coordinates of the first point. // // Input, double XYZ2[3], the coordinates of the second point. // // Output, double DIST, the great circle distance between the points. // { double bot; double dist; double lat1; double lat2; double lon1; double lon2; double r; double top; lat1 = arc_sine ( xyz1[2] ); lon1 = atan4 ( xyz1[1], xyz1[0] ); lat2 = arc_sine ( xyz2[2] ); lon2 = atan4 ( xyz2[1], xyz2[0] ); top = pow ( cos ( lat2 ) * sin ( lon1 - lon2 ), 2 ) + pow ( cos ( lat1 ) * sin ( lat2 ) - sin ( lat1 ) * cos ( lat2 ) * cos ( lon1 - lon2 ), 2 ); top = sqrt ( top ); bot = sin ( lat1 ) * sin ( lat2 ) + cos ( lat1 ) * cos ( lat2 ) * cos ( lon1 - lon2 ); dist = atan2 ( top, bot ); return dist; } //****************************************************************************80 double sphere01_monomial_integral ( int e[3] ) //****************************************************************************80 // // Purpose: // // SPHERE01_MONOMIAL_INTEGRAL returns monomial integrals on the unit sphere. // // Discussion: // // The integration region is // // X^2 + Y^2 + Z^2 = 1. // // The monomial is F(X,Y,Z) = X^E(1) * Y^E(2) * Z^E(3). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Academic Press, 1984, page 263. // // Parameters: // // Input, int E[3], the exponents of X, Y and Z in the // monomial. Each exponent must be nonnegative. // // Output, double SPHERE01_MONOMIAL_INTEGRAL, the integral. // { int i; double integral; double pi = 3.141592653589793; if ( e[0] < 0 || e[1] < 0 || e[2] < 0 ) { cout << "\n"; cout << "SPHERE01_MONOMIAL_INTEGRAL - Fatal error!\n"; cout << " All exponents must be nonnegative.\n"; cout << " E[0] = " << e[0] << "\n"; cout << " E[1] = " << e[1] << "\n"; cout << " E[2] = " << e[2] << "\n"; exit ( 1 ); } if ( e[0] == 0 && e[1] == 0 && e[2] == 0 ) { integral = 2.0 * sqrt ( pi * pi * pi ) / r8_gamma ( 1.5 ); } else if ( ( e[0] % 2 ) == 1 || ( e[1] % 2 ) == 1 || ( e[2] % 2 ) == 1 ) { integral = 0.0; } else { integral = 2.0; for ( i = 0; i < 3; i++ ) { integral = integral * r8_gamma ( 0.5 * ( double ) ( e[i] + 1 ) ); } integral = integral / r8_gamma ( 0.5 * ( double ) ( e[0] + e[1] + e[2] + 3 ) ); } return integral; } //****************************************************************************80 double sphere01_quad_icos1c ( int factor, void fun ( int n, double x[], double v[] ), int *node_num ) //****************************************************************************80 // // Purpose: // // SPHERE01_QUAD_ICOS1C: centroid rule, subdivide then project. // // Discussion: // // This function estimates an integral over the surface of the unit sphere. // // This function sets up an icosahedral grid, and subdivides each // edge of the icosahedron into FACTOR subedges. These edges define a grid // within each triangular icosahedral face. The centroids of these // triangles can be determined. All of these calculations are done, // essentially, on the FLAT faces of the icosahedron. Only then are // the triangle vertices and centroids projected to the sphere. // // The resulting grid of spherical triangles and projected centroids // is used to apply a centroid quadrature rule over the surface of // the unit sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int FACTOR, the subdivision factor, which must // be at least 1. // // Input, void FUN ( int n, double x[], double v[] ), evaluates the // integrand. // // Output, int *NODE_NUM, the number of evaluation points. // // Output, double SPHERE01_QUAD_ICOS1C, the estimated integral. // { int a; double a_xyz[3]; double *a2_xyz; double area; double area_total; int b; double b_xyz[3]; double *b2_xyz; int c; double c_xyz[3]; double *c2_xyz; int edge_num; int *edge_point; int f1; int f2; int f3; int face; int face_num; int *face_order; int *face_point; int face_order_max; int i; double *node_xyz; double pi = 3.141592653589793; double *point_coord; int point_num; double result; double v[1]; // // Size the icosahedron. // icos_size ( &point_num, &edge_num, &face_num, &face_order_max ); // // Set the icosahedron. // point_coord = new double[3*point_num]; edge_point = new int[2*edge_num]; face_order = new int[face_num]; face_point = new int[face_order_max*face_num]; icos_shape ( point_num, edge_num, face_num, face_order_max, point_coord, edge_point, face_order, face_point ); // // Initialize the integral data. // result = 0.0; area_total = 0.0; *node_num = 0; // // Pick a face of the icosahedron, and identify its vertices as A, B, C. // for ( face = 0; face < face_num; face++ ) { a = face_point[0+face*3]; b = face_point[1+face*3]; c = face_point[2+face*3]; for ( i = 0; i < 3; i++ ) { a_xyz[i] = point_coord[i+a*3]; b_xyz[i] = point_coord[i+b*3]; c_xyz[i] = point_coord[i+c*3]; } // // Some subtriangles will have the same direction as the face. // Generate each in turn, by determining the barycentric coordinates // of the centroid (F1,F2,F3), from which we can also work out the barycentric // coordinates of the vertices of the subtriangle. // for ( f3 = 1; f3 <= 3 * factor - 2; f3 = f3 + 3 ) { for ( f2 = 1; f2 <= 3 * factor - f3 - 1; f2 = f2 + 3 ) { f1 = 3 * factor - f3 - f2; node_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1, f2, f3 ); a2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1 + 2, f2 - 1, f3 - 1 ); b2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1 - 1, f2 + 2, f3 - 1 ); c2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1 - 1, f2 - 1, f3 + 2 ); area = sphere01_triangle_vertices_to_area ( a2_xyz, b2_xyz, c2_xyz ); fun ( 1, node_xyz, v ); *node_num = *node_num + 1; result = result + area * v[0]; area_total = area_total + area; delete [] a2_xyz; delete [] b2_xyz; delete [] c2_xyz; delete [] node_xyz; } } // // The other subtriangles have the opposite direction from the face. // Generate each in turn, by determining the barycentric coordinates // of the centroid (F1,F2,F3), from which we can also work out the barycentric // coordinates of the vertices of the subtriangle. // for ( f3 = 2; f3 <= 3 * factor - 4; f3 = f3 + 3 ) { for ( f2 = 2; f2 <= 3 * factor - f3 - 2; f2 = f2 + 3 ) { f1 = 3 * factor - f3 - f2; node_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1, f2, f3 ); a2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1 - 2, f2 + 1, f3 + 1 ); b2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1 + 1, f2 - 2, f3 + 1 ); c2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1 + 1, f2 + 1, f3 - 2 ); area = sphere01_triangle_vertices_to_area ( a2_xyz, b2_xyz, c2_xyz ); fun ( 1, node_xyz, v ); *node_num = *node_num + 1; result = result + area * v[0]; area_total = area_total + area; delete [] a2_xyz; delete [] b2_xyz; delete [] c2_xyz; delete [] node_xyz; } } } // // Discard allocated memory. // delete [] edge_point; delete [] face_order; delete [] face_point; delete [] point_coord; return result; } //****************************************************************************80 double sphere01_quad_icos1m ( int factor, void fun ( int n, double x[], double v[] ), int *node_num ) //****************************************************************************80 // // Purpose: // // SPHERE01_QUAD_ICOS1M: midside rule, subdivide then project. // // Discussion: // // This function estimates an integral over the surface of the unit sphere. // // This function sets up an icosahedral grid, and subdivides each // edge of the icosahedron into FACTOR subedges. These edges define a grid // within each triangular icosahedral face. The midsides of these // triangles can be determined. All of these calculations are done, // essentially, on the FLAT faces of the icosahedron. Only then are // the triangle vertices and midsides projected to the sphere. // // The resulting grid of spherical triangles and projected midsides // is used to apply a midside quadrature rule over the surface of // the unit sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int FACTOR, the subdivision factor, which must // be at least 1. // // Input, void FUN ( int n, double x[], double v[] ), evaluates the // integrand. // // Output, int *NODE_NUM, the number of evaluation points. // // Output, double SPHERE01_QUAD_ICOS1M, the estimated integral. // { int a; double a_xyz[3]; double *a2_xyz; double *a3_xyz; double area; double area_total; int b; double b_xyz[3]; double *b2_xyz; double *b3_xyz; int c; double c_xyz[3]; double *c2_xyz; double *c3_xyz; int edge; int edge_num; int *edge_point; int f; int f1; int f2; int f3; int face; int face_num; int *face_order; int *face_point; int face_order_max; int i; int j; int node; double node_norm; double *node_xyz; double pi = 3.141592653589793; double *point_coord; int point_num; double result; double va[1]; double vb[1]; double vc[1]; // // Size the icosahedron. // icos_size ( &point_num, &edge_num, &face_num, &face_order_max ); // // Set the icosahedron. // point_coord = new double[3*point_num]; edge_point = new int[2*edge_num]; face_order = new int[face_num]; face_point = new int[face_order_max*face_num]; icos_shape ( point_num, edge_num, face_num, face_order_max, point_coord, edge_point, face_order, face_point ); // // Initialize the integral data. // result = 0.0; *node_num = 0; area_total = 0.0; // // Pick a face of the icosahedron, and identify its vertices as A, B, C. // for ( face = 0; face < face_num; face++ ) { a = face_point[0+face*3]; b = face_point[1+face*3]; c = face_point[2+face*3]; for ( i = 0; i < 3; i++ ) { a_xyz[i] = point_coord[i+a*3]; b_xyz[i] = point_coord[i+b*3]; c_xyz[i] = point_coord[i+c*3]; } // // Deal with subtriangles that have same orientation as face. // for ( f1 = 0; f1 <= factor - 1; f1++ ) { for ( f2 = 0; f2 <= factor - f1 - 1; f2++ ) { f3 = factor - f1 - f2; a2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1 + 1, f2, f3 - 1 ); b2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1, f2 + 1, f3 - 1 ); c2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1, f2, f3 ); area = sphere01_triangle_vertices_to_area ( a2_xyz, b2_xyz, c2_xyz ); a3_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, 2 * f1 + 1, 2 * f2 + 1, 2 * f3 - 2 ); b3_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, 2 * f1, 2 * f2 + 1, 2 * f3 - 1 ); c3_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, 2 * f1 + 1, 2 * f2, 2 * f3 - 1 ); *node_num = *node_num + 3; fun ( 1, a3_xyz, va ); fun ( 1, b3_xyz, vb ); fun ( 1, c3_xyz, vc ); result = result + area * ( va[0] + vb[0] + vc[0] ) / 3.0; area_total = area_total + area; delete [] a2_xyz; delete [] a3_xyz; delete [] b2_xyz; delete [] b3_xyz; delete [] c2_xyz; delete [] c3_xyz; } } // // Deal with subtriangles that have opposite orientation as face. // for ( f3 = 0; f3 <= factor - 2; f3++ ) { for ( f2 = 1; f2 <= factor - f3 - 1; f2++ ) { f1 = factor - f2 - f3; a2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1 - 1, f2, f3 + 1 ); b2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1, f2 - 1, f3 + 1 ); c2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1, f2, f3 ); area = sphere01_triangle_vertices_to_area ( a2_xyz, b2_xyz, c2_xyz ); a3_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, 2 * f1 - 1, 2 * f2 - 1, 2 * f3 + 2 ); b3_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, 2 * f1, 2 * f2 - 1, 2 * f3 + 1 ); c3_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, 2 * f1 - 1, 2 * f2, 2 * f3 + 1 ); *node_num = *node_num + 3; fun ( 1, a3_xyz, va ); fun ( 1, b3_xyz, vb ); fun ( 1, c3_xyz, vc ); result = result + area * ( va[0] + vb[0] + vc[0] ) / 3.0; area_total = area_total + area; delete [] a2_xyz; delete [] a3_xyz; delete [] b2_xyz; delete [] b3_xyz; delete [] c2_xyz; delete [] c3_xyz; } } } // // Discard allocated memory. // delete [] edge_point; delete [] face_order; delete [] face_point; delete [] point_coord; return result; } //****************************************************************************80 double sphere01_quad_icos1v ( int factor, void fun ( int n, double x[], double v[] ), int *node_num ) //****************************************************************************80 // // Purpose: // // SPHERE01_QUAD_ICOS1V: vertex rule, subdivide then project. // // Discussion: // // This function estimates an integral over the surface of the unit sphere. // // This function sets up an icosahedral grid, and subdivides each // edge of the icosahedron into FACTOR subedges. These edges define a grid // within each triangular icosahedral face. The vertices of these // triangles can be determined. All of these calculations are done, // essentially, on the FLAT faces of the icosahedron. Only then are // the triangle vertices projected to the sphere. // // The resulting grid of spherical triangles is used to apply a vertex // quadrature rule over the surface of the unit sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int FACTOR, the subdivision factor, which must // be at least 1. // // Input, void FUN ( int n, double x[], double v[] ), evaluates the // integrand. // // Output, int *NODE_NUM, the number of evaluation points. // // Output, double SPHERE01_QUAD_ICOS2M, the estimated integral. // { int a; double a_xyz[3]; double *a2_xyz; double area; double area_total; int b; double b_xyz[3]; double *b2_xyz; int c; double c_xyz[3]; double *c2_xyz; int edge; int edge_num; int *edge_point; int f; int f1; int f2; int f3; int face; int face_num; int *face_order; int *face_point; int face_order_max; int i; int j; int node; double pi = 3.141592653589793; double *point_coord; int point_num; double result; double va[1]; double vb[1]; double vc[1]; // // Size the icosahedron. // icos_size ( &point_num, &edge_num, &face_num, &face_order_max ); // // Set the icosahedron. // point_coord = new double[3*point_num]; edge_point = new int[2*edge_num]; face_order = new int[face_num]; face_point = new int[face_order_max*face_num]; icos_shape ( point_num, edge_num, face_num, face_order_max, point_coord, edge_point, face_order, face_point ); // // Initialize the integral data. // result = 0.0; *node_num = 0; area_total = 0.0; // // Pick a face of the icosahedron, and identify its vertices as A, B, C. // for ( face = 0; face < face_num; face++ ) { a = face_point[0+face*3]; b = face_point[1+face*3]; c = face_point[2+face*3]; for ( i = 0; i < 3; i++ ) { a_xyz[i] = point_coord[i+a*3]; b_xyz[i] = point_coord[i+b*3]; c_xyz[i] = point_coord[i+c*3]; } // // Deal with subtriangles that have same orientation as face. // for ( f1 = 0; f1 <= factor - 1; f1++ ) { for ( f2 = 0; f2 <= factor - f1 - 1; f2++ ) { f3 = factor - f1 - f2; a2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1 + 1, f2, f3 - 1 ); b2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1, f2 + 1, f3 - 1 ); c2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1, f2, f3 ); area = sphere01_triangle_vertices_to_area ( a2_xyz, b2_xyz, c2_xyz ); *node_num = *node_num + 3; fun ( 1, a2_xyz, va ); fun ( 1, b2_xyz, vb ); fun ( 1, c2_xyz, vc ); result = result + area * ( va[0] + vb[0] + vc[0] ) / 3.0; area_total = area_total + area; delete [] a2_xyz; delete [] b2_xyz; delete [] c2_xyz; } } // // Deal with subtriangles that have opposite orientation as face. // for ( f3 = 0; f3 <= factor - 2; f3++ ) { for ( f2 = 1; f2 <= factor - f3 - 1; f2++ ) { f1 = factor - f2 - f3; a2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1 - 1, f2, f3 + 1 ); b2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1, f2 - 1, f3 + 1 ); c2_xyz = sphere01_triangle_project ( a_xyz, b_xyz, c_xyz, f1, f2, f3 ); area = sphere01_triangle_vertices_to_area ( a2_xyz, b2_xyz, c2_xyz ); *node_num = *node_num + 3; fun ( 1, a2_xyz, va ); fun ( 1, b2_xyz, vb ); fun ( 1, c2_xyz, vc ); result = result + area * ( va[0] + vb[0] + vc[0] ) / 3.0; area_total = area_total + area; delete [] a2_xyz; delete [] b2_xyz; delete [] c2_xyz; } } } // // Discard allocated memory. // delete [] edge_point; delete [] face_order; delete [] face_point; delete [] point_coord; return result; } //****************************************************************************80 double sphere01_quad_icos2v ( int factor, void fun ( int n, double x[], double v[] ), int *node_num ) //****************************************************************************80 // // Purpose: // // SPHERE01_QUAD_ICOS2V: vertex rule, subdivide then project. // // Discussion: // // This function estimates an integral over the surface of the unit sphere. // // This function sets up an icosahedral grid, and subdivides each // edge of the icosahedron into FACTOR subedges. These edges define a grid // within each triangular icosahedral face. The vertices of these // triangles can be determined. All of these calculations are done, // essentially, on the FLAT faces of the icosahedron. Only then are // the triangle vertices projected to the sphere. // // The resulting grid of spherical triangles is used to apply a vertex // quadrature rule over the surface of the unit sphere. // // This is a revision of SPHERE01_QUAD_ICOS2V that attempted to use a more // sophisticated scheme to map points from the planar triangle to the surface // of the unit sphere. Very little improvement to the estimated integral // was observed, so development of this scheme has been set aside for now. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int FACTOR, the subdivision factor, which must // be at least 1. // // Input, void FUN ( int n, double x[], double v[] ), evaluates the // integrand. // // Output, int *NODE_NUM, the number of evaluation points. // // Output, double SPHERE01_QUAD_ICOS2V, the estimated integral. // { int a; double a_xyz[3]; double *a2_xyz; double area; double area_total; int b; double b_xyz[3]; double *b2_xyz; int c; double c_xyz[3]; double *c2_xyz; int edge; int edge_num; int *edge_point; int f; int f1; int f2; int f3; int face; int face_num; int *face_order; int *face_point; int face_order_max; int i; int j; int node; double pi = 3.141592653589793; double *point_coord; int point_num; double result; double va[1]; double vb[1]; double vc[1]; // // Size the icosahedron. // icos_size ( &point_num, &edge_num, &face_num, &face_order_max ); // // Set the icosahedron. // point_coord = new double[3*point_num]; edge_point = new int[2*edge_num]; face_order = new int[face_num]; face_point = new int[face_order_max*face_num]; icos_shape ( point_num, edge_num, face_num, face_order_max, point_coord, edge_point, face_order, face_point ); // // Initialize the integral data. // result = 0.0; *node_num = 0; area_total = 0.0; // // Pick a face of the icosahedron, and identify its vertices as A, B, C. // for ( face = 0; face < face_num; face++ ) { a = face_point[0+face*3]; b = face_point[1+face*3]; c = face_point[2+face*3]; for ( i = 0; i < 3; i++ ) { a_xyz[i] = point_coord[i+a*3]; b_xyz[i] = point_coord[i+b*3]; c_xyz[i] = point_coord[i+c*3]; } // // Deal with subtriangles that have same orientation as face. // for ( f1 = 0; f1 <= factor - 1; f1++ ) { for ( f2 = 0; f2 <= factor - f1 - 1; f2++ ) { f3 = factor - f1 - f2; a2_xyz = sphere01_triangle_project2 ( a_xyz, b_xyz, c_xyz, f1 + 1, f2, f3 - 1 ); b2_xyz = sphere01_triangle_project2 ( a_xyz, b_xyz, c_xyz, f1, f2 + 1, f3 - 1 ); c2_xyz = sphere01_triangle_project2 ( a_xyz, b_xyz, c_xyz, f1, f2, f3 ); area = sphere01_triangle_vertices_to_area ( a2_xyz, b2_xyz, c2_xyz ); *node_num = *node_num + 3; fun ( 1, a2_xyz, va ); fun ( 1, b2_xyz, vb ); fun ( 1, c2_xyz, vc ); result = result + area * ( va[0] + vb[0] + vc[0] ) / 3.0; area_total = area_total + area; delete [] a2_xyz; delete [] b2_xyz; delete [] c2_xyz; } } // // Deal with subtriangles that have opposite orientation as face. // for ( f3 = 0; f3 <= factor - 2; f3++ ) { for ( f2 = 1; f2 <= factor - f3 - 1; f2++ ) { f1 = factor - f2 - f3; a2_xyz = sphere01_triangle_project2 ( a_xyz, b_xyz, c_xyz, f1 - 1, f2, f3 + 1 ); b2_xyz = sphere01_triangle_project2 ( a_xyz, b_xyz, c_xyz, f1, f2 - 1, f3 + 1 ); c2_xyz = sphere01_triangle_project2 ( a_xyz, b_xyz, c_xyz, f1, f2, f3 ); area = sphere01_triangle_vertices_to_area ( a2_xyz, b2_xyz, c2_xyz ); *node_num = *node_num + 3; fun ( 1, a2_xyz, va ); fun ( 1, b2_xyz, vb ); fun ( 1, c2_xyz, vc ); result = result + area * ( va[0] + vb[0] + vc[0] ) / 3.0; area_total = area_total + area; delete [] a2_xyz; delete [] b2_xyz; delete [] c2_xyz; } } } // // Discard allocated memory. // delete [] edge_point; delete [] face_order; delete [] face_point; delete [] point_coord; return result; } //****************************************************************************80 double sphere01_quad_llc ( void f ( int n, double x[], double v[] ), double h, int *n ) //****************************************************************************80 // // Purpose: // // SPHERE01_QUAD_LLC: Longitude/Latitude grid with centroid rule. // // Discussion: // // The sphere is broken up into spherical triangles, whose sides // do not exceed the length H. Then a centroid rule is used on // each spherical triangle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, void F ( int n, double x[], double v[] ), evaluates the // integrand. // // Input, double H, the maximum length of a side of the spherical // quadrilaterals. // // Output, int *N, the number of points used. // // Output, double SPHERE01_QUAD_LLC, the approximate integral. // { double area; int i; int j; double phi; int phi_num; double phi1; double phi2; double pi = 3.141592653589793; double result; double sector_area; double sphere_area; double theta; int theta_num; double theta1; double theta2; double v[1]; double *x; double *x1; double *x11; double *x12; double *x2; double *x21; double *x22; // // Choose PHI and THETA counts that make short sides. // phi_num = ( int ) ( pi / h ); if ( h * ( double ) ( phi_num ) < pi ) { phi_num = phi_num + 1; } theta_num = ( int ) ( 2.0 * pi / h ); if ( h * ( double ) ( theta_num ) < pi ) { theta_num = theta_num + 1; } *n = 0; result = 0.0; // // Only one THETA (and hence, only one PHI.) // if ( theta_num == 1 ) { sphere_area = 4.0 * pi; theta = 0.0; phi = pi / 2.0; x = tp_to_xyz ( theta, phi ); f ( 1, x, v ); *n = *n + 1; result = sphere_area * v[0]; delete [] x; } // // Several THETA''s, one PHI. // else if ( phi_num == 1 ) { sphere_area = 4.0 * pi; sector_area = sphere_area / ( double ) ( theta_num ); result = 0.0; for ( j = 1; j <= theta_num; j++ ) { theta = ( double ) ( ( j - 1 ) * 2 ) * pi / ( double ) ( theta_num ); phi = pi / 2.0; x = tp_to_xyz ( theta, phi ); f ( 1, x, v ); *n = *n + 1; result = result + sector_area * v[0]; delete [] x; } } // // At least two PHI''s. // else { result = 0.0; // // Picture in top row, with V1 = north pole: // // V1 // / \ // / \ // V12----V22 // phi1 = 0.0; phi2 = pi / ( double ) ( phi_num ); for ( j = 1; j <= theta_num; j++ ) { theta1 = ( double ) ( j - 1 ) * 2.0 * pi / ( double ) ( theta_num ); theta2 = ( double ) ( j ) * 2.0 * pi / ( double ) ( theta_num ); x1 = tp_to_xyz ( theta1, phi1 ); x12 = tp_to_xyz ( theta1, phi2 ); x22 = tp_to_xyz ( theta2, phi2 ); area = sphere01_triangle_vertices_to_area ( x1, x12, x22 ); x = sphere01_triangle_vertices_to_centroid ( x1, x12, x22 ); f ( 1, x, v ); *n = *n + 1; result = result + area * v[0]; delete [] x; delete [] x1; delete [] x12; delete [] x22; } // // Picture in all intermediate rows: // // V11--V21 // | \ | // | \ | // V12--V22 // for ( i = 2; i <= phi_num - 1; i++ ) { phi1 = ( double ) ( i - 1 ) * pi / ( double ) ( phi_num ); phi2 = ( double ) ( i ) * pi / ( double ) ( phi_num ); for ( j = 1; j <= theta_num; j++ ) { theta1 = ( double ) ( j - 1 ) * 2.0 * pi / ( double ) ( theta_num ); theta2 = ( double ) ( j ) * 2.0 * pi / ( double ) ( theta_num ); x11 = tp_to_xyz ( theta1, phi1 ); x21 = tp_to_xyz ( theta2, phi1 ); x12 = tp_to_xyz ( theta1, phi2 ); x22 = tp_to_xyz ( theta2, phi2 ); area = sphere01_triangle_vertices_to_area ( x11, x12, x22 ); x = sphere01_triangle_vertices_to_centroid ( x11, x12, x22 ); f ( 1, x, v ); *n = *n + 1; result = result + area * v[0]; delete [] x; area = sphere01_triangle_vertices_to_area ( x22, x21, x11 ); x = sphere01_triangle_vertices_to_centroid ( x22, x21, x11 ); f ( 1, x, v ); *n = *n + 1; result = result + area * v[0]; delete [] x; delete [] x11; delete [] x12; delete [] x21; delete [] x22; } } // // Picture in last row, with V2 = south pole: // // V11----V21 // \ / // \ / // V2 // phi1 = ( double ) ( phi_num - 1 ) * pi / ( double ) ( phi_num ); phi2 = pi; for ( j = 1; j <= theta_num; j++ ) { theta1 = ( double ) ( j - 1 ) * 2.0 * pi / ( double ) ( theta_num ); theta2 = ( double ) ( j ) * 2.0 * pi / ( double ) ( theta_num ); x11 = tp_to_xyz ( theta1, phi1 ); x21 = tp_to_xyz ( theta2, phi1 ); x2 = tp_to_xyz ( theta2, phi2 ); area = sphere01_triangle_vertices_to_area ( x11, x2, x21 ); x = sphere01_triangle_vertices_to_centroid ( x11, x2, x21 ); f ( 1, x, v ); *n = *n + 1; result = result + area * v[0]; delete [] x; delete [] x11; delete [] x2; delete [] x21; } } return result; } //****************************************************************************80 double sphere01_quad_llm ( void f ( int n, double x[], double v[] ), double h, int *n ) //****************************************************************************80 // // Purpose: // // SPHERE01_QUAD_LLM: longitude/latitude grid plus midside rule. // // Discussion: // // The sphere is broken up into spherical triangles, whose sides // do not exceed the length H. Then the function is evaluated // at the midsides, and the average is multiplied by the area. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, void F ( int n, double x[], double v[] ), evaluates the // integrand. // // Input, double H, the maximum length of a side of the spherical // quadrilaterals. // // Output, int *N, the number of points used. // // Output, double SPHERE01_QUAD_LLM, the approximate integral. // { double area; int i; int j; double m1[3]; double m2[3]; double m3[3]; double phi; int phi_num; double phi1; double phi2; double pi = 3.141592653589793; double result; double sector_area; double sphere_area; double theta; int theta_num; double theta1; double theta2; double v[1]; double *x; double *x1; double *x11; double *x12; double *x2; double *x21; double *x22; // // Choose PHI and THETA counts that make short sides. // phi_num = ( int ) ( pi / h ); if ( h * ( double ) ( phi_num ) < pi ) { phi_num = phi_num + 1; } theta_num = ( int ) ( 2.0 * pi / h ); if ( h * ( double ) ( theta_num ) < pi ) { theta_num = theta_num + 1; } *n = 0; result = 0.0; // // Only one THETA (and hence, only one PHI.) // if ( theta_num == 1 ) { sphere_area = 4.0 * pi; theta = 0.0; phi = pi / 2.0; x = tp_to_xyz ( theta, phi ); f ( 1, x, v ); *n = *n + 1; result = sphere_area * v[0]; delete [] x; } // // Several THETA''s, one PHI. // else if ( phi_num == 1 ) { sphere_area = 4.0 * pi; sector_area = sphere_area / ( double ) ( theta_num ); result = 0.0; for ( j = 1; j <= theta_num; j++ ) { theta = ( double ) ( ( j - 1 ) * 2 ) * pi / ( double ) ( theta_num ); phi = pi / 2.0; x = tp_to_xyz ( theta, phi ); f ( 1, x, v ); *n = *n + 1; result = result + sector_area * v[0]; delete [] x; } } // // At least two PHI''s. // else { result = 0.0; // // Picture: // // V1 // / \ // / \ // V12----V22 // phi1 = 0.0; phi2 = pi / ( double ) ( phi_num ); for ( j = 1; j <= theta_num; j++ ) { theta1 = ( double ) ( j - 1 ) * 2.0 * pi / ( double ) ( theta_num ); theta2 = ( double ) ( j ) * 2.0 * pi / ( double ) ( theta_num ); x1 = tp_to_xyz ( theta1, phi1 ); x12 = tp_to_xyz ( theta1, phi2 ); x22 = tp_to_xyz ( theta2, phi2 ); area = sphere01_triangle_vertices_to_area ( x1, x12, x22 ); sphere01_triangle_vertices_to_midpoints ( x1, x12, x22, m1, m2, m3 ); f ( 1, m1, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, m2, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, m3, v ); *n = *n + 1; result = result + area * v[0] / 3.0; delete [] x1; delete [] x12; delete [] x22; } // // Picture: // // V11--V21 // | \ | // | \ | // V12--V22 // for ( i = 2; i <= phi_num - 1; i++ ) { phi1 = ( double ) ( i - 1 ) * pi / ( double ) ( phi_num ); phi2 = ( double ) ( i ) * pi / ( double ) ( phi_num ); for ( j = 1; j <= theta_num; j++ ) { theta1 = ( double ) ( j - 1 ) * 2.0 * pi / ( double ) ( theta_num ); theta2 = ( double ) ( j ) * 2.0 * pi / ( double ) ( theta_num ); x11 = tp_to_xyz ( theta1, phi1 ); x21 = tp_to_xyz ( theta2, phi1 ); x12 = tp_to_xyz ( theta1, phi2 ); x22 = tp_to_xyz ( theta2, phi2 ); area = sphere01_triangle_vertices_to_area ( x11, x12, x22 ); sphere01_triangle_vertices_to_midpoints ( x11, x12, x22, m1, m2, m3 ); f ( 1, m1, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, m2, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, m3, v ); *n = *n + 1; result = result + area * v[0] / 3.0; area = sphere01_triangle_vertices_to_area ( x22, x21, x11 ); sphere01_triangle_vertices_to_midpoints ( x22, x21, x11, m1, m2, m3 ); f ( 1, m1, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, m2, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, m3, v ); *n = *n + 1; result = result + area * v[0] / 3.0; delete [] x11; delete [] x12; delete [] x21; delete [] x22; } } // // Picture: // // V11----V21 // \ / // \ / // V2 // phi1 = ( double ) ( phi_num - 1 ) * pi / ( double ) ( phi_num ); phi2 = pi; for ( j = 1; j <= theta_num; j++ ) { theta1 = ( double ) ( j - 1 ) * 2.0 * pi / ( double ) ( theta_num ); theta2 = ( double ) ( j ) * 2.0 * pi / ( double ) ( theta_num ); x11 = tp_to_xyz ( theta1, phi1 ); x21 = tp_to_xyz ( theta2, phi1 ); x2 = tp_to_xyz ( theta2, phi2 ); area = sphere01_triangle_vertices_to_area ( x11, x2, x21 ); sphere01_triangle_vertices_to_midpoints ( x11, x2, x21, m1, m2, m3 ); f ( 1, m1, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, m2, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, m3, v ); *n = *n + 1; result = result + area * v[0] / 3.0; delete [] x11; delete [] x2; delete [] x21; } } return result; } //****************************************************************************80 double sphere01_quad_llv ( void f ( int n, double x[], double v[] ), double h, int *n ) //****************************************************************************80 // // Purpose: // // SPHERE01_QUAD_LLV: longitude/latitude grid with vertex rule. // // Discussion: // // The sphere is broken up into spherical triangles, whose sides // do not exceed the length H. Then the function is evaluated // at the vertices, and the average is multiplied by the area. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, void F ( int n, double x[], double v[] ), evaluates the // integrand. // // Input, double H, the maximum length of a side of the spherical // quadrilaterals. // // Output, int *N, the number of points used. // // Output, double SPHERE01_QUAD_LLV, the approximate integral. // { double area; int i; int j; double phi; int phi_num; double phi1; double phi2; double pi = 3.141592653589793; double result; double sector_area; double sphere_area; double theta; int theta_num; double theta1; double theta2; double v[1]; double *x; double *x1; double *x11; double *x12; double *x2; double *x21; double *x22; // // Choose PHI and THETA counts that make short sides. // phi_num = ( int ) ( pi / h ); if ( h * ( double ) ( phi_num ) < pi ) { phi_num = phi_num + 1; } theta_num = ( int ) ( 2.0 * pi / h ); if ( h * ( double ) ( theta_num ) < pi ) { theta_num = theta_num + 1; } *n = 0; result = 0.0; // // Only one THETA (and hence, only one PHI.) // if ( theta_num == 1 ) { sphere_area = 4.0 * pi; theta = 0.0; phi = pi / 2.0; x = tp_to_xyz ( theta, phi ); f ( 1, x, v ); result = sphere_area * v[0]; delete [] x; } // // Several THETA''s, one PHI. // else if ( phi_num == 1 ) { sphere_area = 4.0 * pi; sector_area = sphere_area / ( double ) ( theta_num ); result = 0.0; for ( j = 1; j <= theta_num; j++ ) { theta = ( double ) ( ( j - 1 ) * 2 ) * pi / ( double ) ( theta_num ); phi = pi / 2.0; x = tp_to_xyz ( theta, phi ); f ( 1, x, v ); *n = *n + 1; result = result + sector_area * v[0]; delete [] x; } } // // At least two PHI''s. // else { result = 0.0; // // Picture: // // V1 // / \ // / \ // V12----V22 // phi1 = 0.0; phi2 = pi / ( double ) ( phi_num ); for ( j = 1; j <= theta_num; j++ ) { theta1 = ( double ) ( j - 1 ) * 2.0 * pi / ( double ) ( theta_num ); theta2 = ( double ) ( j ) * 2.0 * pi / ( double ) ( theta_num ); x1 = tp_to_xyz ( theta1, phi1 ); x12 = tp_to_xyz ( theta1, phi2 ); x22 = tp_to_xyz ( theta2, phi2 ); area = sphere01_triangle_vertices_to_area ( x1, x12, x22 ); f ( 1, x1, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, x12, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, x22, v ); *n = *n + 1; result = result + area * v[0] / 3.0; delete [] x1; delete [] x12; delete [] x22; } // // Picture: // // V11--V21 // | \ | // | \ | // V12--V22 // for ( i = 2; i <= phi_num - 1; i++ ) { phi1 = ( double ) ( i - 1 ) * pi / ( double ) ( phi_num ); phi2 = ( double ) ( i ) * pi / ( double ) ( phi_num ); for ( j = 1; j <= theta_num; j++ ) { theta1 = ( double ) ( j - 1 ) * 2.0 * pi / ( double ) ( theta_num ); theta2 = ( double ) ( j ) * 2.0 * pi / ( double ) ( theta_num ); x11 = tp_to_xyz ( theta1, phi1 ); x21 = tp_to_xyz ( theta2, phi1 ); x12 = tp_to_xyz ( theta1, phi2 ); x22 = tp_to_xyz ( theta2, phi2 ); area = sphere01_triangle_vertices_to_area ( x11, x12, x22 ); f ( 1, x11, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, x12, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, x22, v ); *n = *n + 1; result = result + area * v[0] / 3.0; area = sphere01_triangle_vertices_to_area ( x22, x21, x11 ); f ( 1, x22, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, x21, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, x11, v ); *n = *n + 1; result = result + area * v[0] / 3.0; delete [] x11; delete [] x12; delete [] x21; delete [] x22; } } // // Picture: // // V11----V21 // \ / // \ / // V2 // phi1 = ( double ) ( phi_num - 1 ) * pi / ( double ) ( phi_num ); phi2 = pi; for ( j = 1; j <= theta_num; j++ ) { theta1 = ( double ) ( j - 1 ) * 2.0 * pi / ( double ) ( theta_num ); theta2 = ( double ) ( j ) * 2.0 * pi / ( double ) ( theta_num ); x11 = tp_to_xyz ( theta1, phi1 ); x21 = tp_to_xyz ( theta2, phi1 ); x2 = tp_to_xyz ( theta2, phi2 ); area = sphere01_triangle_vertices_to_area ( x11, x2, x21 ); f ( 1, x11, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, x2, v ); *n = *n + 1; result = result + area * v[0] / 3.0; f ( 1, x21, v ); *n = *n + 1; result = result + area * v[0] / 3.0; delete [] x11; delete [] x2; delete [] x21; } } return result; } //****************************************************************************80 double sphere01_quad_mc ( void f ( int n, double x[], double v[] ), double h, int *seed, int n ) //****************************************************************************80 // // Purpose: // // SPHERE01_QUAD_MC uses the Monte Carlo rule for sphere quadrature. // // Discussion: // // A number of points N are chosen at random on the sphere, with N // being determined so that, if the points were laid out on a regular // grid, the average spacing would be no more than H. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, void F ( int n, double x[], double v[] ), evaluates the // integrand. // // Input, double H, the maximum length of a side of the spherical // quadrilaterals. // // Input/output, int *SEED, a seed for the random number generator. // // Input, int N, the number of points used. // // Output, double SPHERE01_QUAD_MC, the approximate integral. // { double pi = 3.141592653589793; double result; double sphere_area; double *v; double *x; sphere_area = 4.0 * pi; x = sphere01_sample ( n, seed ); v = new double[n]; f ( n, x, v ); result = sphere_area * r8vec_sum ( n, v ) / ( double ) ( n ); delete [] v; delete [] x; return result; } //****************************************************************************80 int sphere01_quad_mc_size ( double h ) //****************************************************************************80 // // Purpose: // // SPHERE01_QUAD_MC_SIZE sizes a Monte Carlo rule for sphere quadrature. // // Discussion: // // A number of points N are chosen at random on the sphere, with N // being determined so that, if the points were laid out on a regular // grid, the average spacing would be no more than H. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double H, the maximum length of a side of the spherical // quadrilaterals. // // Output, int SPHERE01_QUAD_MC_SIZE, the number of points to use. // { int n; double pi = 3.141592653589793; double sphere_area; // // The sphere's area is 4 * PI. // Choose N so that we divide this area into N subareas of PI * H * H. // sphere_area = 4.0 * pi; n = ( int ) ( sphere_area / h / h ); n = i4_max ( n, 1 ); return n; } //****************************************************************************80 double *sphere01_sample ( int n, int *seed ) //****************************************************************************80 // // Purpose: // // SPHERE01_SAMPLE picks random points on a unit sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of samples. // // Input/output, int *SEED, a seed for the random // number generator. // // Output, double SPHERE01_SAMPLE[3*N], the sample points. // { int j; double phi; double pi = 3.141592653589793; double theta; double vdot; double *x; x = new double[3*n]; for ( j = 0; j < n; j++ ) { // // Pick a uniformly random VDOT, which must be between -1 and 1. // This represents the dot product of the random vector with the Z unit vector. // // Note: this works because the surface area of the sphere between // Z and Z + dZ is independent of Z. So choosing Z uniformly chooses // a patch of area uniformly. // vdot = r8_uniform_01 ( seed ); vdot = 2.0 * vdot - 1.0; phi = acos ( vdot ); // // Pick a uniformly random rotation between 0 and 2 Pi around the // axis of the Z vector. // theta = r8_uniform_01 ( seed ); theta = 2.0 * pi * theta; x[0+j*3] = cos ( theta ) * sin ( phi ); x[1+j*3] = sin ( theta ) * sin ( phi ); x[2+j*3] = cos ( phi ); } return x; } //****************************************************************************80 double sphere01_triangle_angles_to_area ( double a, double b, double c ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_ANGLES_TO_AREA: area of a spherical triangle on the unit sphere. // // Discussion: // // A unit sphere centered at 0 in 3D satisfies the equation: // // X^2 + Y^2 + Z^2 = 1 // // A spherical triangle is specified by three points on the surface // of the sphere. // // The area formula is known as Girard's formula. // // The area of a spherical triangle on the unit sphere is: // // AREA = ( A + B + C - PI ) // // where A, B and C are the (surface) angles of the triangle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, C, the angles of the triangle. // // Output, double STRI_ANGLES_TO_AREA, the area of the spherical triangle. // { double area; double pi = 3.141592653589793; area = a + b + c - pi; return area; } //****************************************************************************80 double *sphere01_triangle_project ( double a_xyz[3], double b_xyz[3], double c_xyz[3], int f1, int f2, int f3 ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_PROJECT projects from a plane triangle to a spherical triangle. // // Discussion: // // We assume that points A, B and C lie on the unit sphere, and they // thus define a spherical triangle. // // They also, of course, define a planar triangle. // // Let (F1,F2,F3) be the barycentric coordinates of a point in this // planar triangle. // // This function determines the coordinates of the point in the planar // triangle identified by the barycentric coordinates, and returns the // coordinates of the projection of that point onto the unit sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double A_XYZ[3], B_XYZ[3], C_XYZ[3], the coordinates // of the points A, B, and C. // // Input, int F1, F2, F3, the barycentric coordinates // of a point in the triangle ABC. Normally, these coordinates would // be real numbers, and would sum to 1. For convenience, we allow these // to be integers which must be divided by F1+F2+F3. // // Output, double NODE_XYZ[3], the coordinates of the // point on the unit sphere which is the projection of the point on the plane // whose barycentric coordinates with respect to A, B, and C is // (F1,F2,F3)/(F1+F2+F3). // { int i; double *node_xyz; double norm; node_xyz = new double[3]; for ( i = 0; i < 3; i++ ) { node_xyz[i] = ( ( double ) ( f1 ) * a_xyz[i] + ( double ) ( f2 ) * b_xyz[i] + ( double ) ( f3 ) * c_xyz[i] ) / ( double ) ( f1 + f2 + f3 ); } norm = r8vec_norm ( 3, node_xyz ); for ( i = 0; i < 3; i++ ) { node_xyz[i] = node_xyz[i] / norm; } return node_xyz; } //****************************************************************************80 double *sphere01_triangle_project2 ( double a_xyz[3], double b_xyz[3], double c_xyz[3], int f1, int f2, int f3 ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_PROJECT2 projects from a plane triangle to a spherical triangle. // // Discussion: // // We assume that points A, B and C lie on the unit sphere, and they // thus define a spherical triangle. // // They also, of course, define a planar triangle. // // Let (F1,F2,F3) be the barycentric coordinates of a point in this // planar triangle. // // This function determines the coordinates of the point in the planar // triangle identified by the barycentric coordinates, and returns the // coordinates of the projection of that point onto the unit sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double A_XYZ(3), B_XYZ(3), C_XYZ(3), the coordinates // of the points A, B, and C. // // Input, int F1, F2, F3, the barycentric coordinates // of a point in the triangle ABC. Normally, these coordinates would // be real numbers, and would sum to 1. For convenience, we allow these // to be integers which must be divided by F1+F2+F3. // // Output, double SPHERE01_TRIANGLE_PROJECT2[3], the coordinates of the // point on the unit sphere which is the projection of the point on the // plane whose barycentric coordinates with respect to A, B, and C is // (F1,F2,F3)/(F1+F2+F3). // { double ab[3]; double ac[3]; double acn[3]; double acp[3]; double angle; double bn[3]; double bp[3]; double cn[3]; double cp[3]; int i; double *node_xyz; double norm; double theta_ab; double theta_ac; double theta_bc; node_xyz = new double[3]; // // This check avoids 0/0 calculations later. // if ( f2 == 0 && f3 == 0 ) { for ( i = 0; i < 3; i++ ) { node_xyz[i] = a_xyz[i]; } return node_xyz; } else if ( f1 == 0 && f3 == 0 ) { for ( i = 0; i < 3; i++ ) { node_xyz[i] = b_xyz[i]; } return node_xyz; } else if ( f1 == 0 && f2 == 0 ) { for ( i = 0; i < 3; i++ ) { node_xyz[i] = c_xyz[i]; } return node_xyz; } // // Determine the angular distances (A,B) and (A,C). // theta_ab = sphere01_distance_xyz ( a_xyz, b_xyz ); theta_ac = sphere01_distance_xyz ( a_xyz, c_xyz ); // // Polarize B = BP + BN // Normalize BN, // Same for C. // r8vec_polarize ( 3, b_xyz, a_xyz, bn, bp ); norm = r8vec_norm ( 3, bn ); for ( i = 0; i < 3; i++ ) { bn[i] = bn[i] / norm; } r8vec_polarize ( 3, c_xyz, a_xyz, cn, cp ); norm = r8vec_norm ( 3, cn ); for ( i = 0; i < 3; i++ ) { cn[i] = cn[i] / norm; } // // Determine AB and AC that use cos ( ( F2 + F3 ) / ( F1 + F2 + F3 ) ) of A // and cos ( F1 / ( F1 + F2 + F3 ) ) of B or C. // angle = ( ( double ) ( f2 + f3 ) * theta_ab ) / ( double ) ( f1 + f2 + f3 ); for ( i = 0; i < 3; i++ ) { ab[i] = cos ( angle ) * a_xyz[i] + sin ( angle ) * bn[i]; } angle = ( ( double ) ( f2 + f3 ) * theta_ac ) / ( double ) ( f1 + f2 + f3 ); for ( i = 0; i < 3; i++ ) { ac[i] = cos ( angle ) * a_xyz[i] + sin ( angle ) * cn[i]; } // // Determine the angular distance between AB and AC. // theta_bc = sphere01_distance_xyz ( ab, ac ); // // Polarize AC = ACP + ACN, normalize ACN. // r8vec_polarize ( 3, ac, ab, acn, acp ); norm = r8vec_norm ( 3, acn ); for ( i = 0; i < 3; i++ ) { acn[i] = acn[i] / norm; } // // The interval between AB and AC is marked by F2+F3+1 vertices 0 through F2+F3. // angle = ( ( double ) ( f3 ) * theta_bc ) / ( double ) ( f2 + f3 ); for ( i = 0; i < 3; i++ ) { node_xyz[i] = cos ( angle ) * ab[i] + sin ( angle ) * acn[i]; } return node_xyz; } //****************************************************************************80 double *sphere01_triangle_sample ( int n, double v1[3], double v2[3], double v3[3], int *seed ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_SAMPLE: sample points from triangle on unit sphere. // // Discussion: // // The sphere has center 0 and radius 1. // // A spherical triangle on the surface of the unit sphere contains those // points with radius R = 1, bounded by the vertices V1, V2, V3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2010 // // Author: // // John Burkardt // // Reference: // // James Arvo, // Stratified sampling of spherical triangles, // Computer Graphics Proceedings, Annual Conference Series, // ACM SIGGRAPH '95, pages 437-438, 1995. // // Parameters: // // Input, int N, the number of points. // // Input, double V1[3], V2[3], V3[3], the XYZ coordinates of // the vertices of the spherical triangle. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double SPHERE01_TRIANGLE_SAMPLE[3*N], the XYZ coordinates of the // sample points. // { double a; double alpha; double area; double area_hat; double b; double beta; double c; double gamma; int i; int j; double norm; double q; double s; double t; double u; double v; double v31[3]; double v4[3]; double v42[3]; double w; double *x; double xsi1; double xsi2; double z; sphere01_triangle_vertices_to_sides ( v1, v2, v3, &a, &b, &c ); sphere01_triangle_sides_to_angles ( a, b, c, &alpha, &beta, &gamma ); area = sphere01_triangle_angles_to_area ( alpha, beta, gamma ); x = new double[3*n]; for ( j = 0; j < n; j++ ) { // // Select the new area. // xsi1 = r8_uniform_01 ( seed ); area_hat = xsi1 * area; // // Compute the sine and cosine of the angle phi. // s = sin ( area_hat - alpha ); t = cos ( area_hat - alpha ); // // Compute the pair that determines beta_hat. // u = t - cos ( alpha ); v = s + sin ( alpha ) * cos ( c ); // // Q is the cosine of the new edge length b_hat. // q = ( ( v * t - u * s ) * cos ( alpha ) - v ) / ( ( v * s + u * t ) * sin ( alpha ) ); // // We very occasionally get a Q value out of bounds. // q = r8_max ( q, - 1.0 ); q = r8_min ( q, + 1.0 ); // // V31 = normalized ( V3 - ( V3 dot V1 ) * V1 ) // w = r8vec_dot_product ( 3, v3, v1 ); for ( i = 0; i < 3; i++ ) { v31[i] = v3[i] - w * v1[i]; } norm = r8vec_norm ( 3, v31 ); for ( i = 0; i < 3; i++ ) { v31[i] = v31[i] / norm; } // // V4 is the third vertex of the subtriangle V1, V2, V4. // for ( i = 0; i < 3; i++ ) { v4[i] = q * v1[i] + sqrt ( 1.0 - q * q ) * v31[i]; } // // Select cos theta, which will sample along the edge from V2 to V4. // xsi2 = r8_uniform_01 ( seed ); z = 1.0 - xsi2 * ( 1.0 - r8vec_dot_product ( 3, v4, v2 ) ); // // V42 = normalized ( V4 - ( V4 dot V2 ) * V2 ) // w = r8vec_dot_product ( 3, v4, v2 ); for ( i = 0; i < 3; i++ ) { v42[i] = v4[i] - w * v2[i]; } norm = r8vec_norm ( 3, v42 ); for ( i = 0; i < 3; i++ ) { v42[i] = v42[i] / norm; } // // Construct the point. // for ( i = 0; i < 3; i++ ) { x[i+j*3] = z * v2[i] + sqrt ( 1.0 - z * z ) * v42[i]; } } return x; } //****************************************************************************80 void sphere01_triangle_sides_to_angles ( double as, double bs, double cs, double *a, double *b, double *c ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_SIDES_TO_ANGLES: angles of spherical triangle on unit sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double AS, BS, CS, the (geodesic) length of the sides of the // triangle. // // Output, double *A, *B, *C, the spherical angles of the triangle. // Angle A is opposite the side of length AS, and so on. // { double asu; double bsu; double csu; double ssu; double tan_a2; double tan_b2; double tan_c2; asu = as; bsu = bs; csu = cs; ssu = ( asu + bsu + csu ) / 2.0; tan_a2 = sqrt ( ( sin ( ssu - bsu ) * sin ( ssu - csu ) ) / ( sin ( ssu ) * sin ( ssu - asu ) ) ); *a = 2.0 * atan ( tan_a2 ); tan_b2 = sqrt ( ( sin ( ssu - asu ) * sin ( ssu - csu ) ) / ( sin ( ssu ) * sin ( ssu - bsu ) ) ); *b = 2.0 * atan ( tan_b2 ); tan_c2 = sqrt ( ( sin ( ssu - asu ) * sin ( ssu - bsu ) ) / ( sin ( ssu ) * sin ( ssu - csu ) ) ); *c = 2.0 * atan ( tan_c2 ); return; } //****************************************************************************80 void sphere01_triangle_vertices_to_angles ( double v1[3], double v2[3], double v3[3], double *a, double *b, double *c ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_VERTICES_TO_ANGLES: angles of spherical triangle on unit sphere. // // Discussion: // // A unit sphere centered at 0 in 3D satisfies the equation: // // X*X + Y*Y + Z*Z = 1 // // A spherical triangle is specified by three points on the surface // of the sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double V1[3], V2[3], V3[3], the vertices of the triangle. // // Output, double *A, *B, *C, the angles of the spherical triangle. { double as; double bs; double cs; // // Compute the lengths of the sides of the spherical triangle. // sphere01_triangle_vertices_to_sides ( v1, v2, v3, &as, &bs, &cs ); // // Get the spherical angles. // sphere01_triangle_sides_to_angles ( as, bs, cs, a, b, c ); return; } //****************************************************************************80 double sphere01_triangle_vertices_to_area ( double v1[3], double v2[3], double v3[3] ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_VERTICES_TO_AREA: area of a spherical triangle on unit sphere. // // Discussion: // // A unit sphere centered at 0 in 3D satisfies the equation: // // X*X + Y*Y + Z*Z = 1 // // A spherical triangle is specified by three points on the surface // of the sphere. // // The area formula is known as Girard's formula. // // The area of a spherical triangle on the unit sphere is: // // AREA = A + B + C - PI // // where A, B and C are the (surface) angles of the triangle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double V1[3], V2[3], V3[3], the vertices of the triangle. // // Output, double STRI_VERTICES_TO_AREA, the area of the // spherical triangle. { double area; double a; double as; double b; double bs; double c; double cs; // // Compute the lengths of the sides of the spherical triangle. // sphere01_triangle_vertices_to_sides ( v1, v2, v3, &as, &bs, &cs ); // // Get the spherical angles. // sphere01_triangle_sides_to_angles ( as, bs, cs, &a, &b, &c ); // // Get the area // area = sphere01_triangle_angles_to_area ( a, b, c ); return area; } //****************************************************************************80 double *sphere01_triangle_vertices_to_centroid ( double v1[3], double v2[3], double v3[3] ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_VERTICES_TO_CENTROID: centroid of spherical triangle on unit sphere. // // Discussion: // // A sphere centered at 0 in 3D satisfies the equation: // // X*X + Y*Y + Z*Z = 1 // // A spherical triangle is specified by three points on the sphere. // // The (true) centroid of a spherical triangle is the point // // VT = (XT,YT,ZT) = Integral ( X, Y, Z ) dArea / Integral 1 dArea // // Note that the true centroid does NOT, in general, lie on the sphere. // // The "flat" centroid VF is the centroid of the planar triangle defined by // the vertices of the spherical triangle. // // The "spherical" centroid VS of a spherical triangle is computed by // the intersection of the geodesic bisectors of the triangle angles. // The spherical centroid lies on the sphere. // // VF, VT and VS lie on a line through the center of the sphere. We can // easily calculate VF by averaging the vertices, and from this determine // VS by normalizing. // // (Of course, we still will not have actually computed VT, which lies // somewhere between VF and VS!) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double V1[3], V2[3], V3[3], the vertices of the triangle. // // Output, double SPHERE01_TRIANGLE_VERTICES_TO_CENTROID[3], the coordinates of the // "spherical centroid" of the spherical triangle. // { # define DIM_NUM 3 int i; double norm; double *vs; vs = new double[3]; for ( i = 0; i < DIM_NUM; i++ ) { vs[i] = ( v1[i] + v2[i] + v3[i] ) / 3.0; } norm = r8vec_norm ( DIM_NUM, vs ); for ( i = 0; i < DIM_NUM; i++ ) { vs[i] = vs[i] / norm; } return vs; # undef DIM_NUM } //****************************************************************************80 void sphere01_triangle_vertices_to_midpoints ( double v1[3], double v2[3], double v3[3], double m1[3], double m2[3], double m3[3] ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_VERTICES_TO_MIDPOINTS gets the midsides of a spherical triangle. // // Discussion: // // The points are assumed to lie on the unit sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double V1[3], V2[3], V3[3], the vertices of the triangle. // // Output, double M1[3], M2[3], M3[3], the coordinates of // the midpoints of the sides of the spherical triangle. // { int i; double norm; for ( i = 0; i < 3; i++ ) { m1[i] = ( v1[i] + v2[i] ) / 2.0; } norm = r8vec_norm ( 3, m1 ); for ( i = 0; i < 3; i++ ) { m1[i] = m1[i] / norm; } for ( i = 0; i < 3; i++ ) { m2[i] = ( v2[i] + v3[i] ) / 2.0; } norm = r8vec_norm ( 3, m2 ); for ( i = 0; i < 3; i++ ) { m2[i] = m2[i] / norm; } for ( i = 0; i < 3; i++ ) { m3[i] = ( v3[i] + v1[i] ) / 2.0; } norm = r8vec_norm ( 3, m3 ); for ( i = 0; i < 3; i++ ) { m3[i] = m3[i] / norm; } return; } //****************************************************************************80 void sphere01_triangle_vertices_to_sides ( double v1[3], double v2[3], double v3[3], double *as, double *bs, double *cs ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_VERTICES_TO_SIDES_3D: sides of spherical triangle on unit sphere. // // Discussion: // // We can use the ACOS system call here, but the ARC_COSINE routine // will automatically take care of cases where the input argument is // (usually slightly) out of bounds. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double V1[3], V2[3], V3[3], the vertices of the spherical // triangle. // // Output, double *AS, *BS, *CS, the (geodesic) length of the sides of the // triangle. // { *as = arc_cosine ( r8vec_dot_product ( 3, v2, v3 ) ); *bs = arc_cosine ( r8vec_dot_product ( 3, v3, v1 ) ); *cs = arc_cosine ( r8vec_dot_product ( 3, v1, v2 ) ); return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double *tp_to_xyz ( double theta, double phi ) //****************************************************************************80 // // Purpose: // // TP_TO_XYZ converts unit spherical TP coordinates to XYZ coordinates. // // Discussion: // // The point is assume to lie on the unit sphere centered at the origin. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double THETA, PHI, the angular coordinates of a point // on the unit sphere. // // Output, double TP_TO_XYZ[3], the XYZ coordinates. // { double *v; v = new double[3]; v[0] = cos ( theta ) * sin ( phi ); v[1] = sin ( theta ) * sin ( phi ); v[2] = cos ( phi ); return v; }