# include # include # include # include using namespace std; # include "spline.hpp" int main ( ); void test001 ( ); void test002 ( ); void test003 ( ); void test004 ( ); void test005 ( ); void test006 ( ); void test01 ( ); void test02 ( ); void test03 ( ); void test04 ( ); void test05 ( ); void test06 ( ); void test07 ( ); void test08 ( ); void test09 ( ); void test10 ( ); void test11 ( ); void test115 ( ); void test116 ( ); void test12 ( ); void test125 ( ); void test126 ( ); void test127 ( ); void test13 ( ); void test14 ( ); void test145 ( ); void test15 ( ); void test16 ( ); void test17 ( ); void test18 ( ); void test19 ( ); void test20 ( ); void test205 ( ); void test21 ( ); void test215 ( ); void test22 ( ); void test225 ( ); void test23 ( ); void test235 ( ); void test24 ( ); double frunge ( double x ); double fprunge ( double x ); double fpprunge ( double x ); double fcube ( double x ); double fpcube ( double x ); double fppcube ( double x ); void parabola_formula ( double x, double *y, double *yp, double *ypp ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for SPLINE_PRB. // // Discussion: // // SPLINE_PRB tests the SPLINE library. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2007 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "SPLINE_PRB\n"; cout << " C++ version:\n"; cout << " Test the SPLINE library.\n"; test001 ( ); test002 ( ); test003 ( ); test004 ( ); test005 ( ); test006 ( ); test01 ( ); test02 ( ); test03 ( ); test04 ( ); test05 ( ); test06 ( ); test07 ( ); test08 ( ); test09 ( ); test10 ( ); test11 ( ); test115 ( ); test116 ( ); test12 ( ); test125 ( ); test126 ( ); test127 ( ); test13 ( ); test14 ( ); test145 ( ); test15 ( ); test16 ( ); test17 ( ); test18 ( ); test19 ( ); test20 ( ); test205 ( ); test21 ( ); test215 ( ); test22 ( ); test225 ( ); test23 ( ); test235 ( ); test24 ( ); // // Terminate. // cout << "\n"; cout << "SPLINE_PRB\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test001 ( ) //****************************************************************************80 // // Purpose: // // TEST001 tests PARABOLA_VAL2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 December 2004 // // Author: // // John Burkardt // # define NDIM 1 # define NDATA 5 { int i; int left; double xdata[NDATA]; double xval; double ydata[NDIM*NDATA]; double yval[NDIM]; double zdata[NDATA]; double zval[NDIM]; cout << "\n"; cout << "TEST001\n"; cout << " PARABOLA_VAL2 evaluates parabolas through\n"; cout << " 3 points in a table\n"; cout << "\n"; cout << " Our data tables will actually be parabolas:\n"; cout << " A: 2*x**2 + 3 * x + 1.\n"; cout << " B: 4*x**2 - 2 * x + 5.\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { xval = 2.0 * ( double ) ( i + 1 ); xdata[i] = xval; ydata[0+i*NDIM] = 2.0 * xval * xval + 3.0 * xval + 1.0; zdata[i] = 4.0 * xval * xval - 2.0 * xval + 5.0; cout << setw(6) << i << " " << setw(10) << xdata[i] << " " << setw(10) << ydata[i] << " " << setw(10) << zdata[i] << "\n"; } cout << "\n"; cout << " Interpolated data:\n"; cout << "\n"; cout << " LEFT, X, Y1, Y2\n"; cout << "\n"; for ( i = 1; i <= 5; i++ ) { xval = ( double ) ( 2 * i - 1 ); left = i; if ( NDATA - 2 < left ) { left = NDATA - 2; } if ( left < 1 ) { left = 1; } parabola_val2 ( NDIM, NDATA, xdata, ydata, left, xval, yval ); parabola_val2 ( NDIM, NDATA, xdata, zdata, left, xval, zval ); cout << " " << setw(6) << left << " " << setw(10) << xval << " " << setw(10) << yval[0] << " " << setw(10) << zval[0] << "\n"; } return; # undef NDATA # undef NDIM } //****************************************************************************80 void test002 ( ) //****************************************************************************80 // // Purpose: // // TEST002 tests R8VEC_BRACKET. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // # define N 10 # define NTEST 6 { int i; int itest; int left; int right; double x[N]; double xtest[NTEST] = { -10.0, 1.0, 4.5, 5.0, 10.0, 12.0 }; double xval; cout << "\n" ; cout << "TEST002\n"; cout << " R8VEC_BRACKET finds a pair of entries in a\n"; cout << " sorted real array which bracket a value.\n"; for ( i = 1; i <= N; i++ ) { x[i-1] = ( double ) i; } x[5] = x[4]; r8vec_print ( N, x, " Sorted array:" ); for ( itest = 0; itest < NTEST; itest++ ) { xval = xtest[itest]; cout << "\n"; cout << " Search for XVAL = " << xval << "\n"; r8vec_bracket ( N, x, xval, &left, &right ); cout << " X[" << setw(2) << left << "-1] = " << setw(12) << x[left-1] << "\n"; cout << " X[" << setw(2) << right << "-1] = " << setw(12) << x[right-1] << "\n"; } return; # undef N # undef NTEST } //****************************************************************************80 void test003 ( ) //****************************************************************************80 // // Purpose: // // TEST003 tests R8VEC_BRACKET3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // # define N 10 # define NTEST 6 { int i; int itest; int left; double x[N]; double xtest[NTEST] = { -10.0, 1.0, 4.5, 5.0, 10.0, 12.0 }; double xval; cout << "\n"; cout << "TEST003\n"; cout << " R8VEC_BRACKET3 finds a pair of entries in a\n"; cout << " sorted real array which bracket a value.\n"; for ( i = 0; i < N; i++ ) { x[i] = ( double ) ( i + 1 ); } x[5] = x[4]; r8vec_print ( N, x, " Sorted array:" ); left = ( N + 1 ) / 2; for ( itest = 0; itest < NTEST; itest++ ) { xval = xtest[itest]; cout << "\n"; cout << " Search for XVAL = " << xval << "\n"; cout << " Starting guess for interval is = " << left << "\n"; r8vec_bracket3 ( N, x, xval, &left ); cout << " Nearest interval:\n"; cout << " X[" << left << "-1]= " << x[left-1] << "\n"; cout << " X[" << left+1 << "-1]= " << x[left ] << "\n"; } return; # undef N # undef NTEST } //****************************************************************************80 void test004 ( ) //****************************************************************************80 // // Purpose: // // TEST004 tests R8VEC_ORDER_TYPE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // # define N 4 # define NTEST 6 { int itest; int j; int order; double x[N]; cout << "\n"; cout << "TEST004\n"; cout << " R8VEC_ORDER_TYPE classifies a real vector as\n"; cout << " -1: no order\n"; cout << " 0: all equal;\n"; cout << " 1: ascending;\n"; cout << " 2: strictly ascending;\n"; cout << " 3: descending;\n"; cout << " 4: strictly descending.\n"; cout << "\n"; for ( itest = 1; itest <= NTEST; itest++ ) { if ( itest == 1 ) { x[0] = 1.0; x[1] = 3.0; x[2] = 2.0; x[3] = 4.0; } else if ( itest == 2 ) { x[0] = 2.0; x[1] = 2.0; x[2] = 2.0; x[3] = 2.0; } else if ( itest == 3 ) { x[0] = 1.0; x[1] = 2.0; x[2] = 2.0; x[3] = 4.0; } else if ( itest == 4 ) { x[0] = 1.0; x[1] = 2.0; x[2] = 3.0; x[3] = 4.0; } else if ( itest == 5 ) { x[0] = 4.0; x[1] = 4.0; x[2] = 3.0; x[3] = 1.0; } else if ( itest == 6 ) { x[0] = 9.0; x[1] = 7.0; x[2] = 3.0; x[3] = 0.0; } order = r8vec_order_type ( N, x ); cout << "\n"; cout << " Vector of order type " << order << ":\n"; cout << "\n"; for ( j = 0; j < N; j++ ) { cout << " " << setw(6) << j << " " << setw(10) << x[j] << "\n"; } } return; # undef N # undef NTEST } //****************************************************************************80 void test005 ( ) //****************************************************************************80 // // Purpose: // // TEST005 tests D3_NP_FS. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // # define N 10 { double *a; double *b; int i; int seed; double *x; cout << "\n"; cout << "TEST005\n"; cout << " D3_NP_FS factors and solves a tridiagonal\n"; cout << " linear system.\n"; // // Set the matrix. // seed = 123456789; a = d3_uniform ( N, &seed ); // // Set the desired solution. // x = r8vec_indicator_new ( N ); // // Compute b = A * x. // b = d3_mxv ( N, a, x ); // // Wipe out the solution. // Solve the system. // delete [] x; x = d3_np_fs ( N, a, b ); // // Print the solution. // r8vec_print ( N, x, " Computed solution:" ); delete [] a; delete [] b; delete [] x; return; # undef N } //****************************************************************************80 void test006 ( ) //****************************************************************************80 // // Purpose: // // TEST006 tests DATA_TO_DIF and DIF_VAL. // // Discussion: // // This test demonstrates how divided difference approximation // improves with N. // // Evaluate these polynomials at 2.5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define MAXTAB 8 double diftab[MAXTAB]; double error; int j; int ntab; double true_value; double xtab[MAXTAB]; double xval; double ytab[MAXTAB]; double yval; cout << "\n"; cout << "TEST006\n"; cout << " Approximate Y = EXP(X) using orders 1 to " << MAXTAB << ".\n"; cout << "\n"; cout << " Original data:\n"; cout << "\n"; cout << " X Y\n"; cout << "\n"; for ( j = 0; j < MAXTAB; j++ ) { xtab[j] = ( double ) j; ytab[j] = exp ( xtab[j] ); cout << " " << setw(10) << xtab[j] << " " << setw(10) << ytab[j] << "\n"; } xval = 2.5; true_value = exp ( xval ); cout << "\n"; cout << " Evaluate at X = " << xval << " where EXP(X) = " << true_value << "\n"; cout << "\n"; cout << " Order Approximate Y Error\n"; cout << "\n"; for ( ntab = 1; ntab <= MAXTAB; ntab++ ) { for ( j = 0; j < ntab; j++ ) { xtab[j] = ( double ) j; ytab[j] = exp ( xtab[j] ); } data_to_dif ( ntab, xtab, ytab, diftab ); yval = dif_val ( ntab, xtab, diftab, xval ); error = yval - true_value; cout << " " << setw(6) << ntab << " " << setw(10) << yval << " " << setw(10) << error << "\n"; } return; # undef MAXTAB } //****************************************************************************80 void test01 ( ) //****************************************************************************80 // // Purpose: // // TEST01 tests BASIS_FUNCTION_B_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define NDATA 5 int i; int j; int jhi; char mark; int nsample = 4; double tdata[NDATA] = { 0.0, 1.0, 4.0, 6.0, 10.0 }; double thi; double tlo; double tval; double yval; cout << "\n"; cout << "TEST01\n"; cout << " BASIS_FUNCTION_B_VAL evaluates the \n"; cout << " B spline basis function.\n"; cout << "\n"; cout << " T B(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_function_b_val ( tdata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } return; # undef NDATA } //****************************************************************************80 void test02 ( ) //****************************************************************************80 // // Purpose: // // TEST02 tests BASIS_FUNCTION_BETA_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define NDATA 5 double beta1; double beta2; int i; int j; int jhi; char mark; int nsample = 4; double tdata[NDATA] = { 0.0, 1.0, 4.0, 6.0, 10.0 }; double thi; double tlo; double tval; double yval; cout << "\n"; cout << "TEST02\n"; cout << " BASIS_FUNCTION_BETA_VAL evaluates the \n"; cout << " Beta spline basis function.\n"; beta1 = 1.0; beta2 = 0.0; cout << "\n"; cout << " BETA1 = " << beta1 << "\n"; cout << " BETA2 = " << beta2 << "\n"; cout << "\n"; cout << " T B(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_function_beta_val ( beta1, beta2, tdata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } beta1 = 1.0; beta2 = 100.0; cout << "\n"; cout << " BETA1 = " << beta1 << "\n"; cout << " BETA2 = " << beta2 << "\n"; cout << "\n"; cout << " T B(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_function_beta_val ( beta1, beta2, tdata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } beta1 = 100.0; beta2 = 0.0; cout << "\n"; cout << " BETA1 = " << beta1 << "\n"; cout << " BETA2 = " << beta2 << "\n"; cout << "\n"; cout << " T B(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_function_beta_val ( beta1, beta2, tdata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } return; # undef NDATA } //****************************************************************************80 void test03 ( ) //****************************************************************************80 // // Purpose: // // TEST03 tests BASIS_MATRIX_B_UNI and BASIS_MATRIX_TMP. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 4 # define NDATA 4 int i; int j; int jhi; int left; char mark; double *mbasis; int nsample = 4; double tdata[NDATA] = { -1.0, 0.0, 1.0, 2.0 }; double thi; double tlo; double tval; double ydata[NDATA] = { 4.0, 7.0, 12.0, 19.0 }; double yval; cout << "\n"; cout << "TEST03\n"; cout << " BASIS_MATRIX_B_UNI sets up the basis matrix\n"; cout << " for the uniform B spline.\n"; mbasis = basis_matrix_b_uni ( ); cout << "\n"; cout << " TDATA, YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } cout << "\n"; cout << " T Spline(T)\n"; cout << "\n"; left = 2; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_matrix_tmp ( left, N, mbasis, NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } delete [] mbasis; return; # undef N # undef NDATA } //****************************************************************************80 void test04 ( ) //****************************************************************************80 // // Purpose: // // TEST04 tests BASIS_MATRIX_BETA_UNI and BASIS_MATRIX_TMP. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 4 # define NDATA 4 double beta1; double beta2; int i; int j; int jhi; int left; char mark; double *mbasis; int nsample = 4; double tdata[NDATA] = { -1.0, 0.0, 1.0, 2.0 }; double thi; double tlo; double tval; double ydata[NDATA] = { 4.0, 7.0, 12.0, 19.0 }; double yval; cout << "\n"; cout << "TEST04\n"; cout << " BASIS_MATRIX_BETA_UNI sets up the basis matrix\n"; cout << " for the uniform beta spline.\n"; // // First test // beta1 = 1.0; beta2 = 0.0; cout << "\n"; cout << " BETA1 = " << beta1 << "\n"; cout << " BETA2 = " << beta2 << "\n"; mbasis = basis_matrix_beta_uni ( beta1, beta2 ); cout << "\n"; cout << " TDATA, YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } left = 2; cout << "\n"; cout << " T Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_matrix_tmp ( left, N, mbasis, NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } // // Second test // beta1 = 1.0; beta2 = 100.0; cout << "\n"; cout << " BETA1 = " << beta1 << "\n"; cout << " BETA2 = " << beta2 << "\n"; delete [] mbasis; mbasis = basis_matrix_beta_uni ( beta1, beta2 ); cout << "\n"; cout << " TDATA, YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } left = 2; cout << "\n"; cout << " T Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_matrix_tmp ( left, N, mbasis, NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } // // Third test // beta1 = 100.0; beta2 = 0.0; cout << "\n"; cout << " BETA1 = " << beta1 << "\n"; cout << " BETA2 = " << beta2 << "\n"; delete [] mbasis; mbasis = basis_matrix_beta_uni ( beta1, beta2 ); cout << "\n"; cout << " TDATA, YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } left = 2; cout << "\n"; cout << " T Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_matrix_tmp ( left, N, mbasis, NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } delete [] mbasis; return; # undef N # undef NDATA } //****************************************************************************80 void test05 ( ) //****************************************************************************80 // // Purpose: // // TEST05 tests BASIS_MATRIX_BEZIER and BASIS_MATRIX_TMP. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 4 # define NDATA 4 int i; int j; int jhi; int left; char mark; double *mbasis; int nsample = 4; double tdata[NDATA] = { 0.0, 0.0, 1.0, 1.0 }; double thi; double tlo; double tval; double ydata[NDATA] = { 7.0, 8.3333333, 10.0, 12.0 }; double yval; cout << "\n"; cout << "TEST05\n"; cout << " BASIS_MATRIX_BEZIER sets up the basis\n"; cout << " matrix for the uniform Bezier spline.\n"; mbasis = basis_matrix_bezier ( ); cout << "\n"; cout << " TDATA, YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } left = 2; cout << "\n"; cout << " T Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_matrix_tmp ( left, N, mbasis, NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } delete [] mbasis; return; # undef N # undef NDATA } //****************************************************************************80 void test06 ( ) //****************************************************************************80 // // Purpose: // // TEST06 tests BASIS_MATRIX_HERMITE and BASIS_MATRIX_TMP. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 4 # define NDATA 4 int i; int j; int jhi; int left; char mark; double *mbasis; int nsample = 4; double tdata[NDATA] = { 0.0, 0.0, 1.0, 1.0 }; double thi; double tlo; double tval; double ydata[NDATA] = { 7.0, 12.0, 4.0, 6.0 }; double yval; cout << "\n"; cout << "TEST06\n"; cout << " BASIS_MATRIX_HERMITE sets up the basis matrix\n"; cout << " for the Hermite spline.\n"; mbasis = basis_matrix_hermite ( ); cout << "\n"; cout << " TDATA, YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } left = 2; cout << "\n"; cout << " T Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_matrix_tmp ( left, N, mbasis, NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } delete [] mbasis; return; # undef N # undef NDATA } //****************************************************************************80 void test07 ( ) //****************************************************************************80 // // Purpose: // // TEST07 tests BASIS_MATRIX_OVERHAUSER_UNI and BASIS_MATRIX_TMP. // // Discussion: // // YDATA(1:NDATA) = ( TDATA(1:NDATA) + 2 )**2 + 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 4 # define NDATA 4 int i; int j; int jhi; int left; char mark; double *mbasis; int nsample = 4; double tdata[NDATA] = { -1.0, 0.0, 1.0, 2.0 }; double thi; double tlo; double tval; double ydata[NDATA] = { 4.0, 7.0, 12.0, 19.0 }; double yval; cout << "\n"; cout << "TEST07\n"; cout << " BASIS_MATRIX_OVERHAUSER_UNI sets up the basis\n"; cout << " matrix for the uniform Overhauser spline.\n"; mbasis = basis_matrix_overhauser_uni ( ); cout << "\n"; cout << " TDATA, YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << " " << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } left = 2; cout << "\n"; cout << " T Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_matrix_tmp ( left, N, mbasis, NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } delete [] mbasis; return; # undef N # undef NDATA } //****************************************************************************80 void test08 ( ) //****************************************************************************80 // // Purpose: // // TEST08 tests BASIS_MATRIX_OVERHAUSER_NONUNI and BASIS_MATRIX_TMP. // // Discussion: // // YDATA(1:NDATA) = ( TDATA(1:NDATA) - 2 )**2 + 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 4 # define NDATA 4 double alpha; double beta; int i; int j; int jhi; int left; char mark; double *mbasis; int nsample = 4; double tdata[NDATA]; double thi; double tlo; double tval; double ydata[NDATA]; double yval; cout << "\n"; cout << "TEST08\n"; cout << " BASIS_MATRIX_OVERHAUSER_NONUNI sets up the\n"; cout << " basis matrix for the nonuniform Overhauser\n"; cout << " spline.\n"; tdata[0] = 0.0; tdata[1] = 1.0; tdata[2] = 2.0; tdata[3] = 3.0; alpha = ( tdata[2] - tdata[1] ) / ( tdata[2] - tdata[0] ); beta = ( tdata[2] - tdata[1] ) / ( tdata[3] - tdata[1] ); cout << "\n"; cout << " ALPHA = " << alpha << "\n"; cout << " BETA = " << beta << "\n"; mbasis = basis_matrix_overhauser_nonuni ( alpha, beta ); for ( i = 0; i < NDATA; i++ ) { ydata[i] = pow ( ( tdata[i] - 2.0 ), 2 ) + 3.0; } cout << "\n"; cout << " TDATA, YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << " " << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } left = 2; cout << "\n"; cout << " T Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_matrix_tmp ( left, N, mbasis, NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } tdata[0] = 0.0; tdata[1] = 1.0; tdata[2] = 2.0; tdata[3] = 5.0; alpha = ( tdata[2] - tdata[1] ) / ( tdata[2] - tdata[0] ); beta = ( tdata[2] - tdata[1] ) / ( tdata[3] - tdata[1] ); cout << "\n"; cout << " ALPHA = " << alpha << "\n"; cout << " BETA = " << beta << "\n"; mbasis = basis_matrix_overhauser_nonuni ( alpha, beta ); for ( i = 0; i < NDATA; i++ ) { ydata[i] = pow ( ( tdata[i] - 2.0 ), 2 ) + 3.0; } cout << "\n"; cout << " TDATA, YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << " " << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } left = 2; cout << "\n"; cout << " T Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_matrix_tmp ( left, N, mbasis, NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } tdata[0] = 0.0; tdata[1] = 3.0; tdata[2] = 4.0; tdata[3] = 5.0; alpha = ( tdata[2] - tdata[1] ) / ( tdata[2] - tdata[0] ); beta = ( tdata[2] - tdata[1] ) / ( tdata[3] - tdata[1] ); cout << "\n"; cout << " ALPHA = " << alpha << "\n"; cout << " BETA = " << beta << "\n"; delete [] mbasis; mbasis = basis_matrix_overhauser_nonuni ( alpha, beta ); for ( i = 0; i < NDATA; i++ ) { ydata[i] = pow ( ( tdata[i] - 2.0 ), 2 ) + 3.0; } cout << "\n"; cout << " TDATA, YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } left = 2; cout << "\n"; cout << " T Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_matrix_tmp ( left, N, mbasis, NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } delete [] mbasis; return; # undef N # undef NDATA } //****************************************************************************80 void test09 ( ) //****************************************************************************80 // // Purpose: // // TEST09 tests BASIS_MATRIX_OVERHAUSER_NONUNI and BASIS_MATRIX_TMP. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 4 # define NDATA 4 double alpha; double beta; int i; int j; int jhi; int left; char mark; double *mbasis; int nsample = 4; double tdata[NDATA]; double thi; double tlo; double tval; double ydata[NDATA]; double yval; cout << "\n"; cout << "TEST09\n"; cout << " BASIS_MATRIX_OVERHAUSER_NONUNI sets up the\n"; cout << " basis matrix for the nonuniform Overhauser \n"; cout << " spline.\n"; cout << "\n"; cout << " First test that the nonuniform code can match\n"; cout << " the uniform code. Compare these results with\n"; cout << " the uniform output.\n"; cout << "\n"; tdata[0] = -1.0; tdata[1] = 0.0; tdata[2] = 1.0; tdata[3] = 2.0; alpha = ( tdata[2] - tdata[1] ) / ( tdata[2] - tdata[0] ); beta = ( tdata[2] - tdata[1] ) / ( tdata[3] - tdata[1] ); cout << "\n"; cout << " ALPHA = " << alpha << "\n"; cout << " BETA = " << beta << "\n"; mbasis = basis_matrix_overhauser_nonuni ( alpha, beta ); for ( i = 0; i < NDATA; i++ ) { ydata[i] = pow ( ( tdata[i] + 2.0 ), 2 ) + 3.0; } cout << "\n"; cout << " TDATA, YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } left = 2; cout << "\n"; cout << " T Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_matrix_tmp ( left, N, mbasis, NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } cout << "\n"; cout << " Now test that the nonuniform code on a\n"; cout << " nonuniform grid.\n"; cout << "\n"; tdata[0] = -4.0; tdata[1] = -3.0; tdata[2] = -1.0; tdata[3] = 2.0; alpha = ( tdata[2] - tdata[1] ) / ( tdata[2] - tdata[0] ); beta = ( tdata[2] - tdata[1] ) / ( tdata[3] - tdata[1] ); cout << "\n"; cout << " ALPHA = " << alpha << "\n"; cout << " BETA = " << beta << "\n"; delete [] mbasis; mbasis = basis_matrix_overhauser_nonuni ( alpha, beta ); for ( i = 0; i < NDATA; i++ ) { ydata[i] = pow ( ( tdata[i] + 2.0 ), 2 ) + 3.0; } cout << "\n"; cout << " TDATA, YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } left = 2; cout << "\n"; cout << " T Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = basis_matrix_tmp ( left, N, mbasis, NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } delete [] mbasis; return; # undef N # undef NDATA } //****************************************************************************80 void test10 ( ) //****************************************************************************80 // // Purpose: // // TEST10 tests BC_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 2 int i; int nsample = 101; double t; double xcon[N+1] = { 0.0, 0.75, 1.0 }; double xval; double ycon[N+1] = { 1.0, 0.0, 1.0 }; double yval; cout << "\n"; cout << "TEST10\n"; cout << " BC_VAL evaluates a general Bezier function.\n"; // // One point on the curve should be about (0.75, 0.536). // cout << "\n"; cout << " T X(T) Y(T)\n"; cout << "\n"; for ( i = 1; i <= nsample; i++ ) { t = ( double ) ( i - 1 ) / ( double ) ( nsample - 1 ); bc_val ( N, t, xcon, ycon, &xval, &yval ); cout << setw(12) << t << " " << setw(12) << xval << " " << setw(12) << yval << "\n"; } cout << "\n"; cout << " The point ( 0.75, 0.536 ) should be on the curve.\n"; return; # undef N } //****************************************************************************80 void test11 ( ) //****************************************************************************80 // // Purpose: // // TEST11 tests BEZ_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 2 double a = 0.0; double b = 1.0; double bval; int i; int nsample = 21; double x; double y[N+1] = { 1.0, 0.0, 1.0 }; cout << "\n"; cout << "TEST11\n"; cout << " BEZ_VAL evaluates a Bezier function.\n"; // // One point on the curve should be (0.75, 20/32). // cout << "\n"; cout << " I X B\n"; cout << "\n"; for ( i = 1; i <= nsample; i++ ) { x = ( ( double ) ( nsample - i ) * a + ( double ) ( i - 1 ) * b ) / ( double ) ( nsample - 1 ); bval = bez_val ( N, x, a, b, y ); cout << setw(6) << i << " " << setw(12) << x << " " << setw(12) << bval << "\n"; } cout << "\n"; cout << " When X = " << 0.75 << "\n"; cout << " BEZ_VAL(X) should be " << 0.625 << "\n"; return; # undef N } //****************************************************************************80 void test115 ( ) //****************************************************************************80 // // Purpose: // // TEST115 tests BP01. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N_MAX 3 double a = 0.0; double b = 1.0; double *bern; int i; int j; int n; int nsample = 11; double x; cout << "\n"; cout << "TEST115\n"; cout << " BP01 evaluates the Bernstein basis polynomials\n"; cout << " for the interval [0,1].\n"; for ( n = 0; n <= N_MAX; n++ ) { cout << "\n"; cout << " Degree N = " << n << "\n"; cout << "\n"; cout << " X BERN(N,0,X) BERN(N,1,X) BERN(N,2,X) BERN(N,3,X)\n"; cout << "\n"; for ( i = 1; i <= nsample; i++ ) { x = ( ( double ) ( nsample - i ) * a + ( double ) ( i - 1 ) * b ) / ( double ) ( nsample - 1 ); bern = bp01 ( n, x ); cout << setw(12) << x << " "; for ( j = 0; j <= n; j++ ) { cout << setw(12) << bern[j] << " "; } cout << "\n"; delete [] bern; } } return; # undef N_MAX } //****************************************************************************80 void test116 ( ) //****************************************************************************80 // // Purpose: // // TEST116 tests BPAB. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N_MAX 3 double a = 1.0; double b = 3.0; double *bern; int i; int j; int n; int nsample = 11; double x; cout << "\n"; cout << "TEST116\n"; cout << " BPAB evaluates the Bernstein basis polynomials\n"; cout << " for the interval [A,B].\n"; for ( n = 0; n <= N_MAX; n++ ) { cout << "\n"; cout << " Degree N = " << n << "\n"; cout << "\n"; cout << " X BERN(N,0,X) BERN(N,1,X) BERN(N,2,X) BERN(N,3,X)\n"; cout << "\n"; for ( i = 1; i <= nsample; i++ ) { x = ( ( double ) ( nsample - i ) * a + ( double ) ( i - 1 ) * b ) / ( double ) ( nsample - 1 ); bern = bpab ( n, a, b, x ); cout << setw(12) << x << " "; for ( j = 0; j <= n; j++ ) { cout << setw(12) << bern[j] << " "; } cout << "\n"; delete [] bern; } } return; # undef N_MAX } //****************************************************************************80 void test12 ( ) //****************************************************************************80 // // Purpose: // // TEST12 tests BPAB_APPROX. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define MAXDATA 10 double a; double b; int i; int ndata; int nsample; double xdata[MAXDATA+1]; double xval; double ydata[MAXDATA+1]; double yval; cout << "\n"; cout << "TEST12\n"; cout << " BPAB_APPROX evaluates the Bernstein polynomial\n"; cout << " approximant to a function F(X).\n"; a = 1.0; b = 3.0; for ( ndata = 0; ndata <= 9; ndata = ndata + 3 ) { for ( i = 0; i <= ndata; i++ ) { if ( ndata == 0 ) { xdata[i] = 0.5 * ( a + b ); } else { xdata[i] = ( ( double ) ( ndata - i ) * a + ( double ) ( i ) * b ) / ( double ) ( ndata ); } ydata[i] = sin ( xdata[i] ); } cout << "\n"; cout << " XDATA YDATA\n"; cout << "\n"; for ( i = 0; i <= ndata; i++ ) { cout << setw(12) << xdata[i] << " " << setw(12) << ydata[i] << "\n"; } cout << "\n"; cout << " Bernstein approximant of degree N = " << ndata << "\n"; cout << "\n"; cout << " X F(X) BERN(X) ERROR\n"; cout << "\n"; nsample = 2 * ndata + 1; for ( i = 1; i <= nsample; i++ ) { if ( nsample == 1 ) { xval = 0.5 * ( a + b ); } else { xval = ( ( double ) ( nsample - i ) * a + ( double ) ( i - 1 ) * b ) / ( double ) ( nsample - 1 ); } yval = bpab_approx ( ndata, a, b, ydata, xval ); cout << setw(12) << xval << " " << setw(12) << sin ( xval ) << " " << setw(12) << yval << " " << setw(12) << yval - sin ( xval ) << "\n"; } } return; # undef MAXDATA } //****************************************************************************80 void test125 ( ) //****************************************************************************80 // // Purpose: // // TEST125 tests LEAST_SET_OLD and LEAST_VAL_OLD. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define MAXDEG 6 # define NTAB 21 double b[MAXDEG]; double c[MAXDEG+1]; double d[MAXDEG-1]; double eps; double error; int i; int ierror; int j; int jhi; int ndeg; double ptab[NTAB]; double xtab[NTAB]; double xval; double ytab[NTAB]; double ytrue; double yval; cout << "\n"; cout << "TEST125\n"; cout << " LEAST_SET_OLD sets a least squares polynomial,\n"; cout << " LEAST_VAL_OLD evaluates it.\n"; for ( i = 0; i < NTAB; i++ ) { xtab[i] = ( ( double ) ( NTAB - i - 1 ) * ( -1.0 ) + ( double ) ( i ) * ( +1.0 ) ) / ( double ) ( NTAB - 1 ); ytab[i] = ( double ) ( ( int ) ( exp ( xtab[i] ) * 100.0 + 0.5 ) ) / 100.0; } cout << "\n"; cout << " The data to be interpolated:\n"; cout << "\n"; cout << " Number of data values = " << NTAB << "\n"; cout << "\n"; cout << " X Y\n"; cout << "\n"; cout << "\n"; cout << " XTAB YTAB\n"; cout << "\n"; for ( i = 0; i < NTAB; i++ ) { cout << setw(12) << xtab[i] << " " << setw(12) << ytab[i] << "\n"; } for ( ndeg = 1; ndeg <= MAXDEG; ndeg++ ) { cout << "\n"; cout << " Use a polynomial of degree: " << ndeg << "\n"; cout << "\n"; least_set_old ( NTAB, xtab, ytab, ndeg, ptab, b, c, d, &eps, &ierror ); cout << "\n"; cout << " Total approximation error = " << eps << "\n"; cout << "\n"; cout << " X F(X) P(X) Error\n"; cout << "\n"; for ( i = 1; i <= NTAB; i++ ) { if ( i < NTAB ) { jhi = 2; } else { jhi = 0; } for ( j = 0; j <= jhi; j++ ) { if ( i < NTAB ) { xval = ( ( double ) ( 3 - j ) * xtab[i-1] + ( double ) ( j ) * xtab[i] ) / ( double ) ( 3 ); } else { xval = xtab[i-1]; } yval = least_val_old ( xval, ndeg, b, c, d ); ytrue = ( double ) ( ( int ) ( exp ( xval ) * 100.0 + 0.5 ) ) / 100.0; error = yval - ytrue; cout << setw(12) << xval << " " << setw(12) << yval << " " << setw(12) << ytrue << " " << setw(12) << error << "\n"; } } } return; # undef MAXDEG } //****************************************************************************80 void test126 ( ) //****************************************************************************80 // // Purpose: // // TEST126 tests LEAST_SET and LEAST_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2007 // // Author: // // John Burkardt // { # define POINT_NUM 21 # define NTERMS 4 double b[NTERMS]; double c[NTERMS]; double d[NTERMS]; double f[POINT_NUM]; double fp[POINT_NUM]; int i; int nterms2; double px; double w[POINT_NUM]; double x[POINT_NUM]; for ( i = 0; i < POINT_NUM; i++ ) { w[i] = 1.0; x[i] = -1.0 + ( double ) ( i ) / 10.0; f[i] = x[i] * x[i] - x[i] - 6.0; fp[i] = 2.0 * x[i] - 1.0; } least_set ( POINT_NUM, x, f, w, NTERMS, b, c, d ); cout << "\n"; cout << "TEST126\n"; cout << " LEAST_SET sets a least squares polynomial,\n"; cout << " LEAST_VAL evaluates it.\n"; cout << "\n"; cout << " X, F(X), P(X), Error\n"; cout << "\n"; for ( nterms2 = 1; nterms2 <= NTERMS; nterms2++ ) { cout << "\n"; cout << " Using polynomial order = " << nterms2 << "\n"; cout << "\n"; for ( i = 0; i < POINT_NUM; i++ ) { px = least_val ( nterms2, b, c, d, x[i] ); cout << " " << setw(12) << x[i] << " " << setw(12) << f[i] << " " << setw(12) << px << " " << setw(12) << px - f[i] << "\n"; } } return; # undef POINT_NUM # undef NTERMS } //****************************************************************************80 void test127 ( ) //****************************************************************************80 // // Purpose: // // TEST127 tests LEAST_SET and LEAST_VAL2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2007 // // Author: // // John Burkardt // { # define POINT_NUM 21 # define NTERMS 4 double b[NTERMS]; double c[NTERMS]; double d[NTERMS]; double f[POINT_NUM]; double fp[POINT_NUM]; int i; int nterms2; double px; double pxp; double w[POINT_NUM]; double x[POINT_NUM]; for ( i = 0; i < POINT_NUM; i++ ) { w[i] = 1.0; x[i] = -1.0 + ( double ) ( i ) / 10.0; f[i] = x[i] * x[i] - x[i] - 6.0; fp[i] = 2.0 * x[i] - 1.0; } least_set ( POINT_NUM, x, f, w, NTERMS, b, c, d ); cout << "\n"; cout << "TEST127\n"; cout << " LEAST_SET sets a least squares polynomial,\n"; cout << " LEAST_VAL2 evaluates it.\n"; cout << "\n"; cout << " X, F(X), P(X), FP(X), PP(X)\n"; cout << "\n"; for ( nterms2 = 1; nterms2 <= NTERMS; nterms2++ ) { cout << "\n"; cout << " Using polynomial order = " << nterms2 << "\n"; cout << "\n"; for ( i = 0; i < POINT_NUM; i++ ) { least_val2 ( nterms2, b, c, d, x[i], &px, &pxp ); cout << " " << setw(12) << x[i] << " " << setw(12) << f[i] << " " << setw(12) << px << " " << setw(12) << fp[i] << " " << setw(12) << pxp << "\n"; } } return; # undef POINT_NUM # undef NTERMS } //****************************************************************************80 void test13 ( ) //****************************************************************************80 // // Purpose: // // TEST13 tests SPLINE_B_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define NDATA 11 int i; int j; int jhi; char mark; int nsample = 4; double pi = 3.141592653589793; double tdata[NDATA]; double thi; double tlo; double tval; double ydata[NDATA]; double yval; cout << "\n"; cout << "TEST13\n"; cout << " SPLINE_B_VAL evaluates the\n"; cout << " B spline.\n"; cout << "\n"; cout << " TDATA YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { tdata[i] = ( double ) i; ydata[i] = sin ( 2.0 * pi * tdata[i] / ( double ) ( NDATA - 1) ); cout << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } cout << "\n" ; cout << " T, Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[1] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = spline_b_val ( NDATA, tdata, ydata, tval ); if ( 0 < i && j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } return; # undef NDATA } //****************************************************************************80 void test14 ( ) //****************************************************************************80 // // Purpose: // // TEST14 tests SPLINE_BETA_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define NDATA 11 double beta1; double beta2; int i; int j; int jhi; char mark; int nsample = 4; double pi = 3.141592653589793; double tdata[NDATA]; double thi; double tlo; double tval; double ydata[NDATA]; double yval; cout << "\n"; cout << "TEST14\n"; cout << " SPLINE_BETA_VAL evaluates the BETA spline.\n"; cout << "\n"; cout << " TDATA YDATA\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { tdata[i] = ( double ) i; ydata[i] = sin ( 2.0 * pi * tdata[i] / ( double ) ( NDATA - 1) ); cout << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } beta1 = 1.0; beta2 = 0.0; cout << "\n"; cout << " BETA1 = " << beta1 << "\n"; cout << " BETA2 = " << beta2 << "\n"; cout << "\n"; cout << " T, Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = spline_beta_val ( beta1, beta2, NDATA, tdata, ydata, tval ); if ( 0 < i && j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } beta1 = 1.0; beta2 = 100.0; cout << "\n"; cout << " BETA1 = " << beta1 << "\n"; cout << " BETA2 = " << beta2 << "\n"; cout << "\n"; cout << " T, Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = spline_beta_val ( beta1, beta2, NDATA, tdata, ydata, tval ); if ( 0 < i && j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } beta1 = 100.0; beta2 = 0.0; cout << "\n"; cout << " BETA1 = " << beta1 << "\n"; cout << " BETA2 = " << beta2 << "\n"; cout << "\n"; cout << " T, Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = spline_beta_val ( beta1, beta2, NDATA, tdata, ydata, tval ); if ( 0 < i && j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } return; # undef NDATA } //****************************************************************************80 void test145 ( ) //****************************************************************************80 // // Purpose: // // TEST145 tests SPLINE_CONSTANT_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define NDATA 12 # define N_TEST 20 double fval; int i; int j; int seed = 123456789; double *tdata; double thi; double tlo; double *t_test; double tval; double ydata[NDATA]; double yval; cout << "\n"; cout << "TEST145\n"; cout << " SPLINE_CONSTANT_VAL evaluates a piecewise\n"; cout << " constant spline.\n"; cout << "\n"; cout << " Runge's function, evenly spaced knots.\n"; // // Set the data. // tlo = -1.0; thi = +1.0; tdata = r8vec_even_new ( NDATA-1, tlo, thi ); for ( i = 0; i < NDATA; i++ ) { if ( i == 0 ) { tval = tdata[0]; } else if ( i < NDATA - 1 ) { tval = 0.5 * ( tdata[i-1] + tdata[i] ); } else if ( i == NDATA - 1 ) { tval = tdata[i-1]; } ydata[i] = frunge ( tval ); } cout << "\n"; cout << " The data to be interpolated:\n"; cout << "\n"; cout << " Number of data values = " << NDATA << "\n"; cout << "\n"; cout << " T Y\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << " *" << " " << setw(12) << ydata[i] << "\n"; if ( i < NDATA -1 ) { cout << " *" << setw(12) << tdata[i] << "\n"; } } // // Sample the spline. // t_test = r8vec_uniform_new ( N_TEST, tlo-1.0, thi+1.0, &seed ); r8vec_sort_bubble_a ( N_TEST, t_test ); cout << "\n"; cout << " T Y(interp) Y(exact)\n"; cout << "\n"; j = 0; cout << " *" << " " << setw(12) << ydata[j] << "\n"; j = j + 1; for ( i = 0; i < N_TEST; i++ ) { tval = t_test[i]; yval = spline_constant_val ( NDATA, tdata, ydata, tval ); if ( j <= NDATA - 1 ) { while ( tdata[j-1] <= tval ) { fval = frunge ( tdata[j-1] ); cout << " *" << setw(12) << tdata[j-1] << " " << " " << " " << setw(12) << fval << "\n"; cout << " *" << " " << " " << setw(12) << ydata[j] << "\n"; j = j + 1; if ( NDATA <= j ) { break; } } } fval = frunge ( tval ); cout << " " << setw(12) << tval << " " << setw(12) << yval << " " << setw(12) << fval << "\n"; } delete [] tdata; delete [] t_test; return; # undef NDATA # undef N_TEST } //****************************************************************************80 void test15 ( ) //****************************************************************************80 // // Purpose: // // TEST15 tests SPLINE_CUBIC_SET and SPLINE_CUBIC_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 June 2013 // // Author: // // John Burkardt // { # define N 11 int i; int ibcbeg; int ibcend; int j; int jhi; int k; double t[N]; double tval; double y[N]; double ybcbeg; double ybcend; double *ypp; double yppval; double ypval; double yval; // // Set up the data. // cout << "\n"; cout << "TEST15\n"; cout << " SPLINE_CUBIC_SET sets up a cubic spline;\n"; cout << " SPLINE_CUBIC_VAL evaluates it.\n"; cout << "\n"; cout << " Runge's function, evenly spaced knots.\n"; cout << "\n"; cout << " I T Y\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { t[i] = ( ( double ) ( N - i - 1 ) * (-1.0) + ( double ) ( i ) * (+1.0) ) / ( double ) ( N - 1 ); y[i] = frunge ( t[i] ); cout << setw(6) << i << " " << setw(10) << t[i] << " " << setw(10) << y[i] << "\n"; } // // Try various boundary conditions. // for ( k = 0; k <= 4; k++ ) { if ( k == 0 ) { ibcbeg = 0; ybcbeg = 0.0; ibcend = 0; ybcend = 0.0; cout << "\n"; cout << " Boundary condition 0 at both ends:\n"; cout << " Spline is quadratic in boundary intervals.\n"; } else if ( k == 1 ) { ibcbeg = 1; ybcbeg = fprunge ( t[0] ); ibcend = 1; ybcend = fprunge ( t[N-1] ); cout << "\n"; cout << " Boundary condition 1 at both ends:\n"; cout << " Y'(left) = " << ybcbeg << "\n"; cout << " Y'(right) = " << ybcend << "\n"; } else if ( k == 2 ) { ibcbeg = 2; ybcbeg = fpprunge ( t[0] ); ibcend = 2; ybcend = fpprunge ( t[N-1] ); cout << "\n"; cout << " Boundary condition 2 at both ends:\n"; cout << " YP''(left) = " << ybcbeg << "\n"; cout << " YP''(right) = " << ybcend << "\n"; } else if ( k == 3 ) { ibcbeg = 2; ybcbeg = 0.0; ibcend = 2; ybcend = 0.0; cout << "\n"; cout << " Natural spline:\n"; cout << " YP''(left) = " << ybcbeg << "\n"; cout << " YP''(right) = " << ybcend << "\n"; } else if ( k == 4 ) { ibcbeg = 3; ibcend = 3; cout << "\n"; cout << " \"Not-a-knot\" spline:\n"; } ypp = spline_cubic_set ( N, t, y, ibcbeg, ybcbeg, ibcend, ybcend ); cout << "\n"; cout << " SPLINE''(T), F''(T):\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { cout << setw(10) << ypp[i] << " " << setw(10) << fpprunge ( t[i] ) << "\n"; } cout << "\n"; cout << " T, SPLINE(T), F(T)\n"; cout << "\n"; for ( i = 0; i <= N; i++ ) { if ( i == 0 ) { jhi = 1; } else if ( i < N ) { jhi = 2; } else { jhi = 2; } for ( j = 1; j <= jhi; j++ ) { if ( i == 0 ) { tval = t[0] - 1.0; } else if ( i < N ) { tval = ( ( double ) ( jhi - j + 1 ) * t[i-1] + ( double ) ( j - 1 ) * t[i] ) / ( double ) ( jhi ); } else { if ( j == 1 ) { tval = t[N-1]; } else { tval = t[N-1] + 1.0; } } yval = spline_cubic_val ( N, t, y, ypp, tval, &ypval, &yppval ); cout << setw(10) << tval << " " << setw(10) << yval << " " << setw(10) << frunge ( tval ) << "\n"; } } delete [] ypp; } return; # undef N } //****************************************************************************80 void test16 ( ) //****************************************************************************80 // // Purpose: // // TEST16 tests SPLINE_CUBIC_SET and SPLINE_CUBIC_VAL2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 11 int i; int ibcbeg; int ibcend; int j; int jhi; int k; int left; int left_in; double t[N]; double tval; double y[N]; double ybcbeg; double ybcend; double *ypp; double yppval; double ypval; double yval; // // Set up the data. // cout << "\n"; cout << "TEST16\n"; cout << " SPLINE_CUBIC_SET sets up a cubic spline;\n"; cout << " SPLINE_CUBIC_VAL2 evaluates it.\n"; cout << "\n"; cout << " Runge's function, evenly spaced knots.\n"; cout << "\n"; cout << " I T Y\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { t[i] = ( ( double ) ( N - i - 1 ) * (-1.0) + ( double ) ( i ) * (+1.0) ) / ( double ) ( N - 1 ); y[i] = frunge ( t[i] ); cout << setw(6) << i << " " << setw(12) << t[i] << " " << setw(12) << y[i] << "\n"; } // // Try all three types of boundary condition. // for ( k = 0; k < 3; k++ ) { if ( k == 0 ) { ibcbeg = 0; ybcbeg = 0.0; ibcend = 0; ybcend = 0.0; cout << "\n"; cout << " Boundary condition 0 at both ends:\n"; cout << " Spline is quadratic in boundary intervals.\n"; } else if ( k == 1 ) { ibcbeg = 1; ybcbeg = fprunge ( t[0] ); ibcend = 1; ybcend = fprunge ( t[N-1] ); cout << "\n"; cout << " Boundary condition 1 at both ends:\n"; cout << " Y'(left) = " << ybcbeg << "\n"; cout << " Y'(right) = " << ybcend << "\n"; } else if ( k == 2 ) { ibcbeg = 2; ybcbeg = fpprunge ( t[0] ); ibcend = 2; ybcend = fpprunge ( t[N-1] ); cout << "\n"; cout << " Boundary condition 2 at both ends:\n"; cout << " YP''(left) = " << ybcbeg << "\n"; cout << " YP''(right) = " << ybcend << "\n"; } ypp = spline_cubic_set ( N, t, y, ibcbeg, ybcbeg, ibcend, ybcend ); cout << "\n"; cout << " SPLINE''(T), F''(T):\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { cout << setw(12) << ypp[i] << " " << setw(12) << fpprunge(t[i]) << "\n"; } left = 0; cout << "\n"; cout << " T, SPLINE(T), F(T), LEFT_IN, LEFT_OUT\n"; cout << "\n"; for ( i = 0; i <= N; i++ ) { if ( i == 0 ) { jhi = 1; } else if ( i < N ) { jhi = 2; } else { jhi = 2; } for ( j = 1; j <= jhi; j++ ) { if ( i == 0 ) { tval = t[0] - 1.0; } else if ( i < N ) { tval = ( ( double ) ( jhi - j + 1 ) * t[i-1] + ( double ) ( j - 1 ) * t[i] ) / ( double ) ( jhi ); } else { if ( j == 1 ) { tval = t[N-1]; } else { tval = t[N-1] + 1.0; } } left_in = left; spline_cubic_val2 ( N, t, tval, &left, y, ypp, &yval, &ypval, &yppval ); cout << setw(12) << tval << " " << setw(12) << yval << " " << setw(12) << frunge ( tval ) << " " << setw(6) << left_in << " " << setw(6) << left << "\n"; } } delete [] ypp; } return; # undef N } //****************************************************************************80 void test17 ( ) //****************************************************************************80 // // Purpose: // // TEST17 tests SPLINE_CUBIC_SET and SPLINE_CUBIC_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 11 int i; int ibcbeg; int ibcend; int j; int jhi; int k; double t[N]; double tval; double y[N]; double ybcbeg; double ybcend; double *ypp; double yppval; double ypval; double yval; // // Set up the data. // cout << "\n"; cout << "TEST17\n"; cout << " SPLINE_CUBIC_SET sets up a cubic spline;\n"; cout << " SPLINE_CUBIC_VAL evaluates it.\n"; cout << "\n"; cout << " Cubic function, unevenly spaced knots.\n"; cout << "\n"; cout << " T, Y\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { t[i] = ( double ) ( i ) / ( double ) ( N - 1 ); t[i] = t[i] * t[i]; y[i] = fcube ( t[i] ); cout << setw(6) << i << " " << setw(10) << t[i] << " " << setw(10) << y[i] << "\n"; } // // Try all three types of boundary condition. // for ( k = 0; k < 3; k++ ) { if ( k == 0 ) { ibcbeg = 0; ybcbeg = 0.0; ibcend = 0; ybcend = 0.0; cout << "\n"; cout << " Boundary condition 0 at both ends:\n"; cout << " Spline is quadratic in boundary intervals.\n"; } else if ( k == 1 ) { ibcbeg = 1; ybcbeg = fpcube ( t[0] ); ibcend = 1; ybcend = fpcube ( t[N-1] ); cout << "\n"; cout << " Boundary condition 1 at both ends:\n"; cout << " Y'(left) = " << ybcbeg << "\n"; cout << " Y'(right) = " << ybcend << "\n"; } else if ( k == 2 ) { ibcbeg = 2; ybcbeg = fppcube ( t[0] ); ibcend = 2; ybcend = fppcube ( t[N-1] ); cout << "\n"; cout << " Boundary condition 2 at both ends:\n"; cout << " YP''(left) = " << ybcbeg << "\n"; cout << " YP''(right) = " << ybcend << "\n"; } ypp = spline_cubic_set ( N, t, y, ibcbeg, ybcbeg, ibcend, ybcend ); cout << "\n"; cout << " SPLINE''(T), F''(T):\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { cout << setw(12) << ypp[i] << " " << setw(12) << fppcube(t[i]) << "\n"; } cout << "\n"; cout << " T, SPLINE(T), F(T)\n"; cout << "\n"; for ( i = 0; i <= N; i++ ) { if ( i == 0 ) { jhi = 1; } else if ( i < N ) { jhi = 2; } else { jhi = 2; } for ( j = 1; j <= jhi; j++ ) { if ( i == 0 ) { tval = t[0] - 1.0; } else if ( i < N ) { tval = ( ( double ) ( jhi - j + 1 ) * t[i-1] + ( double ) ( j - 1 ) * t[i] ) / ( double ) ( jhi ); } else { if ( j == 1 ) { tval = t[N-1]; } else { tval = t[N-1] + 1.0; } } yval = spline_cubic_val ( N, t, y, ypp, tval, &ypval, &yppval ); cout << setw(12) << tval << " " << setw(12) << yval << " " << setw(12) << fcube ( tval ) << "\n"; } } delete [] ypp; } return; # undef N } //****************************************************************************80 void test18 ( ) //****************************************************************************80 // // Purpose: // // TEST18 tests SPLINE_CUBIC_SET and SPLINE_CUBIC_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 11 int i; int ibcbeg; int ibcend; int j; int jhi; int k; double t[N]; double tval; double y[N]; double ybcbeg; double ybcend; double *ypp; double yppval; double ypval; double yval; // // Set up the data. // cout << "\n"; cout << "TEST18\n"; cout << " SPLINE_CUBIC_SET sets up a cubic spline;\n"; cout << " SPLINE_CUBIC_VAL evaluates it.\n"; cout << "\n"; cout << " Cubic function, evenly spaced knots.\n"; cout << "\n"; cout << " T Y\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { t[i] = ( double ) ( i ) / ( double ) ( N - 1 ); y[i] = fcube ( t[i] ); cout << setw(12) << t[i] << " " << setw(12) << y[i] << "\n"; } // // Try all three types of boundary condition. // for ( k = 0; k < 3; k++ ) { if ( k == 0 ) { ibcbeg = 0; ybcbeg = 0.0; ibcend = 0; ybcend = 0.0; cout << "\n"; cout << " Boundary condition 0 at both ends:\n"; cout << " Spline is quadratic in boundary intervals.\n"; } else if ( k == 1 ) { ibcbeg = 1; ybcbeg = fpcube ( t[0] ); ibcend = 1; ybcend = fpcube ( t[N-1] ); cout << "\n"; cout << " Boundary condition 1 at both ends:\n"; cout << " Y'(left) = " << ybcbeg << "\n"; cout << " Y'(right) = " << ybcend << "\n"; } else if ( k == 2 ) { ibcbeg = 2; ybcbeg = fppcube ( t[0] ); ibcend = 2; ybcend = fppcube ( t[N-1] ); cout << "\n"; cout << " Boundary condition 2 at both ends:\n"; cout << " YP''(left) = " << ybcbeg << "\n"; cout << " YP''(right) = " << ybcend << "\n"; } ypp = spline_cubic_set ( N, t, y, ibcbeg, ybcbeg, ibcend, ybcend ); cout << "\n"; cout << " SPLINE''(T) F''(T):\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { cout << setw(12) << ypp[i] << " " << setw(12) << fppcube(t[i]) << "\n"; } cout << "\n"; cout << " T SPLINE(T) F(T)\n"; cout << "\n"; for ( i = 0; i <= N; i++ ) { if ( i == 0 ) { jhi = 1; } else if ( i < N ) { jhi = 2; } else { jhi = 2; } for ( j = 1; j <= jhi; j++ ) { if ( i == 0 ) { tval = t[0] - 1.0; } else if ( i < N ) { tval = ( ( double ) ( jhi - j + 1 ) * t[i-1] + ( double ) ( j - 1 ) * t[i] ) / ( double ) ( jhi ); } else { if ( j == 1 ) { tval = t[N-1]; } else { tval = t[N-1] + 1.0; } } yval = spline_cubic_val ( N, t, y, ypp, tval, &ypval, &yppval ); cout << "\n"; cout << setw(12) << tval << setw(12) << yval << " " << setw(12) << fcube ( tval ) << "\n"; cout << " " << setw(12) << ypval << " " << setw(12) << fpcube ( tval ) << "\n"; cout << " " << setw(12) << yppval << " " << setw(12) << fppcube ( tval ) << "\n"; } } delete [] ypp; } return; # undef N } //****************************************************************************80 void test19 ( ) //****************************************************************************80 // // Purpose: // // TEST19 tests SPLINE_CUBIC_SET and SPLINE_CUBIC_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 2 int i; int ibcbeg; int ibcend; int j; int jhi; int k1; int k2; double t[N]; double tval; double y[N]; double ybcbeg; double ybcend; double *ypp; double yppval; double ypval; double yval; // // Set up the data. // cout << "\n"; cout << "TEST19\n"; cout << " SPLINE_CUBIC_SET sets up a cubic spline;\n"; cout << " SPLINE_CUBIC_VAL evaluates it.\n"; cout << "\n"; cout << " Cubic function, evenly spaced knots.\n"; cout << " ONLY TWO KNOTS!\n"; cout << "\n"; cout << " The data to be interpolated:\n"; cout << "\n"; cout << " Number of data values = " << N << "\n"; cout << "\n"; cout << " T Y\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { t[i] = ( double ) ( i ) / ( double ) ( N - 1 ); y[i] = fcube ( t[i] ); cout << setw(12) << t[i] << " " << setw(12) << y[i] << "\n"; } // // Try all nine pairs of boundary condition. // for ( k1 = 0; k1 < 3; k1++ ) { if ( k1 == 0 ) { ibcbeg = 0; ybcbeg = 0.0; cout << "\n"; cout << " Boundary condition 0 at left end.\n"; } else if ( k1 == 1 ) { ibcbeg = 1; ybcbeg = fpcube ( t[0] ); cout << "\n"; cout << " Boundary condition 1 at left end.\n"; cout << " Y'(left) = " << ybcbeg << "\n"; } else if ( k1 == 2 ) { ibcbeg = 2; ybcbeg = fppcube ( t[0] ); cout << "\n"; cout << " Boundary condition 2 at left end.\n"; cout << " YP''(left) = " << ybcbeg << "\n"; } for ( k2 = 0; k2 < 3; k2++ ) { if ( k2 == 0 ) { ibcend = 0; ybcend = 0.0; cout << " Boundary condition 0 at right end.\n"; } else if ( k2 == 1 ) { ibcend = 1; ybcend = fpcube ( t[N-1] ); cout << "\n"; cout << " Boundary condition 1 at right end.\n"; cout << " Y'(right) = " << ybcend << "\n"; } else if ( k2 == 2 ) { ibcend = 2; ybcend = fppcube ( t[N-1] ); cout << "\n"; cout << " Boundary condition 2 at right end.\n"; cout << " YP''(right) = " << ybcend << "\n"; } ypp = spline_cubic_set ( N, t, y, ibcbeg, ybcbeg, ibcend, ybcend ); cout << "\n"; cout << " SPLINE''(T) F''(T)\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { cout << setw(12) << ypp[i] << " " << setw(12) << fppcube(t[i]) << "\n"; } cout << "\n"; cout << " T SPLINE(T) F(T)\n"; cout << "\n"; for ( i = 0; i <= N; i++ ) { if ( i == 0 ) { jhi = 1; } else if ( i < N ) { jhi = 2; } else { jhi = 2; } for ( j = 1; j <= jhi; j++ ) { if ( i == 0 ) { tval = t[0] - 1.0; } else if ( i < N ) { tval = ( ( double ) ( jhi - j + 1 ) * t[i-1] + ( double ) ( j - 1 ) * t[i] ) / ( double ) ( jhi ); } else { if ( j == 1 ) { tval = t[N-1]; } else { tval = t[N-1] + 1.0; } } yval = spline_cubic_val ( N, t, y, ypp, tval, &ypval, &yppval ); cout << "\n"; cout << setw(12) << tval << setw(12) << yval << " " << setw(12) << fcube ( tval ) << "\n"; cout << " " << setw(12) << ypval << " " << setw(12) << fpcube ( tval ) << "\n"; cout << " " << setw(12) << yppval << " " << setw(12) << fppcube ( tval ) << "\n"; } } } delete [] ypp; } return; # undef N } //****************************************************************************80 void test20 ( ) //****************************************************************************80 // // Purpose: // // TEST20 tests SPLINE_HERMITE_SET and SPLINE_HERMITE_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define NDATA 4 double *c; double fpval; double fval; int i; int j; int jhi; char mark; double pi = 3.141592653589793; double tdata[NDATA]; double tval; double ydata[NDATA]; double ypdata[NDATA]; double ypval; double yval; cout << "\n"; cout << "TEST20\n"; cout << " SPLINE_HERMITE_SET sets up a Hermite spline;\n"; cout << " SPLINE_HERMITE_VAL evaluates it.\n"; // // Set the data. // for ( i = 0; i < NDATA; i++ ) { tdata[i] = 0.5 * ( double ) i * pi / ( double ) ( NDATA - 1 ); ydata[i] = sin ( tdata[i] ); ypdata[i] = cos ( tdata[i] ); } cout << "\n"; cout << " Data\n"; cout << "\n"; cout << " TDATA(I) YDATA[I] Y'DATA[I]\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << " " << setw(12) << ypdata[i] << "\n"; } // // Set up the spline. // c = spline_hermite_set ( NDATA, tdata, ydata, ypdata ); // // Now evaluate the spline all over the place. // cout << "\n"; cout << " T Y(hermite) Y(exact) Y'(hermite) Y'(exact)\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { if ( i == NDATA-1 ) { jhi = 0; } else { jhi = 2; } for ( j = 0; j <= jhi; j++ ) { tval = 0.5 * ( double ) ( 3 * i + j ) * pi / ( double ) ( 3 * ( NDATA - 1 ) ); fval = sin ( tval ); fpval = cos ( tval ); spline_hermite_val ( NDATA, tdata, c, tval, &yval, &ypval ); if ( j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << " " << setw(12) << fval << " " << setw(12) << ypval << " " << setw(12) << fpval << "\n"; } } delete [] c; return; # undef NDATA } //****************************************************************************80 void test205 ( ) //****************************************************************************80 // // Purpose: // // TEST205 tests SPLINE_LINEAR_INT and SPLINE_LINEAR_INTSET. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 4 double a; double b; double data_x[N]; double data_y[N]; int i; double int_x[N+1] = { 0.0, 1.0, 4.0, 5.0, 10.0 }; double int_v[N] = { 10.0, 2.0, 8.0, 27.5 }; double value; cout << "\n"; cout << "TEST205\n"; cout << " SPLINE_LINEAR_INTSET is given some interval endpoints,\n"; cout << " and a value associated with each interval.\n"; cout << "\n"; cout << " It determines a linear spline, with breakpoints\n"; cout << " at the centers of each interval, whose integral\n"; cout << " over each interval is equal to the given value.\n"; r8vec_print ( N+1, int_x, " The interval end points:" ); r8vec_print ( N, int_v, " The desired interval integral values:" ); spline_linear_intset ( N, int_x, int_v, data_x, data_y ); r8vec_print ( N, data_x, " The spline break points:" ); r8vec_print ( N, data_y, " The spline data values: " ); cout << "\n"; cout << " As a check, call SPLINE_LINEAR_INT to compute\n"; cout << " the integral of the spline over each interval,\n"; cout << " and compare to the desired value.\n"; cout << "\n"; cout << " A B Desired Computed\n"; cout << "\n"; for ( i = 1; i <= N; i++ ) { a = int_x[i-1]; b = int_x[i]; value = spline_linear_int ( N, data_x, data_y, a, b ); cout << setw(8) << a << " " << setw(8) << b << " " << setw(12) << int_v[i-1] << " " << setw(12) << value << "\n"; } return; # undef N } //****************************************************************************80 void test21 ( ) //****************************************************************************80 // // Purpose: // // TEST21 tests SPLINE_LINEAR_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { #define N 11 double fval; int i; int j; int jhi; double t[N]; double tval; double y[N]; double ypval; double yval; cout << "\n"; cout << "TEST21\n"; cout << " SPLINE_LINEAR_VAL evaluates a linear spline.\n"; cout << "\n"; cout << " Runge's function, evenly spaced knots.\n"; for ( i = 0; i < N; i++ ) { t[i] = ( ( double ) ( N - i - 1 ) * (-1.0) + ( double ) ( i ) * (+1.0) ) / ( double ) ( N - 1 ); y[i] = frunge ( t[i] ); } cout << "\n"; cout << " The data to be interpolated:\n"; cout << "\n"; cout << " Number of data values = " << N << "\n"; cout << "\n"; cout << " T Y\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { cout << setw(12) << t[i] << " " << setw(12) << y[i] << "\n"; } cout << "\n"; cout << " Interpolation:\n"; cout << "\n"; cout << " T Y Yexact\n"; cout << "\n"; for ( i = 0; i <= N; i++ ) { if ( i == 0 ) { jhi = 1; } else if ( i < N ) { jhi = 2; } else { jhi = 2; } for ( j = 1; j <= jhi; j++ ) { if ( i == 0 ) { tval = t[0] - 1.0; } else if ( i < N ) { tval = ( ( double ) ( jhi - j + 1 ) * t[i-1] + ( double ) ( j - 1 ) * t[i] ) / ( double ) ( jhi ); } else { if ( j == 1 ) { tval = t[N-1]; } else { tval = t[N-1] + 1.0; } } spline_linear_val ( N, t, y, tval, &yval, &ypval ); fval = frunge ( tval ); cout << setw(12) << tval << " " << setw(12) << yval << " " << setw(12) << fval << "\n"; } } return; #undef N } //****************************************************************************80 void test215 ( ) //****************************************************************************80 // // Purpose: // // TEST215 tests SPLINE_LINEAR_INT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 3 double a; double b; int i; double int_val; double t[N] = { 2.0, 4.5, 7.5 }; double y[N] = { 3.0, 3.75, 5.5 }; cout << "\n"; cout << "TEST215\n"; cout << " SPLINE_LINEAR_INT computes the integral of a linear spline.\n"; cout << "\n"; cout << "\n"; cout << " The data to be interpolated:\n"; cout << "\n"; cout << " Number of data values = " << N << "\n"; cout << "\n"; cout << " T Y\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { cout << setw(12) << t[i] << " " << setw(12) << y[i] << "\n"; } cout << "\n"; cout << " A B Integral\n"; cout << "\n"; for ( i = 1; i <= 5; i++ ) { if ( i == 1 ) { a = 0.0; b = 4.0; } else if ( i == 2 ) { a = 4.0; b = 5.0; } else if ( i == 3 ) { a = 5.0; b = 10.0; } else if ( i == 4 ) { a = 0.0; b = 10.0; } else { a = 10.0; b = 0.0; } int_val = spline_linear_int ( N, t, y, a, b ); cout << " " << setw(12) << a << " " << setw(12) << b << " " << setw(12) << int_val << "\n"; } return; # undef N } //****************************************************************************80 void test22 ( ) //****************************************************************************80 // // Purpose: // // TEST22 tests SPLINE_OVERHAUSER_UNI_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define NDATA 11 int i; int j; int jhi; char mark; int nsample = 4; double pi = 3.141592653589793; double tdata[NDATA]; double thi; double tlo; double tval; double ydata[NDATA]; double yval; cout << "\n"; cout << "TEST22\n"; cout << " SPLINE_OVERHAUSER_UNI_VAL evaluates the\n"; cout << " uniform Overhauser spline.\n"; for ( i = 0; i < NDATA; i++ ) { tdata[i] = ( double ) ( i ); ydata[i] = sin ( 2.0 * pi * tdata[i] / ( double ) ( NDATA - 1) ); } cout << "\n"; cout << " The data to be interpolated:\n"; cout << "\n"; cout << " Number of data values = " << NDATA << "\n"; cout << "\n"; cout << " T Y\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << " " << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } cout << "\n"; cout << " T, Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = spline_overhauser_uni_val ( NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } return; # undef NDATA } //****************************************************************************80 void test225 ( ) //****************************************************************************80 // // Purpose: // // TEST225 tests SPLINE_OVERHAUSER_NONUNI_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define NDATA 11 int i; int j; int jhi; char mark; int nsample = 4; double pi = 3.141592653589793; double tdata[NDATA]; double thi; double tlo; double tval; double ydata[NDATA]; double yval; cout << "\n"; cout << "TEST225\n"; cout << " SPLINE_OVERHAUSER_NONUNI_VAL evaluates the\n"; cout << " nonuniform Overhauser spline.\n"; cout << "\n"; cout << " In this draft of a test, we simply repeat the work\n"; cout << " for the uniform test.