# include # include # include # include # include using namespace std; int main ( ); void timestamp ( ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for SPRING_ODE. // // Discussion: // // This is a simple example of how to plot when you don't have a plotter. // This is a particular kind of "ASCII graphics", or "typewriter graphics" // or "lineprinter graphics", and shows you how valuable an illustration // can be, even when it's as crude as this example. // // Hooke's law for a spring observes that the restoring force is // proportional to the displacement: F = - k x // // Newton's law relates the force to acceleration: F = m a // // Putting these together, we have // // m * d^2 x/dt^2 = - k * x // // We can add a damping force with coefficient c: // // m * d^2 x/dt^2 = - k * x - c * dx/dt // // If we write this as a pair of first order equations for (x,v), we have // // dx/dt = v // m * dv/dt = - k * x - c * v // // and now we can approximate these values for small time steps. // // Note that the plotting assumes that the value of X will always be // between -1 and +1. If the initial condition uses V = 0, and X starts // between -1 and +1, then this will be OK. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 May 2012 // // Author: // // John Burkardt // // Parameters: // // None // { float c; float dt; int i; int j; float k; float m; int n; int p; float t; float t_final; float v; float v_old; float x; float x_old; char z[21]; timestamp ( ); cout << "\n"; cout << "SPRING_ODE\n"; cout << " C++ version\n"; cout << " Approximate the solution of a spring equation.\n"; cout << " Display the solution with line printer graphics.\n"; cout << "\n"; // // Data // m = 1.0; k = 1.0; c = 0.3; t_final = 20.0; n = 100; dt = t_final / ( float ) ( n ); // // Initial conditions. // x = 1.0; v = 0.0; // // Compute the approximate solution at equally spaced times. // for ( i = 0; i <= n; i++ ) { x_old = x; v_old = v; t = ( float ) ( i ) * t_final / ( float ) ( n ); x = x_old + dt * v_old; v = v_old + ( dt / m ) * ( - k * x_old - c * v_old ); // // Approximate the position of X in [-1,+1] to within 1/10. // p = ( int ) ( 10 * ( 1.0 + x ) ); if ( p < 0 ) { p = 0; } else if ( 20 < p ) { p = 20; } // // Fill in the next line of the plot, placing 'x' in the p position. // for ( j = 0; j <= 20; j++ ) { if ( ( i % 10 ) == 0 ) { z[j] = '-'; } else { z[j] = ' '; } } z[0] = '|'; z[5] = '.'; z[10] = '+'; z[15] = '.'; z[20] = '|'; z[p] = 'x'; for ( j = 0; j <= 20; j++ ) { cout << z[j]; } cout << "\n"; } // // Terminate. // cout << "\n"; cout << "SPRING_ODE:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }