# include # include # include # include # include # include using namespace std; # include "stochastic_diffusion.hpp" //****************************************************************************80 double *diffusivity_1d_xk ( double dc0, int m, double omega[], int n, double x[] ) //****************************************************************************80 // // Purpose: // // DIFFUSIVITY_1D_XK evaluates a 1D stochastic diffusivity function. // // Discussion: // // The 1D diffusion equation has the form // // - d/dx ( DC(X) Del U(X) ) = F(X) // // where DC(X) is a function called the diffusivity. // // In the stochastic version of the problem, the diffusivity function // includes the influence of stochastic parameters: // // - d/dx ( DC(X;OMEGA) d/dx U(X) ) = F(X). // // In this function, the domain is assumed to be the unit interval [0.1]. // // // For DC0 = 1 and F(X) = 0, with boundary conditions U(0:OMEGA) = 0, // U(1;OMEGA) = 1, the exact solution is // // If OMEGA ~= 0: // // U(X;OMEGA) = log ( 1 + OMEGA * X ) / log ( 1 + OMEGA ) // // If OMEGA = 0: // // U(X;OMEGA) = X // // In the numerical experiments described in the paper, OMEGA was taken // to be a random variable with a Beta, or Uniform, or Gaussian or // Poisson or Binomial distribution. // // For the Gaussian and Poisson distributions, the positivity requirement // could not be guaranteed, and the experiments were simply made with a // "small" variance of 0.1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 August 2013 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, George Karniadakis, // Modeling uncertainty in steady state diffusion problems via // generalized polynomial chaos, // Computer Methods in Applied Mechanics and Engineering, // Volume 191, 2002, pages 4927-4948. // // Parameters: // // Input, double DC0, the constant term in the expansion of the // diffusion coefficient. // // Input, int M, the number of stochastic parameters. // // Input, double OMEGA[M], the stochastic parameters. // // Input, int N, the number of evaluation points. // // Input, double X[N], the point where the diffusion coefficient // is to be evaluated. // // Output, double DIFFUSIVITY_1D_XK[N], the value of the diffusion coefficient // at X. // { double *dc; int j; int k; double pi = 3.141592653589793; double w; k = 0; w = 1.0; dc = new double[n]; for ( j = 0; j < n; j++ ) { dc[j] = 0.0; } while ( k < m ) { if ( k < m ) { k = k + 1; for ( j = 0; j < n; j++ ) { dc[j] = dc[j] + omega[k-1] * sin ( w * pi * x[j] ); } } if ( k < m ) { k = k + 1; for ( j = 0; j < n; j++ ) { dc[j] = dc[j] + omega[k-1] * cos ( w * pi * x[j] ); } } w = w + 1.0; } for ( j = 0; j < n; j++ ) { dc[j] = exp ( - 0.125 ) * dc[j]; } for ( j = 0; j < n; j++ ) { dc[j] = dc0 + exp ( dc[j] ); } return dc; } //****************************************************************************80 double *diffusivity_2d_bnt ( double dc0, double omega[], int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // DIFFUSIVITY_2D_BNT evaluates a 2D stochastic diffusivity function. // // Discussion: // // The 2D diffusion equation has the form // // - Del ( DC(X,Y) Del U(X,Y) ) = F(X,Y) // // where DC(X,Y) is a function called the diffusivity. // // In the stochastic version of the problem, the diffusivity function // includes the influence of stochastic parameters: // // - Del ( DC(X,Y;OMEGA) Del U(X,Y;OMEGA) ) = F(X,Y). // // In this function, the domain is the rectangle [-1.5,0]x[-0.4,0.8]. // // The four stochastic parameters OMEGA(1:4) are assumed to be independent // identically distributed random variables with mean value zero and // variance 1. The distribution is typically taken to be Gaussian or // uniform. // // A collocation approach to this problem would then use the roots of // Hermite or Legendre polynomials. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 August 2013 // // Author: // // John Burkardt // // Reference: // // Ivo Babuska, Fabio Nobile, Raul Tempone, // A stochastic collocation method for elliptic partial differential equations // with random input data, // SIAM Journal on Numerical Analysis, // Volume 45, Number 3, 2007, pages 1005-1034. // // Parameters: // // Input, double DC0, the constant term in the expansion of the // diffusion coefficient. Take DC0 = 10. // // Input, double OMEGA[4], the stochastic parameters. // // Input, int N, the number of evaluation points. // // Input, double X[N], Y[N], the points where the diffusion // coefficient is to be evaluated. // // Output, double DIFFUSIVITY_2D_BNT[N], the value of the diffusion // coefficient at (X,Y). // { double *arg; double *dc; int j; double pi = 3.141592653589793; arg = new double[n]; for ( j = 0; j < n; j++ ) { arg[j] = omega[0] * cos ( pi * x[j] ) + omega[1] * sin ( pi * x[j] ) + omega[2] * cos ( pi * y[j] ) + omega[3] * sin ( pi * y[j] ); } for ( j = 0; j < n; j++ ) { arg[j] = exp ( - 0.125 ) * arg[j]; } dc = new double[n]; for ( j = 0; j < n; j++ ) { dc[j] = dc0 + exp ( arg[j] ); } delete [] arg; return dc; } //****************************************************************************80 double *diffusivity_2d_elman ( double a, double cl, double dc0, int m_1d, double omega[], int n1, int n2, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // DIFFUSIVITY_2D_ELMAN evaluates a 2D stochastic diffusivity function. // // Discussion: // // The 2D diffusion equation has the form // // - Del ( DC(X,Y) Del U(X,Y) ) = F(X,Y) // // where DC(X,Y) is a function called the diffusivity. // // In the stochastic version of the problem, the diffusivity function // includes the influence of stochastic parameters: // // - Del ( DC(X,Y;OMEGA) Del U(X,Y;OMEGA) ) = F(X,Y). // // In this function, the domain is assumed to be the square [-A,+A]x[-A,+A]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 August 2013 // // Author: // // John Burkardt // // Reference: // // Howard Elman, Darran Furnaval, // Solving the stochastic steady-state diffusion problem using multigrid, // IMA Journal on Numerical Analysis, // Volume 27, Number 4, 2007, pages 675-688. // // Roger Ghanem, Pol Spanos, // Stochastic Finite Elements: A Spectral Approach, // Revised Edition, // Dover, 2003, // ISBN: 0486428184, // LC: TA347.F5.G56. // // Parameters: // // Input, double A, the "radius" of the square region. The region // is assumed to be [-A,+A]x[-A,+A]. // 0 < A. // // Input, double CL, the correlation length. // 0 < CL. // // Input, double DC0, the constant term in the expansion of the // diffusion coefficient. Take DC0 = 10. // // Input, int M_1D, the first and second dimensions of the // stochastic parameter array. // // Input, double OMEGA[M_1D*M_1D], the stochastic parameters. // // Input, int N1, N2, the dimensions of the X and Y arrays. // // Input, double X[N1*N2], Y[N1*N2], the points where the diffusion // coefficient is to be evaluated. // // Output, double DIFFUSIVITY_2D_ELMAN[N1*N2], the value of the diffusion // coefficient at X. // { double *c_1dx; double *c_1dy; double *dc; int i; int i1; int i2; int j; int k; double *lambda_1d; int m; double *theta_1d; m = m_1d * m_1d; // // Compute THETA. // theta_1d = theta_solve ( a, cl, m_1d ); // // Compute LAMBDA_1D. // lambda_1d = new double[m_1d]; for ( i = 0; i < m_1d; i++ ) { lambda_1d[i] = 2.0 * cl / ( 1.0 + cl * cl * theta_1d[i] * theta_1d[i] ); } // // Compute C_1DX(1:M1D) and C_1DY(1:M1D) at (X,Y). // c_1dx = new double[m_1d*n1*n2]; c_1dy = new double[m_1d*n1*n2]; for ( k = 0; k < n2; k++ ) { for ( j = 0; j < n1; j++ ) { for ( i = 0; i < m_1d; i++ ) { c_1dx[i+j*m_1d+k*m_1d*n1] = 0.0; c_1dy[i+j*m_1d+k*m_1d*n1] = 0.0; } } } i = 0; for ( ; ; ) { if ( m_1d <= i ) { break; } for ( k = 0; k < n2; k++ ) { for ( j = 0; j < n1; j++ ) { c_1dx[i+j*m_1d+k*m_1d*n1] = cos ( theta_1d[i] * a * x[j+k*n1] ) / sqrt ( a + sin ( 2.0 * theta_1d[i] * a ) / ( 2.0 * theta_1d[i] ) ); c_1dy[i+j*m_1d+k*m_1d*n1] = cos ( theta_1d[i] * a * y[j+k*n1] ) / sqrt ( a + sin ( 2.0 * theta_1d[i] * a ) / ( 2.0 * theta_1d[i] ) ); } } i = i + 1; if ( m_1d <= i ) { break; } for ( k = 0; k < n2; k++ ) { for ( j = 0; j < n1; j++ ) { c_1dx[i+j*m_1d+k*m_1d*n1] = sin ( theta_1d[i] * a * x[j+k*n1] ) / sqrt ( a - sin ( 2.0 * theta_1d[i] * a ) / ( 2.0 * theta_1d[i] ) ); c_1dy[i+j*m_1d+k*m_1d*n1] = sin ( theta_1d[i] * a * y[j+k*n1] ) / sqrt ( a - sin ( 2.0 * theta_1d[i] * a ) / ( 2.0 * theta_1d[i] ) ); } } i = i + 1; } // // Evaluate the diffusion coefficient DC at (X,Y). // dc = new double[n1*n2]; for ( k = 0; k < n2; k++ ) { for ( j = 0; j < n1; j++ ) { dc[j+k*n1] = dc0; for ( i2 = 0; i2 < m_1d; i2++ ) { for ( i1 = 0; i1 < m_1d; i1++ ) { dc[j+k*n1] = dc[j+k*n1] + sqrt ( lambda_1d[i1] * lambda_1d[i2] ) * c_1dx[i1+j*m_1d+k*m_1d*n1] * c_1dy[i2+j*m_1d+k*m_1d*n1] * omega[i1+i2*m_1d]; } } } } delete [] c_1dx; delete [] c_1dy; delete [] lambda_1d; delete [] theta_1d; return dc; } //****************************************************************************80 double *diffusivity_2d_ntw ( double cl, double dc0, int m, double omega[], int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // DIFFUSIVITY_2D_NTW evaluates a 2D stochastic diffusivity function. // // Discussion: // // The 2D diffusion equation has the form // // - Del ( DC(X,Y) Del U(X,Y) ) = F(X,Y) // // where DC(X,Y) is a function called the diffusivity. // // In the stochastic version of the problem, the diffusivity function // includes the influence of stochastic parameters: // // - Del ( DC(X,Y;OMEGA) Del U(X,Y;OMEGA) ) = F(X,Y). // // In this function, the domain is the rectangle [0,D]x[0,D] where D = 1. // // Note that in this problem the diffusivity has a one-dimensional // spatial dependence on X, but not on Y // // The random variables OMEGA are independent, have zero mean and unit // variance, and are uniformly distributed in [-sqrt(3),+sqrt(3)]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 August 2013 // // Author: // // John Burkardt // // Reference: // // Xiang Ma, Nicholas Zabaras, // An adaptive hierarchical sparse grid collocation algorithm for the solution // of stochastic differential equations, // Journal of Computational Physics, // Volume 228, pages 3084-3113, 2009. // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // // Parameters: // // Input, double CL, the desired physical correlation length for // the coefficient. // // Input, double DC0, the constant term in the expansion of the // diffusion coefficient. Take DC0 = 0.5. // // Input, int M, the number of terms in the expansion. // // Input, double OMEGA[M], the stochastic parameters. // // Input, int N, the number of evaluation points. // // Input, double X[N], Y[N], the points where the diffusion // coefficient is to be evaluated. // // Output, double DIFFUSIVITY_2D_NTW[N], the value of the diffusion coefficient // at (X,Y). // { double d; double *dc; double *dc_arg; int i; double ihalf_r8; int j; double l; double lj; double lp; double *phi; double pi = 3.141592653589793; double zeta; double zeta_arg; d = 1.0; lp = r8_max ( d, 2.0 * cl ); l = cl / lp; dc_arg = new double[n]; for ( j = 0; j < n; j++ ) { dc_arg[j] = 1.0 + omega[0] * sqrt ( sqrt ( pi ) * l / 2.0 ); } dc = new double[n]; phi = new double[n]; for ( i = 2; i <= m; i++ ) { ihalf_r8 = ( double ) ( i / 2 ); zeta_arg = - pow ( ihalf_r8 * pi * l, 2 ) / 8.0; zeta = sqrt ( sqrt ( pi ) * l ) * exp ( zeta_arg ); if ( ( i % 2 ) == 0 ) { for ( j = 0; j < n; j++ ) { phi[j] = sin ( ihalf_r8 * pi * x[j] / lp ); } } else { for ( j = 0; j < n; j++ ) { phi[j] = cos ( ihalf_r8 * pi * x[j] / lp ); } } for ( j = 0; j < n; j++ ) { dc_arg[j] = dc_arg[j] + zeta * phi[j] * omega[i-1]; } } for ( j = 0; j < n; j++ ) { dc[j] = dc0 + exp ( dc_arg[j] ); } delete [] dc_arg; delete [] phi; return dc; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double r8mat_max ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_MAX returns the maximum entry of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 May 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Output, double R8MAT_MAX, the maximum entry of A. // { int i; int j; double value; value = a[0+0*m]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( value < a[i+j*m] ) { value = a[i+j*m]; } } } return value; } //****************************************************************************80 double *r8vec_linspace_new ( int n, double a_first, double a_last ) //****************************************************************************80 // // Purpose: // // R8VEC_LINSPACE_NEW creates a vector of linearly spaced values. // // Discussion: // // An R8VEC is a vector of R8's. // // 4 points evenly spaced between 0 and 12 will yield 0, 4, 8, 12. // // In other words, the interval is divided into N-1 even subintervals, // and the endpoints of intervals are used as the points. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A_FIRST, A_LAST, the first and last entries. // // Output, double R8VEC_LINSPACE_NEW[N], a vector of linearly spaced data. // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = ( a_first + a_last ) / 2.0; } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - 1 - i ) * a_first + ( double ) ( i ) * a_last ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 double r8vec_max ( int n, double r8vec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MAX returns the value of the maximum element in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double R8VEC[N], a pointer to the first entry of the array. // // Output, double R8VEC_MAX, the value of the maximum element. This // is set to 0.0 if N <= 0. // { int i; double value; value = r8vec[0]; for ( i = 1; i < n; i++ ) { if ( value < r8vec[i] ) { value = r8vec[i]; } } return value; } //****************************************************************************80 void r8vec_mesh_2d ( int nx, int ny, double xvec[], double yvec[], double xmat[], double ymat[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MESH_2D creates a 2D mesh from X and Y vectors. // // Discussion: // // An R8VEC is a vector of R8's. // // NX = 2 // XVEC = ( 1, 2, 3 ) // NY = 3 // YVEC = ( 4, 5 ) // // XMAT = ( // 1, 2, 3 // 1, 2, 3 ) // // YMAT = ( // 4, 4, 4 // 5, 5, 5 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 July 2013 // // Parameters: // // Input, int NX, NY, the number of X and Y values. // // Input, double XVEC[NX], YVEC[NY], the X and Y coordinate // values. // // Output, double XMAT[NX*NY], YMAT[NX*NY], the coordinate // values of points on an NX by NY mesh. // { int i; int j; for ( j = 0; j < ny; j++ ) { for ( i = 0; i < nx; i++ ) { xmat[i+j*nx] = xvec[i]; } } for ( j = 0; j < ny; j++ ) { for ( i = 0; i < nx; i++ ) { ymat[i+j*nx] = yvec[j]; } } return; } //****************************************************************************80 double *r8vec_normal_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_NORMAL_01_NEW returns a unit pseudonormal R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // The standard normal probability distribution function (PDF) has // mean 0 and standard deviation 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of values desired. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_NORMAL_01_NEW[N], a sample of the standard normal PDF. // // Local parameters: // // Local, double R[N+1], is used to store some uniform random values. // Its dimension is N+1, but really it is only needed to be the // smallest even number greater than or equal to N. // // Local, int X_LO, X_HI, records the range of entries of // X that we need to compute. // { int i; int m; const double pi = 3.141592653589793; double *r; double *x; int x_hi; int x_lo; x = new double[n]; // // Record the range of X we need to fill in. // x_lo = 1; x_hi = n; // // If we need just one new value, do that here to avoid null arrays. // if ( x_hi - x_lo + 1 == 1 ) { r = r8vec_uniform_01_new ( 2, seed ); x[x_hi-1] = sqrt ( -2.0 * log ( r[0] ) ) * cos ( 2.0 * pi * r[1] ); delete [] r; } // // If we require an even number of values, that's easy. // else if ( ( x_hi - x_lo + 1 ) % 2 == 0 ) { m = ( x_hi - x_lo + 1 ) / 2; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2*m-2; i = i + 2 ) { x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); x[x_lo+i ] = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * pi * r[i+1] ); } delete [] r; } // // If we require an odd number of values, we generate an even number, // and handle the last pair specially, storing one in X(N), and // saving the other for later. // else { x_hi = x_hi - 1; m = ( x_hi - x_lo + 1 ) / 2 + 1; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2*m-4; i = i + 2 ) { x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); x[x_lo+i ] = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * pi * r[i+1] ); } i = 2*m - 2; x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); delete [] r; } return x; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 void r8vec_uniform_01 ( int n, int &seed, double r[] ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01 returns a unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double *theta_solve ( double a, double cl, int m ) //****************************************************************************80 // // Purpose: // // THETA_SOLVE solves a pair of transcendental equations. // // Discussion: // // The vector THETA returned by this function is needed in order to define // the terms in a Karhunen-Loeve expansion of a diffusion coefficient. // // The two equations are: // // 1/CL - THETA * TAN ( A * THETA ) = 0 // THETA - 1/CL * TAN ( A * THETA ) = 0 // // A and CL are taken to be positive. Over each open interval // // ( n - 1/2 pi, n + 1/2 pi ) / A, for N = 0, 1, ... // // the function TAN ( A * THETA ) monotonically rises from -oo to +00; // therefore, it can be shown that there is one root of each equation // in every interval of this form. Moreover, because of the positivity // of A and CL, we can restrict our search to the interval // // [ n pi, n + 1/2 pi ) / A, for N = 0, 1, ... // // This function computes K such roots, starting in the first interval, // finding those two roots, moving to the next interval, and so on, until // the requested number of roots have been found. Odd index roots will // correspond to the first equation, and even index roots to the second. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 August 2013 // // Author: // // John Burkardt // // Reference: // // Howard Elman, Darran Furnival, // Solving the Stochastic Steady-State Diffusion Problem Using Multigrid, // University of Maryland Department of Computer Science, // Technical Report TR-4786. // // Parameters: // // Input, double A, the "radius" of the domain, D = (-A,A)x(-A,A). // 0 < A. // // Input, double CL, the correlation length. // 0 < CL. // // Input, int M, the number of values to compute. // // Output, double THETA_SOLVE[M], the values of Theta. // { double bmatol; double eps; double fa; double fb; double fc; double ftol; int k; double pi = 3.141592653589793; double *theta; double xa; double xa_init; double xb; double xb_init; double xc; theta = new double[m]; for ( k = 0; k < m; k++ ) { theta[k] = 0.0; } // // [ XA_INIT, XB_INIT] = [ n * pi, n+1/2 pi ] / a, n = 0, 1, 2, ... // xa_init = 0.0; xb_init = ( pi / 2.0 ) / a; eps = r8_epsilon ( ); k = 0; for ( ; ; ) { // // Seek root of equation 1 in interval. // if ( m <= k ) { break; } k = k + 1; xa = xa_init; fa = 1.0 / cl - xa * tan ( a * xa ); ftol = eps * ( fabs ( fa ) + 1.0 ); xb = xb_init; fb = - fa; fc = fa; bmatol = 100.0 * eps * ( fabs ( xa ) + fabs ( xb ) ); while ( bmatol < xb - xa ) { xc = ( xa + xb ) / 2.0; fc = 1.0 / cl - xc * tan ( a * xc ); if ( fabs ( fc ) <= ftol ) { break; } else if ( 0.0 < fc ) { xa = xc; } else { xb = xc; } } theta[k-1] = xc; // // Seek root of equation 2 in interval. // if ( m <= k ) { break; } k = k + 1; // // In the first interval, we need to skip the zero root of equation 2. // if ( k == 2 ) { k = k - 1; } else { xa = xa_init; fa = xa - tan ( a * xa ) / cl; ftol = eps * ( fabs ( fa ) + 1.0 ); xb = xb_init; fb = - fa; while ( bmatol < xb - xa ) { xc = ( xa + xb ) / 2.0; fc = xc - tan ( a * xc ) / cl; if ( fabs ( fc ) <= ftol ) { break; } else if ( 0.0 < fc ) { xa = xc; } else { xb = xc; } } theta[k-1] = xc; } // // Advance the interval. // xa_init = xa_init + pi / a; xb_init = xb_init + pi / a; } return theta; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }