# include # include # include # include # include # include using namespace std; # include "sphere_triangle_monte_carlo.hpp" //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 double *monomial_value ( int m, int n, int e[], double x[] ) //****************************************************************************80 // // Purpose: // // MONOMIAL_VALUE evaluates a monomial. // // Discussion: // // This routine evaluates a monomial of the form // // product ( 1 <= i <= m ) x(i)^e(i) // // where the exponents are nonnegative integers. Note that // if the combination 0^0 is encountered, it should be treated // as 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 May 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int POINT_NUM, the number of points at which the // monomial is to be evaluated. // // Input, int E[M], the exponents. // // Input, double X[M*N], the point coordinates. // // Output, double MONOMIAL_VALUE[N], the value of the monomial. // { int i; int j; double *v; v = new double[n]; for ( j = 0; j < n; j++ ) { v[j] = 1.0; } for ( i = 0; i < m; i++ ) { if ( 0 != e[i] ) { for ( j = 0; j < n; j++ ) { v[j] = v[j] * pow ( x[i+j*m], e[i] ); } } } return v; } //****************************************************************************80 double r8_acos ( double c ) //****************************************************************************80 // // Purpose: // // R8_ACOS computes the arc cosine function, with argument truncation. // // Discussion: // // If you call your system ACOS routine with an input argument that is // outside the range [-1.0, 1.0 ], you may get an unpleasant surprise. // This routine truncates arguments outside the range. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2002 // // Author: // // John Burkardt // // Parameters: // // Input, double C, the argument, the cosine of an angle. // // Output, double R8_ACOS, an angle whose cosine is C. // { const double r8_pi = 3.141592653589793; double value; if ( c <= -1.0 ) { value = r8_pi; } else if ( 1.0 <= c ) { value = 0.0; } else { value = acos ( c ); } return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double r8vec_norm ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM returns the L2 norm of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // The vector L2 norm is defined as: // // R8VEC_NORM = sqrt ( sum ( 1 <= I <= N ) A(I)^2 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 March 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in A. // // Input, double A[N], the vector whose L2 norm is desired. // // Output, double R8VEC_NORM, the L2 norm of A. // { int i; double v; v = 0.0; for ( i = 0; i < n; i++ ) { v = v + a[i] * a[i]; } v = sqrt ( v ); return v; } //****************************************************************************80 void r8vec_normalize ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORMALIZE normalizes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, double A[N], the vector to be normalized. // On output, A should have unit Euclidean norm. // { int i; double norm; norm = 0.0; for ( i = 0; i < n; i++ ) { norm = norm + a[i] * a[i]; } norm = sqrt ( norm ); if ( norm == 0.0 ) { cerr << "\n"; cerr << "R8VEC_NORMALIZE - Fatal error!\n"; cerr << " The vector norm is 0.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { a[i] = a[i] / norm; } return; } //****************************************************************************80 double r8vec_sum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SUM returns the sum of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_SUM, the sum of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i]; } return value; } //****************************************************************************80 void r8vec_transpose_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_TRANSPOSE_PRINT prints an R8VEC "transposed". // // Discussion: // // An R8VEC is a vector of R8's. // // Example: // // A = (/ 1.0, 2.1, 3.2, 4.3, 5.4, 6.5, 7.6, 8.7, 9.8, 10.9, 11.0 /) // TITLE = 'My vector: ' // // My vector: // 1.0 2.1 3.2 4.3 5.4 // 6.5 7.6 8.7 9.8 10.9 // 11.0 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 November 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; int ihi; int ilo; cout << "\n"; cout << title << "\n"; if ( n <= 0 ) { cout << " (Empty)\n"; return; } for ( ilo = 0; ilo < n; ilo = ilo + 5 ) { ihi = i4_min ( ilo + 5, n ); for ( i = ilo; i < ihi; i++ ) { cout << " " << setw(12) << a[i]; } cout << "\n"; } return; } //****************************************************************************80 double *sphere01_sample ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // SPHERE01_SAMPLE picks random points on a unit sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of samples. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double SPHERE01_SAMPLE[3*N], the sample points. // { int j; double phi; const double r8_pi = 3.141592653589793; double theta; double vdot; double *x; x = new double[3*n]; for ( j = 0; j < n; j++ ) { // // Pick a uniformly random VDOT, which must be between -1 and 1. // This represents the dot product of the random vector with the Z unit vector. // // Note: this works because the surface area of the sphere between // Z and Z + dZ is independent of Z. So choosing Z uniformly chooses // a patch of area uniformly. // vdot = r8_uniform_01 ( seed ); vdot = 2.0 * vdot - 1.0; phi = r8_acos ( vdot ); // // Pick a uniformly random rotation between 0 and 2 Pi around the // axis of the Z vector. // theta = r8_uniform_01 ( seed ); theta = 2.0 * r8_pi * theta; x[0+j*3] = cos ( theta ) * sin ( phi ); x[1+j*3] = sin ( theta ) * sin ( phi ); x[2+j*3] = cos ( phi ); } return x; } //****************************************************************************80 double sphere01_triangle_angles_to_area ( double a, double b, double c ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_ANGLES_TO_AREA: area of a spherical triangle on the unit sphere. // // Discussion: // // A unit sphere centered at 0 in 3D satisfies the equation: // // X^2 + Y^2 + Z^2 = 1 // // A spherical triangle is specified by three points on the surface // of the sphere. // // The area formula is known as Girard's formula. // // The area of a spherical triangle on the unit sphere is: // // AREA = ( A + B + C - PI ) // // where A, B and C are the (surface) angles of the triangle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, C, the angles of the triangle. // // Output, double SPHERE_TRIANGLE_ANGLES_TO_AREA, the area of the // spherical triangle. // { double area; const double r8_pi = 3.141592653589793; area = a + b + c - r8_pi; return area; } //****************************************************************************80 void sphere01_triangle_sides_to_angles ( double as, double bs, double cs, double &a, double &b, double &c ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_SIDES_TO_ANGLES: angles of spherical triangle on unit sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double AS, BS, CS, the (geodesic) length of the sides of the // triangle. // // Output, double &A, &B, &C, the spherical angles of the triangle. // Angle A is opposite the side of length AS, and so on. // { double asu; double bsu; double csu; double ssu; double tan_a2; double tan_b2; double tan_c2; asu = as; bsu = bs; csu = cs; ssu = ( asu + bsu + csu ) / 2.0; tan_a2 = sqrt ( ( sin ( ssu - bsu ) * sin ( ssu - csu ) ) / ( sin ( ssu ) * sin ( ssu - asu ) ) ); a = 2.0 * atan ( tan_a2 ); tan_b2 = sqrt ( ( sin ( ssu - asu ) * sin ( ssu - csu ) ) / ( sin ( ssu ) * sin ( ssu - bsu ) ) ); b = 2.0 * atan ( tan_b2 ); tan_c2 = sqrt ( ( sin ( ssu - asu ) * sin ( ssu - bsu ) ) / ( sin ( ssu ) * sin ( ssu - csu ) ) ); c = 2.0 * atan ( tan_c2 ); return; } //****************************************************************************80 double *sphere01_triangle_sample ( int n, double v1[3], double v2[3], double v3[3], int &seed ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_SAMPLE: sample points from triangle on unit sphere. // // Discussion: // // The sphere has center 0 and radius 1. // // A spherical triangle on the surface of the unit sphere contains those // points with radius R = 1, bounded by the vertices V1, V2, V3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2010 // // Author: // // John Burkardt // // Reference: // // James Arvo, // Stratified sampling of spherical triangles, // Computer Graphics Proceedings, Annual Conference Series, // ACM SIGGRAPH '95, pages 437-438, 1995. // // Parameters: // // Input, int N, the number of points. // // Input, double V1[3], V2[3], V3[3], the XYZ coordinates of // the vertices of the spherical triangle. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double SPHERE01_TRIANGLE_SAMPLE[3*N], the XYZ coordinates of the // sample points. // { double a; double alpha; double area; double area_hat; double b; double beta; double c; double gamma; int i; int j; double norm; double q; double s; double t; double u; double v; double v31[3]; double v4[3]; double v42[3]; double w; double *x; double xsi1; double xsi2; double z; sphere01_triangle_vertices_to_sides ( v1, v2, v3, a, b, c ); sphere01_triangle_sides_to_angles ( a, b, c, alpha, beta, gamma ); area = sphere01_triangle_angles_to_area ( alpha, beta, gamma ); x = new double[3*n]; for ( j = 0; j < n; j++ ) { // // Select the new area. // xsi1 = r8_uniform_01 ( seed ); area_hat = xsi1 * area; // // Compute the sine and cosine of the angle phi. // s = sin ( area_hat - alpha ); t = cos ( area_hat - alpha ); // // Compute the pair that determines beta_hat. // u = t - cos ( alpha ); v = s + sin ( alpha ) * cos ( c ); // // Q is the cosine of the new edge length b_hat. // q = ( ( v * t - u * s ) * cos ( alpha ) - v ) / ( ( v * s + u * t ) * sin ( alpha ) ); // // We very occasionally get a Q value out of bounds. // q = r8_max ( q, - 1.0 ); q = r8_min ( q, + 1.0 ); // // V31 = normalized ( V3 - ( V3 dot V1 ) * V1 ) // w = r8vec_dot_product ( 3, v3, v1 ); for ( i = 0; i < 3; i++ ) { v31[i] = v3[i] - w * v1[i]; } norm = r8vec_norm ( 3, v31 ); for ( i = 0; i < 3; i++ ) { v31[i] = v31[i] / norm; } // // V4 is the third vertex of the subtriangle V1, V2, V4. // for ( i = 0; i < 3; i++ ) { v4[i] = q * v1[i] + sqrt ( 1.0 - q * q ) * v31[i]; } // // Select cos theta, which will sample along the edge from V2 to V4. // xsi2 = r8_uniform_01 ( seed ); z = 1.0 - xsi2 * ( 1.0 - r8vec_dot_product ( 3, v4, v2 ) ); // // V42 = normalized ( V4 - ( V4 dot V2 ) * V2 ) // w = r8vec_dot_product ( 3, v4, v2 ); for ( i = 0; i < 3; i++ ) { v42[i] = v4[i] - w * v2[i]; } norm = r8vec_norm ( 3, v42 ); for ( i = 0; i < 3; i++ ) { v42[i] = v42[i] / norm; } // // Construct the point. // for ( i = 0; i < 3; i++ ) { x[i+j*3] = z * v2[i] + sqrt ( 1.0 - z * z ) * v42[i]; } } return x; } //****************************************************************************80 double sphere01_triangle_vertices_to_area ( double v1[3], double v2[3], double v3[3] ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_VERTICES_TO_AREA: area of spherical triangle on unit sphere. // // Discussion: // // A unit sphere centered at 0 in 3D satisfies the equation: // // X*X + Y*Y + Z*Z = 1 // // A spherical triangle is specified by three points on the surface // of the sphere. // // The area formula is known as Girard's formula. // // The area of a spherical triangle on the unit sphere is: // // AREA = A + B + C - PI // // where A, B and C are the (surface) angles of the triangle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double V1[3], V2[3], V3[3], the vertices of the triangle. // // Output, double STRI_VERTICES_TO_AREA, the area of the // spherical triangle. { double area; double a; double as; double b; double bs; double c; double cs; // // Compute the lengths of the sides of the spherical triangle. // sphere01_triangle_vertices_to_sides ( v1, v2, v3, as, bs, cs ); // // Get the spherical angles. // sphere01_triangle_sides_to_angles ( as, bs, cs, a, b, c ); // // Get the area // area = sphere01_triangle_angles_to_area ( a, b, c ); return area; } //****************************************************************************80 void sphere01_triangle_vertices_to_sides ( double v1[3], double v2[3], double v3[3], double &as, double &bs, double &cs ) //****************************************************************************80 // // Purpose: // // SPHERE01_TRIANGLE_VERTICES_TO_SIDES_3D: sides of spherical triangle on unit sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double V1[3], V2[3], V3[3], the vertices of the spherical // triangle. // // Output, double *AS, *BS, *CS, the (geodesic) length of the sides of the // triangle. // { as = r8_acos ( r8vec_dot_product ( 3, v2, v3 ) ); bs = r8_acos ( r8vec_dot_product ( 3, v3, v1 ) ); cs = r8_acos ( r8vec_dot_product ( 3, v1, v2 ) ); return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }