# include # include # include # include # include # include using namespace std; # include "stroud.hpp" //****************************************************************************80 double ball_f1_nd ( double func ( int n, double x[] ), int n, double center[], double r ) //****************************************************************************80 // // Purpose: // // BALL_F1_ND approximates an integral inside a ball in ND. // // Integration region: // // sum ( X(1:N) - CENTER(1:N) )^2 <= R * R. // // Discussion: // // An (N+1)*2^N point 5-th degree formula is used, Stroud number SN:5-6. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the user supplied // function which evaluates F at the N-vector X. // // Input, int N, the dimension of the space. // // Input, double CENTER[N], the center of the ball. // // Input, double R, the radius of the ball. // // Output, double BALL_F1_ND, the approximate integral of the function. // { int i; int ihi; int itemp; int j; int k; int khi; int ktemp; double quad; double result; double t; double temp; double u; double u2; double v; double volume; double w; double *x; double y; if ( r == 0.0 ) { result = 0.0; return result; } x = new double[n]; u2 = ( 1.0 - 2.0 * sqrt ( 1.0 / ( double ) ( n + 4 ) ) ) / ( double ) ( n + 2 ); u = sqrt ( u2 ); for ( i = 0; i < n; i++ ) { x[i] = center[i] - r * u; } w = 1.0 / ( double ) ( ( n + 1 ) * i4_power ( 2, n ) ); quad = 0.0; ihi = i4_power ( 2, n ); for ( i = 0; i < ihi; i++ ) { itemp = i; for ( j = 0; j < n; j++ ) { u = ( center[j] - x[j] ) / r; if ( ( itemp % 2 ) == 1 ) { x[j] = center[j] - fabs ( x[j] - center[j] ); } else { x[j] = center[j] + fabs ( x[j] - center[j] ); } itemp = itemp / 2; } quad = quad + w * func ( n, x ); } temp = sqrt ( ( double ) ( n + 4 ) ); t = sqrt ( 2.0 * ( double ) ( n + 1 ) / ( double ) ( n + 2 ) ) / ( ( double ) ( n ) * temp );; y = ( 1.0 + 2.0 / ( ( double ) ( n ) * temp ) ) / ( double ) ( n + 2 ); v = sqrt ( y - t ); u = sqrt ( y + ( double ) ( n - 1 ) * t ); khi = i4_power ( 2, n ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { x[j] = center[j] - r * v; } x[i] = center[i] - r * u; for ( k = 0; k < khi; k++ ) { ktemp = k; for ( j = 0; j < n; j++ ) { if ( ( ktemp % 2 ) == 1 ) { x[j] = center[j] - fabs ( x[j] - center[j] ); } else { x[j] = center[j] + fabs ( x[j] - center[j] ); } ktemp = ktemp / 2; } quad = quad + w * func ( n, x ); } x[i] = center[i] - r * v; } volume = ball_volume_nd ( n, r ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double ball_f3_nd ( double func ( int n, double x[] ), int n, double center[], double r ) //****************************************************************************80 // // Purpose: // // BALL_F3_ND approximates an integral inside a ball in ND. // // Integration region: // // sum ( X(1:N) - CENTER(1:N) )^2 <= R * R. // // Discussion: // // A 2**(N+1)-1 point 5-th degree formula is used, Stroud number SN:5-4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the user supplied // function which evaluates F at the N-vector X. // // Input, int N, the dimension of the space. // // Input, double CENTER[N], the center of the ball. // // Input, double R, the radius of the ball. // // Output, double BALL_F3_ND, the approximate integral of the function. // { int i; int j; int jhi; int jtemp; int k; double quad; double result; double ri; double s; double volume; double weight; double *x; if ( r == 0.0 ) { result = 0.0; return result; } x = new double[n]; quad = 0.0; // // The first point is the center of the ball. // for ( i = 0; i < n; i++ ) { x[i] = center[i]; } weight = 4.0 / ( double ) ( i4_power ( n + 2, 2 ) ); quad = quad + weight * func ( n, x ); s = 1.0 / sqrt ( ( double ) ( n + 4 ) ); for ( i = 0; i < n; i++ ) { ri = sqrt ( ( double ) ( i + 3 ) / ( double ) ( n + 4 ) ); // // Set up the first point, with (I) zeroes, RI, and then N-I-1 S's. // for ( j = 0; j < n; j++ ) { if ( j < i ) { x[j] = center[j]; } else if ( j == i ) { x[j] = center[j] + r * ri; } else { x[j] = center[j] + r * s; } } weight = pow ( 2.0, i + 1 - n ) * ( double ) ( n + 4 ) / ( double ) ( ( i + 2 ) * ( i + 3 ) * ( n + 2 ) ); // // Now go through all sign permutations of the basic point. // jhi = i4_power ( 2, n - i ); for ( j = 0; j < jhi; j++ ) { jtemp = j; for ( k = i; k < n; k++ ) { if ( ( jtemp % 2 ) == 1 ) { x[k] = center[k] - fabs ( x[k] - center[k] ); } else { x[k] = center[k] + fabs ( x[k] - center[k] ); } jtemp = jtemp / 2; } quad = quad + weight * func ( n, x ); } } volume = ball_volume_nd ( n, r ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double ball_monomial_nd ( int n, int p[], double r ) //****************************************************************************80 // // Purpose: // // BALL_MONOMIAL_ND integrates a monomial on a ball in ND. // // Integration region: // // sum ( X(1:N)^2 ) <= R * R // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 March 2008 // // Author: // // John Burkardt // // Reference: // // Gerald Folland, // How to Integrate a Polynomial Over a Sphere, // American Mathematical Monthly, // Volume 108, Number 5, May 2001, pages 446-448. // // Parameters: // // Input, int N, the dimension of the space. // // Input, int P[N], the exponents of X(1) through X(N) in the monomial. // The exponents must be nonnegative. // // Input, double R, the radius of the ball. // // Output, double BALL_MONOMIAL_ND, the integral of // X1**P(1)*X2**P(2)*...*XN**P(N) over the ball. // { int i; double power; double value; power = ( double ) ( n ); for ( i = 0; i < n; i++ ) { power = power + ( double ) p[i]; } value = sphere_unit_monomial_nd ( n, p ) * pow ( r, power ) / power; return value; } //****************************************************************************80 double ball_unit_07_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // BALL_UNIT_07_3D approximates an integral inside the unit ball in 3D. // // Integration region: // // X*X + Y*Y + Z*Z <= 1. // // Discussion: // // A 64 point 7-th degree formula is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of // the user supplied function which evaluates F(X,Y,Z). // // Output, double BALL_UNIT_07_3D, the approximate integral of the function. // { int order = 4; double angle; int i; int j; int k; double pi = 3.141592653589793; double quad; double result; double volume; double w; double weight1[4] = { 0.19455533421780251826, 0.13877799911553081506, 0.13877799911553081506, 0.19455533421780251826 }; double weight2[4]; double weight3[4]; double x; double xtab1[4] = { -0.906179845938663992797626878299, -0.538469310105683091036314420700, 0.538469310105683091036314420700, 0.906179845938663992797626878299 }; double xtab2[4]; double xtab3[4]; double y; double z; // // Set XTAB2 and WEIGHT2. // for ( j = 0; j < order; j++ ) { angle = pi * ( double ) ( 2 * j - 1 ) / ( double ) ( 2 * order ); xtab2[j] = cos ( angle ); } for ( j = 0; j < order; j++ ) { weight2[j] = 1.0; } // // Set XTAB3 and WEIGHT3 for the interval [-1,1]. // legendre_set ( order, xtab3, weight3 ); w = 3.0 / 16.0; quad = 0.0; for ( i = 0; i < order; i++ ) { for ( j = 0; j < order; j++ ) { for ( k = 0; k < order; k++ ) { x = xtab1[i] * sqrt ( 1.0 - xtab2[j] * xtab2[j] ) * sqrt ( 1.0 - xtab3[k] * xtab3[k] ); y = xtab1[i] * xtab2[j] * sqrt ( 1.0 - xtab3[k] * xtab3[k] ); z = xtab1[i] * xtab3[k]; quad = quad + w * weight1[i] * weight2[j] * weight3[k] * func ( x, y, z ); } } } volume = ball_unit_volume_3d ( ); result = quad * volume; return result; } //****************************************************************************80 double ball_unit_14_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // BALL_UNIT_14_3D approximates an integral inside the unit ball in 3D. // // Integration region: // // X*X + Y*Y + Z*Z <= 1. // // Discussion: // // A 288 point 14-th degree formula is used, Stroud number S3:14-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of // the user supplied function which evaluates F(X,Y,Z). // // Output, double RESULT, the approximate integral of the function. // { int i; int j; int k; int l; int m; int n; double quad; double r[4] = { 0.968160240, 0.836031107, 0.613371433, 0.324253423 }; double result; double temp; double volume; double w1; double w2; double weight[4] = { 0.076181268, 0.126263673, 0.098048133, 0.032840260 }; double x; double xtab[5] = { -0.151108275, 0.315838353, 0.346307112, -0.101808787, -0.409228403 }; double y; double ytab[5] = { 0.155240600, 0.257049387, 0.666277790, 0.817386065, 0.501547712 }; double z; double ztab[5] = { 0.976251323, 0.913330032, 0.660412970, 0.567022920, 0.762221757 }; quad = 0.0; for ( m = 0; m < 4; m++ ) { w1 = 125.0 * weight[m] / 3360.0; x = 0.525731112 * r[m]; y = 0.850650808 * r[m]; z = 0.0; for ( j = 0; j < 2; j++ ) { x = -x; for ( k = 0; k < 2; k++ ) { y = -y; for ( l = 0; l < 3; l++ ) { temp = z; z = y; y = x; x = temp; quad = quad + w1 * func ( x, y, z ); } } } w2 = 143.0 * weight[m] / 3360.0; for ( n = 0; n < 5; n++ ) { x = xtab[n] * r[m]; y = ytab[n] * r[m]; z = ztab[n] * r[m]; for ( i = 0; i < 3; i++ ) { temp = x; x = z; z = -y; y = -temp; for ( j = 0; j < 3; j++ ) { temp = z; z = y; y = x; x = temp; quad = quad + w2 * func ( x, y, z ); } y = -y; z = -z; quad = quad + w2 * func ( x, y, z ); } } } volume = ball_unit_volume_3d ( ); result = quad * volume; return result; } //****************************************************************************80 double ball_unit_15_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // BALL_UNIT_15_3D approximates an integral inside the unit ball in 3D. // // Integration region: // // X * X + Y * Y + Z * Z <= 1. // // Discussion: // // A 512 point 15-th degree formula is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 October 2000 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function which evaluates F(X,Y,Z). // // Output, double BALL_UNIT_15_3D, the approximate integral of the function. // { double cj; double ck; int i; int j; int k; int order1 = 4; int order2 = 8; double pi = 3.141592653589793; double quad; double result; double sj; double sk; double volume; double w; double weight1[4] = { 0.0328402599, 0.0980481327, 0.1262636728, 0.0761812678 }; double *weight2; double x; double xtab1[4] = { 0.3242534234, 0.6133714327, 0.8360311073, 0.9681602395 }; double *xtab2; double y; double z; xtab2 = new double[order2]; weight2 = new double[order2]; legendre_set ( order2, xtab2, weight2 ); w = 3.0 / 32.0; quad = 0.0; for ( i = 0; i < order1; i++ ) { for ( j = 0; j < order2; j++ ) { sj = xtab2[j]; cj = sqrt ( 1.0 - sj * sj ); for ( k = 1; k <= 16; k++ ) { sk = sin ( ( double ) ( k ) * pi / 8.0 ); ck = cos ( ( double ) ( k ) * pi / 8.0 ); x = xtab1[i] * cj * ck; y = xtab1[i] * cj * sk; z = xtab1[i] * sj; quad = quad + w * weight1[i] * weight2[j] * func ( x, y, z ); } } } volume = ball_unit_volume_3d ( ); result = quad * volume; delete [] xtab2; delete [] weight2; return result; } //****************************************************************************80 double ball_unit_f1_nd ( double func ( int n, double x[] ), int n ) //****************************************************************************80 // // Purpose: // // BALL_UNIT_F1_ND approximates an integral inside the unit ball in ND. // // Integration region: // // sum ( X(1:N)^2 ) <= 1. // // Discussion: // // An (N+1)*2^N point 5-th degree formula is used, Stroud number SN:5-6. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function which evaluates F at the N-vector X. // // Input, int N, the dimension of the space. // // Output, double BALL_UNIT_F1_ND, the approximate integral of the function. // { int i; int ihi; int itemp; int j; int k; int khi; int ktemp; double quad; double result; double t; double temp; double u; double u2; double v; double volume; double w; double *x; double y; x = new double[n]; u2 = ( 1.0 - 2.0 * sqrt ( 1.0 / ( double ) ( n + 4 ) ) ) / ( double ) ( n + 2 ); u = sqrt ( u2 ); for ( i = 0; i < n; i++ ) { x[i] = - u; } w = 1.0 / ( double ) ( ( n + 1 ) * i4_power ( 2, n ) ); quad = 0.0; ihi = i4_power ( 2, n ); for ( i = 0; i < ihi; i++ ) { itemp = i; for ( j = 0; j < n; j++ ) { if ( ( itemp % 2 ) == 1 ) { x[j] = - fabs ( x[j] ); } else { x[j] = fabs ( x[j] ); } itemp = itemp / 2; } quad = quad + w * func ( n, x ); } temp = sqrt ( ( double ) ( n + 4 ) ); t = sqrt ( 2.0 * ( double ) ( n + 1 ) / ( double ) ( n + 2 ) ) / ( ( double ) ( n ) * temp ); y = ( 1.0 + 2.0 / ( ( double ) ( n ) * temp ) ) / ( double ) ( n + 2 ); v = sqrt ( y - t ); u = sqrt ( y + ( double ) ( n - 1 ) * t ); khi = i4_power ( 2, n ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { x[j] = -v; } x[i] = - u; for ( k = 0; k < khi; k++ ) { ktemp = k; for ( j = 0; j < n; j++ ) { if ( ( ktemp % 2 ) == 1 ) { x[j] = - fabs ( x[j] ); } else { x[j] = fabs ( x[j] ); } ktemp = ktemp / 2; } quad = quad + w * func ( n, x ); } x[i] = - v; } volume = ball_unit_volume_nd ( n ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double ball_unit_f3_nd ( double func ( int n, double x[] ), int n ) //****************************************************************************80 // // Purpose: // // BALL_UNIT_F3_ND approximates an integral inside the unit ball in ND. // // Integration region: // // sum ( X(1:N)^2 ) <= 1. // // Discussion: // // A 2^(N+1)-1 point 5-th degree formula is used, Stroud number SN:5-4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function which evaluates F at the N-vector X. // // Input, int N, the dimension of the space. // // Output, double BALL_UNIT_F3_ND, the approximate integral of the function. // { int i; int j; int jtemp; int k; double quad; double result; double ri; double s; double volume; double weight; double *x; quad = 0.0; // // The first point is the center of the ball. // x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = 0.0; } weight = 4.0 / ( double ) ( ( n + 2 ) * ( n + 2 ) ); quad = quad + weight * func ( n, x ); s = 1.0 / sqrt ( ( double ) ( n + 4 ) ); for ( i = 0; i < n; i++ ) { ri = sqrt ( ( double ) ( i + 3 ) / ( double ) ( n + 4 ) ); // // Set up the first point, with (I-1) zeroes, RI, and then N-I S's. // for ( j = 0; j < n; j++ ) { if ( j < i ) { x[j] = 0.0; } else if ( j == i ) { x[j] = ri; } else { x[j] = s; } } weight = pow ( 2.0, i + 1 - n ) * ( double ) ( n + 4 ) / ( double ) ( ( i + 2 ) * ( i + 3 ) * ( n + 2 ) ); // // Now go through all sign permutations of the basic point. // for ( j = 0; j < i4_power ( 2, n - i ); j++ ) { jtemp = j; for ( k = i; k < n; k++ ) { if ( ( jtemp % 2 ) == 1 ) { x[k] = - fabs ( x[k] ); } else { x[k] = fabs ( x[k] ); } jtemp = jtemp / 2; } quad = quad + weight * func ( n, x ); } } volume = ball_unit_volume_nd ( n ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double ball_unit_volume_3d ( ) //****************************************************************************80 // // Purpose: // // BALL_UNIT_VOLUME_3D computes the volume of the unit ball in 3D. // // Integration region: // // X * X + Y * Y + Z * Z <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 March 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double BALL_UNIT_VOLUME_3D, the volume of the ball. // { double pi = 3.141592653589793; double value; value = ( 4.0 / 3.0 ) * pi; return value; } //****************************************************************************80 double ball_unit_volume_nd ( int n ) //****************************************************************************80 // // Purpose: // // BALL_UNIT_VOLUME_ND computes the volume of the unit ball in ND. // // Integration region: // // sum ( X(1:N)^2 ) <= 1. // // Discussion: // // N Volume // // 2 PI // 3 (4/3) * PI // 4 (1/2) * PI^2 // 5 (8/15) * PI^2 // 6 (1/6) * PI^3 // 7 (16/105) * PI^3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the space. // // Output, double BALL_UNIT_VOLUME_ND, the volume of the ball. // { int i; int m; double pi = 3.141592653589793; double volume; if ( ( n % 2 ) == 0 ) { m = n / 2; volume = pow ( pi, m ); for ( i = 1; i <= m; i++ ) { volume = volume / ( double ) ( i ); } } else { m = ( n - 1 ) / 2; volume = pow ( pi, m ) * i4_power ( 2, n ); for ( i = m + 1; i <= 2 * m + 1; i++ ) { volume = volume / ( double ) ( i ); } } return volume; } //****************************************************************************80 double ball_volume_3d ( double r ) //****************************************************************************80 // // Purpose: // // BALL_VOLUME_3D computes the volume of a ball in 3D. // // Integration region: // // X*X + Y*Y + Z*Z <= R * R // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the ball. // // Output, double BALL_VOLUME_3D, the volume of the ball. // { double pi = 3.141592653589793; double volume; volume = ( 4.0 / 3.0 ) * pi * r * r * r; return volume; } //****************************************************************************80 double ball_volume_nd ( int n, double r ) //****************************************************************************80 // // Purpose: // // BALL_VOLUME_ND computes the volume of a ball in ND. // // Integration region: // // sum ( X(1:N)^2 ) <= R * R // // Discussion: // // N Volume // // 2 PI * R^2 // 3 (4/3) * PI * R^3 // 4 (1/2) * PI^2 * R^4 // 5 (8/15) * PI^2 * R^5 // 6 (1/6) * PI^3 * R^6 // 7 (16/105) * PI^3 * R^7 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the space. // // Input, double R, the radius of the ball. // // Output, double BALL_VOLUME_ND, the volume of the ball. // { double volume; volume = ball_unit_volume_nd ( n ) * pow ( r, n ); return volume; } //****************************************************************************80 double c1_geg_monomial_integral ( double alpha, int expon ) //****************************************************************************80 // // Purpose: // // C1_GEG_MONOMIAL_INTEGRAL: integral of monomial with Gegenbauer weight on C1. // // Discussion: // // C1_GEG is the interval [-1,+1] with the Gegenbauer weight function // // w(alpha;x) = (1-x^2)^alpha // // with -1.0 < alpha. // // value = integral ( -1 <= x <= +1 ) x^expon (1-x^2)^alpha dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the exponent of (1-X^2). // - 1.0 < ALPHA. // // Input, int EXPON, the exponent. // 0 <= EXPON. // // Output, double C1_GEG_MONOMIAL_INTEGRAL, the value of the integral. // { double arg1; double arg2; double arg3; double arg4; double c; double value; double value1; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "C1_GEG_MONOMIAL_INTEGRAL - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } if ( ( expon % 2 ) == 1 ) { value = 0.0; return value; } c = ( double ) ( expon ); arg1 = - alpha; arg2 = 1.0 + c; arg3 = 2.0 + alpha + c; arg4 = - 1.0; value1 = r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); value = 2.0 * r8_gamma ( 1.0 + c ) * r8_gamma ( 1.0 + alpha ) * value1 / r8_gamma ( 2.0 + alpha + c ); return value; } //****************************************************************************80 double c1_jac_monomial_integral ( double alpha, double beta, int expon ) //****************************************************************************80 // // Purpose: // // C1_JAC_MONOMIAL_INTEGRAL: integral of a monomial with Jacobi weight over C1. // // Discussion: // // value = integral ( -1 <= x <= +1 ) x^expon (1-x)^alpha (1+x)^beta dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the exponent of (1-X) in the weight factor. // // Input, double BETA, the exponent of (1+X) in the weight factor. // // Input, int EXPON, the exponent. // // Output, double C1_JAC_MONOMIAL_INTEGRAL, the value of the integral. // { double arg1; double arg2; double arg3; double arg4; double c; double s; double value; double value1; double value2; c = ( double ) ( expon ); if ( ( expon % 2 ) == 0 ) { s = +1.0; } else { s = -1.0; } arg1 = - alpha; arg2 = 1.0 + c; arg3 = 2.0 + beta + c; arg4 = - 1.0; value1 = r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); arg1 = - beta; arg2 = 1.0 + c; arg3 = 2.0 + alpha + c; arg4 = - 1.0; value2 = r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); value = r8_gamma ( 1.0 + c ) * ( s * r8_gamma ( 1.0 + beta ) * value1 / r8_gamma ( 2.0 + beta + c ) + r8_gamma ( 1.0 + alpha ) * value2 / r8_gamma ( 2.0 + alpha + c ) ); return value; } //****************************************************************************80 double c1_leg_monomial_integral ( int expon ) //****************************************************************************80 // // Purpose: // // C1_LEG_MONOMIAL_INTEGRAL: integral of monomial with Legendre weight on C1. // // Discussion: // // C1_LEG is the interval [-1,+1] with the Legendre weight function // // w(x) = 1. // // value = integral ( -1 <= x <= +1 ) x^expon dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // 0 <= EXPON. // // Output, double C1_LEG_MONOMIAL_INTEGRAL, the value of the integral. // { double value; if ( expon < 0 ) { cerr << "\n"; cerr << "C1_LEG_MONOMIAL_INTEGRAL - Fatal error!\n"; cerr << " EXPON < 0.\n"; exit ( 1 ); } if ( ( expon % 2 ) == 1 ) { value = 0.0; return value; } value = 2.0 / ( double) ( expon + 1 ); return value; } //****************************************************************************80 double circle_annulus ( double func ( double x, double y ), double center[2], double radius1, double radius2, int nr ) //****************************************************************************80 // // Purpose: // // CIRCLE_ANNULUS approximates an integral in an annulus. // // Integration region: // // RADIUS1^2 <= ( X - CENTER(1) )^2 + ( Y - CENTER(2) )^2 <= RADIUS2^2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 March 2008 // // Author: // // John Burkardt // // Reference: // // William Peirce, // Numerical Integration Over the Planar Annulus, // Journal of the Society for Industrial and Applied Mathematics, // Volume 5, Number 2, June 1957, pages 66-73. // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the user supplied // function of two variables which is to be integrated. // // Input, double CENTER[2], the center of the circle. // // Input, double RADIUS1, RADIUS2, the radii of the circles. // // Input, int NR, the order of the rule. This quantity specifies // the number of distinct radii to use. The number of angles used will // be 4*NR, for a total of 4*NR*NR points. // // Output, double CIRCLE_ANNULUS, the approximation to the integral. // { double a; double area; double b; double c; double d; int i; int j; int nt; double pi = 3.141592653589793; double quad; double *ra; double result; double *rw; double t; double tw; double x; double y; // // Choose radial abscissas and weights. // ra = new double[nr]; rw = new double[nr]; legendre_set ( nr, ra, rw ); a = -1.0; b = +1.0; c = radius1 * radius1; d = radius2 * radius2; rule_adjust ( a, b, c, d, nr, ra, rw ); for ( i = 0; i < nr; i++ ) { ra[i] = sqrt ( ra[i] ); } for ( i = 0; i < nr; i++ ) { rw[i] = rw[i] / ( radius2 - radius1 ) / ( radius2 + radius1 ); } // // Set angular abscissas and weights. // nt = 4 * nr; tw = 1.0 / ( double ) ( nt ); // // Approximate the integral. // quad = 0.0; for ( i = 0; i < nt; i++ ) { t = 2.0 * pi * ( double ) ( i - 1 ) / ( double ) ( nt ); for ( j = 0; j < nr; j++ ) { x = center[0] + ra[j] * cos ( t ); y = center[1] + ra[j] * sin ( t ); quad = quad + tw * rw[j] * func ( x, y ); } } area = circle_annulus_area_2d ( radius1, radius2 ); result = quad * area; delete [] ra; delete [] rw; return result; } //****************************************************************************80 double circle_annulus_area_2d ( double radius1, double radius2 ) //****************************************************************************80 // // Purpose: // // CIRCLE_ANNULUS_AREA_2D returns the area of a circular annulus in 2D. // // Integration region: // // RADIUS1^2 <= ( X - CENTER(1) )^2 + ( Y - CENTER(2) )^2 <= RADIUS2^2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double RADIUS1, RADIUS2, the radii of the circles. // // Output, double CIRCLE_ANNULUS_AREA_2D, the area of the annulus. // { double pi = 3.141592653589793; double value; value = pi * ( radius1 + radius2 ) * ( radius2 - radius1 ); return value; } //****************************************************************************80 double circle_annulus_sector ( double func ( double x, double y ), double center[2], double radius1, double radius2, double theta1, double theta2, int nr ) //****************************************************************************80 // // Purpose: // // CIRCLE_ANNULUS_SECTOR approximates an integral in a circular annulus sector. // // Discussion: // // A circular annulus sector comprises the area between two concentric // circles and two concentric rays. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Reference: // // William Peirce, // Numerical Integration Over the Planar Annulus, // Journal of the Society for Industrial and Applied Mathematics, // Volume 5, Number 2, June 1957, pages 66-73. // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the // user supplied function to be integrated. // // Input, double CENTER[2], the center of the circle. // // Input, double RADIUS1, RADIUS2, the radii of the circles. // // Input, double THETA1, THETA2, the angles defining the sector. // The sector is measured from THETA1 to THETA2. // // Input, int NR, the order of the rule. This quantity specifies // the number of distinct radii to use. The number of angles used will // be 4*NR, for a total of 4*NR*NR points. // // Output, double CIRCLE_ANNULUS_SECTOR, the approximation to the integral. // { double a; double area; double b; double c; double d; int i; int j; int nt; double quad; double *ra; double result; double *rw; double *ta; double *tw; double x; double y; // // Set the radial abscissas and weights. // ra = new double[nr]; rw = new double[nr]; legendre_set ( nr, ra, rw ); a = -1.0; b = +1.0; c = radius1 * radius1; d = radius2 * radius2; rule_adjust ( a, b, c, d, nr, ra, rw ); for ( i = 0; i < nr; i++ ) { ra[i] = sqrt ( ra[i] ); } for ( i = 0; i < nr; i++ ) { rw[i] = rw[i] / ( radius2 - radius1 ) / ( radius2 + radius1 ); } // // Pick angles evenly spaced between THETA1 and THETA2, but do not // include the endpoints, and use a half interval for the first and last. // nt = 4 * nr; ta = tvec_even_bracket3 ( nt, theta1, theta2 ); tw = new double[nt]; for ( i = 0; i < nt; i++ ) { tw[i] = 1.0 / ( double ) ( nt ); } // // Approximate the integral. // quad = 0.0; for ( i = 0; i < nt; i++ ) { for ( j = 0; j < nr; j++ ) { x = center[0] + ra[j] * cos ( ta[i] ); y = center[1] + ra[j] * sin ( ta[i] ); quad = quad + tw[i] * rw[j] * func ( x, y ); } } area = circle_annulus_sector_area_2d ( radius1, radius2, theta1, theta2 ); result = quad * area; delete [] ra; delete [] rw; delete [] ta; delete [] tw; return result; } //****************************************************************************80 double circle_annulus_sector_area_2d ( double radius1, double radius2, double theta1, double theta2 ) //****************************************************************************80 // // Purpose: // // CIRCLE_ANNULUS_SECTOR_AREA_2D returns the area of a circular annulus sector in 2D. // // Discussion: // // A circular annulus sector comprises the area between two concentric // circles and two concentric rays. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double RADIUS1, RADIUS2, the radii of the circles. // // Input, double THETA1, THETA2, the angles of the rays. // Ordinarily, (THETA2-THETA1) is between 0 and 2*PI. // // Output, double CIRCLE_ANNULUS_SECTOR_AREA_2D, the area of the // circular annulus sector. // { double area; area = 0.5 * ( radius1 + radius2 ) * ( radius2 - radius1 ) * ( theta2 - theta1 ); return area; } //****************************************************************************80 double circle_area_2d ( double r ) //****************************************************************************80 // // Purpose: // // CIRCLE_AREA_2D returns the area of a circle in 2D. // // Integration region: // // ( X - CENTER(1) )^2 + ( Y - CENTER(2) )^2 <= R * R // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // // Output, double CIRCLE_AREA_2D, the area of the circle. // { double area; double pi = 3.141592653589793; area = pi * r * r; return area; } //****************************************************************************80 double circle_cap_area_2d ( double r, double h ) //****************************************************************************80 // // Purpose: // // CIRCLE_CAP_AREA_2D computes the area of a circle cap in 2D. // // Discussion: // // Draw any radius R of the circle and denote as P the point where the // radius intersects the circle. Now consider the point Q which lies // on the radius and which is H units from P. The line which is // perpendicular to the radius R and passes through Q divides the // circle into two pieces. The piece including the point P is the // circular cap of height (or thickness) H. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // // Input, double H, the "height" of the circle cap. // // Output, double CIRCLE_CAP_AREA_2D, the area of the circle cap. // { double area; double pi = 3.141592653589793; double theta; if ( h <= 0.0 ) { area = 0.0; } else if ( h <= r ) { theta = 2.0 * r8_asin ( sqrt ( h * ( 2.0 * r - h ) ) / r ); area = r * r * ( theta - sin ( theta ) ) / 2.0; } else if ( h <= 2.0 * r ) { theta = 2.0 * r8_asin ( sqrt ( h * ( 2.0 * r - h ) ) / r ); area = r * r * ( pi - ( theta - sin ( theta ) ) / 2.0 ); } else if ( 2.0 * r <= h ) { area = pi * r * r; } return area; } //****************************************************************************80 double circle_cum ( double func ( double x, double y ), double center[2], double radius, int order ) //****************************************************************************80 // // Purpose: // // CIRCLE_CUM approximates an integral on the circumference of a circle in 2D. // // Integration region: // // ( X - CENTER(1) )^2 + ( Y - CENTER(2) )^2 <= R * R // // Discussion: // // An ORDER point, (ORDER-1)-th degree formula is used, // Stroud number U2:M-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the // user supplied function to be integrated. // // Input, double CENTER[2], the coordinates of the center of // the circle. // // Input, double RADIUS, the radius of the circle. // // Input, int ORDER, the number of points to use. // // Output, double CIRCLE_CUM, the approximate integral of the function. // { double angle; int i; double pi = 3.141592653589793; double quad; double result; double volume; double x; double y; quad = 0.0; for ( i = 0; i < order; i++ ) { angle = ( double ) ( 2 * i ) * pi / ( double ) ( order ); x = center[0] + radius * cos ( angle ); y = center[1] + radius * sin ( angle ); quad = quad + func ( x, y ); } quad = quad / ( double ) ( order ); volume = pi * radius * radius; result = quad * volume; return result; } //****************************************************************************80 void circle_rt_set ( int rule, int nr, int nt, int nc, double ra[], double rw[], double ta[], double tw[], double *cw ) //****************************************************************************80 // // Purpose: // // CIRCLE_RT_SET sets an R, THETA product quadrature rule in the unit circle. // // Discussion: // // For a given value of RULE, here are the number of points used at the // center (NC), the number of points along the radial direction (NR) and // the number of points along the theta direction (NT). The total number // of points in the rule will be // // Total = NC + NR * NT. // // The user, when choosing RULE, must allocate enough space in the arrays // RA, RW, TA and TW for the resulting values of NR and NT. // // RULE NC NR NT Total // ---- -- -- -- ----- // 1 1 0 0 1 // 2 0 1 4 4 // 3 1 1 4 5 // 4 1 1 6 7 // 5 1 2 4 9 // 6 0 3 4 12 // 7 1 2 10 21 // 8 0 4 16 64 // 9 0 5 20 120 // // The integral of F(X,Y) over the unit circle is approximated by // // Integral ( X*X + Y*Y <= 1 ) F(X,Y) dx dy // = Integral ( 0 <= R <= 1, 0 <= T <= 2PI ) F(R*cos(T),R*sin(T)) r dr dt // = approximately // CW * F(0,0) // + sum ( 1 <= I <= NR ) Sum ( 1 <= J <= NT ) // RW(I) * TW(J) * F ( R(I) * cos ( TA(J) ), R(I) * sin ( TA(J) ) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int RULE, the rule desired. // // Input, int NR, the number of R abscissas. // // Input, int NT, the number of Theta abscissas. // // Input, int NC, the number of center abscissas (0 or 1 ). // // Output, double RA[NR], RW[NR], the R abscissas and weights. // // Output, double TA[NT], TW[NT], the THETA abscissas and weights. // // Output, double *ZW, the weight to use for the center. // { double a; double b; double c; double d; int i; double pi = 3.141592653589793; double u; double v; double w; if ( rule == 1 ) { *cw = 1.0; } else if ( rule == 2 ) { ra[0] = 0.5; rw[0] = 1.0; for ( i = 0; i < nt; i++ ) { ta[i] = ( double ) ( 2 * i ) * pi / ( double ) ( nt ); } for ( i = 0; i < nt; i++ ) { tw[i] = 1.0 / ( double ) ( nt ); } *cw = 0.0; } else if ( rule == 3 ) { ra[0] = 1.0; rw[0] = 1.0; for ( i = 0; i < nt; i++ ) { ta[i] = ( double ) ( 2 * i ) * pi / ( double ) ( nt ); } for ( i = 0; i < nt; i++ ) { tw[i] = 0.125; } *cw = 0.5; } else if ( rule == 4 ) { ra[0] = sqrt ( 2.0 / 3.0 ); rw[0] = 1.0; for ( i = 0; i < nt; i++ ) { ta[i] = ( double ) ( 2 * i ) * pi / ( double ) ( nt ); } for ( i = 0; i < nt; i++ ) { tw[i] = 0.125; } *cw = 0.25; } else if ( rule == 5 ) { a = 1.0; b = sqrt ( 2.0 ) / 2.0; u = 1.0 / 6.0; v = 4.0 / 6.0; ra[0] = a; ra[1] = b; rw[0] = u; rw[1] = v; for ( i = 0; i < nt; i++ ) { ta[i] = ( double ) ( 2 * i ) * pi / ( double ) ( nt ); } for ( i = 0; i < nt; i++ ) { tw[i] = 1.0 / ( double ) ( nt ); } *cw = 4.0 / 24.0; } else if ( rule == 6 ) { a = sqrt ( 3.0 ) / 2.0; b = sqrt ( ( 27.0 - 3.0 * sqrt ( 29.0 ) ) / 52.0 ); c = sqrt ( ( 27.0 + 3.0 * sqrt ( 29.0 ) ) / 52.0 ); u = 8.0 / 27.0; v = ( 551.0 + 41.0 * sqrt ( 29.0 ) ) / 1566.0; w = ( 551.0 - 41.0 * sqrt ( 29.0 ) ) / 1566.0; ra[0] = a; ra[1] = b; ra[2] = c; rw[0] = u; rw[1] = v; rw[2] = w; for ( i = 0; i < nt; i++ ) { ta[i] = ( double ) ( 2 * i ) * pi / ( double ) ( nt ); } for ( i = 0; i < nt; i++ ) { tw[i] = 1.0 / ( double ) ( nt ); } *cw = 0.0; } else if ( rule == 7 ) { a = sqrt ( ( 6.0 - sqrt ( 6.0 ) ) / 10.0 ); b = sqrt ( ( 6.0 + sqrt ( 6.0 ) ) / 10.0 ); u = ( 16.0 + sqrt ( 6.0 ) ) / 36.0; v = ( 16.0 - sqrt ( 6.0 ) ) / 36.0; ra[0] = a; ra[1] = b; rw[0] = u; rw[1] = v; for ( i = 0; i < nt; i++ ) { ta[i] = ( double ) ( 2 * i ) * pi / ( double ) ( nt ); } for ( i = 0; i < nt; i++ ) { tw[i] = 1.0 / ( double ) ( nt ); } *cw = 1.0 / 9.0; } else if ( rule == 8 ) { legendre_set ( nr, ra, rw ); a = -1.0; b = +1.0; c = 0.0; d = +1.0; rule_adjust ( a, b, c, d, nr, ra, rw ); for ( i = 0; i < nr; i++ ) { ra[i] = sqrt ( ra[i] ); } for ( i = 0; i < nt; i++ ) { ta[i] = ( double ) ( 2 * i ) * pi / ( double ) ( nt ); } for ( i = 0; i < nt; i++ ) { tw[i] = 1.0 / ( double ) ( nt ); } *cw = 0.0; } else if ( rule == 9 ) { legendre_set ( nr, ra, rw ); a = -1.0; b = +1.0; c = 0.0; d = +1.0; rule_adjust ( a, b, c, d, nr, ra, rw ); for ( i = 0; i < nr; i++ ) { ra[i] = sqrt ( ra[i] ); } for ( i = 0; i < nt; i++ ) { ta[i] = ( double ) ( 2 * i ) * pi / ( double ) ( nt ); } for ( i = 0; i < nt; i++ ) { tw[i] = 1.0 / ( double ) ( nt ); } *cw = 0.0; } else { cerr << "\n"; cerr << "CIRCLE_RT_SET - Fatal error!\n"; cerr << " There is no rule of index " << rule << "\n"; exit ( 1 ); } return; } //****************************************************************************80 void circle_rt_size ( int rule, int *nr, int *nt, int *nc ) //****************************************************************************80 // // Purpose: // // CIRCLE_RT_SIZE sizes an R, THETA product quadrature rule in the unit circle. // // Discussion: // // For a given value of RULE, here are the number of points used at the // center (NC), the number of points along the radial direction (NR) and // the number of points along the theta direction (NT). The total number // of points in the rule will be // // Total = NC + NR * NT. // // The user, when choosing RULE, must allocate enough space in the arrays // RA, RW, TA and TW for the resulting values of NR and NT. // // RULE NC NR NT Total // ---- -- -- -- ----- // 1 1 0 0 1 // 2 0 1 4 4 // 3 1 1 4 5 // 4 1 1 6 7 // 5 1 2 4 9 // 6 0 3 4 12 // 7 1 2 10 21 // 8 0 4 16 64 // 9 0 5 20 120 // // The integral of F(X,Y) over the unit circle is approximated by // // Integral ( X*X + Y*Y <= 1 ) F(X,Y) dx dy // = Integral ( 0 <= R <= 1, 0 <= T <= 2PI ) F(R*cos(T),R*sin(T)) r dr dt // = approximately // ZW * F(0,0) // + sum ( 1 <= I <= NR ) Sum ( 1 <= J <= NT ) // RW(I) * TW(J) * F ( R(I) * cos ( TA(J) ), R(I) * sin ( TA(J) ) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 March 2008 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int RULE, the rule desired. // // Output, int *NR, the number of R abscissas. // // Output, int *NT, the number of Theta abscissas. // // Output, int *NC, the number of center abscissas (0 or 1). // { if ( rule == 1 ) { *nr = 0; *nt = 0; *nc = 1; } else if ( rule == 2 ) { *nr = 1; *nt = 4; *nc = 0; } else if ( rule == 3 ) { *nr = 1; *nt = 4; *nc = 1; } else if ( rule == 4 ) { *nr = 1; *nt = 6; *nc = 1; } else if ( rule == 5 ) { *nr = 2; *nt = 4; *nc = 1; } else if ( rule == 6 ) { *nr = 3; *nt = 4; *nc = 0; } else if ( rule == 7 ) { *nr = 2; *nt = 10; *nc = 1; } else if ( rule == 8 ) { *nr = 4; *nt = 16; *nc = 0; } else if ( rule == 9 ) { *nr = 5; *nt = 20; *nc = 0; } else { cerr << "\n"; cerr << "CIRCLE_RT_SIZE - Fatal error!\n"; cerr << " There is no rule of index " << rule << "\n"; exit ( 1 ); } return; } //****************************************************************************80 double circle_rt_sum ( double func ( double x, double y ), double center[2], double radius, int nr, double ra[], double rw[], int nt, double ta[], double tw[], double zw ) //****************************************************************************80 // // Purpose: // // CIRCLE_RT_SUM applies an R, THETA product quadrature rule inside a circle. // // Integration region: // // (X-CENTER(1))^2 + (Y-CENTER(2))^2 <= RADIUS^2. // // Discussion: // // The product rule is assumed to be have the form: // // Integral_Approx = ZW * F(CENTER(1),CENTER(2)) + // sum ( 1 <= IR <= NR ) Sum ( 1 <= IT <= NT ) // RW(IR) * TW(IT) * F ( CENTER(1) + R(IR) * RADIUS * Cos ( TA(IT) ), // CENTER(2) + R(IR) * RADIUS * Sin ( TA(IT) ) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the // user supplied function to be integrated. // // Input, double CENTER[2], the center of the circle. // // Input, double RADIUS, the radius of the circle. // // Input, int NR, the number of R abscissas. // // Input, double RA[NR], RW[NR], the R abscissas and weights. // // Input, int NT, the number of Theta abscissas. // // Input, double TA[NT], TW[NT], the THETA abscissas and weights. // // Input, double ZW, the weight to use for the center. // // Output, double CIRCLE_RT_SUM, the approximate integral of the function. // { int ir; int it; double quad; double rct; double result; double rst; double volume; double x; double y; quad = 0.0; if ( zw != 0.0 ) { x = center[0]; y = center[1]; quad = quad + zw * func ( x, y ); } for ( it = 0; it < nt; it++ ) { rct = radius * cos ( ta[it] ); rst = radius * sin ( ta[it] ); for ( ir = 0; ir < nr; ir++ ) { x = center[0] + ra[ir] * rct; y = center[1] + ra[ir] * rst; quad = quad + tw[it] * rw[ir] * func ( x, y ); } } volume = circle_area_2d ( radius ); result = quad * volume; return result; } //****************************************************************************80 double circle_sector ( double func ( double x, double y ), double center[2], double radius, double theta1, double theta2, int nr ) //****************************************************************************80 // // Purpose: // // CIRCLE_SECTOR approximates an integral in a circular sector. // // Discussion: // // A sector is contained within a circular arc and the lines joining each // endpoint of the arc to the center of the circle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the // user supplied function to be integrated. // // Input, double CENTER[2], the center of the circle. // // Input, double RADIUS, the radius of the circle. // // Input, double THETA1, THETA2, the angles defining the sector. // The sector is measured from THETA1 to THETA2. // // Input, int NR, the number of radial values used in the approximation // of the integral. NR must be at least 1. Higher values improve the // accuracy of the integration, at the cost of more function evaluations. // // Output, double CIRCLE_SECTOR, the approximation to the integral. // { double a; double area; double b; double c; double d; int i; int j; int nt; double quad; double *ra; double result; double *rw; double *ta; double *tw; double x; double y; // // Set the radial abscissas and weights. // ra = new double[nr]; rw = new double[nr]; legendre_set ( nr, ra, rw ); a = -1.0; b = +1.0; c = 0.0; d = radius * radius; rule_adjust ( a, b, c, d, nr, ra, rw ); for ( i = 0; i < nr; i++ ) { ra[i] = sqrt ( ra[i] ); } for ( i = 0; i < nr; i++ ) { rw[i] = rw[i] / radius / radius; } // // Pick angles evenly spaced between THETA1 and THETA2, but do not // include the endpoints, and use a half interval for the first and last. // nt = 4 * nr; ta = tvec_even_bracket3 ( nt, theta1, theta2 ); tw = new double[nt]; for ( i = 0; i < nt; i++ ) { tw[i] = 1.0 / ( double ) ( nt ); } // // Approximate the integral. // quad = 0.0; for ( i = 0; i < nr; i++ ) { for ( j = 0; j < nt; j++ ) { x = center[0] + ra[i] * cos ( ta[j] ); y = center[1] + ra[i] * sin ( ta[j] ); quad = quad + rw[i] * tw[j] * func ( x, y ); } } area = circle_sector_area_2d ( radius, theta1, theta2 ); result = quad * area; delete [] ra; delete [] rw; delete [] ta; delete [] tw; return result; } //****************************************************************************80 double circle_sector_area_2d ( double r, double theta1, double theta2 ) //****************************************************************************80 // // Purpose: // // CIRCLE_SECTOR_AREA_2D returns the area of a circular sector in 2D. // // Discussion: // // A sector is contained within a circular arc and the lines joining each // endpoint of the arc to the center of the circle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // // Input, double THETA1, THETA2, the angles of the rays // that delimit the sector. // // Output, double CIRCLE_SECTOR_AREA_2D, the area of the sector. // { double value; value = 0.5 * r * r * ( theta2 - theta1 ); return value; } //****************************************************************************80 double circle_triangle_area_2d ( double r, double theta1, double theta2 ) //****************************************************************************80 // // Purpose: // // CIRCLE_TRIANGLE_AREA_2D returns the area of a circle triangle in 2D. // // Discussion: // // A circle triangle is formed by drawing a circular arc, and considering // the triangle formed by the endpoints of the arc plus the center of // the circle. // // The normal situation is that 0 < ( THETA2 - THETA1 ) < PI. Outside // this range, the triangle can actually have NEGATIVE area. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // // Input, double THETA1, THETA2, the angles of the rays that // delimit the arc. // // Output, double CIRCLE_TRIANGLE_AREA_2D, the (signed) area // of the triangle. // { double value; value = 0.5 * r * r * sin ( theta2 - theta1 ); return value; } //****************************************************************************80 void circle_xy_set ( int rule, int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // // Purpose: // // CIRCLE_XY_SET sets an XY quadrature rule inside the unit circle in 2D. // // Integration region: // // X*X + Y*Y <= 1.0. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Frank Lether, // A Generalized Product Rule for the Circle, // SIAM Journal on Numerical Analysis, // Volume 8, Number 2, June 1971, pages 249-253. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int RULE, the rule desired. // 1, 1 point 1-st degree; // 2, 4 point 3-rd degree, Stroud S2:3-1; // 3, 4 point 3-rd degree, Lether #1; // 4, 4 point 3-rd degree, Stroud S2:3-2; // 5, 5 point 3-rd degree; // 6, 7 point 5-th degree; // 7, 9 point 5-th degree; // 8, 9 point 5-th degree, Lether #2; // 9, 12 point 7-th degree; // 10, 16 point 7-th degree, Lether #3; // 11, 21 point 9-th degree, Stroud S2:9-3; // 12, 25 point 9-th degree, Lether #4 (after correcting error); // 13, 64 point 15-th degree Gauss product rule. // // Input, int ORDER, the order of the desired rule. // // Output, double XTAB[ORDER], YTAB[ORDER], the abscissas of // the rule. // // Output, double WEIGHT[ORDER], the ORDER weights of the rule. // { double a; double b; double c; double d; double e; double f; double g; double h; int i; int j; int k; int nr; double pi = 3.141592653589793; double r; double *ra; double *rw; double s; double u; double v; double w; double w1; double w2; double w3; double w4; double w5; double w6; double w7; double w8; double w9; double z; if ( rule == 1 ) { xtab[0] = 0.0; ytab[0] = 0.0; weight[0] = 1.0; } else if ( rule == 2 ) { a = 0.5; b = 0.25; z = 0.0; xtab[0] = a; xtab[1] = - a; xtab[2] = z; xtab[3] = z; ytab[0] = z; ytab[1] = z; ytab[2] = a; ytab[3] = - a; weight[0] = b; weight[1] = b; weight[2] = b; weight[3] = b; } else if ( rule == 3 ) { a = 0.5; b = 0.25; xtab[0] = a; xtab[1] = - a; xtab[2] = - a; xtab[3] = a; ytab[0] = a; ytab[1] = a; ytab[2] = - a; ytab[3] = - a; weight[0] = b; weight[1] = b; weight[2] = b; weight[3] = b; } else if ( rule == 4 ) { a = sqrt ( 2.0 ) / 2.0; b = 0.25; xtab[0] = a; xtab[1] = - a; xtab[2] = - a; xtab[3] = a; ytab[0] = a; ytab[1] = a; ytab[2] = - a; ytab[3] = - a; weight[0] = b; weight[1] = b; weight[2] = b; weight[3] = b; } else if ( rule == 5 ) { a = 1.0; b = 0.5; c = 0.125; z = 0.0; xtab[0] = z; xtab[1] = a; xtab[2] = z; xtab[3] = - a; xtab[4] = z; ytab[0] = z; ytab[1] = z; ytab[2] = a; ytab[3] = z; ytab[4] = - a; weight[0] = b; weight[1] = c; weight[2] = c; weight[3] = c; weight[4] = c; } else if ( rule == 6 ) { a = sqrt ( 2.0 / 3.0 ); b = sqrt ( 1.0 / 6.0 ); c = sqrt ( 2.0 ) / 2.0; d = 0.125; e = 0.25; z = 0.0; xtab[0] = z; xtab[1] = a; xtab[2] = - a; xtab[3] = b; xtab[4] = - b; xtab[5] = b; xtab[6] = - b; ytab[0] = z; ytab[1] = z; ytab[2] = z; ytab[3] = c; ytab[4] = c; ytab[5] = - c; ytab[6] = - c; weight[0] = e; weight[1] = d; weight[2] = d; weight[3] = d; weight[4] = d; weight[5] = d; weight[6] = d; } else if ( rule == 7 ) { a = 0.5; b = 1.0; c = 4.0 / 24.0; d = 1.0 / 24.0; z = 0.0; xtab[0] = z; xtab[1] = b; xtab[2] = - b; xtab[3] = z; xtab[4] = z; xtab[5] = a; xtab[6] = - a; xtab[7] = - a; xtab[8] = a; ytab[0] = z; ytab[1] = z; ytab[2] = z; ytab[3] = b; ytab[4] = - b; ytab[5] = a; ytab[6] = a; ytab[7] = - a; ytab[8] = - a; weight[0] = c; weight[1] = d; weight[2] = d; weight[3] = d; weight[4] = d; weight[5] = c; weight[6] = c; weight[7] = c; weight[8] = c; } else if ( rule == 8 ) { a = sqrt ( 2.0 ) / 2.0; b = sqrt ( 3.0 / 5.0 ); c = sqrt ( 3.0 / 10.0 ); w1 = 16.0 / 72.0; w2 = 8.0 / 72.0; w3 = 10.0 / 72.0; w4 = 5.0 / 72.0; z = 0.0; xtab[0] = z; xtab[1] = a; xtab[2] = - a; xtab[3] = z; xtab[4] = z; xtab[5] = a; xtab[6] = a; xtab[7] = - a; xtab[8] = - a; ytab[0] = z; ytab[1] = z; ytab[2] = z; ytab[3] = b; ytab[4] = - b; ytab[5] = c; ytab[6] = - c; ytab[7] = c; ytab[8] = - c; weight[0] = w1; weight[1] = w2; weight[2] = w2; weight[3] = w3; weight[4] = w3; weight[5] = w4; weight[6] = w4; weight[7] = w4; weight[8] = w4; } else if ( rule == 9 ) { a = sqrt ( 3.0 ) / 2.0; b = sqrt ( ( 27.0 - 3.0 * sqrt ( 29.0 ) ) / 104.0 ); c = sqrt ( ( 27.0 + 3.0 * sqrt ( 29.0 ) ) / 104.0 ); u = 2.0 / 27.0; v = ( 551.0 + 41.0 * sqrt ( 29.0 ) ) / 6264.0; w = ( 551.0 - 41.0 * sqrt ( 29.0 ) ) / 6264.0; z = 0.0; xtab[0] = a; xtab[1] = - a; xtab[2] = z; xtab[3] = z; xtab[4] = b; xtab[5] = - b; xtab[6] = b; xtab[7] = - b; xtab[8] = c; xtab[9] = c; xtab[10] = - c; xtab[11] = - c; ytab[0] = z; ytab[1] = z; ytab[2] = a; ytab[3] = - a; ytab[4] = b; ytab[5] = b; ytab[6] = - b; ytab[7] = - b; ytab[8] = c; ytab[9] = - c; ytab[10] = c; ytab[11] = - c; weight[0] = u; weight[1] = u; weight[2] = u; weight[3] = u; weight[4] = v; weight[5] = v; weight[6] = v; weight[7] = v; weight[8] = w; weight[9] = w; weight[10] = w; weight[11] = w; } else if ( rule == 10 ) { a = sqrt ( ( 3.0 - sqrt ( 5.0 ) ) / 8.0 ); b = sqrt ( ( 15.0 + 3.0 * sqrt ( 5.0 ) - 2.0 * sqrt ( 30.0 ) - 2.0 * sqrt ( 6.0 ) ) / 56.0 ); c = sqrt ( ( 15.0 + 3.0 * sqrt ( 5.0 ) + 2.0 * sqrt ( 30.0 ) + 2.0 * sqrt ( 6.0 ) ) / 56.0 ); d = sqrt ( ( 3.0 + sqrt ( 5.0 ) ) / 8.0 ); e = sqrt ( ( 15.0 - 3.0 * sqrt ( 5.0 ) - 2.0 * sqrt ( 30.0 ) + 2.0 * sqrt ( 6.0 ) ) / 56.0 ); f = sqrt ( ( 15.0 - 3.0 * sqrt ( 5.0 ) + 2.0 * sqrt ( 30.0 ) - 2.0 * sqrt ( 6.0 ) ) / 56.0 ); w1 = ( 90.0 + 5.0 * sqrt ( 30.0 ) + 18.0 * sqrt ( 5.0 ) + 5.0 * sqrt ( 6.0 ) ) / 1440.0; w2 = ( 90.0 - 5.0 * sqrt ( 30.0 ) + 18.0 * sqrt ( 5.0 ) - 5.0 * sqrt ( 6.0 ) ) / 1440.0; w3 = ( 90.0 + 5.0 * sqrt ( 30.0 ) - 18.0 * sqrt ( 5.0 ) - 5.0 * sqrt ( 6.0 ) ) / 1440.0; w4 = ( 90.0 - 5.0 * sqrt ( 30.0 ) - 18.0 * sqrt ( 5.0 ) + 5.0 * sqrt ( 6.0 ) ) / 1440.0; xtab[0] = a; xtab[1] = a; xtab[2] = - a; xtab[3] = - a; xtab[4] = a; xtab[5] = a; xtab[6] = - a; xtab[7] = - a; xtab[8] = d; xtab[9] = d; xtab[10] = - d; xtab[11] = - d; xtab[12] = d; xtab[13] = d; xtab[14] = - d; xtab[15] = - d; ytab[0] = b; ytab[1] = - b; ytab[2] = b; ytab[3] = - b; ytab[4] = c; ytab[5] = - c; ytab[6] = c; ytab[7] = - c; ytab[8] = e; ytab[9] = - e; ytab[10] = e; ytab[11] = - e; ytab[12] = f; ytab[13] = - f; ytab[14] = f; ytab[15] = - f; weight[0] = w1; weight[1] = w1; weight[2] = w1; weight[3] = w1; weight[4] = w2; weight[5] = w2; weight[6] = w2; weight[7] = w2; weight[8] = w3; weight[9] = w3; weight[10] = w3; weight[11] = w3; weight[12] = w4; weight[13] = w4; weight[14] = w4; weight[15] = w4; } else if ( rule == 11 ) { xtab[0] = 0.0; ytab[0] = 0.0; weight[0] = 1.0 / 9.0; for ( i = 1; i < 11; i++ ) { weight[i] = ( 16.0 + sqrt ( 6.0 ) ) / 360.0; } for ( i = 11; i < 21; i++ ) { weight[i] = ( 16.0 - sqrt ( 6.0 ) ) / 360.0; } r = sqrt ( ( 6.0 - sqrt ( 6.0 ) ) / 10.0 ); for ( i = 0; i < 10; i++ ) { a = 2.0 * pi * ( double ) ( i ) / 10.0; xtab[i+1] = r * cos ( a ); ytab[i+1] = r * sin ( a ); } r = sqrt ( ( 6.0 + sqrt ( 6.0 ) ) / 10.0 ); for ( i = 0; i < 10; i++ ) { a = 2.0 * pi * ( double ) ( i ) / 10.0; xtab[i+11] = r * cos ( a ); ytab[i+11] = r * sin ( a ); } } // // There was apparently a misprint in the Lether paper. The quantity // which here reads "322" was printed there as "332". // else if ( rule == 12 ) { a = 0.5; b = sqrt ( 3.0 ) / 2.0; c = sqrt ( ( 35.0 + 2.0 * sqrt ( 70.0 ) ) / 252.0 ); d = sqrt ( ( 35.0 - 2.0 * sqrt ( 70.0 ) ) / 252.0 ); e = sqrt ( ( 35.0 + 2.0 * sqrt ( 70.0 ) ) / 84.0 ); f = sqrt ( ( 35.0 - 2.0 * sqrt ( 70.0 ) ) / 84.0 ); g = sqrt ( ( 35.0 + 2.0 * sqrt ( 70.0 ) ) / 63.0 ); h = sqrt ( ( 35.0 - 2.0 * sqrt ( 70.0 ) ) / 63.0 ); w1 = 64.0 / 675.0; w2 = 16.0 / 225.0; w3 = 16.0 / 675.0; w4 = ( 322.0 - 13.0 * sqrt ( 70.0 ) ) / 21600.0; w5 = ( 322.0 + 13.0 * sqrt ( 70.0 ) ) / 21600.0; w6 = ( 322.0 - 13.0 * sqrt ( 70.0 ) ) / 7200.0; w7 = ( 322.0 + 13.0 * sqrt ( 70.0 ) ) / 7200.0; w8 = ( 322.0 - 13.0 * sqrt ( 70.0 ) ) / 5400.0; w9 = ( 322.0 + 13.0 * sqrt ( 70.0 ) ) / 5400.0; z = 0.0; xtab[0] = z; xtab[1] = a; xtab[2] = - a; xtab[3] = b; xtab[4] = - b; xtab[5] = b; xtab[6] = b; xtab[7] = - b; xtab[8] = - b; xtab[9] = b; xtab[10] = b; xtab[11] = - b; xtab[12] = - b; xtab[13] = a; xtab[14] = a; xtab[15] = - a; xtab[16] = - a; xtab[17] = a; xtab[18] = a; xtab[19] = - a; xtab[20] = - a; xtab[21] = z; xtab[22] = z; xtab[23] = z; xtab[24] = z; ytab[0] = z; ytab[1] = z; ytab[2] = z; ytab[3] = z; ytab[4] = z; ytab[5] = c; ytab[6] = - c; ytab[7] = c; ytab[8] = - c; ytab[9] = d; ytab[10] = - d; ytab[11] = d; ytab[12] = - d; ytab[13] = e; ytab[14] = - e; ytab[15] = e; ytab[16] = - e; ytab[17] = f; ytab[18] = - f; ytab[19] = f; ytab[20] = - f; ytab[21] = g; ytab[22] = - g; ytab[23] = h; ytab[24] = - h; weight[0] = w1; weight[1] = w2; weight[2] = w2; weight[3] = w3; weight[4] = w3; weight[5] = w4; weight[6] = w4; weight[7] = w4; weight[8] = w4; weight[9] = w5; weight[10] = w5; weight[11] = w5; weight[12] = w5; weight[13] = w6; weight[14] = w6; weight[15] = w6; weight[16] = w6; weight[17] = w7; weight[18] = w7; weight[19] = w7; weight[20] = w7; weight[21] = w8; weight[22] = w8; weight[23] = w9; weight[24] = w9; } else if ( rule == 13 ) { nr = 4; ra = new double[nr]; rw = new double[nr]; legendre_set ( nr, ra, rw ); a = -1.0; b = +1.0; c = 0.0; d = +1.0; rule_adjust ( a, b, c, d, nr, ra, rw ); for ( i = 0; i < nr; i++ ) { ra[i] = sqrt ( ra[i] ); } i = 0; for ( j = 0; j < 16; j++ ) { c = cos ( pi * ( double ) ( j ) / 8.0 ); s = sin ( pi * ( double ) ( j ) / 8.0 ); for ( k = 0; k < nr; k++ ) { xtab[i] = c * ra[k]; ytab[i] = s * ra[k]; weight[i] = rw[k] / 16.0; i = i + 1; } } delete [] ra; delete [] rw; } else { cerr << "\n"; cerr << "CIRCLE_XY_SET - Fatal error!\n"; cerr << " There is no rule of index " << rule << "\n"; exit ( 1 ); } return; } //****************************************************************************80 int circle_xy_size ( int rule ) //****************************************************************************80 // // Purpose: // // CIRCLE_XY_SIZE sizes an XY quadrature rule inside the unit circle in 2D. // // Integration region: // // X*X + Y*Y <= 1.0. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 March 2008 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Frank Lether, // A Generalized Product Rule for the Circle, // SIAM Journal on Numerical Analysis, // Volume 8, Number 2, June 1971, pages 249-253. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int RULE, the rule desired. // 1, 1 point 1-st degree; // 2, 4 point 3-rd degree, Stroud S2:3-1; // 3, 4 point 3-rd degree, Lether #1; // 4, 4 point 3-rd degree, Stroud S2:3-2; // 5, 5 point 3-rd degree; // 6, 7 point 5-th degree; // 7, 9 point 5-th degree; // 8, 9 point 5-th degree, Lether #2; // 9, 12 point 7-th degree; // 10, 16 point 7-th degree, Lether #3; // 11, 21 point 9-th degree, Stroud S2:9-3; // 12, 25 point 9-th degree, Lether #4 (after correcting error); // 13, 64 point 15-th degree Gauss product rule. // // Output, int CIRCLE_XY_SIZE, the order of the desired rule. // { int order; if ( rule == 1 ) { order = 1; } else if ( rule == 2 ) { order = 4; } else if ( rule == 3 ) { order = 4; } else if ( rule == 4 ) { order = 4; } else if ( rule == 5 ) { order = 5; } else if ( rule == 6 ) { order = 7; } else if ( rule == 7 ) { order = 9; } else if ( rule == 8 ) { order = 9; } else if ( rule == 9 ) { order = 12; } else if ( rule == 10 ) { order = 16; } else if ( rule == 11 ) { order = 21; } else if ( rule == 12 ) { order = 25; } else if ( rule == 13 ) { order = 64; } else { order = -1; cerr << "\n"; cerr << "CIRCLE_XY_SIZE - Fatal error!\n"; cerr << " There is no rule of index " << rule << "\n"; exit ( 1 ); } return order; } //****************************************************************************80 double circle_xy_sum ( double func ( double x, double y ), double center[2], double r, int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // // Purpose: // // CIRCLE_XY_SUM applies an XY quadrature rule inside a circle in 2D. // // Integration region: // // (X-CENTER(1))^2 + (Y-CENTER(2))^2 <= R * R. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the // user supplied function to be integrated. // // Input, double CENTER[2], the coordinates of the center of // the circle. // // Input, double R, the radius of the circle. // // Input, int ORDER, the order of the rule. The rule is // assumed to be defined on the unit circle. // // Input, double XTAB[ORDER], YTAB[ORDER], the XY // coordinates of the abscissas of the quadrature rule for the unit circle. // // Input, double WEIGHT[ORDER], the weights of the rule. // // Output, double RESULT, the approximate integral of the function. // { int i; double quad; double result; double volume; double x; double y; quad = 0.0; for ( i = 0; i < order; i++ ) { x = center[0] + r * xtab[i]; y = center[1] + r * ytab[i]; quad = quad + weight[i] * func ( x, y ); } volume = circle_area_2d ( r ); result = quad * volume; return result; } //****************************************************************************80 void cn_geg_00_1 ( int n, double alpha, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_GEG_00_1 implements the midpoint rule for region CN_GEG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 0. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int expon; int k; double volume; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_GEG_00_1 - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } expon = 0; volume = c1_geg_monomial_integral ( alpha, expon ); volume = pow ( volume, n ); r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; w[k] = volume; return; } //****************************************************************************80 int cn_geg_00_1_size ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // CN_GEG_00_1_SIZE sizes the midpoint rule for region CN_GEG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 0. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Output, int CN_GEG_00_1_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_GEG_00_1_SIZE - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } o = 1; return o; } //****************************************************************************80 void cn_geg_01_1 ( int n, double alpha, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_GEG_01_1 implements a precision 1 rule for region CN_GEG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[[O], the weights. // { int expon; int i; int j; int k; double value1; double value2; double volume; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_GEG_01_1 - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } expon = 0; value1 = c1_geg_monomial_integral ( alpha, expon ); volume = pow ( value1, n ); expon = 1; value2 = c1_geg_monomial_integral ( alpha, expon ); r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = value2 / value1; } w[k] = volume; return; } //****************************************************************************80 int cn_geg_01_1_size ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // CN_GEG_01_1_SIZE sizes a precision 1 rule for region CN_GEG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Output, int CN_GEG_01_1_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_GEG_01_1_SIZE - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } o = 1; return o; } //****************************************************************************80 void cn_geg_02_xiu ( int n, double alpha, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_GEG_02_XIU implements the Xiu precision 2 rule for region CN_GEG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 March 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; double c1; double coef; double delta0; int expon; double gamma0; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_GEG_02_XIU - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = sqrt ( 2.0 ) * cos ( arg ); i = i + 1; x[i+j*n] = sqrt ( 2.0 ) * sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = r8_mop ( j ); i = i + 1; } } gamma0 = 1.0; delta0 = 0.0; c1 = 1.0 / ( 2.0 * alpha + 3.0 ); for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } expon = 0; volume_1d = c1_geg_monomial_integral ( alpha, expon ); volume = pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int cn_geg_02_xiu_size ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // CN_GEG_02_XIU_SIZE sizes the Xiu rule for region CN_GEG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Output, int CN_GEG_02_XIU_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_GEG_02_XIU_SIZE - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } o = n + 1; return o; } //****************************************************************************80 void cn_geg_03_xiu ( int n, double alpha, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_GEG_03_XIU implements the Xiu precision 3 rule for region CN_GEG. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; int expon; int i; int j; double pi = 3.141592653589793; int r; double volume; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_GEG_03_XIU - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } expon = 0; volume = c1_geg_monomial_integral ( alpha, expon ); volume = pow ( volume, n ); for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( ( 2 * r - 1 ) * j ) * pi / ( double ) ( n ); x[i+j*n] = sqrt ( 2.0 ) * cos ( arg ) / sqrt ( 2.0 * alpha + 3.0 ); i = i + 1; x[i+j*n] = sqrt ( 2.0 ) * sin ( arg ) / sqrt ( 2.0 * alpha + 3.0 ); i = i + 1; } if ( i < n ) { x[i+j*n] = sqrt ( 2.0 ) * r8_mop ( j ) / sqrt ( 2.0 * alpha + 3.0 ); if ( n == 1 ) { x[i+j*n] = x[i+j*n] / sqrt ( 2.0 ); } i = i + 1; } } for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int cn_geg_03_xiu_size ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // CN_GEG_03_XIU_SIZE sizes the Xiu precision 3 rule for region CN_GEG. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the parameter. // -1.0 < ALPHA. // // Output, int CN_GEG_03_XIU_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_GEG_03_XIU_SIZE - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } o = 2 * n; return o; } //****************************************************************************80 double cn_geg_monomial_integral ( int n, double alpha, int expon[] ) //****************************************************************************80 // // Purpose: // // CN_GEG_MONOMIAL_INTEGRAL: integral of monomial with Gegenbauer weight on CN. // // Discussion: // // CN_GEG is the cube [-1,+1]^N with the Gegenbauer weight function // // w(alpha;x) = product ( 1 <= i <= n ) (1-x(i)^2)^alpha. // // with -1.0 < alpha. // // value = integral ( CN ) // product ( 1 <= i <= n ) x(I)^expon(i) (1-x(i)^2)^alpha dx(i) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of (1-X). // -1.0 < ALPHA. // // Input, int EXPON[N], the exponents. // // Output, double CN_GEG_MONOMIAL_INTEGRA, the value of the integral. // { int i; double value; double value2; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_GEG_MONOMIAL_INTEGRAL - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } value = 1.0; for ( i = 0; i < n; i++ ) { value2 = c1_geg_monomial_integral ( alpha, expon[i] ); value = value * value2; } return value; } //****************************************************************************80 void cn_jac_00_1 ( int n, double alpha, double beta, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_JAC_00_1 implements the midpoint rule for region CN_JAC. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 0. // // CN is the cube [-1,+1]^N with the Jacobi (beta) weight function // // w(alpha,beta;x) = product ( 1 <= i <= n ) (1-x(i))^beta (1+x(i))^alpha. // // with -1 < alpha, -1 < beta. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, BETA, the parameters. // -1.0 < ALPHA, -1.0 < BETA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int expon; int k; double pi = 3.141592653589793; double volume; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_JAC_00_1 - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } if ( beta <= -1.0 ) { cerr << "\n"; cerr << "CN_JAC_00_1 - Fatal error!\n"; cerr << " BETA <= -1.0\n"; exit ( 1 ); } expon = 0; volume = c1_jac_monomial_integral ( alpha, beta, expon ); volume = pow ( volume, n ); r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; w[k] = volume; return; } //****************************************************************************80 int cn_jac_00_1_size ( int n, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // CN_JAC_00_1_SIZE sizes the midpoint rule for region CN_JAC. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 0. // // CN is the cube [-1,+1]^N with the Jacobi (beta) weight function // // w(alpha,beta;x) = product ( 1 <= i <= n ) (1-x(i))^beta (1+x(i))^alpha. // // with -1 < alpha, -1 < beta. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, BETA, the parameters. // -1.0 < ALPHA, -1.0 < BETA. // // Output, int CN_JAC_00_1_SIZE the order. // { int o; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_JAC_00_1_SIZE - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } if ( beta <= -1.0 ) { cerr << "\n"; cerr << "CN_JAC_00_1_SIZE - Fatal error!\n"; cerr << " BETA <= -1.0\n"; exit ( 1 ); } o = 1; return o; } //****************************************************************************80 void cn_jac_01_1 ( int n, double alpha, double beta, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_JAC_01_1 implements a precision 1 rule for region CN_JAC. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // CN is the cube [-1,+1]^N with the Jacobi (beta) weight function // // w(alpha,beta;x) = product ( 1 <= i <= n ) (1-x(i))^beta (1+x(i))^alpha. // // with -1 < alpha, -1 < beta. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, BETA, the parameters. // -1.0 < ALPHA, -1.0 < BETA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int expon; int i; int k; double value1; double value2; double volume; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_JAC_01_1 - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } if ( beta <= -1.0 ) { cerr << "\n"; cerr << "CN_JAC_01_1 - Fatal error!\n"; cerr << " BETA <= -1.0\n"; exit ( 1 ); } expon = 0; value1 = c1_jac_monomial_integral ( alpha, beta, expon ); volume = pow ( value1, n ); expon = 1; value2 = c1_jac_monomial_integral ( alpha, beta, expon ); r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = value2 / value1; } w[k] = volume; return; } //****************************************************************************80 int cn_jac_01_1_size ( int n, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // CN_JAC_01_1_SIZE sizes a precision 1 rule for region CN_JAC. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // CN is the cube [-1,+1]^N with the Jacobi (beta) weight function // // w(alpha,beta;x) = product ( 1 <= i <= n ) (1-x(i))^beta (1+x(i))^alpha. // // with -1 < alpha, -1 < beta. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, BETA, the parameters. // -1.0 < ALPHA, -1.0 < BETA. // // Output, int CN_JAC_01_1_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_JAC_01_1_SIZE - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } if ( beta <= -1.0 ) { cerr << "\n"; cerr << "CN_JAC_01_1_SIZE - Fatal error!\n"; cerr << " BETA <= -1.0\n"; exit ( 1 ); } o = 1; return o; } //****************************************************************************80 void cn_jac_02_xiu ( int n, double alpha, double beta, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_JAC_02_XIU implements the Xiu precision 2 rule for region CN_JAC. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // CN is the cube [-1,+1]^N with the Jacobi (beta) weight function // // w(alpha,beta;x) = product ( 1 <= i <= n ) (1-x(i))^beta (1+x(i))^alpha. // // with -1 < alpha, -1 < beta. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 March 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, BETA, the parameters. // -1.0 < ALPHA, -1.0 < BETA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; double c1; double coef; double delta0; int expon; double gamma0; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_JAC_02_XIU - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } if ( beta <= -1.0 ) { cerr << "\n"; cerr << "CN_JAC_02_XIU - Fatal error!\n"; cerr << " BETA <= -1.0\n"; exit ( 1 ); } for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = sqrt ( 2.0 ) * cos ( arg ); i = i + 1; x[i+j*n] = sqrt ( 2.0 ) * sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = r8_mop ( j ); i = i + 1; } } gamma0 = ( alpha + beta + 2.0 ) / 2.0; delta0 = ( alpha - beta ) / 2.0; c1 = 2.0 * ( alpha + 1.0 ) * ( beta + 1.0 ) / ( alpha + beta + 3.0 ) / ( alpha + beta + 2.0 ); for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } expon = 0; volume_1d = c1_jac_monomial_integral ( alpha, beta, expon ); volume = pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int cn_jac_02_xiu_size ( int n, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // CN_JAC_02_XIU_SIZE sizes the Xiu rule for region CN_JAC. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // CN is the cube [-1,+1]^N with the Jacobi (beta) weight function // // w(alpha,beta;x) = product ( 1 <= i <= n ) (1-x(i))^beta (1+x(i))^alpha. // // with -1 < alpha, -1 < beta. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, BETA, the parameters. // -1.0 < ALPHA, -1.0 < BETA. // // Output, int CN_JAC_02_XIU_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "CN_JAC_02_XIU_SIZE - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } if ( beta <= -1.0 ) { cerr << "\n"; cerr << "CN_JAC_02_XIU_SIZE - Fatal error!\n"; cerr << " BETA <= -1.0\n"; exit ( 1 ); } o = n + 1; return o; } //****************************************************************************80 double cn_jac_monomial_integral ( int n, double alpha, double beta, int expon[] ) //****************************************************************************80 // // Purpose: // // CN_JAC_MONOMIAL_INTEGRAL: integral of a monomial with Jacobi weight over CN. // // Discussion: // // value = integral ( CN ) // product ( 1 <= i <= n ) x(I)^expon(i) (1-x(i))^alpha (1+x(i))^beta dx(i) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of (1-X) in the weight factor. // // Input, double BETA, the exponent of (1+X) in the weight factor. // // Input, int EXPON[N], the exponents. // // Output, double CN_JAC_MONOMIAL_INTEGRAL, the value of the integral. // { int i; double value; double value2; value = 1.0; for ( i = 0; i < n; i++ ) { value2 = c1_jac_monomial_integral ( alpha, beta, expon[i] ); value = value * value2; } return value; } //****************************************************************************80 void cn_leg_01_1 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_01_1 implements the midpoint rule for region CN_LEG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int expon; int k; double volume; expon = 0; volume = c1_leg_monomial_integral ( expon ); volume = pow ( volume, n ); r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; w[k] = volume; return; } //****************************************************************************80 int cn_leg_01_1_size ( int n ) //****************************************************************************80 // // Purpose: // // CN_LEG_01_1_SIZE sizes the midpoint rule for region CN_LEG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Output, int CN_LEG_01_1_SIZE, the order. // { int o; o = 1; return o; } //****************************************************************************80 void cn_leg_02_xiu ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_02_XIU implements the Xiu precision 2 rule for region CN_LEG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 March 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; double c1; double coef; double delta0; int expon; double gamma0; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = sqrt ( 2.0 ) * cos ( arg ); i = i + 1; x[i+j*n] = sqrt ( 2.0 ) * sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = r8_mop ( j ); i = i + 1; } } gamma0 = 1.0; delta0 = 0.0; c1 = 1.0 / 3.0; for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } expon = 0; volume_1d = c1_leg_monomial_integral ( expon ); volume = pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int cn_leg_02_xiu_size ( int n ) //****************************************************************************80 // // Purpose: // // CN_LEG_02_XIU_SIZE sizes the Xiu rule for region CN_LEG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int CN_LEG_02_XIU_SIZE, the order. // { int o; o = n + 1; return o; } //****************************************************************************80 void cn_leg_03_1 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_03_1 implements the Stroud rule CN:3-1 for region CN_LEG. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // The necessary treatment of the final coordinate of points when // N is odd seems to vary from what Stroud declares! // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; int expon; int i; int j; double pi = 3.141592653589793; int r; double volume; expon = 0; volume = c1_leg_monomial_integral ( expon ); volume = pow ( volume, n ); for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( ( 2 * r - 1 ) * ( j + 1 ) ) * pi / ( double ) ( n ); x[i+j*n] = sqrt ( 2.0 ) * cos ( arg ) / sqrt ( 3.0 ); i = i + 1; x[i+j*n] = sqrt ( 2.0 ) * sin ( arg ) / sqrt ( 3.0 ); i = i + 1; } // // The following code does not correspond to what Stroud declares. // if ( i < n ) { if ( n == 1 ) { x[i+j*n] = r8_mop ( j + 1 ) / sqrt ( 3.0 ); } else { x[i+j*n] = sqrt ( 2.0 ) * r8_mop ( j + 1 ) / sqrt ( 3.0 ); } i = i + 1; } } for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int cn_leg_03_1_size ( int n ) //****************************************************************************80 // // Purpose: // // CN_LEG_03_1_SIZE sizes the Stroud rule CN:3-1 for region CN_LEG. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int CN_LEG_03_1_SIZE, the order. // { int o; o = 2 * n; return o; } //****************************************************************************80 void cn_leg_03_xiu ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_03_XIU implements the Xiu precision 3 rule for region CN_LEG. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; int expon; int i; int j; double pi = 3.141592653589793; int r; double volume; expon = 0; volume = c1_leg_monomial_integral ( expon ); volume = pow ( volume, n ); for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( ( 2 * r - 1 ) * ( j + 1 ) ) * pi / ( double ) ( n ); x[i+j*n] = sqrt ( 2.0 ) * cos ( arg ) / sqrt ( 3.0 ); i = i + 1; x[i+j*n] = sqrt ( 2.0 ) * sin ( arg ) / sqrt ( 3.0 ); i = i + 1; } if ( i < n ) { if ( n == 1 ) { x[i+j*n] = r8_mop ( j + 1 ) / sqrt ( 3.0 ); } else { x[i+j*n] = sqrt ( 2.0 ) * r8_mop ( j + 1 ) / sqrt ( 3.0 ); } i = i + 1; } } for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int cn_leg_03_xiu_size ( int n ) //****************************************************************************80 // // Purpose: // // CN_LEG_03_XIU_SIZE sizes the Xiu precision 3 rule for region CN_LEG. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int CN_LEG_03_XIU_SIZE, the order. // { int o; o = 2 * n; return o; } //****************************************************************************80 void cn_leg_05_1 ( int n, int option, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_05_1 implements the Stroud rule CN:5-1 for region CN_LEG. // // Discussion: // // The rule has order // // O = N^2 + N + 2. // // The rule has precision P = 5. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // N must be 4, 5, or 6. // // Input, int OPTION, is only used in case N = 4 or 5. // In that case, OPTION should be 1 or 2 to select the // two available variants of the rule. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a; double arg; double b; double c; double eta; int expon; double gamma; int i; int i1; int i2; int k; double lambda; double mu; double volume; double xsi; if ( n < 4 || 6 < n ) { cerr << "\n"; cerr << "CN_LEG_05_1 - Fatal error!\n"; cerr << " The value of N must be 4, 5, or 6.\n"; exit ( 1 ); } if ( n == 4 || n == 5 ) { if ( option < 1 || 2 < option ) { cerr << "\n"; cerr << "CN_LEG_05_1 - Fatal error!\n"; cerr << " When N = 4 or 5, the value of OPTION must be 1 or 2.\n"; exit ( 1 ); } } expon = 0; volume = c1_leg_monomial_integral ( expon ); volume = pow ( volume, n ); if ( n == 4 && option == 1 ) { eta = 0.778984505799815E+00; lambda = 1.284565137874656E+00; xsi = - 0.713647298819253E+00; mu = - 0.715669761974162E+00; gamma = 0.217089151000943E+00; a = 0.206186096875899E-01 * volume; b = 0.975705820221664E-02 * volume; c = 0.733921929172573E-01 * volume; } else if ( n == 4 && option == 2 ) { eta = 0.546190755827425E+00; lambda = 0.745069130115661E+00; xsi = - 0.413927294508700E+00; mu = - 0.343989637454535E+00; gamma = 1.134017894600344E+00; a = 0.853094758323323E-01 * volume; b = 0.862099000096395E-01 * volume; c = 0.116418206881849E-01 * volume; } else if ( n == 5 && option == 1 ) { eta = 0.522478547481276E+00; lambda = 0.936135175985774E+00; xsi = - 0.246351362101519E+00; mu = - 0.496308106093758E+00; gamma = 0.827180176822930E+00; a = 0.631976901960153E-01 * volume; b = 0.511464127430166E-01 * volume; c = 0.181070246088902E-01 * volume; } else if ( n == 5 && option == 2 ) { eta = 0.798317301388741E+00; lambda = 0.637344273885728E+00; xsi = - 0.455245909918377E+00; mu = - 1.063446229997311E+00; gamma = 0.354482076665770E+00; a = 0.116952384292206E-01 * volume; b = 0.701731258612708E-01 * volume; c = 0.137439132264426E-01 * volume; } else if ( n == 6 ) { eta = 0.660225291773525E+00; lambda = 1.064581294844754E+00; xsi = 0.000000000000000E+00; mu = - 0.660225291773525E+00; gamma = 0.660225291773525E+00; a = 0.182742214532872E-01 * volume; b = 0.346020761245675E-01 * volume; c = 0.182742214532872E-01 * volume; } k = -1; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = eta; } w[k] = a; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = - eta; } w[k] = a; for ( i1 = 0; i1 < n; i1++ ) { k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = xsi; } x[i1+k*n] = lambda; w[k] = b; } for ( i1 = 0; i1 < n; i1++ ) { k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = - xsi; } x[i1+k*n] = - lambda; w[k] = b; } for ( i1 = 0; i1 < n - 1; i1++ ) { for ( i2 = i1 + 1; i2 < n; i2++ ) { k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = gamma; } x[i1+k*n] = mu; x[i2+k*n] = mu; w[k] = c; } } for ( i1 = 0; i1 < n - 1; i1++ ) { for ( i2 = i1 + 1; i2 < n; i2++ ) { k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = - gamma; } x[i1+k*n] = - mu; x[i2+k*n] = - mu; w[k] = c; } } return; } //****************************************************************************80 int cn_leg_05_1_size ( int n ) //****************************************************************************80 // // Purpose: // // CN_LEG_05_1_SIZE sizes the Stroud rule CN:5-1 for region CN_LEG. // // Discussion: // // The rule has order // // O = N^2 + N + 2. // // The rule has precision P = 5. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int CN_LEG_05_1_SIZE, the order. // { int o; o = n * n + n + 2; return o; } //****************************************************************************80 void cn_leg_05_2 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_05_2 implements the Stroud rule CN:5-2 for region CN_LEG. // // Discussion: // // The rule has order // // O = 2 N^2 + 1. // // The rule has precision P = 5. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // N must be at least 2. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double b0; double b1; double b2; int expon; int i; int i1; int i2; int k; double r; double volume; if ( n < 2 ) { cerr << "\n"; cerr << "CN_LEG_05_2 - Fatal error!\n"; cerr << " N must be at least 2.\n"; exit ( 1 ); } expon = 0; volume = c1_leg_monomial_integral ( expon ); volume = pow ( volume, n ); b0 = ( double ) ( 25 * n * n - 115 * n + 162 ) * volume / 162.0; b1 = ( double ) ( 70 - 25 * n ) * volume / 162.0; b2 = 25.0 * volume / 324.0; r = sqrt ( 3.0 / 5.0 ); k = - 1; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } w[k] = b0; for ( i1 = 0; i1 < n; i1++ ) { k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } x[i1+k*n] = + r; w[k] = b1; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } x[i1+k*n] = - r; w[k] = b1; } for ( i1 = 0; i1 < n - 1; i1++ ) { for ( i2 = i1 + 1; i2 < n; i2++ ) { k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } x[i1+k*n] = + r; x[i2+k*n] = + r; w[k] = b2; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } x[i1+k*n] = + r; x[i2+k*n] = - r; w[k] = b2; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } x[i1+k*n] = - r; x[i2+k*n] = + r; w[k] = b2; k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 0.0; } x[i1+k*n] = - r; x[i2+k*n] = - r; w[k] = b2; } } return; } //****************************************************************************80 int cn_leg_05_2_size ( int n ) //****************************************************************************80 // // Purpose: // // CN_LEG_05_2_SIZE sizes the Stroud rule CN:5-2 for region CN_LEG. // // Discussion: // // The rule has order // // O = 2 N^2 + 1. // // The rule has precision P = 5. // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int CN_LEG_05_2_SIZE, the order. // { int o; o = 2 * n * n + 1; return o; } //****************************************************************************80 double cn_leg_monomial_integral ( int n, int expon[] ) //****************************************************************************80 // // Purpose: // // CN_LEG_MONOMIAL_INTEGRAL: integral of monomial with Legendre weight on CN. // // Discussion: // // CN_LEG is the cube [-1,+1]^N with the Legendre weight function // // w(x) = 1. // // value = integral ( CN ) product ( 1 <= i <= n ) x(I)^expon(i) dx(i) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, int EXPON(N), the exponents. // // Output, double CN_LEG_MONOMIAL_INTEGRAL, the value of the integral. // { int i; double value; double value2; value = 1.0; for ( i = 0; i < n; i++ ) { value2 = c1_leg_monomial_integral ( expon[i] ); value = value * value2; } return value; } //****************************************************************************80 double cone_unit_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // CONE_UNIT_3D approximates an integral inside the unit cone in 3D. // // Integration Region: // // X^2 + Y^2 <= 1 - Z // // and // // 0 <= Z <= 1. // // Discussion: // // An 48 point degree 7 formula, Stroud CN:S2:7-1, is used. // // (There is a typographical error in the S2:7-1 formula for B3.) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function which evaluates F(X,Y,Z). // // Output, double CONE_UNIT_3D, the approximate integral of the function. // { double a; double b; double c; double h; int i; double quad; double r; double result; double u[4] = { 0.04850054945, 0.2386007376, 0.5170472951, 0.7958514179 }; double volume; double w1[4] = { 0.1108884156, 0.1434587878, 0.06863388717, 0.01035224075 }; double w2[3]; double x; double y; double z; a = sqrt ( 3.0 ) / 2.0; b = sqrt ( ( 27.0 - 3.0 * sqrt ( 29.0 ) ) / 104.0 ); c = sqrt ( ( 27.0 + 3.0 * sqrt ( 29.0 ) ) / 104.0 ); w2[0] = 2.0 / 9.0; w2[1] = 3.0 * ( 551.0 + 4.0 * sqrt ( 29.0 ) ) / 6264.0; w2[2] = 3.0 * ( 551.0 - 4.0 * sqrt ( 29.0 ) ) / 6264.0; quad = 0.0; for ( i = 0; i < 4; i++ ) { x = a * ( 1.0 - u[i] ); y = 0.0; z = u[i]; quad = quad + w1[i] * w2[0] * func ( x, y, z ); x = -a * ( 1.0 - u[i] ); y = 0.0; z = u[i]; quad = quad + w1[i] * w2[0] * func ( x, y, z ); x = 0.0; y = a * ( 1.0 - u[i] ); z = u[i]; quad = quad + w1[i] * w2[0] * func ( x, y, z ); x = 0.0; y = -a * ( 1.0 - u[i] ); z = u[i]; quad = quad + w1[i] * w2[0] * func ( x, y, z ); } for ( i = 0; i < 4; i++ ) { x = b * ( 1.0 - u[i] ); y = b * ( 1.0 - u[i] ); z = u[i]; quad = quad + w1[i] * w2[1] * func ( x, y, z ); x = -b * ( 1.0 - u[i] ); y = b * ( 1.0 - u[i] ); z = u[i]; quad = quad + w1[i] * w2[1] * func ( x, y, z ); x = -b * ( 1.0 - u[i] ); y = -b * ( 1.0 - u[i] ); z = u[i]; quad = quad + w1[i] * w2[1] * func ( x, y, z ); x = b * ( 1.0 - u[i] ); y = -b * ( 1.0 - u[i] ); z = u[i]; quad = quad + w1[i] * w2[1] * func ( x, y, z ); x = c * ( 1.0 - u[i] ); y = c * ( 1.0 - u[i] ); z = u[i]; quad = quad + w1[i] * w2[2] * func ( x, y, z ); x = -c * ( 1.0 - u[i] ); y = c * ( 1.0 - u[i] ); z = u[i]; quad = quad + w1[i] * w2[2] * func ( x, y, z ); x = -c * ( 1.0 - u[i] ); y = -c * ( 1.0 - u[i] ); z = u[i]; quad = quad + w1[i] * w2[2] * func ( x, y, z ); x = c * ( 1.0 - u[i] ); y = -c * ( 1.0 - u[i] ); z = u[i]; quad = quad + w1[i] * w2[2] * func ( x, y, z ); } r = 1.0; h = 1.0; volume = cone_volume_3d ( r, h ); result = quad * volume; return result; } //****************************************************************************80 double cone_volume_3d ( double r, double h ) //****************************************************************************80 // // Purpose: // // CONE_VOLUME_3D returns the volume of a cone in 3D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the base of the cone. // // Input, double H, the height of the cone. // // Output, double CONE_VOLUME_3D, the volume of the cone. // { double pi = 3.141592653589793; double value; value = ( pi / 3.0 ) * h * r * r; return value; } //****************************************************************************80 double cube_shell_nd ( double func ( int n, double x[] ), int n, double r1, double r2 ) //****************************************************************************80 // // Purpose: // // CUBE_SHELL_ND approximates an integral inside a cubic shell in N dimensions. // // Integration region: // // R1 <= abs ( X(1:N) ) <= R2 // // Discussion: // // An N*2^N point third degree formula is used, Stroud number CNSHELL:3-4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function. // // Input, int N, the dimension of the space. // // Input, double R1, R2, the inner and outer radii of the cubical // shell. The outer cube is of side 2*R2, the inner, missing cube of side // 2*R1. // // Output, double CUBE_SHELL_ND, the approximate integral of the function. // { bool done; int i; int j; double quad; double rmax; double rmin; double result; double u; double v; double volume; double *x; if ( r1 == r2 ) { result = 0.0; return result; } rmax = r8_max ( r1, r2 ); rmin = r8_min ( r1, r2 ); u = sqrt ( ( double ) ( n ) * ( pow ( rmax, n + 2 ) - pow ( rmin, n + 2 ) ) / ( ( double ) ( n + 2 ) * ( pow ( rmax, n ) - pow ( rmin, n ) ) ) ); v = u / sqrt ( 3.0 ); x = new double[n]; quad = 0.0; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { x[j] = v; } x[i] = u; for ( ; ; ) { quad = quad + func ( n, x ); done = r8vec_mirror_next ( n, x ); if ( done ) { break; } } } quad = quad / ( double ) ( n * i4_power ( 2, n ) ); volume = cube_shell_volume_nd ( n, r1, r2 ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double cube_shell_volume_nd ( int n, double r1, double r2 ) //****************************************************************************80 // // Purpose: // // CUBE_SHELL_VOLUME_ND computes the volume of a cubic shell in ND. // // Integration region: // // R1 <= abs ( X(1:N) ) <= R2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the space. // // Input, double R1, R2, the inner and outer radii of the cubic // shell. The outer cube is of side 2*R2, the inner, missing cube of side // 2*R1. // // Output, double CUBE_SHELL_VOLUME_ND, the volume of the cubic // shell. // { double value; value = ( pow ( r2, n ) - pow ( r1, n ) ) * i4_power ( 2, n ); return value; } //****************************************************************************80 double cube_unit_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // CUBE_UNIT_3D approximates an integral inside the unit cube in 3D. // // Integration region: // // -1 <= X <= 1, // and // -1 <= Y <= 1, // and // -1 <= Z <= 1. // // Discussion: // // An 8 point third degree formula is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied routine to evaluate F(X,Y,Z). // // Output, double CUBE_UNIT_3D, the approximate integral of the function. // { double quad; double result; double s; double volume; double w; double x; double y; double z; s = 1.0 / sqrt ( 3.0 ); w = 1.0 / 8.0; x = s; y = s; z = s; quad = w * ( func ( x, y, z ) + func ( x, y, -z ) + func ( x, -y, z ) + func ( x, -y, -z ) + func ( -x, y, z ) + func ( -x, y, -z ) + func ( -x, -y, z ) + func ( -x, -y, -z ) ); volume = cube_unit_volume_nd ( 3 ); result = quad * volume; return result; } //****************************************************************************80 void cube_unit_nd ( double func ( int n, double x[] ), double qa[], double qb[], int n, int k ) //****************************************************************************80 // // Purpose: // // CUBE_UNIT_ND approximates an integral inside the unit cube in ND. // // Integration region: // // -1 <= X(1:N) <= 1 // // Discussion: // // A K**N point product formula is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 April 2008 // // Author: // // John Burkardt // // Reference: // // James Lyness, BJJ McHugh, // Integration Over Multidimensional Hypercubes, // A Progressive Procedure, // The Computer Journal, // Volume 6, 1963, pages 264-270. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function to be integrated. // // Output, double QA[K], QB[K], two sets of estimates for // the integral. The QB entries are obtained from the // QA entries by Richardson extrapolation, and QB(K) is // the best estimate for the integral. // // Input, int N, the dimension of the cube. // // Input, int K, the highest order of integration, and the order // of Richardson extrapolation. K can be no greater than 10. // { double g[10*10]; int i; int j; int kmax = 10; g[0+0*10] = 1.0E+00; g[1+0*10] = -0.3333333333333E+00; g[1+1*10] = 0.1333333333333E+01; g[2+0*10] = 0.4166666666667E-01; g[2+1*10] = -0.1066666666667E+01; g[2+2*10] = 0.2025000000000E+01; g[3+0*10] = -0.2777777777778E-02; g[3+1*10] = 0.3555555555556E+00; g[3+2*10] = -0.2603571428571E+01; g[3+3*10] = 0.3250793650794E+01; g[4+0*10] = 0.1157407407407E-03; g[4+1*10] = -0.6772486772487E-01; g[4+2*10] = 0.1464508928571E+01; g[4+3*10] = -0.5779188712522E+01; g[4+4*10] = 0.5382288910935E+01; g[5+0*10] = -0.3306878306878E-05; g[5+1*10] = 0.8465608465608E-02; g[5+2*10] = -0.4881696428571E+00; g[5+3*10] = 0.4623350970018E+01; g[5+4*10] = -0.1223247479758E+02; g[5+5*10] = 0.9088831168831E+01; g[6+0*10] = 0.6889329805996E-07; g[6+1*10] = -0.7524985302763E-03; g[6+2*10] = 0.1098381696429E+00; g[6+3*10] = -0.2241624712736E+01; g[6+4*10] = 0.1274216124748E+02; g[6+5*10] = -0.2516907092907E+02; g[6+6*10] = 0.1555944865432E+02; g[7+0*10] = -0.1093544413650E-08; g[7+1*10] = 0.5016656868509E-04; g[7+2*10] = -0.1797351866883E-01; g[7+3*10] = 0.7472082375786E+00; g[7+4*10] = -0.8168052081717E+01; g[7+5*10] = 0.3236023405166E+02; g[7+6*10] = -0.5082753227079E+02; g[7+7*10] = 0.2690606541646E+02; g[8+0*10] = 0.1366930517063E-10; g[8+1*10] = -0.2606055516108E-05; g[8+2*10] = 0.2246689833604E-02; g[8+3*10] = -0.1839281815578E+00; g[8+4*10] = 0.3646451822195E+01; g[8+5*10] = -0.2588818724133E+02; g[8+6*10] = 0.7782965878964E+02; g[8+7*10] = -0.1012934227443E+03; g[8+8*10] = 0.4688718347156E+02; g[9+0*10] = -0.1380737896023E-12; g[9+1*10] = 0.1085856465045E-06; g[9+2*10] = -0.2222000934334E-03; g[9+3*10] = 0.3503393934435E-01; g[9+4*10] = -0.1215483940732E+01; g[9+5*10] = 0.1456210532325E+02; g[9+6*10] = -0.7477751530769E+02; g[9+7*10] = 0.1800771959898E+03; g[9+8*10] = -0.1998874663788E+03; g[9+9*10] = 0.8220635246624E+02; if ( kmax < k ) { cerr << "\n"; cerr << "CUBE_UNIT_ND - Fatal error!\n"; cerr << " K must be no greater than KMAX = " << kmax << "\n"; cerr << " but the input K is " << k << "\n"; exit ( 1 ); } for ( i = 0; i < k; i++ ) { qa[i] = qmdpt ( func, n, i+1 ); } qb[0] = qa[0]; for ( i = 1; i < k; i++ ) { qb[i] = 0.0; for ( j = 0; j <= i; j++ ) { qb[i] = qb[i] + g[i+j*10] * qa[j]; } } return; } //****************************************************************************80 double cube_unit_volume_nd ( int n ) //****************************************************************************80 // // Purpose: // // CUBE_UNIT_VOLUME_ND returns the volume of the unit cube in ND. // // Integration region: // // -1 <= X(1:N) <= 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the space. // // Output, double CUBE_UNIT_VOLUME_ND, the volume of the unit // cube in ND. // { double value; value = pow ( 2.0, n ); return value; } //****************************************************************************80 double ellipse_area_2d ( double r1, double r2 ) //****************************************************************************80 // // Purpose: // // ELLIPSE_AREA_2D returns the area of an ellipse in 2D. // // Integration region: // // ( ( X - CENTER(1) ) / R1 )^2 + ( ( Y - CENTER(2) ) / R2 )^2 <= 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R1, R2, the major and minor semi-axes. // // Output, double ELLIPSE_AREA_2D, the area of the ellipse. // { double pi = 3.141592653589793; double value; value = pi * r1 * r2; return value; } //****************************************************************************80 double ellipse_circumference_2d ( double r1, double r2 ) //****************************************************************************80 // // Purpose: // // ELLIPSE_CIRCUMFERENCE_2D returns the circumference of an ellipse in 2D. // // Discussion: // // There is no closed formula for the circumference of an ellipse. // // Defining the eccentricity by // // E = sqrt ( 1 - ( r2 / r1 )^2 ) // // where R1 and R2 are the major and minor axes, then // // circumference // = 4 * R1 * E(K,2*PI) // = R1 * Integral ( 0 <= T <= 2*PI ) sqrt ( 1 - E^2 * sin^2 ( T ) ) dT // // This integral can be approximated by the Gauss-Kummer formula. // // Integration region: // // ( ( X - CENTER(1) ) / R1 )^2 + ( ( Y - CENTER(2) ) / R2 )^2 <= 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Reference: // // John Harris, Horst Stocker, // Handbook of Mathematics and Computational Science, // Springer, 1998, // ISBN: 0-387-94746-9, // LC: QA40.S76. // // Parameters: // // Input, double R1, R2, the major and minor semi-axes. // // Output, double ELLIPSE_CIRCUMFERENCE_2D, the // circumference of the ellipse. // { double e; int i; double pi = 3.141592653589793; double term; double value; if ( r1 == r2 ) { value = 2.0 * pi * r1; return value; } // // Compute the eccentricity of the ellipse. // e = sqrt ( 1.0 - pow ( r8_min ( r1, r2 ) / r8_max ( r1, r2 ), 2 ) ); value = 1.0; term = value; i = 0; for ( ; ; ) { i = i + 1; term = term * ( 2 * i - 3 ) * ( 2 * i - 1 ) * e * e / ( double ) ( 2 * 2 * i * i ); if ( fabs ( term ) <= r8_epsilon ( ) * ( fabs ( value ) + 1.0 ) ) { break; } value = value + term; } value = 2.0 * pi * r8_max ( r1, r2 ) * value; return value; } //****************************************************************************80 double ellipse_eccentricity_2d ( double r1, double r2 ) //****************************************************************************80 // // Purpose: // // ELLIPSE_ECCENTRICITY_2D returns the eccentricity of an ellipse in 2D. // // Integration region: // // ( ( X - CENTER(1) ) / R1 )^2 + ( ( Y - CENTER(2) ) / R2 )^2 <= 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R1, R2, the major and minor semi-axes. // // Output, double ELLIPSE_ECCENTRICITY_2D, the eccentricity // of the ellipse. // { double major; double minor; double value; minor = r8_min ( fabs ( r1 ), fabs ( r2 ) ); major = r8_max ( fabs ( r1 ), fabs ( r2 ) ); if ( major == 0.0 ) { value = - r8_huge ( ); return value; } value = sqrt ( 1.0 - pow ( minor / major, 2 ) ); return value; } //****************************************************************************80 double ellipsoid_volume_3d ( double r1, double r2, double r3 ) //****************************************************************************80 // // Purpose: // // ELLIPSOID_VOLUME_3D returns the volume of an ellipsoid in 3d. // // Discussion: // // This is not a general ellipsoid, but one for which each of the // axes lies along a coordinate axis. // // Integration region: // // ( ( X - CENTER(1) ) / R1 )^2 // + ( ( Y - CENTER(2) ) / R2 )^2 // + ( ( Z - CENTER(3) ) / R3 )^2 <= 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R1, R2, R3, the semi-axes of the ellipsoid. // // Output, double ELLIPSOID_VOLUME_3D, the volume of the ellipsoid. // { double pi = 3.141592653589793; double value; value = ( 4.0 / 3.0 ) * pi * r1 * r2 * r3; return value; } //****************************************************************************80 void en_r2_01_1 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_01_1 implements the Stroud rule 1.1 for region EN_R2. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int k; double pi = 3.141592653589793E+00; double volume; volume = sqrt ( pow ( pi, n ) ); r8vec_zero ( n * o, x ); k = 0; // // 1 point. // w[k] = volume; return; } //****************************************************************************80 int en_r2_01_1_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_01_1_SIZE sizes the Stroud rule 1.1 for region EN_R2. // // Discussion: // // The rule has order O = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_01_1_SIZE, the order. // { int o; o = 1; return o; } //****************************************************************************80 void en_r2_02_xiu ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_02_XIU implements the Xiu rule for region EN_R2. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 March 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; double c1; double delta0; double gamma0; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = sqrt ( 2.0 ) * cos ( arg ); i = i + 1; x[i+j*n] = sqrt ( 2.0 ) * sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = r8_mop ( j ); i = i + 1; } } gamma0 = 2.0; delta0 = 0.0; c1 = 1.0; for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } volume_1d = sqrt ( pi ); volume = pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int en_r2_02_xiu_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_02_XIU_SIZE sizes the Xiu for region EN_R2. // // Discussion: // // The rule has order O = N + 1; // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_01_1_SIZE, the order. // { int o; o = n + 1; return o; } //****************************************************************************80 void en_r2_03_1 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_03_1 implements the Stroud rule 3.1 for region EN_R2. // // Discussion: // // The rule has order O = 2 * N. // // The rule has precision P = 3. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a; int i; int k; double pi = 3.141592653589793; double r; double volume; volume = sqrt ( pow ( pi, n ) ); a = volume / ( double ) ( o ); r = sqrt ( ( double ) ( n ) / 2.0 ); r8vec_zero ( n * o, x ); k = - 1; // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - r; w[k] = a; k = k + 1; x[i+k*n] = + r; w[k] = a; } return; } //****************************************************************************80 int en_r2_03_1_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_03_1_SIZE sizes the Stroud rule 3.1 for region EN_R2. // // Discussion: // // The rule has order O = 2 * N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_03_1_SIZE, the order. // { int o; o = 2 * n; return o; } //****************************************************************************80 void en_r2_03_2 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_03_2 implements the Stroud rule 3.2 for region EN_R2. // // Discussion: // // The rule has order O = 2^N. // // The rule has precision P = 3. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a; int i; int i1; int k; bool more; double pi = 3.141592653589793E+00; double r; double volume; volume = sqrt ( pow ( pi, n ) ); a = volume / ( double ) ( o ); r = sqrt ( 0.5 ); r8vec_zero ( n * o, x ); k = - 1; // // 2^N points. // k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - r; } w[k] = a; more = true; while ( more ) { more = false; for ( i = n - 1; 0 <= i; i-- ) { if ( x[i+k*n] < 0.0 ) { k = k + 1; for ( i1 = 0; i1 < i; i1++ ) { x[i1+k*n] = x[i1+(k-1)*n]; } x[i+k*n] = + r; for ( i1 = i + 1; i1 < n; i1++ ) { x[i1+k*n] = - r; } w[k] = a; more = true; break; } } } return; } //****************************************************************************80 int en_r2_03_2_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_03_2_SIZE sizes the Stroud rule 3.2 for region EN_R2. // // Discussion: // // The rule has order O = 2^N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_03_2_SIZE, the order. // { int o; o = i4_power ( 2, n ); return o; } //****************************************************************************80 void en_r2_03_xiu ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_03_XIU implements the Xiu precision 3 rule for region EN_R2. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = product ( 1 <= i <= n ) ( exp ( - x(i)^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; int i; int j; double pi = 3.141592653589793; int r; double volume; volume = sqrt ( pow ( pi, n ) ); for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( ( 2 * r - 1 ) * j ) * pi / ( double ) ( n ); x[i+j*n] = cos ( arg ); i = i + 1; x[i+j*n] = sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = r8_mop ( j ); if ( n == 1 ) { x[i+j*n] = x[i+j*n] / sqrt ( 2.0 ); } i = i + 1; } } for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int en_r2_03_xiu_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_03_XIU_SIZE sizes the Xiu precision 3 rule for region EN_R2. // // Discussion: // // The rule has order // // O = 2 * N. // // The rule has precision P = 3. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = product ( 1 <= i <= n ) ( exp ( - x(i)^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_XIU_SIZE, the order. // { int o; o = 2 * n; return o; } //****************************************************************************80 void en_r2_05_1 ( int n, int option, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_05_1 implements the Stroud rule 5.1 for region EN_R2. // // Discussion: // // The rule has order O = N^2 + N + 2. // // The rule has precision P = 5. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // For N = 3, 5 and 6, there are two versions of the rule, chosen by setting // the OPTION variable to 1 or 2. // // Versions of this rule are only available for N = 2 through 7. // // There is a typographical error in the reference. // For the second version of the rule for N = 2, the line // gamma = 0.313300683022281E+00 // should read // gamma = 0.312200683022281E+00 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // 2 <= N <= 7. // // Input, int OPTION, selects option 1 or 2. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a; double b; double c; double eta; double gamma; int i; int i1; int j; int k; double lambda; double mu; double pi = 3.141592653589793E+00; double volume; double xsi; if ( n < 2 || 7 < n ) { cerr << "\n"; cerr << "EN_R2_05_1 - Fatal error!\n"; cerr << " 2 <= N <= 7 required.\n"; exit ( 1 ); } if ( option < 1 || 2 < option ) { cerr << "\n"; cerr << "EN_R2_05_1 - Fatal error!\n"; cerr << " 1 <= OPTION <= 2 required.\n"; exit ( 1 ); } if ( option == 2 ) { if ( n != 3 && n != 5 && n != 6 ) { cerr << "\n"; cerr << "EN_R2_05_1 - Fatal error!\n"; cerr << " OPTION = 2 requires N = 3, 5 or 6.\n"; exit ( 1 ); } } volume = sqrt ( pow ( pi, n ) ); if ( n == 2 ) { eta = 0.446103183094540E+00; lambda = 0.136602540378444E+01; xsi = - 0.366025403784439E+00; mu = 0.198167882945871E+01; gamma = 0.000000000000000E+00; a = 0.328774019778636E+00 * volume; b = 0.833333333333333E-01 * volume; c = 0.455931355469736E-02 * volume; } else if ( n == 3 && option == 1 ) { eta = 0.476731294622796E+00; lambda = 0.935429018879534E+00; xsi = - 0.731237647787132E+00; mu = 0.433155309477649E+00; gamma = 0.266922328697744E+01; a = 0.242000000000000E+00 * volume; b = 0.810000000000000E-01 * volume; c = 0.500000000000000E-02 * volume; } // // The value of gamma that follows corrects an error in the reference. // else if ( n == 3 && option == 2 ) { eta = 0.476731294622796E+00; lambda = 0.128679320334269E+01; xsi = - 0.379873463323979E+00; mu = - 0.192386729447751E+01; gamma = 0.312200683022281E+00; a = 0.242000000000000E+00 * volume; b = 0.810000000000000E-01 * volume; c = 0.500000000000000E-02 * volume; } else if ( n == 4 ) { eta = 0.523945658287507E+00; lambda = 0.119433782552719E+01; xsi = - 0.398112608509063E+00; mu = - 0.318569372920112E+00; gamma = 0.185675837424096E+01; a = 0.155502116982037E+00 * volume; b = 0.777510584910183E-01 * volume; c = 0.558227484231506E-02 * volume; } else if ( n == 5 && option == 1 ) { eta = 0.214972564378798E+01; lambda = 0.464252986016289E+01; xsi = - 0.623201054093728E+00; mu = - 0.447108700673434E+00; gamma = 0.812171426076311E+00; a = 0.487749259189752E-03 * volume; b = 0.487749259189752E-03 * volume; c = 0.497073504444862E-01 * volume; } else if ( n == 5 && option == 2 ) { eta = 0.615369528365158E+00; lambda = 0.132894698387445E+01; xsi = - 0.178394363877324E+00; mu = - 0.745963266507289E+00; gamma = 0.135503972310817E+01; a = 0.726415024414905E-01 * volume; b = 0.726415024414905E-01 * volume; c = 0.641509853510569E-02 * volume; } else if ( n == 6 && option == 1 ) { eta = 0.100000000000000E+01; lambda = 0.141421356237309E+01; xsi = 0.000000000000000E+00; mu = - 0.100000000000000E+01; gamma = 0.100000000000000E+01; a = 0.781250000000000E-02 * volume; b = 0.625000000000000E-01 * volume; c = 0.781250000000000E-02 * volume; } else if ( n == 6 && option == 2 ) { eta = 0.100000000000000E+01; lambda = 0.942809041582063E+00; xsi = - 0.471404520791032E+00; mu = - 0.166666666666667E+01; gamma = 0.333333333333333E+00; a = 0.781250000000000E-02 * volume; b = 0.625000000000000E-01 * volume; c = 0.781250000000000E-02 * volume; } else if ( n == 7 ) { eta = 0.000000000000000E+00; lambda = 0.959724318748357E+00; xsi = - 0.772326488820521E+00; mu = - 0.141214270131942E+01; gamma = 0.319908106249452E+00; a = 0.111111111111111E+00 * volume; b = 0.138888888888889E-01 * volume; c = 0.138888888888889E-01 * volume; } r8vec_zero ( n * o, x ); k = - 1; // // 2 points. // k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - eta; } w[k] = a; k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = + eta; } w[k] = a; // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - xsi; } x[i+k*n] = - lambda; w[k] = b; k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = + xsi; } x[i+k*n] = + lambda; w[k] = b; } // // 2 * ( N * ( N - 1 ) / 2 ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - gamma; } x[i+k*n] = - mu; x[j+k*n] = - mu; w[k] = c; k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = + gamma; } x[i+k*n] = + mu; x[j+k*n] = + mu; w[k] = c; } } return; } //****************************************************************************80 int en_r2_05_1_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_05_1_SIZE sizes the Stroud rule 5.1 for region EN_R2. // // Discussion: // // The rule has order O = N^2 + N + 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_05_1_SIZE, the order. // { int o; o = n * n + n + 2; return o; } //****************************************************************************80 void en_r2_05_2 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_05_2 implements the Stroud rule 5.2 for region EN_R2. // // Discussion: // // The rule has order O = 2 * N^2 + 1. // // The rule has precision P = 5. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a; double b; double c; int i; int j; int k; double pi = 3.141592653589793E+00; double r; double s; double volume; volume = sqrt ( pow ( pi, n ) ); a = 2.0E+00 * volume / ( double ) ( n + 2 ); b = ( double ) ( 4 - n ) * volume / 2.0E+00 / ( double ) ( ( n + 2 ) * ( n + 2 ) ); c = volume / ( double ) ( ( n + 2 ) * ( n + 2 ) ); r = sqrt ( ( double ) ( n + 2 ) / 2.0E+00 ); s = sqrt ( ( double ) ( n + 2 ) / 4.0E+00 ); r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; w[k] = a; // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - r; w[k] = b; k = k + 1; x[i+k*n] = + r; w[k] = b; } // // 4 * ( N * ( N - 1 ) / 2 ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - s; x[j+k*n] = - s; w[k] = c; k = k + 1; x[i+k*n] = - s; x[j+k*n] = + s; w[k] = c; k = k + 1; x[i+k*n] = + s; x[j+k*n] = - s; w[k] = c; k = k + 1; x[i+k*n] = + s; x[j+k*n] = + s; w[k] = c; } } return; } //****************************************************************************80 int en_r2_05_2_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_05_2_SIZE sizes the Stroud rule 5.2 for region EN_R2. // // Discussion: // // The rule has order O = 2 * N^2 + 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_01_1_SIZE, the order. // { int o; o = 2 * n * n + 1; return o; } //****************************************************************************80 void en_r2_05_3 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_05_3 implements the Stroud rule 5.3 for region EN_R2. // // Discussion: // // The rule has order O = 2^N + 2 * N. // // The rule has precision P = 5. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // The rule requires 3 <= N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // 3 <= N. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a; double b; int i; int i1; int k; bool more; double pi = 3.141592653589793E+00; double r; double s; double volume; if ( n < 3 ) { cerr << "\n"; cerr << "EN_R2_05_3 - Fatal error!\n"; cerr << " 3 <= N is required.\n"; exit ( 1 ); } volume = sqrt ( pow ( pi, n ) ); a = 4.0E+00 * volume / ( double ) ( ( n + 2 ) * ( n + 2 ) ); b = ( double ) ( ( n - 2 ) * ( n - 2 ) ) * volume / ( double ) ( i4_power ( 2, n ) ) / ( double ) ( ( n + 2 ) * ( n + 2 ) ); r = sqrt ( ( double ) ( n + 2 ) / 4.0E+00 ); s = sqrt ( ( double ) ( n + 2 ) / 2.0E+00 / ( double ) ( n - 2 ) ); r8vec_zero ( n * o, x ); k = - 1; // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - r; w[k] = a; k = k + 1; x[i+k*n] = + r; w[k] = a; } // // 2^N points. // k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - s; } w[k] = b; more = true; while ( more ) { more = false; for ( i = n - 1; 0 <= i; i-- ) { if ( x[i+k*n] < 0.0E+00 ) { k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = x[i1+(k-1)*n]; } x[i+k*n] = + s; for ( i1 = i + 1; i1 < n; i1++ ) { x[i1+k*n] = - s; } w[k] = b; more = true; break; } } } return; } //****************************************************************************80 int en_r2_05_3_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_05_3_SIZE sizes the Stroud rule 5.3 for region EN_R2. // // Discussion: // // The rule has order O = 2^N + 2 * N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_05_3_SIZE, the order. // { int o; o = i4_power ( 2, n ) + 2 * n; return o; } //****************************************************************************80 void en_r2_05_4 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_05_4 implements the Stroud rule 5.4 for region EN_R2. // // Discussion: // // The rule has order O = 2^(N+1) - 1. // // The rule has precision P = 5. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double b; int i; int i1; int j; int k; bool more; double pi = 3.141592653589793E+00; double r; double s; double volume; volume = sqrt ( pow ( pi, n ) ); s = sqrt ( 0.5E+00 ); r8vec_zero ( n * o, x ); k = - 1; // // 2^N + 2^(N-1) + 2^(N-2) + ... + 1 = 2^(N+1)-1 points. // but do the last point separately. // for ( i = 0; i < n; i++ ) { r = sqrt ( ( double ) ( i + 3 ) / 2.0E+00 ); b = pow ( 2.0E+00, i + 1 - n ) * volume / ( double ) ( i + 2 ) / ( double ) ( i + 3 ); k = k + 1; x[i+k*n] = - r; for ( i1 = i + 1; i1 < n; i1++ ) { x[i1+k*n] = - s; } w[k] = b; more = true; while ( more ) { more = false; for ( j = n - 1; 0 <= j; j-- ) { if ( x[j+k*n] < 0.0E+00 ) { k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = x[i1+(k-1)*n]; } x[j+k*n] = fabs ( x[j+k*n] ); for ( i1 = j + 1; i1 < n; i1++ ) { x[i1+k*n] = - fabs ( x[i1+k*n] ); } w[k] = b; more = true; break; } } } } // // Last point. // k = k + 1; w[k] = 2.0E+00 * volume / ( double ) ( n + 2 ); return; } //****************************************************************************80 int en_r2_05_4_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_05_4_SIZE sizes the Stroud rule 5.4 for region EN_R2. // // Discussion: // // The rule has order O = 2^(N+1) - 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_05_4_SIZE, the order. // { int o; o = i4_power ( 2, n + 1 ) - 1; return o; } //****************************************************************************80 void en_r2_05_5 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_05_5 implements the Stroud rule 5.5 for region EN_R2. // // Discussion: // // The rule has order O = N * 2^N + 1. // // The rule has precision P = 5. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // There is a second version of this rule however it results in // complex abscissas, and so it has been disabled. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a; double b; int i; int i1; int j; int k; bool more; double n_r8; int option; double pi = 3.141592653589793E+00; double r; double s; double volume; volume = sqrt ( pow ( pi, n ) ); n_r8 = ( double ) ( n ); a = 2.0E+00 * volume / ( n_r8 + 2.0E+00 ); b = volume / ( n_r8 + 2.0E+00 ) / pow ( 2.0, n ); option = 1; if ( option == 1 ) { r = sqrt ( ( n_r8 + 2.0E+00 + ( n_r8 - 1.0E+00 ) * sqrt ( 2.0E+00 * ( n_r8 + 2.0E+00 ) ) ) / 2.0E+00 / n_r8 ); s = sqrt ( ( n_r8 + 2.0E+00 - sqrt ( 2.0E+00 * ( n_r8 + 2.0E+00 ) ) ) / 2.0E+00 / n_r8 ); } else if ( option == 2 ) { r = sqrt ( ( n_r8 + 2.0E+00 - ( n_r8 - 1.0E+00 ) * sqrt ( 2.0E+00 * ( n_r8 + 2.0E+00 ) ) ) / 2.0E+00 / n_r8 ); s = sqrt ( ( n_r8 + 2.0E+00 + sqrt ( 2.0E+00 * ( n_r8 + 2.0E+00 ) ) ) / 2.0E+00 / n_r8 ); } r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; w[k] = a; // // N * 2^N points: // N choices for location of R, 2^N choices of sign pattern. // for ( i = 0; i < n; i++ ) { k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - s; } x[i+k*n] = - r; w[k] = b; more = true; while ( more ) { more = false; for ( j = n - 1; 0 <= j; j-- ) { if ( x[j+k*n] < 0.0E+00 ) { k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = x[i1+(k-1)*n]; } x[j+k*n] = fabs ( x[j+k*n] ); for ( i1 = j + 1; i1 < n; i1++ ) { x[i1+k*n] = - fabs ( x[i1+k*n] ); } w[k] = b; more = true; break; } } } } return; } //****************************************************************************80 int en_r2_05_5_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_05_5_SIZE sizes the Stroud rule 5.5 for region EN_R2. // // Discussion: // // The rule has order O = N * 2^N + 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_05_5_SIZE, the order. // { int o; o = n * i4_power ( 2, n ) + 1; return o; } //****************************************************************************80 void en_r2_05_6 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_05_6 implements the Stroud rule 5.6 for region EN_R2. // // Discussion: // // The rule has order O = ( N + 1 ) * 2^N. // // The rule has precision P = 5. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // The rule requires 5 <= N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // 5 <= N. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a; int i; int i1; int j; int k; bool more; double n_r8; double pi = 3.141592653589793E+00; double r; double s; double t; double volume; if ( n < 5 ) { cerr << "\n"; cerr << "EN_R2_05_6 - Fatal error!\n"; cerr << " 5 <= N is required.\n"; exit ( 1 ); } volume = sqrt ( pow ( pi, n ) ); n_r8 = ( double ) ( n ); a = volume / pow ( 2.0, n ) / ( n_r8 + 1.0E+00 ); r = sqrt ( ( n_r8 - sqrt ( 2.0E+00 ) + ( n_r8 - 1.0E+00 ) * sqrt ( 2.0E+00 * ( n_r8 + 1.0E+00 ) ) ) / 2.0E+00 / n_r8 ); s = sqrt ( ( n_r8 - sqrt ( 2.0E+00 ) - sqrt ( 2.0E+00 * ( n_r8 + 1.0E+00 ) ) ) / 2.0E+00 / n_r8 ); t = sqrt ( ( 1.0E+00 + sqrt ( 2.0E+00 ) ) / 2.0E+00 ); r8vec_zero ( n * o, x ); k = - 1; // // N * 2^N points. // for ( i = 0; i < n; i++ ) { k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - s; } x[i+k*n] = - r; w[k] = a; more = true; while ( more ) { more = false; for ( j = n - 1; 0 <= j; j-- ) { if ( x[j+k*n] < 0.0E+00 ) { k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = x[i1+(k-1)*n]; } x[j+k*n] = fabs ( x[j+k*n] ); for ( i1 = j + 1; i1 < n; i1++ ) { x[i1+k*n] = - fabs ( x[i1+k*n] ); } w[k] = a; more = true; break; } } } } // // 2^N points. // k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - t; } w[k] = a; more = true; while ( more ) { more = false; for ( j = n - 1; 0 <= j; j-- ) { if ( x[j+k*n] < 0.0E+00 ) { k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = x[i1+(k-1)*n]; } x[j+k*n] = fabs ( x[j+k*n] ); for ( i1 = j + 1; i1 < n; i1++ ) { x[i1+k*n] = - fabs ( x[i1+k*n] ); } w[k] = a; more = true; break; } } } return; } //****************************************************************************80 int en_r2_05_6_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_05_6_SIZE sizes the Stroud rule 5.6 for region EN_R2. // // Discussion: // // The rule has order O = ( N + 1 ) * 2^N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_05_6_SIZE, the order. // { int o; o = ( n + 1 ) * i4_power ( 2, n ); return o; } //****************************************************************************80 void en_r2_07_1 ( int n, int option, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_07_1 implements the Stroud rule 7.1 for region EN_R2. // // Discussion: // // The rule has order O = 2^N + 2 * N^2 + 1. // // The rule has precision P = 7. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // There are two versions of the rule, chosen by setting the // OPTION variable to 1 or 2. // // Option 1 is only valid for N = 3, 4, 6 or 7. // Option 2 is only valid for N = 3 or 4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // N = 3, 4, 6 or 7. // // Input, int OPTION, chooses rule option 1 or 2. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a; double b; double c; double d; int i; int i1; int j; int k; bool more; double n_r8; double pi = 3.141592653589793E+00; double r; double s; double t; double volume; if ( option < 1 || 2 < option ) { cerr << "\n"; cerr << "EN_R2_07_1 - Fatal error!\n"; cerr << " 1 <= OPTION <= 2 required.\n"; exit ( 1 ); } if ( option == 1 ) { if ( n != 3 && n != 4 && n != 6 && n != 7 ) { cerr << "\n"; cerr << "EN_R2_07_1 - Fatal error!\n"; cerr << " OPTION 1 requires N = 3, 4, 6 or 7.\n"; exit ( 1 ); } } if ( option == 2 ) { if ( n != 3 && n != 4 ) { cerr << "\n"; cerr << "EN_R2_07_1 - Fatal error!\n"; cerr << " OPTION 2 requires N = 3 or 4.\n"; exit ( 1 ); } } volume = sqrt ( pow ( pi, n ) ); n_r8 = ( double ) ( n ); if ( option == 1 ) { r = sqrt ( ( 3.0E+00 * ( 8.0E+00 - n_r8 ) - ( n_r8 - 2.0E+00 ) * sqrt ( 3.0E+00 * ( 8.0E+00 - n_r8 ) ) ) / 2.0E+00 / ( 5.0E+00 - n_r8 ) ); s = sqrt ( ( 3.0E+00 * n_r8 - 2.0E+00 * sqrt ( 3.0E+00 * ( 8.0E+00 - n_r8 ) ) ) / 2.0E+00 / ( 3.0E+00 * n_r8 - 8.0E+00 ) ); t = sqrt ( ( 6.0E+00 + sqrt ( 3.0E+00 * ( 8.0E+00 - n_r8 ) ) ) / 2.0E+00 ); } else if ( option == 2 ) { r = sqrt ( ( 3.0E+00 * ( 8.0E+00 - n_r8 ) + ( n_r8 - 2.0E+00 ) * sqrt ( 3.0E+00 * ( 8.0E+00 - n_r8 ) ) ) / 2.0E+00 / ( 5.0E+00 - n_r8 ) ); s = sqrt ( ( 3.0E+00 * n_r8 + 2.0E+00 * sqrt ( 3.0E+00 * ( 8.0E+00 - n_r8 ) ) ) / 2.0E+00 / ( 3.0E+00 * n_r8 - 8.0E+00 ) ); t = sqrt ( ( 6.0E+00 - sqrt ( 3.0E+00 * ( 8.0E+00 - n_r8 ) ) ) / 2.0E+00 ); } b = ( 8.0E+00 - n_r8 ) * volume / 8.0E+00 / pow ( r, 6 ); c = volume / pow ( 2.0E+00, n + 3 ) / pow ( s, 6 ); d = volume / 16.0E+00 / pow ( t, 6 ); a = volume - 2.0E+00 * n_r8 * b - pow ( 2.0E+00, n ) * c - 2.0E+00 * n_r8 * ( n_r8 - 1.0E+00 ) * d; r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; w[k] = a; // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - r; w[k] = b; k = k + 1; x[i+k*n] = + r; w[k] = b; } // // 2^N points. // k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - s; } w[k] = c; more = true; while ( more ) { more = false; for ( i = n - 1; 0 <= i; i-- ) { if ( x[i+k*n] < 0.0E+00 ) { k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = x[i1+(k-1)*n]; } x[i+k*n] = fabs ( x[i+k*n] ); for ( i1 = i + 1; i1 < n; i1++ ) { x[i1+k*n] = - fabs ( x[i1+k*n] ); } w[k] = c; more = true; break; } } } // // 2 * ( N * ( N - 1 ) / 2 ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - t; x[j+k*n] = - t; w[k] = d; k = k + 1; x[i+k*n] = - t; x[j+k*n] = + t; w[k] = d; k = k + 1; x[i+k*n] = + t; x[j+k*n] = - t; w[k] = d; k = k + 1; x[i+k*n] = + t; x[j+k*n] = + t; w[k] = d; } } return; } //****************************************************************************80 int en_r2_07_1_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_07_1_SIZE sizes the Stroud rule 7.1 for region EN_R2. // // Discussion: // // The rule has order O = 2^N + 2 * N^2 + 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_07_1_SIZE, the order. // { int o; o = i4_power ( 2, n ) + 2 * n * n + 1; return o; } //****************************************************************************80 void en_r2_07_2 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_07_2 implements the Stroud rule 7.2 for region EN_R2. // // Discussion: // // The rule has order O = 2^(N+1) + 4 * N^2. // // The rule has precision P = 7. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // The rule requires 3 <= N. // // The reference has a typographical error in the description of this rule. // The formula: // // (t,t,t,...,t)FS // // should read // // (t,t,0,...,0)FS. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // 3 <= N. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double a1; double a2; double b; double c; double d; int i; int i1; int j; int k; bool more; double n_r8; double pi = 3.141592653589793E+00; double r; double rho1; double rho2; double s; double t; double volume; if ( n < 3 ) { cerr << "\n"; cerr << "EN_R2_07_2 - Fatal error!\n"; cerr << " 3 <= N is required.\n"; exit ( 1 ); } volume = sqrt ( pow ( pi, n ) ); n_r8 = ( double ) ( n ); rho1 = sqrt ( ( n_r8 + 2.0E+00 - sqrt ( 2.0E+00 * ( n_r8 + 2.0E+00 ) ) ) / 2.0E+00 ); rho2 = sqrt ( ( n_r8 + 2.0E+00 + sqrt ( 2.0E+00 * ( n_r8 + 2.0E+00 ) ) ) / 2.0E+00 ); a1 = ( n_r8 + 2.0E+00 + sqrt ( 2.0E+00 * ( n_r8 + 2.0E+00 ) ) ) / 2.0E+00 / ( n_r8 + 2.0E+00 ); a2 = ( n_r8 + 2.0E+00 - sqrt ( 2.0E+00 * ( n_r8 + 2.0E+00 ) ) ) / 2.0E+00 / ( n_r8 + 2.0E+00 ); r = 1.0E+00; s = sqrt ( 1.0E+00 / n_r8 ); t = sqrt ( 0.5E+00 ); b = ( 8.0E+00 - n_r8 ) * volume / n_r8 / ( n_r8 + 2.0E+00 ) / ( n_r8 + 4.0E+00 ); c = pow ( n_r8, 3 ) * volume / pow ( 2.0E+00, n ) / n_r8 / ( n_r8 + 2.0E+00 ) / ( n_r8 + 4.0E+00 ); d = 4.0E+00 * volume / n_r8 / ( n_r8 + 2.0E+00 ) / ( n_r8 + 4.0E+00 ); r8vec_zero ( n * o, x ); k = - 1; // // 2 * 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - rho1 * r; w[k] = a1 * b; k = k + 1; x[i+k*n] = - rho2 * r; w[k] = a2 * b; k = k + 1; x[i+k*n] = + rho1 * r; w[k] = a1 * b; k = k + 1; x[i+k*n] = + rho2 * r; w[k] = a2 * b; } // // 2 * 2^N points. // k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - rho1 * s; } w[k] = a1 * c; k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = - rho2 * s; } w[k] = a2 * c; more = true; while ( more ) { more = false; for ( i = n - 1; 0 <= i; i-- ) { if ( x[i+k*n] < 0.0E+00 ) { k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = x[i1+(k-2)*n];; } x[i+k*n] = fabs ( x[i+k*n] ); for ( i1 = i + 1; i1 < n; i1++ ) { x[i1+k*n] = - fabs ( x[i1+k*n] ); } w[k] = a1 * c; k = k + 1; for ( i1 = 0; i1 < n; i1++ ) { x[i1+k*n] = x[i1+(k-2)*n];; } x[i+k*n] = fabs ( x[i+k*n] ); for ( i1 = i + 1; i1 < n; i1++ ) { x[i1+k*n] = - fabs ( x[i1+k*n] ); } w[k] = a2 * c; more = true; break; } } } // // 2 * 4 * ( N * ( N - 1 ) / 2 ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - rho1 * t; x[j+k*n] = - rho1 * t; w[k] = a1 * d; k = k + 1; x[i+k*n] = - rho1 * t; x[j+k*n] = + rho1 * t; w[k] = a1 * d; k = k + 1; x[i+k*n] = + rho1 * t; x[j+k*n] = - rho1 * t; w[k] = a1 * d; k = k + 1; x[i+k*n] = + rho1 * t; x[j+k*n] = + rho1 * t; w[k] = a1 * d; k = k + 1; x[i+k*n] = - rho2 * t; x[j+k*n] = - rho2 * t; w[k] = a2 * d; k = k + 1; x[i+k*n] = - rho2 * t; x[j+k*n] = + rho2 * t; w[k] = a2 * d; k = k + 1; x[i+k*n] = + rho2 * t; x[j+k*n] = - rho2 * t; w[k] = a2 * d; k = k + 1; x[i+k*n] = + rho2 * t; x[j+k*n] = + rho2 * t; w[k] = a2 * d; } } return; } //****************************************************************************80 int en_r2_07_2_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_07_2_SIZE sizes the Stroud rule 7.2 for region EN_R2. // // Discussion: // // The rule has order O = 2^(N+1) + 4 * N^2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_07_2_SIZE, the order. // { int o; o = i4_power ( 2, n + 1 ) + 4 * n * n; return o; } //****************************************************************************80 void en_r2_07_3 ( int n, int option, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_07_3 implements the Stroud rule 7.3 for region EN_R2. // // Discussion: // // The rule has order O = ( 4 * N^3 + 8 * N + 3 ) / 3. // // The rule has precision P = 7. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // There are two versions of each rule, chosen by setting the // OPTION variable to 1 or 2. // // The rule as tabulated by Stenger is available for N = 2 through 20. // This function accepts N = 3 through 6. // // N O // __ ___ // 3 45 // 4 97 // 5 181 // 6 305 // // The reference has a typographical error for N = 5, OPTION 1, B4: // // -(1)0.736330882774831 // // should read // // (-1)0.736330882774831 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // 3 <= N <= 6. // // Input, int OPTION, chooses rule option 1 or 2. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double b0; double b1; double b2; double b3; double b4; double b5; int i; int j; int k; int l; bool more; double pi = 3.141592653589793E+00; double u; double v; double volume; if ( n < 3 || 6 < n ) { cerr << "\n"; cerr << "EN_R2_07_3 - Fatal error!\n"; cerr << " 3 <= N <= 6 required.\n"; exit ( 1 ); } if ( option < 1 || 2 < option ) { cerr << "\n"; cerr << "EN_R2_07_3 - Fatal error!\n"; cerr << " 1 <= OPTION <= 2 required.\n"; exit ( 1 ); } volume = sqrt ( pow ( pi, n ) ); if ( n == 3 && option == 1 ) { u = 0.524647623275290E+00; v = 0.165068012388578E+01; b0 = - 0.166705761599566E+02; b1 = 0.100296981655678E+02; b2 = 0.161699246687754E+00; b3 = - 0.604719151221535E+01; b4 = 0.234381399489666E-01; b5 = 0.417194501880647E+01; } else if ( n == 3 && option == 2 ) { u = 0.165068012388578E+01; v = 0.524647623275290E+00; b0 = 0.166705761599566E+02; b1 = 0.178903161957074E+00; b2 = - 0.665808190965810E+01; b3 = 0.148361823143070E-01; b4 = 0.229669852539758E+01; b5 = 0.430097881732984E-02; } else if ( n == 4 && option == 1 ) { u = 0.524647623275290E+00; v = 0.165068012388578E+01; b0 = - 0.167539329651562E+03; b1 = 0.687922329603575E+02; b2 = 0.203518409659014E+00; b3 = - 0.255075279116885E+02; b4 = 0.415430214106084E-01; b5 = 0.739458001434961E+01; } else if ( n == 4 && option == 2 ) { u = 0.165068012388578E+01; v = 0.524647623275290E+00; b0 = 0.688432856406677E+02; b1 = 0.294997847268286E+00; b2 = - 0.199427272118378E+02; b3 = 0.110498755408511E-01; b4 = 0.407079214570997E+01; b5 = 0.762328646743931E-02; } else if ( n == 5 && option == 1 ) { u = 0.524647623275290E+00; v = 0.165068012388578E+01; b0 = - 0.826940846964452E+03; b1 = 0.264779097660331E+03; b2 = 0.213460812375320E+00; b3 = - 0.714240197186780E+02; b4 = 0.736330882774831E-01; b5 = 0.131065518222629E+02; } else if ( n == 5 && option == 2 ) { u = 0.165068012388578E+01; v = 0.524647623275290E+00; b0 = 0.220502344940121E+03; b1 = 0.537746975313769E+00; b2 = - 0.497781460739792E+02; b3 = - 0.743845245712926E-02; b4 = 0.721529121489956E+01; b5 = 0.135119234557687E-01; } else if ( n == 6 && option == 1 ) { u = 0.524647623275290E+00; v = 0.165068012388578E+01; b0 = - 0.309679578630802E+04; b1 = 0.815423321880237E+03; b2 = 0.117326937169073E+00; b3 = - 0.173057295296448E+03; b4 = 0.130511250871491E+00; b5 = 0.232307582494626E+02; } else if ( n == 6 && option == 2 ) { u = 0.165068012388578E+01; v = 0.524647623275290E+00; b0 = 0.616293651884027E+03; b1 = 0.107529736766179E+01; b2 = - 0.113807008098269E+03; b3 = - 0.610828352270520E-01; b4 = 0.127887706992535E+02; b5 = 0.239492607623178E-01; } r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; w[k] = b0; // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - u; w[k] = b1; k = k + 1; x[i+k*n] = + u; w[k] = b1; } // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - v; w[k] = b2; k = k + 1; x[i+k*n] = + v; w[k] = b2; } // // 4 * ( N * ( N - 1 ) / 2 ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; w[k] = b3; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; w[k] = b3; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; w[k] = b3; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; w[k] = b3; } } // // 4 * ( N * ( N - 1 ) / 2 ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - v; x[j+k*n] = - v; w[k] = b4; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + v; w[k] = b4; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - v; w[k] = b4; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + v; w[k] = b4; } } // // 8 * ( N * ( N - 1 ) * ( N - 2 ) / 6 ) points. // for ( i = 0; i < n - 2; i++ ) { for ( j = i + 1; j < n - 1; j++ ) { for ( l = j + 1; l < n; l++ ) { k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = - u; w[k] = b5; k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = + u; w[k] = b5; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = - u; w[k] = b5; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = + u; w[k] = b5; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = - u; w[k] = b5; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = + u; w[k] = b5; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = - u; w[k] = b5; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = + u; w[k] = b5; } } } return; } //****************************************************************************80 int en_r2_07_3_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_07_3_SIZE sizes the Stroud rule 7.3 for region EN_R2. // // Discussion: // // The rule has order O = ( 4 * N^3 + 8 * N + 3 ) / 3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_07_3_SIZE, the order. // { int o; o = ( 4 * n * n * n + 8 * n + 3 ) / 3; return o; } //****************************************************************************80 void en_r2_09_1 ( int n, int option, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_09_1 implements the Stroud rule 9.1 for region EN_R2. // // Discussion: // // The rule has order O = ( 2 * N^4 - 4 * N^3 + 22 * N^2 - 8 * N + 3 ) / 3. // // The rule has precision P = 9. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // There are two versions of each rule, chosen by setting the // OPTION variable to 1 or 2. // // The rule as tabulated by Stenger is available for N = 2 through 20. // This function accepts N = 3 through 6. // // N O // __ ___ // 3 77 // 4 193 // 5 421 // 6 825 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // 3 <= N <= 6. // // Input, int OPTION, chooses rule option 1 or 2. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double b0; double b1; double b2; double b3; double b4; double b5; double b6; double b7; double b8; int i; int j; int k; int l; int m; bool more; double pi = 3.141592653589793E+00; double u; double v; double volume; if ( n < 3 || 6 < n ) { cerr << "\n"; cerr << "EN_R2_09_1 - Fatal error!\n"; cerr << " 3 <= N <= 6 required.\n"; exit ( 1 ); } if ( option < 1 || 2 < option ) { cerr << "\n"; cerr << "EN_R2_09_1 - Fatal error!\n"; cerr << " 1 <= OPTION <= 2 required.\n"; exit ( 1 ); } volume = sqrt ( pow ( pi, n ) ); if ( n == 3 ) { u = 0.202018287045609E+01; v = 0.958572464613819E+00; b0 = 0.676448734429924E+00; b1 = 0.511989106291551E-02; b2 = 0.448595723493744E+00; b3 = 0.235223454595606E-03; b4 = 0.915390713080005E-01; b5 = 0.139208199920793E-01; b6 = 0.235223454595606E-03; b7 = 0.915390713080008E-01; b8 = 0.000000000000000E+00; } else if ( n == 4 && option == 1 ) { u = 0.202018287045609E+01; v = 0.958572464613819E+00; b0 = - 0.860452945007048E+00; b1 = - 0.405511998533795E-01; b2 = 0.107026475449715E+01; b3 = 0.138974239307092E-03; b4 = - 0.162248779448181E+00; b5 = 0.246740110027234E-01; b6 = 0.138974239307094E-03; b7 = 0.162248779448181E+00; b8 = 0.138974239307094E-03; } else if ( n == 4 && option == 2 ) { u = 0.958572464613819E+00; v = 0.202018287045609E+01; b0 = 0.265029088766810E-02; b1 = 0.637601342635332E+00; b2 = - 0.394394059389228E-01; b3 = 0.540829264827264E-01; b4 = - 0.416922717921281E-03; b5 = 0.246740110027234E-01; b6 = 0.540829264827270E-01; b7 = 0.416922717921281E-03; b8 = 0.540829264827269E-01; } else if ( n == 5 && option == 1 ) { u = 0.202018287045609E+01; v = 0.958572464613819E+00; b0 = - 0.827347006200826E+01; b1 = - 0.160820174530905E+00; b2 = 0.353499863758467E+01; b3 = 0.738976276909564E-03; b4 = - 0.862735421812943E+00; b5 = 0.437335458190621E-01; b6 = - 0.246325425636523E-03; b7 = 0.287578473937648E+00; b8 = 0.246325425636523E-03; } else if ( n == 5 && option == 2 ) { u = 0.958572464613819E+00; v = 0.202018287045609E+01; b0 = - 0.624416791055272E+00; b1 = 0.467494915583104E+00; b2 = - 0.152937760910536E+00; b3 = 0.287578473937646E+00; b4 = - 0.221692883072871E-02; b5 = 0.437335458190621E-01; b6 = - 0.958594913125490E-01; b7 = 0.738976276909568E-03; b8 = 0.958594913125492E-01; } else if ( n == 6 && option == 1 ) { u = 0.202018287045609E+01; v = 0.958572464613819E+00; b0 = - 0.361840434143098E+02; b1 = - 0.447936529138517E+00; b2 = 0.112077863004144E+02; b3 = 0.392940404320855E-02; b4 = - 0.254859786784158E+01; b5 = 0.775156917007496E-01; b6 = - 0.130980134773619E-02; b7 = 0.509719573568315E+00; b8 = 0.436600449245395E-03; } else if ( n == 6 && option == 2 ) { u = 0.958572464613819E+00; v = 0.202018287045609E+01; b0 = 0.448873836333650E+01; b1 = - 0.238473566140736E+01; b2 = - 0.413008493198885E+00; b3 = 0.152915872070494E+01; b4 = - 0.654900673868093E-02; b5 = 0.775156917007496E-01; b6 = - 0.509719573568314E+00; b7 = 0.130980134773618E-02; b8 = 0.169906524522772E+00; } r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; w[k] = b0; // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - u; w[k] = b1; k = k + 1; x[i+k*n] = + u; w[k] = b1; } // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - v; w[k] = b2; k = k + 1; x[i+k*n] = + v; w[k] = b2; } // // 4 * ( N * ( N - 1 ) / 2 ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; w[k] = b3; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; w[k] = b3; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; w[k] = b3; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; w[k] = b3; } } // // 4 * ( N * ( N - 1 ) / 2 ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - v; x[j+k*n] = - v; w[k] = b4; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + v; w[k] = b4; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - v; w[k] = b4; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + v; w[k] = b4; } } // // 4 * ( N * ( N - 1 ) ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - u; x[j+k*n] = - v; w[k] = b5; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + v; w[k] = b5; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - v; w[k] = b5; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + v; w[k] = b5; k = k + 1; x[i+k*n] = - v; x[j+k*n] = - u; w[k] = b5; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + u; w[k] = b5; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - u; w[k] = b5; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + u; w[k] = b5; } } // // 8 * ( N * ( N - 1 ) * ( N - 2 ) / 6 ) points. // for ( i = 0; i < n - 2; i++ ) { for ( j = i + 1; j < n - 1; j++ ) { for ( l = j + 1; l < n; l++ ) { k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = - u; w[k] = b6; k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = + u; w[k] = b6; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = - u; w[k] = b6; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = + u; w[k] = b6; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = - u; w[k] = b6; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = + u; w[k] = b6; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = - u; w[k] = b6; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = + u; w[k] = b6; } } } // // 8 * ( N * ( N - 1 ) * ( N - 2 ) / 6 ) points. // for ( i = 0; i < n - 2; i++ ) { for ( j = i + 1; j < n - 1; j++ ) { for ( l = j + 1; l < n; l++ ) { k = k + 1; x[i+k*n] = - v; x[j+k*n] = - v; x[l+k*n] = - v; w[k] = b7; k = k + 1; x[i+k*n] = - v; x[j+k*n] = - v; x[l+k*n] = + v; w[k] = b7; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + v; x[l+k*n] = - v; w[k] = b7; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + v; x[l+k*n] = + v; w[k] = b7; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - v; x[l+k*n] = - v; w[k] = b7; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - v; x[l+k*n] = + v; w[k] = b7; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + v; x[l+k*n] = - v; w[k] = b7; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + v; x[l+k*n] = + v; w[k] = b7; } } } // // 16 * ( N * ( N - 1 ) * ( N - 2 ) * ( N - 3 ) / 24 ) points. // for ( i = 0; i < n - 3; i++ ) { for ( j = i + 1; j < n - 2; j++ ) { for ( l = j + 1; l < n - 1; l++ ) { for ( m = l + 1; m < n; m++ ) { k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = - u; x[m+k*n] = - u; w[k] = b8; k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = - u; x[m+k*n] = + u; w[k] = b8; k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = + u; x[m+k*n] = - u; w[k] = b8; k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = + u; x[m+k*n] = + u; w[k] = b8; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = - u; x[m+k*n] = - u; w[k] = b8; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = - u; x[m+k*n] = + u; w[k] = b8; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = + u; x[m+k*n] = - u; w[k] = b8; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = + u; x[m+k*n] = + u; w[k] = b8; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = - u; x[m+k*n] = - u; w[k] = b8; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = - u; x[m+k*n] = + u; w[k] = b8; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = + u; x[m+k*n] = - u; w[k] = b8; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = + u; x[m+k*n] = + u; w[k] = b8; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = - u; x[m+k*n] = - u; w[k] = b8; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = - u; x[m+k*n] = + u; w[k] = b8; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = + u; x[m+k*n] = - u; w[k] = b8; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = + u; x[m+k*n] = + u; w[k] = b8; } } } } return; } //****************************************************************************80 int en_r2_09_1_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_09_1_SIZE sizes the Stroud rule 9.1 for region EN_R2. // // Discussion: // // The rule has order O = ( 2 * N^4 - 4 * N^3 + 22 * N^2 - 8 * N + 3 ) / 3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_09_1_SIZE, the order. // { int o; o = ( 2 * i4_power ( n, 4 ) - 4 * i4_power ( n, 3 ) + 22 * i4_power ( n, 2 ) - 8 * n + 3 ) / 3; return o; } //****************************************************************************80 void en_r2_11_1 ( int n, int option, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EN_R2_11_1 implements the Stroud rule 11.1 for region EN_R2. // // Discussion: // // The rule has order // // O = ( 4 * N^5 - 20 * N^4 + 140 * N^3 - 130 * N^2 + 96 * N + 15 ) / 15. // // The rule has precision P = 11. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // There are two versions of each rule, chosen by setting the // OPTION variable to 1 or 2. // // The rule as tabulated by Stenger is available for N = 2 through 20. // This function accepts N = 3 through 5. // // N O // __ ___ // 3 151 // 4 417 // 5 983 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // 3 <= N <= 5. // // Input, int OPTION, chooses rule option 1 or 2. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double b0; double b1; double b2; double b3; double b4; double b5; double b6; double b7; double b8; double b9; double b10; double b11; double b12; double b13; double b14; double b15; int i; int i1; int i2; int i3; int i4; int i5; int j; int k; int l; int m; bool more; double pi = 3.141592653589793E+00; double u; double v; double volume; double w2; if ( n < 3 || 5 < n ) { cerr << "\n"; cerr << "EN_R2_11_1 - Fatal error!\n"; cerr << " 3 <= N <= 5 required.\n"; exit ( 1 ); } if ( option < 1 || 2 < option ) { cerr << "\n"; cerr << "EN_R2_11_1 - Fatal error!\n"; cerr << " 1 <= OPTION <= 2 required.\n"; exit ( 1 ); } volume = sqrt ( pow ( pi, n ) ); if ( n == 3 && option == 1 ) { u = 0.235060497367449E+01; v = 0.436077411927617E+00; w2 = 0.133584907401370E+01; b0 = - 0.881591029957858E+01; b1 = - 0.751996143360650E-01; b2 = 0.621743189471515E+01; b3 = 0.241426451456494E+00; b4 = - 0.120709739276065E-02; b5 = - 0.427751221210138E+01; b6 = 0.550169924840163E-01; b7 = 0.237084999634707E-01; b8 = - 0.169791992887741E-02; b9 = - 0.252266276123350E-04; b10 = 0.326777873717691E+01; b11 = 0.968469949206802E-02; b12 = 0.789754514877422E-03; b13 = 0.000000000000000E+00; b14 = 0.000000000000000E+00; b15 = 0.000000000000000E+00; } else if ( n == 3 && option == 2 ) { u = 0.235060497367449E+01; v = 0.133584907401370E+01; w2 = 0.436077411927617E+00; b0 = - 0.141214037032900E+02; b1 = - 0.803730274707282E-01; b2 = 0.235546545595906E+00; b3 = 0.888123191556611E+01; b4 = 0.142467131155533E-03; b5 = 0.582993124006494E-01; b6 = - 0.561099173155661E+01; b7 = - 0.204028691521686E-02; b8 = 0.252880089932256E-01; b9 = - 0.814378678627283E-04; b10 = 0.804353953375146E-02; b11 = 0.393451849690453E+01; b12 = 0.171183493169724E-03; b13 = 0.000000000000000E+00; b14 = 0.000000000000000E+00; b15 = 0.000000000000000E+00; } else if ( n == 4 && option == 1 ) { u = 0.235060497367449E+01; v = 0.436077411927617E+00; w2 = 0.133584907401370E+01; b0 = 0.241502736147339E+03; b1 = - 0.196095938531478E+00; b2 = - 0.128675737999280E+03; b3 = 0.307568784278696E+00; b4 = - 0.480908422319460E-02; b5 = 0.698087019367085E+02; b6 = 0.631837143743771E-01; b7 = 0.392226151971179E-01; b8 = - 0.300948471646799E-02; b9 = - 0.650235306755170E-04; b10 = - 0.386951974646715E+02; b11 = 0.171656829095787E-01; b12 = 0.139980343116450E-02; b13 = 0.101552487093372E-04; b14 = 0.222435922356439E+02; b15 = 0.000000000000000E+00; } else if ( n == 4 && option == 2 ) { u = 0.235060497367449E+01; v = 0.133584907401370E+01; w2 = 0.436077411927617E+00; b0 = - 0.151944464736584E+03; b1 = - 0.223498438689039E+00; b2 = 0.243574919068010E+00; b3 = 0.634373877008693E+02; b4 = - 0.782065187814018E-04; b5 = 0.911833754536616E-01; b6 = - 0.238927288245914E+02; b7 = - 0.422314408318853E-02; b8 = 0.448218289217760E-01; b9 = - 0.138053374667391E-03; b10 = 0.607473265800655E-02; b11 = 0.697375246129742E+01; b12 = 0.303414841680135E-03; b13 = - 0.314574391771792E-05; b14 = 0.409103498175100E-02; b15 = 0.000000000000000E+00; } else if ( n == 5 && option == 1 ) { u = 0.235060497367449E+01; v = 0.436077411927617E+00; w2 = 0.133584907401370E+01; b0 = 0.255885269311763E+04; b1 = - 0.439598677491526E+00; b2 = - 0.106541406144610E+04; b3 = 0.453540909054264E+00; b4 = - 0.132100905623778E-01; b5 = 0.418606568954203E+03; b6 = 0.511394563043680E-01; b7 = 0.645581013845604E-01; b8 = - 0.533417277494500E-02; b9 = - 0.137981626254496E-03; b10 = - 0.147436933189884E+03; b11 = 0.304253807765057E-01; b12 = 0.248108698207828E-02; b13 = 0.113652094546015E-04; b14 = 0.394257407160391E+02; b15 = 0.331725011358320E-05; } else if ( n == 5 && option == 2 ) { u = 0.235060497367449E+01; v = 0.133584907401370E+01; w2 = 0.436077411927617E+00; b0 = - 0.761305347548192E+03; b1 = - 0.536360805019297E+00; b2 = 0.110669832078736E+00; b3 = 0.246421088923968E+03; b4 = - 0.773649327968607E-03; b5 = 0.169088641205970E+00; b6 = - 0.670700680243651E+02; b7 = - 0.856090560229205E-02; b8 = 0.794446232770302E-01; b9 = - 0.220272863263544E-03; b10 = - 0.373515812228225E-02; b11 = 0.123606544052884E+02; b12 = 0.537788804557843E-03; b13 = - 0.122101861480881E-04; b14 = 0.725117070759373E-02; b15 = 0.331725011358320E-05; } r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; w[k] = b0; // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - u; w[k] = b1; k = k + 1; x[i+k*n] = + u; w[k] = b1; } // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - v; w[k] = b2; k = k + 1; x[i+k*n] = + v; w[k] = b2; } // // 2 * N points. // for ( i = 0; i < n; i++ ) { k = k + 1; x[i+k*n] = - w2; w[k] = b3; k = k + 1; x[i+k*n] = + w2; w[k] = b3; } // // 4 * ( N * ( N - 1 ) / 2 ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; w[k] = b4; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; w[k] = b4; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; w[k] = b4; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; w[k] = b4; } } // // 4 * ( N * ( N - 1 ) / 2 ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - v; x[j+k*n] = - v; w[k] = b5; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + v; w[k] = b5; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - v; w[k] = b5; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + v; w[k] = b5; } } // // 4 * ( N * ( N - 1 ) / 2 ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - w2; x[j+k*n] = - w2; w[k] = b6; k = k + 1; x[i+k*n] = - w2; x[j+k*n] = + w2; w[k] = b6; k = k + 1; x[i+k*n] = + w2; x[j+k*n] = - w2; w[k] = b6; k = k + 1; x[i+k*n] = + w2; x[j+k*n] = + w2; w[k] = b6; } } // // 4 * ( N * ( N - 1 ) ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - u; x[j+k*n] = - v; w[k] = b7; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + v; w[k] = b7; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - v; w[k] = b7; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + v; w[k] = b7; k = k + 1; x[i+k*n] = - v; x[j+k*n] = - u; w[k] = b7; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + u; w[k] = b7; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - u; w[k] = b7; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + u; w[k] = b7; } } // // 4 * ( N * ( N - 1 ) ) points. // for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { k = k + 1; x[i+k*n] = - u; x[j+k*n] = - w2; w[k] = b8; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + w2; w[k] = b8; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - w2; w[k] = b8; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + w2; w[k] = b8; k = k + 1; x[i+k*n] = - w2; x[j+k*n] = - u; w[k] = b8; k = k + 1; x[i+k*n] = - w2; x[j+k*n] = + u; w[k] = b8; k = k + 1; x[i+k*n] = + w2; x[j+k*n] = - u; w[k] = b8; k = k + 1; x[i+k*n] = + w2; x[j+k*n] = + u; w[k] = b8; } } // // 8 * ( N * ( N - 1 ) * ( N - 2 ) / 6 ) points. // for ( i = 0; i < n - 2; i++ ) { for ( j = i + 1; j < n - 1; j++ ) { for ( l = j + 1; l < n; l++ ) { k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = - u; w[k] = b9; k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = + u; w[k] = b9; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = - u; w[k] = b9; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = + u; w[k] = b9; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = - u; w[k] = b9; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = + u; w[k] = b9; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = - u; w[k] = b9; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = + u; w[k] = b9; } } } // // 8 * ( N * ( N - 1 ) * ( N - 2 ) / 6 ) points. // for ( i = 0; i < n - 2; i++ ) { for ( j = i + 1; j < n - 1; j++ ) { for ( l = j + 1; l < n; l++ ) { k = k + 1; x[i+k*n] = - v; x[j+k*n] = - v; x[l+k*n] = - v; w[k] = b10; k = k + 1; x[i+k*n] = - v; x[j+k*n] = - v; x[l+k*n] = + v; w[k] = b10; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + v; x[l+k*n] = - v; w[k] = b10; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + v; x[l+k*n] = + v; w[k] = b10; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - v; x[l+k*n] = - v; w[k] = b10; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - v; x[l+k*n] = + v; w[k] = b10; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + v; x[l+k*n] = - v; w[k] = b10; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + v; x[l+k*n] = + v; w[k] = b10; } } } // // 8 * ( N * ( N - 1 ) * ( N - 2 ) / 6 ) points. // for ( i = 0; i < n - 2; i++ ) { for ( j = i + 1; j < n - 1; j++ ) { for ( l = j + 1; l < n; l++ ) { k = k + 1; x[i+k*n] = - w2; x[j+k*n] = - w2; x[l+k*n] = - w2; w[k] = b11; k = k + 1; x[i+k*n] = - w2; x[j+k*n] = - w2; x[l+k*n] = + w2; w[k] = b11; k = k + 1; x[i+k*n] = - w2; x[j+k*n] = + w2; x[l+k*n] = - w2; w[k] = b11; k = k + 1; x[i+k*n] = - w2; x[j+k*n] = + w2; x[l+k*n] = + w2; w[k] = b11; k = k + 1; x[i+k*n] = + w2; x[j+k*n] = - w2; x[l+k*n] = - w2; w[k] = b11; k = k + 1; x[i+k*n] = + w2; x[j+k*n] = - w2; x[l+k*n] = + w2; w[k] = b11; k = k + 1; x[i+k*n] = + w2; x[j+k*n] = + w2; x[l+k*n] = - w2; w[k] = b11; k = k + 1; x[i+k*n] = + w2; x[j+k*n] = + w2; x[l+k*n] = + w2; w[k] = b11; } } } // // 8 * ( N * ( N - 1 ) * ( N - 2 ) / 2 ) points. // for ( i = 0; i < n - 2; i++ ) { for ( j = i + 1; j < n - 1; j++ ) { for ( l = j + 1; l < n; l++ ) { k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = - v; w[k] = b12; k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = + v; w[k] = b12; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = - v; w[k] = b12; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = + v; w[k] = b12; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = - v; w[k] = b12; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = + v; w[k] = b12; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = - v; w[k] = b12; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = + v; w[k] = b12; k = k + 1; x[i+k*n] = - u; x[j+k*n] = - v; x[l+k*n] = - u; w[k] = b12; k = k + 1; x[i+k*n] = - u; x[j+k*n] = - v; x[l+k*n] = + u; w[k] = b12; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + v; x[l+k*n] = - u; w[k] = b12; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + v; x[l+k*n] = + u; w[k] = b12; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - v; x[l+k*n] = - u; w[k] = b12; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - v; x[l+k*n] = + u; w[k] = b12; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + v; x[l+k*n] = - u; w[k] = b12; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + v; x[l+k*n] = + u; w[k] = b12; k = k + 1; x[i+k*n] = - v; x[j+k*n] = - u; x[l+k*n] = - u; w[k] = b12; k = k + 1; x[i+k*n] = - v; x[j+k*n] = - u; x[l+k*n] = + u; w[k] = b12; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + u; x[l+k*n] = - u; w[k] = b12; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + u; x[l+k*n] = + u; w[k] = b12; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - u; x[l+k*n] = - u; w[k] = b12; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - u; x[l+k*n] = + u; w[k] = b12; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + u; x[l+k*n] = - u; w[k] = b12; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + u; x[l+k*n] = + u; w[k] = b12; } } } // // 16 * ( N * ( N - 1 ) * ( N - 2 ) * ( N - 3 ) / 24 ) points. // for ( i = 0; i < n - 3; i++ ) { for ( j = i + 1; j < n - 2; j++ ) { for ( l = j + 1; l < n - 1; l++ ) { for ( m = l + 1; m < n; m++ ) { k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = - u; x[m+k*n] = - u; w[k] = b13; k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = - u; x[m+k*n] = + u; w[k] = b13; k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = + u; x[m+k*n] = - u; w[k] = b13; k = k + 1; x[i+k*n] = - u; x[j+k*n] = - u; x[l+k*n] = + u; x[m+k*n] = + u; w[k] = b13; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = - u; x[m+k*n] = - u; w[k] = b13; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = - u; x[m+k*n] = + u; w[k] = b13; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = + u; x[m+k*n] = - u; w[k] = b13; k = k + 1; x[i+k*n] = - u; x[j+k*n] = + u; x[l+k*n] = + u; x[m+k*n] = + u; w[k] = b13; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = - u; x[m+k*n] = - u; w[k] = b13; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = - u; x[m+k*n] = + u; w[k] = b13; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = + u; x[m+k*n] = - u; w[k] = b13; k = k + 1; x[i+k*n] = + u; x[j+k*n] = - u; x[l+k*n] = + u; x[m+k*n] = + u; w[k] = b13; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = - u; x[m+k*n] = - u; w[k] = b13; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = - u; x[m+k*n] = + u; w[k] = b13; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = + u; x[m+k*n] = - u; w[k] = b13; k = k + 1; x[i+k*n] = + u; x[j+k*n] = + u; x[l+k*n] = + u; x[m+k*n] = + u; w[k] = b13; } } } } // // 16 * ( N * ( N - 1 ) * ( N - 2 ) * ( N - 3 ) / 24 ) points. // for ( i = 0; i < n - 3; i++ ) { for ( j = i + 1; j < n - 2; j++ ) { for ( l = j + 1; l < n - 1; l++ ) { for ( m = l + 1; m < n; m++ ) { k = k + 1; x[i+k*n] = - v; x[j+k*n] = - v; x[l+k*n] = - v; x[m+k*n] = - v; w[k] = b14; k = k + 1; x[i+k*n] = - v; x[j+k*n] = - v; x[l+k*n] = - v; x[m+k*n] = + v; w[k] = b14; k = k + 1; x[i+k*n] = - v; x[j+k*n] = - v; x[l+k*n] = + v; x[m+k*n] = - v; w[k] = b14; k = k + 1; x[i+k*n] = - v; x[j+k*n] = - v; x[l+k*n] = + v; x[m+k*n] = + v; w[k] = b14; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + v; x[l+k*n] = - v; x[m+k*n] = - v; w[k] = b14; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + v; x[l+k*n] = - v; x[m+k*n] = + v; w[k] = b14; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + v; x[l+k*n] = + v; x[m+k*n] = - v; w[k] = b14; k = k + 1; x[i+k*n] = - v; x[j+k*n] = + v; x[l+k*n] = + v; x[m+k*n] = + v; w[k] = b14; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - v; x[l+k*n] = - v; x[m+k*n] = - v; w[k] = b14; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - v; x[l+k*n] = - v; x[m+k*n] = + v; w[k] = b14; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - v; x[l+k*n] = + v; x[m+k*n] = - v; w[k] = b14; k = k + 1; x[i+k*n] = + v; x[j+k*n] = - v; x[l+k*n] = + v; x[m+k*n] = + v; w[k] = b14; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + v; x[l+k*n] = - v; x[m+k*n] = - v; w[k] = b14; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + v; x[l+k*n] = - v; x[m+k*n] = + v; w[k] = b14; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + v; x[l+k*n] = + v; x[m+k*n] = - v; w[k] = b14; k = k + 1; x[i+k*n] = + v; x[j+k*n] = + v; x[l+k*n] = + v; x[m+k*n] = + v; w[k] = b14; } } } } // // All quintuples UUUUU with 32 sign combinations. // for ( i1 = 0; i1 < n - 4; i1++ ) { for ( i2 = i1 + 1; i2 < n - 3; i2++ ) { for ( i3 = i2 + 1; i3 < n - 2; i3++ ) { for ( i4 = i3 + 1; i4 < n - 1; i4++ ) { for ( i5 = i4 + 1; i5 < n; i5++ ) { k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = - u; x[i3+k*n] = - u; x[i4+k*n] = - u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = - u; x[i3+k*n] = - u; x[i4+k*n] = - u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = - u; x[i3+k*n] = - u; x[i4+k*n] = + u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = - u; x[i3+k*n] = - u; x[i4+k*n] = + u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = - u; x[i3+k*n] = + u; x[i4+k*n] = - u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = - u; x[i3+k*n] = + u; x[i4+k*n] = - u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = - u; x[i3+k*n] = + u; x[i4+k*n] = + u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = - u; x[i3+k*n] = + u; x[i4+k*n] = + u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = + u; x[i3+k*n] = - u; x[i4+k*n] = - u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = + u; x[i3+k*n] = - u; x[i4+k*n] = - u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = + u; x[i3+k*n] = - u; x[i4+k*n] = + u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = + u; x[i3+k*n] = - u; x[i4+k*n] = + u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = + u; x[i3+k*n] = + u; x[i4+k*n] = - u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = + u; x[i3+k*n] = + u; x[i4+k*n] = - u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = + u; x[i3+k*n] = + u; x[i4+k*n] = + u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = - u; x[i2+k*n] = + u; x[i3+k*n] = + u; x[i4+k*n] = + u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = - u; x[i3+k*n] = - u; x[i4+k*n] = - u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = - u; x[i3+k*n] = - u; x[i4+k*n] = - u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = - u; x[i3+k*n] = - u; x[i4+k*n] = + u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = - u; x[i3+k*n] = - u; x[i4+k*n] = + u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = - u; x[i3+k*n] = + u; x[i4+k*n] = - u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = - u; x[i3+k*n] = + u; x[i4+k*n] = - u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = - u; x[i3+k*n] = + u; x[i4+k*n] = + u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = - u; x[i3+k*n] = + u; x[i4+k*n] = + u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = + u; x[i3+k*n] = - u; x[i4+k*n] = - u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = + u; x[i3+k*n] = - u; x[i4+k*n] = - u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = + u; x[i3+k*n] = - u; x[i4+k*n] = + u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = + u; x[i3+k*n] = - u; x[i4+k*n] = + u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = + u; x[i3+k*n] = + u; x[i4+k*n] = - u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = + u; x[i3+k*n] = + u; x[i4+k*n] = - u; x[i5+k*n] = + u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = + u; x[i3+k*n] = + u; x[i4+k*n] = + u; x[i5+k*n] = - u; w[k] = b15; k = k + 1; x[i1+k*n] = + u; x[i2+k*n] = + u; x[i3+k*n] = + u; x[i4+k*n] = + u; x[i5+k*n] = + u; w[k] = b15; } } } } } return; } //****************************************************************************80 int en_r2_11_1_size ( int n ) //****************************************************************************80 // // Purpose: // // EN_R2_11_1_SIZE sizes the Stroud rule 11.1 for region EN_R2. // // Discussion: // // The rule has order // O = ( 4 * N^5 - 20 * N^4 + 140 * N^3 - 130 * N^2 + 96 * N + 15 ) / 15. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EN_R2_11_1_SIZE, the order. // { int o; o = ( 4 * i4_power ( n, 5 ) - 20 * i4_power ( n, 4 ) + 140 * i4_power ( n, 3 ) - 130 * i4_power ( n, 2 ) + 96 * n + 15 ) / 15; return o; } //****************************************************************************80 double en_r2_monomial_integral ( int n, int alpha[] ) //****************************************************************************80 // // Purpose: // // EN_R2_MONOMIAL_INTEGRAL evaluates monomial integrals in EN_R2. // // Discussion: // // ALPHA is the set of polynomial exponents. // // EN_R2 is the entire N-dimensional space with weight function // // w(x) = exp ( - x1^2 - x2^2 ... - xn^2 ) // // The integral to be evaluated is // // value = integral ( EN ) x(1)^alpha(1) * x(2)^alpha(2) * ... // * x(n)^alpha(n) * w(x) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int ALPHA[N], the polynomial exponents. // 0 <= ALPHA[*]. // // Output, double EN_R2_MONOMIAL_INTEGRAL, the value of the integral. // { double arg; int i; double value; for ( i = 0; i < n; i++ ) { if ( alpha[i] < 0 ) { cerr << "\n"; cerr << "EN_R2_MONOMIAL_INTEGRAL - Fatal error!\n"; cerr << " ALPHA[" << i << "] < 0.\n"; exit ( 1 ); } } value = 1.0; for ( i = 0; i < n; i++ ) { if ( ( alpha[i] % 2 == 1 ) ) { value = 0.0; break; } else { arg = ( ( double ) ( alpha[i] + 1 ) ) / 2.0; value = value * r8_gamma ( arg ); } } return value; } //****************************************************************************80 double ep1_glg_monomial_integral ( int expon, double alpha ) //****************************************************************************80 // // Purpose: // // EP1_GLG_MONOMIAL_INTEGRAL: integral of monomial with GLG weight on EP1. // // Discussion: // // EP1_GLG is the interval [0,+oo) with generalized Laguerre weight function: // // w(alpha;x) = x^alpha exp ( - x ) // // value = integral ( 0 <= x < +oo ) x^expon x^alpha exp ( - x ) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // 0 <= EXPON. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Output, double EP1_GLG_MONOMIAL_INTEGRAL, the value of the integral. // { double arg; double exact; arg = alpha + ( double ) ( expon + 1 ); exact = r8_gamma ( arg ); return exact; } //****************************************************************************80 double ep1_lag_monomial_integral ( int expon ) //****************************************************************************80 // // Purpose: // // EP1_LAG_MONOMIAL_INTEGRAL: integral of monomial with Laguerre weight on EP1. // // Discussion: // // EP1 is the interval [0,+oo) with exponential or Laguerre weight function: // // w(x) = exp ( - x ) // // value = integral ( 0 <= x < oo ) x^expon exp ( - x ) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // 0 <= EXPON. // // Output, double EP1_LAG_MONOMIAL_INTEGRAL, the value of the integral. // { double value; value = r8_factorial ( expon ); return value; } //****************************************************************************80 void epn_glg_00_1 ( int n, double alpha, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EPN_GLG_00_1 implements the "midpoint rule" for region EPN_GLG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 0. // // EPN_GLG is the N-dimensional positive space [0,+oo)^N with generalized // Laguerre weight function: // // w(alpha;x) = product ( 1 <= i <= n ) x(i)^alpha exp ( - x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int expon; int i; int k; double volume; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "EPN_GLG_00_1 - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } expon = 0; volume = ep1_glg_monomial_integral ( expon, alpha ); volume = pow ( volume, n ); r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 1.0; } w[k] = volume; return; } //****************************************************************************80 int epn_glg_00_1_size ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // EPN_GLG_00_1_SIZE sizes the midpoint rule for region EPN_GLG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 0. // // EPN_GLG is the N-dimensional positive space [0,+oo)^N with generalized // Laguerre weight function: // // w(alpha;x) = product ( 1 <= i <= n ) x(i)^alpha exp ( - x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Output, int EPN_GLG_00_1_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "EPN_GLG_00_1_SIZE - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } o = 1; return o; } //****************************************************************************80 void epn_glg_01_1 ( int n, double alpha, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EPN_GLG_01_1 implements a precision 1 rule for region EPN_GLG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // EPN_GLG is the N-dimensional positive space [0,+oo)^N with generalized // Laguerre weight function: // // w(alpha;x) = product ( 1 <= i <= n ) x(i)^alpha exp ( - x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int expon; int i; int k; double value1; double value2; double volume; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "EPN_GLG_01_1 - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } expon = 0; value1 = ep1_glg_monomial_integral ( expon, alpha ); volume = pow ( value1, n ); expon = 1; value2 = ep1_glg_monomial_integral ( expon, alpha ); r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = value2 / value1; } w[k] = volume; return; } //****************************************************************************80 int epn_glg_01_1_size ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // EPN_GLG_01_1_SIZE sizes a precision 1 rule for region EPN_GLG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // EPN_GLG is the N-dimensional positive space [0,+oo)^N with generalized // Laguerre weight function: // // w(alpha;x) = product ( 1 <= i <= n ) x(i)^alpha exp ( - x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Output, int EPN_GLG_01_1_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "EPN_GLG_01_1_SIZE - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } o = 1; return o; } //****************************************************************************80 void epn_glg_02_xiu ( int n, double alpha, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EPN_GLG_02_XIU implements the Xiu precision 2 rule for region EPN_GLG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // EPN_GLG is the N-dimensional positive space [0,+oo)^N with generalized // Laguerre weight function: // // w(alpha;x) = product ( 1 <= i <= n ) x(i)^alpha exp ( - x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 March 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; double c1; double coef; double delta0; int expon; double gamma0; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "EPN_GLG_02_XIU - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = sqrt ( 2.0 ) * cos ( arg ); i = i + 1; x[i+j*n] = sqrt ( 2.0 ) * sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = r8_mop ( j ); i = i + 1; } } gamma0 = - 1.0; delta0 = alpha + 1.0; c1 = - alpha - 1.0; for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } expon = 0; volume_1d = ep1_glg_monomial_integral ( expon, alpha ); volume = pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int epn_glg_02_xiu_size ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // EPN_GLG_02_XIU_SIZE sizes the Xiu rule for region EPN_GLG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // EPN_GLG is the N-dimensional positive space [0,+oo)^N with generalized // Laguerre weight function: // // w(alpha;x) = product ( 1 <= i <= n ) x(i)^alpha exp ( - x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Output, int EPN_GLG_02_XIU_SIZE, the order. // { int o; if ( alpha <= -1.0 ) { cerr << "\n"; cerr << "EPN_GLG_02_XIUI_SIZE - Fatal error!\n"; cerr << " ALPHA <= -1.0\n"; exit ( 1 ); } o = n + 1; return o; } //****************************************************************************80 double epn_glg_monomial_integral ( int n, int expon[], double alpha ) //****************************************************************************80 // // Purpose: // // EPN_GLG_MONOMIAL_INTEGRAL: integral of monomial with GLG weight on EPN. // // Discussion: // // EPN_GLG is the N-dimensional positive space [0,+oo)^N with generalized // Laguerre weight function: // // w(alpha;x) = product ( 1 <= i <= n ) x(i)^alpha exp ( - x(i) ) // // value = integral ( EPN ) // product ( 1 <= i <= n ) x(I)^expon(i) x(i)^alpha exp ( - x(i) ) dx(i) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, int EXPON[N], the exponents. // // Input, double ALPHA, the exponent of X in the weight function. // -1.0 < ALPHA. // // Output, double EPN_GLG_MONOMIAL_INTEGRAL, the value of the integral. // { int i; double value; double value2; value = 1.0; for ( i = 0; i < n; i++ ) { value2 = ep1_glg_monomial_integral ( expon[i], alpha ); value = value * value2; } return value; } //****************************************************************************80 void epn_lag_00_1 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EPN_LAG_00_1 implements the "midpoint rule" for region EPN_LAG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 0. // // EPN is the N-dimensional positive space [0,+oo)^N with exponential // or Laguerre weight function: // // w(x(1:n)) = exp ( - sum ( x(1:n) ) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int expon; int i; int k; double volume; expon = 0; volume = ep1_lag_monomial_integral ( expon ); volume = pow ( volume, n ); r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = 1.0; } w[k] = volume; return; } //****************************************************************************80 int epn_lag_00_1_size ( int n ) //****************************************************************************80 // // Purpose: // // EPN_LAG_00_1_SIZE sizes the midpoint rule for region EPN_LAG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 0. // // EPN is the N-dimensional positive space [0,+oo)^N with exponential // or Laguerre weight function: // // w(x(1:n)) = exp ( - sum ( x(1:n) ) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EPN_LAG_00_1_SIZE, the order. // { int o; o = 1; return o; } //****************************************************************************80 void epn_lag_01_1 ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EPN_LAG_01_1 implements a precision 1 rule for region EPN_LAG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // EPN is the N-dimensional positive space [0,+oo)^N with exponential // or Laguerre weight function: // // w(x(1:n)) = exp ( - sum ( x(1:n) ) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { int expon; int i; int k; double value1; double value2; double volume; expon = 0; value1 = ep1_lag_monomial_integral ( expon ); volume = pow ( value1, n ); expon = 1; value2 = ep1_lag_monomial_integral ( expon ); r8vec_zero ( n * o, x ); k = - 1; // // 1 point. // k = k + 1; for ( i = 0; i < n; i++ ) { x[i+k*n] = value2 / value1; } w[k] = volume; return; } //****************************************************************************80 int epn_lag_01_1_size ( int n ) //****************************************************************************80 // // Purpose: // // EPN_LAG_01_1_SIZE sizes a precision 1 rule for region EPN_LAG. // // Discussion: // // The rule has order O = 1. // // The rule has precision P = 1. // // EPN is the N-dimensional positive space [0,+oo)^N with exponential // or Laguerre weight function: // // w(x(1:n)) = exp ( - sum ( x(1:n) ) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EPN_LOG_01_1_SIZE, the order. // { int o; o = 1; return o; } //****************************************************************************80 void epn_lag_02_xiu ( int n, int o, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // EPN_LAG_02_XIU implements the Xiu precision 2 rule for region EPN_LAG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // EPN is the N-dimensional positive space [0,+oo)^N with exponential // or Laguerre weight function: // // w(x(1:n)) = exp ( - sum ( x(1:n) ) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 March 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; double c1; double coef; double delta0; int expon; double gamma0; int i; int j; double pi = 3.141592653589793; int r; double volume; double volume_1d; for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = sqrt ( 2.0 ) * cos ( arg ); i = i + 1; x[i+j*n] = sqrt ( 2.0 ) * sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = r8_mop ( j ); i = i + 1; } } gamma0 = - 1.0; delta0 = 1.0; c1 = - 1.0; for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } expon = 0; volume_1d = ep1_lag_monomial_integral ( expon ); volume = pow ( volume_1d, n ); for ( j = 0; j < o; j++ ) { w[j] = volume / ( double ) ( o ); } return; } //****************************************************************************80 int epn_lag_02_xiu_size ( int n ) //****************************************************************************80 // // Purpose: // // EPN_LAG_02_XIU_SIZE sizes the Xiu rule for region EPN_LAG. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // EPN is the N-dimensional positive space [0,+oo)^N with exponential // or Laguerre weight function: // // w(x(1:n)) = exp ( - sum ( x(1:n) ) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 January 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int EPN_LAG_02_XIU_SIZE, the order. // { int o; o = n + 1; return o; } //****************************************************************************80 double epn_lag_monomial_integral ( int n, int expon[] ) //****************************************************************************80 // // Purpose: // // EPN_LAG_MONOMIAL_INTEGRAL: integral of monomial with Laguerre weight on EPN. // // Discussion: // // EPN is the N-dimensional positive space [0,+oo)^N with exponential // or Laguerre weight function: // // w(x(1:n)) = exp ( - sum ( x(1:n) ) ) // // value = integral ( EPN ) // product ( 1 <= i <= n ) x(I)^expon(i) exp ( -x(i) ) dx(i) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 January 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the spatial dimension. // // Input, int EXPON(N), the exponents. // // Output, double EPN_LAG_MONOMIAL_VALUE, the value of the integral. // { int i; double value; double value2; value = 1.0; for ( i = 0; i < n; i++ ) { value2 = ep1_lag_monomial_integral ( expon[i] ); value = value * value2; } return value; } //****************************************************************************80 void gw_02_xiu ( int n, int o, double gamma0, double delta0, double c1, double volume_1d, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // GW_02_XIU implements the Golub-Welsch version of the Xiu rule. // // Discussion: // // The rule has order // // O = N + 1. // // The rule has precision P = 2. // // It is assumed that the integral is over an N-dimensional region, // and has the form // // Integral f(x) w(x) dx // // where w(x) is separable into identical and independent components: // // w(x) = v(x1) * v(x2) * ... * v(xn) // // Associated with the weight function v(x), we assume there is a // family of orthogonal polynomials satisfying a three-term recurrence // of the form: // // x P(n,x) = An * P(n+1,x) + Bn * P(n,x) + Cn * P(n-1,x) // // with P(0,x) = 1, and P(-1,x) = 0. // // This routine can construct the desired quadrature rule by knowing // the values of C1, used in the definition of P2, the values // GAMMA0 = 1/A0 and DELTA0 = - B0/A0, for which it is the case that // P(1,X) = GAMMA0 * X + DELTA0, and the value of VOLUME_1D, that is, // the 1D integral of v(x) over the region. // // Note the values for the following standard polynomial families: // // Chebyshev Type 1 // V(X) = 1 / sqrt ( 1 - X^2 ) // Interval = [-1,+1] // GAMMA0 = 1.0 // DELTA0 = 0.0 // C1 = 1/2 // VOLUME_1D = PI // // Chebyshev Type 2 // V(X) = sqrt ( 1 - X^2 ) // Interval = [-1,+1] // GAMMA0 = 2.0 // DELTA0 = 0.0 // C1 = 1/2 // VOLUME_1D = PI / 2 // // Gegenbauer // V(X) = ( 1 - X^2 )^A // Interval = [-1,+1] // GAMMA0 = 2 * A + 1 // DELTA0 = 0.0 // C1 = ( 2 * A + 1 ) / ( 2 A + 3 ) // VOLUME_1D = sqrt ( PI ) * Gamma(A+1) / Gamma(A+3/2) // // Gegenbauer* (Removes singularity at ALPHA = -0.5): // V(X) = ( 1 - X^2 )^A // Interval = [-1,+1] // GAMMA0 = 1 // DELTA0 = 0.0 // C1 = 1 / ( 2 A + 3 ) // VOLUME_1D = sqrt ( PI ) * Gamma(A+1) / Gamma(A+3/2) // // Generalized Hermite // V(X) = |x|^A exp ( - x^2 ) // Interval = (-oo,+oo) // GAMMA0 = 2 // DELTA0 = 0 // C1 = 2+2A // VOLUME_1D = Gamma((A+1)/2) // // Generalized Laguerre // V(X) = x^A exp ( - x ) // Interval = [0,+oo) // GAMMA0 = -1.0 // DELTA0 = A+1.0 // C1 = -A-1.0 // VOLUME_1D = Gamma(A+1) // // Hermite (physicist) // V(X) = exp ( - x^2 ) // Interval = (-oo,+oo) // GAMMA0 = 2.0 // DELTA0 = 0.0 // C1 = 1.0 // VOLUME_1D = sqrt ( PI ) // // Hermite (probabilist) // V(X) = exp ( - x^2 / 2 ) // Interval = (-oo,+oo) // GAMMA0 = 1.0 // DELTA0 = 0.0 // C1 = 1.0 // VOLUME_1D = sqrt ( 2 PI ) // // Jacobi // V(X) = (1-x)^A (1+x)^B // Interval = [-1,+1] // GAMMA0 = (A+B+2)/2 // DELTA0 = (A-B)/2 // C1 = 2(A+1)(B+1)/(A+B+3)/(A+B+2) // VOLUME_1D = 2^(A+B+1) * Gamma(A+1) * Gamma(B+1) / ( A+B+1) / Gamma(A+B+1) // // Laguerre // V(X) = exp ( - x ) // Interval = [0,+oo) // GAMMA0 = -1.0 // DELTA0 = 1.0 // C1 = -1.0 // VOLUME_1D = 1.0 // // Legendre // V(X) = 1.0 // Interval = [-1,+1] // GAMMA0 = 1.0 // DELTA0 = 0.0 // C1 = 1/3 // VOLUME_1D = 2.0 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 March 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Input, int O, the order. // // Input, double GAMMA0, the ratio 1 / A0. // // Input, double DELTA0, the ratio B0 / A0. // // Input, double C1, the coefficient of P(0,X) in the definition of P(2,X). // // Input, double VOLUME_1D, the 1D integral of V(X). // // Output, double X[N*O], the abscissas. // // Output, double W[O], the weights. // { double arg; int i; int j; double pi = 3.141592653589793; int r; for ( j = 0; j < o; j++ ) { i = 0; for ( r = 1; r <= ( n / 2 ); r++ ) { arg = ( double ) ( 2 * r * j ) * pi / ( double ) ( n + 1 ); x[i+j*n] = sqrt ( 2.0 ) * cos ( arg ); i = i + 1; x[i+j*n] = sqrt ( 2.0 ) * sin ( arg ); i = i + 1; } if ( i < n ) { x[i+j*n] = r8_mop ( j ); i = i + 1; } } // // Adjust for the GW rule. // for ( j = 0; j < o; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = ( sqrt ( gamma0 * c1 ) * x[i+j*n] - delta0 ) / gamma0; } } // // The weights are equal. // for ( j = 0; j < o; j++ ) { w[j] = pow ( volume_1d, n ) / ( double ) ( o ); } return; } //****************************************************************************80 int gw_02_xiu_size ( int n ) //****************************************************************************80 // // Purpose: // // GW_02_XIU_SIZE sizes the Golub Welsch version of the Xiu rule. // // Discussion: // // The rule has order O = N + 1; // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 February 2010 // // Author: // // John Burkardt // // Reference: // // Dongbin Xiu, // Numerical integration formulas of degree two, // Applied Numerical Mathematics, // Volume 58, 2008, pages 1515-1520. // // Parameters: // // Input, int N, the spatial dimension. // // Output, int GW_02_XIU_SIZE, the order. // { int o; o = n + 1; return o; } //****************************************************************************80 double hexagon_area_2d ( double r ) //****************************************************************************80 // // Purpose: // // HEXAGON_AREA_2D returns the area of a regular hexagon in 2D. // // Discussion: // // The formula for the area only requires the radius, and does // not depend on the location of the center, or the orientation // of the hexagon. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the hexagon. // // Output, double HEXAGON_AREA_2D, the area of the hexagon. // { double value; value = r * r * hexagon_unit_area_2d ( ); return value; } //****************************************************************************80 double hexagon_sum ( double func ( double x, double y ), double center[2], double r, int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // // Purpose: // // HEXAGON_SUM applies a quadrature rule inside a hexagon in 2D. // // Discussion: // // The input quadrature rule is assumed to be defined for a unit hexagon. // // The input quadrature rule may be defined by calling HEXAGON_UNIT_SET. // // Integration region: // // The definition is given in terms of THETA, the angle in degrees of the // vector (X-CENTER(1),Y-CENTER(2)). The following six conditions apply, // respectively, between the bracketing values of THETA of 0, 60, 120, // 180, 240, 300, and 360. // // 0 <= Y-CENTER(2) <= -SQRT(3) * (X-CENTER(1)) + R * SQRT(3) // 0 <= Y-CENTER(2) <= R * SQRT(3)/2 // 0 <= Y-CENTER(2) <= SQRT(3) * (X-CENTER(1)) + R * SQRT(3) // -SQRT(3) * (X-CENTER(1)) - R * SQRT(3) <= Y-CENTER(2) <= 0 // - R * SQRT(3)/2 <= Y-CENTER(2) <= 0 // SQRT(3) * (X-CENTER(1)) - R * SQRT(3) <= Y-CENTER(2) <= 0 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the // user supplied function of two variables which is to be integrated. // // Input, double CENTER[2], the center of the hexagon. // // Input, double R, the radius of the hexagon. // // Input, int ORDER, the order of the rule. // // Input, double XTAB[ORDER], YTAB[ORDER], the abscissas. // // Input, double WEIGHT[ORDER], the weights of the rule. // // Output, double RESULT, the approximate integral of the function. // { int i; double quad; double result; double volume; double x; double y; quad = 0.0; for ( i = 0; i < order; i++ ) { x = center[0] + r * xtab[i]; y = center[1] + r * ytab[i]; quad = quad + weight[i] * func ( x, y ); } volume = hexagon_area_2d ( r ); result = quad * volume; return result; } //****************************************************************************80 double hexagon_unit_area_2d ( ) //****************************************************************************80 // // Purpose: // // HEXAGON_UNIT_AREA_2D returns the area of the unit regular hexagon in 2D. // // Integration region: // // The definition is given in terms of THETA, the angle in degrees of the // vector (X,Y). The following six conditions apply, respectively, // between the bracketing values of THETA of 0, 60, 120, 180, 240, // 300, and 360. // // 0 <= Y <= -SQRT(3) * X + SQRT(3) // 0 <= Y <= SQRT(3)/2 // 0 <= Y <= SQRT(3) * X + SQRT(3) // - SQRT(3) * X - SQRT(3) <= Y <= 0 // - SQRT(3)/2 <= Y <= 0 // SQRT(3) * X - SQRT(3) <= Y <= 0 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double HEXAGON_UNIT_AREA_2D, the area of the hexagon. // { double value; value = 3.0 * sqrt ( 3.0 ) / 2.0; return value; } //****************************************************************************80 void hexagon_unit_set ( int rule, int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // // Purpose: // // HEXAGON_UNIT_SET sets a quadrature rule inside the unit hexagon in 2D. // // Integration region: // // The definition is given in terms of THETA, the angle in degrees of the // vector (X,Y). The following six conditions apply, respectively, // between the bracketing values of THETA of 0, 60, 120, 180, 240, // 300, and 360. // // 0 <= Y <= -SQRT(3) * X + SQRT(3) // 0 <= Y <= SQRT(3)/2 // 0 <= Y <= SQRT(3) * X + SQRT(3) // -SQRT(3) * X - SQRT(3) <= Y <= 0 // - SQRT(3)/2 <= Y <= 0 // SQRT(3) * X - SQRT(3) <= Y <= 0 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int RULE, the rule desired. // 1, 1 point, degree 1; // 2, 4 points, degree 3; // 3, 7 points, degree 3; // 4, 7 points, degree 5; // // Input, int ORDER, the order of the desired rule. // // Output, double XTAB[ORDER], YTAB[ORDER], the abscissas of the rule. // // Output, double WEIGHT[ORDER], the weights of the rule. // { double a; double b; double c; double d; double e; double z; if ( rule == 1 ) { xtab[0] = 0.0; ytab[0] = 0.0; weight[0] = 1.0; } // // Stroud rule H2:3-1. // else if ( rule == 2 ) { a = sqrt ( 5.0 / 12.0 ); b = 1.0 / 4.0; z = 0.0; xtab[0] = a; xtab[1] = - a; xtab[2] = z; xtab[3] = z; ytab[0] = z; ytab[1] = z; ytab[2] = a; ytab[3] = - a; weight[0] = b; weight[1] = b; weight[2] = b; weight[3] = b; } // // Stroud rule H2:3-2. // else if ( rule == 3 ) { a = sqrt ( 3.0 ) / 2.0; b = 0.5; c = 1.0; d = 5.0 / 72.0; e = 42.0 / 72.0; z = 0.0; xtab[0] = z; xtab[1] = c; xtab[2] = - c; xtab[3] = b; xtab[4] = - b; xtab[5] = b; xtab[6] = - b; ytab[0] = z; ytab[1] = z; ytab[2] = z; ytab[3] = a; ytab[4] = a; ytab[5] = - a; ytab[6] = - a; weight[0] = e; weight[1] = d; weight[2] = d; weight[3] = d; weight[4] = d; weight[5] = d; weight[6] = d; } // // Stroud rule H2:5-1. // else if ( rule == 4 ) { a = sqrt ( 14.0 ) / 5.0; b = sqrt ( 14.0 ) / 10.0; c = sqrt ( 42.0 ) / 10.0; d = 125.0 / 1008.0; e = 258.0 / 1008.0; z = 0.0; xtab[0] = z; xtab[1] = a; xtab[2] = - a; xtab[3] = b; xtab[4] = - b; xtab[5] = b; xtab[6] = - b; ytab[0] = z; ytab[1] = z; ytab[2] = z; ytab[3] = c; ytab[4] = c; ytab[5] = - c; ytab[6] = - c; weight[0] = e; weight[1] = d; weight[2] = d; weight[3] = d; weight[4] = d; weight[5] = d; weight[6] = d; } else { cerr << "\n"; cerr << "HEXAGON_UNIT_SET - Fatal error!\n"; cerr << " Illegal input value of RULE = " << rule << "\n"; exit ( 1 ); } return; } //****************************************************************************80 int hexagon_unit_size ( int rule ) //****************************************************************************80 // // Purpose: // // HEXAGON_UNIT_SIZE sizes a quadrature rule inside the unit hexagon in 2D. // // Integration region: // // The definition is given in terms of THETA, the angle in degrees of the // vector (X,Y). The following six conditions apply, respectively, // between the bracketing values of THETA of 0, 60, 120, 180, 240, // 300, and 360. // // 0 <= Y <= -SQRT(3) * X + SQRT(3) // 0 <= Y <= SQRT(3)/2 // 0 <= Y <= SQRT(3) * X + SQRT(3) // -SQRT(3) * X - SQRT(3) <= Y <= 0 // - SQRT(3)/2 <= Y <= 0 // SQRT(3) * X - SQRT(3) <= Y <= 0 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int RULE, the rule desired. // 1, 1 point, degree 1; // 2, 4 points, degree 3; // 3, 7 points, degree 3; // 4, 7 points, degree 5; // // Output, int HEXAGON_UNIT_SIZE, the order of the desired rule. // If RULE is not legal, then ORDER is returned as -1. // { int order; if ( rule == 1 ) { order = 1; } // // Stroud rule H2:3-1. // else if ( rule == 2 ) { order = 4; } // // Stroud rule H2:3-2. // else if ( rule == 3 ) { order = 7; } // // Stroud rule H2:5-1. // else if ( rule == 4 ) { order = 7; } else { order = -1; } return order; } //****************************************************************************80 int i4_factorial ( int n ) //****************************************************************************80 // // Purpose: // // I4_FACTORIAL returns N!. // // Discussion: // // N! = Product ( 1 <= I <= N ) I // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the factorial function. // 0 <= N. // // Output, int I4_FACTORIAL, the factorial of N. // { int fact; int i; // // Check. // if ( n < 0 ) { cerr << "\n"; cerr << "I4_FACTORIAL - Fatal error!\n"; cerr << " N < 0.\n"; return 0; } fact = 1; for ( i = 2; i <= n; i++ ) { fact = fact * i; } return fact; } //****************************************************************************80 int i4_factorial2 ( int n ) //****************************************************************************80 // // Purpose: // // I4_FACTORIAL2 computes the double factorial function. // // Discussion: // // FACTORIAL2( N ) = Product ( N * (N-2) * (N-4) * ... * 2 ) (N even) // = Product ( N * (N-2) * (N-4) * ... * 1 ) (N odd) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the double factorial function. // If N is less than 1, I4_FACTORIAL2 is returned as 1. // // Output, int I4_FACTORIAL2, the value of the double factorial function. // { int n_copy; int value; if ( n < 1 ) { value = 1; return value; } n_copy = n; value = 1; while ( 1 < n_copy ) { value = value * n_copy; n_copy = n_copy - 2; } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 int i4vec_sum ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SUM sums the entries of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // Input: // // A = ( 1, 2, 3, 4 ) // // Output: // // I4VEC_SUM = 10 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector to be summed. // // Output, int I4VEC_SUM, the sum of the entries of A. // { int i; int sum; sum = 0; for ( i = 0; i < n; i++ ) { sum = sum + a[i]; } return sum; } //****************************************************************************80 void i4vec_zero ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_ZERO zeroes an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, int A[N], a vector of zeroes. // { int i; for ( i = 0; i < n; i++ ) { a[i] = 0; } return; } //****************************************************************************80 void ksub_next2 ( int n, int k, int a[], int *in, int *iout ) //****************************************************************************80 // // Purpose: // // KSUB_NEXT2 generates the subsets of size K from a set of size N. // // Discussion: // // This routine uses the revolving door method. It has no "memory". // It simply calculates the successor of the input set, // and will start from the beginning after the last set. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 May 2003 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt. // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms for Computers and Calculators, // Second Edition, // Academic Press, 1978, // ISBN: 0-12-519260-6, // LC: QA164.N54. // // Parameters: // // Input, int N, the size of the set from which subsets are drawn. // N must be positive. // // Input, int K, the size of the desired subset. K must be // between 0 and N. // // Input/output, int A[K]. On input, the user must // supply a subset of size K in A. That is, A must // contain K unique numbers, in order, between 1 and N. On // output, A(I) is the I-th element of the output subset. // The output array is also in sorted order. // // Output, int *IN, the element of the output subset which // was not in the input set. Each new subset differs from the // last one by adding one element and deleting another. // // Output, int *IOUT, the element of the input subset which // is not in the output subset. // { int j; int m; if ( n <= 0 ) { cerr << "\n"; cerr << "KSUB_NEXT2 - Fatal error!\n"; cerr << " N = " << n << "\n"; cerr << " but 0 < N is required!\n"; exit ( 1 ); } if ( k < 0 || n < k ) { cerr << "\n"; cerr << "KSUB_NEXT2 - Fatal error!\n"; cerr << " N = " << n << "\n"; cerr << " K = " << k << "\n"; cerr << " but 0 <= K <= N is required!\n"; exit ( 1 ); } j = 0; for ( ; ; ) { if ( 0 < j || ( k % 2 ) == 0 ) { j = j + 1; if ( k < j ) { a[k-1] = k; *in = k; *iout = n; return; } if ( a[j-1] != j ) { *iout = a[j-1]; *in = *iout - 1; a[j-1] = *in; if ( j != 1 ) { *in = j - 1; a[j-2] = *in; } return; } } j = j + 1; m = n; if ( j < k ) { m = a[j] - 1; } if ( m != a[j-1] ) { break; } } *in = a[j-1] + 1; a[j-1] = *in; *iout = *in - 1; if ( j != 1 ) { a[j-2] = *iout; *iout = j - 1; } return; } //****************************************************************************80 void legendre_set ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_SET sets abscissas and weights for Gauss-Legendre quadrature. // // Discussion: // // The integration interval is [ -1, 1 ]. // // The weight function w(x-1] = 1.0; // // The integral to approximate: // // Integral ( -1 <= X <= 1 ) F(X) dX // // Quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ) // // The quadrature rule will integrate exactly all polynomials up to // X**(2*N-1). // // The abscissas of the rule are the zeroes of the Legendre polynomial // P(N)(X). // // The integral produced by a Gauss-Legendre rule is equal to the // integral of the unique polynomial of degree N-1 which // agrees with the function at the N abscissas of the rule. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 October 2009 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Vladimir Krylov, // Approximate Calculation of Integrals, // Dover, 2006, // ISBN: 0486445798. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, // ISBN: 0-8493-2479-3. // // Parameters: // // Input, int N, the order of the rule. // N must be between 1 and 33, 63, 64, 65, 127 or 255. // // Output, double X[N], the abscissas of the rule. // // Output, double W[N], the weights of the rule. // The weights are positive, symmetric and should sum to 2. // { if ( n == 1 ) { x[0] = 0.0; w[0] = 2.0; } else if ( n == 2 ) { x[0] = - 0.577350269189625764509148780502; x[1] = 0.577350269189625764509148780502; w[0] = 1.0; w[1] = 1.0; } else if ( n == 3 ) { x[0] = - 0.774596669241483377035853079956; x[1] = 0.0; x[2] = 0.774596669241483377035853079956; w[0] = 5.0 / 9.0; w[1] = 8.0 / 9.0; w[2] = 5.0 / 9.0; } else if ( n == 4 ) { x[0] = - 0.861136311594052575223946488893; x[1] = - 0.339981043584856264802665759103; x[2] = 0.339981043584856264802665759103; x[3] = 0.861136311594052575223946488893; w[0] = 0.347854845137453857373063949222; w[1] = 0.652145154862546142626936050778; w[2] = 0.652145154862546142626936050778; w[3] = 0.347854845137453857373063949222; } else if ( n == 5 ) { x[0] = - 0.906179845938663992797626878299; x[1] = - 0.538469310105683091036314420700; x[2] = 0.0; x[3] = 0.538469310105683091036314420700; x[4] = 0.906179845938663992797626878299; w[0] = 0.236926885056189087514264040720; w[1] = 0.478628670499366468041291514836; w[2] = 0.568888888888888888888888888889; w[3] = 0.478628670499366468041291514836; w[4] = 0.236926885056189087514264040720; } else if ( n == 6 ) { x[0] = - 0.932469514203152027812301554494; x[1] = - 0.661209386466264513661399595020; x[2] = - 0.238619186083196908630501721681; x[3] = 0.238619186083196908630501721681; x[4] = 0.661209386466264513661399595020; x[5] = 0.932469514203152027812301554494; w[0] = 0.171324492379170345040296142173; w[1] = 0.360761573048138607569833513838; w[2] = 0.467913934572691047389870343990; w[3] = 0.467913934572691047389870343990; w[4] = 0.360761573048138607569833513838; w[5] = 0.171324492379170345040296142173; } else if ( n == 7 ) { x[0] = - 0.949107912342758524526189684048; x[1] = - 0.741531185599394439863864773281; x[2] = - 0.405845151377397166906606412077; x[3] = 0.0; x[4] = 0.405845151377397166906606412077; x[5] = 0.741531185599394439863864773281; x[6] = 0.949107912342758524526189684048; w[0] = 0.129484966168869693270611432679; w[1] = 0.279705391489276667901467771424; w[2] = 0.381830050505118944950369775489; w[3] = 0.417959183673469387755102040816; w[4] = 0.381830050505118944950369775489; w[5] = 0.279705391489276667901467771424; w[6] = 0.129484966168869693270611432679; } else if ( n == 8 ) { x[0] = - 0.960289856497536231683560868569; x[1] = - 0.796666477413626739591553936476; x[2] = - 0.525532409916328985817739049189; x[3] = - 0.183434642495649804939476142360; x[4] = 0.183434642495649804939476142360; x[5] = 0.525532409916328985817739049189; x[6] = 0.796666477413626739591553936476; x[7] = 0.960289856497536231683560868569; w[0] = 0.101228536290376259152531354310; w[1] = 0.222381034453374470544355994426; w[2] = 0.313706645877887287337962201987; w[3] = 0.362683783378361982965150449277; w[4] = 0.362683783378361982965150449277; w[5] = 0.313706645877887287337962201987; w[6] = 0.222381034453374470544355994426; w[7] = 0.101228536290376259152531354310; } else if ( n == 9 ) { x[0] = - 0.968160239507626089835576202904; x[1] = - 0.836031107326635794299429788070; x[2] = - 0.613371432700590397308702039341; x[3] = - 0.324253423403808929038538014643; x[4] = 0.0; x[5] = 0.324253423403808929038538014643; x[6] = 0.613371432700590397308702039341; x[7] = 0.836031107326635794299429788070; x[8] = 0.968160239507626089835576202904; w[0] = 0.812743883615744119718921581105E-01; w[1] = 0.180648160694857404058472031243; w[2] = 0.260610696402935462318742869419; w[3] = 0.312347077040002840068630406584; w[4] = 0.330239355001259763164525069287; w[5] = 0.312347077040002840068630406584; w[6] = 0.260610696402935462318742869419; w[7] = 0.180648160694857404058472031243; w[8] = 0.812743883615744119718921581105E-01; } else if ( n == 10 ) { x[0] = - 0.973906528517171720077964012084; x[1] = - 0.865063366688984510732096688423; x[2] = - 0.679409568299024406234327365115; x[3] = - 0.433395394129247190799265943166; x[4] = - 0.148874338981631210884826001130; x[5] = 0.148874338981631210884826001130; x[6] = 0.433395394129247190799265943166; x[7] = 0.679409568299024406234327365115; x[8] = 0.865063366688984510732096688423; x[9] = 0.973906528517171720077964012084; w[0] = 0.666713443086881375935688098933E-01; w[1] = 0.149451349150580593145776339658; w[2] = 0.219086362515982043995534934228; w[3] = 0.269266719309996355091226921569; w[4] = 0.295524224714752870173892994651; w[5] = 0.295524224714752870173892994651; w[6] = 0.269266719309996355091226921569; w[7] = 0.219086362515982043995534934228; w[8] = 0.149451349150580593145776339658; w[9] = 0.666713443086881375935688098933E-01; } else if ( n == 11 ) { x[0] = - 0.978228658146056992803938001123; x[1] = - 0.887062599768095299075157769304; x[2] = - 0.730152005574049324093416252031; x[3] = - 0.519096129206811815925725669459; x[4] = - 0.269543155952344972331531985401; x[5] = 0.0; x[6] = 0.269543155952344972331531985401; x[7] = 0.519096129206811815925725669459; x[8] = 0.730152005574049324093416252031; x[9] = 0.887062599768095299075157769304; x[10] = 0.978228658146056992803938001123; w[0] = 0.556685671161736664827537204425E-01; w[1] = 0.125580369464904624634694299224; w[2] = 0.186290210927734251426097641432; w[3] = 0.233193764591990479918523704843; w[4] = 0.262804544510246662180688869891; w[5] = 0.272925086777900630714483528336; w[6] = 0.262804544510246662180688869891; w[7] = 0.233193764591990479918523704843; w[8] = 0.186290210927734251426097641432; w[9] = 0.125580369464904624634694299224; w[10] = 0.556685671161736664827537204425E-01; } else if ( n == 12 ) { x[0] = - 0.981560634246719250690549090149; x[1] = - 0.904117256370474856678465866119; x[2] = - 0.769902674194304687036893833213; x[3] = - 0.587317954286617447296702418941; x[4] = - 0.367831498998180193752691536644; x[5] = - 0.125233408511468915472441369464; x[6] = 0.125233408511468915472441369464; x[7] = 0.367831498998180193752691536644; x[8] = 0.587317954286617447296702418941; x[9] = 0.769902674194304687036893833213; x[10] = 0.904117256370474856678465866119; x[11] = 0.981560634246719250690549090149; w[0] = 0.471753363865118271946159614850E-01; w[1] = 0.106939325995318430960254718194; w[2] = 0.160078328543346226334652529543; w[3] = 0.203167426723065921749064455810; w[4] = 0.233492536538354808760849898925; w[5] = 0.249147045813402785000562436043; w[6] = 0.249147045813402785000562436043; w[7] = 0.233492536538354808760849898925; w[8] = 0.203167426723065921749064455810; w[9] = 0.160078328543346226334652529543; w[10] = 0.106939325995318430960254718194; w[11] = 0.471753363865118271946159614850E-01; } else if ( n == 13 ) { x[0] = - 0.984183054718588149472829448807; x[1] = - 0.917598399222977965206547836501; x[2] = - 0.801578090733309912794206489583; x[3] = - 0.642349339440340220643984606996; x[4] = - 0.448492751036446852877912852128; x[5] = - 0.230458315955134794065528121098; x[6] = 0.0; x[7] = 0.230458315955134794065528121098; x[8] = 0.448492751036446852877912852128; x[9] = 0.642349339440340220643984606996; x[10] = 0.801578090733309912794206489583; x[11] = 0.917598399222977965206547836501; x[12] = 0.984183054718588149472829448807; w[0] = 0.404840047653158795200215922010E-01; w[1] = 0.921214998377284479144217759538E-01; w[2] = 0.138873510219787238463601776869; w[3] = 0.178145980761945738280046691996; w[4] = 0.207816047536888502312523219306; w[5] = 0.226283180262897238412090186040; w[6] = 0.232551553230873910194589515269; w[7] = 0.226283180262897238412090186040; w[8] = 0.207816047536888502312523219306; w[9] = 0.178145980761945738280046691996; w[10] = 0.138873510219787238463601776869; w[11] = 0.921214998377284479144217759538E-01; w[12] = 0.404840047653158795200215922010E-01; } else if ( n == 14 ) { x[0] = - 0.986283808696812338841597266704; x[1] = - 0.928434883663573517336391139378; x[2] = - 0.827201315069764993189794742650; x[3] = - 0.687292904811685470148019803019; x[4] = - 0.515248636358154091965290718551; x[5] = - 0.319112368927889760435671824168; x[6] = - 0.108054948707343662066244650220; x[7] = 0.108054948707343662066244650220; x[8] = 0.319112368927889760435671824168; x[9] = 0.515248636358154091965290718551; x[10] = 0.687292904811685470148019803019; x[11] = 0.827201315069764993189794742650; x[12] = 0.928434883663573517336391139378; x[13] = 0.986283808696812338841597266704; w[0] = 0.351194603317518630318328761382E-01; w[1] = 0.801580871597602098056332770629E-01; w[2] = 0.121518570687903184689414809072; w[3] = 0.157203167158193534569601938624; w[4] = 0.185538397477937813741716590125; w[5] = 0.205198463721295603965924065661; w[6] = 0.215263853463157790195876443316; w[7] = 0.215263853463157790195876443316; w[8] = 0.205198463721295603965924065661; w[9] = 0.185538397477937813741716590125; w[10] = 0.157203167158193534569601938624; w[11] = 0.121518570687903184689414809072; w[12] = 0.801580871597602098056332770629E-01; w[13] = 0.351194603317518630318328761382E-01; } else if ( n == 15 ) { x[0] = - 0.987992518020485428489565718587; x[1] = - 0.937273392400705904307758947710; x[2] = - 0.848206583410427216200648320774; x[3] = - 0.724417731360170047416186054614; x[4] = - 0.570972172608538847537226737254; x[5] = - 0.394151347077563369897207370981; x[6] = - 0.201194093997434522300628303395; x[7] = 0.0; x[8] = 0.201194093997434522300628303395; x[9] = 0.394151347077563369897207370981; x[10] = 0.570972172608538847537226737254; x[11] = 0.724417731360170047416186054614; x[12] = 0.848206583410427216200648320774; x[13] = 0.937273392400705904307758947710; x[14] = 0.987992518020485428489565718587; w[0] = 0.307532419961172683546283935772E-01; w[1] = 0.703660474881081247092674164507E-01; w[2] = 0.107159220467171935011869546686; w[3] = 0.139570677926154314447804794511; w[4] = 0.166269205816993933553200860481; w[5] = 0.186161000015562211026800561866; w[6] = 0.198431485327111576456118326444; w[7] = 0.202578241925561272880620199968; w[8] = 0.198431485327111576456118326444; w[9] = 0.186161000015562211026800561866; w[10] = 0.166269205816993933553200860481; w[11] = 0.139570677926154314447804794511; w[12] = 0.107159220467171935011869546686; w[13] = 0.703660474881081247092674164507E-01; w[14] = 0.307532419961172683546283935772E-01; } else if ( n == 16 ) { x[0] = - 0.989400934991649932596154173450; x[1] = - 0.944575023073232576077988415535; x[2] = - 0.865631202387831743880467897712; x[3] = - 0.755404408355003033895101194847; x[4] = - 0.617876244402643748446671764049; x[5] = - 0.458016777657227386342419442984; x[6] = - 0.281603550779258913230460501460; x[7] = - 0.950125098376374401853193354250E-01; x[8] = 0.950125098376374401853193354250E-01; x[9] = 0.281603550779258913230460501460; x[10] = 0.458016777657227386342419442984; x[11] = 0.617876244402643748446671764049; x[12] = 0.755404408355003033895101194847; x[13] = 0.865631202387831743880467897712; x[14] = 0.944575023073232576077988415535; x[15] = 0.989400934991649932596154173450; w[0] = 0.271524594117540948517805724560E-01; w[1] = 0.622535239386478928628438369944E-01; w[2] = 0.951585116824927848099251076022E-01; w[3] = 0.124628971255533872052476282192; w[4] = 0.149595988816576732081501730547; w[5] = 0.169156519395002538189312079030; w[6] = 0.182603415044923588866763667969; w[7] = 0.189450610455068496285396723208; w[8] = 0.189450610455068496285396723208; w[9] = 0.182603415044923588866763667969; w[10] = 0.169156519395002538189312079030; w[11] = 0.149595988816576732081501730547; w[12] = 0.124628971255533872052476282192; w[13] = 0.951585116824927848099251076022E-01; w[14] = 0.622535239386478928628438369944E-01; w[15] = 0.271524594117540948517805724560E-01; } else if ( n == 17 ) { x[0] = - 0.990575475314417335675434019941; x[1] = - 0.950675521768767761222716957896; x[2] = - 0.880239153726985902122955694488; x[3] = - 0.781514003896801406925230055520; x[4] = - 0.657671159216690765850302216643; x[5] = - 0.512690537086476967886246568630; x[6] = - 0.351231763453876315297185517095; x[7] = - 0.178484181495847855850677493654; x[8] = 0.0; x[9] = 0.178484181495847855850677493654; x[10] = 0.351231763453876315297185517095; x[11] = 0.512690537086476967886246568630; x[12] = 0.657671159216690765850302216643; x[13] = 0.781514003896801406925230055520; x[14] = 0.880239153726985902122955694488; x[15] = 0.950675521768767761222716957896; x[16] = 0.990575475314417335675434019941; w[0] = 0.241483028685479319601100262876E-01; w[1] = 0.554595293739872011294401653582E-01; w[2] = 0.850361483171791808835353701911E-01; w[3] = 0.111883847193403971094788385626; w[4] = 0.135136368468525473286319981702; w[5] = 0.154045761076810288081431594802; w[6] = 0.168004102156450044509970663788; w[7] = 0.176562705366992646325270990113; w[8] = 0.179446470356206525458265644262; w[9] = 0.176562705366992646325270990113; w[10] = 0.168004102156450044509970663788; w[11] = 0.154045761076810288081431594802; w[12] = 0.135136368468525473286319981702; w[13] = 0.111883847193403971094788385626; w[14] = 0.850361483171791808835353701911E-01; w[15] = 0.554595293739872011294401653582E-01; w[16] = 0.241483028685479319601100262876E-01; } else if ( n == 18 ) { x[0] = - 0.991565168420930946730016004706; x[1] = - 0.955823949571397755181195892930; x[2] = - 0.892602466497555739206060591127; x[3] = - 0.803704958972523115682417455015; x[4] = - 0.691687043060353207874891081289; x[5] = - 0.559770831073947534607871548525; x[6] = - 0.411751161462842646035931793833; x[7] = - 0.251886225691505509588972854878; x[8] = - 0.847750130417353012422618529358E-01; x[9] = 0.847750130417353012422618529358E-01; x[10] = 0.251886225691505509588972854878; x[11] = 0.411751161462842646035931793833; x[12] = 0.559770831073947534607871548525; x[13] = 0.691687043060353207874891081289; x[14] = 0.803704958972523115682417455015; x[15] = 0.892602466497555739206060591127; x[16] = 0.955823949571397755181195892930; x[17] = 0.991565168420930946730016004706; w[0] = 0.216160135264833103133427102665E-01; w[1] = 0.497145488949697964533349462026E-01; w[2] = 0.764257302548890565291296776166E-01; w[3] = 0.100942044106287165562813984925; w[4] = 0.122555206711478460184519126800; w[5] = 0.140642914670650651204731303752; w[6] = 0.154684675126265244925418003836; w[7] = 0.164276483745832722986053776466; w[8] = 0.169142382963143591840656470135; w[9] = 0.169142382963143591840656470135; w[10] = 0.164276483745832722986053776466; w[11] = 0.154684675126265244925418003836; w[12] = 0.140642914670650651204731303752; w[13] = 0.122555206711478460184519126800; w[14] = 0.100942044106287165562813984925; w[15] = 0.764257302548890565291296776166E-01; w[16] = 0.497145488949697964533349462026E-01; w[17] = 0.216160135264833103133427102665E-01; } else if ( n == 19 ) { x[0] = - 0.992406843843584403189017670253; x[1] = - 0.960208152134830030852778840688; x[2] = - 0.903155903614817901642660928532; x[3] = - 0.822714656537142824978922486713; x[4] = - 0.720966177335229378617095860824; x[5] = - 0.600545304661681023469638164946; x[6] = - 0.464570741375960945717267148104; x[7] = - 0.316564099963629831990117328850; x[8] = - 0.160358645640225375868096115741; x[9] = 0.0; x[10] = 0.160358645640225375868096115741; x[11] = 0.316564099963629831990117328850; x[12] = 0.464570741375960945717267148104; x[13] = 0.600545304661681023469638164946; x[14] = 0.720966177335229378617095860824; x[15] = 0.822714656537142824978922486713; x[16] = 0.903155903614817901642660928532; x[17] = 0.960208152134830030852778840688; x[18] = 0.992406843843584403189017670253; w[0] = 0.194617882297264770363120414644E-01; w[1] = 0.448142267656996003328381574020E-01; w[2] = 0.690445427376412265807082580060E-01; w[3] = 0.914900216224499994644620941238E-01; w[4] = 0.111566645547333994716023901682; w[5] = 0.128753962539336227675515784857; w[6] = 0.142606702173606611775746109442; w[7] = 0.152766042065859666778855400898; w[8] = 0.158968843393954347649956439465; w[9] = 0.161054449848783695979163625321; w[10] = 0.158968843393954347649956439465; w[11] = 0.152766042065859666778855400898; w[12] = 0.142606702173606611775746109442; w[13] = 0.128753962539336227675515784857; w[14] = 0.111566645547333994716023901682; w[15] = 0.914900216224499994644620941238E-01; w[16] = 0.690445427376412265807082580060E-01; w[17] = 0.448142267656996003328381574020E-01; w[18] = 0.194617882297264770363120414644E-01; } else if ( n == 20 ) { x[0] = - 0.993128599185094924786122388471; x[1] = - 0.963971927277913791267666131197; x[2] = - 0.912234428251325905867752441203; x[3] = - 0.839116971822218823394529061702; x[4] = - 0.746331906460150792614305070356; x[5] = - 0.636053680726515025452836696226; x[6] = - 0.510867001950827098004364050955; x[7] = - 0.373706088715419560672548177025; x[8] = - 0.227785851141645078080496195369; x[9] = - 0.765265211334973337546404093988E-01; x[10] = 0.765265211334973337546404093988E-01; x[11] = 0.227785851141645078080496195369; x[12] = 0.373706088715419560672548177025; x[13] = 0.510867001950827098004364050955; x[14] = 0.636053680726515025452836696226; x[15] = 0.746331906460150792614305070356; x[16] = 0.839116971822218823394529061702; x[17] = 0.912234428251325905867752441203; x[18] = 0.963971927277913791267666131197; x[19] = 0.993128599185094924786122388471; w[0] = 0.176140071391521183118619623519E-01; w[1] = 0.406014298003869413310399522749E-01; w[2] = 0.626720483341090635695065351870E-01; w[3] = 0.832767415767047487247581432220E-01; w[4] = 0.101930119817240435036750135480; w[5] = 0.118194531961518417312377377711; w[6] = 0.131688638449176626898494499748; w[7] = 0.142096109318382051329298325067; w[8] = 0.149172986472603746787828737002; w[9] = 0.152753387130725850698084331955; w[10] = 0.152753387130725850698084331955; w[11] = 0.149172986472603746787828737002; w[12] = 0.142096109318382051329298325067; w[13] = 0.131688638449176626898494499748; w[14] = 0.118194531961518417312377377711; w[15] = 0.101930119817240435036750135480; w[16] = 0.832767415767047487247581432220E-01; w[17] = 0.626720483341090635695065351870E-01; w[18] = 0.406014298003869413310399522749E-01; w[19] = 0.176140071391521183118619623519E-01; } else if ( n == 21 ) { x[ 0] = -0.9937521706203896E+00; x[ 1] = -0.9672268385663063E+00; x[ 2] = -0.9200993341504008E+00; x[ 3] = -0.8533633645833173E+00; x[ 4] = -0.7684399634756779E+00; x[ 5] = -0.6671388041974123E+00; x[ 6] = -0.5516188358872198E+00; x[ 7] = -0.4243421202074388E+00; x[ 8] = -0.2880213168024011E+00; x[ 9] = -0.1455618541608951E+00; x[10] = 0.0000000000000000E+00; x[11] = 0.1455618541608951E+00; x[12] = 0.2880213168024011E+00; x[13] = 0.4243421202074388E+00; x[14] = 0.5516188358872198E+00; x[15] = 0.6671388041974123E+00; x[16] = 0.7684399634756779E+00; x[17] = 0.8533633645833173E+00; x[18] = 0.9200993341504008E+00; x[19] = 0.9672268385663063E+00; x[20] = 0.9937521706203896E+00; w[ 0] = 0.1601722825777420E-01; w[ 1] = 0.3695378977085242E-01; w[ 2] = 0.5713442542685715E-01; w[ 3] = 0.7610011362837928E-01; w[ 4] = 0.9344442345603393E-01; w[ 5] = 0.1087972991671484E+00; w[ 6] = 0.1218314160537285E+00; w[ 7] = 0.1322689386333373E+00; w[ 8] = 0.1398873947910731E+00; w[ 9] = 0.1445244039899700E+00; w[10] = 0.1460811336496904E+00; w[11] = 0.1445244039899700E+00; w[12] = 0.1398873947910731E+00; w[13] = 0.1322689386333373E+00; w[14] = 0.1218314160537285E+00; w[15] = 0.1087972991671484E+00; w[16] = 0.9344442345603393E-01; w[17] = 0.7610011362837928E-01; w[18] = 0.5713442542685715E-01; w[19] = 0.3695378977085242E-01; w[20] = 0.1601722825777420E-01; } else if ( n == 22 ) { x[ 0] = -0.9942945854823994E+00; x[ 1] = -0.9700604978354287E+00; x[ 2] = -0.9269567721871740E+00; x[ 3] = -0.8658125777203002E+00; x[ 4] = -0.7878168059792081E+00; x[ 5] = -0.6944872631866827E+00; x[ 6] = -0.5876404035069116E+00; x[ 7] = -0.4693558379867570E+00; x[ 8] = -0.3419358208920842E+00; x [9] = -0.2078604266882213E+00; x[10] = -0.6973927331972223E-01; x[11] = 0.6973927331972223E-01; x[12] = 0.2078604266882213E+00; x[13] = 0.3419358208920842E+00; x[14] = 0.4693558379867570E+00; x[15] = 0.5876404035069116E+00; x[16] = 0.6944872631866827E+00; x[17] = 0.7878168059792081E+00; x[18] = 0.8658125777203002E+00; x[19] = 0.9269567721871740E+00; x[20] = 0.9700604978354287E+00; x[21] = 0.9942945854823994E+00; w[ 0] = 0.1462799529827203E-01; w[ 1] = 0.3377490158481413E-01; w[ 2] = 0.5229333515268327E-01; w[ 3] = 0.6979646842452038E-01; w[ 4] = 0.8594160621706777E-01; w[ 5] = 0.1004141444428809E+00; w[ 6] = 0.1129322960805392E+00; w[ 7] = 0.1232523768105124E+00; w[ 8] = 0.1311735047870623E+00; w[ 9] = 0.1365414983460152E+00; w[10] = 0.1392518728556321E+00; w[11] = 0.1392518728556321E+00; w[12] = 0.1365414983460152E+00; w[13] = 0.1311735047870623E+00; w[14] = 0.1232523768105124E+00; w[15] = 0.1129322960805392E+00; w[16] = 0.1004141444428809E+00; w[17] = 0.8594160621706777E-01; w[18] = 0.6979646842452038E-01; w[19] = 0.5229333515268327E-01; w[20] = 0.3377490158481413E-01; w[21] = 0.1462799529827203E-01; } else if ( n == 23 ) { x[ 0] = -0.9947693349975522E+00; x[ 1] = -0.9725424712181152E+00; x[ 2] = -0.9329710868260161E+00; x[ 3] = -0.8767523582704416E+00; x[ 4] = -0.8048884016188399E+00; x[ 5] = -0.7186613631319502E+00; x[ 6] = -0.6196098757636461E+00; x[ 7] = -0.5095014778460075E+00; x[ 8] = -0.3903010380302908E+00; x[ 9] = -0.2641356809703449E+00; x[10] = -0.1332568242984661E+00; x[11] = 0.0000000000000000E+00; x[12] = 0.1332568242984661E+00; x[13] = 0.2641356809703449E+00; x[14] = 0.3903010380302908E+00; x[15] = 0.5095014778460075E+00; x[16] = 0.6196098757636461E+00; x[17] = 0.7186613631319502E+00; x[18] = 0.8048884016188399E+00; x[19] = 0.8767523582704416E+00; x[20] = 0.9329710868260161E+00; x[21] = 0.9725424712181152E+00; x[22] = 0.9947693349975522E+00; w[ 0] = 0.1341185948714167E-01; w[ 1] = 0.3098800585697944E-01; w[ 2] = 0.4803767173108464E-01; w[ 3] = 0.6423242140852586E-01; w[ 4] = 0.7928141177671895E-01; w[ 5] = 0.9291576606003514E-01; w[ 6] = 0.1048920914645414E+00; w[ 7] = 0.1149966402224114E+00; w[ 8] = 0.1230490843067295E+00; w[ 9] = 0.1289057221880822E+00; w[10] = 0.1324620394046967E+00; w[11] = 0.1336545721861062E+00; w[12] = 0.1324620394046967E+00; w[13] = 0.1289057221880822E+00; w[14] = 0.1230490843067295E+00; w[15] = 0.1149966402224114E+00; w[16] = 0.1048920914645414E+00; w[17] = 0.9291576606003514E-01; w[18] = 0.7928141177671895E-01; w[19] = 0.6423242140852586E-01; w[20] = 0.4803767173108464E-01; w[21] = 0.3098800585697944E-01; w[22] = 0.1341185948714167E-01; } else if ( n == 24 ) { x[ 0] = -0.9951872199970213E+00; x[ 1] = -0.9747285559713095E+00; x[ 2] = -0.9382745520027327E+00; x[ 3] = -0.8864155270044011E+00; x[ 4] = -0.8200019859739029E+00; x[ 5] = -0.7401241915785544E+00; x[ 6] = -0.6480936519369755E+00; x[ 7] = -0.5454214713888396E+00; x[ 8] = -0.4337935076260451E+00; x[ 9] = -0.3150426796961634E+00; x[10] = -0.1911188674736163E+00; x[11] = -0.6405689286260562E-01; x[12] = 0.6405689286260562E-01; x[13] = 0.1911188674736163E+00; x[14] = 0.3150426796961634E+00; x[15] = 0.4337935076260451E+00; x[16] = 0.5454214713888396E+00; x[17] = 0.6480936519369755E+00; x[18] = 0.7401241915785544E+00; x[19] = 0.8200019859739029E+00; x[20] = 0.8864155270044011E+00; x[21] = 0.9382745520027327E+00; x[22] = 0.9747285559713095E+00; x[23] = 0.9951872199970213E+00; w[ 0] = 0.1234122979998730E-01; w[ 1] = 0.2853138862893375E-01; w[ 2] = 0.4427743881741982E-01; w[ 3] = 0.5929858491543672E-01; w[ 4] = 0.7334648141108031E-01; w[ 5] = 0.8619016153195320E-01; w[ 6] = 0.9761865210411380E-01; w[ 7] = 0.1074442701159656E+00; w[ 8] = 0.1155056680537256E+00; w[ 9] = 0.1216704729278035E+00; w[10] = 0.1258374563468283E+00; w[11] = 0.1279381953467521E+00; w[12] = 0.1279381953467521E+00; w[13] = 0.1258374563468283E+00; w[14] = 0.1216704729278035E+00; w[15] = 0.1155056680537256E+00; w[16] = 0.1074442701159656E+00; w[17] = 0.9761865210411380E-01; w[18] = 0.8619016153195320E-01; w[19] = 0.7334648141108031E-01; w[20] = 0.5929858491543672E-01; w[21] = 0.4427743881741982E-01; w[22] = 0.2853138862893375E-01; w[23] = 0.1234122979998730E-01; } else if ( n == 25 ) { x[ 0] = -0.9955569697904981E+00; x[ 1] = -0.9766639214595175E+00; x[ 2] = -0.9429745712289743E+00; x[ 3] = -0.8949919978782754E+00; x[ 4] = -0.8334426287608340E+00; x[ 5] = -0.7592592630373577E+00; x[ 6] = -0.6735663684734684E+00; x[ 7] = -0.5776629302412229E+00; x[ 8] = -0.4730027314457150E+00; x[ 9] = -0.3611723058093879E+00; x[10] = -0.2438668837209884E+00; x[11] = -0.1228646926107104E+00; x[12] = 0.0000000000000000E+00; x[13] = 0.1228646926107104E+00; x[14] = 0.2438668837209884E+00; x[15] = 0.3611723058093879E+00; x[16] = 0.4730027314457150E+00; x[17] = 0.5776629302412229E+00; x[18] = 0.6735663684734684E+00; x[19] = 0.7592592630373577E+00; x[20] = 0.8334426287608340E+00; x[21] = 0.8949919978782754E+00; x[22] = 0.9429745712289743E+00; x[23] = 0.9766639214595175E+00; x[24] = 0.9955569697904981E+00; w[ 0] = 0.1139379850102617E-01; w[ 1] = 0.2635498661503214E-01; w[ 2] = 0.4093915670130639E-01; w[ 3] = 0.5490469597583517E-01; w[ 4] = 0.6803833381235694E-01; w[ 5] = 0.8014070033500101E-01; w[ 6] = 0.9102826198296370E-01; w[ 7] = 0.1005359490670506E+00; w[ 8] = 0.1085196244742637E+00; w[ 9] = 0.1148582591457116E+00; w[10] = 0.1194557635357847E+00; w[11] = 0.1222424429903101E+00; w[12] = 0.1231760537267154E+00; w[13] = 0.1222424429903101E+00; w[14] = 0.1194557635357847E+00; w[15] = 0.1148582591457116E+00; w[16] = 0.1085196244742637E+00; w[17] = 0.1005359490670506E+00; w[18] = 0.9102826198296370E-01; w[19] = 0.8014070033500101E-01; w[20] = 0.6803833381235694E-01; w[21] = 0.5490469597583517E-01; w[22] = 0.4093915670130639E-01; w[23] = 0.2635498661503214E-01; w[24] = 0.1139379850102617E-01; } else if ( n == 26 ) { x[ 0] = -0.9958857011456169E+00; x[ 1] = -0.9783854459564710E+00; x[ 2] = -0.9471590666617142E+00; x[ 3] = -0.9026378619843071E+00; x[ 4] = -0.8454459427884981E+00; x[ 5] = -0.7763859488206789E+00; x[ 6] = -0.6964272604199573E+00; x[ 7] = -0.6066922930176181E+00; x[ 8] = -0.5084407148245057E+00; x[ 9] = -0.4030517551234863E+00; x[10] = -0.2920048394859569E+00; x[11] = -0.1768588203568902E+00; x[12] = -0.5923009342931320E-01; x[13] = 0.5923009342931320E-01; x[14] = 0.1768588203568902E+00; x[15] = 0.2920048394859569E+00; x[16] = 0.4030517551234863E+00; x[17] = 0.5084407148245057E+00; x[18] = 0.6066922930176181E+00; x[19] = 0.6964272604199573E+00; x[20] = 0.7763859488206789E+00; x[21] = 0.8454459427884981E+00; x[22] = 0.9026378619843071E+00; x[23] = 0.9471590666617142E+00; x[24] = 0.9783854459564710E+00; x[25] = 0.9958857011456169E+00; w[ 0] = 0.1055137261734304E-01; w[ 1] = 0.2441785109263173E-01; w[ 2] = 0.3796238329436282E-01; w[ 3] = 0.5097582529714782E-01; w[ 4] = 0.6327404632957484E-01; w[ 5] = 0.7468414976565967E-01; w[ 6] = 0.8504589431348521E-01; w[ 7] = 0.9421380035591416E-01; w[ 8] = 0.1020591610944255E+00; w[ 9] = 0.1084718405285765E+00; w[10] = 0.1133618165463197E+00; w[11] = 0.1166604434852967E+00; w[12] = 0.1183214152792622E+00; w[13] = 0.1183214152792622E+00; w[14] = 0.1166604434852967E+00; w[15] = 0.1133618165463197E+00; w[16] = 0.1084718405285765E+00; w[17] = 0.1020591610944255E+00; w[18] = 0.9421380035591416E-01; w[19] = 0.8504589431348521E-01; w[20] = 0.7468414976565967E-01; w[21] = 0.6327404632957484E-01; w[22] = 0.5097582529714782E-01; w[23] = 0.3796238329436282E-01; w[24] = 0.2441785109263173E-01; w[25] = 0.1055137261734304E-01; } else if ( n == 27 ) { x[ 0] = -0.9961792628889886E+00; x[ 1] = -0.9799234759615012E+00; x[ 2] = -0.9509005578147051E+00; x[ 3] = -0.9094823206774911E+00; x[ 4] = -0.8562079080182945E+00; x[ 5] = -0.7917716390705082E+00; x[ 6] = -0.7170134737394237E+00; x[ 7] = -0.6329079719464952E+00; x[ 8] = -0.5405515645794569E+00; x[ 9] = -0.4411482517500269E+00; x[10] = -0.3359939036385089E+00; x[11] = -0.2264593654395369E+00; x[12] = -0.1139725856095300E+00; x[13] = 0.0000000000000000E+00; x[14] = 0.1139725856095300E+00; x[15] = 0.2264593654395369E+00; x[16] = 0.3359939036385089E+00; x[17] = 0.4411482517500269E+00; x[18] = 0.5405515645794569E+00; x[19] = 0.6329079719464952E+00; x[20] = 0.7170134737394237E+00; x[21] = 0.7917716390705082E+00; x[22] = 0.8562079080182945E+00; x[23] = 0.9094823206774911E+00; x[24] = 0.9509005578147051E+00; x[25] = 0.9799234759615012E+00; x[26] = 0.9961792628889886E+00; w[ 0] = 0.9798996051294232E-02; w[ 1] = 0.2268623159618062E-01; w[ 2] = 0.3529705375741969E-01; w[ 3] = 0.4744941252061504E-01; w[ 4] = 0.5898353685983366E-01; w[ 5] = 0.6974882376624561E-01; w[ 6] = 0.7960486777305781E-01; w[ 7] = 0.8842315854375689E-01; w[ 8] = 0.9608872737002842E-01; w[ 9] = 0.1025016378177459E+00; w[10] = 0.1075782857885332E+00; w[11] = 0.1112524883568452E+00; w[12] = 0.1134763461089651E+00; w[13] = 0.1142208673789570E+00; w[14] = 0.1134763461089651E+00; w[15] = 0.1112524883568452E+00; w[16] = 0.1075782857885332E+00; w[17] = 0.1025016378177459E+00; w[18] = 0.9608872737002842E-01; w[19] = 0.8842315854375689E-01; w[20] = 0.7960486777305781E-01; w[21] = 0.6974882376624561E-01; w[22] = 0.5898353685983366E-01; w[23] = 0.4744941252061504E-01; w[24] = 0.3529705375741969E-01; w[25] = 0.2268623159618062E-01; w[26] = 0.9798996051294232E-02; } else if ( n == 28 ) { x[ 0] = -0.9964424975739544E+00; x[ 1] = -0.9813031653708728E+00; x[ 2] = -0.9542592806289382E+00; x[ 3] = -0.9156330263921321E+00; x[ 4] = -0.8658925225743951E+00; x[ 5] = -0.8056413709171791E+00; x[ 6] = -0.7356108780136318E+00; x[ 7] = -0.6566510940388650E+00; x[ 8] = -0.5697204718114017E+00; x[ 9] = -0.4758742249551183E+00; x[10] = -0.3762515160890787E+00; x[11] = -0.2720616276351780E+00; x[12] = -0.1645692821333808E+00; x[13] = -0.5507928988403427E-01; x[14] = 0.5507928988403427E-01; x[15] = 0.1645692821333808E+00; x[16] = 0.2720616276351780E+00; x[17] = 0.3762515160890787E+00; x[18] = 0.4758742249551183E+00; x[19] = 0.5697204718114017E+00; x[20] = 0.6566510940388650E+00; x[21] = 0.7356108780136318E+00; x[22] = 0.8056413709171791E+00; x[23] = 0.8658925225743951E+00; x[24] = 0.9156330263921321E+00; x[25] = 0.9542592806289382E+00; x[26] = 0.9813031653708728E+00; x[27] = 0.9964424975739544E+00; w[ 0] = 0.9124282593094672E-02; w[ 1] = 0.2113211259277118E-01; w[ 2] = 0.3290142778230441E-01; w[ 3] = 0.4427293475900429E-01; w[ 4] = 0.5510734567571667E-01; w[ 5] = 0.6527292396699959E-01; w[ 6] = 0.7464621423456877E-01; w[ 7] = 0.8311341722890127E-01; w[ 8] = 0.9057174439303289E-01; w[ 9] = 0.9693065799792999E-01; w[10] = 0.1021129675780608E+00; w[11] = 0.1060557659228464E+00; w[12] = 0.1087111922582942E+00; w[13] = 0.1100470130164752E+00; w[14] = 0.1100470130164752E+00; w[15] = 0.1087111922582942E+00; w[16] = 0.1060557659228464E+00; w[17] = 0.1021129675780608E+00; w[18] = 0.9693065799792999E-01; w[19] = 0.9057174439303289E-01; w[20] = 0.8311341722890127E-01; w[21] = 0.7464621423456877E-01; w[22] = 0.6527292396699959E-01; w[23] = 0.5510734567571667E-01; w[24] = 0.4427293475900429E-01; w[25] = 0.3290142778230441E-01; w[26] = 0.2113211259277118E-01; w[27] = 0.9124282593094672E-02; } else if ( n == 29 ) { x[ 0] = -0.9966794422605966E+00; x[ 1] = -0.9825455052614132E+00; x[ 2] = -0.9572855957780877E+00; x[ 3] = -0.9211802329530588E+00; x[ 4] = -0.8746378049201028E+00; x[ 5] = -0.8181854876152524E+00; x[ 6] = -0.7524628517344771E+00; x[ 7] = -0.6782145376026865E+00; x[ 8] = -0.5962817971382278E+00; x[ 9] = -0.5075929551242276E+00; x[10] = -0.4131528881740087E+00; x[11] = -0.3140316378676399E+00; x[12] = -0.2113522861660011E+00; x[13] = -0.1062782301326792E+00; x[14] = 0.0000000000000000E+00; x[15] = 0.1062782301326792E+00; x[16] = 0.2113522861660011E+00; x[17] = 0.3140316378676399E+00; x[18] = 0.4131528881740087E+00; x[19] = 0.5075929551242276E+00; x[20] = 0.5962817971382278E+00; x[21] = 0.6782145376026865E+00; x[22] = 0.7524628517344771E+00; x[23] = 0.8181854876152524E+00; x[24] = 0.8746378049201028E+00; x[25] = 0.9211802329530588E+00; x[26] = 0.9572855957780877E+00; x[27] = 0.9825455052614132E+00; x[28] = 0.9966794422605966E+00; w[ 0] = 0.8516903878746365E-02; w[ 1] = 0.1973208505612276E-01; w[ 2] = 0.3074049220209360E-01; w[ 3] = 0.4140206251868281E-01; w[ 4] = 0.5159482690249799E-01; w[ 5] = 0.6120309065707916E-01; w[ 6] = 0.7011793325505125E-01; w[ 7] = 0.7823832713576385E-01; w[ 8] = 0.8547225736617248E-01; w[ 9] = 0.9173775713925882E-01; w[10] = 0.9696383409440862E-01; w[11] = 0.1010912737599150E+00; w[12] = 0.1040733100777293E+00; w[13] = 0.1058761550973210E+00; w[14] = 0.1064793817183143E+00; w[15] = 0.1058761550973210E+00; w[16] = 0.1040733100777293E+00; w[17] = 0.1010912737599150E+00; w[18] = 0.9696383409440862E-01; w[19] = 0.9173775713925882E-01; w[20] = 0.8547225736617248E-01; w[21] = 0.7823832713576385E-01; w[22] = 0.7011793325505125E-01; w[23] = 0.6120309065707916E-01; w[24] = 0.5159482690249799E-01; w[25] = 0.4140206251868281E-01; w[26] = 0.3074049220209360E-01; w[27] = 0.1973208505612276E-01; w[28] = 0.8516903878746365E-02; } else if ( n == 30 ) { x[ 0] = -0.9968934840746495E+00; x[ 1] = -0.9836681232797472E+00; x[ 2] = -0.9600218649683075E+00; x[ 3] = -0.9262000474292743E+00; x[ 4] = -0.8825605357920526E+00; x[ 5] = -0.8295657623827684E+00; x[ 6] = -0.7677774321048262E+00; x[ 7] = -0.6978504947933158E+00; x[ 8] = -0.6205261829892429E+00; x[ 9] = -0.5366241481420199E+00; x[10] = -0.4470337695380892E+00; x[11] = -0.3527047255308781E+00; x[12] = -0.2546369261678899E+00; x[13] = -0.1538699136085835E+00; x[14] = -0.5147184255531770E-01; x[15] = 0.5147184255531770E-01; x[16] = 0.1538699136085835E+00; x[17] = 0.2546369261678899E+00; x[18] = 0.3527047255308781E+00; x[19] = 0.4470337695380892E+00; x[20] = 0.5366241481420199E+00; x[21] = 0.6205261829892429E+00; x[22] = 0.6978504947933158E+00; x[23] = 0.7677774321048262E+00; x[24] = 0.8295657623827684E+00; x[25] = 0.8825605357920526E+00; x[26] = 0.9262000474292743E+00; x[27] = 0.9600218649683075E+00; x[28] = 0.9836681232797472E+00; x[29] = 0.9968934840746495E+00; w[ 0] = 0.7968192496166648E-02; w[ 1] = 0.1846646831109099E-01; w[ 2] = 0.2878470788332330E-01; w[ 3] = 0.3879919256962704E-01; w[ 4] = 0.4840267283059405E-01; w[ 5] = 0.5749315621761905E-01; w[ 6] = 0.6597422988218052E-01; w[ 7] = 0.7375597473770516E-01; w[ 8] = 0.8075589522942023E-01; w[ 9] = 0.8689978720108314E-01; w[10] = 0.9212252223778619E-01; w[11] = 0.9636873717464424E-01; w[12] = 0.9959342058679524E-01; w[13] = 0.1017623897484056E+00; w[14] = 0.1028526528935587E+00; w[15] = 0.1028526528935587E+00; w[16] = 0.1017623897484056E+00; w[17] = 0.9959342058679524E-01; w[18] = 0.9636873717464424E-01; w[19] = 0.9212252223778619E-01; w[20] = 0.8689978720108314E-01; w[21] = 0.8075589522942023E-01; w[22] = 0.7375597473770516E-01; w[23] = 0.6597422988218052E-01; w[24] = 0.5749315621761905E-01; w[25] = 0.4840267283059405E-01; w[26] = 0.3879919256962704E-01; w[27] = 0.2878470788332330E-01; w[28] = 0.1846646831109099E-01; w[29] = 0.7968192496166648E-02; } else if ( n == 31 ) { x[ 0] = -0.99708748181947707454263838179654; x[ 1] = -0.98468590966515248400211329970113; x[ 2] = -0.96250392509294966178905249675943; x[ 3] = -0.93075699789664816495694576311725; x[ 4] = -0.88976002994827104337419200908023; x[ 5] = -0.83992032014626734008690453594388; x[ 6] = -0.78173314841662494040636002019484; x[ 7] = -0.71577678458685328390597086536649; x[ 8] = -0.64270672292426034618441820323250; x[ 9] = -0.56324916140714926272094492359516; x[10] = -0.47819378204490248044059403935649; x[11] = -0.38838590160823294306135146128752; x[12] = -0.29471806998170161661790389767170; x[13] = -0.19812119933557062877241299603283; x[14] = -0.99555312152341520325174790118941E-01; x[15] = 0.00000000000000000000000000000000; x[16] = 0.99555312152341520325174790118941E-01; x[17] = 0.19812119933557062877241299603283; x[18] = 0.29471806998170161661790389767170; x[19] = 0.38838590160823294306135146128752; x[20] = 0.47819378204490248044059403935649; x[21] = 0.56324916140714926272094492359516; x[22] = 0.64270672292426034618441820323250; x[23] = 0.71577678458685328390597086536649; x[24] = 0.78173314841662494040636002019484; x[25] = 0.83992032014626734008690453594388; x[26] = 0.88976002994827104337419200908023; x[27] = 0.93075699789664816495694576311725; x[28] = 0.96250392509294966178905249675943; x[29] = 0.98468590966515248400211329970113; x[30] = 0.99708748181947707454263838179654; w[ 0] = 0.74708315792487746093913218970494E-02; w[ 1] = 0.17318620790310582463552990782414E-01; w[ 2] = 0.27009019184979421800608642617676E-01; w[ 3] = 0.36432273912385464024392008749009E-01; w[ 4] = 0.45493707527201102902315857856518E-01; w[ 5] = 0.54103082424916853711666259085477E-01; w[ 6] = 0.62174786561028426910343543686657E-01; w[ 7] = 0.69628583235410366167756126255124E-01; w[ 8] = 0.76390386598776616426357674901331E-01; w[ 9] = 0.82392991761589263903823367431962E-01; w[10] = 0.87576740608477876126198069695333E-01; w[11] = 0.91890113893641478215362871607150E-01; w[12] = 0.95290242912319512807204197487597E-01; w[13] = 0.97743335386328725093474010978997E-01; w[14] = 0.99225011226672307874875514428615E-01; w[15] = 0.99720544793426451427533833734349E-01; w[16] = 0.99225011226672307874875514428615E-01; w[17] = 0.97743335386328725093474010978997E-01; w[18] = 0.95290242912319512807204197487597E-01; w[19] = 0.91890113893641478215362871607150E-01; w[20] = 0.87576740608477876126198069695333E-01; w[21] = 0.82392991761589263903823367431962E-01; w[22] = 0.76390386598776616426357674901331E-01; w[23] = 0.69628583235410366167756126255124E-01; w[24] = 0.62174786561028426910343543686657E-01; w[25] = 0.54103082424916853711666259085477E-01; w[26] = 0.45493707527201102902315857856518E-01; w[27] = 0.36432273912385464024392008749009E-01; w[28] = 0.27009019184979421800608642617676E-01; w[29] = 0.17318620790310582463552990782414E-01; w[30] = 0.74708315792487746093913218970494E-02; } else if ( n == 32 ) { x[0] = - 0.997263861849481563544981128665; x[1] = - 0.985611511545268335400175044631; x[2] = - 0.964762255587506430773811928118; x[3] = - 0.934906075937739689170919134835; x[4] = - 0.896321155766052123965307243719; x[5] = - 0.849367613732569970133693004968; x[6] = - 0.794483795967942406963097298970; x[7] = - 0.732182118740289680387426665091; x[8] = - 0.663044266930215200975115168663; x[9] = - 0.587715757240762329040745476402; x[10] = - 0.506899908932229390023747474378; x[11] = - 0.421351276130635345364119436172; x[12] = - 0.331868602282127649779916805730; x[13] = - 0.239287362252137074544603209166; x[14] = - 0.144471961582796493485186373599; x[15] = - 0.483076656877383162348125704405E-01; x[16] = 0.483076656877383162348125704405E-01; x[17] = 0.144471961582796493485186373599; x[18] = 0.239287362252137074544603209166; x[19] = 0.331868602282127649779916805730; x[20] = 0.421351276130635345364119436172; x[21] = 0.506899908932229390023747474378; x[22] = 0.587715757240762329040745476402; x[23] = 0.663044266930215200975115168663; x[24] = 0.732182118740289680387426665091; x[25] = 0.794483795967942406963097298970; x[26] = 0.849367613732569970133693004968; x[27] = 0.896321155766052123965307243719; x[28] = 0.934906075937739689170919134835; x[29] = 0.964762255587506430773811928118; x[30] = 0.985611511545268335400175044631; x[31] = 0.997263861849481563544981128665; w[0] = 0.701861000947009660040706373885E-02; w[1] = 0.162743947309056706051705622064E-01; w[2] = 0.253920653092620594557525897892E-01; w[3] = 0.342738629130214331026877322524E-01; w[4] = 0.428358980222266806568786466061E-01; w[5] = 0.509980592623761761961632446895E-01; w[6] = 0.586840934785355471452836373002E-01; w[7] = 0.658222227763618468376500637069E-01; w[8] = 0.723457941088485062253993564785E-01; w[9] = 0.781938957870703064717409188283E-01; w[10] = 0.833119242269467552221990746043E-01; w[11] = 0.876520930044038111427714627518E-01; w[12] = 0.911738786957638847128685771116E-01; w[13] = 0.938443990808045656391802376681E-01; w[14] = 0.956387200792748594190820022041E-01; w[15] = 0.965400885147278005667648300636E-01; w[16] = 0.965400885147278005667648300636E-01; w[17] = 0.956387200792748594190820022041E-01; w[18] = 0.938443990808045656391802376681E-01; w[19] = 0.911738786957638847128685771116E-01; w[20] = 0.876520930044038111427714627518E-01; w[21] = 0.833119242269467552221990746043E-01; w[22] = 0.781938957870703064717409188283E-01; w[23] = 0.723457941088485062253993564785E-01; w[24] = 0.658222227763618468376500637069E-01; w[25] = 0.586840934785355471452836373002E-01; w[26] = 0.509980592623761761961632446895E-01; w[27] = 0.428358980222266806568786466061E-01; w[28] = 0.342738629130214331026877322524E-01; w[29] = 0.253920653092620594557525897892E-01; w[30] = 0.162743947309056706051705622064E-01; w[31] = 0.701861000947009660040706373885E-02; } else if ( n == 33 ) { x[ 0] = -0.9974246942464552; x[ 1] = -0.9864557262306425; x[ 2] = -0.9668229096899927; x[ 3] = -0.9386943726111684; x[ 4] = -0.9023167677434336; x[ 5] = -0.8580096526765041; x[ 6] = -0.8061623562741665; x[ 7] = -0.7472304964495622; x[ 8] = -0.6817319599697428; x[ 9] = -0.6102423458363790; x[10] = -0.5333899047863476; x[11] = -0.4518500172724507; x[12] = -0.3663392577480734; x[13] = -0.2776090971524970; x[14] = -0.1864392988279916; x[15] = -0.09363106585473338; x[16] = 0.000000000000000; x[17] = 0.09363106585473338; x[18] = 0.1864392988279916; x[19] = 0.2776090971524970; x[20] = 0.3663392577480734; x[21] = 0.4518500172724507; x[22] = 0.5333899047863476; x[23] = 0.6102423458363790; x[24] = 0.6817319599697428; x[25] = 0.7472304964495622; x[26] = 0.8061623562741665; x[27] = 0.8580096526765041; x[28] = 0.9023167677434336; x[29] = 0.9386943726111684; x[30] = 0.9668229096899927; x[31] = 0.9864557262306425; x[32] = 0.9974246942464552; w[ 0] = 0.6606227847587558E-02; w[ 1] = 0.1532170151293465E-01; w[ 2] = 0.2391554810174960E-01; w[ 3] = 0.3230035863232891E-01; w[ 4] = 0.4040154133166965E-01; w[ 5] = 0.4814774281871162E-01; w[ 6] = 0.5547084663166357E-01; w[ 7] = 0.6230648253031755E-01; w[ 8] = 0.6859457281865676E-01; w[ 9] = 0.7427985484395420E-01; w[10] = 0.7931236479488685E-01; w[11] = 0.8364787606703869E-01; w[12] = 0.8724828761884425E-01; w[13] = 0.9008195866063859E-01; w[14] = 0.9212398664331678E-01; w[15] = 0.9335642606559612E-01; w[16] = 0.9376844616020999E-01; w[17] = 0.9335642606559612E-01; w[18] = 0.9212398664331678E-01; w[19] = 0.9008195866063859E-01; w[20] = 0.8724828761884425E-01; w[21] = 0.8364787606703869E-01; w[22] = 0.7931236479488685E-01; w[23] = 0.7427985484395420E-01; w[24] = 0.6859457281865676E-01; w[25] = 0.6230648253031755E-01; w[26] = 0.5547084663166357E-01; w[27] = 0.4814774281871162E-01; w[28] = 0.4040154133166965E-01; w[29] = 0.3230035863232891E-01; w[30] = 0.2391554810174960E-01; w[31] = 0.1532170151293465E-01; w[32] = 0.6606227847587558E-02; } else if ( n == 64 ) { x[0] = - 0.999305041735772139456905624346; x[1] = - 0.996340116771955279346924500676; x[2] = - 0.991013371476744320739382383443; x[3] = - 0.983336253884625956931299302157; x[4] = - 0.973326827789910963741853507352; x[5] = - 0.961008799652053718918614121897; x[6] = - 0.946411374858402816062481491347; x[7] = - 0.929569172131939575821490154559; x[8] = - 0.910522137078502805756380668008; x[9] = - 0.889315445995114105853404038273; x[10] = - 0.865999398154092819760783385070; x[11] = - 0.840629296252580362751691544696; x[12] = - 0.813265315122797559741923338086; x[13] = - 0.783972358943341407610220525214; x[14] = - 0.752819907260531896611863774886; x[15] = - 0.719881850171610826848940217832; x[16] = - 0.685236313054233242563558371031; x[17] = - 0.648965471254657339857761231993; x[18] = - 0.611155355172393250248852971019; x[19] = - 0.571895646202634034283878116659; x[20] = - 0.531279464019894545658013903544; x[21] = - 0.489403145707052957478526307022; x[22] = - 0.446366017253464087984947714759; x[23] = - 0.402270157963991603695766771260; x[24] = - 0.357220158337668115950442615046; x[25] = - 0.311322871990210956157512698560; x[26] = - 0.264687162208767416373964172510; x[27] = - 0.217423643740007084149648748989; x[28] = - 0.169644420423992818037313629748; x[29] = - 0.121462819296120554470376463492; x[30] = - 0.729931217877990394495429419403E-01; x[31] = - 0.243502926634244325089558428537E-01; x[32] = 0.243502926634244325089558428537E-01; x[33] = 0.729931217877990394495429419403E-01; x[34] = 0.121462819296120554470376463492; x[35] = 0.169644420423992818037313629748; x[36] = 0.217423643740007084149648748989; x[37] = 0.264687162208767416373964172510; x[38] = 0.311322871990210956157512698560; x[39] = 0.357220158337668115950442615046; x[40] = 0.402270157963991603695766771260; x[41] = 0.446366017253464087984947714759; x[42] = 0.489403145707052957478526307022; x[43] = 0.531279464019894545658013903544; x[44] = 0.571895646202634034283878116659; x[45] = 0.611155355172393250248852971019; x[46] = 0.648965471254657339857761231993; x[47] = 0.685236313054233242563558371031; x[48] = 0.719881850171610826848940217832; x[49] = 0.752819907260531896611863774886; x[50] = 0.783972358943341407610220525214; x[51] = 0.813265315122797559741923338086; x[52] = 0.840629296252580362751691544696; x[53] = 0.865999398154092819760783385070; x[54] = 0.889315445995114105853404038273; x[55] = 0.910522137078502805756380668008; x[56] = 0.929569172131939575821490154559; x[57] = 0.946411374858402816062481491347; x[58] = 0.961008799652053718918614121897; x[59] = 0.973326827789910963741853507352; x[60] = 0.983336253884625956931299302157; x[61] = 0.991013371476744320739382383443; x[62] = 0.996340116771955279346924500676; x[63] = 0.999305041735772139456905624346; w[0] = 0.178328072169643294729607914497E-02; w[1] = 0.414703326056246763528753572855E-02; w[2] = 0.650445796897836285611736039998E-02; w[3] = 0.884675982636394772303091465973E-02; w[4] = 0.111681394601311288185904930192E-01; w[5] = 0.134630478967186425980607666860E-01; w[6] = 0.157260304760247193219659952975E-01; w[7] = 0.179517157756973430850453020011E-01; w[8] = 0.201348231535302093723403167285E-01; w[9] = 0.222701738083832541592983303842E-01; w[10] = 0.243527025687108733381775504091E-01; w[11] = 0.263774697150546586716917926252E-01; w[12] = 0.283396726142594832275113052002E-01; w[13] = 0.302346570724024788679740598195E-01; w[14] = 0.320579283548515535854675043479E-01; w[15] = 0.338051618371416093915654821107E-01; w[16] = 0.354722132568823838106931467152E-01; w[17] = 0.370551285402400460404151018096E-01; w[18] = 0.385501531786156291289624969468E-01; w[19] = 0.399537411327203413866569261283E-01; w[20] = 0.412625632426235286101562974736E-01; w[21] = 0.424735151236535890073397679088E-01; w[22] = 0.435837245293234533768278609737E-01; w[23] = 0.445905581637565630601347100309E-01; w[24] = 0.454916279274181444797709969713E-01; w[25] = 0.462847965813144172959532492323E-01; w[26] = 0.469681828162100173253262857546E-01; w[27] = 0.475401657148303086622822069442E-01; w[28] = 0.479993885964583077281261798713E-01; w[29] = 0.483447622348029571697695271580E-01; w[30] = 0.485754674415034269347990667840E-01; w[31] = 0.486909570091397203833653907347E-01; w[32] = 0.486909570091397203833653907347E-01; w[33] = 0.485754674415034269347990667840E-01; w[34] = 0.483447622348029571697695271580E-01; w[35] = 0.479993885964583077281261798713E-01; w[36] = 0.475401657148303086622822069442E-01; w[37] = 0.469681828162100173253262857546E-01; w[38] = 0.462847965813144172959532492323E-01; w[39] = 0.454916279274181444797709969713E-01; w[40] = 0.445905581637565630601347100309E-01; w[41] = 0.435837245293234533768278609737E-01; w[42] = 0.424735151236535890073397679088E-01; w[43] = 0.412625632426235286101562974736E-01; w[44] = 0.399537411327203413866569261283E-01; w[45] = 0.385501531786156291289624969468E-01; w[46] = 0.370551285402400460404151018096E-01; w[47] = 0.354722132568823838106931467152E-01; w[48] = 0.338051618371416093915654821107E-01; w[49] = 0.320579283548515535854675043479E-01; w[50] = 0.302346570724024788679740598195E-01; w[51] = 0.283396726142594832275113052002E-01; w[52] = 0.263774697150546586716917926252E-01; w[53] = 0.243527025687108733381775504091E-01; w[54] = 0.222701738083832541592983303842E-01; w[55] = 0.201348231535302093723403167285E-01; w[56] = 0.179517157756973430850453020011E-01; w[57] = 0.157260304760247193219659952975E-01; w[58] = 0.134630478967186425980607666860E-01; w[59] = 0.111681394601311288185904930192E-01; w[60] = 0.884675982636394772303091465973E-02; w[61] = 0.650445796897836285611736039998E-02; w[62] = 0.414703326056246763528753572855E-02; w[63] = 0.178328072169643294729607914497E-02; } else if ( n == 65 ) { x[ 0] = -0.9993260970754129; x[ 1] = -0.9964509480618492; x[ 2] = -0.9912852761768016; x[ 3] = -0.9838398121870350; x[ 4] = -0.9741315398335512; x[ 5] = -0.9621827547180553; x[ 6] = -0.9480209281684076; x[ 7] = -0.9316786282287494; x[ 8] = -0.9131934405428462; x[ 9] = -0.8926078805047389; x[10] = -0.8699692949264071; x[11] = -0.8453297528999303; x[12] = -0.8187459259226514; x[13] = -0.7902789574921218; x[14] = -0.7599943224419998; x[15] = -0.7279616763294247; x[16] = -0.6942546952139916; x[17] = -0.6589509061936252; x[18] = -0.6221315090854003; x[19] = -0.5838811896604873; x[20] = -0.5442879248622271; x[21] = -0.5034427804550069; x[22] = -0.4614397015691450; x[23] = -0.4183752966234090; x[24] = -0.3743486151220660; x[25] = -0.3294609198374864; x[26] = -0.2838154539022487; x[27] = -0.2375172033464168; x[28] = -0.1906726556261428; x[29] = -0.1433895546989752; x[30] = -0.9577665320919751E-01; x[31] = -0.4794346235317186E-01; x[32] = 0.000000000000000; x[33] = 0.4794346235317186E-01; x[34] = 0.9577665320919751E-01; x[35] = 0.1433895546989752; x[36] = 0.1906726556261428; x[37] = 0.2375172033464168; x[38] = 0.2838154539022487; x[39] = 0.3294609198374864; x[40] = 0.3743486151220660; x[41] = 0.4183752966234090; x[42] = 0.4614397015691450; x[43] = 0.5034427804550069; x[44] = 0.5442879248622271; x[45] = 0.5838811896604873; x[46] = 0.6221315090854003; x[47] = 0.6589509061936252; x[48] = 0.6942546952139916; x[49] = 0.7279616763294247; x[50] = 0.7599943224419998; x[51] = 0.7902789574921218; x[52] = 0.8187459259226514; x[53] = 0.8453297528999303; x[54] = 0.8699692949264071; x[55] = 0.8926078805047389; x[56] = 0.9131934405428462; x[57] = 0.9316786282287494; x[58] = 0.9480209281684076; x[59] = 0.9621827547180553; x[60] = 0.9741315398335512; x[61] = 0.9838398121870350; x[62] = 0.9912852761768016; x[63] = 0.9964509480618492; x[64] = 0.9993260970754129; w[ 0] = 0.1729258251300218E-02; w[ 1] = 0.4021524172003703E-02; w[ 2] = 0.6307942578971821E-02; w[ 3] = 0.8580148266881443E-02; w[ 4] = 0.1083267878959798E-01; w[ 5] = 0.1306031163999490E-01; w[ 6] = 0.1525791214644825E-01; w[ 7] = 0.1742042199767025E-01; w[ 8] = 0.1954286583675005E-01; w[ 9] = 0.2162036128493408E-01; w[10] = 0.2364812969128723E-01; w[11] = 0.2562150693803776E-01; w[12] = 0.2753595408845034E-01; w[13] = 0.2938706778931066E-01; w[14] = 0.3117059038018911E-01; w[15] = 0.3288241967636860E-01; w[16] = 0.3451861839854901E-01; w[17] = 0.3607542322556527E-01; w[18] = 0.3754925344825770E-01; w[19] = 0.3893671920405121E-01; w[20] = 0.4023462927300549E-01; w[21] = 0.4143999841724028E-01; w[22] = 0.4255005424675579E-01; w[23] = 0.4356224359580051E-01; w[24] = 0.4447423839508296E-01; w[25] = 0.4528394102630023E-01; w[26] = 0.4598948914665173E-01; w[27] = 0.4658925997223349E-01; w[28] = 0.4708187401045461E-01; w[29] = 0.4746619823288551E-01; w[30] = 0.4774134868124067E-01; w[31] = 0.4790669250049590E-01; w[32] = 0.4796184939446662E-01; w[33] = 0.4790669250049590E-01; w[34] = 0.4774134868124067E-01; w[35] = 0.4746619823288551E-01; w[36] = 0.4708187401045461E-01; w[37] = 0.4658925997223349E-01; w[38] = 0.4598948914665173E-01; w[39] = 0.4528394102630023E-01; w[40] = 0.4447423839508296E-01; w[41] = 0.4356224359580051E-01; w[42] = 0.4255005424675579E-01; w[43] = 0.4143999841724028E-01; w[44] = 0.4023462927300549E-01; w[45] = 0.3893671920405121E-01; w[46] = 0.3754925344825770E-01; w[47] = 0.3607542322556527E-01; w[48] = 0.3451861839854901E-01; w[49] = 0.3288241967636860E-01; w[50] = 0.3117059038018911E-01; w[51] = 0.2938706778931066E-01; w[52] = 0.2753595408845034E-01; w[53] = 0.2562150693803776E-01; w[54] = 0.2364812969128723E-01; w[55] = 0.2162036128493408E-01; w[56] = 0.1954286583675005E-01; w[57] = 0.1742042199767025E-01; w[58] = 0.1525791214644825E-01; w[59] = 0.1306031163999490E-01; w[60] = 0.1083267878959798E-01; w[61] = 0.8580148266881443E-02; w[62] = 0.6307942578971821E-02; w[63] = 0.4021524172003703E-02; w[64] = 0.1729258251300218E-02; } else if ( n == 127 ) { x[ 0] = -0.99982213041530614629963254927125E+00; x[ 1] = -0.99906293435531189513828920479421E+00; x[ 2] = -0.99769756618980462107441703193392E+00; x[ 3] = -0.99572655135202722663543337085008E+00; x[ 4] = -0.99315104925451714736113079489080E+00; x[ 5] = -0.98997261459148415760778669967548E+00; x[ 6] = -0.98619317401693166671043833175407E+00; x[ 7] = -0.98181502080381411003346312451200E+00; x[ 8] = -0.97684081234307032681744391886221E+00; x[ 9] = -0.97127356816152919228894689830512E+00; x[ 10] = -0.96511666794529212109082507703391E+00; x[ 11] = -0.95837384942523877114910286998060E+00; x[ 12] = -0.95104920607788031054790764659636E+00; x[ 13] = -0.94314718462481482734544963026201E+00; x[ 14] = -0.93467258232473796857363487794906E+00; x[ 15] = -0.92563054405623384912746466814259E+00; x[ 16] = -0.91602655919146580931308861741716E+00; x[ 17] = -0.90586645826182138280246131760282E+00; x[ 18] = -0.89515640941708370896904382642451E+00; x[ 19] = -0.88390291468002656994525794802849E+00; x[ 20] = -0.87211280599856071141963753428864E+00; x[ 21] = -0.85979324109774080981203134414483E+00; x[ 22] = -0.84695169913409759845333931085437E+00; x[ 23] = -0.83359597615489951437955716480123E+00; x[ 24] = -0.81973418036507867415511910167470E+00; x[ 25] = -0.80537472720468021466656079404644E+00; x[ 26] = -0.79052633423981379994544995252740E+00; x[ 27] = -0.77519801587020238244496276354566E+00; x[ 28] = -0.75939907785653667155666366659810E+00; x[ 29] = -0.74313911167095451292056688997595E+00; x[ 30] = -0.72642798867407268553569290153270E+00; x[ 31] = -0.70927585412210456099944463906757E+00; x[ 32] = -0.69169312100770067015644143286666E+00; x[ 33] = -0.67369046373825048534668253831602E+00; x[ 34] = -0.65527881165548263027676505156852E+00; x[ 35] = -0.63646934240029724134760815684175E+00; x[ 36] = -0.61727347512685828385763916340822E+00; x[ 37] = -0.59770286357006522938441201887478E+00; x[ 38] = -0.57776938897061258000325165713764E+00; x[ 39] = -0.55748515286193223292186190687872E+00; x[ 40] = -0.53686246972339756745816636353452E+00; x[ 41] = -0.51591385950424935727727729906662E+00; x[ 42] = -0.49465204002278211739494017368636E+00; x[ 43] = -0.47308991924540524164509989939699E+00; x[ 44] = -0.45124058745026622733189858020729E+00; x[ 45] = -0.42911730928019337626254405355418E+00; x[ 46] = -0.40673351568978256340867288124339E+00; x[ 47] = -0.38410279579151693577907781452239E+00; x[ 48] = -0.36123888860586970607092484346723E+00; x[ 49] = -0.33815567472039850137600027657095E+00; x[ 50] = -0.31486716786289498148601475374890E+00; x[ 51] = -0.29138750639370562079451875284568E+00; x[ 52] = -0.26773094472238862088834352027938E+00; x[ 53] = -0.24391184465391785797071324453138E+00; x[ 54] = -0.21994466666968754245452337866940E+00; x[ 55] = -0.19584396114861085150428162519610E+00; x[ 56] = -0.17162435953364216500834492248954E+00; x[ 57] = -0.14730056544908566938932929319807E+00; x[ 58] = -0.12288734577408297172603365288567E+00; x[ 59] = -0.98399521677698970751091751509101E-01; x[ 60] = -0.73851959621048545273440409360569E-01; x[ 61] = -0.49259562331926630315379321821927E-01; x[ 62] = -0.24637259757420944614897071846088E-01; x[ 63] = 0.00000000000000000000000000000000E+00; x[ 64] = 0.24637259757420944614897071846088E-01; x[ 65] = 0.49259562331926630315379321821927E-01; x[ 66] = 0.73851959621048545273440409360569E-01; x[ 67] = 0.98399521677698970751091751509101E-01; x[ 68] = 0.12288734577408297172603365288567E+00; x[ 69] = 0.14730056544908566938932929319807E+00; x[ 70] = 0.17162435953364216500834492248954E+00; x[ 71] = 0.19584396114861085150428162519610E+00; x[ 72] = 0.21994466666968754245452337866940E+00; x[ 73] = 0.24391184465391785797071324453138E+00; x[ 74] = 0.26773094472238862088834352027938E+00; x[ 75] = 0.29138750639370562079451875284568E+00; x[ 76] = 0.31486716786289498148601475374890E+00; x[ 77] = 0.33815567472039850137600027657095E+00; x[ 78] = 0.36123888860586970607092484346723E+00; x[ 79] = 0.38410279579151693577907781452239E+00; x[ 80] = 0.40673351568978256340867288124339E+00; x[ 81] = 0.42911730928019337626254405355418E+00; x[ 82] = 0.45124058745026622733189858020729E+00; x[ 83] = 0.47308991924540524164509989939699E+00; x[ 84] = 0.49465204002278211739494017368636E+00; x[ 85] = 0.51591385950424935727727729906662E+00; x[ 86] = 0.53686246972339756745816636353452E+00; x[ 87] = 0.55748515286193223292186190687872E+00; x[ 88] = 0.57776938897061258000325165713764E+00; x[ 89] = 0.59770286357006522938441201887478E+00; x[ 90] = 0.61727347512685828385763916340822E+00; x[ 91] = 0.63646934240029724134760815684175E+00; x[ 92] = 0.65527881165548263027676505156852E+00; x[ 93] = 0.67369046373825048534668253831602E+00; x[ 94] = 0.69169312100770067015644143286666E+00; x[ 95] = 0.70927585412210456099944463906757E+00; x[ 96] = 0.72642798867407268553569290153270E+00; x[ 97] = 0.74313911167095451292056688997595E+00; x[ 98] = 0.75939907785653667155666366659810E+00; x[ 99] = 0.77519801587020238244496276354566E+00; x[100] = 0.79052633423981379994544995252740E+00; x[101] = 0.80537472720468021466656079404644E+00; x[102] = 0.81973418036507867415511910167470E+00; x[103] = 0.83359597615489951437955716480123E+00; x[104] = 0.84695169913409759845333931085437E+00; x[105] = 0.85979324109774080981203134414483E+00; x[106] = 0.87211280599856071141963753428864E+00; x[107] = 0.88390291468002656994525794802849E+00; x[108] = 0.89515640941708370896904382642451E+00; x[109] = 0.90586645826182138280246131760282E+00; x[110] = 0.91602655919146580931308861741716E+00; x[111] = 0.92563054405623384912746466814259E+00; x[112] = 0.93467258232473796857363487794906E+00; x[113] = 0.94314718462481482734544963026201E+00; x[114] = 0.95104920607788031054790764659636E+00; x[115] = 0.95837384942523877114910286998060E+00; x[116] = 0.96511666794529212109082507703391E+00; x[117] = 0.97127356816152919228894689830512E+00; x[118] = 0.97684081234307032681744391886221E+00; x[119] = 0.98181502080381411003346312451200E+00; x[120] = 0.98619317401693166671043833175407E+00; x[121] = 0.98997261459148415760778669967548E+00; x[122] = 0.99315104925451714736113079489080E+00; x[123] = 0.99572655135202722663543337085008E+00; x[124] = 0.99769756618980462107441703193392E+00; x[125] = 0.99906293435531189513828920479421E+00; x[126] = 0.99982213041530614629963254927125E+00; w[ 0] = 0.45645726109586654495731936146574E-03; w[ 1] = 0.10622766869538486959954760554099E-02; w[ 2] = 0.16683488125171936761028811985672E-02; w[ 3] = 0.22734860707492547802810838362671E-02; w[ 4] = 0.28772587656289004082883197417581E-02; w[ 5] = 0.34792893810051465908910894094105E-02; w[ 6] = 0.40792095178254605327114733456293E-02; w[ 7] = 0.46766539777779034772638165662478E-02; w[ 8] = 0.52712596565634400891303815906251E-02; w[ 9] = 0.58626653903523901033648343751367E-02; w[ 10] = 0.64505120486899171845442463868748E-02; w[ 11] = 0.70344427036681608755685893032552E-02; w[ 12] = 0.76141028256526859356393930849227E-02; w[ 13] = 0.81891404887415730817235884718726E-02; w[ 14] = 0.87592065795403145773316804234385E-02; w[ 15] = 0.93239550065309714787536985834029E-02; w[ 16] = 0.98830429087554914716648010899606E-02; w[ 17] = 0.10436130863141005225673171997668E-01; w[ 18] = 0.10982883090068975788799657376065E-01; w[ 19] = 0.11522967656921087154811609734510E-01; w[ 20] = 0.12056056679400848183529562144697E-01; w[ 21] = 0.12581826520465013101514365424172E-01; w[ 22] = 0.13099957986718627426172681912499E-01; w[ 23] = 0.13610136522139249906034237533759E-01; w[ 24] = 0.14112052399003395774044161633613E-01; w[ 25] = 0.14605400905893418351737288078952E-01; w[ 26] = 0.15089882532666922992635733981431E-01; w[ 27] = 0.15565203152273955098532590262975E-01; w[ 28] = 0.16031074199309941802254151842763E-01; w[ 29] = 0.16487212845194879399346060358146E-01; w[ 30] = 0.16933342169871654545878815295200E-01; w[ 31] = 0.17369191329918731922164721250350E-01; w[ 32] = 0.17794495722974774231027912900351E-01; w[ 33] = 0.18208997148375106468721469154479E-01; w[ 34] = 0.18612443963902310429440419898958E-01; w[ 35] = 0.19004591238555646611148901044533E-01; w[ 36] = 0.19385200901246454628112623489471E-01; w[ 37] = 0.19754041885329183081815217323169E-01; w[ 38] = 0.20110890268880247225644623956287E-01; w[ 39] = 0.20455529410639508279497065713301E-01; w[ 40] = 0.20787750081531811812652137291250E-01; w[ 41] = 0.21107350591688713643523847921658E-01; w[ 42] = 0.21414136912893259295449693233545E-01; w[ 43] = 0.21707922796373466052301324695331E-01; w[ 44] = 0.21988529885872983756478409758807E-01; w[ 45] = 0.22255787825930280235631416460158E-01; w[ 46] = 0.22509534365300608085694429903050E-01; w[ 47] = 0.22749615455457959852242553240982E-01; w[ 48] = 0.22975885344117206754377437838947E-01; w[ 49] = 0.23188206663719640249922582981729E-01; w[ 50] = 0.23386450514828194170722043496950E-01; w[ 51] = 0.23570496544381716050033676844306E-01; w[ 52] = 0.23740233018760777777714726703424E-01; w[ 53] = 0.23895556891620665983864481754172E-01; w[ 54] = 0.24036373866450369675132086026456E-01; w[ 55] = 0.24162598453819584716522917710986E-01; w[ 56] = 0.24274154023278979833195063936748E-01; w[ 57] = 0.24370972849882214952813561907241E-01; w[ 58] = 0.24452996155301467956140198471529E-01; w[ 59] = 0.24520174143511508275183033290175E-01; w[ 60] = 0.24572466031020653286354137335186E-01; w[ 61] = 0.24609840071630254092545634003360E-01; w[ 62] = 0.24632273575707679066033370218017E-01; w[ 63] = 0.24639752923961094419579417477503E-01; w[ 64] = 0.24632273575707679066033370218017E-01; w[ 65] = 0.24609840071630254092545634003360E-01; w[ 66] = 0.24572466031020653286354137335186E-01; w[ 67] = 0.24520174143511508275183033290175E-01; w[ 68] = 0.24452996155301467956140198471529E-01; w[ 69] = 0.24370972849882214952813561907241E-01; w[ 70] = 0.24274154023278979833195063936748E-01; w[ 71] = 0.24162598453819584716522917710986E-01; w[ 72] = 0.24036373866450369675132086026456E-01; w[ 73] = 0.23895556891620665983864481754172E-01; w[ 74] = 0.23740233018760777777714726703424E-01; w[ 75] = 0.23570496544381716050033676844306E-01; w[ 76] = 0.23386450514828194170722043496950E-01; w[ 77] = 0.23188206663719640249922582981729E-01; w[ 78] = 