// Author : Eric Thiemard // Version : 20.10.99 // This program is an implementation of the method proposed in Eric // Thiemard's paper "An algorithm to compute bounds for the star // discrepancy" submitted to Journal of Complexity. # include # include # include # include # include # include # include using namespace std; // // GLOBAL DATA // typedef struct som sommet; struct som { int id; sommet *pt; }; static int s; static int n; static int num; static int den; static int num2; static int subtotala = 0; static int subtotalb = 0; static int *lexsizealpha; static int *maxsizealpha; static int *lexsizebeta; static int *maxsizebeta; static double epsilon; static double borne_sup = 0.0; static double borne_inf = 0.0; static double *points; static sommet *superarbre; static sommet **lexalpha; static sommet **lexbeta; // // Declaration of routines. // int main ( int argc, char *argv[] ); bool ch_eqi ( char c1, char c2 ); int ch_to_digit ( char c ); double *data_read ( char *file_in_name, int m, int n ); void decomposition ( double *alpha, double *beta, int min, double value ); int explore ( sommet *liste, double *pave, int dim ); int fastexplore ( double *pave, int range, int *maxsize, int *lexsize, sommet **lex, int *subtotal ); int file_column_count ( char *file_in_name ); int file_row_count ( char *file_in_name ); static void file_usage ( ); void freetree ( sommet *noeud ); void initlex ( ); void initparameters ( int argc, char *argv[] ); void insertlex ( sommet *noeud, int range, int *maxsize, int *lexsize, sommet **lex ); double lowbound ( int npoints, double volume, double *pave ); static void memory ( ); void quicksort ( sommet *liste, int dim, int l, int r ); void readfile ( char *filename ); int s_len_trim ( char *s ); double s_to_r8 ( char *s, int *lchar, bool *error ); bool s_to_r8vec ( char *s, int n, double dvec[] ); int s_word_count ( char *s ); sommet *subtree ( sommet *liste, int min, int next, int dim ); void supertree ( ); void timestamp ( ); void traiter ( double *outputalpha, double *outputbeta, int range ); static void usage ( char *exec_name ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for the star discrepancy bound computation. // // Modified: // // 30 September 2003 // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { int i; int j; int n_max; double *oalpha; double *obeta; timestamp ( ); cout << "\n"; cout << "STAR_DISCREPANCY:\n"; cout << " C++ version\n"; cout << "\n"; cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n"; cout << "\n"; cout << " A program to estimate the discrepancy\n"; cout << " of a set of N points in M dimensions.\n"; // // Get the values of EPSILON, N, and FILENAME from the command line. // initparameters ( argc, argv ); // // Get the spatial dimension by reading the file. // s = file_column_count ( argv[3] ); if ( s < 2 ) { cout << "\n"; cout << "STAR_DISCREPANCY - Fatal error!\n"; cout << " The spatial dimension S must be at least 2.\n"; exit ( 1 ); } // // Determine the number of points avaiable in the file. // n_max = file_row_count ( argv[3] ); if ( n_max < n ) { cout << "\n"; cout << "STAR_DISCREPANCY - Fatal error!\n"; cout << " The number of data points requested is N = " << n << ".\n"; cout << " The data file only contains N_MAX = " << n_max << ".\n"; exit ( 1 ); } // // Read the data. // points = data_read ( argv[3], s, n ); // // Make sure the points are in the unit hypercube. // for ( i = 0; i < n; i++ ) { for ( j = 0; j < s; j++ ) { if ( points[j+i*s] < 0.0 || 1.0 < points[j+i*s] ) { cout << "\n"; cout << "STAR_DISCREPANCY - Fatal error!\n"; cout << " Every coordinate of every point must be between 0 and 1.\n"; cout << " However, coordinate " << j << " of point " << i << "\n"; cout << " is equal to " << points[j+i*s] << "\n"; exit ( 1 ); } } } // // Print the points, if there aren't too many. // if ( n <= 20 ) { cout << "\n"; cout << "x = \n"; cout << "{\n"; for ( i = 0; i < n; i++ ) { cout << " {"; for ( j = 0; j < s; j++ ) { cout << setw(10) << points[j+i*s] << " "; } cout << " }\n"; } cout << "}\n"; cout << "\n"; } supertree ( ); initlex ( ); oalpha = (double *) calloc ( (unsigned) s, sizeof(double) ); obeta = (double *) calloc ( (unsigned) s, sizeof(double) ); for ( i = 0; i < s; i++ ) { obeta[i] = 1.0; } decomposition ( oalpha, obeta, 0, 1.0 ); // // Report the results. // cout << "\n"; cout << " S = " << s << "\n"; cout << " Epsilon = " << epsilon << "\n"; cout << " N = " << n << "\n"; cout << "\n"; cout << " Estimate of Discrepancy D_n^*(x):\n"; cout << "\n"; cout << " Lower Upper\n"; cout << " bound bound\n"; cout << "------------ ------------\n"; cout << "\n"; cout << setw(12) << borne_inf << " " << setw(12) << borne_sup << "\n"; // // Terminate. // cout << "\n"; cout << "STAR_DISCREPANCY:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 bool ch_eqi ( char c1, char c2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char C1, char C2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= c1 && c1 <= 122 ) { c1 = c1 - 32; } if ( 97 <= c2 && c2 <= 122 ) { c2 = c2 - 32; } return ( c1 == c2 ); } //****************************************************************************80 int ch_to_digit ( char c ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // C DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char C, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If C was // 'illegal', then DIGIT is -1. // { int digit; // if ( '0' <= c && c <= '9' ) { digit = c - '0'; } else if ( c == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 double *data_read ( char *file_in_name, int m, int n ) //****************************************************************************80 // // Purpose: // // DATA_READ reads coordinate data from a file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with the '#' character are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Modified: // // 30 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *FILE_IN_NAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double DATA_READ[M*N], the point coordinates. // { double *coord; bool error; ifstream file_in; int i; int j; char line[255]; double *x; file_in.open ( file_in_name ); if ( !file_in ) { cout << "\n"; cout << "DATA_READ - Fatal error!\n"; cout << " Could not open the input file: \"" << file_in_name << "\"\n"; exit ( 1 ); } coord = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { file_in.getline ( line, sizeof ( line ) ); if ( file_in.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { coord[i+j*m] = x[i]; } j = j + 1; } file_in.close ( ); delete [] x; return coord; } //****************************************************************************80 void decomposition ( double *alpha, double *beta, int min, double value ) //****************************************************************************80 // // Purpose: // // DECOMPOSITION carries out the decomposition of a subinterval. // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { int i; double pbetaminp = 1.0; double palpha = 1.0; double pbeta; double delta; double *subalpha; double *subbeta; double *gamma; subalpha = (double *) calloc ( (unsigned) s, sizeof(double) ); subbeta = (double *) calloc ( (unsigned) s+1, sizeof(double) ); gamma = (double *) calloc ( (unsigned) s+1, sizeof(double) ); for ( i = min; i < s; i++ ) { pbetaminp = pbetaminp * beta[i]; } pbeta = pbetaminp; for ( i = 0; i < min; i++ ) { pbetaminp = pbetaminp * beta[i]; palpha = palpha * alpha[i]; } pbetaminp = pbetaminp - epsilon; delta = pow ( pbetaminp / ( pbeta * palpha ), 1.0 / ( s - min ) ); for ( i = 0; i < min; i++ ) { gamma[i] = alpha[i]; subalpha[i] = gamma[i]; subbeta[i] = beta[i]; } for ( i = min; i < s; i++ ) { gamma[i] = delta * beta[i]; subalpha[i] = alpha[i]; subbeta[i] = beta[i]; } subbeta[min] = gamma[min]; value = value * delta; if ( epsilon < value ) { for ( i = min; i < s; i++ ) { decomposition ( subalpha, subbeta, i, value ); subalpha[i] = gamma[i]; subbeta[i] = beta[i]; subbeta[i+1] = gamma[i+1]; } } else { for ( i = min; i < s; i++ ) { traiter ( subalpha, subbeta, (i==0)?0:i-1 ); subalpha[i] = gamma[i]; subbeta[i] = beta[i]; subbeta[i+1] = gamma[i+1]; } } traiter ( gamma, beta, s-1 ); free ( gamma ); free ( subalpha ); free ( subbeta ); return; } //****************************************************************************80 int explore ( sommet *liste, double *pave, int dim ) //****************************************************************************80 // // Purpose: // // EXPLORE ??? // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { int i; int min = 1; int max; int next; int total; if ( pave[dim] <= points[dim+(liste[1].id)*s] ) { return 0; } if ( liste[0].id == 1 ) { total = 1; next = liste[1].id; for ( i = dim; i < s; i++ ) { if ( pave[i] <= points[i+next*s] ) { total = 0; break; } } } else { total = 0; max = liste[0].id; if ( dim == s-1 ) { if ( points[dim+(liste[max].id)*s] < pave[dim] ) { total = max; } else { while ( min <= max ) { next = ( min + max + 1 ) / 2; if ( points[dim+(liste[next].id)*s] < pave[dim] ) { total = total + next - min + 1; min = next + 1; } else { max = next - 1; } } } } else { while ( min <= max ) { next = ( ( 1 + min ) * num2 + max * num ) / den; if ( points[dim+(liste[next].id)*s] < pave[dim] ) { if ( liste[next].pt == NULL ) { liste[next].pt = subtree ( liste, min, next, dim+1 ); } total = total + explore ( liste[next].pt, pave, dim+1 ); min = next + 1; } else { max = next - 1; } } } } return total; } //****************************************************************************80 int fastexplore ( double *pave, int range, int *maxsize, int *lexsize, sommet **lex, int *subtotal ) //****************************************************************************80 // // Purpose: // // FASTEXPLORE ??? // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { int j; int i; int min; int max; int next; int start; int size = lexsize[range]; int right; int total = 0; double seuil = pave[range]; sommet refnoeud; sommet *noeud; if ( range == s - 1 ) { for ( i = size-1; 0 <= i; i-- ) { refnoeud = lex[range][i]; noeud = refnoeud.pt; min = refnoeud.id; max = noeud[0].id; if ( max < min ) { lexsize[range]--; lex[range][i] = lex[range][lexsize[range]]; *subtotal = *subtotal + min - 1; } else { total = total + min - 1; right = 1; while ( min <= max ) { next = ( min + max + 1 ) / 2; if ( points[range+(noeud[next].id)*s] < seuil ) { total = total + next - min + 1; min = next + 1; if ( right == 1 ) { lex[range][i].id = min; } } else { right = 0; max = next - 1; } } } } total = total + *subtotal; } else { *subtotal = 0; lexsize[range+1] = 0; for ( i = 0; i < size; i++ ) { refnoeud = lex[range][i]; noeud = refnoeud.pt; start = refnoeud.id; min = 1; max = noeud[0].id; while ( min != start ) { next = ( ( 1 + min ) * num2 + max * num ) / den; insertlex ( noeud[next].pt, range+1, maxsize, lexsize, lex ); total = total + explore ( noeud[next].pt, pave, range+1 ); min = next + 1; } right = 1; while ( min <= max ) { next = ( ( 1 + min ) * num2 + max * num ) / den; if ( points[range+(noeud[next].id)*s] < seuil ) { if ( noeud[next].pt == NULL ) { noeud[next].pt = subtree ( noeud, min, next, range+1 ); } insertlex ( noeud[next].pt, range+1, maxsize, lexsize, lex ); total = total + explore ( noeud[next].pt, pave, range+1 ); min = next + 1; if ( right == 1 ) { if ( range == 0 ) { if ( lex == lexalpha ) { for ( j = lex[range][i].id; j < next; j++ ) { if ( noeud[j].pt != NULL ) { freetree ( noeud[j].pt ); } } } } lex[range][i].id = min; } } else { right = 0; max = next - 1; } } } } return total; } //****************************************************************************80 int file_column_count ( char *file_in_name ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the number of columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file is presumed to consist of NCOLUMN words, separated // by spaces. There may also be some blank lines, and some comment lines, // which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *FILE_IN_NAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { ifstream file_in; bool got_one; char line[256]; int ncolumn; // // Open the file. // file_in.open ( file_in_name ); if ( !file_in ) { ncolumn = -1; cout << "\n"; cout << "FILE_COLUMN_COUNT - Fatal error!\n"; cout << " Could not open the file:\n"; cout << " \"" << file_in_name << "\"\n"; return ncolumn; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { file_in.getline ( line, sizeof ( line ) ); if ( file_in.eof ( ) ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } if ( line[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { file_in.close ( ); file_in.open ( file_in_name ); for ( ; ; ) { file_in.getline ( line, sizeof ( line ) ); if ( file_in.eof ( ) ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } got_one = true; break; } } file_in.close ( ); if ( !got_one ) { cout << "\n"; cout << "FILE_COLUMN_COUNT - Warning!\n"; cout << " The file does not seem to contain any data.\n"; return 0; } ncolumn = s_word_count ( line ); return ncolumn; } //****************************************************************************80 int file_row_count ( char *file_in_name ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *FILE_IN_NAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int bad_num; int comment_num; ifstream file_in; int i; char line[100]; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; bad_num = 0; file_in.open ( file_in_name ); if ( !file_in ) { cout << "\n"; cout << "FILE_ROW_COUNT - Fatal error!\n"; cout << " Could not open the input file: \"" << file_in_name << "\"\n"; exit ( 1 ); } for ( ; ; ) { file_in.getline ( line, sizeof ( line ) ); if ( file_in.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } file_in.close ( ); return row_num; } //****************************************************************************80 static void file_usage ( ) //****************************************************************************80 // // Purpose: // // FILE_USAGE lists the legal input file format. // // Modified: // // 30 September 2003. // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // // Parameters: // // None. // { cout << "\n"; cout << "FILE_USAGE:\n"; cout << " This program requires an input file that defines\n"; cout << " the point set.\n"; cout << " We assume that the points are S-dimensional, and \n"; cout << " that there are N_MAX of them.\n"; cout << "\n"; cout << " We also require that the points be in the unit hypercube.\n"; cout << "\n"; cout << " Then the input file contains N_MAX lines or records.\n"; cout << " Each record contains the S coordinate values of one point.\n"; cout << "\n"; cout << " Comment lines begin with the character \"#\",\n"; cout << " and may occur anywhere in the file.\n"; cout << "\n"; cout << " At runtime, the user specifies N, the number of points\n"; cout << " to be read from the file, which must be less than or\n"; cout << " equal to N_MAX.\n"; cout << "\n"; cout << " Here is an example of a file containing N_MAX = 5\n"; cout << " points in S = 3 dimensions:\n"; cout << "\n"; cout << "# input_3x5.txt\n"; cout << "#\n"; cout << "# Suitable for input to DISCRBOUND.\n"; cout << "# Spatial dimension = 3\n"; cout << "# Number of points = 5\n"; cout << "#\n"; cout << " 0.00 0.20 0.90\n"; cout << " 0.80 0.40 0.30\n"; cout << " 0.20 1.00 0.50\n"; cout << " 0.40 0.60 0.10\n"; cout << " 0.60 0.80 0.70\n"; cout << "\n"; return; } //****************************************************************************80 void freetree ( sommet *noeud ) //****************************************************************************80 // // Purpose: // // FREETREE frees storage associated with a tree. // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { int i; int max = noeud[0].id; for ( i = 1; i <= max; i++ ) { if ( noeud[i].pt != NULL ) { freetree ( noeud[i].pt ); } } free ( noeud ); return; } //****************************************************************************80 void initlex ( ) //****************************************************************************80 // // Purpose: // // INITLEX initializes the lexicon. // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { int i; maxsizealpha = (int *) calloc ( (unsigned) s, sizeof(int) ); for ( i = 0; i < s; i++ ) { maxsizealpha[i] = 1; } lexsizealpha = (int *) calloc ( (unsigned) s, sizeof(int) ); lexsizealpha[0] = 1; lexalpha = (sommet **) calloc ( (unsigned) s, sizeof(sommet *) ); for ( i = 0; i < s; i++ ) { lexalpha[i] = (sommet *) calloc ( (unsigned) maxsizealpha[i], sizeof(sommet) ); } lexalpha[0][0].id = 1; lexalpha[0][0].pt = superarbre; maxsizebeta = (int *) calloc ( (unsigned) s, sizeof(int) ); for ( i = 0; i < s; i++ ) { maxsizebeta[i] = 1; } lexsizebeta = (int *) calloc ( (unsigned) s, sizeof(int) ); lexsizebeta[0] = 1; lexbeta = (sommet **) calloc ( (unsigned) s, sizeof(sommet *) ); for ( i = 0; i < s; i++ ) { lexbeta[i] = (sommet *) calloc ( (unsigned) maxsizebeta[i], sizeof(sommet) ); } lexbeta[0][0].id = 1; lexbeta[0][0].pt = superarbre; return; } //****************************************************************************80 void initparameters ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // INITPARAMETERS sets program parameters based on user input and defaults. // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { if ( ( argc != 4 ) && ( argc != 6 ) ) { usage ( argv[0] ); exit ( 1 ); } epsilon = atof ( argv[1] ); if ( epsilon <= 0.0 || 1.0 <= epsilon ) { cout << "\n"; cout << "INITPARAMETERS: Fatal error!\n"; cout << " The error tolerance EPSILON = " << epsilon << ".\n"; cout << " But EPSILON must be between 0 and 1.\n"; exit ( 1 ); } n = atoi ( argv[2] ); if ( n < 1 ) { usage ( argv[0] ); exit ( 1 ); } if ( argc == 6 ) { num = atoi ( argv[4] ); den = atoi ( argv[5] ); if ( num < 1 || den <= num ) { usage ( argv[0] ); exit ( 1 ); } } else { num = 1; den = 2; } num2 = den - num; return; } //****************************************************************************80 void insertlex ( sommet *noeud, int range, int *maxsize, int *lexsize, sommet **lex ) //****************************************************************************80 // // Purpose: // // INSERTLEX inserts an item into the lexicon. // // Modified: // // 30 September 2003 // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { int i = lexsize[range]; if ( i == maxsize[range] ) { maxsize[range] *= 2; lex[range] = ( sommet * ) realloc ( lex[range], (unsigned) maxsize[range]*sizeof(sommet) ); if ( lex[range] == NULL) { memory(); } } lex[range][i].pt = noeud; lex[range][i].id = 1; lexsize[range] = ++i; return; } //****************************************************************************80 double lowbound ( int npoints, double volume, double *pave ) //****************************************************************************80 // // Purpose: // // LOWBOUND computes the lower bound. // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { int i; int j; double tmp; if ( borne_inf < fabs ( volume - ( (double) npoints / n ) ) ) { if ( volume < ( (double) npoints / n ) ) { volume = 1.0; for ( j = 0; j < s; j++ ) { tmp = 0.0; for ( i = 0; i < n; i++ ) { if ( tmp < points[j+i*s] && points[j+i*s] <= pave[j] ) { tmp = points[j+i*s]; } } volume = volume * tmp; } } else { volume = 1.0; for ( j = 0; j < s; j++ ) { tmp = 1.0; for ( i = 0; i < n; i++ ) { if ( points[j+i*s] < tmp && pave[j] <= points[j+i*s] ) { tmp = points[j+i*s]; } } volume = volume * tmp; } } return fabs ( volume - ( (double) npoints / n ) ); } else { return borne_inf; } } //****************************************************************************80 static void memory ( ) //****************************************************************************80 // // Purpose: // // MEMORY prints a message and terminates on memory allocation errors. // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { cout << "\n"; cout << "MEMORY - Fatal error!\n"; cout << " Memory allocation problem\n"; exit ( 1 ); } //****************************************************************************80 void quicksort ( sommet *liste, int dim, int l, int r ) //****************************************************************************80 // // Purpose: // // QUICKSORT uses Quicksort to sort an array. // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { int i = l; int j = r+1; int tmp; double pivot = points[dim+(liste[l].id)*s]; while ( i < j ) { do i++; while ( i < r && points[dim+(liste[i].id)*s] < pivot ); do j--; while ( pivot < points[dim+(liste[j].id)*s] ); if ( i < j ) { tmp = liste[i].id; liste[i].id = liste[j].id; liste[j].id = tmp; } } tmp = liste[l].id; liste[l].id = liste[j].id; liste[j].id = tmp; if ( l < j-1 ) { quicksort ( liste, dim, l, j-1 ); } if ( j+1 < r ) { quicksort ( liste, dim, j+1, r ); } return; } //****************************************************************************80 int s_len_trim ( char *s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Modified: // // 26 April 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, a pointer to a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; char *t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' ) { return n; } t--; n--; } return n; } //****************************************************************************80 double s_to_r8 ( char *s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Examples: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0^(-9.23) // // Modified: // // 07 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal value. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( char *s, int n, double dvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Modified: // // 19 February 2001 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string to be read. // // Input, int N, the number of values expected. // // Output, double DVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { bool error; int i; int lchar; for ( i = 0; i < n; i++ ) { dvec[i] = s_to_r8 ( s, &lchar, &error ); if ( error ) { return error; } s = s + lchar; } return error; } //****************************************************************************80 int s_word_count ( char *s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int i; int nword; nword = 0; blank = true; while ( *s != NULL ) { if ( *s == ' ' ) { blank = true; } else if ( blank ) { nword = nword + 1; blank = false; } *s++; } return nword; } //****************************************************************************80 sommet *subtree ( sommet *liste, int min, int next, int dim ) //****************************************************************************80 // // Purpose: // // SUBTREE ??? // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { int i; int aux; int n2; sommet *newarbre; aux = min - 1; n2 = next - min + 1; newarbre = (sommet *) calloc ( (unsigned) n2+1, sizeof(sommet) ); if ( newarbre == NULL ) { memory(); } for ( i = 1; i <= n2; i++ ) { newarbre[i].id = liste[i+aux].id; } newarbre[0].id = n2; if ( 1 < n2 ) { quicksort ( newarbre, dim, 1, n2 ); } return newarbre; } //****************************************************************************80 void supertree ( ) //****************************************************************************80 // // Purpose: // // SUPERTREE ??? // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { int i; superarbre = (sommet *) calloc ( (unsigned) n+1, sizeof(sommet) ); if ( superarbre == NULL ) { memory(); } for ( i = 1; i <= n; i++ ) { superarbre[i].id = i - 1; } superarbre[0].id = n; quicksort ( superarbre, 0, 1, n ); return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 void traiter ( double *outputalpha, double *outputbeta, int range ) //****************************************************************************80 // // Purpose: // // TRAITER ??? // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // { int i; double valpha = 1.0; double vbeta = 1.0; double newborne; int nalpha; int nbeta; for ( i = 0; i < s; i++ ) { valpha = valpha * outputalpha[i]; vbeta = vbeta * outputbeta[i]; } nalpha = fastexplore ( outputalpha, range, maxsizealpha, lexsizealpha, lexalpha, &subtotala ); nbeta = fastexplore ( outputbeta, range, maxsizebeta, lexsizebeta, lexbeta, &subtotalb ); newborne = ( (double) nbeta / n ) - valpha; if ( borne_sup < newborne ) { borne_sup = newborne; } newborne = vbeta - ( (double) nalpha / n ); if ( borne_sup < newborne ) { borne_sup = newborne; } borne_inf = lowbound ( nalpha, valpha, outputalpha ); borne_inf = lowbound ( nbeta, vbeta, outputbeta ); return; } //****************************************************************************80 static void usage ( char *exec_name ) //****************************************************************************80 // // Purpose: // // USAGE prints usage information for the program. // // Modified: // // 30 September 2003 // // Reference: // // Eric Thiemard, // An Algorithm to Compute Bounds for the Star Discrepancy, // Journal of Complexity, // Volume 17, pages 850-880, 2001. // // Parameters: // // Input, char *EXEC_NAME, the name of the executable version of this program. // { cout << "\n"; cout << "Usage:\n"; cout << "\n"; cout << " " << exec_name << " EPSILON N FILENAME\n"; cout << "\n"; cout << " EPSILON, accuracy parameter, 0.0 < epsilon < 1.0\n"; cout << " N, number of points, integer, at least 1.\n"; cout << " FILENAME, containing the pointset.\n"; cout << "\n"; cout << " " << exec_name << " EPSILON N FILENAME NUM DEN\n"; cout << "\n"; cout << " Same as above, plus:\n"; cout << "\n"; cout << " NUM, optional balance numerator,\n"; cout << " DEN, optional balance denominator,\n"; cout << " such that 0.0 < NUM / DEN < 1.0\n"; cout << " Default is NUM=1, DEN=2.\n"; return; }