\n"; for ( i = 0; i < NDATA; i++ ) { tdata[i] = ( double ) ( i ); ydata[i] = sin ( 2.0 * pi * tdata[i] / ( double ) ( NDATA - 1) ); } cout << "\n"; cout << " The data to be interpolated:\n"; cout << "\n"; cout << " Number of data values = " << NDATA << "\n"; cout << "\n"; cout << " T Y\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << " " << setw(12) << tdata[i] << " " << setw(12) << ydata[i] << "\n"; } cout << "\n"; cout << " T, Spline(T)\n"; cout << "\n"; for ( i = 0; i <= NDATA; i++ ) { if ( i == 0 ) { tlo = tdata[0] - 0.5 * ( tdata[1] - tdata[0] ); thi = tdata[0]; } else if ( i < NDATA ) { tlo = tdata[i-1]; thi = tdata[i]; } else if ( NDATA <= i ) { tlo = tdata[NDATA-1]; thi = tdata[NDATA-1] + 0.5 * ( tdata[NDATA-1] - tdata[NDATA-2] ); } if ( i < NDATA ) { jhi = nsample - 1; } else { jhi = nsample; } for ( j = 0; j <= jhi; j++ ) { tval = ( ( double ) ( nsample - j ) * tlo + ( double ) ( j ) * thi ) / ( double ) ( nsample ); yval = spline_overhauser_nonuni_val ( NDATA, tdata, ydata, tval ); if ( 0 < i & j == 0 ) { mark = '*'; } else { mark = ' '; } cout << " " << mark << " " << setw(12) << tval << " " << setw(12) << yval << "\n"; } } return; # undef NDATA } //****************************************************************************80 void test23 ( ) //****************************************************************************80 // // Purpose: // // TEST23 tests SPLINE_OVERHAUSER_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define NDATA 4 # define NDIM 1 int i; double tdata[NDATA]; double tval; double ydata[NDIM*NDATA]; double yval[NDIM]; double zdata[NDATA]; double zval[NDIM]; cout << "\n"; cout << "TEST23\n"; cout << " SPLINE_OVERHAUSER_VAL evaluates the\n"; cout << " Overhauser spline.\n"; // // Set the data. // tdata[0] = 1.0; ydata[0+0*NDIM] = 0.0; zdata[0+0*NDIM] = 0.0; tdata[1] = 2.0; ydata[0+1*NDIM] = 1.0; zdata[0+1*NDIM] = 1.0; tdata[2] = 3.0; ydata[0+2*NDIM] = 2.0; zdata[0+2*NDIM] = - 1.0; tdata[3] = 4.0; ydata[0+3*NDIM] = 3.0; zdata[0+3*NDIM] = 0.0; cout << "\n"; cout << " Data\n"; cout << " TDATA[I], YDATA[I], ZDATA[I]\n"; cout << "\n"; for ( i = 0; i < NDATA; i++ ) { cout << " " << setw(12) << tdata[i] << " " << setw(12) << ydata[0+i*NDIM] << " " << setw(12) << zdata[0+i*NDIM] << "\n"; } // // Now evaluate the spline all over the place. // cout << "\n"; cout << " T, Spline value\n"; cout << "\n"; for ( i = 0; i <= 6 * NDATA + 3; i++ ) { tval = ( ( double ) i ) / 6.0; spline_overhauser_val ( NDIM, NDATA, tdata, ydata, tval, yval ); spline_overhauser_val ( NDIM, NDATA, tdata, zdata, tval, zval ); cout << " " << setw(12) << tval << " " << setw(12) << yval[0] << " " << setw(12) << zval[0] << "\n"; } return; # undef NDATA # undef NDIM } //****************************************************************************80 void test235 ( ) //****************************************************************************80 // // Purpose: // // TEST235 tests SPLINE_PCHIP_SET and SPLINE_PCHIP_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 August 2005 // // Author: // // John Burkardt // { # define N 21 # define NE 101 double d[N]; double diff; double f[N]; double fd[NE]; double fe[NE]; int i; double x[N]; double xe[NE]; cout << "\n"; cout << "TEST235\n"; cout << " SPLINE_PCHIP_SET sets up a piecewise cubic\n"; cout << " Hermite interpolant.\n"; cout << " SPLINE_PCHIP_VAL evaluates the interpolant.\n"; cout << "\n"; // // Compute Runge's function at N points in [-1,1]. // for ( i = 0; i < N; i++ ) { x[i] = -1.0 + ( double ) ( i ) / 10.0; f[i] = frunge ( x[i] ); } // // SPLINE_PCHIP_SET takes the data in X and F, and constructs a table in D // that defines the interpolant. // spline_pchip_set ( N, x, f, d ); // // Evaluate the interpolant and derivative at NE points from -1 to 0. // for ( i = 0; i < NE; i++ ) { xe[i] = -1.0 + ( double ) ( i ) / ( double ) ( NE - 1 ); } spline_pchip_val ( N, x, f, d, NE, xe, fe ); // // Print the table of X, F(exact) and F(interpolated) // for ( i = 0; i < NE; i++ ) { diff = fe[i] - frunge ( xe[i] ); cout << " " << setw(8) << xe[i] << " " << setw(10) << frunge ( xe[i] ) << " " << setw(10) << fe[i] << " " << setw(14) << diff << "\n"; } return; # undef N # undef NE } //****************************************************************************80 void test24 ( ) //****************************************************************************80 // // Purpose: // // TEST24 tests SPLINE_QUADRATIC_VAL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { # define N 11 double fval; int i; int j; int jhi; double t[N]; double tval; double y[N]; double ypval; double yval; cout << "\n"; cout << "TEST24\n"; cout << " SPLINE_QUADRATIC_VAL evaluates a\n"; cout << " quadratic spline.\n"; cout << "\n"; cout << " Runge''s function, evenly spaced knots.\n"; for ( i = 0; i < N; i++ ) { t[i] = ( ( double ) ( N - i - 1 ) * (-1.0) + ( double ) ( i ) * (+1.0) ) / ( double ) ( N - 1 ); y[i] = frunge ( t[i] ); } cout << "\n"; cout << " The data to be interpolated:\n"; cout << "\n"; cout << " Number of data values = " << N << "\n"; cout << "\n"; cout << " T Y\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { cout << " " << setw(12) << t[i] << " " << setw(12) << y[i] << "\n"; } cout << "\n"; cout << " Interpolated values\n"; cout << "\n"; cout << " T Y Y(exact)\n"; cout << "\n"; for ( i = 0; i <= N; i++ ) { if ( i == 0 ) { jhi = 1; } else if ( i < N ) { jhi = 2; } else { jhi = 2; } for ( j = 1; j <= jhi; j++ ) { if ( i == 0 ) { tval = t[0] - 1.0; } else if ( i < N ) { tval = ( ( double ) ( jhi - j + 1 ) * t[i-1] + ( double ) ( j - 1 ) * t[i] ) / ( double ) ( jhi ); } else { if ( j == 1 ) { tval = t[N-1]; } else { tval = t[N-1] + 1.0; } } spline_quadratic_val ( N, t, y, tval, &yval, &ypval ); fval = frunge ( tval ); cout << setw(12) << tval << " " << setw(12) << yval << " " << setw(12) << fval << "\n"; } } return; # undef N } //****************************************************************************80 void parabola_formula ( double x, double *y, double *yp, double *ypp ) //****************************************************************************80 // // Purpose: // // PARABOLA_FORMULA evaluates a parabola for us. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { *y = 2.0 * x * x + 3.0 * x + 1.0; *yp = 4.0 * x + 3.0; *ypp = 4.0; return; } //****************************************************************************80 double frunge ( double x ) //****************************************************************************80 // // Purpose: // // FRUNGE sets the Runge data values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { double fx; fx = 1.0 / ( 1.0 + 25.0 * x * x ); return fx; } //****************************************************************************80 double fprunge ( double x ) //****************************************************************************80 // // Purpose: // // FPRUNGE sets the Runge derivative values at the endpoints. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { double bot; double fx; bot = 1.0 + 25.0 * x * x; fx = -50.0 * x / ( bot * bot ); return fx; } //****************************************************************************80 double fpprunge ( double x ) //****************************************************************************80 // // Purpose: // // FPPRUNGE sets the Runge second derivative values at the endpoints. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // { double bot; double fx; bot = 1.0 + 25.0 * x * x; fx = ( -50.0 + 3750.0 * x * x ) / ( bot * bot * bot ); return fx; } //****************************************************************************80 double fcube ( double x ) //****************************************************************************80 // // Purpose: // // FCUBE evaluates a cubic function. // // Discussion: // // Y(X) = ( ( X + 2 ) * X + 3 ) * X + 4 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 February 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the point at which the function is evaluated. // // Output, double FCUBE, the value of the function. // { double fx; fx = ( ( x + 2.0 ) * x + 3.0 ) * x + 4.0; return fx; } //****************************************************************************80 double fpcube ( double x ) //****************************************************************************80 // // Purpose: // // FPCUBE evaluates the derivative of a cubic function. // // Discussion: // // Y(X) = ( ( X + 2 ) * X + 3 ) * X + 4 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 February 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the point at which the function is evaluated. // // Output, double FPCUBE, the value of the derivative of the function. // { double fx; fx = ( 3.0 * x + 4.0 ) * x + 3.0; return fx; } //****************************************************************************80 double fppcube ( double x ) //****************************************************************************80 // // Purpose: // // FPPCUBE evaluates the second derivative of a cubic function. // // Discussion: // // Y(X) = ( ( X + 2 ) * X + 3 ) * X + 4 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 February 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the point at which the function is evaluated. // // Output, double FPPCUBE, the value of the second derivative of the function. // { double fx; fx = 6.0 * x + 4.0; return fx; }