0.22975885344117206754377437838947E-01; w[ 79] = 0.22749615455457959852242553240982E-01; w[ 80] = 0.22509534365300608085694429903050E-01; w[ 81] = 0.22255787825930280235631416460158E-01; w[ 82] = 0.21988529885872983756478409758807E-01; w[ 83] = 0.21707922796373466052301324695331E-01; w[ 84] = 0.21414136912893259295449693233545E-01; w[ 85] = 0.21107350591688713643523847921658E-01; w[ 86] = 0.20787750081531811812652137291250E-01; w[ 87] = 0.20455529410639508279497065713301E-01; w[ 88] = 0.20110890268880247225644623956287E-01; w[ 89] = 0.19754041885329183081815217323169E-01; w[ 90] = 0.19385200901246454628112623489471E-01; w[ 91] = 0.19004591238555646611148901044533E-01; w[ 92] = 0.18612443963902310429440419898958E-01; w[ 93] = 0.18208997148375106468721469154479E-01; w[ 94] = 0.17794495722974774231027912900351E-01; w[ 95] = 0.17369191329918731922164721250350E-01; w[ 96] = 0.16933342169871654545878815295200E-01; w[ 97] = 0.16487212845194879399346060358146E-01; w[ 98] = 0.16031074199309941802254151842763E-01; w[ 99] = 0.15565203152273955098532590262975E-01; w[100] = 0.15089882532666922992635733981431E-01; w[101] = 0.14605400905893418351737288078952E-01; w[102] = 0.14112052399003395774044161633613E-01; w[103] = 0.13610136522139249906034237533759E-01; w[104] = 0.13099957986718627426172681912499E-01; w[105] = 0.12581826520465013101514365424172E-01; w[106] = 0.12056056679400848183529562144697E-01; w[107] = 0.11522967656921087154811609734510E-01; w[108] = 0.10982883090068975788799657376065E-01; w[109] = 0.10436130863141005225673171997668E-01; w[110] = 0.98830429087554914716648010899606E-02; w[111] = 0.93239550065309714787536985834029E-02; w[112] = 0.87592065795403145773316804234385E-02; w[113] = 0.81891404887415730817235884718726E-02; w[114] = 0.76141028256526859356393930849227E-02; w[115] = 0.70344427036681608755685893032552E-02; w[116] = 0.64505120486899171845442463868748E-02; w[117] = 0.58626653903523901033648343751367E-02; w[118] = 0.52712596565634400891303815906251E-02; w[119] = 0.46766539777779034772638165662478E-02; w[120] = 0.40792095178254605327114733456293E-02; w[121] = 0.34792893810051465908910894094105E-02; w[122] = 0.28772587656289004082883197417581E-02; w[123] = 0.22734860707492547802810838362671E-02; w[124] = 0.16683488125171936761028811985672E-02; w[125] = 0.10622766869538486959954760554099E-02; w[126] = 0.45645726109586654495731936146574E-03; } else if ( n == 255 ) { x[ 0] = -0.9999557053175637; x[ 1] = -0.9997666213120006; x[ 2] = -0.99942647468017; x[ 3] = -0.9989352412846546; x[ 4] = -0.9982929861369679; x[ 5] = -0.9974998041266158; x[ 6] = -0.9965558144351986; x[ 7] = -0.9954611594800263; x[ 8] = -0.9942160046166302; x[ 9] = -0.9928205380219891; x[10] = -0.9912749706303856; x[11] = -0.9895795360859201; x[12] = -0.9877344906997324; x[13] = -0.9857401134074193; x[14] = -0.9835967057247763; x[15] = -0.9813045917010171; x[16] = -0.9788641178690681; x[17] = -0.976275653192736; x[18] = -0.9735395890106436; x[19] = -0.9706563389768804; x[20] = -0.9676263389983388; x[21] = -0.9644500471687263; x[22] = -0.9611279436992478; x[23] = -0.957660530845962; x[24] = -0.9540483328338163; x[25] = -0.9502918957773683; x[26] = -0.9463917875982043; x[27] = -0.9423485979390644; x[28] = -0.9381629380746873; x[29] = -0.9338354408193861; x[30] = -0.9293667604313699; x[31] = -0.9247575725138244; x[32] = -0.9200085739127664; x[33] = -0.915120482611687; x[34] = -0.9100940376230008; x[35] = -0.904929998876315; x[36] = -0.8996291471035368; x[37] = -0.8941922837208367; x[38] = -0.8886202307074841; x[39] = -0.8829138304815741; x[40] = -0.8770739457726654; x[41] = -0.8711014594913465; x[42] = -0.8649972745957512; x[43] = -0.858762313955043; x[44] = -0.8523975202098902; x[45] = -0.8459038556299511; x[46] = -0.839282301968391; x[47] = -0.8325338603134556; x[48] = -0.8256595509371186; x[49] = -0.8186604131408319; x[50] = -0.8115375050983958; x[51] = -0.8042919036959787; x[52] = -0.7969247043693057; x[53] = -0.7894370209380444; x[54] = -0.7818299854374094; x[55] = -0.7741047479470157; x[56] = -0.7662624764170006; x[57] = -0.7583043564914468; x[58] = -0.7502315913291283; x[59] = -0.7420454014216102; x[60] = -0.7337470244087263; x[61] = -0.7253377148914649; x[62] = -0.7168187442422908; x[63] = -0.7081914004129306; x[64] = -0.6994569877396524; x[65] = -0.6906168267460676; x[66] = -0.6816722539434864; x[67] = -0.6726246216288551; x[68] = -0.663475297680307; x[69] = -0.6542256653503588; x[70] = -0.6448771230567811; x[71] = -0.6354310841711771; x[72] = -0.6258889768052999; x[73] = -0.6162522435951415; x[74] = -0.6065223414828266; x[75] = -0.5967007414963417; x[76] = -0.5867889285271373; x[77] = -0.5767884011056313; x[78] = -0.5667006711746527; x[79] = -0.5565272638608558; x[80] = -0.5462697172441424; x[81] = -0.5359295821251249; x[82] = -0.5255084217906666; x[83] = -0.5150078117775342; x[84] = -0.5044293396341982; x[85] = -0.493774604680817; x[86] = -0.483045217767442; x[87] = -0.4722428010304787; x[88] = -0.4613689876474424; x[89] = -0.4504254215900437; x[90] = -0.4394137573756426; x[91] = -0.4283356598171081; x[92] = -0.4171928037711214; x[93] = -0.4059868738849605; x[94] = -0.3947195643418044; x[95] = -0.3833925786045958; x[96] = -0.3720076291585012; x[97] = -0.3605664372520062; x[98] = -0.3490707326366864; x[99] = -0.3375222533056927; x[100] = -0.3259227452309905; x[101] = -0.3142739620993925; x[102] = -0.3025776650474256; x[103] = -0.2908356223950708; x[104] = -0.2790496093784178; x[105] = -0.2672214078812731; x[106] = -0.2553528061657641; x[107] = -0.243445598601978; x[108] = -0.2315015853966777; x[109] = -0.2195225723211354; x[110] = -0.2075103704381242; x[111] = -0.1954667958281108; x[112] = -0.1833936693146885; x[113] = -0.1712928161892939; x[114] = -0.1591660659352477; x[115] = -0.147015251951162; x[116] = -0.1348422112737553; x[117] = -0.1226487843001178; x[118] = -0.1104368145094688; x[119] = -0.09820814818444755; x[120] = -0.08596463413198061; x[121] = -0.07370812340376778; x[122] = -0.06144046901642827; x[123] = -0.04916352567134998; x[124] = -0.03687914947428402; x[125] = -0.02458919765472701; x[126] = -0.01229552828513332; x[127] = 0; x[128] = 0.01229552828513332; x[129] = 0.02458919765472701; x[130] = 0.03687914947428402; x[131] = 0.04916352567134998; x[132] = 0.06144046901642827; x[133] = 0.07370812340376778; x[134] = 0.08596463413198061; x[135] = 0.09820814818444755; x[136] = 0.1104368145094688; x[137] = 0.1226487843001178; x[138] = 0.1348422112737553; x[139] = 0.147015251951162; x[140] = 0.1591660659352477; x[141] = 0.1712928161892939; x[142] = 0.1833936693146885; x[143] = 0.1954667958281108; x[144] = 0.2075103704381242; x[145] = 0.2195225723211354; x[146] = 0.2315015853966777; x[147] = 0.243445598601978; x[148] = 0.2553528061657641; x[149] = 0.2672214078812731; x[150] = 0.2790496093784178; x[151] = 0.2908356223950708; x[152] = 0.3025776650474256; x[153] = 0.3142739620993925; x[154] = 0.3259227452309905; x[155] = 0.3375222533056927; x[156] = 0.3490707326366864; x[157] = 0.3605664372520062; x[158] = 0.3720076291585012; x[159] = 0.3833925786045958; x[160] = 0.3947195643418044; x[161] = 0.4059868738849605; x[162] = 0.4171928037711214; x[163] = 0.4283356598171081; x[164] = 0.4394137573756426; x[165] = 0.4504254215900437; x[166] = 0.4613689876474424; x[167] = 0.4722428010304787; x[168] = 0.483045217767442; x[169] = 0.493774604680817; x[170] = 0.5044293396341982; x[171] = 0.5150078117775342; x[172] = 0.5255084217906666; x[173] = 0.5359295821251249; x[174] = 0.5462697172441424; x[175] = 0.5565272638608558; x[176] = 0.5667006711746527; x[177] = 0.5767884011056313; x[178] = 0.5867889285271373; x[179] = 0.5967007414963417; x[180] = 0.6065223414828266; x[181] = 0.6162522435951415; x[182] = 0.6258889768052999; x[183] = 0.6354310841711771; x[184] = 0.6448771230567811; x[185] = 0.6542256653503588; x[186] = 0.663475297680307; x[187] = 0.6726246216288551; x[188] = 0.6816722539434864; x[189] = 0.6906168267460676; x[190] = 0.6994569877396524; x[191] = 0.7081914004129306; x[192] = 0.7168187442422908; x[193] = 0.7253377148914649; x[194] = 0.7337470244087263; x[195] = 0.7420454014216102; x[196] = 0.7502315913291283; x[197] = 0.7583043564914468; x[198] = 0.7662624764170006; x[199] = 0.7741047479470157; x[200] = 0.7818299854374094; x[201] = 0.7894370209380444; x[202] = 0.7969247043693057; x[203] = 0.8042919036959787; x[204] = 0.8115375050983958; x[205] = 0.8186604131408319; x[206] = 0.8256595509371186; x[207] = 0.8325338603134556; x[208] = 0.839282301968391; x[209] = 0.8459038556299511; x[210] = 0.8523975202098902; x[211] = 0.858762313955043; x[212] = 0.8649972745957512; x[213] = 0.8711014594913465; x[214] = 0.8770739457726654; x[215] = 0.8829138304815741; x[216] = 0.8886202307074841; x[217] = 0.8941922837208367; x[218] = 0.8996291471035368; x[219] = 0.904929998876315; x[220] = 0.9100940376230008; x[221] = 0.915120482611687; x[222] = 0.9200085739127664; x[223] = 0.9247575725138244; x[224] = 0.9293667604313699; x[225] = 0.9338354408193861; x[226] = 0.9381629380746873; x[227] = 0.9423485979390644; x[228] = 0.9463917875982043; x[229] = 0.9502918957773683; x[230] = 0.9540483328338163; x[231] = 0.957660530845962; x[232] = 0.9611279436992478; x[233] = 0.9644500471687263; x[234] = 0.9676263389983388; x[235] = 0.9706563389768804; x[236] = 0.9735395890106436; x[237] = 0.976275653192736; x[238] = 0.9788641178690681; x[239] = 0.9813045917010171; x[240] = 0.9835967057247763; x[241] = 0.9857401134074193; x[242] = 0.9877344906997324; x[243] = 0.9895795360859201; x[244] = 0.9912749706303856; x[245] = 0.9928205380219891; x[246] = 0.9942160046166302; x[247] = 0.9954611594800263; x[248] = 0.9965558144351986; x[249] = 0.9974998041266158; x[250] = 0.9982929861369679; x[251] = 0.9989352412846546; x[252] = 0.99942647468017; x[253] = 0.9997666213120006; x[254] = 0.9999557053175637; w[ 0] = 0.0001136736199914808; w[ 1] = 0.0002645938711908564; w[ 2] = 0.0004156976252681932; w[ 3] = 0.0005667579456482639; w[ 4] = 0.0007177364780061286; w[ 5] = 0.0008686076661194581; w[ 6] = 0.001019347976427318; w[ 7] = 0.0011699343729388; w[ 8] = 0.001320343990022177; w[ 9] = 0.001470554042778403; w[10] = 0.001620541799041545; w[11] = 0.001770284570660304; w[12] = 0.001919759711713187; w[13] = 0.002068944619501569; w[14] = 0.002217816736754017; w[15] = 0.002366353554396287; w[16] = 0.00251453261459971; w[17] = 0.002662331513971696; w[18] = 0.00280972790682046; w[19] = 0.002956699508457498; w[20] = 0.003103224098519095; w[21] = 0.003249279524294296; w[22] = 0.003394843704053401; w[23] = 0.003539894630372244; w[24] = 0.003684410373449933; w[25] = 0.003828369084417135; w[26] = 0.003971748998634907; w[27] = 0.004114528438981242; w[28] = 0.004256685819126112; w[29] = 0.004398199646792759; w[30] = 0.00453904852700618; w[31] = 0.004679211165326077; w[32] = 0.004818666371065699; w[33] = 0.00495739306049505; w[34] = 0.005095370260027839; w[35] = 0.005232577109391968; w[36] = 0.005368992864783177; w[37] = 0.005504596902000804; w[38] = 0.005639368719565862; w[39] = 0.005773287941820301; w[40] = 0.005906334322007422; w[41] = 0.006038487745332765; w[42] = 0.006169728232005295; w[43] = 0.006300035940257733; w[44] = 0.006429391169346602; w[45] = 0.006557774362530328; w[46] = 0.006685166110026254; w[47] = 0.006811547151944815; w[48] = 0.006936898381201466; w[49] = 0.007061200846405536; w[50] = 0.007184435754724984; w[51] = 0.007306584474728122; w[52] = 0.007427628539199977; w[53] = 0.007547549647934514; w[54] = 0.007666329670501377; w[55] = 0.007783950648986801; w[56] = 0.007900394800708624; w[57] = 0.008015644520904983; w[58] = 0.008129682385395602; w[59] = 0.008242491153216323; w[60] = 0.008354053769225508; w[61] = 0.008464353366682819; w[62] = 0.008573373269798925; w[63] = 0.008681096996256795; w[64] = 0.008787508259703609; w[65] = 0.008892590972213036; w[66] = 0.008996329246717397; w[67] = 0.009098707399409718; w[68] = 0.009199709952114802; w[69] = 0.009299321634629343; w[70] = 0.009397527387030594; w[71] = 0.009494312361953241; w[72] = 0.009589661926834022; w[73] = 0.009683561666124043; w[74] = 0.009775997383468165; w[75] = 0.009866955103851452; w[76] = 0.009956421075711706; w[77] = 0.01004438177301882; w[78] = 0.01013082389731963; w[79] = 0.01021573437974821; w[80] = 0.0102991003830022; w[81] = 0.01038090930328312; w[82] = 0.01046114877220228; w[83] = 0.01053980665865038; w[84] = 0.01061687107063194; w[85] = 0.01069233035706287; w[86] = 0.01076617310953212; w[87] = 0.01083838816402652; w[88] = 0.01090896460261843; w[89] = 0.01097789175511656; w[90] = 0.01104515920067912; w[91] = 0.01111075676938929; w[92] = 0.01117467454379268; w[93] = 0.01123690286039691; w[94] = 0.01129743231113249; w[95] = 0.01135625374477508; w[96] = 0.01141335826832922; w[97] = 0.01146873724837283; w[98] = 0.01152238231236217; w[99] = 0.01157428534989815; w[100] = 0.01162443851395193; w[101] = 0.01167283422205182; w[102] = 0.01171946515742932; w[103] = 0.01176432427012535; w[104] = 0.01180740477805627; w[105] = 0.01184870016803913; w[106] = 0.01188820419677619; w[107] = 0.01192591089179929; w[108] = 0.01196181455237226; w[109] = 0.01199590975035326; w[110] = 0.01202819133101508; w[111] = 0.01205865441382472; w[112] = 0.01208729439318107; w[113] = 0.01211410693911137; w[114] = 0.01213908799792579; w[115] = 0.01216223379283022; w[116] = 0.01218354082449738; w[117] = 0.01220300587159574; w[118] = 0.01222062599127671; w[119] = 0.01223639851961942; w[120] = 0.01225032107203351; w[121] = 0.01226239154361966; w[122] = 0.01227260810948789; w[123] = 0.01228096922503318; w[124] = 0.01228747362616942; w[125] = 0.01229212032952021; w[126] = 0.01229490863256759; w[127] = 0.01229583811375833; w[128] = 0.01229490863256759; w[129] = 0.01229212032952021; w[130] = 0.01228747362616942; w[131] = 0.01228096922503318; w[132] = 0.01227260810948789; w[133] = 0.01226239154361966; w[134] = 0.01225032107203351; w[135] = 0.01223639851961942; w[136] = 0.01222062599127671; w[137] = 0.01220300587159574; w[138] = 0.01218354082449738; w[139] = 0.01216223379283022; w[140] = 0.01213908799792579; w[141] = 0.01211410693911137; w[142] = 0.01208729439318107; w[143] = 0.01205865441382472; w[144] = 0.01202819133101508; w[145] = 0.01199590975035326; w[146] = 0.01196181455237226; w[147] = 0.01192591089179929; w[148] = 0.01188820419677619; w[149] = 0.01184870016803913; w[150] = 0.01180740477805627; w[151] = 0.01176432427012535; w[152] = 0.01171946515742932; w[153] = 0.01167283422205182; w[154] = 0.01162443851395193; w[155] = 0.01157428534989815; w[156] = 0.01152238231236217; w[157] = 0.01146873724837283; w[158] = 0.01141335826832922; w[159] = 0.01135625374477508; w[160] = 0.01129743231113249; w[161] = 0.01123690286039691; w[162] = 0.01117467454379268; w[163] = 0.01111075676938929; w[164] = 0.01104515920067912; w[165] = 0.01097789175511656; w[166] = 0.01090896460261843; w[167] = 0.01083838816402652; w[168] = 0.01076617310953212; w[169] = 0.01069233035706287; w[170] = 0.01061687107063194; w[171] = 0.01053980665865038; w[172] = 0.01046114877220228; w[173] = 0.01038090930328312; w[174] = 0.0102991003830022; w[175] = 0.01021573437974821; w[176] = 0.01013082389731963; w[177] = 0.01004438177301882; w[178] = 0.009956421075711706; w[179] = 0.009866955103851452; w[180] = 0.009775997383468165; w[181] = 0.009683561666124043; w[182] = 0.009589661926834022; w[183] = 0.009494312361953241; w[184] = 0.009397527387030594; w[185] = 0.009299321634629343; w[186] = 0.009199709952114802; w[187] = 0.009098707399409718; w[188] = 0.008996329246717397; w[189] = 0.008892590972213036; w[190] = 0.008787508259703609; w[191] = 0.008681096996256795; w[192] = 0.008573373269798925; w[193] = 0.008464353366682819; w[194] = 0.008354053769225508; w[195] = 0.008242491153216323; w[196] = 0.008129682385395602; w[197] = 0.008015644520904983; w[198] = 0.007900394800708624; w[199] = 0.007783950648986801; w[200] = 0.007666329670501377; w[201] = 0.007547549647934514; w[202] = 0.007427628539199977; w[203] = 0.007306584474728122; w[204] = 0.007184435754724984; w[205] = 0.007061200846405536; w[206] = 0.006936898381201466; w[207] = 0.006811547151944815; w[208] = 0.006685166110026254; w[209] = 0.006557774362530328; w[210] = 0.006429391169346602; w[211] = 0.006300035940257733; w[212] = 0.006169728232005295; w[213] = 0.006038487745332765; w[214] = 0.005906334322007422; w[215] = 0.005773287941820301; w[216] = 0.005639368719565862; w[217] = 0.005504596902000804; w[218] = 0.005368992864783177; w[219] = 0.005232577109391968; w[220] = 0.005095370260027839; w[221] = 0.00495739306049505; w[222] = 0.004818666371065699; w[223] = 0.004679211165326077; w[224] = 0.00453904852700618; w[225] = 0.004398199646792759; w[226] = 0.004256685819126112; w[227] = 0.004114528438981242; w[228] = 0.003971748998634907; w[229] = 0.003828369084417135; w[230] = 0.003684410373449933; w[231] = 0.003539894630372244; w[232] = 0.003394843704053401; w[233] = 0.003249279524294296; w[234] = 0.003103224098519095; w[235] = 0.002956699508457498; w[236] = 0.00280972790682046; w[237] = 0.002662331513971696; w[238] = 0.00251453261459971; w[239] = 0.002366353554396287; w[240] = 0.002217816736754017; w[241] = 0.002068944619501569; w[242] = 0.001919759711713187; w[243] = 0.001770284570660304; w[244] = 0.001620541799041545; w[245] = 0.001470554042778403; w[246] = 0.001320343990022177; w[247] = 0.0011699343729388; w[248] = 0.001019347976427318; w[249] = 0.0008686076661194581; w[250] = 0.0007177364780061286; w[251] = 0.0005667579456482639; w[252] = 0.0004156976252681932; w[253] = 0.0002645938711908564; w[254] = 0.0001136736199914808; } else { cerr << "\n"; cerr << "LEGENDRE_SET - Fatal error!\n"; cerr << " Illegal value of N = " << n << "\n"; cerr << " Legal values are 1 through 33, 63, 64, 65, 127 or 255.\n"; exit ( 1 ); } return; } //****************************************************************************80 void legendre_set_x1 ( int order, double xtab[], double weight[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_SET_X1 sets a Gauss-Legendre rule for ( 1 + X ) * F(X) on [-1,1]. // // Discussion: // // The integration interval is [ -1, 1 ]. // // The weight function is w(x-1] = 1 + x. // // The integral to approximate: // // Integral ( -1 <= X <= 1 ) ( 1 + X ) * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) WEIGHT(I) * F ( XTAB(I) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 May 2006 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order of the rule. // ORDER must be between 1 and 9. // // Output, double XTAB[ORDER], the abscissas of the rule. // // Output, double WEIGHT[ORDER], the weights of the rule. // { if ( order == 1 ) { xtab[1-1] = 0.333333333333333333333333333333E+00; weight[1-1] = 2.0E+00; } else if ( order == 2 ) { xtab[1-1] = -0.289897948556635619639456814941E+00; xtab[2-1] = 0.689897948556635619639456814941E+00; weight[1-1] = 0.727834473024091322422523991699E+00; weight[2-1] = 1.27216552697590867757747600830E+00; } else if ( order == 3 ) { xtab[1-1] = -0.575318923521694112050483779752E+00; xtab[2-1] = 0.181066271118530578270147495862E+00; xtab[3-1] = 0.822824080974592105208907712461E+00; weight[1-1] = 0.279307919605816490135525088716E+00; weight[2-1] = 0.916964425438344986775682378225E+00; weight[3-1] = 0.803727654955838523088792533058E+00; } else if ( order == 4 ) { xtab[1-1] = -0.720480271312438895695825837750E+00; xtab[2-1] = -0.167180864737833640113395337326E+00; xtab[3-1] = 0.446313972723752344639908004629E+00; xtab[4-1] = 0.885791607770964635613757614892E+00; weight[1-1] = 0.124723883800032328695500588386E+00; weight[2-1] = 0.519390190432929763305824811559E+00; weight[3-1] = 0.813858272041085443165617903743E+00; weight[4-1] = 0.542027653725952464833056696312E+00; } else if ( order == 5 ) { xtab[1-1] = -0.802929828402347147753002204224E+00; xtab[2-1] = -0.390928546707272189029229647442E+00; xtab[3-1] = 0.124050379505227711989974959990E+00; xtab[4-1] = 0.603973164252783654928415726409E+00; xtab[5-1] = 0.920380285897062515318386619813E+00; weight[1-1] = 0.0629916580867691047411692662740E+00; weight[2-1] = 0.295635480290466681402532877367E+00; weight[3-1] = 0.585547948338679234792151477424E+00; weight[4-1] = 0.668698552377478261966702492391E+00; weight[5-1] = 0.387126360906606717097443886545E+00; } else if ( order == 6 ) { xtab[1-1] = -0.853891342639482229703747931639E+00; xtab[2-1] = -0.538467724060109001833766720231E+00; xtab[3-1] = -0.117343037543100264162786683611E+00; xtab[4-1] = 0.326030619437691401805894055838E+00; xtab[5-1] = 0.703842800663031416300046295008E+00; xtab[6-1] = 0.941367145680430216055899446174E+00; weight[1-1] = 0.0349532072544381270240692132496E+00; weight[2-1] = 0.175820662202035902032706497222E+00; weight[3-1] = 0.394644603562621056482338042193E+00; weight[4-1] = 0.563170215152795712476307356284E+00; weight[5-1] = 0.542169988926074467362761586552E+00; weight[6-1] = 0.289241322902034734621817304499E+00; } else if ( order == 7 ) { xtab[1-1] = -0.887474878926155707068695617935E+00; xtab[2-1] = -0.639518616526215270024840114382E+00; xtab[3-1] = -0.294750565773660725252184459658E+00; xtab[4-1] = 0.0943072526611107660028971153047E+00; xtab[5-1] = 0.468420354430821063046421216613E+00; xtab[6-1] = 0.770641893678191536180719525865E+00; xtab[7-1] = 0.955041227122575003782349000858E+00; weight[1-1] = 0.0208574488112296163587654972151E+00; weight[2-1] = 0.109633426887493901777324193433E+00; weight[3-1] = 0.265538785861965879934591955055E+00; weight[4-1] = 0.428500262783494679963649011999E+00; weight[5-1] = 0.509563589198353307674937943100E+00; weight[6-1] = 0.442037032763498409684482945478E+00; weight[7-1] = 0.223869453693964204606248453720E+00; } else if ( order == 8 ) { xtab[1-1] = -0.910732089420060298533757956283E+00; xtab[2-1] = -0.711267485915708857029562959544E+00; xtab[3-1] = -0.426350485711138962102627520502E+00; xtab[4-1] = -0.0903733696068532980645444599064E+00; xtab[5-1] = 0.256135670833455395138292079035E+00; xtab[6-1] = 0.571383041208738483284917464837E+00; xtab[7-1] = 0.817352784200412087992517083851E+00; xtab[8-1] = 0.964440169705273096373589797925E+00; weight[1-1] = 0.0131807657689951954189692640444E+00; weight[2-1] = 0.0713716106239448335742111888042E+00; weight[3-1] = 0.181757278018795592332221684383E+00; weight[4-1] = 0.316798397969276640481632757440E+00; weight[5-1] = 0.424189437743720042818124385645E+00; weight[6-1] = 0.450023197883549464687088394417E+00; weight[7-1] = 0.364476094545494505382889847132E+00; weight[8-1] = 0.178203217446223725304862478136E+00; } else if ( order == 9 ) { xtab[1-1] = -0.927484374233581078117671398464E+00; xtab[2-1] = -0.763842042420002599615429776011E+00; xtab[3-1] = -0.525646030370079229365386614293E+00; xtab[4-1] = -0.236234469390588049278459503207E+00; xtab[5-1] = 0.0760591978379781302337137826389E+00; xtab[6-1] = 0.380664840144724365880759065541E+00; xtab[7-1] = 0.647766687674009436273648507855E+00; xtab[8-1] = 0.851225220581607910728163628088E+00; xtab[9-1] = 0.971175180702246902734346518378E+00; weight[1-1] = 0.00872338834309252349019620448007E+00; weight[2-1] = 0.0482400171391415162069086091476E+00; weight[3-1] = 0.127219285964216005046760427743E+00; weight[4-1] = 0.233604781180660442262926091607E+00; weight[5-1] = 0.337433287379681397577000079834E+00; weight[6-1] = 0.401235236773473158616600898930E+00; weight[7-1] = 0.394134968689382820640692081477E+00; weight[8-1] = 0.304297020437232650320317215016E+00; weight[9-1] = 0.145112014093119485838598391765E+00; } else { cerr << "\n"; cerr << "LEGENDRE_SET_X1 - Fatal error!\n"; cerr << " Illegal input value of ORDER = " << order << "\n"; exit ( 1 ); } return; } //****************************************************************************80 void legendre_set_x2 ( int order, double xtab[], double weight[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_SET_X2 sets Gauss-Legendre rules for ( 1 + X )^2*F(X) on [-1,1]. // // Discussion: // // The integration interval is [ -1, 1 ]. // // The weight function is w(x-1] = ( 1 + x )^2. // // The integral to approximate: // // Integral ( -1 <= X <= 1 ) ( 1 + X )^2 * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) WEIGHt[I) * F ( XTAb[I) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 May 2006 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order of the rule. // ORDER must be between 1 and 9. // // Output, double XTAB[ORDER], the abscissas of the rule. // // Output, double WEIGHT[ORDER], the weights of the rule. // { if ( order == 1 ) { xtab[1-1] = 0.5E+00; weight[1-1] = 2.66666666666666666666666666666E+00; } else if ( order == 2 ) { xtab[1-1] = -0.0883036880224505775998524725910E+00; xtab[2-1] = 0.754970354689117244266519139258E+00; weight[1-1] = 0.806287056638603444666851075928E+00; weight[2-1] = 1.86037961002806322199981559074E+00; } else if ( order == 3 ) { xtab[1-1] = -0.410004419776996766244796955168E+00; xtab[2-1] = 0.305992467923296230556472913192E+00; xtab[3-1] = 0.854011951853700535688324041976E+00; weight[1-1] = 0.239605624068645584091811926047E+00; weight[2-1] = 1.16997015407892817602809616291E+00; weight[3-1] = 1.25709088851909290654675857771E+00; } else if ( order == 4 ) { xtab[1-1] = -0.591702835793545726606755921586E+00; xtab[2-1] = -0.0340945902087350046811467387661E+00; xtab[3-1] = 0.522798524896275389882037174551E+00; xtab[4-1] = 0.902998901106005341405865485802E+00; weight[1-1] = 0.0828179259993445222751812523731E+00; weight[2-1] = 0.549071097383384602539010760334E+00; weight[3-1] = 1.14767031839371367238662411421E+00; weight[4-1] = 0.887107324890223869465850539752E+00; } else if ( order == 5 ) { xtab[1-1] = -0.702108425894032836232448374820E+00; xtab[2-1] = -0.268666945261773544694327777841E+00; xtab[3-1] = 0.220227225868961343518209179230E+00; xtab[4-1] = 0.653039358456608553790815164028E+00; xtab[5-1] = 0.930842120163569816951085142737E+00; weight[1-1] = 0.0329106016247920636689299329544E+00; weight[2-1] = 0.256444805783695354037991444453E+00; weight[3-1] = 0.713601289772720001490035944563E+00; weight[4-1] = 1.00959169519929190423066348132E+00; weight[5-1] = 0.654118274286167343239045863379E+00; } else if ( order == 6 ) { xtab[1-1] = -0.773611232355123732602532012021E+00; xtab[2-1] = -0.431362254623427837535325249187E+00; xtab[3-1] = -0.0180728263295041680220798103354E+00; xtab[4-1] = 0.395126163954217534500188844163E+00; xtab[5-1] = 0.736872116684029732026178298518E+00; xtab[6-1] = 0.948190889812665614490712786006E+00; weight[1-1] = 0.0146486064549543818622276447204E+00; weight[2-1] = 0.125762377479560410622810097040E+00; weight[3-1] = 0.410316569036929681761034600615E+00; weight[4-1] = 0.756617493988329628546336413760E+00; weight[5-1] = 0.859011997894245060846045458784E+00; weight[6-1] = 0.500309621812647503028212451747E+00; } else if ( order == 7 ) { xtab[1-1] = -0.822366333126005527278634734418E+00; xtab[2-1] = -0.547034493182875002223997992852E+00; xtab[3-1] = -0.200043026557985860387937545780E+00; xtab[4-1] = 0.171995710805880507163425502299E+00; xtab[5-1] = 0.518891747903884926692601716998E+00; xtab[6-1] = 0.793821941703901970495546427988E+00; xtab[7-1] = 0.959734452453198985538996625765E+00; weight[1-1] = 0.00714150426951365443207221475404E+00; weight[2-1] = 0.0653034050584375560578544725498E+00; weight[3-1] = 0.235377690316228918725962815880E+00; weight[4-1] = 0.505171029671130381676271523850E+00; weight[5-1] = 0.733870426238362032891332767175E+00; weight[6-1] = 0.725590596901489156295739839779E+00; weight[7-1] = 0.394212014211504966587433032679E+00; } else if ( order == 8 ) { xtab[1-1] = -0.857017929919813794402037235698E+00; xtab[2-1] = -0.631543407166567521509503573952E+00; xtab[3-1] = -0.339104543648722903660229021109E+00; xtab[4-1] = -0.0111941563689783438801237300122E+00; xtab[5-1] = 0.316696017045595559454075475675E+00; xtab[6-1] = 0.609049663022520165351466780939E+00; xtab[7-1] = 0.834198765028697794599267293239E+00; xtab[8-1] = 0.967804480896157932935972899807E+00; weight[1-1] = 0.00374814227227757804631954025851E+00; weight[2-1] = 0.0357961737041152639660521680263E+00; weight[3-1] = 0.137974910241879862433949246199E+00; weight[4-1] = 0.326515411108352185491692769217E+00; weight[5-1] = 0.547577467373226177976217604887E+00; weight[6-1] = 0.682278153375510121675529810121E+00; weight[7-1] = 0.614544746137780998436053880546E+00; weight[8-1] = 0.318231662453524478640851647411E+00; } else if ( order == 9 ) { xtab[1-1] = -0.882491728426548422828684254270E+00; xtab[2-1] = -0.694873684026474640346360850039E+00; xtab[3-1] = -0.446537143480670863635920316400E+00; xtab[4-1] = -0.159388112702326252531544826624E+00; xtab[5-1] = 0.141092709224374414981503995427E+00; xtab[6-1] = 0.428217823321559204544020866175E+00; xtab[7-1] = 0.676480966471850715860378175342E+00; xtab[8-1] = 0.863830940812464825046988286026E+00; xtab[9-1] = 0.973668228805771018909618924364E+00; weight[1-1] = 0.00209009877215570354392734918986E+00; weight[2-1] = 0.0205951891648697848186537272448E+00; weight[3-1] = 0.0832489326348178964194106978875E+00; weight[4-1] = 0.210746247220398685903797568021E+00; weight[5-1] = 0.388325022916052063676224499399E+00; weight[6-1] = 0.554275165518437673725822282791E+00; weight[7-1] = 0.621388553284444032628761363828E+00; weight[8-1] = 0.523916296267173054255512857631E+00; weight[9-1] = 0.262081160888317771694556320674E+00; } else { cerr << "\n"; cerr << "LEGENDRE_SET_X2 - Fatal error!\n"; cerr << " Illegal input value of ORDER = " << order << "\n"; exit ( 1 ); } return; } //****************************************************************************80 double lens_half_2d ( double func ( double x, double y ), double center[2], double r, double theta1, double theta2, int order ) //****************************************************************************80 // // Purpose: // // LENS_HALF_2D approximates an integral in a circular half lens in 2D. // // Discussion: // // A circular half lens is formed by drawing a circular arc, // and joining its endpoints. // // This rule for a circular half lens simply views the region as // a product region, with a coordinate "S" that varies along the // radial direction, and a coordinate "T" that varies in the perpendicular // direction, and whose extent varies as a function of S. // // A Gauss-Legendre rule is used to construct a product rule that is // applied to the region. The accuracy of the Gauss-Legendre rule, // which is valid for a rectangular product rule region, does not // apply straightforwardly to this region, since the limits in the // "T" coordinate are being handled implicitly. // // This is simply an application of the QMULT_2D algorithm of Stroud. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the // user supplied function to be integrated. // // Input, double CENTER[2], the center of the circle. // // Input, double R, the radius of the circle. // // Input, double THETA1, THETA2, the angles of the rays // that begin and end the arc. // // Input, int ORDER, the order of the Gauss-Legendre rule // to be used. Legal values include 1 through 20, 32 or 64. // // Output, double LENS_HALF_2D, the approximate value // of the integral of the function over the half lens. // { double ax; double ay; double bx; double by; double cx; double cy; double dx; double dy; int i; int j; double quad; double s_length; double sx; double sy; double t_length; double tdirx; double tdiry; double thi; double tx; double ty; double w1; double w2; double *weight; double *xtab; // // Determine the points A (on the secant) and B (on the circumference) // that will form the "S" direction. // ax = center[0] + r * 0.5 * ( cos ( theta1 ) + cos ( theta2 ) ); ay = center[1] + r * 0.5 * ( sin ( theta1 ) + sin ( theta2 ) ); bx = center[0] + r * cos ( 0.5 * ( theta1 + theta2 ) ); by = center[1] + r * sin ( 0.5 * ( theta1 + theta2 ) ); // // Find the length of the line between A and B. // s_length = sqrt ( pow ( ax - bx, 2 ) + pow ( ay - by, 2 ) ); if ( s_length == 0.0 ) { quad = 0.0; return quad; } // // Retrieve the Legendre rule of the given order. // xtab = new double[order]; weight = new double[order]; legendre_set ( order, xtab, weight ); // // Determine the unit vector in the T direction. // tdirx = ( ay - by ) / s_length; tdiry = ( bx - ax ) / s_length; quad = 0.0; for ( i = 0; i < order; i++ ) { w1 = 0.5 * s_length * weight[i]; // // Map the quadrature point to an S coordinate. // sx = ( ( 1.0 - xtab[i] ) * ax + ( 1.0 + xtab[i] ) * bx ) / 2.0; sy = ( ( 1.0 - xtab[i] ) * ay + ( 1.0 + xtab[i] ) * by ) / 2.0; // // Determine the length of the line in the T direction, from the // S axis to the circle circumference. // thi = sqrt ( ( r - 0.25 * ( 1.0 - xtab[i] ) * s_length ) * ( 1.0 - xtab[i] ) * s_length ); // // Determine the maximum and minimum T coordinates by going // up and down in the T direction from the S axis. // cx = sx + tdirx * thi; cy = sy + tdiry * thi; dx = sx - tdirx * thi; dy = sy - tdiry * thi; // // Find the length of the T direction. // t_length = sqrt ( pow ( cx - dx, 2 ) + pow ( cy - dy, 2 ) ); for ( j = 0; j < order; j++ ) { w2 = 0.5 * t_length * weight[j]; // // Map the quadrature point to a T coordinate. // tx = ( ( 1.0 - xtab[j] ) * cx + ( 1.0 + xtab[j] ) * dx ) / 2.0; ty = ( ( 1.0 - xtab[j] ) * cy + ( 1.0 + xtab[j] ) * dy ) / 2.0; quad = quad + w1 * w2 * func ( tx, ty ); } } delete [] xtab; delete [] weight; return quad; } //****************************************************************************80 double lens_half_area_2d ( double r, double theta1, double theta2 ) //****************************************************************************80 // // Purpose: // // LENS_HALF_AREA_2D returns the area of a circular half lens in 2D. // // Discussion: // // A circular half lens is formed by drawing a circular arc, // and joining its endpoints. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // // Input, double THETA1, THETA2, the angles of the rays // that begin and end the arc. // // Output, double LENS_HALF_AREA_2D, the area of the half lens. // { double sector; double triangle; double value; sector = circle_sector_area_2d ( r, theta1, theta2 ); triangle = circle_triangle_area_2d ( r, theta1, theta2 ); value = sector - triangle; return value; } //****************************************************************************80 double lens_half_h_area_2d ( double r, double h ) //****************************************************************************80 // // Purpose: // // LENS_HALF_H_AREA_2D returns the area of a circular half lens in 2D. // // Discussion: // // A circular half lens is formed by drawing a circular arc, and joining // its endpoints. // // This particular half lens is described by the "height" of the region. // In other words, the half lens is the region that would be submerged // if a circle of radius R were standing in water of depth H. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // // Input, double H, the height of the half lens region. // // Output, double LENS_HALF_H_AREA_2D, the area of the half lens. // { double angle; double area; double half_width; double pi = 3.141592653589793; double sector; double triangle; if ( h <= 0.0 ) { area = 0.0; } else if ( 2.0 * r <= h ) { area = pi * r * r; } else { half_width = sqrt ( h * ( 2.0 * r - h ) ); angle = 2.0 * atan2 ( half_width, r - h ); sector = r * r * angle / 2.0; triangle = ( r - h ) * half_width; area = sector - triangle; } return area; } //****************************************************************************80 double lens_half_w_area_2d ( double r, double w ) //****************************************************************************80 // // Purpose: // // LENS_HALF_W_AREA_2D returns the area of a circular half lens in 2D. // // Discussion: // // A half lens is formed by drawing a circular arc, and joining its endpoints. // This half lens is described by the "width" of the region. In other words, // it is the portion of the circle under water if the width // of the water surface is W. There are two possible values for this // area, A and (PI*R*R-A). The routine returns the smaller of the // two values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the circle. // // Input, double W, the width of the half lens region. // // Output, double LENS_HALF_W_AREA_2D, the area of the half lens. // { double angle; double area; double h; double half_width; double pi = 3.141592653589793; double sector; double triangle; if ( w <= 0.0 ) { area = 0.0; } else if ( 2.0 * r <= w ) { area = 0.5 * pi * r * r; } else { half_width = 0.5 * w; h = r - sqrt ( r * r - half_width * half_width ); angle = 2.0 * atan2 ( half_width, r - h ); sector = r * r * angle / 2.0; triangle = ( r - h ) * half_width; area = sector - triangle; } return area; } //****************************************************************************80 double *monomial_value ( int dim_num, int point_num, double x[], int expon[] ) //****************************************************************************80 // // Purpose: // // MONOMIAL_VALUE evaluates a monomial. // // Discussion: // // This routine evaluates a monomial of the form // // product ( 1 <= dim <= dim_num ) x(dim)^expon(dim) // // where the exponents are nonnegative integers. Note that // if the combination 0^0 is encountered, it should be treated // as 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 May 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int POINT_NUM, the number of points at which the // monomial is to be evaluated. // // Input, double X[DIM_NUM*POINT_NUM], the point coordinates. // // Input, int EXPON[DIM_NUM], the exponents. // // Output, double MONOMIAL_VALUE[POINT_NUM], the value of the monomial. // { int dim; int point; double *value; value = new double[point_num]; for ( point = 0; point < point_num; point++ ) { value[point] = 1.0; } for ( dim = 0; dim < dim_num; dim++ ) { if ( 0 != expon[dim] ) { for ( point = 0; point < point_num; point++ ) { value[point] = value[point] * pow ( x[dim+point*dim_num], expon[dim] ); } } } return value; } //****************************************************************************80 double octahedron_unit_nd ( double func ( int n, double x[] ), int n ) //****************************************************************************80 // // Purpose: // // OCTAHEDRON_UNIT_ND approximates integrals in the unit octahedron in ND. // // Integration region: // // sum ( abs ( X(1:N) ) ) <= 1. // // Discussion: // // A 2*N point 3rd degree formula is used, Stroud number GN:3-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function to be integrated. // // Input, int N, the dimension of the octahedron. // // Output, double OCTAHEDRON_UNIT_ND, the approximate integral of the function. // { int i; int j; double quad; double r; double result; double volume; double w; double *x; x = new double[n]; w = 1.0 / ( double ) ( 2 * n ); r = sqrt ( ( double ) ( 2 * n ) / ( double ) ( ( n + 1 ) * ( n + 2 ) ) ); for ( i = 0; i < n; i++ ) { x[i] = 0.0; } quad = 0.0; for ( i = 0; i < n; i++ ) { x[i] = r; for ( j = 0; j < 2; j++ ) { quad = quad + w * func ( n, x ); x[i] = - x[i]; } x[i] = 0.0; } volume = octahedron_unit_volume_nd ( n ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double octahedron_unit_volume_nd ( int n ) //****************************************************************************80 // // Purpose: // // OCTAHEDRON_UNIT_VOLUME_ND returns the volume of the unit octahedron in ND. // // Integration region: // // sum ( abs ( X(1:N) ) ) <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the space. // // Output, double OCTAHEDRON_UNIT_VOLUME_ND, the volume of // the unit octahedron. // { int i; double volume; volume = 1.0; for ( i = 1; i <= n; i++ ) { volume = volume * 2.0 / ( double ) ( i ); } return volume; } //****************************************************************************80 double parallelipiped_volume_3d ( double x[4], double y[4], double z[4] ) //****************************************************************************80 // // Purpose: // // PARALLELIPIPED_VOLUME_3D returns the volume of a parallelipiped in 3D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double X[4], Y[4], Z[4], the coordinates of one corner // of the parallelipiped, and its 3 immediate neighbors. // // Output, double PARALLELIPIPED_VOLUME_3D, the volume of // the parallelipiped. // { double volume; volume = fabs ( ( z[1] - z[0] ) * ( y[3] * x[2] - y[2] * x[3] ) + ( z[2] - z[0] ) * ( x[3] * y[1] - x[1] * y[3] ) + ( z[3] - z[0] ) * ( x[1] * y[2] - x[2] * y[1] ) + ( z[2] - z[1] ) * ( y[3] * x[0] - y[0] * x[3] ) + ( z[3] - z[1] ) * ( x[2] * y[0] - x[0] * y[2] ) + ( z[3] - z[2] ) * ( x[0] * y[1] - x[1] * y[0] ) ); return volume; } //****************************************************************************80 double parallelipiped_volume_nd ( int n, double v[] ) //****************************************************************************80 // // Purpose: // // PARALLELIPIPED_VOLUME_ND returns the volume of a parallelipiped in ND. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the space. // // Input, double V[N*(N+1)], the N+1 columns of V contains the // coordinates of the "corners" of the parallelipiped. // // Output, double PARALLELIPIPED_VOLUME_ND, the volume of // the parallelipiped. // { double det; int i; int info; int j; int *pivot; double volume; double *w; // // Compute the volume of the N-dimensional parallelipiped. // w = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { w[i+j*n] = v[i+(j+1)*n] - v[i+0*n]; } } pivot = new int[n]; info = r8ge_fa ( n, w, pivot ); if ( info != 0 ) { volume = 0.0; } else { det = r8ge_det ( n, w, pivot ); volume = fabs ( det ); } delete [] pivot; delete [] w; return volume; } //****************************************************************************80 double polygon_1_2d ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // POLYGON_1_2D integrates the function 1 over a polygon in 2D. // // Integration region: // // The polygon bounded by the points (X(1:N), Y(1:N)). // // Formula: // // INTEGRAL = 0.5 * sum ( 1 <= I <= N ) // ( X(I) + X(I-1) ) * ( Y(I) - Y(I-1) ) // // where X(0) and Y(0) should be replaced by X(N) and Y(N). // // Discussion: // // The integral of 1 over a polygon is the area of the polygon. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Reference: // // SF Bockman, // Generalizing the Formula for Areas of Polygons to Moments, // American Mathematical Society Monthly, // 1989, pages 131-132. // // Parameters: // // Input, int N, the number of vertices of the polygon. // N should be at least 3 for a nonzero result. // // Input, double X[N], Y[N], the coordinates of the vertices // of the polygon. These vertices should be given in counter-clockwise order. // // Output, double POLYGON_1_2D, the value of the integral. // { int i; int im1; double result; result = 0.0; if ( n < 3 ) { cerr << "\n"; cerr << "POLYGON_1_2D - Fatal error!\n"; cerr << " The number of vertices must be at least 3.\n"; cerr << " The input value of N = " << n << "\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { if ( i == 0 ) { im1 = n - 1; } else { im1 = i - 1; } result = result + 0.5 * ( x[i] + x[im1] ) * ( y[i] - y[im1] ); } return result; } //****************************************************************************80 double polygon_x_2d ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // POLYGON_X_2D integrates the function X over a polygon in 2D. // // Integration region: // // The polygon bounded by the points (X(1:N), Y(1:N)). // // Formula: // // INTEGRAL = (1/6) * sum ( 1 <= I <= N ) // ( X(I)^2 + X(I) * X(I-1) + X(I-1)^2 ) * ( Y(I) - Y(I-1) ) // // where X(0) and Y(0) should be replaced by X(N) and Y(N). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2008 // // Author: // // John Burkardt // // Reference: // // SF Bockman, // Generalizing the Formula for Areas of Polygons to Moments, // American Mathematical Society Monthly, // 1989, pages 131-132. // // Parameters: // // Input, int N, the number of vertices of the polygon. // N should be at least 3 for a nonzero result. // // Input, double X[N], Y[N], the coordinates of the vertices // of the polygon. These vertices should be given in counter-clockwise order. // // Output, double POLYGON_X_2D, the value of the integral. // { int i; int im1; double result; result = 0.0; if ( n < 3 ) { cerr << "\n"; cerr << "POLYGON_X_2D - Fatal error!\n"; cerr << " The number of vertices must be at least 3.\n"; cerr << " The input value of N = " << n << "\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { if ( i == 0 ) { im1 = n - 1; } else { im1 = i - 1; } result = result + ( x[i] * x[i] + x[i] * x[im1] + x[im1] * x[im1] ) * ( y[i] - y[im1] ); } result = result / 6.0; return result; } //****************************************************************************80 double polygon_xx_2d ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // POLYGON_XX_2D integrates the function X*X over a polygon in 2D. // // Integration region: // // The polygon bounded by the points (X(1:N), Y(1:N)). // // Formula: // // INTEGRAL = (1/12) * sum ( 1 <= I <= N ) // ( X(I)^3 + X(I)^2 * X(I-1) + X(I) * X(I-1)^2 + X(I-1)^3 ) // * ( Y(I) - Y(I-1) ) // // where X(0) and Y(0) should be replaced by X(N) and Y(N). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2008 // // Author: // // John Burkardt // // Reference: // // SF Bockman, // Generalizing the Formula for Areas of Polygons to Moments, // American Mathematical Society Monthly, // Volume 96, Number 2, February 1989, pages 131-132. // // Parameters: // // Input, int N, the number of vertices of the polygon. // N should be at least 3 for a nonzero result. // // Input, double X[N], Y[N], the coordinates of the vertices // of the polygon. These vertices should be given in // counter-clockwise order. // // Output, double RESULT, the value of the integral. // { int i; int im1; double result; result = 0.0; if ( n < 3 ) { cerr << "\n"; cerr << "POLYGON_XX_2D - Fatal error!\n"; cerr << " The number of vertices must be at least 3.\n"; cerr << " The input value of N = " << n << "\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { if ( i == 0 ) { im1 = n - 1; } else { im1 = i - 1; } result = result + ( x[i] * x[i] * x[i] + x[i] * x[i] * x[im1] + x[i] * x[im1] * x[im1] + x[im1] * x[im1] * x[im1] ) * ( y[i] - y[im1] ); } result = result / 12.0; return result; } //****************************************************************************80 double polygon_xy_2d ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // POLYGON_XY_2D integrates the function X*Y over a polygon in 2D. // // Integration region: // // The polygon bounded by the points (X(1:N), Y(1:N)). // // Formula: // // INTEGRAL = (1/24) * sum ( 1 <= I <= N ) // ( Y(I) * ( 3 * X(I)**2 + 2 * X(I) * X(I-1) + X(I-1)**2 ) // + Y(I-1) * ( X(I)**2 + 2 * X(I) * X(I-1) + 3 * X(I-1)**2 ) ) // * ( Y(I) - Y(I-1) ) // // where X(0) and Y(0) should be replaced by X(N) and Y(N). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 March 2008 // // Author: // // John Burkardt // // Reference: // // SF Bockman, // Generalizing the Formula for Areas of Polygons to Moments, // American Mathematical Society Monthly, // Volume 96, Number 2, February 1989, pages 131-132. // // Parameters: // // Input, int N, the number of vertices of the polygon. // N should be at least 3 for a nonzero result. // // Input, double X[N], Y[N], the coordinates of the vertices // of the polygon. These vertices should be given in // counter-clockwise order. // // Output, double POLYGON_XY_2D, the value of the integral. // { int i; int im1; double result; result = 0.0; if ( n < 3 ) { cerr << "\n"; cerr << "POLYGON_XY_2D - Fatal error!\n"; cerr << " The number of vertices must be at least 3.\n"; cerr << " The input value of N = " << n << "\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { if ( i == 0 ) { im1 = n - 1; } else { im1 = i - 1; } result = result + ( y[i] * ( 3.0 * x[i] * x[i] + 2.0 * x[i] * x[im1] + x[im1] * x[im1] ) + y[im1] * ( x[i] * x[i] + 2.0 * x[i] * x[im1] + 3.0 * x[im1] * x[im1] ) ) * ( y[i] - y[im1] ); } result = result / 24.0; return result; } //****************************************************************************80 double polygon_y_2d ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // POLYGON_Y_2D integrates the function Y over a polygon in 2D. // // Integration region: // // The polygon bounded by the points (X(1:N), Y(1:N)). // // Formula: // // INTEGRAL = (1/6) * sum ( 1 <= I <= N ) // - ( Y(I)^2 + Y(I) * Y(I-1) + Y(I-1)^2 ) * ( X(I) - X(I-1) ) // // where X(0) and Y(0) should be replaced by X(N) and Y(N). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 March 2008 // // Author: // // John Burkardt // // Reference: // // SF Bockman, // Generalizing the Formula for Areas of Polygons to Moments, // American Mathematical Society Monthly, // Volume 96, Number 2, February 1989, pages 131-132. // // Parameters: // // Input, int N, the number of vertices of the polygon. // N should be at least 3 for a nonzero result. // // Input, double X[N], Y[N], the coordinates of the vertices // of the polygon. These vertices should be given in // counter-clockwise order. // // Output, double POLYGON_Y_2D, the value of the integral. // { int i; int im1; double result; result = 0.0; if ( n < 3 ) { cerr << "\n"; cerr << "POLYGON_Y_2D - Fatal error!\n"; cerr << " The number of vertices must be at least 3.\n"; cerr << " The input value of N = " << n << "\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { if ( i == 0 ) { im1 = n - 1; } else { im1 = i - 1; } result = result - ( y[i] * y[i] + y[i] * y[im1] + y[im1] * y[im1] ) * ( x[i] - x[im1] ); } result = result / 6.0; return result; } //****************************************************************************80 double polygon_yy_2d ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // POLYGON_YY_2D integrates the function Y*Y over a polygon in 2D. // // Integration region: // // The polygon bounded by the points (X(1:N), Y(1:N)). // // Formula: // // INTEGRAL = (1/12) * sum ( 1 <= I <= N ) // - ( Y(I)^3 + Y(I)^2 * Y(I-1) + Y(I) * Y(I-1)^2 + Y(I-1)^3 ) // * ( X(I) - X(I-1) ) // // where X(0) and Y(0) should be replaced by X(N) and Y(N). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 March 2008 // // Author: // // John Burkardt // // Reference: // // SF Bockman, // Generalizing the Formula for Areas of Polygons to Moments, // American Mathematical Society Monthly, // Volume 96, Number 2, February 1989, pages 131-132. // // Parameters: // // Input, int N, the number of vertices of the polygon. // N should be at least 3 for a nonzero result. // // Input, double X[N], Y[N], the coordinates of the vertices // of the polygon. These vertices should be given in // counter-clockwise order. // // Output, double POLYGON_YY_2D, the value of the integral. // { int i; int im1; double result; result = 0.0; if ( n < 3 ) { cerr << "\n"; cerr << "POLYGON_YY_2D - Fatal error!\n"; cerr << " The number of polygonal vertices must be\n"; cerr << " at least 3, but the input polygon has N = " << n << "\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { if ( i == 0 ) { im1 = n - 1; } else { im1 = i - 1; } result = result - ( y[i] * y[i] * y[i] + y[i] * y[i] * y[im1] + y[i] * y[im1] * y[im1] + y[im1] * y[im1] * y[im1] ) * ( x[i] - x[im1] ); } result = result / 12.0; return result; } //****************************************************************************80 double pyramid_unit_o01_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // PYRAMID_UNIT_O01_3D approximates an integral inside the unit pyramid in 3D. // // Discussion: // // A 1 point degree 1 formula is used. // // The (X,Y,Z) integration region can be represented as: // // - ( 1 - Z ) <= X <= 1 - Z // - ( 1 - Z ) <= Y <= 1 - Z // 0 <= Z <= 1. // // When Z is zero, the integration region is a square lying in the (X,Y) // plane, centered at (0,0,0) with "radius" 1. As Z increases to 1, the // radius of the square diminishes, and when Z reaches 1, the square has // contracted to the single point (0,0,1). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function which is to be integrated. // // Output, double RESULT, the approximate integral of the function. // { double quad; double result; double volume; double w; double x; double y; double z; // // Quadrature. // quad = 0.0; x = 0.0; y = 0.0; z = 1.0 / 4.0; w = 1.0; quad = quad + w * func ( x, y, z ); // // Volume. // volume = pyramid_unit_volume_3d ( ); // // Result. // result = quad * volume; return result; } //****************************************************************************80 double pyramid_unit_o05_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // PYRAMID_UNIT_O05_3D approximates an integral inside the unit pyramid in 3D. // // Discussion: // // A 5 point formula is used. // // The (X,Y,Z) integration region can be represented as: // // - ( 1 - Z ) <= X <= 1 - Z // - ( 1 - Z ) <= Y <= 1 - Z // 0 <= Z <= 1. // // When Z is zero, the integration region is a square lying in the (X,Y) // plane, centered at (0,0,0) with "radius" 1. As Z increases to 1, the // radius of the square diminishes, and when Z reaches 1, the square has // contracted to the single point (0,0,1). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function which is to be integrated. // // Output, double PYRAMID_UNIT_O05_3D, the approximate integral // of the function. // { int i; int order = 5; double quad; double result; double volume; double w[5] = { 0.21093750000000000000, 0.21093750000000000000, 0.21093750000000000000, 0.21093750000000000000, 0.15625000000000000000 }; double x[5] = { -0.48686449556014765641, 0.48686449556014765641, 0.48686449556014765641, -0.48686449556014765641, 0.00000000000000000000 }; double y[5] = { -0.48686449556014765641, -0.48686449556014765641, 0.48686449556014765641, 0.48686449556014765641, 0.00000000000000000000 }; double z[5] = { 0.16666666666666666667, 0.16666666666666666667, 0.16666666666666666667, 0.16666666666666666667, 0.70000000000000000000 }; // // Quadrature. // quad = 0.0; for ( i = 0; i < order; i++ ) { quad = quad + w[i] * func ( x[i], y[i], z[i] ); } // // Volume. // volume = pyramid_unit_volume_3d ( ); // // Result. // result = quad * volume; return result; } //****************************************************************************80 double pyramid_unit_o06_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // PYRAMID_UNIT_O06_3D approximates an integral inside the unit pyramid in 3D. // // Discussion: // // A 6 point formula is used. // // The (X,Y,Z) integration region can be represented as: // // - ( 1 - Z ) <= X <= 1 - Z // - ( 1 - Z ) <= Y <= 1 - Z // 0 <= Z <= 1. // // When Z is zero, the integration region is a square lying in the (X,Y) // plane, centered at (0,0,0) with "radius" 1. As Z increases to 1, the // radius of the square diminishes, and when Z reaches 1, the square has // contracted to the single point (0,0,1). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function which is to be integrated. // // Output, double PYRAMID_UNIT_O06_3D, the approximate integral // of the function. // { int i; int order = 6; double quad; double result; double volume; double w[6] = { 0.21000000000000000000, 0.21000000000000000000, 0.21000000000000000000, 0.21000000000000000000, 0.06000000000000000000, 0.10000000000000000000 }; double x[6] = { -0.48795003647426658968, 0.48795003647426658968, 0.48795003647426658968, -0.48795003647426658968, 0.00000000000000000000, 0.00000000000000000000 }; double y[6] = { -0.48795003647426658968, -0.48795003647426658968, 0.48795003647426658968, 0.48795003647426658968, 0.00000000000000000000, 0.00000000000000000000 }; double z[6] = { 0.16666666666666666667, 0.16666666666666666667, 0.16666666666666666667, 0.16666666666666666667, 0.58333333333333333333, 0.75000000000000000000 }; // // Quadrature. // quad = 0.0; for ( i = 0; i < order; i++ ) { quad = quad + w[i] * func ( x[i], y[i], z[i] ); } // // Volume. // volume = pyramid_unit_volume_3d ( ); // // Result. // result = quad * volume; return result; } //****************************************************************************80 double pyramid_unit_o08_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // PYRAMID_UNIT_O08_3D approximates an integral inside the unit pyramid in 3D. // // Discussion: // // An 8 point formula is used. // // The (X,Y,Z) integration region can be represented as: // // - ( 1 - Z ) <= X <= 1 - Z // - ( 1 - Z ) <= Y <= 1 - Z // 0 <= Z <= 1. // // When Z is zero, the integration region is a square lying in the (X,Y) // plane, centered at (0,0,0) with "radius" 1. As Z increases to 1, the // radius of the square diminishes, and when Z reaches 1, the square has // contracted to the single point (0,0,1). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function which is to be integrated. // // Output, double PYRAMID_UNIT_O08_3D, the approximate integral // of the function. // { int i; int order = 8; double quad; double result; double volume; double w[8] = { 0.075589411559869072938, 0.075589411559869072938, 0.075589411559869072938, 0.075589411559869072938, 0.17441058844013092706, 0.17441058844013092706, 0.17441058844013092706, 0.17441058844013092706 }; double x[8] = { -0.26318405556971359557, 0.26318405556971359557, 0.26318405556971359557, -0.26318405556971359557, -0.50661630334978742377, 0.50661630334978742377, 0.50661630334978742377, -0.50661630334978742377 }; double y[8] = { -0.26318405556971359557, -0.26318405556971359557, 0.26318405556971359557, 0.26318405556971359557, -0.50661630334978742377, -0.50661630334978742377, 0.50661630334978742377, 0.50661630334978742377 }; double z[8] = { 0.54415184401122528880, 0.54415184401122528880, 0.54415184401122528880, 0.54415184401122528880, 0.12251482265544137787, 0.12251482265544137787, 0.12251482265544137787, 0.12251482265544137787 }; // // Quadrature. // quad = 0.0; for ( i = 0; i < order; i++ ) { quad = quad + w[i] * func ( x[i], y[i], z[i] ); } // // Volume. // volume = pyramid_unit_volume_3d ( ); // // Result. // result = quad * volume; return result; } //****************************************************************************80 double pyramid_unit_o08b_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // PYRAMID_UNIT_O08B_3D approximates an integral inside the unit pyramid in 3D. // // Discussion: // // An 8 point formula is used. // // The (X,Y,Z) integration region can be represented as: // // - ( 1 - Z ) <= X <= 1 - Z // - ( 1 - Z ) <= Y <= 1 - Z // 0 <= Z <= 1. // // When Z is zero, the integration region is a square lying in the (X,Y) // plane, centered at (0,0,0) with "radius" 1. As Z increases to 1, the // radius of the square diminishes, and when Z reaches 1, the square has // contracted to the single point (0,0,1). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function which is to be integrated. // // Output, double PYRAMID_UNIT_O08B_3D, the approximate integral // of the function. // { int i; int order = 8; double quad; double result; double volume; double w[8] = { 0.16438287736328777572, 0.16438287736328777572, 0.16438287736328777572, 0.16438287736328777572, 0.085617122636712224276, 0.085617122636712224276, 0.085617122636712224276, 0.085617122636712224276 }; double x[8] = { -0.51197009372656270107, 0.51197009372656270107, 0.51197009372656270107, -0.51197009372656270107, -0.28415447557052037456, 0.28415447557052037456, 0.28415447557052037456, -0.28415447557052037456 }; double y[8] = { -0.51197009372656270107, -0.51197009372656270107, 0.51197009372656270107, 0.51197009372656270107, -0.28415447557052037456, -0.28415447557052037456, 0.28415447557052037456, 0.28415447557052037456 }; double z[8] = { 0.11024490204163285720, 0.11024490204163285720, 0.11024490204163285720, 0.11024490204163285720, 0.518326526529795714229, 0.518326526529795714229, 0.518326526529795714229, 0.518326526529795714229 }; // // Quadrature. // quad = 0.0; for ( i = 0; i < order; i++ ) { quad = quad + w[i] * func ( x[i], y[i], z[i] ); } // // Volume. // volume = pyramid_unit_volume_3d ( ); // // Result. // result = quad * volume; return result; } //****************************************************************************80 double pyramid_unit_o09_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // PYRAMID_UNIT_O09_3D approximates an integral inside the unit pyramid in 3D. // // Discussion: // // A 9 point formula is used. // // The (X,Y,Z) integration region can be represented as: // // - ( 1 - Z ) <= X <= 1 - Z // - ( 1 - Z ) <= Y <= 1 - Z // 0 <= Z <= 1. // // When Z is zero, the integration region is a square lying in the (X,Y) // plane, centered at (0,0,0) with "radius" 1. As Z increases to 1, the // radius of the square diminishes, and when Z reaches 1, the square has // contracted to the single point (0,0,1). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function which is to be integrated. // // Output, double PYRAMID_UNIT_O09_3D, the approximate integral // of the function. // { int i; int order = 9; double quad; double result; double volume; double w[9] = { 0.13073389672275944791, 0.13073389672275944791, 0.13073389672275944791, 0.13073389672275944791, 0.10989110327724055209, 0.10989110327724055209, 0.10989110327724055209, 0.10989110327724055209, 0.03750000000000000000 }; double x[9] = { -0.52966422253852215131, 0.52966422253852215131, 0.52966422253852215131, -0.52966422253852215131, -0.34819753825720418039, 0.34819753825720418039, 0.34819753825720418039, -0.34819753825720418039, 0.00000000000000000000 }; double y[9] = { -0.52966422253852215131, -0.52966422253852215131, 0.52966422253852215131, 0.52966422253852215131, -0.34819753825720418039, -0.34819753825720418039, 0.34819753825720418039, 0.34819753825720418039, 0.00000000000000000000 }; double z[9] = { 0.08176876558246862335, 0.08176876558246862335, 0.08176876558246862335, 0.08176876558246862335, 0.400374091560388519511, 0.400374091560388519511, 0.400374091560388519511, 0.400374091560388519511, 0.83333333333333333333 }; // // Quadrature. // quad = 0.0; for ( i = 0; i < order; i++ ) { quad = quad + w[i] * func ( x[i], y[i], z[i] ); } // // Volume. // volume = pyramid_unit_volume_3d ( ); // // Result. // result = quad * volume; return result; } //****************************************************************************80 double pyramid_unit_o13_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // PYRAMID_UNIT_O13_3D approximates an integral inside the unit pyramid in 3D. // // Discussion: // // A 13 point formula is used. // // The (X,Y,Z) integration region can be represented as: // // - ( 1 - Z ) <= X <= 1 - Z // - ( 1 - Z ) <= Y <= 1 - Z // 0 <= Z <= 1. // // When Z is zero, the integration region is a square lying in the (X,Y) // plane, centered at (0,0,0) with "radius" 1. As Z increases to 1, the // radius of the square diminishes, and when Z reaches 1, the square has // contracted to the single point (0,0,1). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function which is to be integrated. // // Output, double PYRAMID_UNIT_O13_3D, the approximate integral // of the function. // { int i; int order = 13; double quad; double result; double volume; double w[13] = { 0.063061594202898550725, 0.063061594202898550725, 0.063061594202898550725, 0.063061594202898550725, 0.042101946815575556199, 0.042101946815575556199, 0.042101946815575556199, 0.042101946815575556199, 0.13172030707666776585, 0.13172030707666776585, 0.13172030707666776585, 0.13172030707666776585, 0.05246460761943250889 }; double x[13] = { -0.38510399211870384331, 0.38510399211870384331, 0.38510399211870384331, -0.38510399211870384331, -0.40345831960728204766, 0.40345831960728204766, 0.00000000000000000000, 0.00000000000000000000, -0.53157877436961973359, 0.53157877436961973359, 0.53157877436961973359, -0.53157877436961973359, 0.00000000000000000000 }; double y[13] = { -0.38510399211870384331, -0.38510399211870384331, 0.38510399211870384331, 0.38510399211870384331, 0.00000000000000000000, 0.00000000000000000000, -0.40345831960728204766, 0.40345831960728204766, -0.53157877436961973359, -0.53157877436961973359, 0.53157877436961973359, 0.53157877436961973359, 0.00000000000000000000 }; double z[13] = { 0.428571428571428571429, 0.428571428571428571429, 0.428571428571428571429, 0.428571428571428571429, 0.33928571428571428571, 0.33928571428571428571, 0.33928571428571428571, 0.33928571428571428571, 0.08496732026143790850, 0.08496732026143790850, 0.08496732026143790850, 0.08496732026143790850, 0.76219701803768503595 }; // // Quadrature. // quad = 0.0; for ( i = 0; i < order; i++ ) { quad = quad + w[i] * func ( x[i], y[i], z[i] ); } // // Volume. // volume = pyramid_unit_volume_3d ( ); // // Result. // result = quad * volume; return result; } //****************************************************************************80 double pyramid_unit_o18_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // PYRAMID_UNIT_O18_3D approximates an integral inside the unit pyramid in 3D. // // Discussion: // // An 18 point formula is used. // // The (X,Y,Z) integration region can be represented as: // // - ( 1 - Z ) <= X <= 1 - Z // - ( 1 - Z ) <= Y <= 1 - Z // 0 <= Z <= 1. // // When Z is zero, the integration region is a square lying in the (X,Y) // plane, centered at (0,0,0) with "radius" 1. As Z increases to 1, the // radius of the square diminishes, and when Z reaches 1, the square has // contracted to the single point (0,0,1). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function which is to be integrated. // // Output, double PYRAMID_UNIT_O18_3D, the approximate integral // of the function. // { int i; int order = 18; double quad; double result; double volume; double w[18] = { 0.023330065296255886709, 0.037328104474009418735, 0.023330065296255886709, 0.037328104474009418735, 0.059724967158415069975, 0.037328104474009418735, 0.023330065296255886709, 0.037328104474009418735, 0.023330065296255886709, 0.05383042853090460712, 0.08612868564944737139, 0.05383042853090460712, 0.08612868564944737139, 0.13780589703911579422, 0.08612868564944737139, 0.05383042853090460712, 0.08612868564944737139, 0.05383042853090460712 }; double x[18] = { -0.35309846330877704481, 0.00000000000000000000, 0.35309846330877704481, -0.35309846330877704481, 0.00000000000000000000, 0.35309846330877704481, -0.35309846330877704481, 0.00000000000000000000, 0.35309846330877704481, -0.67969709567986745790, 0.00000000000000000000, 0.67969709567986745790, -0.67969709567986745790, 0.00000000000000000000, 0.67969709567986745790, -0.67969709567986745790, 0.00000000000000000000, 0.67969709567986745790 }; double y[18] = { -0.35309846330877704481, -0.35309846330877704481, -0.35309846330877704481, 0.00000000000000000000, 0.00000000000000000000, 0.00000000000000000000, 0.35309846330877704481, 0.35309846330877704481, 0.35309846330877704481, -0.67969709567986745790, -0.67969709567986745790, -0.67969709567986745790, 0.00000000000000000000, 0.00000000000000000000, 0.00000000000000000000, 0.67969709567986745790, 0.67969709567986745790, 0.67969709567986745790 }; double z[18] = { 0.544151844011225288800, 0.544151844011225288800, 0.544151844011225288800, 0.544151844011225288800, 0.544151844011225288800, 0.544151844011225288800, 0.544151844011225288800, 0.544151844011225288800, 0.544151844011225288800, 0.12251482265544137787, 0.12251482265544137787, 0.12251482265544137787, 0.12251482265544137787, 0.12251482265544137787, 0.12251482265544137787, 0.12251482265544137787, 0.12251482265544137787, 0.12251482265544137787 }; // // Quadrature. // quad = 0.0; for ( i = 0; i < order; i++ ) { quad = quad + w[i] * func ( x[i], y[i], z[i] ); } // // Volume. // volume = pyramid_unit_volume_3d ( ); // // Result. // result = quad * volume; return result; } //****************************************************************************80 double pyramid_unit_o27_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // PYRAMID_UNIT_O27_3D approximates an integral inside the unit pyramid in 3D. // // Discussion: // // A 27 point formula is used. // // The (X,Y,Z) integration region can be represented as: // // - ( 1 - Z ) <= X <= 1 - Z // - ( 1 - Z ) <= Y <= 1 - Z // 0 <= Z <= 1. // // When Z is zero, the integration region is a square lying in the (X,Y) // plane, centered at (0,0,0) with "radius" 1. As Z increases to 1, the // radius of the square diminishes, and when Z reaches 1, the square has // contracted to the single point (0,0,1). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Reference: // // Carlos Felippa, // A compendium of FEM integration formulas for symbolic work, // Engineering Computation, // Volume 21, Number 8, 2004, pages 867-890. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function which is to be integrated. // // Output, double PYRAMID_UNIT_O27_3D, the approximate integral // of the function. // { int i; int order = 27; double quad; double result; double volume; double w[27] = { 0.036374157653908938268, 0.05819865224625430123, 0.036374157653908938268, 0.05819865224625430123, 0.09311784359400688197, 0.05819865224625430123, 0.036374157653908938268, 0.05819865224625430123, 0.036374157653908938268, 0.033853303069413431019, 0.054165284911061489631, 0.033853303069413431019, 0.054165284911061489631, 0.08666445585769838341, 0.054165284911061489631, 0.033853303069413431019, 0.054165284911061489631, 0.033853303069413431019, 0.006933033103838124540, 0.011092852966140999264, 0.006933033103838124540, 0.011092852966140999264, 0.017748564745825598822, 0.011092852966140999264, 0.006933033103838124540, 0.011092852966140999264, 0.006933033103838124540 }; double x[27] = { -0.7180557413198889387, 0.00000000000000000000, 0.7180557413198889387, -0.7180557413198889387, 0.00000000000000000000, 0.7180557413198889387, -0.7180557413198889387, 0.00000000000000000000, 0.7180557413198889387, -0.50580870785392503961, 0.00000000000000000000, 0.50580870785392503961, -0.50580870785392503961, 0.00000000000000000000, 0.50580870785392503961, -0.50580870785392503961, 0.00000000000000000000, 0.50580870785392503961, -0.22850430565396735360, 0.00000000000000000000, 0.22850430565396735360, -0.22850430565396735360, 0.00000000000000000000, 0.22850430565396735360, -0.22850430565396735360, 0.00000000000000000000, 0.22850430565396735360 }; double y[27] = { -0.7180557413198889387, -0.7180557413198889387, -0.7180557413198889387, 0.00000000000000000000, 0.00000000000000000000, 0.00000000000000000000, 0.7180557413198889387, 0.7180557413198889387, 0.7180557413198889387, -0.50580870785392503961, -0.50580870785392503961, -0.50580870785392503961, 0.00000000000000000000, 0.00000000000000000000, 0.00000000000000000000, 0.50580870785392503961, 0.50580870785392503961, 0.50580870785392503961, -0.22850430565396735360, -0.22850430565396735360, -0.22850430565396735360, 0.00000000000000000000, 0.00000000000000000000, 0.00000000000000000000, 0.22850430565396735360, 0.22850430565396735360, 0.22850430565396735360 }; double z[27] = { 0.07299402407314973216, 0.07299402407314973216, 0.07299402407314973216, 0.07299402407314973216, 0.07299402407314973216, 0.07299402407314973216, 0.07299402407314973216, 0.07299402407314973216, 0.07299402407314973216, 0.34700376603835188472, 0.34700376603835188472, 0.34700376603835188472, 0.34700376603835188472, 0.34700376603835188472, 0.34700376603835188472, 0.34700376603835188472, 0.34700376603835188472, 0.34700376603835188472, 0.70500220988849838312, 0.70500220988849838312, 0.70500220988849838312, 0.70500220988849838312, 0.70500220988849838312, 0.70500220988849838312, 0.70500220988849838312, 0.70500220988849838312, 0.70500220988849838312 }; // // Quadrature. // quad = 0.0; for ( i = 0; i < order; i++ ) { quad = quad + w[i] * func ( x[i], y[i], z[i] ); } // // Volume. // volume = pyramid_unit_volume_3d ( ); // // Result. // result = quad * volume; return result; } //****************************************************************************80 double pyramid_unit_o48_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // PYRAMID_UNIT_O48_3D approximates an integral inside the unit pyramid in 3D. // // Discussion: // // An 48 point degree 7 formula, Stroud CN:C2:7-1, is used. // // The (X,Y,Z) integration region can be represented as: // // - ( 1 - Z ) <= X <= 1 - Z // - ( 1 - Z ) <= Y <= 1 - Z // 0 <= Z <= 1. // // When Z is zero, the integration region is a square lying in the (X,Y) // plane, centered at (0,0,0) with "radius" 1. As Z increases to 1, the // radius of the square diminishes, and when Z reaches 1, the square has // contracted to the single point (0,0,1). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function which is to be integrated. // // Output, double PYRAMID_UNIT_O48_3D, the approximate integral // of the function. // { int i; int order = 48; double quad; double result; double volume; double w[48] = { 2.01241939442682455E-002, 2.01241939442682455E-002, 2.01241939442682455E-002, 2.01241939442682455E-002, 2.60351137043010779E-002, 2.60351137043010779E-002, 2.60351137043010779E-002, 2.60351137043010779E-002, 1.24557795239745531E-002, 1.24557795239745531E-002, 1.24557795239745531E-002, 1.24557795239745531E-002, 1.87873998794808156E-003, 1.87873998794808156E-003, 1.87873998794808156E-003, 1.87873998794808156E-003, 4.32957927807745280E-002, 4.32957927807745280E-002, 4.32957927807745280E-002, 4.32957927807745280E-002, 1.97463249834127288E-002, 1.97463249834127288E-002, 1.97463249834127288E-002, 1.97463249834127288E-002, 5.60127223523590526E-002, 5.60127223523590526E-002, 5.60127223523590526E-002, 5.60127223523590526E-002, 2.55462562927473852E-002, 2.55462562927473852E-002, 2.55462562927473852E-002, 2.55462562927473852E-002, 2.67977366291788643E-002, 2.67977366291788643E-002, 2.67977366291788643E-002, 2.67977366291788643E-002, 1.22218992265373354E-002, 1.22218992265373354E-002, 1.22218992265373354E-002, 1.22218992265373354E-002, 4.04197740453215038E-003, 4.04197740453215038E-003, 4.04197740453215038E-003, 4.04197740453215038E-003, 1.84346316995826843E-003, 1.84346316995826843E-003, 1.84346316995826843E-003, 1.84346316995826843E-003 }; double x[48] = { 0.88091731624450909E+00, -0.88091731624450909E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.70491874112648223E+00, -0.70491874112648223E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.44712732143189760E+00, -0.44712732143189760E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.18900486065123448E+00, -0.18900486065123448E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.36209733410322176E+00, -0.36209733410322176E+00, -0.36209733410322176E+00, 0.36209733410322176E+00, 0.76688932060387538E+00, -0.76688932060387538E+00, -0.76688932060387538E+00, 0.76688932060387538E+00, 0.28975386476618070E+00, -0.28975386476618070E+00, -0.28975386476618070E+00, 0.28975386476618070E+00, 0.61367241226233160E+00, -0.61367241226233160E+00, -0.61367241226233160E+00, 0.61367241226233160E+00, 0.18378979287798017E+00, -0.18378979287798017E+00, -0.18378979287798017E+00, 0.18378979287798017E+00, 0.38925011625173161E+00, -0.38925011625173161E+00, -0.38925011625173161E+00, 0.38925011625173161E+00, 7.76896479525748113E-02, -7.76896479525748113E-02, -7.76896479525748113E-02, 7.76896479525748113E-02, 0.16453962988669860E+00, -0.16453962988669860E+00, -0.16453962988669860E+00, 0.16453962988669860E+00 }; double y[48] = { 0.0000000000000000E+00, 0.0000000000000000E+00, 0.88091731624450909E+00, -0.88091731624450909E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.70491874112648223E+00, -0.70491874112648223E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.44712732143189760E+00, -0.44712732143189760E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.18900486065123448E+00, -0.18900486065123448E+00, 0.36209733410322176E+00, 0.36209733410322176E+00, -0.36209733410322176E+00, -0.36209733410322176E+00, 0.76688932060387538E+00, 0.76688932060387538E+00, -0.76688932060387538E+00, -0.76688932060387538E+00, 0.28975386476618070E+00, 0.28975386476618070E+00, -0.28975386476618070E+00, -0.28975386476618070E+00, 0.61367241226233160E+00, 0.61367241226233160E+00, -0.61367241226233160E+00, -0.61367241226233160E+00, 0.18378979287798017E+00, 0.18378979287798017E+00, -0.18378979287798017E+00, -0.18378979287798017E+00, 0.38925011625173161E+00, 0.38925011625173161E+00, -0.38925011625173161E+00, -0.38925011625173161E+00, 7.76896479525748113E-02, 7.76896479525748113E-02, -7.76896479525748113E-02, -7.76896479525748113E-02, 0.16453962988669860E+00, 0.16453962988669860E+00, -0.16453962988669860E+00, -0.16453962988669860E+00 }; double z[48] = { 4.85005494469969989E-02, 4.85005494469969989E-02, 4.85005494469969989E-02, 4.85005494469969989E-02, 0.23860073755186201E+00, 0.23860073755186201E+00, 0.23860073755186201E+00, 0.23860073755186201E+00, 0.51704729510436798E+00, 0.51704729510436798E+00, 0.51704729510436798E+00, 0.51704729510436798E+00, 0.79585141789677305E+00, 0.79585141789677305E+00, 0.79585141789677305E+00, 0.79585141789677305E+00, 4.85005494469969989E-02, 4.85005494469969989E-02, 4.85005494469969989E-02, 4.85005494469969989E-02, 4.85005494469969989E-02, 4.85005494469969989E-02, 4.85005494469969989E-02, 4.85005494469969989E-02, 0.23860073755186201E+00, 0.23860073755186201E+00, 0.23860073755186201E+00, 0.23860073755186201E+00, 0.23860073755186201E+00, 0.23860073755186201E+00, 0.23860073755186201E+00, 0.23860073755186201E+00, 0.51704729510436798E+00, 0.51704729510436798E+00, 0.51704729510436798E+00, 0.51704729510436798E+00, 0.51704729510436798E+00, 0.51704729510436798E+00, 0.51704729510436798E+00, 0.51704729510436798E+00, 0.79585141789677305E+00, 0.79585141789677305E+00, 0.79585141789677305E+00, 0.79585141789677305E+00, 0.79585141789677305E+00, 0.79585141789677305E+00, 0.79585141789677305E+00, 0.79585141789677305E+00 }; // // Quadrature. // quad = 0.0; for ( i = 0; i < order; i++ ) { quad = quad + w[i] * func ( x[i], y[i], z[i] ); } // // Volume. // volume = pyramid_unit_volume_3d ( ); // // Result. // result = quad * volume; return result; } //****************************************************************************80 double pyramid_unit_monomial_3d ( int alpha, int beta, int gamma ) //****************************************************************************80 // // Purpose: // // PYRAMID_UNIT_MONOMIAL_3D: monomial integral in a unit pyramid in 3D. // // Discussion: // // This function returns the value of the integral of X^ALPHA Y^BETA Z^GAMMA // over the unit pyramid. // // The unit pyramid is defined as: // // - ( 1 - Z ) <= X <= 1 - Z // - ( 1 - Z ) <= Y <= 1 - Z // 0 <= Z <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int ALPHA, BETA, GAMMA, the exponents of // X, Y and Z in the monomial. // // Output, double PYRAMID_UNIT_MONOMIAL_3D, the volume of the pyramid. // { int i; int i_hi; double value; value = 0.0; if ( ( alpha % 2 ) == 0 && ( beta % 2 ) == 0 ) { i_hi = 2 + alpha + beta; for ( i = 0; i <= i_hi; i++ ) { value = value + r8_mop ( i ) * r8_choose ( i_hi, i ) / ( double ) ( i + gamma + 1 ); } value = value * 2.0 / ( double ) ( alpha + 1 ) * 2.0 / ( double ) ( beta + 1 ); } return value; } //****************************************************************************80 double pyramid_unit_volume_3d ( ) //****************************************************************************80 // // Purpose: // // PYRAMID_UNIT_VOLUME_3D: volume of a unit pyramid with square base in 3D. // // Integration region: // // - ( 1 - Z ) <= X <= 1 - Z // - ( 1 - Z ) <= Y <= 1 - Z // 0 <= Z <= 1. // // Discussion: // // The volume of this unit pyramid is 4/3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double PYRAMID_UNIT_VOLUME_3D, the volume of the pyramid. // { double volume; volume = 4.0 / 3.0; return volume; } //****************************************************************************80 double pyramid_volume_3d ( double r, double h ) //****************************************************************************80 // // Purpose: // // PYRAMID_VOLUME_3D returns the volume of a pyramid with square base in 3D. // // Integration region: // // - ( H - Z ) * R <= X <= ( H - Z ) * R // - ( H - Z ) * R <= Y <= ( H - Z ) * R // 0 <= Z <= H. // // Discussion: // // A pyramid with square base can be regarded as the upper half of a // 3D octahedron. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the "radius" of the pyramid, that is, half the // length of one of the sides of the square base. // // Input, double H, the height of the pyramid. // // Output, double PYRAMID_VOLUME_3D, the volume of the pyramid. // { double value; value = ( 4.0 / 3.0 ) * h * r * r; return value; } //****************************************************************************80 double qmdpt ( double func ( int n, double x[] ), int n, int nsub ) //****************************************************************************80 // // Purpose: // // QMDPT carries out product midpoint quadrature for the unit cube in ND. // // Integration region: // // -1 <= X(1:N) <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the user supplied // function to be integrated. // // Input, int N, the dimension of the cube. // // Input, int NSUB, the number of subdivisions (in each dimension). // // Output, double QMDPT, the approximate integral of the function. // { int i; int ihi; int *ix; int j; bool more; double quad; double result; double volume; double w; double *x; w = 1.0 / ( double ) ( i4_power ( nsub, n ) ); quad = 0.0; more = false; ihi = i4_power ( nsub, n ); ix = new int[n]; x = new double[n]; for ( i = 0; i < ihi; i++ ) { vec_lex_next ( n, nsub, ix, &more ); for ( j = 0; j < n; j++ ) { x[j] = ( double ) ( 2 * ix[j] + 1 - nsub ) / ( double ) ( nsub ); } quad = quad + w * func ( n, x ); } volume = pow ( 2.0, n ); result = quad * volume; delete [] ix; delete [] x; return result; } //****************************************************************************80 double qmult_1d ( double func ( double x ), double a, double b ) //****************************************************************************80 // // Purpose: // // QMULT_1D approximates an integral over an interval in 1D. // // Integration region: // // A <= X <= B. // // Discussion: // // A 16 point 31-st degree Gauss-Legendre formula is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x ), the name of the user supplied // function which evaluates F(X). // // Input, double A, B, the lower and upper limits of integration. // // Output, double QMULT_1D, the approximate integral of // the function. // { int i; int order = 16; double quad; double result; double volume; double *weight; double x; double *xtab; xtab = new double[order]; weight = new double[order]; legendre_set ( order, xtab, weight ); quad = 0.0; for ( i = 0; i < order; i++ ) { x = 0.5 * ( b - a ) * xtab[i] + 0.5 * ( a + b ); quad = quad + 0.5 * weight[i] * func ( x ); } volume = b - a; result = quad * volume; delete [] xtab; delete [] weight; return result; } //****************************************************************************80 double qmult_2d ( double func ( double x, double y ), double a, double b, double fup ( double x ), double flo ( double x ) ) //****************************************************************************80 // // Purpose: // // QMULT_2D approximates an integral with varying Y dimension in 2D. // // Integration region: // // A <= X <= B // // and // // FLO(X) <= Y <= FHI(X). // // Discussion: // // A 256 point product of two 16 point 31-st degree Gauss-Legendre // quadrature formulas is used. // // This routine could easily be modified to use a different // order product rule by changing the value of ORDER. // // Another easy change would allow the X and Y directions to // use quadrature rules of different orders. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the // user supplied function which evaluates F(X,Y). // // Input, double A, B, the lower and upper limits of X integration. // // Input, double FUP ( double x ), double FLO ( double x ), // the names of the user supplied functions which evaluate the upper // and lower limits of the Y integration. // { double c; double d; int i; int j; int order = 16; double quad; double w1; double w2; double *weight; double x; double *xtab; double y; xtab = new double[order]; weight = new double[order]; legendre_set ( order, xtab, weight ); quad = 0.0; for ( i = 0; i < order; i++ ) { w1 = 0.5 * ( b - a ) * weight[i]; x = 0.5 * ( b - a ) * xtab[i] + 0.5 * ( b + a ); c = flo ( x ); d = fup ( x ); for ( j = 0; j < order; j++ ) { w2 = 0.5 * ( d - c ) * weight[j]; y = 0.5 * ( d - c ) * xtab[j] + 0.5 * ( d + c ); quad = quad + w1 * w2 * func ( x, y ); } } delete [] xtab; delete [] weight; return quad; } //****************************************************************************80 double qmult_3d ( double func ( double x, double y, double z ), double a, double b, double fup1 ( double x ), double flo1 ( double x ), double fup2 ( double x, double y ), double flo2 ( double x, double y ) ) //****************************************************************************80 // // Purpose: // // QMULT_3D approximates an integral with varying Y and Z dimension in 3D. // // Integration region: // // A <= X <= B, // and // FLO(X) <= Y <= FHI(X), // and // FLO2(X,Y) <= Z <= FHI2(X,Y). // // Discussion: // // A 4096 point product of three 16 point 31-st degree Gauss-Legendre // quadrature formulas is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied unction which evaluates F(X,Y,Z). // // Input, double A, B, the lower and upper limits of X integration. // // Input, double FUP1 ( double x ), double FLO1 ( double x ), the names // of the user supplied functions which evaluate the upper and lower // limits of the Y integration. // // Input, double FUP2 ( double x, double y ), // double FLO2 ( double x, double y ), the names of the user // supplied functions which evaluate the upper and lower // limits of the Z integration. // // Output, double QMULT_3D, the approximate integral of // the function. // { double c; double d; double e; double f; int i; int j; int k; int order = 16; double quad; double result; double volume; double w1; double w2; double w3; double *weight; double x; double *xtab; double y; double z; xtab = new double[order]; weight = new double[order]; legendre_set ( order, xtab, weight ); quad = 0.0; for ( i = 0; i < order; i++ ) { x = 0.5 * ( b - a ) * xtab[i] + 0.5 * ( b + a ); w1 = 0.5 * weight[i]; c = flo1 ( x ); d = fup1 ( x ); for ( j = 0; j < order; j++ ) { w2 = 0.5 * ( d - c ) * weight[j]; y = 0.5 * ( d - c ) * xtab[j] + 0.5 * ( d + c ); e = flo2 ( x, y ); f = fup2 ( x, y ); for ( k = 0; k < order; k++ ) { w3 = 0.5 * ( f - e ) * weight[k]; z = 0.5 * ( f - e ) * xtab[k] + 0.5 * ( f + e ); quad = quad + w1 * w2 * w3 * func ( x, y, z ); } } } volume = b - a; result = quad * volume; delete [] xtab; delete [] weight; return result; } //****************************************************************************80 double r8_asin ( double s ) //****************************************************************************80 // // Purpose: // // R8_ASIN computes the arc sine function, with argument truncation. // // Discussion: // // If you call your system ASIN routine with an input argument that is // outside the range [-1.0, 1.0 ], you may get an unpleasant surprise. // // In particular, you may get the value NaN returned. // // This routine truncates arguments outside the range, avoiding the problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double S, the argument. // // Output, double R8_ASIN, an angle whose sine is S. // { double value; s = r8_max ( s, -1.0 ); s = r8_min ( s, +1.0 ); value = asin ( s ); return value; } //****************************************************************************80 double r8_choose ( int n, int k ) //****************************************************************************80 // // Purpose: // // R8_CHOOSE computes the binomial coefficient C(N,K) as an R8. // // Discussion: // // The value is calculated in such a way as to avoid overflow and // roundoff. The calculation is done in R8 arithmetic. // // The formula used is: // // C(N,K) = N! / ( K! * (N-K)! ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 March 2008 // // Author: // // John Burkardt // // Reference: // // ML Wolfson, HV Wright, // Algorithm 160: // Combinatorial of M Things Taken N at a Time, // Communications of the ACM, // Volume 6, Number 4, April 1963, page 161. // // Parameters: // // Input, int N, K, the values of N and K. // // Output, double R8_CHOOSE, the number of combinations of N // things taken K at a time. // { int i; int mn; int mx; int value; mn = i4_min ( k, n - k ); if ( mn < 0 ) { value = 0.0; } else if ( mn == 0 ) { value = 1.0; } else { mx = i4_max ( k, n - k ); value = ( double ) ( mx + 1 ); for ( i = 2; i <= mn; i++ ) { value = ( value * ( double ) ( mx + i ) ) / ( double ) i; } } return value; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_factorial ( int n ) //****************************************************************************80 // // Purpose: // // R8_FACTORIAL computes the factorial of N. // // Discussion: // // factorial ( N ) = product ( 1 <= I <= N ) I // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 January 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the factorial function. // If N is less than 1, the function value is returned as 1. // // Output, double R8_FACTORIAL, the factorial of N. // { int i; double value; value = 1.0; for ( i = 1; i <= n; i++ ) { value = value * ( double ) ( i ); } return value; } //****************************************************************************80 double r8_gamma ( double x ) //****************************************************************************80 // // Purpose: // // R8_GAMMA evaluates Gamma(X) for a real argument. // // Discussion: // // This routine calculates the gamma function for a real argument X. // // Computation is based on an algorithm outlined in reference 1. // The program uses rational functions that approximate the gamma // function to at least 20 significant decimal digits. Coefficients // for the approximation over the interval (1,2) are unpublished. // Those for the approximation for 12 <= X are from reference 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2008 // // Author: // // Original FORTRAN77 version by William Cody, Laura Stoltz. // C++ version by John Burkardt. // // Reference: // // William Cody, // An Overview of Software Development for Special Functions, // in Numerical Analysis Dundee, 1975, // edited by GA Watson, // Lecture Notes in Mathematics 506, // Springer, 1976. // // John Hart, Ward Cheney, Charles Lawson, Hans Maehly, // Charles Mesztenyi, John Rice, Henry Thatcher, // Christoph Witzgall, // Computer Approximations, // Wiley, 1968, // LC: QA297.C64. // // Parameters: // // Input, double X, the argument of the function. // // Output, double R8_GAMMA, the value of the function. // { // // Coefficients for minimax approximation over (12, INF). // double c[7] = { -1.910444077728E-03, 8.4171387781295E-04, -5.952379913043012E-04, 7.93650793500350248E-04, -2.777777777777681622553E-03, 8.333333333333333331554247E-02, 5.7083835261E-03 }; double eps = 2.22E-16; double fact; int i; int n; double p[8] = { -1.71618513886549492533811E+00, 2.47656508055759199108314E+01, -3.79804256470945635097577E+02, 6.29331155312818442661052E+02, 8.66966202790413211295064E+02, -3.14512729688483675254357E+04, -3.61444134186911729807069E+04, 6.64561438202405440627855E+04 }; bool parity; double pi = 3.1415926535897932384626434; double q[8] = { -3.08402300119738975254353E+01, 3.15350626979604161529144E+02, -1.01515636749021914166146E+03, -3.10777167157231109440444E+03, 2.25381184209801510330112E+04, 4.75584627752788110767815E+03, -1.34659959864969306392456E+05, -1.15132259675553483497211E+05 }; double res; double sqrtpi = 0.9189385332046727417803297; double sum; double value; double xbig = 171.624; double xden; double xinf = 1.79E+308; double xminin = 2.23E-308; double xnum; double y; double y1; double ysq; double z; parity = false; fact = 1.0; n = 0; y = x; // // Argument is negative. // if ( y <= 0.0 ) { y = - x; y1 = ( double ) ( int ) ( y ); res = y - y1; if ( res != 0.0 ) { if ( y1 != ( double ) ( int ) ( y1 * 0.5 ) * 2.0 ) { parity = true; } fact = - pi / sin ( pi * res ); y = y + 1.0; } else { res = xinf; value = res; return value; } } // // Argument is positive. // if ( y < eps ) { // // Argument < EPS. // if ( xminin <= y ) { res = 1.0 / y; } else { res = xinf; value = res; return value; } } else if ( y < 12.0 ) { y1 = y; // // 0.0 < argument < 1.0. // if ( y < 1.0 ) { z = y; y = y + 1.0; } // // 1.0 < argument < 12.0. // Reduce argument if necessary. // else { n = ( int ) ( y ) - 1; y = y - ( double ) ( n ); z = y - 1.0; } // // Evaluate approximation for 1.0 < argument < 2.0. // xnum = 0.0; xden = 1.0; for ( i = 0; i < 8; i++ ) { xnum = ( xnum + p[i] ) * z; xden = xden * z + q[i]; } res = xnum / xden + 1.0; // // Adjust result for case 0.0 < argument < 1.0. // if ( y1 < y ) { res = res / y1; } // // Adjust result for case 2.0 < argument < 12.0. // else if ( y < y1 ) { for ( i = 1; i <= n; i++ ) { res = res * y; y = y + 1.0; } } } else { // // Evaluate for 12.0 <= argument. // if ( y <= xbig ) { ysq = y * y; sum = c[6]; for ( i = 0; i < 6; i++ ) { sum = sum / ysq + c[i]; } sum = sum / y - y + sqrtpi; sum = sum + ( y - 0.5 ) * log ( y ); res = exp ( sum ); } else { res = xinf; value = res; return value; } } // // Final adjustments and return. // if ( parity ) { res = - res; } if ( fact != 1.0 ) { res = fact / res; } value = res; return value; } //****************************************************************************80 double r8_gamma_log ( double x ) //****************************************************************************80 // // Purpose: // // R8_GAMMA_LOG calculates the natural logarithm of GAMMA ( X ) for positive X. // // Discussion: // // Computation is based on an algorithm outlined in references 1 and 2. // The program uses rational functions that theoretically approximate // LOG(GAMMA(X)) to at least 18 significant decimal digits. The // approximation for 12 < X is from reference 3, while approximations // for X < 12.0 are similar to those in reference 1, but are unpublished. // // The accuracy achieved depends on the arithmetic system, the compiler, // intrinsic functions, and proper selection of the machine-dependent // constants. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 May 2003 // // Author: // // Original FORTRAN77 version by William Cody, Laura Stoltz. // C++ version by John Burkardt. // // Reference: // // William Cody, Kenneth Hillstrom, // Chebyshev Approximations for the Natural Logarithm of the Gamma Function, // Mathematics of Computation, // Volume 21, Number 98, April 1967, pages 198-203. // // Kenneth Hillstrom, // ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, // May 1969. // // John Hart, Ward Cheney, Charles Lawson, Hans Maely, Charles Mesztenyi, // John Rice, Henry Thatcher, Christop Witzgall, // Computer Approximations, // Wiley, 1968, // LC: QA297.C64. // // Parameters: // // Input, double X, the argument of the Gamma function. X must be positive. // // Output, double R8_GAMMA_LOG, the logarithm of the Gamma function of X. // If X <= 0.0, or if overflow would occur, the program returns the // value XINF, the largest representable double precision number. // // // Explanation of machine-dependent constants // // BETA - radix for the real number representation. // // MAXEXP - the smallest positive power of BETA that overflows. // // XBIG - largest argument for which LN(GAMMA(X)) is representable // in the machine, i.e., the solution to the equation // LN(GAMMA(XBIG)) = BETA**MAXEXP. // // FRTBIG - Rough estimate of the fourth root of XBIG // // // Approximate values for some important machines are: // // BETA MAXEXP XBIG // // CRAY-1 (S.P.) 2 8191 9.62E+2461 // Cyber 180/855 // under NOS (S.P.) 2 1070 1.72E+319 // IEEE (IBM/XT, // SUN, etc.) (S.P.) 2 128 4.08E+36 // IEEE (IBM/XT, // SUN, etc.) (D.P.) 2 1024 2.55D+305 // IBM 3033 (D.P.) 16 63 4.29D+73 // VAX D-Format (D.P.) 2 127 2.05D+36 // VAX G-Format (D.P.) 2 1023 1.28D+305 // // // FRTBIG // // CRAY-1 (S.P.) 3.13E+615 // Cyber 180/855 // under NOS (S.P.) 6.44E+79 // IEEE (IBM/XT, // SUN, etc.) (S.P.) 1.42E+9 // IEEE (IBM/XT, // SUN, etc.) (D.P.) 2.25D+76 // IBM 3033 (D.P.) 2.56D+18 // VAX D-Format (D.P.) 1.20D+9 // VAX G-Format (D.P.) 1.89D+76 // { double c[7] = { -1.910444077728E-03, 8.4171387781295E-04, -5.952379913043012E-04, 7.93650793500350248E-04, -2.777777777777681622553E-03, 8.333333333333333331554247E-02, 5.7083835261E-03 }; double corr; double d1 = - 5.772156649015328605195174E-01; double d2 = 4.227843350984671393993777E-01; double d4 = 1.791759469228055000094023E+00; double frtbig = 1.42E+09; int i; double p1[8] = { 4.945235359296727046734888E+00, 2.018112620856775083915565E+02, 2.290838373831346393026739E+03, 1.131967205903380828685045E+04, 2.855724635671635335736389E+04, 3.848496228443793359990269E+04, 2.637748787624195437963534E+04, 7.225813979700288197698961E+03 }; double p2[8] = { 4.974607845568932035012064E+00, 5.424138599891070494101986E+02, 1.550693864978364947665077E+04, 1.847932904445632425417223E+05, 1.088204769468828767498470E+06, 3.338152967987029735917223E+06, 5.106661678927352456275255E+06, 3.074109054850539556250927E+06 }; double p4[8] = { 1.474502166059939948905062E+04, 2.426813369486704502836312E+06, 1.214755574045093227939592E+08, 2.663432449630976949898078E+09, 2.940378956634553899906876E+010, 1.702665737765398868392998E+011, 4.926125793377430887588120E+011, 5.606251856223951465078242E+011 }; double pnt68 = 0.6796875E+00; double q1[8] = { 6.748212550303777196073036E+01, 1.113332393857199323513008E+03, 7.738757056935398733233834E+03, 2.763987074403340708898585E+04, 5.499310206226157329794414E+04, 6.161122180066002127833352E+04, 3.635127591501940507276287E+04, 8.785536302431013170870835E+03 }; double q2[8] = { 1.830328399370592604055942E+02, 7.765049321445005871323047E+03, 1.331903827966074194402448E+05, 1.136705821321969608938755E+06, 5.267964117437946917577538E+06, 1.346701454311101692290052E+07, 1.782736530353274213975932E+07, 9.533095591844353613395747E+06 }; double q4[8] = { 2.690530175870899333379843E+03, 6.393885654300092398984238E+05, 4.135599930241388052042842E+07, 1.120872109616147941376570E+09, 1.488613728678813811542398E+010, 1.016803586272438228077304E+011, 3.417476345507377132798597E+011, 4.463158187419713286462081E+011 }; double res; double sqrtpi = 0.9189385332046727417803297E+00; double xbig = 4.08E+36; double xden; double xm1; double xm2; double xm4; double xnum; double xsq; // // Return immediately if the argument is out of range. // if ( x <= 0.0 || xbig < x ) { return r8_huge ( ); } if ( x <= r8_epsilon ( ) ) { res = -log ( x ); } else if ( x <= 1.5 ) { if ( x < pnt68 ) { corr = - log ( x ); xm1 = x; } else { corr = 0.0; xm1 = ( x - 0.5 ) - 0.5; } if ( x <= 0.5 || pnt68 <= x ) { xden = 1.0; xnum = 0.0; for ( i = 0; i < 8; i++ ) { xnum = xnum * xm1 + p1[i]; xden = xden * xm1 + q1[i]; } res = corr + ( xm1 * ( d1 + xm1 * ( xnum / xden ) ) ); } else { xm2 = ( x - 0.5 ) - 0.5; xden = 1.0; xnum = 0.0; for ( i = 0; i < 8; i++ ) { xnum = xnum * xm2 + p2[i]; xden = xden * xm2 + q2[i]; } res = corr + xm2 * ( d2 + xm2 * ( xnum / xden ) ); } } else if ( x <= 4.0 ) { xm2 = x - 2.0; xden = 1.0; xnum = 0.0; for ( i = 0; i < 8; i++ ) { xnum = xnum * xm2 + p2[i]; xden = xden * xm2 + q2[i]; } res = xm2 * ( d2 + xm2 * ( xnum / xden ) ); } else if ( x <= 12.0 ) { xm4 = x - 4.0; xden = - 1.0; xnum = 0.0; for ( i = 0; i < 8; i++ ) { xnum = xnum * xm4 + p4[i]; xden = xden * xm4 + q4[i]; } res = d4 + xm4 * ( xnum / xden ); } else { res = 0.0; if ( x <= frtbig ) { res = c[6]; xsq = x * x; for ( i = 0; i < 6; i++ ) { res = res / xsq + c[i]; } } res = res / x; corr = log ( x ); res = res + sqrtpi - 0.5 * corr; res = res + x * ( corr - 1.0 ); } return res; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 double r8_hyper_2f1 ( double a, double b, double c, double x ) //****************************************************************************80 // // Purpose: // // R8_HYPER_2F1 evaluates the hypergeometric function 2F1(A,B,C,X). // // Discussion: // // A bug was corrected. A line which read // c1 = - ( - 1.0, m ) * gc / ( gam * gbm * rm ); // was corrected to read // c1 = - pow ( - 1.0, m ) * gc / ( gam * gbm * rm ); // JVB, 05 July 2009. // // A minor bug was corrected. The HW variable, used in several places as // the "old" value of a quantity being iteratively improved, was not // being initialized. JVB, 11 February 2008. // // The FORTRAN77 original version of this routine is copyrighted by // Shanjie Zhang and Jianming Jin. However, they give permission to // incorporate this routine into a user program provided that the copyright // is acknowledged. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // Original FORTRAN77 version by Shanjie Zhang, Jianming Jin. // C++ version by John Burkardt. // // Reference: // // Shanjie Zhang, Jianming Jin, // Computation of Special Functions, // Wiley, 1996, // ISBN: 0-471-11963-6, // LC: QA351.C45 // // Parameters: // // Input, double A, B, C, X, the arguments of the function. // C must not be equal to a nonpositive integer. // X < 1. // // Output, double R8_HYPER_2F1, the value of the function. // { double a0; double aa; double bb; double c0; double c1; double el = 0.5772156649015329; double eps; double f0; double f1; double g0; double g1; double g2; double g3; double ga; double gabc; double gam; double gb; double gbm; double gc; double gca; double gcab; double gcb; double gm; double hf; double hw; int j; int k; bool l0; bool l1; bool l2; bool l3; bool l4; bool l5; int m; int nm; double pa; double pb; double pi = 3.141592653589793; double r; double r0; double r1; double rm; double rp; double sm; double sp; double sp0; double x1; l0 = ( c == ( int ) ( c ) ) && ( c < 0.0 ); l1 = ( 1.0 - x < 1.0E-15 ) && ( c - a - b <= 0.0 ); l2 = ( a == ( int ) ( a ) ) && ( a < 0.0 ); l3 = ( b == ( int ) ( b ) ) && ( b < 0.0 ); l4 = ( c - a == ( int ) ( c - a ) ) && ( c - a <= 0.0 ); l5 = ( c - b == ( int ) ( c - b ) ) && ( c - b <= 0.0 ); if ( l0 ) { cerr << "\n"; cerr << "R8_HYPER_2F1 - Fatal error!\n"; cerr << " The hypergeometric series is divergent.\n"; cerr << " C is integral and negative.\n"; cerr << " C = " << c << "\n"; exit ( 1 ); } if ( l1 ) { cerr << "\n"; cerr << "R8_HYPER_2F1 - Fatal error!\n"; cerr << " The hypergeometric series is divergent.\n"; cerr << " 1 - X < 0, C - A - B <= 0\n"; cerr << " A = " << a << "\n"; cerr << " B = " << b << "\n"; cerr << " C = " << c << "\n"; cerr << " X = " << x << "\n"; exit ( 1 ); } if ( 0.95 < x ) { eps = 1.0E-08; } else { eps = 1.0E-15; } if ( x == 0.0 || a == 0.0 || b == 0.0 ) { hf = 1.0; return hf; } else if ( 1.0 - x == eps && 0.0 < c - a - b ) { gc = r8_gamma ( c ); gcab = r8_gamma ( c - a - b ); gca = r8_gamma ( c - a ); gcb = r8_gamma ( c - b ); hf = gc * gcab / ( gca * gcb ); return hf; } else if ( 1.0 + x <= eps && fabs ( c - a + b - 1.0 ) <= eps ) { g0 = sqrt ( pi ) * pow ( 2.0, - a ); g1 = r8_gamma ( c ); g2 = r8_gamma ( 1.0 + a / 2.0 - b ); g3 = r8_gamma ( 0.5 + 0.5 * a ); hf = g0 * g1 / ( g2 * g3 ); return hf; } else if ( l2 || l3 ) { if ( l2 ) { nm = ( int ) ( fabs ( a ) ); } if ( l3 ) { nm = ( int ) ( fabs ( b ) ); } hf = 1.0; r = 1.0; for ( k = 1; k <= nm; k++ ) { r = r * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( c + k - 1.0 ) ) * x; hf = hf + r; } return hf; } else if ( l4 || l5 ) { if ( l4 ) { nm = ( int ) ( fabs ( c - a ) ); } if ( l5 ) { nm = ( int ) ( fabs ( c - b ) ); } hf = 1.0; r = 1.0; for ( k = 1; k <= nm; k++ ) { r = r * ( c - a + k - 1.0 ) * ( c - b + k - 1.0 ) / ( k * ( c + k - 1.0 ) ) * x; hf = hf + r; } hf = pow ( 1.0 - x, c - a - b ) * hf; return hf; } aa = a; bb = b; x1 = x; if ( x < 0.0 ) { x = x / ( x - 1.0 ); if ( a < c && b < a && 0.0 < b ) { a = bb; b = aa; } b = c - b; } if ( 0.75 <= x ) { gm = 0.0; if ( fabs ( c - a - b - ( int ) ( c - a - b ) ) < 1.0E-15 ) { m = ( int ) ( c - a - b ); ga = r8_gamma ( a ); gb = r8_gamma ( b ); gc = r8_gamma ( c ); gam = r8_gamma ( a + m ); gbm = r8_gamma ( b + m ); pa = r8_psi ( a ); pb = r8_psi ( b ); if ( m != 0 ) { gm = 1.0; } for ( j = 1; j <= abs ( m ) - 1; j++ ) { gm = gm * j; } rm = 1.0; for ( j = 1; j <= abs ( m ); j++ ) { rm = rm * j; } f0 = 1.0; r0 = 1.0;; r1 = 1.0; sp0 = 0.0;; sp = 0.0; if ( 0 <= m ) { c0 = gm * gc / ( gam * gbm ); c1 = - gc * pow ( x - 1.0, m ) / ( ga * gb * rm ); for ( k = 1; k <= m - 1; k++ ) { r0 = r0 * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( k - m ) ) * ( 1.0 - x ); f0 = f0 + r0; } for ( k = 1; k <= m; k++ ) { sp0 = sp0 + 1.0 / ( a + k - 1.0 ) + 1.0 / ( b + k - 1.0 ) - 1.0 / ( double ) ( k ); } f1 = pa + pb + sp0 + 2.0 * el + log ( 1.0 - x ); hw = f1; for ( k = 1; k <= 250; k++ ) { sp = sp + ( 1.0 - a ) / ( k * ( a + k - 1.0 ) ) + ( 1.0 - b ) / ( k * ( b + k - 1.0 ) ); sm = 0.0; for ( j = 1; j <= m; j++ ) { sm = sm + ( 1.0 - a ) / ( ( j + k ) * ( a + j + k - 1.0 ) ) + 1.0 / ( b + j + k - 1.0 ); } rp = pa + pb + 2.0 * el + sp + sm + log ( 1.0 - x ); r1 = r1 * ( a + m + k - 1.0 ) * ( b + m + k - 1.0 ) / ( k * ( m + k ) ) * ( 1.0 - x ); f1 = f1 + r1 * rp; if ( fabs ( f1 - hw ) < fabs ( f1 ) * eps ) { break; } hw = f1; } hf = f0 * c0 + f1 * c1; } else if ( m < 0 ) { m = - m; c0 = gm * gc / ( ga * gb * pow ( 1.0 - x, m ) ); c1 = - pow ( - 1.0, m ) * gc / ( gam * gbm * rm ); for ( k = 1; k <= m - 1; k++ ) { r0 = r0 * ( a - m + k - 1.0 ) * ( b - m + k - 1.0 ) / ( k * ( k - m ) ) * ( 1.0 - x ); f0 = f0 + r0; } for ( k = 1; k <= m; k++ ) { sp0 = sp0 + 1.0 / ( double ) ( k ); } f1 = pa + pb - sp0 + 2.0 * el + log ( 1.0 - x ); hw = f1; for ( k = 1; k <= 250; k++ ) { sp = sp + ( 1.0 - a ) / ( k * ( a + k - 1.0 ) ) + ( 1.0 - b ) / ( k * ( b + k - 1.0 ) ); sm = 0.0; for ( j = 1; j <= m; j++ ) { sm = sm + 1.0 / ( double ) ( j + k ); } rp = pa + pb + 2.0 * el + sp - sm + log ( 1.0 - x ); r1 = r1 * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( m + k ) ) * ( 1.0 - x ); f1 = f1 + r1 * rp; if ( fabs ( f1 - hw ) < fabs ( f1 ) * eps ) { break; } hw = f1; } hf = f0 * c0 + f1 * c1; } } else { ga = r8_gamma ( a ); gb = r8_gamma ( b ); gc = r8_gamma ( c ); gca = r8_gamma ( c - a ); gcb = r8_gamma ( c - b ); gcab = r8_gamma ( c - a - b ); gabc = r8_gamma ( a + b - c ); c0 = gc * gcab / ( gca * gcb ); c1 = gc * gabc / ( ga * gb ) * pow ( 1.0 - x, c - a - b ); hf = 0.0; hw = hf; r0 = c0; r1 = c1; for ( k = 1; k <= 250; k++ ) { r0 = r0 * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( a + b - c + k ) ) * ( 1.0 - x ); r1 = r1 * ( c - a + k - 1.0 ) * ( c - b + k - 1.0 ) / ( k * ( c - a - b + k ) ) * ( 1.0 - x ); hf = hf + r0 + r1; if ( fabs ( hf - hw ) < fabs ( hf ) * eps ) { break; } hw = hf; } hf = hf + c0 + c1; } } else { a0 = 1.0; if ( a < c && c < 2.0 * a && b < c && c < 2.0 * b ) { a0 = pow ( 1.0 - x, c - a - b ); a = c - a; b = c - b; } hf = 1.0; hw = hf; r = 1.0; for ( k = 1; k <= 250; k++ ) { r = r * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( c + k - 1.0 ) ) * x; hf = hf + r; if ( fabs ( hf - hw ) <= fabs ( hf ) * eps ) { break; } hw = hf; } hf = a0 * hf; } if ( x1 < 0.0 ) { x = x1; c0 = 1.0 / pow ( 1.0 - x, aa ); hf = c0 * hf; } a = aa; b = bb; if ( 120 < k ) { cerr << "\n"; cerr << "R8_HYPER_2F1 - Warning!\n"; cerr << " A large number of iterations were needed.\n"; cerr << " The accuracy of the results should be checked.\n"; } return hf; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 double r8_mop ( int i ) //****************************************************************************80 // // Purpose: // // R8_MOP returns the I-th power of -1 as an R8 value. // // Discussion: // // An R8 is an double value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the power of -1. // // Output, double R8_MOP, the I-th power of -1. // { double value; if ( ( i % 2 ) == 0 ) { value = 1.0; } else { value = -1.0; } return value; } //****************************************************************************80 double r8_psi ( double xx ) //****************************************************************************80 // // Purpose: // // R8_PSI evaluates the function Psi(X). // // Discussion: // // This routine evaluates the logarithmic derivative of the // Gamma function, // // PSI(X) = d/dX ( GAMMA(X) ) / GAMMA(X) // = d/dX LN ( GAMMA(X) ) // // for real X, where either // // - XMAX1 < X < - XMIN, and X is not a negative integer, // // or // // XMIN < X. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 February 2008 // // Author: // // Original FORTRAN77 version by William Cody. // C++ version by John Burkardt. // // Reference: // // William Cody, Anthony Strecok, Henry Thacher, // Chebyshev Approximations for the Psi Function, // Mathematics of Computation, // Volume 27, Number 121, January 1973, pages 123-127. // // Parameters: // // Input, double XX, the argument of the function. // // Output, double R8_PSI, the value of the function. // { double aug; double den; int i; int n; int nq; double one = 1.0; double p1[9] = { 4.5104681245762934160E-03, 5.4932855833000385356, 3.7646693175929276856E+02, 7.9525490849151998065E+03, 7.1451595818951933210E+04, 3.0655976301987365674E+05, 6.3606997788964458797E+05, 5.8041312783537569993E+05, 1.6585695029761022321E+05 }; double p2[7] = { -2.7103228277757834192, -1.5166271776896121383E+01, -1.9784554148719218667E+01, -8.8100958828312219821, -1.4479614616899842986, -7.3689600332394549911E-02, -6.5135387732718171306E-21 }; double piov4 = 0.78539816339744830962; double q1[8] = { 9.6141654774222358525E+01, 2.6287715790581193330E+03, 2.9862497022250277920E+04, 1.6206566091533671639E+05, 4.3487880712768329037E+05, 5.4256384537269993733E+05, 2.4242185002017985252E+05, 6.4155223783576225996E-08 }; double q2[6] = { 4.4992760373789365846E+01, 2.0240955312679931159E+02, 2.4736979003315290057E+02, 1.0742543875702278326E+02, 1.7463965060678569906E+01, 8.8427520398873480342E-01 }; double sgn; double upper; double value; double w; double x; double x01 = 187.0; double x01d = 128.0; double x02 = 6.9464496836234126266E-04; double xinf = 1.70E+38; double xlarge = 2.04E+15; double xmax1 = 3.60E+16; double xmin1 = 5.89E-39; double xsmall = 2.05E-09; double z; double zero = 0.0; x = xx; w = fabs ( x ); aug = zero; // // Check for valid arguments, then branch to appropriate algorithm. // if ( xmax1 <= - x || w < xmin1 ) { if ( zero < x ) { value = - xinf; } else { value = xinf; } return value; } if ( x < 0.5 ) { // // X < 0.5, use reflection formula: psi(1-x) = psi(x) + pi * cot(pi*x) // Use 1/X for PI*COTAN(PI*X) when XMIN1 < |X| <= XSMALL. // if ( w <= xsmall ) { aug = - one / x; } // // Argument reduction for cotangent. // else { if ( x < zero ) { sgn = piov4; } else { sgn = - piov4; } w = w - ( double ) ( ( int ) ( w ) ); nq = ( int ) ( w * 4.0 ); w = 4.0 * ( w - ( double ) ( nq ) * 0.25 ); // // W is now related to the fractional part of 4.0 * X. // Adjust argument to correspond to values in the first // quadrant and determine the sign. // n = nq / 2; if ( n + n != nq ) { w = one - w; } z = piov4 * w; if ( ( n % 2 ) != 0 ) { sgn = - sgn; } // // Determine the final value for -pi * cotan(pi*x). // n = ( nq + 1 ) / 2; if ( ( n % 2 ) == 0 ) { // // Check for singularity. // if ( z == zero ) { if ( zero < x ) { value = -xinf; } else { value = xinf; } return value; } aug = sgn * ( 4.0 / tan ( z ) ); } else { aug = sgn * ( 4.0 * tan ( z ) ); } } x = one - x; } // // 0.5 <= X <= 3.0. // if ( x <= 3.0 ) { den = x; upper = p1[0] * x; for ( i = 1; i <= 7; i++ ) { den = ( den + q1[i-1] ) * x; upper = ( upper + p1[i]) * x; } den = ( upper + p1[8] ) / ( den + q1[7] ); x = ( x - x01 / x01d ) - x02; value = den * x + aug; return value; } // // 3.0 < X. // if ( x < xlarge ) { w = one / ( x * x ); den = w; upper = p2[0] * w; for ( i = 1; i <= 5; i++ ) { den = ( den + q2[i-1] ) * w; upper = ( upper + p2[i] ) * w; } aug = ( upper + p2[6] ) / ( den + q2[5] ) - 0.5 / x + aug; } value = aug + log ( x ); return value; } //****************************************************************************80 void r8_swap ( double *x, double *y ) //****************************************************************************80 // // Purpose: // // R8_SWAP switches two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input/output, double *X, *Y. On output, the values of X and // Y have been interchanged. // { double z; z = *x; *x = *y; *y = z; return; } //****************************************************************************80 void r8_swap3 ( double *x, double *y, double *z ) //****************************************************************************80 // // Purpose: // // R8_SWAP3 swaps three R8's. // // Example: // // Input: // // X = 1, Y = 2, Z = 3 // // Output: // // X = 2, Y = 3, Z = 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input/output, double *X, *Y, *Z, three values to be swapped. // { double w; w = *x; *x = *y; *y = *z; *z = w; return; } //****************************************************************************80 double r8_uniform_01 ( int *seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 is a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = 16807 * seed mod ( 2**31 - 1 ) // unif = seed / ( 2**31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Parameters: // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, strictly between // 0 and 1. // { int k; double r; k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } r = ( double ) ( *seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double r8ge_det ( int n, double a_lu[], int pivot[] ) //****************************************************************************80 // // Purpose: // // R8GE_DET computes the determinant of a matrix factored by R8GE_FA or R8GE_TRF. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 March 2004 // // Author: // // John Burkardt // // Reference: // // Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, // LINPACK User's Guide, // SIAM, 1979 // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A_LU[N*N], the LU factors from R8GE_FA or R8GE_TRF. // // Input, int PIVOT[N], as computed by R8GE_FA or R8GE_TRF. // // Output, double R8GE_DET, the determinant of the matrix. // { double det; int i; det = 1.0; for ( i = 1; i <= n; i++ ) { det = det * a_lu[i-1+(i-1)*n]; if ( pivot[i-1] != i ) { det = -det; } } return det; } //****************************************************************************80 int r8ge_fa ( int n, double a[], int pivot[] ) //****************************************************************************80 // // Purpose: // // R8GE_FA performs a LINPACK-style PLU factorization of a R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // R8GE_FA is a simplified version of the LINPACK routine SGEFA. // // The two dimensional array is stored by columns in a one dimensional // array. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Reference: // // Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, // LINPACK User's Guide, // SIAM, 1979 // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input/output, double A[N*N], the matrix to be factored. // On output, A contains an upper triangular matrix and the multipliers // which were used to obtain it. The factorization can be written // A = L * U, where L is a product of permutation and unit lower // triangular matrices and U is upper triangular. // // Output, int PIVOT[N], a vector of pivot indices. // // Output, int R8GE_FA, singularity flag. // 0, no singularity detected. // nonzero, the factorization failed on the INFO-th step. // { int i; int j; int k; int l; double t; // for ( k = 1; k <= n-1; k++ ) { // // Find L, the index of the pivot row. // l = k; for ( i = k+1; i <= n; i++ ) { if ( fabs ( a[l-1+(k-1)*n] ) < fabs ( a[i-1+(k-1)*n] ) ) { l = i; } } pivot[k-1] = l; // // If the pivot index is zero, the algorithm has failed. // if ( a[l-1+(k-1)*n] == 0.0 ) { cerr << "\n"; cerr << "R8GE_FA - Fatal error!\n"; cerr << " Zero pivot on step " << k << "\n"; return k; } // // Interchange rows L and K if necessary. // if ( l != k ) { t = a[l-1+(k-1)*n]; a[l-1+(k-1)*n] = a[k-1+(k-1)*n]; a[k-1+(k-1)*n] = t; } // // Normalize the values that lie below the pivot entry A(K,K). // for ( i = k+1; i <= n; i++ ) { a[i-1+(k-1)*n] = -a[i-1+(k-1)*n] / a[k-1+(k-1)*n]; } // // Row elimination with column indexing. // for ( j = k+1; j <= n; j++ ) { if ( l != k ) { t = a[l-1+(j-1)*n]; a[l-1+(j-1)*n] = a[k-1+(j-1)*n]; a[k-1+(j-1)*n] = t; } for ( i = k+1; i <= n; i++ ) { a[i-1+(j-1)*n] = a[i-1+(j-1)*n] + a[i-1+(k-1)*n] * a[k-1+(j-1)*n]; } } } pivot[n-1] = n; if ( a[n-1+(n-1)*n] == 0.0 ) { cerr << "\n"; cerr << "R8GE_FA - Fatal error!\n"; cerr << " Zero pivot on step " << n << "\n"; return n; } return 0; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double r8vec_even_select ( int n, double xlo, double xhi, int ival ) //****************************************************************************80 // // Purpose: // // R8VEC_EVEN_SELECT returns the I-th of N evenly spaced values in [ XLO, XHI ]. // // Discussion: // // XVAL = ( (N-IVAL) * XLO + (IVAL-1) * XHI ) / ( N - 1 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of values. // // Input, double XLO, XHI, the low and high values. // // Input, int IVAL, the index of the desired point. // IVAL is normally between 1 and N, but may be any integer value. // // Output, double R8VEC_EVEN_SELECT, the IVAL-th of N evenly spaced values // between XLO and XHI. // Unless N = 1, X(1) = XLO and X(N) = XHI. // If N = 1, then X(1) = 0.5*(XLO+XHI). // { double xval; if ( n == 1 ) { xval = 0.5 * ( xlo + xhi ); } else { xval = ( ( double ) ( n - ival ) * xlo + ( double ) ( ival - 1 ) * xhi ) / ( double ) ( n - 1 ); } return xval; } //****************************************************************************80 bool r8vec_mirror_next ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MIRROR_NEXT steps through all sign variations of an R8VEC. // // Discussion: // // In normal use, the user would set every element of A to be positive. // The routine will take the input value of A, and output a copy in // which the signs of one or more entries have been changed. Repeatedly // calling the routine with the output from the previous call will generate // every distinct "variation" of A; that is, all possible sign variations. // // When the output variable DONE is TRUE (or equal to 1), then the // output value of A_NEW is the last in the series. // // Note that A may have some zero values. The routine will essentially // ignore such entries; more exactly, it will not stupidly assume that -0 // is a proper "variation" of 0. // // Also, it is possible to call this routine with the signs of A set // in any way you like. The routine will operate properly, but it // will nonethess terminate when it reaches the value of A in which // every nonzero entry has negative sign. // // // More efficient algorithms using the Gray code seem to require internal // memory in the routine, which is not one of MATLAB's strong points, // or the passing back and forth of a "memory array", or the use of // global variables, or unnatural demands on the user. This form of // the routine is about as clean as I can make it. // // Example: // // Input Output // --------- -------------- // A A DONE // --------- -------- ---- // 1 2 3 -1 2 3 false // -1 2 3 1 -2 3 false // 1 -2 3 -1 -2 3 false // -1 -2 3 1 2 -3 false // 1 2 -3 -1 2 -3 false // -1 2 -3 1 -2 -3 false // 1 -2 -3 -1 -2 -3 false // -1 -2 -3 1 2 3 true // // 1 0 3 -1 0 3 false // -1 0 3 1 0 -3 false // 1 0 -3 -1 0 -3 false // -1 0 -3 1 0 3 true // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, double A[N], a vector of real numbers. On // output, some signs have been changed. // // Output, bool R8VEC_MIRROR_NEXT, is TRUE if the input vector A was // the last element // in the series (every entry was nonpositive); the output vector is reset // so that all entries are nonnegative, but presumably the ride is over. // { bool done; int i; int positive; // // Seek the first strictly positive entry of A. // positive = -1; for ( i = 0; i < n; i++ ) { if ( 0.0 < a[i] ) { positive = i; break; } } // // If there is no strictly positive entry of A, there is no successor. // if ( positive == -1 ) { for ( i = 0; i < n; i++ ) { a[i] = - a[i]; } done = true; return done; } // // Otherwise, negate A up to the positive entry. // for ( i = 0; i <= positive; i++ ) { a[i] = - a[i]; } done = false; return done; } //****************************************************************************80 void r8vec_print ( int n, double a[], char *title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, char *TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i <= n-1; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 void r8vec_zero ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_ZERO zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double A[N], a vector of zeroes. // { int i; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return; } //****************************************************************************80 double rectangle_3d ( double func ( double x, double y, double z ), double a[3], double b[3] ) //****************************************************************************80 // // Purpose: // // RECTANGLE_3D approximates an integral inside a rectangular block in 3D. // // Integration region: // // A(1) <= X <= B(1), // and // A(2) <= Y <= B(2), // and // A(3) <= Z <= B(3). // // Discussion: // // An 8 point third degree formula is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function. // // Input, double A[3], B[3], the lower and upper limits // for X, Y and Z. // // Output, double RECTANGLE_3D, the approximate integral of the function. // { int i; int j; int k; double quad; double result; double sqr3; double volume; double w; double x; double y; double z; sqr3 = 1.0 / sqrt ( 3.0 ); w = 1.0 / 8.0; quad = 0.0; for ( i = 1; i <= 2; i++ ) { x = sqr3 * i4_power ( -1, i ); x = 0.5 * ( ( 1.0 - x ) * b[0] + ( 1.0 + x ) * a[0] ); for ( j = 1; j <= 2; j++ ) { y = sqr3 * i4_power ( -1, j ); y = 0.5 * ( ( 1.0 - y ) * b[1] + ( 1.0 + y ) * a[1] ); for ( k = 1; k <= 2; k++ ) { z = sqr3 * i4_power ( -1, k ); z = 0.5 * ( ( 1.0 - z ) * b[2] + ( 1.0 + z ) * a[2] ); quad = quad + w * func ( x, y, z ); } } } volume = ( b[0] - a[0] ) * ( b[1] - a[1] ) * ( b[2] - a[2] ); result = volume * quad; return result; } //****************************************************************************80 double rectangle_sub_2d ( double func ( double x, double y ), double xval[2], double yval[2], int nsub[2], int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // // Purpose: // // RECTANGLE_SUB_2D carries out a composite quadrature over a rectangle in 2D. // // Integration region: // // XVAL(1) <= X <= XVAL(2), // and // YVAL(1) <= Y <= YVAL(2). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the function // to be integrated. // // Input, double XVAL[2], the left and right X coordinates. // // Input, double YVAL[2], the lower and upper Y coordinates. // // Input, int NSUB[2], the number of subintervals to use in the X // and Y directions. // // Input, int ORDER, the order of the rule. // // Input, double XTAB[ORDER], YTAB[ORDER], the abscissas. // // Input, double WEIGHT[ORDER], the weights of the rule. // // Output, double RECTANGLE_SUB_2D, the approximate integral of the function. // { double a[2]; double b[2]; int i; int j; int k; double quad_sub; double result; double result_sub; double volume; double volume_sub; double x; double xhi; double xlo; double y; double yhi; double ylo; a[0] = xval[0]; a[1] = yval[0]; b[0] = xval[1]; b[1] = yval[1]; for ( i = 0; i < 2; i++ ) { if ( a[i] == b[i] ) { result = 0.0; return result; } } for ( i = 0; i < 2; i++ ) { if ( nsub[i] < 1 ) { cerr << "\n"; cerr << "RECTANGLE_SUB_2D - Fatal error!\n"; cerr << " Nonpositive value of NSUB[" << i << "] = " << nsub[i] << "\n"; exit ( 1 ); } } // // Break up the X interval into NSUB(1) subintervals. // volume = 0.0; result = 0.0; for ( i = 1; i <= nsub[0]; i++ ) { xlo = r8vec_even_select ( nsub[0]+1, a[0], b[0], i ); xhi = r8vec_even_select ( nsub[0]+1, a[0], b[0], i + 1 ); // // Break up the Y interval into NSUB(2) subintervals. // for ( j = 1; j <= nsub[1]; j++ ) { ylo = r8vec_even_select ( nsub[1]+1, a[1], b[1], j ); yhi = r8vec_even_select ( nsub[1]+1, a[1], b[1], j+1 ); quad_sub = 0.0; for ( k = 0; k < order; k++ ) { x = xlo + 0.5 * ( xtab[k] + 1.0 ) * ( xhi - xlo ); y = ylo + 0.5 * ( ytab[k] + 1.0 ) * ( yhi - ylo ); quad_sub = quad_sub + weight[k] * func ( x, y ) / 4.0; } volume_sub = ( xhi - xlo ) * ( yhi - ylo ); result_sub = quad_sub * volume_sub; volume = volume + volume_sub; result = result + result_sub; } } return result; } //****************************************************************************80 void rule_adjust ( double a, double b, double c, double d, int order, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // RULE_ADJUST maps a quadrature rule from [A,B] to [C,D]. // // Discussion: // // Most quadrature rules are defined on a special interval, like // [-1,1] or [0,1]. To integrate over an interval, the abscissas // and weights must be adjusted. This can be done on the fly, // or by calling this routine. // // If the weight function W(X) is not 1, then the W vector will // require further adjustment by the user. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the endpoints of the definition interval. // // Input, double C, D, the endpoints of the integration interval. // // Input, int ORDER, the number of abscissas and weights. // // Input/output, double X[ORDER], W[ORDER], the abscissas // and weights. // { int i; for ( i = 0; i < order; i++ ) { x[i] = ( ( b - x[i] ) * c + ( x[i] - a ) * d ) / ( b - a ); } for ( i = 0; i < order; i++ ) { w[i] = ( ( d - c ) / ( b - a ) ) * w[i]; } return; } //****************************************************************************80 int s_len_trim ( char *s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 April 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, a pointer to a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; char *t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' ) { return n; } t--; n--; } return n; } //****************************************************************************80 double simplex_nd ( double func ( int n, double x[] ), int n, double v[] ) //****************************************************************************80 // // Purpose: // // SIMPLEX_ND approximates an integral inside a simplex in ND. // // Discussion: // // An N+1 point second degree formula is used. // // The integration region is the simplex bounded by the origin and a // convex combination of N points. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function which evaluates F(X). // // Input, int N, the dimension of the space. // // Input/output, double V[N*(N+1)]. On input, each of the // N+1 columns of V contains the N coordinates of one of the // "corners" of the simplex in entries 1 through N, with // the last column being left free. // On output, V has been overwritten in the process of // computing the volume of the simplex. // // Output, double SIMPLEX_ND, the approximate integral of the function. // { double c; int i; int j; double quad; double result; double s; double volume; double w; double *x; x = new double[n]; c = 1.0 / sqrt ( ( double ) ( n + 2 ) ); w = 1.0 / ( double ) ( n + 1 ); for ( j = 0; j < n; j++ ) { s = 0.0; for ( i = 0; i < n + 1; i++ ) { s = s + v[i+j*n]; } x[j] = w * ( 1.0 - c ) * s; } quad = 0.0; for ( j = 0; j < n + 1; j++ ) { for ( i = 0; i < n; i++ ) { x[i] = x[i] + c * v[i+j*n]; } quad = quad + w * func ( n, x ); for ( i = 0; i < n; i++ ) { x[i] = x[i] - c * v[i+j*n]; } } volume = simplex_volume_nd ( n, v ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double simplex_unit_01_nd ( double func ( int n, double x[] ), int n ) //****************************************************************************80 // // Purpose: // // SIMPLEX_UNIT_01_ND approximates an integral inside the unit simplex in ND. // // Integration region: // // 0 <= X(1:N), // and // sum ( X(1:N) ) <= 1. // // Discussion: // // A 1 point formula of degree 1 is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2008 // // Author: // // John Burkardt // // Reference: // // Axel Grundmann, Michael Moeller, // Invariant Integration Formulas for the N-Simplex by Combinatorial Methods, // SIAM Journal on Numerical Analysis, // Volume 15, Number 2, April 1978, pages 282-290. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function to be integrated. // // Input, int N, the dimension of the space. // // Output, double RESULT, the approximate integral of the function. // { double coef = 1.0; int i; double quad; double result; double volume; double *x; x = new double[n]; quad = 0.0; for ( i = 0; i < n; i++ ) { x[i] = 1.0 / ( double ) ( n ); } quad = quad + coef * func ( n, x ); volume = simplex_unit_volume_nd ( n ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double simplex_unit_03_nd ( double func ( int n, double x[] ), int n ) //****************************************************************************80 // // Purpose: // // SIMPLEX_UNIT_03_ND approximates an integral inside the unit simplex in ND. // // Integration region: // // 0 <= X(1:N), // and // sum ( X(1:N) ) <= 1. // // Discussion: // // An N+2 point formula of degree 3 is used. This is Stroud TN:3-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 March 2008 // // Author: // // John Burkardt // // Reference: // // Axel Grundmann, Michael Moeller, // Invariant Integration Formulas for the N-Simplex by Combinatorial Methods, // SIAM Journal on Numerical Analysis, // Volume 15, Number 2, April 1978, pages 282-290. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function which is to be integrated. // // Input, int N, the dimension of the space. // // Output, double SIMPLEX_UNIT_03_ND, the approximate integral of the function. // { double a; double b; double coef; int i; double quad; double result; double volume; double *x; x = new double[n]; quad = 0.0; for ( i = 0; i < n; i++ ) { x[i] = 1.0 / ( double ) ( n + 1 ); } coef = -0.25 * ( double ) ( ( n + 1 ) * ( n + 1 ) ) / ( double ) ( n + 2 ); quad = quad + coef * func ( n, x ); a = 1.0 / ( double ) ( n + 3 ); b = 3.0 / ( double ) ( n + 3 ); for ( i = 0; i < n; i++ ) { x[i] = a; } coef = 0.25 * ( double ) ( ( n + 3 ) * ( n + 3 ) ) / ( double ) ( ( n + 1 ) * ( n + 2 ) ); quad = quad + coef * func ( n, x ); for ( i = 0; i < n; i++ ) { x[i] = b; quad = quad + coef * func ( n, x ); x[i] = a; } volume = simplex_unit_volume_nd ( n ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double simplex_unit_05_nd ( double func ( int n, double x[] ), int n ) //****************************************************************************80 // // Purpose: // // SIMPLEX_UNIT_05_ND approximates an integral inside the unit simplex in ND. // // Integration region: // // 0 <= X(1:N), // and // sum ( X(1:N) ) <= 1. // // Discussion: // // An N^2 + 3 N + 3 point formula of degree 5 is used. This is // Stroud formula TN:5-1. // // (For N = 2, the number of points is actually only 7, and // for N = 3, the number of points is actually only 15.) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // A Fifth Degree Integration Formula for the N-Simplex, // SIAM Journal on Numerical Analysis, // Volume 6, Number 1, March 1969. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function is to be integrated. // // Input, int N, the dimension of the space. For this routine, // it must be the case that 2 <= N <= 16. // // Output, double SIMPLEX_UNIT_05_ND, the approximate integral of the function. // { double coef1[16] = { 0.0, 0.225, 0.118518518519, 0.0631521898883, 0.235714285714, 0.791575476992, 1.85798728021, 3.53666958042, 5.90844340844, 9.03765432098, 12.9758241758, 17.7645108738, 23.4375030259, 30.0224941950, 37.5423613501, 46.0161454949 }; double coef21[16] = { 0.0, 0.12593918054483, 0.0719370837790, 0.0470456145702, 0.0333009774677, 0.0248633014592, 0.0192679696358, 0.0153322153879, 0.0124316229901, 0.0102112988361, 0.00845730697460, 0.00703433430999, 0.00585330520067, 0.00485356735291, 0.00399261092720, 0.00323988713017 }; double coef22[16] = { 0.0, 0.13239415278851, 0.0690682072263, 0.0371530185868, -0.0719253160920, -0.264323879461, -0.537926779961, -0.886895605701, -1.30409181465, -1.78227048964, -2.31462336314, -2.89499045158, -3.51790849765, -4.17858310668, -4.87282884913, -5.59699944261 }; double coef31[16] = { 0.0, 0.0, 0.0529100529100, 0.0261368740713, 0.0499020181331, 0.0782233395867, 0.109041040862, 0.140874828568, 0.172735353396, 0.203992490408, 0.234263814181, 0.263332763315, 0.291091849264, 0.317504208212, 0.342577872069, 0.366348654344 }; double coef32[16] = { 0.0, 0.0, 0.0, 0.0254485903613, 0.0165000982690, 0.0115218303668, 0.00850478779483, 0.00655297510968, 0.00522372456259, 0.00428017828134, 0.00358722367033, 0.00306362964360, 0.00265836687133, 0.00233816221525, 0.00208061510846, 0.00187022027571 }; int i; int j; double quad; double r1; double r2; double result; double s1; double s2; double u1; double u2; double v1; double v2; double volume; double *x; result = 0.0; if ( n < 2 || 16 < n ) { cerr << "\n"; cerr << "SIMPLEX_UNIT_05_ND - Fatal error!\n"; cerr << " Input spatial dimension N out of range.\n"; cerr << " N = " << n << "\n"; exit ( 1 ); } x = new double[n]; quad = 0.0; // // S1 // for ( i = 0; i < n; i++ ) { x[i] = 1.0 / ( double ) ( n + 1 ); } quad = quad + coef1[n-1] * func ( n, x ); // // S21 // r1 = ( ( double ) ( n + 4 ) - sqrt ( 15.0 ) ) / ( double ) ( n * n + 8 * n + 1 ); s1 = 1.0 - ( double ) ( n ) * r1; for ( i = 0; i < n; i++ ) { x[i] = r1; } for ( i = 0; i < n + 1; i++ ) { quad = quad + coef21[n-1] * func ( n, x ); if ( 0 < i ) { x[i-1] = r1; } if ( i < n ) { x[i] = s1; } } // // S22 // r2 = ( ( double ) ( n + 4 ) + sqrt ( 15.0 ) ) / ( double ) ( n * n + 8 * n + 1 ); s2 = 1.0 - ( double ) ( n ) * r2; for ( i = 0; i < n; i++ ) { x[i] = r2; } for ( i = 0; i < n + 1; i++ ) { quad = quad + coef22[n-1] * func ( n, x ); if ( 0 < i ) { x[i-1] = r2; } if ( i < n ) { x[i] = s2; } } // // S31 // u1 = ( ( double ) ( n + 7 ) + 2.0 * sqrt ( 15.0 ) ) / ( double ) ( n * n + 14 * n - 11 ); v1 = ( ( double ) ( 4 * n - 2 ) - ( double ) ( n - 1 ) * sqrt ( 15.0 ) ) / ( double ) ( n * n + 14 * n - 11 ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { x[j] = u1; } x[i] = v1; for ( j = i; j < n; j++ ) { if ( i < j - 1 ) { x[j-1] = u1; } x[j] = v1; quad = quad + coef31[n-1] * func ( n, x ); } } // // S32 // u2 = ( ( double ) ( n + 7 ) - 2.0 * sqrt ( 15.0 ) ) / ( double ) ( n * n + 14 * n - 11 ); v2 = ( ( double ) ( 4 * n - 2 ) + ( double ) ( n - 1 ) * sqrt ( 15.0 ) ) / ( double ) ( n * n + 14 * n - 11 ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { x[j] = u2; } x[i] = v2; for ( j = i; j < n; j++ ) { if ( i < j - 1 ) { x[j-1] = u2; } x[j] = v2; quad = quad + coef32[n-1] * func ( n, x ); } } volume = simplex_unit_volume_nd ( n ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double simplex_unit_05_2_nd ( double func ( int n, double x[] ), int n ) //****************************************************************************80 // // Purpose: // // SIMPLEX_UNIT_05_2_ND approximates an integral in the unit simplex in ND. // // Integration region: // // 0 <= X(1:N), // and // sum ( X(1:N) ) <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 March 2008 // // Author: // // John Burkardt // // Reference: // // Axel Grundmann, Michael Moeller, // Invariant Integration Formulas for the N-Simplex by Combinatorial Methods, // SIAM Journal on Numerical Analysis, // Volume 15, Number 2, April 1978, pages 282-290. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function to be integrated. // // Input, int N, the dimension of the space. // // Output, double SIMPLEX_UNIT_05_2_ND, the approximate integral of the function. // { double a; double b; double coef; int i; int j; double quad; double result; double volume; double *x; x = new double[n]; quad = 0.0; // // Group 1 // for ( i = 0; i < n; i++ ) { x[i] = 1.0 / ( double ) ( n + 1 ); } coef = ( double ) ( i4_power ( n + 1, 4 ) ) / ( double ) ( 32 * ( n + 2 ) * ( n + 3 ) ); quad = quad + coef * func ( n, x ); // // Group 2 // a = 1.0 / ( double ) ( n + 3 ); b = 3.0 / ( double ) ( n + 3 ); for ( i = 0; i < n; i++ ) { x[i] = a; } coef = -( double ) ( i4_power ( n + 3, 4 ) ) / ( double ) ( 16 * ( n + 1 ) * ( n + 2 ) * ( n + 4 ) ); quad = quad + coef * func ( n, x ); for ( i = 0; i < n; i++ ) { x[i] = b; quad = quad + coef * func ( n, x ); x[i] = a; } // // Group 3 // a = 1.0 / ( double ) ( n + 5 ); b = 5.0 / ( double ) ( n + 5 ); for ( i = 0; i < n; i++ ) { x[i] = a; } coef = ( double ) ( i4_power ( n + 5, 4 ) ) / ( double ) ( 16 * ( n + 1 ) * ( n + 2 ) * ( n + 3 ) * ( n + 4 ) ); quad = quad + coef * func ( n, x ); for ( i = 0; i < n; i++ ) { x[i] = b; quad = quad + coef * func ( n, x ); x[i] = a; } // // Group 4 // a = 1.0 / ( double ) ( n + 5 ); b = 3.0 / ( double ) ( n + 5 ); coef = ( double ) ( i4_power ( n + 5, 4 ) ) / ( double ) ( 16 * ( n + 1 ) * ( n + 2 ) * ( n + 3 ) * ( n + 4 ) ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { x[j] = a; } x[i] = b; quad = quad + coef * func ( n, x ); for ( j = i + 1; j < n; j++ ) { x[j] = b; quad = quad + coef * func ( n, x ); x[j] = a; } } volume = simplex_unit_volume_nd ( n ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double simplex_unit_volume_nd ( int n ) //****************************************************************************80 // // Purpose: // // SIMPLEX_UNIT_VOLUME_ND returns the volume of the unit simplex in ND. // // Integration region: // // 0 <= X(1:N), // and // sum ( X(1:N) ) <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 April 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the space. // // Output, double SIMPLEX_UNIT_VOLUME_ND, the volume of the // unit simplex. // { double value; value = 1.0 / r8_factorial ( n ); return value; } //****************************************************************************80 double simplex_volume_nd ( int n, double v[] ) //****************************************************************************80 // // Purpose: // // SIMPLEX_VOLUME_ND returns the volume of a simplex in ND. // // Integration region: // // The simplex bounded by the origin and a convex combination of N points. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the space. // // Input, double V[N*(N+1)], the coordinates of the vertices. // // Output, double SIMPLEX_VOLUME_ND, the volume of // the unit simplex. // { double det; int i; int info; int j; int *pivot; double volume; double *w; w = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { w[i+j*n] = v[i+(j+1)*n] - v[i+0*n]; } } pivot = new int[n]; info = r8ge_fa ( n, w, pivot ); if ( info != 0 ) { volume = 0.0; } else { det = r8ge_det ( n, w, pivot ); // // Multiply by the volume of the unit simplex, which serves as a // conversion factor between a parallelipiped and the simplex. // volume = fabs ( det ) * simplex_unit_volume_nd ( n ); } delete [] pivot; delete [] w; return volume; } //****************************************************************************80 double sin_power_int ( double a, double b, int n ) //****************************************************************************80 // // Purpose: // // SIN_POWER_INT evaluates the sine power integral. // // Discussion: // // The function is defined by // // SIN_POWER_INT(A,B,N) = Integral ( A <= T <= B ) ( sin ( t ))^n dt // // The algorithm uses the following fact: // // Integral sin^n ( t ) = (1/n) * ( // sin^(n-1)(t) * cos(t) + ( n-1 ) * Integral sin^(n-2) ( t ) dt ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 September 2004 // // Author: // // John Burkardt // // Parameters // // Input, double A, B, the limits of integration. // // Input, integer N, the power of the sine function. // // Output, double SIN_POWER_INT, the value of the integral. // { double ca; double cb; int m; int mlo; double sa; double sb; double value; value = 0.0; if ( n < 0 ) { cerr << "\n"; cerr << "SIN_POWER_INT - Fatal error!\n"; cerr << " Power N < 0.\n"; exit ( 1 ); } sa = sin ( a ); sb = sin ( b ); ca = cos ( a ); cb = cos ( b ); if ( ( n % 2 ) == 0 ) { value = b - a; mlo = 2; } else { value = ca - cb; mlo = 3; } for ( m = mlo; m <= n; m = m + 2 ) { value = ( ( double ) ( m - 1 ) * value + pow ( sa, (m-1) ) * ca - pow ( sb, (m-1) ) * cb ) / ( double ) ( m ); } return value; } //****************************************************************************80 double sphere_05_nd ( double func ( int n, double x[] ), int n, double center[], double r ) //****************************************************************************80 // // Purpose: // // SPHERE_05_ND approximates an integral on the surface of a sphere in ND. // // Integration region: // // R1*R1 <= sum ( X(1:N) - CENTER(1:N) )^2 <= R2*R2 // // Discussion: // // A 2*N+2^N points 5-th degree formula is used, Stroud number UN:5-2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function to be integrated. // // Input, int N, the dimension of the space. // // Input, double CENTER[N], the center of the sphere. // // Input, double R, the radius of the sphere. // // Output, double SPHERE_05_ND, the approximate integral of the function. // { int i; int iadd; int ihi; int *ix; bool more; int ncard; double quad; double result; double volume; double w1; double w2; double *x; double x1; double x2; x1 = 1.0; x2 = 1.0 / sqrt ( ( double ) ( n ) ); w1 = 1.0 / ( double ) ( n * ( n + 2 ) ); w2 = ( double ) ( n ) / ( double ) ( ( n + 2 ) * i4_power ( 2, n ) ); x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = center[i]; } quad = 0.0; for ( i = 0; i < n; i++ ) { x[i] = center[i] + r * x1; quad = quad + w1 * func ( n, x ); x[i] = center[i] - r * x1; quad = quad + w1 * func ( n, x ); x[i] = center[i]; } more = false; ihi = i4_power ( 2, n ); for ( i = 0; i < n; i++ ) { x[i] = center[i] - r * x2; } ix = new int[n]; for ( i = 0; i < ihi; i++ ) { subset_gray_next ( n, ix, &more, &ncard, &iadd ); if ( iadd != 0 ) { x[iadd-1] = center[iadd-1] - ( x[iadd-1] - center[iadd-1] ); } quad = quad + w2 * func ( n, x ); } volume = sphere_area_nd ( n, r ); result = quad * volume; delete [] ix; delete [] x; return result; } //****************************************************************************80 double sphere_07_1_nd ( double func ( int n, double x[] ), int n, double center[], double r ) //****************************************************************************80 // // Purpose: // // SPHERE_07_1_ND approximates an integral on the surface of a sphere in ND. // // Integration region: // // sum ( X(1:N) - CENTER(1:N) )^2 = R * R. // // Discussion: // // A 2^N + 2*N*N point 7th degree formula is used, Stroud number UN:7-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function to be integrated. // // Input, int N, the dimension of the space. // // Input, double CENTER[N], the center of the sphere. // // Input, double R, the radius of the sphere. // // Output, double SPHERE_07_1_ND, the approximate integral of the function. // { int i; int iadd; int *ix; int j; int jhi; bool more; int ncard; double quad; double result; double volume; double w1; double w2; double w3; double *x; double x1; double x2; double x3; ix = new int[n]; x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = center[i]; } w1 = ( double ) ( 8 - n ) / ( double ) ( n * ( n + 2 ) * ( n + 4 ) ); w2 = ( double ) ( n * n * n ) / ( double ) ( i4_power ( 2, n ) * n * ( n + 2 ) * ( n + 4 ) ); w3 = 4.0 / ( double ) ( n * ( n + 2 ) * ( n + 4 ) ); x1 = 1.0; x2 = 1.0 / sqrt ( ( double ) ( n ) ); x3 = 1.0 / sqrt ( 2.0 ); quad = 0.0; // // First term. // for ( i = 0; i < n; i++ ) { x[i] = center[i] + r * x1; quad = quad + w1 * func ( n, x ); x[i] = center[i] - r * x1; quad = quad + w1 * func ( n, x ); x[i] = center[i]; } // // Second term. // for ( i = 0; i < n; i++ ) { x[i] = center[i] - r * x2; } more = false; jhi = i4_power ( 2, n ); for ( j = 0; j < jhi; j++ ) { subset_gray_next ( n, ix, &more, &ncard, &iadd ); if ( iadd != 0 ) { x[iadd-1] = center[iadd-1] - ( x[iadd-1] - center[iadd-1] ); } quad = quad + w2 * func ( n, x ); } // // Third term. // for ( i = 0; i < n; i++ ) { x[i] = center[i]; } for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { x[i] = center[i] + r * x3; x[j] = center[j] + r * x3; quad = quad + w3 * func ( n, x ); x[i] = center[i] - r * x3; x[j] = center[j] + r * x3; quad = quad + w3 * func ( n, x ); x[i] = center[i] + r * x3; x[j] = center[j] - r * x3; quad = quad + w3 * func ( n, x ); x[i] = center[i] - r * x3; x[j] = center[j] - r * x3; quad = quad + w3 * func ( n, x ); x[i] = center[i]; x[j] = center[j]; } } volume = sphere_area_nd ( n, r ); result = quad * volume; delete [] ix; delete [] x; return result; } //****************************************************************************80 double sphere_area_3d ( double r ) //****************************************************************************80 // // Purpose: // // SPHERE_AREA_3D computes the area of a sphere in 3D. // // Integration region: // // X*X + Y*Y + Z*Z = R * R // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the sphere. // // Output, double SPHERE_AREA_3D, the area of the sphere. // { double pi = 3.141592653589793; double value; value = 4.0 * pi * r * r; return value; } //****************************************************************************80 double sphere_area_nd ( int n, double r ) //****************************************************************************80 // // Purpose: // // SPHERE_AREA_ND computes the area of a sphere in ND. // // Integration region: // // sum ( X(1:N)^2 ) = R * R // // Discussion: // // N Area // // 2 2 * PI * R // 3 4 * PI * R^2 // 4 2 * PI^2 * R^3 // 5 (8/3) * PI^2 * R^4 // 6 PI^3 * R^5 // 7 (16/15) * PI^3 * R^6 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the space. // // Input, double R, the radius of the sphere. // // Output, double SPHERE_AREA_ND, the area of the sphere. // { double value; value = sphere_unit_area_nd ( n ) * pow ( r, n - 1 ); return value; } //****************************************************************************80 double sphere_cap_area_2d ( double r, double h ) //****************************************************************************80 // // Purpose: // // SPHERE_CAP_AREA_2D computes the surface area of a spherical cap in 2D. // // Discussion: // // Draw any radius of the sphere and note the point P where the radius // intersects the sphere. Consider the point on the radius line which is // H units from P. Draw the circle that lies in the plane perpendicular to // the radius, and which intersects the sphere. The circle divides the sphere // into two pieces, and the corresponding disk divides the solid sphere into // two pieces. The spherical cap is the part of the solid sphere that // includes the point P. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the sphere. // // Input, double H, the "height" of the spherical cap. // // Output, double SPHERE_CAP_AREA_2D, the area of the spherical cap. // { double area; double pi = 3.141592653589793; double theta; if ( h <= 0.0 ) { area = 0.0; } else if ( 2.0 * r <= h ) { area = 2.0 * pi * r; } else { theta = 2.0 * r8_asin ( sqrt ( r * r - ( r - h ) * ( r - h ) ) / r ); area = r * theta; if ( r <= h ) { area = 2.0 * pi * r - area; } } return area; } //****************************************************************************80 double sphere_cap_area_3d ( double r, double h ) //****************************************************************************80 // // Purpose: // // SPHERE_CAP_AREA_3D computes the surface area of a spherical cap in 3D. // // Discussion: // // Draw any radius of the sphere and note the point P where the radius // intersects the sphere. Consider the point on the radius line which is // H units from P. Draw the circle that lies in the plane perpendicular to // the radius, and which intersects the sphere. The circle divides the sphere // into two pieces, and the corresponding disk divides the solid sphere into // two pieces. The spherical cap is the part of the solid sphere that // includes the point P. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the sphere. // // Input, double H, the "height" of the spherical cap. // // Output, double SPHERE_CAP_AREA_3D, the area of the spherical cap. // { double area; double pi = 3.141592653589793; if ( h <= 0.0 ) { area = 0.0; } else if ( 2.0 * r <= h ) { area = 4.0 * pi * r * r; } else { area = 2.0 * pi * r * h; } return area; } //****************************************************************************80 double sphere_cap_area_nd ( int dim_num, double r, double h ) //****************************************************************************80 // // Purpose: // // SPHERE_CAP_AREA_ND computes the area of a spherical cap in ND. // // Discussion: // // The spherical cap is a portion of the surface of the sphere: // // sum ( X(1:N)^2 ) = R * R // // which is no more than H units from the uppermost point on the sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Reference: // // Thomas Ericson, Victor Zinoviev, // Codes on Euclidean Spheres, // Elsevier, 2001 // QA166.7 E75 // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, double R, the radius of the sphere. // // Input, double H, the "thickness" of the spherical cap, // which is normally between 0 and 2 * R. // // Output, double SPHERE_CAP_AREA_ND, the area of the spherical cap. // { double area; double haver_sine; int i; double theta; double ti; double tj; double tk; if ( h <= 0.0 ) { area = 0.0; return area; } if ( 2.0 * r <= h ) { area = sphere_area_nd ( dim_num, r ); return area; } // // For cases where R < H < 2 * R, work with the complementary region. // haver_sine = sqrt ( ( 2.0 * r - h ) * h ); theta = r8_asin ( haver_sine / r ); if ( dim_num < 1 ) { area = -1.0; } else if ( dim_num == 1 ) { area = 0.0; } else if ( dim_num == 2 ) { area = 2.0 * theta * r; } else { ti = theta; tj = ti; ti = 1.0 - cos ( theta ); for ( i = 2; i <= dim_num - 2; i++ ) { tk = tj; tj = ti; ti = ( ( double ) ( i - 1 ) * tk - cos ( theta ) * pow ( sin ( theta ), i - 1 ) ) / ( double ) ( i ); } area = sphere_k ( dim_num-1 ) * ti * pow ( r, dim_num - 1 ); } // // Adjust for cases where R < H < 2R. // if ( r < h ) { area = sphere_area_nd ( dim_num, r ) - area; } return area; } //****************************************************************************80 double sphere_cap_volume_2d ( double r, double h ) //****************************************************************************80 // // Purpose: // // SPHERE_CAP_VOLUME_2D computes the volume of a spherical cap in 2D. // // Discussion: // // Draw any radius R of the circle and denote as P the point where the // radius intersects the circle. Now consider the point Q which lies // on the radius and which is H units from P. The line which is // perpendicular to the radius R and passes through Q divides the // circle into two pieces. The piece including the point P is the // spherical (circular) cap of height (or thickness) H. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the sphere. // // Input, double H, the "height" of the spherical cap. // // Output, double VOLUME, the volume (area) of the spherical cap. // { double pi = 3.141592653589793; double theta; double volume; if ( h <= 0.0 ) { volume = 0.0; } else if ( 2.0 * r <= h ) { volume = pi * r * r; } else { theta = 2.0 * r8_asin ( sqrt ( r * r - ( r - h ) * ( r - h ) ) / r ); volume = r * r * ( theta - sin ( theta ) ) / 2.0; if ( r < h ) { volume = pi * r * r - volume; } } return volume; } //****************************************************************************80 double sphere_cap_volume_3d ( double r, double h ) //****************************************************************************80 // // Purpose: // // SPHERE_CAP_VOLUME_3D computes the volume of a spherical cap in 3D. // // Discussion: // // Draw any radius of the sphere and note the point P where the radius // intersects the sphere. Consider the point on the radius line which is // H units from P. Draw the circle that lies in the plane perpendicular to // the radius, and which intersects the sphere. The circle divides the sphere // into two pieces, and the corresponding disk divides the solid sphere into // two pieces. The part of the solid sphere that includes the point P // is the spherical cap of height (or thickness) H. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the sphere. // // Input, double H, the "height" of the spherical cap. // // Output, double SPHERE_CAP_VOLUME_3D, the volume of the spherical cap. // { double pi = 3.141592653589793; double volume; if ( h <= 0.0 ) { volume = 0.0; } else if ( 2.0 * r <= h ) { volume = ( 4.0 / 3.0 ) * pi * r * r * r; } else { volume = ( 1.0 / 3.0 ) * pi * h * h * ( 3.0 * r - h ); } return volume; } //****************************************************************************80 double sphere_cap_volume_nd ( int dim_num, double r, double h ) //****************************************************************************80 // // Purpose: // // SPHERE_CAP_VOLUME_ND computes the volume of a spherical cap in ND. // // Discussion: // // The spherical cap is a portion of the surface and interior of the sphere: // // sum ( X(1:N)^2 ) <= R * R // // which is no more than H units from some point P on the sphere. // // // The algorithm proceeds from the observation that the N-dimensional // sphere can be parameterized by a quantity RC that runs along the // radius from the center to the point P. The value of RC at the // base of the spherical cap is (R-H) and at P it is R. We intend to // use RC as our integration parameeter. // // The volume of the spherical cap is then the integral, as RC goes // from (R-H) to R, of the N-1 dimensional volume of the sphere // of radius RS, where RC * RC + RS * RS = R * R. // // The volume of the N-1 dimensional sphere of radius RS is simply // some constants times RS**(N-1). // // After factoring out the constant terms, and writing RC = R * cos ( T ), // and RS = R * sin ( T ), and letting // T_MAX = r8_asin ( sqrt ( ( 2.0D+00 * r - h ) * h / r ) ), // the "interesting part" of our integral becomes // // constants * R**N * Integral ( T = 0 to T_MAX ) sin**N ( T ) dT // // The integral of sin**N ( T ) dT can be handled by recursion. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, integer ( kind = 4 ) DIM_NUM, the dimension of the space. // // Input, double R, the radius of the sphere. // // Input, double H, the "thickness" of the spherical cap, // which is normally between 0 and 2 * R. // // Output, double SPHERE_CAP_VOLUME_ND, the volume of the spherical cap. // { double angle; double factor1; double factor2; double volume; double volume2; if ( h <= 0.0 ) { volume = 0.0; return volume; } if ( 2.0 * r <= h ) { volume = sphere_volume_nd ( dim_num, r ); return volume; } if ( dim_num < 1 ) { volume = -1.0; } else if ( dim_num == 1 ) { volume = h; } else { factor1 = sphere_unit_volume_nd ( dim_num - 1 ); angle = r8_asin ( sqrt ( ( 2.0 * r - h ) * h / r ) ); factor2 = sin_power_int ( 0.0, angle, dim_num ); volume = factor1 * factor2 * pow ( r, dim_num ); if ( r < h ) { volume2 = sphere_volume_nd ( dim_num, r ); volume = volume2 - volume; } } return volume; } //****************************************************************************80 double sphere_k ( int n ) //****************************************************************************80 // // Purpose: // // SPHERE_K computes a factor useful for spherical computations. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Reference: // // Thomas Ericson, Victor Zinoviev, // Codes on Euclidean Spheres, // Elsevier, 2001 // QA166.7 E75 // // Parameters: // // Input, int N, the dimension of the space. // // Output, double SPHERE_K, the factor. // { double pi = 3.141592653589793; double value; if ( ( n % 2 ) == 0 ) { value = pow ( 2.0 * pi, n / 2 ); } else { value = 2.0 * pow ( 2.0 * pi, ( n - 1 ) / 2 ); } value = value / ( double ) ( i4_factorial2 ( n - 2 ) ); return value; } //****************************************************************************80 double sphere_monomial_int_nd ( int n, double r, int e[] ) //****************************************************************************80 // // Purpose: // // SPHERE_MONOMIAL_INT_ND integrates a monomial on the surface of a sphere in ND. // // Integration region: // // sum ( X(1:N)^2 ) = R * R. // // Discussion: // // The sphere may have nonunit radius, but it must be centered at 0. // // The monomial is F(X) = X(1)^E(1) * X(2)^E(2) * ... * X(N)^E(N). // // This routine is useful for testing the accuracy of quadrature // rules on the sphere. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 March 2008 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the dimension of the space. // // Input, double R, the radius of the sphere. // // Input, int E[N], the exponents of X, Y and Z in the monomial. // Each exponent must be nonnegative. // // Output, double SPHERE_MONOMIAL_INT_ND, the integral. // { bool all_zero; bool any_odd; int e_sum; int i; double integral; double pi = 3.141592653589793; integral = 0.0; for ( i = 0; i < n; i++ ) { if ( e[i] < 0 ) { cerr << "\n"; cerr << "SPHERE_MONOMIAL_INT_ND - Fatal error!\n"; cerr << " All exponents must be nonnegative.\n"; exit ( 1 ); } } all_zero = true; for ( i = 0; i < n; i++ ) { if ( e[i] != 0 ) { all_zero = false; break; } } any_odd = false; for ( i = 0; i < n; i++ ) { if ( ( e[i] % 2 ) == 1 ) { any_odd = true; break; } } e_sum = 0; for ( i = 0; i < n; i++ ) { e_sum = e_sum + e[i]; } if ( all_zero ) { integral = 2.0 * sqrt ( pow ( pi, n ) ) / r8_gamma ( 0.5 * ( double ) ( n ) ); } else if ( any_odd ) { integral = 0.0; } else { integral = 2.0; for ( i = 0; i < n; i++ ) { integral = integral * r8_gamma ( 0.5 * ( double ) ( e[i] + 1 ) ); } integral = integral / r8_gamma ( 0.5 * ( ( double ) ( e_sum + n ) ) ); } integral = integral * pow ( r, e_sum + 2 ); return integral; } //****************************************************************************80 double sphere_shell_03_nd ( double func ( int n, double x[] ), int n, double center[], double r1, double r2 ) //****************************************************************************80 // // Purpose: // // SPHERE_SHELL_03_ND approximates an integral inside a spherical shell in ND. // // Integration region: // // R1*R1 <= sum ( X(1:N) - CENTER(1:N) )^2 <= R2*R2. // // Discussion: // // An 2*N point 3-rd degree formula is used, Stroud number SN-Shell:3-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function to be integrated. // // Input, int N, the dimension of the space. // // Input, double CENTER[N], the center of the spheres. // // Input, double R1, R2, the inner and outer radiuses that // define the spherical shell. // // Output, double SPHERE_SHELL_03_ND, the approximate integral of the function. // { int i; double quad; double r; double result; double rho; double volume; double w; double *x; if ( r1 == r2 ) { result = 0.0; return result; } rho = r1 / r2; r = ( double ) ( n ) * ( 1.0 - pow ( rho, n + 2 ) ) / ( ( double ) ( n + 2 ) * ( 1.0 - pow ( rho, n ) ) ); r = sqrt ( r ); w = 1.0 / ( double ) ( 2 * n ); x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = center[i]; } quad = 0.0; for ( i = 0; i < n; i++ ) { x[i] = center[i] + r * r2; quad = quad + w * func ( n, x ); x[i] = center[i] - r * r2; quad = quad + w * func ( n, x ); x[i] = center[i]; } volume = sphere_shell_volume_nd ( n, r1, r2 ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double sphere_shell_volume_nd ( int n, double r1, double r2 ) //****************************************************************************80 // // Purpose: // // SPHERE_SHELL_VOLUME_ND computes the volume of a spherical shell in ND. // // Integration region: // // R1*R1 <= sum ( X(1:N) - CENTER(1:N) )^2 <= R2*R2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the space. // // Input, double R1, R2, the radiuses of the inner and // outer spheres. // // Output, double SPHERE_SHELL_VOLUME_ND, the volume of the // spherical shell. // { double volume; volume = ball_volume_nd ( n, r2 ) - ball_volume_nd ( n, r1 ); return volume; } //****************************************************************************80 double sphere_unit_03_nd ( double func ( int n, double x[] ), int n ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_03_ND approximates an integral on the surface of the unit sphere in ND. // // Integration region: // // sum ( X(1:N)^2 ) = 1. // // Discussion: // // A 2*N point 3rd degree formula is used, Stroud number UN:3-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function to be integrated. // // Input, int N, the dimension of the space. // // Output, double SPHERE_UNIT_03_ND, the approximate integral of the function. // { int i; double quad; double result; double volume; double w; double *x; x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = 0.0; } w = 1.0 / ( double ) ( 2 * n ); quad = 0.0; for ( i = 0; i < n; i++ ) { x[i] = 1.0; quad = quad + w * func ( n, x ); x[i] = -1.0; quad = quad + w * func ( n, x ); x[i] = 0.0; } volume = sphere_unit_area_nd ( n ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double sphere_unit_04_nd ( double func ( int n, double x[] ), int n ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_04_ND approximates an integral on the surface of the unit sphere in ND. // // Integration region: // // sum ( X(1:N)^2 ) = 1. // // Discussion: // // A 2*N*N point 5th degree formula is used, Stroud number UN:5-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function to be integrated. // // Input, int N, the dimension of the space. // // Output, double SPHERE_UNIT_04_ND, the approximate integral of the function. // { int i; int j; double quad; double result; double s; double volume; double w1; double w2; double *x; x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = 0.0; } w1 = ( double ) ( 4 - n ) / ( double ) ( 2 * n * ( n + 2 ) ); quad = 0.0; for ( i = 0; i < n; i++ ) { x[i] = 1.0; quad = quad + w1 * func ( n, x ); x[i] = -1.0; quad = quad + w1 * func ( n, x ); x[i] = 0.0; } s = 1.0 / sqrt ( 2.0 ); w2 = 1.0 / ( double ) ( n * ( n + 2 ) ); for ( i = 0; i < n; i++ ) { x[i] = s; for ( j = i + 1; j < n; j++ ) { x[j] = s; quad = quad + w2 * func ( n, x ); x[j] = -s; quad = quad + w2 * func ( n, x ); x[j] = 0.0; } x[i] = -s; for ( j = i + 1; j < n; j++ ) { x[j] = s; quad = quad + w2 * func ( n, x ); x[j] = -s; quad = quad + w2 * func ( n, x ); x[j] = 0.0; } x[i] = 0.0; } volume = sphere_unit_area_nd ( n ); result = quad * volume; delete [] x; return result; } //****************************************************************************80 double sphere_unit_05_nd ( double func ( int n, double x[] ), int n ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_05_ND approximates an integral on the surface of the unit sphere in ND. // // Integration region: // // sum ( X(1:N)^2 ) = 1. // // Discussion: // // A 2*N+2**N points 5-th degree formula is used, Stroud number UN:5-2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function to be integrated. // // Input, int N, the dimension of the space. // // Output, double SPHERE_UNIT_05_ND, the approximate integral of the function. // { int i; int iadd; int ihi; int *ix; bool more; int ncard; double quad; double result; double volume; double w1; double w2; double *x; double x1; double x2; x1 = 1.0; x2 = 1.0 / sqrt ( ( double ) ( n ) ); w1 = 1.0 / ( double ) ( n * ( n + 2 ) ); w2 = ( double ) ( n ) / ( double ) ( ( n + 2 ) * i4_power ( 2, n ) ); ix = new int[n]; x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = 0.0; } quad = 0.0; for ( i = 0; i < n; i++ ) { x[i] = x1; quad = quad + w1 * func ( n, x ); x[i] = -x1; quad = quad + w1 * func ( n, x ); x[i] = 0.0; } more = false; ihi = i4_power ( 2, n ); for ( i = 0; i < n; i++ ) { x[i] = -x2; } for ( i = 0; i < ihi; i++ ) { subset_gray_next ( n, ix, &more, &ncard, &iadd ); if ( iadd != 0 ) { x[iadd-1] = -x[iadd-1]; } quad = quad + w2 * func ( n, x ); } volume = sphere_unit_area_nd ( n ); result = quad * volume; delete [] ix; delete [] x; return result; } //****************************************************************************80 double sphere_unit_07_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_07_3D approximates an integral on the surface of the unit sphere in 3D. // // Integration region: // // X*X + Y*Y + Z*Z = 1. // // Discussion: // // A 32 point 7-th degree formula is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function to be integrated. // // Output, double SPHERE_UNIT_07_3D, the approximate integral of the function. // { double angle; int i; int j; int k; int order1 = 2; int order2 = 4; int order3 = 4; double pi = 3.141592653589793; double quad; double result; double volume; double weight1[2]; double weight2[4]; double weight3[4]; double x; double xtab1[2]; double xtab2[4]; double xtab3[4]; double y; double z; // // Set XTAB1 and WATE1. // xtab1[0] = -1.0; xtab1[1] = 1.0; weight1[0] = 1.0; weight1[1] = 1.0; // // Set XTAB2 and WATE2. // for ( j = 0; j < order2; j++ ) { angle = pi * ( double ) ( 2 * j + 1 ) / ( double ) ( 2 * order2 ); xtab2[j] = cos ( angle ); } for ( j = 0; j < order2; j++ ) { weight2[j] = 1.0 / ( double ) ( 4 * order2 ); } // // Set XTAB3 and WATE3. // legendre_set ( order3, xtab3, weight3 ); quad = 0.0; for ( i = 0; i < order1; i++ ) { for ( j = 0; j < order2; j++ ) { for ( k = 0; k < order3; k++ ) { x = xtab1[i] * sqrt ( 1.0 - xtab2[j] * xtab2[j] ) * sqrt ( 1.0 - xtab3[k] * xtab3[k] ); y = xtab1[i] * xtab2[j] * sqrt ( 1.0 - xtab3[k] * xtab3[k] ); z = xtab1[i] * xtab3[k]; quad = quad + weight1[i] * weight2[j] * weight3[k] * func ( x, y, z ); } } } volume = sphere_unit_area_3d ( ); result = quad * volume; return result; } //****************************************************************************80 double sphere_unit_07_1_nd ( double func ( int n, double x[] ), int n ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_07_1_ND approximates an integral on the surface of the unit sphere in ND. // // Integration region: // // sum ( X(1:N)^2 ) = 1. // // Discussion: // // A 2**N + 2*N*N point 7th degree formula is used, Stroud number UN:7-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function to be integrated. // // Input, int N, the dimension of the space. // // Output, double SPHERE_UNIT_07_1_ND, the approximate integral of the function. // { int i; int iadd; int *ix; int j; int jhi; bool more; int ncard; double quad; double result; double volume; double w1; double w2; double w3; double *x; double x1; double x2; double x3; ix = new int[n]; x = new double[n]; w1 = ( double ) ( 8 - n ) / ( double ) ( n * ( n + 2 ) * ( n + 4 ) ); w2 = ( double ) ( n * n * n ) / ( double ) ( i4_power ( 2, n ) * n * ( n + 2 ) * ( n + 4 ) ); w3 = 4.0 / ( double ) ( n * ( n + 2 ) * ( n + 4 ) ); x1 = 1.0; x2 = 1.0 / sqrt ( ( double ) ( n ) ); x3 = 1.0 / sqrt ( 2.0 ); for ( i = 0; i < n; i++ ) { x[i] = 0.0; } quad = 0.0; // // First term. // for ( i = 0; i < n; i++ ) { x[i] = x1; quad = quad + w1 * func ( n, x ); x[i] = -x1; quad = quad + w1 * func ( n, x ); x[i] = 0.0; } // // Second term. // for ( i = 0; i < n; i++ ) { x[i] = -x2; } more = false; jhi = i4_power ( 2, n ); for ( j = 0; j < jhi; j++ ) { subset_gray_next ( n, ix, &more, &ncard, &iadd ); if ( iadd != 0 ) { x[iadd-1] = -x[iadd-1]; } quad = quad + w2 * func ( n, x ); } // // Third term. // for ( i = 0; i < n; i++ ) { x[i] = 0.0; } for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { x[i] = x3; x[j] = x3; quad = quad + w3 * func ( n, x ); x[i] = -x3; x[j] = x3; quad = quad + w3 * func ( n, x ); x[i] = x3; x[j] = -x3; quad = quad + w3 * func ( n, x ); x[i] = -x3; x[j] = -x3; quad = quad + w3 * func ( n, x ); x[i] = 0.0; x[j] = 0.0; } } volume = sphere_unit_area_nd ( n ); result = quad * volume; delete [] ix; delete [] x; return result; } //****************************************************************************80 double sphere_unit_07_2_nd ( double func ( int n, double x[] ), int n ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_07_2_ND approximates an integral on the surface of the unit sphere in ND. // // Integration region: // // sum ( X(1:N)^2 ) = 1. // // Discussion: // // A 2^N * ( N + 1 ) point 7th degree formula is used, Stroud number UN:7-2. // // Some of the weights in this quadrature formula are negative. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function to be integrated. // // Input, int N, the dimension of the space. // // Output, double SPHERE_UNIT_07_2_ND, the approximate integral of the function. // { int iadd; int i; int *ix; int j; int jhi; bool more; int ncard; double quad; double result; double volume; double w1; double w2; double *x; double x1; double x2; double x3; ix = new int[n]; x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = 0.0; } w1 = - ( double ) ( n * n ) / ( double ) ( i4_power ( 2, n + 3 ) * ( n + 2 ) ); w2 = ( double ) ( ( n + 4 ) * ( n + 4 ) ) / ( double ) ( i4_power ( 2, n + 3 ) * n * ( n + 2 ) ); x1 = 1.0 / sqrt ( ( double ) ( n ) ); x2 = sqrt ( 5.0 / ( double ) ( n + 4 ) ); x3 = 1.0 / sqrt ( ( double ) ( n + 4 ) ); quad = 0.0; for ( j = 0; j < n; j++ ) { x[j] = - x1; } more = false; jhi = i4_power ( 2, n ); for ( j = 0; j < jhi; j++ ) { subset_gray_next ( n, ix, &more, &ncard, &iadd ); if ( iadd != 0 ) { x[iadd-1] = - x[iadd-1]; } quad = quad + w1 * func ( n, x ); } for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { x[j] = - x3; } x[i] = - x2; more = false; for ( j = 0; j < jhi; j++ ) { subset_gray_next ( n, ix, &more, &ncard, &iadd ); if ( iadd != 0 ) { x[iadd-1] = - x[iadd-1]; } quad = quad + w2 * func ( n, x ); } } volume = sphere_unit_area_nd ( n ); result = quad * volume; delete [] ix; delete [] x; return result; } //****************************************************************************80 double sphere_unit_11_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_11_3D approximates an integral on the surface of the unit sphere in 3D. // // Integration region: // // X*X + Y*Y + Z*Z = 1. // // Discussion: // // A 50 point 11-th degree formula is used, Stroud number U3:11-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 March 2008 // // Author: // // John Burkardt // // Reference: // // AD McLaren, // Mathematics of Computation, // Volume 17, pages 361-383, 1963. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function to be integrated. // // Output, double SPHERE_UNIT_11_3D, the approximate integral of the function. // { int i; int j; int k; int l; double quad; double result; double volume; double w1; double w2; double w3; double w4; double x; double y; double z; quad = 0.0; w1 = 9216.0 / 725760.0; x = 1.0; y = 0.0; z = 0.0; for ( i = 0; i < 2; i++ ) { x = -x; for ( j = 0; j < 3; j++ ) { r8_swap3 ( &x, &y, &z ); quad = quad + w1 * func ( x, y, z ); } } w2 = 16384.0 / 725760.0; x = sqrt ( 0.5 ); y = sqrt ( 0.5 ); z = 0.0; for ( i = 0; i < 2; i++ ) { x = -x; for ( j = 0; j < 2; j++ ) { y = -y; for ( k = 0; k < 3; k++ ) { r8_swap3 ( &x, &y, &z ); quad = quad + w2 * func ( x, y, z ); } } } w3 = 15309.0 / 725760.0; x = sqrt ( 1.0 / 3.0 ); y = sqrt ( 1.0 / 3.0 ); z = sqrt ( 1.0 / 3.0 ); for ( i = 0; i < 2; i++ ) { x = -x; for ( j = 0; j < 2; j++ ) { y = -y; for ( k = 0; k < 2; k++ ) { z = -z; quad = quad + w3 * func ( x, y, z ); } } } w4 = 14641.0 / 725760.0; x = sqrt ( 1.0 / 11.0 ); y = sqrt ( 1.0 / 11.0 ); z = 3.0 * sqrt ( 1.0 / 11.0 ); for ( i = 0; i < 2; i++ ) { x = -x; for ( j = 0; j < 2; j++ ) { y = -y; for ( k = 0; k < 2; k++ ) { z = -z; for ( l = 0; l < 3; l++ ) { r8_swap3 ( &x, &y, &z ); quad = quad + w4 * func ( x, y, z ); } } } } volume = sphere_unit_area_3d ( ); result = quad * volume; return result; } //****************************************************************************80 double sphere_unit_11_nd ( double func ( int n, double x[] ), int n ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_11_ND: integral on the surface of the unit sphere in ND. // // Discussion: // // The integration region: // // sum ( X(1:N)^2 ) = 1 // // An 2^N * ( N^2 + N + 1 ) point formula of degree 5 is used. // // (For N = 3, the number of points is actually only 56, and // for N = 4, the number of points is actually only 240.) // // One element of COEF31 was changed from // 0.0236339091329 to // 0.0236639091329 // by Stroud, when going from his paper to his later textbook. // This correction was pointed out by David Wright, 16 February 2010. // // One element of COEF21 was incorrectly transcribed. The correct // value of COEF21(7) is 0.0337329118818D+00, as pointed out by // John Nolan, 23 April 2013. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 April 2013 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // A Fifth Degree Integration Formula for the N-Simplex, // SIAM Journal on Numerical Analysis, // Volume 6, Number 1, March 1969. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( int n, double x[] ), the name of the // user supplied function to be integrated. // // Input, int N, the dimension of the space. For this routine, // it must be the case that 3 <= N <= 16. // // Output, double SPHERE_UNIT_11_ND, the approximate integral. // { double area; double coef1[16] = { 0.0, 0.0, 0.128571428571, 0.0518518518518, 0.0211979378646, 0.281250000000, 1.11934731935, 2.82751322751, 5.68266145619, 9.93785824515, 15.8196616478, 23.5285714285, 33.2409299392, 45.1113811729, 59.2754264177, 75.8518518518 }; double coef21[16] = { 0.0, 0.0, 0.163795782462, 0.0967270533860, 0.0638253880175, 0.0452340041459, 0.0337329118818, 0.0261275095270, 0.0208331595340, 0.0169937111647, 0.0141147212492, 0.0118949128383, 0.0101424250926, 0.00873046796644, 0.00757257014768, 0.00660813369775 }; double coef22[16] = { 0.0, 0.0, 0.126680408014, 0.0514210947621, 0.0213579471658, -0.108726067638, -0.371589499738, -0.786048144448, -1.36034060198, -2.09547695631, -2.98784764467, -4.03107480702, -5.21726499521, -6.53783099707, -7.98401677102, -9.54722261180 }; double coef31[16] = { 0.0, 0.0, 0.0, 0.0592592592592, 0.0236639091329, 0.0525940190875, 0.0925052768546, 0.141316953438, 0.196818580052, 0.257027634179, 0.320299222258, 0.385326226441, 0.451098131789, 0.516849445559, 0.582010515746, 0.646165210110 }; double coef32[16] = { 0.0, 0.0, 0.0, 0.0, 0.0316246294890, 0.0207194729760, 0.0144303800811, 0.0105348984135, 0.00798435122193, 0.00623845929545, 0.00499896882962, 0.00409176297655, 0.00341037426698, 0.00288710646943, 0.00247745182907, 0.00215128820597 }; int i; int iadd; int *ix; int j; int k; bool more; int ncard; double quad; double r1; double r2; double result; double s1; double s2; double u1; double u2; double v1; double v2; double *x; result = 0.0; if ( n < 3 || 16 < n ) { cerr << "\n"; cerr << "SPHERE_UNIT_11_ND - Fatal error!\n"; cerr << " Input spatial dimension N out of range.\n"; cerr << " N = " << n << "\n"; exit ( 1 ); } ix = new int[n]; x = new double[n]; quad = 0.0; // // S1 // for ( i = 0; i < n; i++ ) { x[i] = 1.0 / sqrt ( ( double ) ( n ) ); } more = false; for ( ; ; ) { subset_gray_next ( n, ix, &more, &ncard, &iadd ); if ( iadd != 0 ) { x[iadd-1] = -x[iadd-1]; } quad = quad + coef1[n-1] * func ( n, x ); if ( !more ) { break; } } // // S21 // r1 = ( ( double ) ( n + 6 ) - 4.0 * sqrt ( 3.0 ) ) / ( double ) ( n * n + 12 * n - 12 ); r1 = sqrt ( r1 ); s1 = ( ( double ) ( 7 * n - 6 ) + ( double ) ( 4 * ( n - 1 ) ) * sqrt ( 3.0 ) ) / ( double ) ( n * n + 12 * n - 12 ); s1 = sqrt ( s1 ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { x[j] = r1; } x[i] = s1; more = false; for ( ; ; ) { subset_gray_next ( n, ix, &more, &ncard, &iadd ); if ( iadd != 0 ) { x[iadd-1] = -x[iadd-1]; } quad = quad + coef21[n-1] * func ( n, x ); if ( !more ) { break; } } } // // S22 // r2 = ( ( double ) ( n + 6 ) + 4.0 * sqrt ( 3.0 ) ) / ( double ) ( n * n + 12 * n - 12 ); r2 = sqrt ( r2 ); s2 = ( ( double ) ( 7 * n - 6 ) - ( double ) ( 4 * ( n - 1 ) ) * sqrt ( 3.0 ) ) / ( double ) ( n * n + 12 * n - 12 ); s2 = sqrt ( s2 ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { x[j] = r2; } x[i] = s2; more = false; for ( ; ; ) { subset_gray_next ( n, ix, &more, &ncard, &iadd ); if ( iadd != 0 ) { x[iadd-1] = -x[iadd-1]; } quad = quad + coef22[n-1] * func ( n, x ); if ( !more ) { break; } } } // // S31 // u1 = ( ( double ) ( n + 12 ) + 8.0 * sqrt ( 3.0 ) ) / ( double ) ( n * n + 24 * n - 48 ); u1 = sqrt ( u1 ); v1 = ( ( double ) ( 7 * n - 12 ) - ( double ) ( 4 * n - 8 ) * sqrt ( 3.0 ) ) / ( double ) ( n * n + 24 * n - 48 ); v1 = sqrt ( v1 ); for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { for ( k = 0; k < n; k++ ) { x[k] = u1; } x[i] = v1; x[j] = v1; more = false; for ( ; ; ) { subset_gray_next ( n, ix, &more, &ncard, &iadd ); if ( iadd != 0 ) { x[iadd-1] = -x[iadd-1]; } quad = quad + coef31[n-1] * func ( n, x ); if ( !more ) { break; } } } } // // S32 // u2 = ( ( double ) ( n + 12 ) - 8.0 * sqrt ( 3.0 ) ) / ( double ) ( n * n + 24 * n - 48 ); u2 = sqrt ( u2 ); v2 = ( ( double ) ( 7 * n - 12 ) + ( double ) ( 4 * n - 8 ) * sqrt ( 3.0 ) ) / ( double ) ( n * n + 24 * n - 48 ); v2 = sqrt ( v2 ); for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { for ( k = 0; k < n; k++ ) { x[k] = u2; } x[i] = v2; x[j] = v2; more = false; for ( ; ; ) { subset_gray_next ( n, ix, &more, &ncard, &iadd ); if ( iadd != 0 ) { x[iadd-1] = -x[iadd-1]; } quad = quad + coef32[n-1] * func ( n, x ); if ( !more ) { break; } } } } area = sphere_unit_area_nd ( n ); result = quad * area / pow ( 2.0, n ); delete [] ix; delete [] x; return result; } //****************************************************************************80 double sphere_unit_14_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_14_3D: integral on the surface of the unit sphere in 3D. // // Integration region: // // X*X + Y*Y + Z*Z = 1. // // Discussion: // // A 72 point 14-th degree formula is used, Stroud number U3:14-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 March 2008 // // Author: // // John Burkardt // // Reference: // // AD McLaren, // Mathematics of Computation, // Volume 17, pages 361-383, 1963. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function to be integrated. // // Output, double SPHERE_UNIT_14_3D, the approximate integral of the function. // { int i; int j; int k; double quad; double result; double temp; double volume; double w1; double w2; double x; double xtab[5] = { -0.151108275, 0.315838353, 0.346307112, -0.101808787, -0.409228403 }; double y; double ytab[5] = { 0.155240600, 0.257049387, 0.666277790, 0.817386065, 0.501547712 }; double z; double ztab[5] = { 0.976251323, 0.913330032, 0.660412970, 0.567022920, 0.762221757 }; quad = 0.0; w1 = 125.0 / 10080.0; x = 0.525731112; y = 0.850650808; z = 0.0; for ( i = 0; i < 2; i++ ) { x = -x; for ( j = 0; j < 2; j++ ) { y = -y; for ( k = 0; k < 3; k++ ) { r8_swap3 ( &x, &y, &z ); quad = quad + w1 * func ( x, y, z ); } } } w2 = 143.0 / 10080.0; for ( i = 0; i < 5; i++ ) { x = xtab[i]; y = ytab[i]; z = ztab[i]; for ( j = 0; j < 3; j++ ) { temp = x; x = z; z = -y; y = -temp; for ( k = 0; k < 3; k++ ) { r8_swap3 ( &x, &y, &z ); quad = quad + w2 * func ( x, y, z ); } y = -y; z = -z; quad = quad + w2 * func ( x, y, z ); } } volume = sphere_unit_area_3d ( ); result = quad * volume; return result; } //****************************************************************************80 double sphere_unit_15_3d ( double func ( double x, double y, double z ) ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_15_3D approximates an integral on the surface of the unit sphere in 3D. // // Integration region: // // X*X + Y*Y + Z*Z = 1. // // Discussion: // // A 128 point 15-th degree spherical product Gauss formula is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function to be integrated. // // Output, double SPHERE_UNIT_15_3D, the approximate integral of the function. // { double angle; int i; int j; int k; int order = 8; double pi = 3.141592653589793; double quad; double result; double volume; double *weight; double x; double *xtab; double y; double z; weight = new double[order]; xtab = new double[order]; legendre_set ( order, xtab, weight ); for ( i = 0; i < order; i++ ) { weight[i] = weight[i] / 32.0; } quad = 0.0; for ( j = 0; j < order; j++ ) { for ( k = 0; k < 16; k++ ) { angle = ( double ) ( k ) * pi / 8.0; x = sqrt ( 1.0 - xtab[j] * xtab[j] ) * cos ( angle ); y = sqrt ( 1.0 - xtab[j] * xtab[j] ) * sin ( angle ); z = xtab[j]; quad = quad + weight[j] * func ( x, y, z ); } } volume = sphere_unit_area_3d ( ); result = quad * volume; delete [] weight; delete [] xtab; return result; } //****************************************************************************80 double sphere_unit_area_3d ( ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_AREA_3D computes the surface area of the unit sphere in 3D. // // Integration region: // // X*X + Y*Y + Z*Z = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 March 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double SPHERE_UNIT_AREA_3D, the area of the sphere. // { double area; double pi = 3.141592653589793; area = 4.0 * pi; return area; } //****************************************************************************80 double sphere_unit_area_nd ( int n ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_AREA_ND computes the surface area of the unit sphere in ND. // // Integration region: // // sum ( ( X(1:N) - CENTER(1:N) )^2 ) = R * R. // // Discussion: // // N Area // // 2 2 * PI // 3 4 * PI // 4 2 * PI^2 // 5 (8/3) * PI^2 // 6 PI^3 // 7 (16/15) * PI^3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the space. // // Output, double SPHERE_UNIT_AREA_ND, the area of the sphere. // { double area; int i; int m; double pi = 3.141592653589793; if ( ( n % 2 ) == 0 ) { m = n / 2; area = 2.0 * pow ( pi, m ); for ( i = 1; i <= m - 1; i++ ) { area = area / ( double ) ( i ); } } else { m = ( n - 1 ) / 2; area = pow ( 2.0, n ) * pow ( pi, m ); for ( i = m + 1; i <= 2 * m; i++ ) { area = area / ( double ) ( i ); } } return area; } //****************************************************************************80 void sphere_unit_area_values ( int *n_data, int *n, double *area ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_AREA_VALUES returns some areas of the unit sphere in ND. // // Discussion: // // The formula for the surface area of the unit sphere in N dimensions is: // // Sphere_Unit_Area ( N ) = 2 * PI**(N/2) / Gamma ( N / 2 ) // // Some values of the function include: // // N Area // // 2 2 * PI // 3 ( 4 / ) * PI // 4 ( 2 / 1) * PI^2 // 5 ( 8 / 3) * PI^2 // 6 ( 1 / 1) * PI^3 // 7 (16 / 15) * PI^3 // 8 ( 1 / 3) * PI^4 // 9 (32 / 105) * PI^4 // 10 ( 1 / 12) * PI^5 // // For the unit sphere, Area(N) = N * Volume(N) // // In Mathematica, the function can be evaluated by: // // 2 * Pi^(n/2) / Gamma[n/2] // // Modified: // // 20 August 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int *N_DATA. // On input, if N_DATA is 0, the first test data is returned, and // N_DATA is set to the index of the test data. On each subsequent // call, N_DATA is incremented and that test data is returned. When // there is no more test data, N_DATA is set to 0. // // Output, int *N, the spatial dimension. // // Output, double *AREA, the area of the unit sphere // in that dimension. // { # define N_MAX 20 double area_vec[N_MAX] = { 0.2000000000000000E+01, 0.6283185307179586E+01, 0.1256637061435917E+02, 0.1973920880217872E+02, 0.2631894506957162E+02, 0.3100627668029982E+02, 0.3307336179231981E+02, 0.3246969701133415E+02, 0.2968658012464836E+02, 0.2550164039877345E+02, 0.2072514267328890E+02, 0.1602315322625507E+02, 0.1183817381218268E+02, 0.8389703410491089E+01, 0.5721649212349567E+01, 0.3765290085742291E+01, 0.2396678817591364E+01, 0.1478625959000308E+01, 0.8858104195716824E+00, 0.5161378278002812E+00 }; int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *n = 0; *area = 0.0; } else { *n = n_vec[*n_data-1]; *area = area_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double sphere_unit_monomial_nd ( int n, int p[] ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_MONOMIAL_ND integrates a monomial on the surface of the unit sphere in ND. // // Integration region: // // sum ( X(1:N)^2 ) == 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 March 2008 // // Author: // // John Burkardt // // Reference: // // Gerald Folland, // How to Integrate a Polynomial Over a Sphere, // American Mathematical Monthly, // Volume 108, May 2001, pages 446-448. // // Parameters: // // Input, int N, the dimension of the space. // // Input, int P[N], the exponents of X(1) through X(N) in the monomial. // The exponents P(N) must be nonnegative. // // Output, double SPHERE_UNIT_MONOMIAL_ND, the integral of // X1**P(1)*X2**P(2)*...*XN**P(N) over the unit sphere. // { double arg1; double arg2; int i; double temp; double value; for ( i = 0; i < n; i++ ) { if ( p[i] % 2 == 1 ) { value = 0.0; return value; } } temp = 0.0; arg2 = 0.0; for ( i = 0; i < n; i++ ) { arg1 = ( double ) ( p[i] + 1 ) / 2.0; temp = temp + r8_gamma_log ( arg1 ); arg2 = arg2 + arg1; } temp = temp - r8_gamma_log ( arg2 ); value = 2.0 * exp ( temp ); return value; } //****************************************************************************80 double sphere_unit_volume_nd ( int dim_num ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_VOLUME_ND computes the volume of a unit sphere in ND. // // Discussion: // // The unit sphere in ND satisfies: // // sum ( 1 <= I <= DIM_NUM ) X(I) * X(I) = 1 // // Results for the first few values of DIM_NUM are: // // DIM_NUM Volume // // 1 2 // 2 1 * PI // 3 ( 4 / 3) * PI // 4 ( 1 / 2) * PI^2 // 5 ( 8 / 15) * PI^2 // 6 ( 1 / 6) * PI^3 // 7 (16 / 105) * PI^3 // 8 ( 1 / 24) * PI^4 // 9 (32 / 945) * PI^4 // 10 ( 1 / 120) * PI^5 // // For the unit sphere, Volume(DIM_NUM) = 2 * PI * Volume(DIM_NUM-2)/ DIM_NUM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Output, double SPHERE_UNIT_VOLUME_ND, the volume of the sphere. // { int i; int m; double pi = 3.141592653589793; double volume; if ( ( dim_num % 2 ) == 0 ) { m = dim_num / 2; volume = pow ( pi, m ); for ( i = 1; i <= m; i++ ) { volume = volume / ( double ) ( i ); } } else { m = ( dim_num - 1 ) / 2; volume = pow ( pi, m ) * pow ( 2.0, dim_num ); for ( i = m + 1; i <= 2 * m + 1; i++ ) { volume = volume / ( double ) ( i ); } } return volume; } //****************************************************************************80 void sphere_unit_volume_values ( int *n_data, int *n, double *volume ) //****************************************************************************80 // // Purpose: // // SPHERE_UNIT_VOLUME_VALUES returns some volumes of the unit sphere in ND. // // Discussion: // // The formula for the volume of the unit sphere in N dimensions is // // Volume(N) = 2 * PI**(N/2) / ( N * Gamma ( N / 2 ) ) // // This function satisfies the relationships: // // Volume(N) = 2 * PI * Volume(N-2) / N // Volume(N) = Area(N) / N // // Some values of the function include: // // N Volume // // 1 1 // 2 1 * PI // 3 ( 4 / 3) * PI // 4 ( 1 / 2) * PI^2 // 5 ( 8 / 15) * PI^2 // 6 ( 1 / 6) * PI^3 // 7 (16 / 105) * PI^3 // 8 ( 1 / 24) * PI^4 // 9 (32 / 945) * PI^4 // 10 ( 1 / 120) * PI^5 // // In Mathematica, the function can be evaluated by: // // 2 * Pi^(n/2) / ( n * Gamma[n/2] ) // // Modified: // // 21 August 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int *N_DATA. // On input, if N_DATA is 0, the first test data is returned, and // N_DATA is set to the index of the test data. On each subsequent // call, N_DATA is incremented and that test data is returned. When // there is no more test data, N_DATA is set to 0. // // Output, int *N, the spatial dimension. // // Output, double *VOLUME, the volume of the unit // sphere in that dimension. // { # define N_MAX 20 int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }; double volume_vec[N_MAX] = { 0.2000000000000000E+01, 0.3141592653589793E+01, 0.4188790204786391E+01, 0.4934802200544679E+01, 0.5263789013914325E+01, 0.5167712780049970E+01, 0.4724765970331401E+01, 0.4058712126416768E+01, 0.3298508902738707E+01, 0.2550164039877345E+01, 0.1884103879389900E+01, 0.1335262768854589E+01, 0.9106287547832831E+00, 0.5992645293207921E+00, 0.3814432808233045E+00, 0.2353306303588932E+00, 0.1409811069171390E+00, 0.8214588661112823E-01, 0.4662160103008855E-01, 0.2580689139001406E-01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *n = 0; *volume = 0.0; } else { *n = n_vec[*n_data-1]; *volume = volume_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double sphere_volume_2d ( double r ) //****************************************************************************80 // // Purpose: // // SPHERE_VOLUME_2D computes the volume of an implicit sphere in 2D. // // Discussion: // // An implicit sphere in 2D satisfies the equation: // // sum ( ( P(1:DIM_NUM) - CENTER(1:DIM_NUM) )^2 ) = R * R // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the sphere. // // Output, double SPHERE_VOLUME_2D, the volume of the sphere. // { double pi = 3.141592653589793; double volume; volume = pi * r * r; return volume; } //****************************************************************************80 double sphere_volume_3d ( double r ) //****************************************************************************80 // // Purpose: // // SPHERE_VOLUME_3D computes the volume of an implicit sphere in 3D. // // Discussion: // // An implicit sphere in 3D satisfies the equation: // // sum ( ( P(1:DIM_NUM) - CENTER(1:DIM_NUM) )^2 ) = R * R // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R, the radius of the sphere. // // Output, double SPHERE_VOLUME_3D, the volume of the sphere. // { double pi = 3.141592653589793; double volume; volume = ( 4.0 / 3.0 ) * pi * r * r * r; return volume; } //****************************************************************************80 double sphere_volume_nd ( int dim_num, double r ) //****************************************************************************80 // // Purpose: // // SPHERE_VOLUME_ND computes the volume of an implicit sphere in ND. // // Discussion: // // An implicit sphere in ND satisfies the equation: // // sum ( ( X(1:N) - CENTER(1:N) )^2 ) = R * R // // where R is the radius and CENTER is the center. // // Results for the first few values of N are: // // DIM_NUM Volume // - ----------------------- // 2 PI * R^2 // 3 (4/3) * PI * R^3 // 4 (1/2) * PI^2 * R^4 // 5 (8/15) * PI^2 * R^5 // 6 (1/6) * PI^3 * R^6 // 7 (16/105) * PI^3 * R^7 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the space. // // Input, double R, the radius of the sphere. // // Output, double SPHERE_VOLUME_ND, the volume of the sphere. // { double volume; volume = pow ( r, dim_num ) * sphere_unit_volume_nd ( dim_num ); return volume; } //****************************************************************************80 double square_sum ( double func ( double x, double y ), double center[2], double r, int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // // Purpose: // // SQUARE_SUM carries out a quadrature rule over a square. // // Integration region: // // abs ( X - CENTER(1) ) <= R // and // abs ( Y - CENTER(2) ) <= R // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the function // to be integrated. // // Input, double CENTER[2], the center of the square. // // Input, double R, the radius of the square. // // Input, int ORDER, the order of the rule. // // Input, double XTAB[ORDER], YTAB[ORDER], the abscissas of // the rule. // // Input, double WEIGHT[ORDER], the weights of the rule. // // Output, double SQUARE_SUM, the approximate integral of the function. // { int i; double quad; double result; double volume; double x; double y; quad = 0.0; for ( i = 0; i < order; i++ ) { x = center[0] + r * xtab[i]; y = center[1] + r * ytab[i]; quad = quad + 0.25 * weight[i] * func ( x, y ); } volume = 4.0 * r * r; result = quad * volume; return result; } //****************************************************************************80 void square_unit_set ( int rule, int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // // Purpose: // // SQUARE_UNIT_SET sets quadrature weights and abscissas in the unit square. // // Discussion; // // To get the value of ORDER associated with a given rule, // call SQUARE_UNIT_SIZE first. // // Integration region: // // -1 <= X <= 1, // and // -1 <= Y <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 March 2008 // // Author: // // John Burkardt // // Reference: // // Gilbert Strang, George Fix, // An Analysis of the Finite Element Method, // Cambridge, 1973, // ISBN: 096140888X, // LC: TA335.S77. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int RULE, the rule number. // 1, order 1, degree 1 rule. // 2, order 4, degree 3, rule. // 3, order 9, degree 5 rule. // 4, order 12 degree 7 rule, Stroud number C2:7-1. // 5, order 13 degree 7 rule, Stroud number C2:7-3. // 6, order 64 degree 15 product rule. // // Input, int ORDER, the order of the rule. // // Output, double XTAB[ORDER], YTAB[ORDER], the abscissas. // // Output, double WEIGHT[ORDER], the weights. // { double a; double c; int i; int j; int k; int order2 = 8; double r; double s; double t; double w1; double w2; double w3; double *weight2; double *xtab2; double z; if ( rule == 1 ) { weight[0] = 4.0; xtab[0] = 0.0; ytab[0] = 0.0; } else if ( rule == 2 ) { a = 1.0; s = 1.0 / sqrt ( 3.0 ); xtab[0] = - s; xtab[1] = s; xtab[2] = - s; xtab[3] = s; ytab[0] = - s; ytab[1] = - s; ytab[2] = s; ytab[3] = s; weight[0] = a; weight[1] = a; weight[2] = a; weight[3] = a; } else if ( rule == 3 ) { s = sqrt ( 0.6 ); z = 0.0; w1 = 64.0 / 81.0; w2 = 25.0 / 81.0; w3 = 40.0 / 81.0; xtab[0] = z; xtab[1] = - s; xtab[2] = s; xtab[3] = - s; xtab[4] = s; xtab[5] = z; xtab[6] = - s; xtab[7] = s; xtab[8] = z; ytab[0] = z; ytab[1] = - s; ytab[2] = - s; ytab[3] = s; ytab[4] = s; ytab[5] = - s; ytab[6] = z; ytab[7] = z; ytab[8] = s; weight[0] = w1; weight[1] = w2; weight[2] = w2; weight[3] = w2; weight[4] = w2; weight[5] = w3; weight[6] = w3; weight[7] = w3; weight[8] = w3; } else if ( rule == 4 ) { r = sqrt ( 6.0 / 7.0 ); c = 3.0 * sqrt ( 583.0 ); s = sqrt ( ( 114.0 - c ) / 287.0 ); t = sqrt ( ( 114.0 + c ) / 287.0 ); w1 = 4.0 * 49.0 / 810.0; w2 = 4.0 * ( 178981.0 + 923.0 * c ) / 1888920.0; w3 = 4.0 * ( 178981.0 - 923.0 * c ) / 1888920.0; z = 0.0; xtab[0] = r; xtab[1] = z; xtab[2] = - r; xtab[3] = z; xtab[4] = s; xtab[5] = - s; xtab[6] = - s; xtab[7] = s; xtab[8] = t; xtab[9] = - t; xtab[10] = - t; xtab[11] = t; ytab[0] = z; ytab[1] = r; ytab[2] = z; ytab[3] = - r; ytab[4] = s; ytab[5] = s; ytab[6] = - s; ytab[7] = - s; ytab[8] = t; ytab[9] = t; ytab[10] = - t; ytab[11] = - t; weight[0] = w1; weight[1] = w1; weight[2] = w1; weight[3] = w1; weight[4] = w2; weight[5] = w2; weight[6] = w2; weight[7] = w2; weight[8] = w3; weight[9] = w3; weight[10] = w3; weight[11] = w3; } else if ( rule == 5 ) { r = sqrt ( 12.0 / 35.0 ); c = 3.0 * sqrt ( 186.0 ); s = sqrt ( ( 93.0 + c ) / 155.0 ); t = sqrt ( ( 93.0 - c ) / 155.0 ); w1 = 8.0 / 162.0; w2 = 98.0 / 162.0; w3 = 31.0 / 162.0; z = 0.0; xtab[0] = z; xtab[1] = r; xtab[2] = - r; xtab[3] = z; xtab[4] = z; xtab[5] = s; xtab[6] = s; xtab[7] = - s; xtab[8] = - s; xtab[9] = t; xtab[10] = t; xtab[11] = - t; xtab[12] = - t; ytab[0] = z; ytab[1] = z; ytab[2] = z; ytab[3] = r; ytab[4] = - r; ytab[5] = t; ytab[6] = - t; ytab[7] = t; ytab[8] = - t; ytab[9] = s; ytab[10] = - s; ytab[11] = s; ytab[12] = - s; weight[0] = w1; weight[1] = w2; weight[2] = w2; weight[3] = w2; weight[4] = w2; weight[5] = w3; weight[6] = w3; weight[7] = w3; weight[8] = w3; weight[9] = w3; weight[10] = w3; weight[11] = w3; weight[12] = w3; } else if ( rule == 6 ) { xtab2 = new double[order2]; weight2 = new double[order2]; legendre_set ( order2, xtab2, weight2 ); k = 0; for ( i = 0; i < order2; i++ ) { for ( j = 0; j < order2; j++ ) { xtab[k] = xtab2[i]; ytab[k] = xtab2[j]; weight[k] = weight2[i] * weight2[j]; k = k + 1; } } delete [] xtab2; delete [] weight2; } else { cerr << "\n"; cerr << "SQUARE_UNIT_SET - Fatal error!\n"; cerr << " Illegal value of RULE = " << rule << "\n"; exit ( 1 ); } return; } //****************************************************************************80 int square_unit_size ( int rule ) //****************************************************************************80 // // Purpose: // // SQUARE_UNIT_SIZE sizes a quadrature rule in the unit square. // // Integration region: // // -1 <= X <= 1, // and // -1 <= Y <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 March 2008 // // Author: // // John Burkardt // // Reference: // // Gilbert Strang, George Fix, // An Analysis of the Finite Element Method, // Cambridge, 1973, // ISBN: 096140888X, // LC: TA335.S77. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int RULE, the rule number. // 1, a 1 point 1st degree rule. // 2, a 4 point 3rd degree rule. // 3, a 9 point 5th degree rule. // 4, a 12 point 7-th degree rule, Stroud number C2:7-1. // 5, a 13 point 7-th degree rule, Stroud number C2:7-3. // 6, a 64 point 15-th degree product rule. // // Output, int SQUARE_UNIT_SIZE, the order of the rule. // { int order; if ( rule == 1 ) { order = 1; } else if ( rule == 2 ) { order = 4; } else if ( rule == 3 ) { order = 9; } else if ( rule == 4 ) { order = 12; } else if ( rule == 5 ) { order = 13; } else if ( rule == 6 ) { order = 64; } else { order = - 1; } return order; } //****************************************************************************80 double square_unit_sum ( double func ( double x, double y ), int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // // Purpose: // // SQUARE_UNIT_SUM carries out a quadrature rule over the unit square. // // Integration region: // // -1 <= X <= 1, // and // -1 <= Y <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the function // to be integrated. // // Input, int ORDER, the order of the rule. // // Input, double XTAB[ORDER], YTAB[ORDER], the abscissas. // // Input, double WEIGHT[ORDER], the weights. // // Output, double SQUARE_UNIT_SUM, the approximate integral of the function. // { int i; double quad; double result; double volume; quad = 0.0; for ( i = 0; i < order; i++ ) { quad = quad + weight[i] * func ( xtab[i], ytab[i] ) / 4.0; } volume = 1.0; result = quad * volume; return result; } //****************************************************************************80 void subset_gray_next ( int n, int a[], bool *more, int *ncard, int *iadd ) //****************************************************************************80 // // Purpose: // // SUBSET_GRAY_NEXT generates all subsets of a set of order N, one at a time. // // Discussion: // // It generates the subsets one at a time, by adding or subtracting // exactly one element on each step. // // The user should set MORE = .FALSE. and the value of N before // the first call. On return, the user may examine A which contains // the definition of the new subset, and must check .MORE., because // as soon as it is .FALSE. on return, all the subsets have been // generated and the user probably should cease calling. // // The first set returned is the empty set. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 May 2003 // // Author: // // FORTRAN77 original version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms for Computers and Calculators, // Second Edition, // Academic Press, 1978, // ISBN: 0-12-519260-6, // LC: QA164.N54. // // Parameters: // // Input, int N, the order of the total set from which // subsets will be drawn. // // Input/output, int A[N]. On each return, the Gray code for the newly // generated subset. A[I] = 0 if element I is in the subset, 1 otherwise. // // Input/output, bool *MORE. Set this variable FALSE before // the first call. Normally, MORE will be returned TRUE but once // all the subsets have been generated, MORE will be // reset FALSE on return and you should stop calling the program. // // Input/output, int *NCARD, the cardinality of the set returned, // which may be any value between 0 (the empty set) and N (the // whole set). // // Output, int *IADD, the element which was added or removed to the // previous subset to generate the current one. Exception: // the empty set is returned on the first call, and IADD is set to -1. { int i; // // First set returned is the empty set. // if ( !(*more) ) { for ( i = 0; i < n; i++ ) { a[i] = 0; } *iadd = 0; *ncard = 0; *more = true; } else { *iadd = 1; if ( ( *ncard % 2 ) != 0 ) { for ( ; ; ) { *iadd = *iadd + 1; if ( a[*iadd-2] != 0 ) { break; } } } a[*iadd-1] = 1 - a[*iadd-1]; *ncard = *ncard + 2 * a[*iadd-1] - 1; // // Last set returned is the singleton A(N). // if ( *ncard == a[n-1] ) { *more = false; } } return; } //****************************************************************************80 double tetra_07 ( double func ( double x, double y, double z ), double x[], double y[], double z[] ) //****************************************************************************80 // // Purpose: // // TETRA_07 approximates an integral inside a tetrahedron in 3D. // // Integration region: // // Points inside a tetrahedron whose four corners are given. // // Discussion: // // A 64 point 7-th degree conical product Gauss formula is used, // Stroud number T3:7-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, pages 42-43, // LC: QA299.4G3S7 // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function to be integrated. // // Input, double X[4], Y[4], Z[4], the coordinates of // the vertices. // // Output, double TETRAQ_07, the approximate integral of the function. // { double a; double b; double c; double d; int i; int j; int k; int order = 4; double quad; double result; double t; double u; double v; double volume; double w; double weight1[4]; double weight2[4] = { 0.1355069134, 0.2034645680, 0.1298475476, 0.0311809709 }; double weight3[4] = { 0.1108884156, 0.1434587898, 0.0686338872, 0.0103522407 }; double xtab1[4]; double xtab2[4] = { 0.0571041961, 0.2768430136, 0.5835904324, 0.8602401357 }; double xtab3[4] = { 0.0485005495, 0.2386007376, 0.5170472951, 0.7958514179 }; double xval; double yval; double zval; // // Get the Gauss-Legendre weights and abscissas for [-1,1]. // legendre_set ( order, xtab1, weight1 ); // // Adjust the rule for the interval [0,1]. // a = -1.0; b = +1.0; c = 0.0; d = 1.0; rule_adjust ( a, b, c, d, order, xtab1, weight1 ); // // Carry out the quadrature. // quad = 0.0; for ( i = 0; i < order; i++ ) { for ( j = 0; j < order; j++ ) { for ( k = 0; k < order; k++ ) { // // Compute the barycentric coordinates of the point in the unit triangle. // t = xtab3[k]; u = xtab2[j] * ( 1.0 - xtab3[k] ); v = xtab1[i] * ( 1.0 - xtab2[j] ) * ( 1.0 - xtab3[k] ); w = 1.0 - t - u - v; // // Compute the corresponding point in the triangle. // xval = t * x[0] + u * x[1] + v * x[2] + w * x[3]; yval = t * y[0] + u * y[1] + v * y[2] + w * y[3]; zval = t * z[0] + u * z[1] + v * z[2] + w * z[3]; quad = quad + 6.0 * weight1[i] * weight2[j] * weight3[k] * func ( xval, yval, zval ); } } } volume = tetra_volume ( x, y, z ); result = quad * volume; return result; } //****************************************************************************80 double tetra_sum ( double func ( double x, double y, double z ), double x[4], double y[4], double z[4], int order, double xtab[], double ytab[], double ztab[], double weight[] ) //****************************************************************************80 // // Purpose: // // TETRA_SUM carries out a quadrature rule in a tetrahedron in 3D. // // Integration region: // // A tetrahedron whose vertices are specified. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function which is to be integrated. // // Input, double X[4], Y[4], Z[4], the vertices. // // Input, int ORDER, the order of the rule. // // Input, double XTAB[ORDER], YTAB[ORDER], ZTAB[ORDER], the // abscissas. // // Input, double WEIGHT[ORDER], the weights. // // Output, double TETRA_SUM, the approximate integral of the function. // { int i; double quad; double result; double volume; double xval; double yval; double zval; quad = 0.0; for ( i = 0; i < order; i++ ) { xval = xtab[i] * x[0] + ytab[i] * x[1] + ztab[i] * x[2] + ( 1.0 - xtab[i] - ytab[i] - ztab[i] ) * x[3]; yval = xtab[i] * y[0] + ytab[i] * y[1] + ztab[i] * y[2] + ( 1.0 - xtab[i] - ytab[i] - ztab[i] ) * y[3]; zval = xtab[i] * z[0] + ytab[i] * z[1] + ztab[i] * z[2] + ( 1.0 - xtab[i] - ytab[i] - ztab[i] ) * z[3]; quad = quad + weight[i] * func ( xval, yval, zval ); } volume = tetra_volume ( x, y, z ); result = quad * volume; return result; } //****************************************************************************80 double tetra_tproduct ( double func ( double x, double y, double z ), int order, double x[4], double y[4], double z[4] ) //****************************************************************************80 // // Purpose: // // TETRA_TPRODUCT approximates an integral in a tetrahedron in 3D. // // Discussion: // // Integration is carried out over the points inside an arbitrary // tetrahedron whose four vertices are given. // // An ORDER**3 point (2*ORDER-1)-th degree triangular product // Gauss-Legendre rule is used. // // With ORDER = 8, this routine is equivalent to the routine TETR15 // in the reference, page 367. // // Thanks to Joerg Behrens, jbehren@gwdg.de, for numerous suggestions // and corrections. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function to be integrated. // // Input, int ORDER, the order of the basic quadrature rules. // ORDER should be between 1 and 9. // // Input, double X[4], Y[4], Z[4], the vertices // of the tetrahedron. // // Output, double TETRA_TPRODUCT, the approximate integral of the function. // { double a; double b; double c; double d; int i; int j; int k; double quad; double result; double volume; double *weight0; double *weight1; double *weight2; double *xtab0; double *xtab1; double *xtab2; double xval; double yval; double zval; if ( order < 1 || 9 < order ) { cerr << "\n"; cerr << "TETRA_TPRODUCT - Fatal error!\n"; cerr << " The quadrature rule orders must be between 1 and 9.\n"; cerr << " The input value was ORDER = " << order << "\n"; exit ( 1 ); } // // Get the Gauss-Legendre ORDER point rules on [-1,1] for integrating // F(X), // X * F(X), // X * X * F(X). // xtab0 = new double[order]; xtab1 = new double[order]; xtab2 = new double[order]; weight0 = new double[order]; weight1 = new double[order]; weight2 = new double[order]; legendre_set ( order, xtab0, weight0 ); legendre_set_x1 ( order, xtab1, weight1 ); legendre_set_x2 ( order, xtab2, weight2 ); // // Adjust the rules from [-1,1] to [0,1]. // a = -1.0; b = +1.0; c = 0.0; d = 1.0; rule_adjust ( a, b, c, d, order, xtab0, weight0 ); rule_adjust ( a, b, c, d, order, xtab1, weight1 ); rule_adjust ( a, b, c, d, order, xtab2, weight2 ); // // For rules with a weight function that is not 1, the weight vectors // require further adjustment. // for ( i = 0; i < order; i++ ) { weight1[i] = weight1[i] / 2.0; } for ( i = 0; i < order; i++ ) { weight2[i] = weight2[i] / 4.0; } // // Carry out the quadrature. // quad = 0.0; for ( k = 0; k < order; k++ ) { for ( j = 0; j < order; j++ ) { for ( i = 0; i < order; i++ ) { xval = x[0] + ( ( ( x[3] - x[2] ) * xtab0[i] + ( x[2] - x[1] ) ) * xtab1[j] + ( x[1] - x[0] ) ) * xtab2[k]; yval = y[0] + ( ( ( y[3] - y[2] ) * xtab0[i] + ( y[2] - y[1] ) ) * xtab1[j] + ( y[1] - y[0] ) ) * xtab2[k]; zval = z[0] + ( ( ( z[3] - z[2] ) * xtab0[i] + ( z[2] - z[1] ) ) * xtab1[j] + ( z[1] - z[0] ) ) * xtab2[k]; quad = quad + 6.0 * weight0[i] * weight1[j] * weight2[k] * func ( xval, yval, zval ); } } } // // Compute the volume of the tetrahedron. // volume = tetra_volume ( x, y, z ); result = quad * volume; delete [] xtab0; delete [] xtab1; delete [] xtab2; delete [] weight0; delete [] weight1; delete [] weight2; return result; } //****************************************************************************80 void tetra_unit_set ( int rule, int order, double xtab[], double ytab[], double ztab[], double weight[] ) //****************************************************************************80 // // Purpose: // // TETRA_UNIT_SET sets quadrature weights and abscissas in the unit tetrahedron. // // Integration region: // // 0 <= X, // and // 0 <= Y, // and // 0 <= Z, // and // X + Y + Z <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 March 2008 // // Author: // // John Burkardt // // Reference: // // Hermann Engels, // Numerical Quadrature and Cubature, // Academic Press, 1980, // ISBN: 012238850X, // LC: QA299.3E5. // // Patrick Keast, // Moderate Degree Tetrahedral Quadrature Formulas, // Computer Methods in Applied Mechanics and Engineering, // Volume 55, Number 3, May 1986, pages 339-348. // // Olgierd Zienkiewicz, // The Finite Element Method, // Sixth Edition, // Butterworth-Heinemann, 2005, // ISBN: 0750663200, // LC: TA640.2.Z54 // // Parameters: // // Input, int RULE, the index of the rule. // 1, order 1, precision 0, Newton Cotes formula #0, Zienkiewicz #1. // 2, order 4, precision 1, Newton Cotes formula #1. // 3, order 4, precision 2, Zienkiewicz #2. // 4, order 10, precision 2, Newton Cotes formula #2 // 5, order 5, precision 3, Zienkiewicz #3. // 6, order 8, precision 3, Newton Cotes formula #3. // 7, order 35, precision 4, Newton Cotes formula #4. // 8, order 11, precision 4, a Keast rule. // // Input, int ORDER, the order of the rule. // // Output, double XTAB[ORDER], YTAB[ORDER], ZTAB[ORDER], // the abscissas. // // Output, double WEIGHT[ORDER], the weights. // { double a; double b; double c; double d; double e; double f; double g; double h; double z; // // Newton Cotes #0. // if ( rule == 1 ) { xtab[0] = 0.25; ytab[0] = 0.25; ztab[0] = 0.25; weight[0] = 1.0; } // // Newton Cotes #1. // else if ( rule == 2 ) { a = 1.0; b = 1.0 / 4.0; z = 0.0; xtab[0] = z; xtab[1] = a; xtab[2] = z; xtab[3] = z; ytab[0] = z; ytab[1] = z; ytab[2] = a; ytab[3] = z; ztab[0] = z; ztab[1] = z; ztab[2] = z; ztab[3] = a; weight[0] = b; weight[1] = b; weight[2] = b; weight[3] = b; } // // Zienkiewicz #2. // else if ( rule == 3 ) { a = 0.5854101966249685; b = 0.1381966011250105; c = 0.25; xtab[0] = a; xtab[1] = b; xtab[2] = b; xtab[3] = b; ytab[0] = b; ytab[1] = a; ytab[2] = b; ytab[3] = b; ztab[0] = b; ztab[1] = b; ztab[2] = a; ztab[3] = b; weight[0] = c; weight[1] = c; weight[2] = c; weight[3] = c; } // // Newton Cotes #2. // else if ( rule == 4 ) { a = 1.0; b = 0.5; c = -1.0 / 20.0; d = 4.0 / 20.0; z = 0.0; xtab[0] = z; xtab[1] = a; xtab[2] = z; xtab[3] = z; xtab[4] = b; xtab[5] = z; xtab[6] = z; xtab[7] = b; xtab[8] = b; xtab[9] = z; ytab[0] = z; ytab[1] = z; ytab[2] = a; ytab[3] = z; ytab[4] = z; ytab[5] = b; ytab[6] = z; ytab[7] = b; ytab[8] = z; ytab[9] = b; ztab[0] = z; ztab[1] = z; ztab[2] = z; ztab[3] = a; ztab[4] = z; ztab[5] = z; ztab[6] = b; ztab[7] = z; ztab[8] = b; ztab[9] = b; weight[0] = c; weight[1] = c; weight[2] = c; weight[3] = c; weight[4] = d; weight[5] = d; weight[6] = d; weight[7] = d; weight[8] = d; weight[9] = d; } // // Zienkiewicz #3. // else if ( rule == 5 ) { a = 1.0 / 6.0; b = 0.25; c = 0.5; d = -0.8; e = 0.45; xtab[0] = b; xtab[1] = c; xtab[2] = a; xtab[3] = a; xtab[4] = a; ytab[0] = b; ytab[1] = a; ytab[2] = c; ytab[3] = a; ytab[4] = a; ztab[0] = b; ztab[1] = a; ztab[2] = a; ztab[3] = c; ztab[4] = a; weight[0] = d; weight[1] = e; weight[2] = e; weight[3] = e; weight[4] = e; } // // Newton Cotes #3. // (This is actually formally a 20 point rule, but with 12 zero coefficients.) // else if ( rule == 6 ) { a = 1.0; b = 1.0 / 40.0; c = 1.0 / 3.0; d = 9.0 / 40.0; z = 0.0; xtab[0] = z; xtab[1] = a; xtab[2] = z; xtab[3] = z; xtab[4] = c; xtab[5] = c; xtab[6] = z; xtab[7] = c; ytab[0] = z; ytab[1] = z; ytab[2] = a; ytab[3] = z; ytab[4] = c; ytab[5] = z; ytab[6] = c; ytab[7] = c; ztab[0] = z; ztab[1] = z; ztab[2] = z; ztab[3] = a; ztab[4] = z; ztab[5] = c; ztab[6] = c; ztab[7] = c; weight[0] = b; weight[1] = b; weight[2] = b; weight[3] = b; weight[4] = d; weight[5] = d; weight[6] = d; weight[7] = d; } // // Newton Cotes #4. // else if ( rule == 7 ) { a = 0.25; b = 0.50; c = 0.75; d = 1.00; e = -5.0 / 420.0; f = -12.0 / 420.0; g = 16.0 / 420.0; h = 128.0 / 420.0; z = 0.0; xtab[0] = z; xtab[1] = d; xtab[2] = z; xtab[3] = z; xtab[4] = a; xtab[5] = z; xtab[6] = z; xtab[7] = c; xtab[8] = c; xtab[9] = c; xtab[10] = z; xtab[11] = a; xtab[12] = z; xtab[13] = z; xtab[14] = a; xtab[15] = z; xtab[16] = b; xtab[17] = z; xtab[18] = z; xtab[19] = b; xtab[20] = b; xtab[21] = z; xtab[22] = a; xtab[23] = b; xtab[24] = a; xtab[25] = a; xtab[26] = b; xtab[27] = z; xtab[28] = b; xtab[29] = z; xtab[30] = a; xtab[31] = a; xtab[32] = z; xtab[33] = a; xtab[34] = a; ytab[0] = z; ytab[1] = z; ytab[2] = d; ytab[3] = z; ytab[4] = z; ytab[5] = a; ytab[6] = z; ytab[7] = z; ytab[8] = a; ytab[9] = z; ytab[10] = c; ytab[11] = c; ytab[12] = c; ytab[13] = z; ytab[14] = z; ytab[15] = a; ytab[16] = z; ytab[17] = b; ytab[18] = z; ytab[19] = b; ytab[20] = z; ytab[21] = b; ytab[22] = a; ytab[23] = a; ytab[24] = b; ytab[25] = z; ytab[26] = z; ytab[27] = a; ytab[28] = a; ytab[29] = b; ytab[30] = b; ytab[31] = z; ytab[32] = a; ytab[33] = a; ytab[34] = a; ztab[0] = z; ztab[1] = z; ztab[2] = z; ztab[3] = d; ztab[4] = z; ztab[5] = z; ztab[6] = a; ztab[7] = z; ztab[8] = z; ztab[9] = a; ztab[10] = z; ztab[11] = z; ztab[12] = a; ztab[13] = c; ztab[14] = c; ztab[15] = c; ztab[16] = z; ztab[17] = z; ztab[18] = b; ztab[19] = z; ztab[20] = b; ztab[21] = b; ztab[22] = z; ztab[23] = z; ztab[24] = z; ztab[25] = a; ztab[26] = a; ztab[27] = a; ztab[28] = a; ztab[29] = a; ztab[30] = a; ztab[31] = b; ztab[32] = b; ztab[33] = b; ztab[34] = a; weight[0] = e; weight[1] = e; weight[2] = e; weight[3] = e; weight[4] = g; weight[5] = g; weight[6] = g; weight[7] = g; weight[8] = g; weight[9] = g; weight[10] = g; weight[11] = g; weight[12] = g; weight[13] = g; weight[14] = g; weight[15] = g; weight[16] = f; weight[17] = f; weight[18] = f; weight[19] = f; weight[20] = f; weight[21] = f; weight[22] = g; weight[23] = g; weight[24] = g; weight[25] = g; weight[26] = g; weight[27] = g; weight[28] = g; weight[29] = g; weight[30] = g; weight[31] = g; weight[32] = g; weight[33] = g; weight[34] = h; } // // Keast Rule of order 11 // else if ( rule == 8 ) { a = 0.25; b = 11.0 / 14.0; c = 1.0 / 14.0; d = 0.25 * ( 1.0 + sqrt ( 5.0 / 14.0 ) ); e = 0.25 * ( 1.0 - sqrt ( 5.0 / 14.0 ) ); f = -74.0 / 5625.0; g = 343.0 / 45000.0; h = 56.0 / 2250.0; xtab[0] = a; xtab[1] = b; xtab[2] = c; xtab[3] = c; xtab[4] = c; xtab[5] = d; xtab[6] = d; xtab[7] = d; xtab[8] = e; xtab[9] = e; xtab[10] = e; ytab[0] = a; ytab[1] = c; ytab[2] = b; ytab[3] = c; ytab[4] = c; ytab[5] = d; ytab[6] = e; ytab[7] = e; ytab[8] = d; ytab[9] = d; ytab[10] = e; ztab[0] = a; ztab[1] = c; ztab[2] = c; ztab[3] = b; ztab[4] = c; ztab[5] = e; ztab[6] = d; ztab[7] = e; ztab[8] = d; ztab[9] = e; ztab[10] = d; weight[0] = f; weight[1] = g; weight[2] = g; weight[3] = g; weight[4] = g; weight[5] = h; weight[6] = h; weight[7] = h; weight[8] = h; weight[9] = h; weight[10] = h; } else { cerr << "\n"; cerr << "TETRA_UNIT_SET - Fatal error!\n"; cerr << " Illegal value of RULE = " << rule << "\n"; exit ( 1 ); } return; } //****************************************************************************80 int tetra_unit_size ( int rule ) //****************************************************************************80 // // Purpose: // // TETRA_UNIT_SIZE sizes quadrature weights and abscissas in the unit tetrahedron. // // Integration region: // // 0 <= X, // and // 0 <= Y, // and // 0 <= Z, // and // X + Y + Z <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 March 2008 // // Author: // // John Burkardt // // Reference: // // Hermann Engels, // Numerical Quadrature and Cubature, // Academic Press, 1980, // ISBN: 012238850X, // LC: QA299.3E5. // // Patrick Keast, // Moderate Degree Tetrahedral Quadrature Formulas, // Computer Methods in Applied Mechanics and Engineering, // Volume 55, Number 3, May 1986, pages 339-348. // // Olgierd Zienkiewicz, // The Finite Element Method, // Sixth Edition, // Butterworth-Heinemann, 2005, // ISBN: 0750663200, // LC: TA640.2.Z54 // // Parameters: // // Input, int RULE, the index of the rule. // 1, order 1, precision 0, Newton Cotes formula #0, Zienkiewicz #1. // 2, order 4, precision 1, Newton Cotes formula #1. // 3, order 4, precision 2, Zienkiewicz #2. // 4, order 10, precision 2, Newton Cotes formula #2 // 5, order 5, precision 3, Zienkiewicz #3. // 6, order 8, precision 3, Newton Cotes formula #3. // 7, order 35, precision 4, Newton Cotes formula #4. // 8, order 11, precision 4, a Keast rule. // // Output, int TETRA_UNIT_SET, the order of the rule. // { int order; // // Newton Cotes #0. // if ( rule == 1 ) { order = 1; } // // Newton Cotes #1. // else if ( rule == 2 ) { order = 4; } // // Zienkiewicz #2. // else if ( rule == 3 ) { order = 4; } // // Newton Cotes #2. // else if ( rule == 4 ) { order = 10; } // // Zienkiewicz #3. // else if ( rule == 5 ) { order = 5; } // // Newton Cotes #3. // (This is actually formally a 20 point rule, but with 12 zero coefficients//) // else if ( rule == 6 ) { order = 8; } // // Newton Cotes #4. // else if ( rule == 7 ) { order = 35; } // // Keast Rule of order 11 // else if ( rule == 8 ) { order = 11; } else { cerr << "\n"; cerr << "TETRA_UNIT_SIZE - Fatal error!\n"; cerr << " Illegal value of RULE = " << rule << "\n"; exit ( 1 ); } return order; } //****************************************************************************80 double tetra_unit_sum ( double func ( double x, double y, double z ), int order, double xtab[], double ytab[], double ztab[], double weight[] ) //****************************************************************************80 // // Purpose: // // TETRA_UNIT_SUM carries out a quadrature rule in the unit tetrahedron in 3D. // // Integration region: // // 0 <= X, // and // 0 <= Y, // and // 0 <= Z, // and // X + Y + Z <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function to be integrated. // // Input, int ORDER, the order of the rule. // // Input, double XTAB[ORDER], YTAB[ORDER], ZTAB[ORDER], the // abscissas. // // Input, double WEIGHT[ORDER], the weights. // // Output, double RESULT, the approximate integral of the function. // { int i; double quad; double result; double volume; quad = 0.0; for ( i = 0; i < order; i++ ) { quad = quad + weight[i] * func ( xtab[i], ytab[i], ztab[i] ); } volume = tetra_unit_volume ( ); result = quad * volume; return result; } //****************************************************************************80 double tetra_unit_volume ( ) //****************************************************************************80 // // Purpose: // // TETRA_UNIT_VOLUME returns the volume of the unit tetrahedron. // // Discussion: // // The integration region is: // // 0 <= X, // 0 <= Y, // 0 <= Z, // X + Y + Z <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double TETRA_UNIT_VOLUME, the volume. // { double volume; volume = 1.0 / 6.0; return volume; } //****************************************************************************80 double tetra_volume ( double x[4], double y[4], double z[4] ) //****************************************************************************80 // // Purpose: // // TETRA_VOLUME computes the volume of a tetrahedron. // // Integration region: // // Points inside a tetrahedron whose four vertices are given. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double X[4], Y[4], Z[4], the vertices. // // Output, double TETRA_VOLUME, the volume of the tetrahedron. // { double volume; volume = parallelipiped_volume_3d ( x, y, z ); volume = volume * tetra_unit_volume ( ); return volume; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double torus_1 ( double func ( double x, double y, double z ), double r1, double r2, int n ) //****************************************************************************80 // // Purpose: // // TORUS_1 approximates an integral on the surface of a torus in 3D. // // Integration region: // // ( SQRT ( X*X + Y*Y ) - R1 )^2 + Z*Z = R2 * R2. // // Discussion: // // An (N+1)*(N+2) point N-th degree formula is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function to be integrated. // // Input, double R1, R2, the two radii that define the torus. // // Input, int N, defines the degree of the formula // used to approximate the integral. // // Output, double TORUS_1, the approximate integral of the function. // { double angle; double ct1; int i; int j; double pi = 3.141592653589793; double quad; double result; double st1; double u; double volume; double w; double x; double y; double z; w = 1.0 / ( r1 * ( double ) ( ( n + 1 ) * ( n + 2 ) ) ); quad = 0.0; for ( i = 0; i < n + 1; i++ ) { angle = 2.0 * pi * ( double ) ( i + 1 ) / ( double ) ( n + 1 ); ct1 = cos ( angle ); st1 = sin ( angle ); for ( j = 0; j < n + 2; j++ ) { angle = 2.0 * pi * ( double ) ( j + 1 ) / ( double ) ( n + 2 ); u = r1 + r2 * cos ( angle ); x = u * ct1; y = u * st1; z = r2 * sin ( angle ); quad = quad + w * u * func ( x, y, z ); } } volume = torus_area_3d ( r1, r2 ); result = quad * volume; return result; } //****************************************************************************80 double torus_14s ( double func ( double x, double y, double z ), double r1, double r2 ) //****************************************************************************80 // // Purpose: // // TORUS_14S approximates an integral inside a torus in 3D. // // Integration region: // // ( SQRT ( X*X + Y*Y ) - R1 )^2 + Z*Z <= R2 * R2. // // Discussion: // // A 960 point 14-th degree formula is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user function which is to be integrated. // // Input, double R1, R2, the two radii that define the torus. // // Output, double TORUS_14S, the approximate integral of the function. // { double angle; double ct; double cth; int i; int j; int n; int order = 4; double pi = 3.141592653589793; double quad; double r[4] = { 0.263499230, 0.574464514, 0.818529487, 0.964659606 }; double result; double st; double sth; double u; double volume; double weight[4] = { 0.086963711, 0.163036289, 0.163036289, 0.086963711 }; double x; double y; double z; quad = 0.0; for ( n = 1; n <= 15; n++ ) { angle = 2.0 * pi * ( double ) ( n ) / 15.0; cth = cos ( angle ); sth = sin ( angle ); for ( i = 1; i <= 16; i++ ) { angle = 2.0 * pi * ( double ) ( i ) / 16.0; ct = cos ( angle ); st = sin ( angle ); for ( j = 0; j < order; j++ ) { u = r1 + r[j] * ct * r2; x = u * cth; y = u * sth; z = r[j] * st * r2; quad = quad + u * weight[j] * func ( x, y, z ) / ( 120.0 * r1 ); } } } volume = torus_volume_3d ( r1, r2 ); result = quad * volume; return result; } //****************************************************************************80 double torus_5s2 ( double func ( double x, double y, double z ), double r1, double r2 ) //****************************************************************************80 // // Purpose: // // TORUS_5S2 approximates an integral inside a torus in 3D. // // Integration region: // // ( SQRT ( X*X + Y*Y ) - R1 )^2 + Z*Z <= R2 * R2. // // Discussion: // // A 24 point, 5-th degree formula is used, Stroud number TOR3-S2:5-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of // the user supplied function to be integrated. // // Input, double R1, R2, the two radii that define the torus. // // Output, double TORUS_5S2, the approximate integral of the function. // { double angle; double cs; int i; double pi = 3.141592653589793; double quad; double result; double sn; double u1; double u2; double u3; double volume; double w; double x; double y; double z; w = 1.0 / 24.0; quad = 0.0; u1 = sqrt ( r1 * r1 + 0.5 * r2 * r2 ); u2 = sqrt ( r1 * r1 + sqrt ( 2.0 ) * r1 * r2 + r2 * r2 ); u3 = sqrt ( r1 * r1 - sqrt ( 2.0 ) * r1 * r2 + r2 * r2 ); for ( i = 1; i <= 6; i++ ) { angle = 2.0 * pi * ( double ) ( i ) / 6.0; cs = cos ( angle ); sn = sin ( angle ); x = u1 * cs; y = u1 * sn; z = r2 / sqrt ( 2.0 ); quad = quad + w * func ( x, y, z ); x = u1 * cs; y = u1 * sn; z = -r2 / sqrt ( 2.0 ); quad = quad + w * func ( x, y, z ); x = u2 * cs; y = u2 * sn; z = 0.0; quad = quad + w * func ( x, y, z ); x = u3 * cs; y = u3 * sn; z = 0.0; quad = quad + w * func ( x, y, z ); } volume = torus_volume_3d ( r1, r2 ); result = quad * volume; return result; } //****************************************************************************80 double torus_6s2 ( double func ( double x, double y, double z ), double r1, double r2 ) //****************************************************************************80 // // Purpose: // // TORUS_6S2 approximates an integral inside a torus in 3D. // // Integration region: // // ( SQRT ( X*X + Y*Y ) - R1 )^2 + Z*Z <= R2 * R2. // // Discussion: // // An 84 point 6-th degree formula is used, Stroud number TOR3-S2:6-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 March 2007 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user defined function to be integrated. // // Input, double R1, R2, the two radii that define the torus. // // Output, double TORUS_6S2, the approximate integral of the function. // { double cth; int i; int j; int k; int n; int order = 2; double pi = 3.141592653589793; double quad; double result; double s[2] = { 0.322914992, 0.644171310 }; double sth; double u; double v; double volume; double w; double weight[2] = { 0.387077796, 0.165609800 }; double x; double y; double z; w = 1.0 / ( 7.0 * r1 * pi ); quad = 0.0; for ( n = 1; n <= 7; n++ ) { u = 0.5 * sqrt ( 3.0 ) * r2; cth = cos ( 2.0 * pi * ( double ) ( n ) / 7.0 ); sth = sin ( 2.0 * pi * ( double ) ( n ) / 7.0 ); for ( i = 1; i <= 2; i++ ) { u = -u; x = ( r1 + u ) * cth; y = ( r1 + u ) * sth; z = 0.0; quad = quad + 0.232710567 * w * ( r1 + u ) * func ( x, y, z ); x = r1 * cth; y = r1 * sth; z = u; quad = quad + 0.232710567 * w * r1 * func ( x, y, z ); } for ( k = 0; k < order; k++ ) { u = s[k] * r2; v = u; for ( i = 1; i <= 2; i++ ) { u = -u; for ( j = 1; j <= 2; j++ ) { v = -v; x = ( r1 + u ) * cth; y = ( r1 + u ) * sth; z = v; quad = quad + weight[k] * w * ( r1 + u ) * func ( x, y, z ); } } } } volume = torus_volume_3d ( r1, r2 ); result = quad * volume; return result; } //****************************************************************************80 double torus_area_3d ( double r1, double r2 ) //****************************************************************************80 // // Purpose: // // TORUS_AREA_3D returns the area of a torus in 3D. // // Integration region: // // ( SQRT ( X*X + Y*Y ) - R1 )^2 + Z*Z = R2*R2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R1, R2, the two radii that define the torus. // // Output, double TORUS_AREA_3D, the area of the torus. // { double area; double pi = 3.141592653589793; area = 4.0 * pi * pi * r1 * r2; return area; } //****************************************************************************80 double torus_square_14c ( double func ( double x, double y, double z ), double r1, double r2 ) //****************************************************************************80 // // Purpose: // // TORUS_SQUARE_14C approximates an integral in a "square" torus in 3D. // // Discussion: // // A 14-th degree 960 point formula is used. // // Integration region: // // R1 - R2 <= SQRT ( X*X + Y*Y ) <= R1 + R2, // and // -R2 <= Z <= R2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function to be integrated. // // Input, double R1, R2, the radii that define the torus. // // Output, double RESULT, the approximate integral of the function. // { double angle; double cth; int i; int j; int n; int order = 8; double pi = 3.141592653589793; double quad; double result; double *rtab; double sth; double u; double volume; double w; double *weight; double x; double y; double z; rtab = new double[order]; weight = new double[order]; legendre_set ( order, rtab, weight ); w = 1.0 / ( 60.0 * r1 ); quad = 0.0; for ( n = 1; n <= 15; n++ ) { angle = 2.0 * pi * ( double ) ( n ) / 15.0; cth = cos ( angle ); sth = sin ( angle ); for ( i = 0; i < order; i++ ) { u = r1 + rtab[i] * r2; x = u * cth; y = u * sth; for ( j = 0; j < order; j++ ) { z = rtab[j] * r2; quad = quad + u * w * weight[i] * weight[j] * func ( x, y, z ); } } } volume = torus_square_volume_3d ( r1, r2 ); result = quad * volume; delete [] rtab; delete [] weight; return result; } //****************************************************************************80 double torus_square_5c2 ( double func ( double x, double y, double z ), double r1, double r2 ) //****************************************************************************80 // // Purpose: // // TORUS_SQUARE_5C2 approximates an integral in a "square" torus in 3D. // // Integration region: // // R1 - R2 <= SQRT ( X*X + Y*Y ) <= R1 + R2, // and // -R2 <= Z <= R2. // // Discussion: // // A 24 point 5-th degree formula is used, Stroud number TOR3-C2:5-1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 March 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function to be integrated. // // Input, double R1, the primary radius of the torus. // // Input, double R2, one-half the length of a side of the // square cross-section. // // Output, double TORUS_SQUARE_5C2, the approximate integral of the function. // { double b1 = 5.0 / 108.0; double b2 = 4.0 / 108.0; double cs; int i; double pi = 3.141592653589793; double quad; double result; double sn; double u1; double u2; double u3; double v; double volume; double x; double y; double z; quad = 0.0; u1 = sqrt ( r1 * r1 + r2 * r2 ); v = r2 * sqrt ( 0.6 ); u2 = sqrt ( r1 * r1 - sqrt ( 3.0 ) * r1 * r2 + r2 * r2 ); u3 = sqrt ( r1 * r1 + sqrt ( 3.0 ) * r1 * r2 + r2 * r2 ); for ( i = 1; i <= 6; i++ ) { cs = cos ( ( double ) ( i ) * pi / 3.0 ); sn = sin ( ( double ) ( i ) * pi / 3.0 ); x = u1 * cs; y = u1 * sn; z = v; quad = quad + b1 * func ( x, y, z ); z = -v; quad = quad + b1 * func ( x, y, z ); x = u2 * cs; y = u2 * sn; z = 0.0; quad = quad + b2 * func ( x, y, z ); x = u3 * cs; y = u3 * sn; z = 0.0; quad = quad + b2 * func ( x, y, z ); } volume = torus_square_volume_3d ( r1, r2 ); result = quad * volume; return result; } //****************************************************************************80 double torus_square_area_3d ( double r1, double r2 ) //****************************************************************************80 // // Purpose: // // TORUS_SQUARE_AREA_3D returns the area of a square torus in 3D. // // Integration region: // // R1 - R2 <= SQRT ( X*X + Y*Y ) <= R1 + R2, // and // -R2 <= Z <= R2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R1, R2, the two radii that define the torus. // // Output, double TORUS_SQUARE_AREA_3D, the area of the torus. // { double area; double pi = 3.141592653589793; area = 16.0 * pi * r1 * r2; return area; } //****************************************************************************80 double torus_square_volume_3d ( double r1, double r2 ) //****************************************************************************80 // // Purpose: // // TORUS_SQUARE_VOLUME_3D returns the volume of a square torus in 3D. // // Integration region: // // R1 - R2 <= SQRT ( X*X + Y*Y ) <= R1 + R2, // and // -R2 <= Z <= R2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R1, R2, the two radii that define the torus. // // Output, double TORUS_SQUARE_VOLUME_3D, the volume of the torus. // { double pi = 3.141592653589793; double volume; volume = 8.0 * pi * r1 * r2 * r2; return volume; } //****************************************************************************80 double torus_volume_3d ( double r1, double r2 ) //****************************************************************************80 // // Purpose: // // TORUS_VOLUME_3D returns the volume of a torus in 3D. // // Integration region: // // ( SQRT ( X*X + Y*Y ) - R1 )^2 + Z * Z = R2 * R2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double R1, R2, the two radii that define the torus. // // Output, double TORUS_VOLUME_3D, the volume of the torus. // { double pi = 3.141592653589793; double volume; volume = 2.0 * pi * pi * r1 * r2 * r2; return volume; } //****************************************************************************80 void triangle_rule_adjust ( double xval[3], double yval[3], int order, double xtab[], double ytab[], double weight[], double xtab2[], double ytab2[], double weight2[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_RULE_ADJUST adjusts a unit quadrature rule to an arbitrary triangle. // // Integration region: // // (X,Y) = ALPHA * (X1,Y1) + BETA * (X2,Y2) + ( 1 - ALPHA - BETA ) * (X3,Y3) // and // 0 <= ALPHA <= 1 - BETA // and // 0 <= BETA <= 1 - ALPHA // // Discussion: // // This routine accepts as input abscissas and weights appropriate for // quadrature in the unit triangle, and returns abscissas and weights // appropriate for quadrature in a given triangle. // // Once this routine has been called, an integral over the given triangle // can be approximated as: // // QUAD = sum ( 1 <= I <= ORDER ) WTAB2(I) * FUNC ( XTAB2(I), YTAB2(I) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double XVAL[3], YVAL[3], the coordinates of the nodes. // // Input, int ORDER, the order of the rule. // // Input, double XTAB[ORDER], YTAB[ORDER], the abscissas for // the unit triangle. // // Input, double WEIGHT[ORDER], the weights for the unit triangle. // // Output, double XTAB2[ORDER], YTAB2[ORDER], the adjusted // abscissas. // // Output, double WEIGHT2[ORDER], the adjusted weights. // { int i; double volume; volume = triangle_volume ( xval, yval ); for ( i = 0; i < order; i++ ) { xtab2[i] = xtab[i] * xval[0] + ytab[i] * xval[1] + ( 1.0 - xtab[i] - ytab[i] ) * xval[2]; ytab2[i] = xtab[i] * yval[0] + ytab[i] * yval[1] + ( 1.0 - xtab[i] - ytab[i] ) * yval[2]; weight2[i] = weight[i] * 2.0 * volume; } return; } //****************************************************************************80 double triangle_sub ( double func ( double x, double y ), double xval[3], double yval[], int nsub, int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_SUB carries out quadrature over subdivisions of a triangular region. // // Integration region: // // (X,Y) = ALPHA * ( XVAL[0], YVAL[0] ) // + BETA * ( XVAL[1], YVAL[1] ) // + ( 1 - ALPHA - BETA ) * ( XVAL[2], YVAL[2] ) // and // 0 <= ALPHA <= 1 - BETA // and // 0 <= BETA <= 1 - ALPHA // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the user supplied // function to be integrated. // // Input, double XVAL[3], YVAL[3], the coordinates of the triangle vertices. // // Input, int NSUB, the number of subdivisions of each side of the // input triangle to be made. NSUB = 1 means no subdivisions are made. // NSUB = 3 means that each side of the triangle is subdivided into // three portions, and that the original triangle is subdivided into // NSUB * NSUB triangles. NSUB must be at least 1. // // Input, int ORDER, the order of the rule. // // Input, double XTAB[ORDER], YTAB[ORDER], the abscissas. // // Input, double WEIGHT[ORDER], the weights of the rule. // // Output, double TRIANGLE_SUB, the approximate integral of the function. // { int i; int j; int k; double quad; double result; double temp1; double temp2; double volume; double x; double x1; double x2; double x3; double y; double y1; double y2; double y3; // // Initialize RESULT, the approximate integral. // result = 0.0; // // NSUB must be positive. // if ( nsub <= 0 ) { return result; } // // Initialize QUAD, the quadrature sum. // quad = 0.0; // // The sub-triangles can be grouped into NSUB strips. // for ( i = 1; i <= nsub; i++ ) { temp1 = 0.0; temp2 = ( double ) ( i ) / ( double ) ( nsub ); x2 = xval[1] + temp1 * ( xval[2] - xval[1] ) + temp2 * ( xval[0] - xval[1] ); y2 = yval[1] + temp1 * ( yval[2] - yval[1] ) + temp2 * ( yval[0] - yval[1] ); temp1 = 0.0; temp2 = ( double ) ( i - 1 ) / ( double ) ( nsub ); x3 = xval[1] + temp1 * ( xval[2] - xval[1] ) + temp2 * ( xval[0] - xval[1] ); y3 = yval[1] + temp1 * ( yval[2] - yval[1] ) + temp2 * ( yval[0] - yval[1] ); // // There are 2*I-1 triangles in strip number I. // The next triangle in the strip shares two nodes with the previous one. // Compute its corners, (X1,Y1), (X2,Y2), (X3,Y3). // for ( j = 1; j <= 2 * i - 1; j++ ) { x1 = x2; y1 = y2; x2 = x3; y2 = y3; temp1 = ( double ) ( ( ( j + 1 ) / 2 ) ) / ( double ) ( nsub ); temp2 = ( double ) ( ( i - 1 - ( j / 2 ) ) ) / ( double ) ( nsub ); x3 = xval[1] + temp1 * ( xval[2] - xval[1] ) + temp2 * ( xval[0] - xval[1] ); y3 = yval[1] + temp1 * ( yval[2] - yval[1] ) + temp2 * ( yval[0] - yval[1] ); // // Now integrate over the triangle, mapping the points ( XTAB(K), YTAB(K) ) // into the triangle. // for ( k = 0; k < order; k++ ) { x = x2 + xtab[k] * ( x3 - x2 ) + ytab[k] * ( x1 - x2 ); y = y2 + xtab[k] * ( y3 - y2 ) + ytab[k] * ( y1 - y2 ); quad = quad + weight[k] * func ( x, y ); } } } volume = triangle_volume ( xval, yval ) / ( double ) ( nsub * nsub ); result = quad * volume; return result; } //****************************************************************************80 double triangle_sum ( double func ( double x, double y ), double xval[3], double yval[3], int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_SUM carries out a unit quadrature rule in an arbitrary triangle. // // Integration region: // // (X,Y) = ALPHA * (X1,Y1) // + BETA * (X2,Y2) // + ( 1 - ALPHA - BETA ) * (X3,Y3) // and // 0 <= ALPHA <= 1 - BETA // and // 0 <= BETA <= 1 - ALPHA // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double FUNC ( double x, double y, double z ), the name of the // user supplied function to be integrated. // // Input, double XVAL[3], YVAL[3], the coordinates of the nodes. // // Input, int ORDER, the order of the rule. // // Input, double XTAB[ORDER], YTAB[ORDER], the abscissas. // // Input, double WEIGHT[ORDER], the weights of the rule. // // Output, double RESULT, the approximate integral of the function. // { int i; double quad; double result; double volume; double x; double y; quad = 0.0; for ( i = 0; i < order; i++ ) { x = xtab[i] * xval[0] + ytab[i] * xval[1] + ( 1.0 - xtab[i] - ytab[i] ) * xval[2]; y = xtab[i] * yval[0] + ytab[i] * yval[1] + ( 1.0 - xtab[i] - ytab[i] ) * yval[2]; quad = quad + weight[i] * func ( x, y ); } volume = triangle_volume ( xval, yval ); result = quad * volume; return result; } //****************************************************************************80 double triangle_sum_adjusted ( double func ( double x, double y ), int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_SUM_ADJUSTED carries out an adjusted quadrature rule in a triangle. // // Integration region: // // (X,Y) = ALPHA * (X1,Y1) // + BETA * (X2,Y2) // + ( 1 - ALPHA - BETA ) * (X3,Y3) // and // 0 <= ALPHA <= 1 - BETA // and // 0 <= BETA <= 1 - ALPHA // // Discussion: // // It is assumed that a quadrature rule approprate for the unit triangle // was generated, and then adjusted to a particular triangle by calling // TRIANGLE_RULE_ADJUST. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the // user supplied function to be integrated. // // Input, int ORDER, the order of the rule. // // Input, double XTAB[ORDER], YTAB[ORDER], the abscissas. // // Input, double WEIGHT[ORDER], the weights of the rule. // // Output, double TRIANGLE_SUM_ADJUSTED, the approximate integral // of the function. // { int i; double result; result = 0.0; for ( i = 0; i < order; i++ ) { result = result + weight[i] * func ( xtab[i], ytab[i] ); } return result; } //****************************************************************************80 void triangle_unit_product_set ( int rule, int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_UNIT_PRODUCT_SET sets a product rule on the unit triangle. // // Discussion: // // For a given order of accuracy, a product rule on a triangle usually // uses more points than necessary. That is, there is usually a rule // of the same order that uses fewer points. // // However, one advantage of product rules is that a rule of any // desired order can be generated automatically. // // The integration region is: // // 0 <= X, // and // 0 <= Y, // and // X + Y <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 September 2010 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int RULE, the order of the 1D rule. // // Input, int ORDER, the order of the rule. // // Output, double XTAB[ORDER], YTAB[ORDER], the abscissas. // // Output, double WEIGHT[ORDER], the weights of the rule. // { double a; double b; double c; double d; int i; int j; int k; int order0; int order1; double *weight0; double *weight1; double *xtab0; double *xtab1; weight0 = new double[rule]; weight1 = new double[rule]; xtab0 = new double[rule]; xtab1 = new double[rule]; a = -1.0; b = +1.0; c = 0.0; d = +1.0; order0 = rule; legendre_set ( order0, xtab0, weight0 ); rule_adjust ( a, b, c, d, order0, xtab0, weight0 ); order1 = rule; legendre_set_x1 ( order1, xtab1, weight1 ); rule_adjust ( a, b, c, d, order1, xtab1, weight1 ); k = 0; for ( j = 0; j < order1; j++ ) { for ( i = 0; i < order0; i++ ) { xtab[k] = 1.0 - xtab1[j]; ytab[k] = xtab0[i] * xtab1[j]; weight[k] = weight0[i] * weight1[j]; k = k + 1; } } delete [] weight0; delete [] weight1; delete [] xtab0; delete [] xtab1; return; } //****************************************************************************80 int triangle_unit_product_size ( int rule ) //****************************************************************************80 // // Purpose: // // TRIANGLE_UNIT_PRODUCT_SIZE sizes a product rule on the unit triangle. // // Discussion: // // The integration region is: // // 0 <= X, // and // 0 <= Y, // and // X + Y <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 April 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Parameters: // // Input, int RULE, the order of the 1D rule. // // Input, int TRIANGLE_UNIT_PRODUCT_SIZE, the order of the rule. // { int order; order = rule * rule; return order; } //****************************************************************************80 void triangle_unit_set ( int rule, int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_UNIT_SET sets a quadrature rule in the unit triangle. // // Discussion: // // The user is responsible for determining the value of ORDER, // and appropriately dimensioning the arrays XTAB, YTAB and // WEIGHT so that they can accommodate the data. // // The value of ORDER for each rule can be found by invoking // the function TRIANGLE_RULE_SIZE. // // Integration region: // // 0 <= X, // and // 0 <= Y, // and // X + Y <= 1. // // Graph: // // ^ // 1 | * // | |\ // Y | | \ // | | \ // 0 | *---* // +-------> // 0 X 1 // // The rules are accessed by an index number, RULE. The indices, // and the descriptions of the corresponding rules, are: // // 1, ORDER = 1, precision 1, Zienkiewicz #1. // 2, ORDER = 2, precision 1, (the "vertex rule"). // 3, ORDER = 3, precision 2, Strang and Fix formula #1. // 4, ORDER = 3, precision 2, Strang and Fix formula #2, // Zienkiewicz #2. // 5, ORDER = 4, precision 3, Strang and Fix formula #3, // Zienkiewicz #3. // 6, ORDER = 6, precision 3, Strang and Fix formula #4. // 7, ORDER = 6, precision 3, Stroud formula T2:3-1. // 8, ORDER = 6, precision 4, Strang and Fix formula #5. // 9, ORDER = 7, precision 4, Strang and Fix formula #6. // 10, ORDER = 7, precision 5, Strang and Fix formula #7, // Stroud formula T2:5-1, // Zienkiewicz #4, // Schwarz Table 2.2. // 11, ORDER = 9, precision 6, Strang and Fix formula #8. // 12, ORDER = 12, precision 6, Strang and Fix formula #9. // 13, ORDER = 13, precision 7, Strang and Fix formula #10. // Note that there is a typographical error in Strang and Fix // which lists the value of the XSI(3) component of the // last generator point as 0.4869... when it should be 0.04869... // 14, ORDER = 7, precision 3. // 15, ORDER = 16, precision 7, conical product Gauss, Stroud formula T2:7-1. // 16, ORDER = 64, precision 15, triangular product Gauss rule. // 17, ORDER = 19, precision 8, from CUBTRI, ACM TOMS #584. // 18, ORDER = 19, precision 9, from TRIEX, ACM TOMS #612. // 19, ORDER = 28, precision 11, from TRIEX, ACM TOMS #612. // 20, ORDER = 37, precision 13, from ACM TOMS #706. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 September 2010 // // Author: // // John Burkardt // // Reference: // // Jarle Berntsen, Terje Espelid, // Algorithm 706, // DCUTRI: an algorithm for adaptive cubature over a collection of triangles, // ACM Transactions on Mathematical Software, // Volume 18, Number 3, September 1992, pages 329-342. // // Elise deDoncker, Ian Robinson, // Algorithm 612: // Integration over a Triangle Using Nonlinear Extrapolation, // ACM Transactions on Mathematical Software, // Volume 10, Number 1, March 1984, pages 17-22. // // Dirk Laurie, // Algorithm 584, // CUBTRI, Automatic Cubature Over a Triangle, // ACM Transactions on Mathematical Software, // Volume 8, Number 2, 1982, pages 210-218. // // James Lyness, Dennis Jespersen, // Moderate Degree Symmetric Quadrature Rules for the Triangle, // Journal of the Institute of Mathematics and its Applications, // Volume 15, Number 1, February 1975, pages 19-32. // // Hans Rudolf Schwarz, // Finite Element Methods, // Academic Press, 1988, // ISBN: 0126330107, // LC: TA347.F5.S3313. // // Gilbert Strang, George Fix, // An Analysis of the Finite Element Method, // Cambridge, 1973, // ISBN: 096140888X, // LC: TA335.S77. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Olgierd Zienkiewicz, // The Finite Element Method, // Sixth Edition, // Butterworth-Heinemann, 2005, // ISBN: 0750663200, // LC: TA640.2.Z54 // // Parameters: // // Input, int RULE, the index of the rule. // // Input, int ORDER, the order of the rule. // // Output, double XTAB[ORDER], YTAB[ORDER], the abscissas. // // Output, double WEIGHT[ORDER], the weights of the rule. // { double a; double b; double c; double d; double e; double f; double g; double h; int i; int j; int k; int order2; double p; double q; double r; double s; double t; double u; double v; double w; double w1; double w2; double w3; double w4; double w5; double w6; double w7; double w8; double w9; double weight1[8]; double weight2[8]; double wx; double x; double xtab1[8]; double xtab2[8]; double y; double z; // // 1 point, precision 1. // if ( rule == 1 ) { xtab[0] = 0.33333333333333333333; ytab[0] = 0.33333333333333333333; weight[0] = 1.00000000000000000000; } // // 3 points, precision 1, the "vertex rule". // else if ( rule == 2 ) { xtab[0] = 1.00000000000000000000; xtab[1] = 0.00000000000000000000; xtab[2] = 0.00000000000000000000; ytab[0] = 0.00000000000000000000; ytab[1] = 1.00000000000000000000; ytab[2] = 0.00000000000000000000; weight[0] = 0.33333333333333333333; weight[1] = 0.33333333333333333333; weight[2] = 0.33333333333333333333; } // // 3 points, precision 2, Strang and Fix formula #1. // else if ( rule == 3 ) { xtab[0] = 0.66666666666666666667; xtab[1] = 0.16666666666666666667; xtab[2] = 0.16666666666666666667; ytab[0] = 0.16666666666666666667; ytab[1] = 0.66666666666666666667; ytab[2] = 0.16666666666666666667; weight[0] = 0.33333333333333333333; weight[1] = 0.33333333333333333333; weight[2] = 0.33333333333333333333; } // // 3 points, precision 2, Strang and Fix formula #2. // else if ( rule == 4 ) { xtab[0] = 0.50000000000000000000; xtab[1] = 0.50000000000000000000; xtab[2] = 0.00000000000000000000; ytab[0] = 0.00000000000000000000; ytab[1] = 0.50000000000000000000; ytab[2] = 0.50000000000000000000; weight[0] = 0.33333333333333333333; weight[1] = 0.33333333333333333333; weight[2] = 0.33333333333333333333; } // // 4 points, precision 3, Strang and Fix formula #3. // else if ( rule == 5 ) { a = 6.0 / 30.0; b = 10.0 / 30.0; c = 18.0 / 30.0; d = 25.0 / 48.0; e = -27.0 / 48.0; xtab[0] = b; xtab[1] = c; xtab[2] = a; xtab[3] = a; ytab[0] = b; ytab[1] = a; ytab[2] = c; ytab[3] = a; weight[0] = e; weight[1] = d; weight[2] = d; weight[3] = d; } // // 6 points, precision 3, Strang and Fix formula #4. // else if ( rule == 6 ) { a = 0.659027622374092; b = 0.231933368553031; c = 0.109039009072877; xtab[0] = a; xtab[1] = a; xtab[2] = b; xtab[3] = b; xtab[4] = c; xtab[5] = c; ytab[0] = b; ytab[1] = c; ytab[2] = a; ytab[3] = c; ytab[4] = a; ytab[5] = b; weight[0] = 0.16666666666666666667; weight[1] = 0.16666666666666666667; weight[2] = 0.16666666666666666667; weight[3] = 0.16666666666666666667; weight[4] = 0.16666666666666666667; weight[5] = 0.16666666666666666667; } // // 6 points, precision 3, Stroud T2:3-1. // else if ( rule == 7 ) { a = 0.0; b = 0.5; c = 2.0 / 3.0; d = 1.0 / 6.0; v = 1.0 / 30.0; w = 3.0 / 10.0; xtab[0] = a; xtab[1] = b; xtab[2] = c; xtab[3] = c; xtab[4] = d; xtab[5] = d; ytab[0] = b; ytab[1] = a; ytab[2] = b; ytab[3] = d; ytab[4] = c; ytab[5] = d; weight[0] = v; weight[1] = v; weight[2] = v; weight[3] = w; weight[4] = w; weight[5] = w; } // // 6 points, precision 4, Strang and Fix, formula #5. // else if ( rule == 8 ) { a = 0.816847572980459; b = 0.091576213509771; c = 0.108103018168070; d = 0.445948490915965; v = 0.109951743655322; w = 0.223381589678011; xtab[0] = a; xtab[1] = b; xtab[2] = b; xtab[3] = c; xtab[4] = d; xtab[5] = d; ytab[0] = b; ytab[1] = a; ytab[2] = b; ytab[3] = d; ytab[4] = c; ytab[5] = d; weight[0] = v; weight[1] = v; weight[2] = v; weight[3] = w; weight[4] = w; weight[5] = w; } // // 7 points, precision 4, Strang and Fix formula #6. // else if ( rule == 9 ) { a = 1.0 / 3.0; c = 0.736712498968435; d = 0.237932366472434; e = 0.025355134551932; v = 0.375000000000000; w = 0.104166666666667; xtab[0] = a; xtab[1] = c; xtab[2] = c; xtab[3] = d; xtab[4] = d; xtab[5] = e; xtab[6] = e; ytab[0] = a; ytab[1] = d; ytab[2] = e; ytab[3] = c; ytab[4] = e; ytab[5] = c; ytab[6] = d; weight[0] = v; weight[1] = w; weight[2] = w; weight[3] = w; weight[4] = w; weight[5] = w; weight[6] = w; } // // 7 points, precision 5, Strang and Fix formula #7, Stroud T2:5-1 // else if ( rule == 10 ) { a = 1.0 / 3.0; b = ( 9.0 + 2.0 * sqrt ( 15.0 ) ) / 21.0; c = ( 6.0 - sqrt ( 15.0 ) ) / 21.0; d = ( 9.0 - 2.0 * sqrt ( 15.0 ) ) / 21.0; e = ( 6.0 + sqrt ( 15.0 ) ) / 21.0; u = 0.225; v = ( 155.0 - sqrt ( 15.0 ) ) / 1200.0; w = ( 155.0 + sqrt ( 15.0 ) ) / 1200.0; xtab[0] = a; xtab[1] = b; xtab[2] = c; xtab[3] = c; xtab[4] = d; xtab[5] = e; xtab[6] = e; ytab[0] = a; ytab[1] = c; ytab[2] = b; ytab[3] = c; ytab[4] = e; ytab[5] = d; ytab[6] = e; weight[0] = u; weight[1] = v; weight[2] = v; weight[3] = v; weight[4] = w; weight[5] = w; weight[6] = w; } // // 9 points, precision 6, Strang and Fix formula #8. // else if ( rule == 11 ) { a = 0.124949503233232; b = 0.437525248383384; c = 0.797112651860071; d = 0.165409927389841; e = 0.037477420750088; u = 0.205950504760887; v = 0.063691414286223; xtab[0] = a; xtab[1] = b; xtab[2] = b; xtab[3] = c; xtab[4] = c; xtab[5] = d; xtab[6] = d; xtab[7] = e; xtab[8] = e; ytab[0] = b; ytab[1] = a; ytab[2] = b; ytab[3] = d; ytab[4] = e; ytab[5] = c; ytab[6] = e; ytab[7] = c; ytab[8] = d; weight[0] = u; weight[1] = u; weight[2] = u; weight[3] = v; weight[4] = v; weight[5] = v; weight[6] = v; weight[7] = v; weight[8] = v; } // // 12 points, precision 6, Strang and Fix, formula #9. // else if ( rule == 12 ) { a = 0.873821971016996; b = 0.063089014491502; c = 0.501426509658179; d = 0.249286745170910; e = 0.636502499121399; f = 0.310352451033785; g = 0.053145049844816; u = 0.050844906370207; v = 0.116786275726379; w = 0.082851075618374; xtab[0] = a; xtab[1] = b; xtab[2] = b; xtab[3] = c; xtab[4] = d; xtab[5] = d; xtab[6] = e; xtab[7] = e; xtab[8] = f; xtab[9] = f; xtab[10] = g; xtab[11] = g; ytab[0] = b; ytab[1] = a; ytab[2] = b; ytab[3] = d; ytab[4] = c; ytab[5] = d; ytab[6] = f; ytab[7] = g; ytab[8] = e; ytab[9] = g; ytab[10] = e; ytab[11] = f; weight[0] = u; weight[1] = u; weight[2] = u; weight[3] = v; weight[4] = v; weight[5] = v; weight[6] = w; weight[7] = w; weight[8] = w; weight[9] = w; weight[10] = w; weight[11] = w; } // // 13 points, precision 7, Strang and Fix, formula #10. // // Note that there is a typographical error in Strang and Fix // which lists the value of the XSI[2] component of the // last generator point as 0.4869... when it should be 0.04869... // else if ( rule == 13 ) { h = 1.0 / 3.0; a = 0.479308067841923; b = 0.260345966079038; c = 0.869739794195568; d = 0.065130102902216; e = 0.638444188569809; f = 0.312865496004875; g = 0.048690315425316; w = -0.149570044467670; t = 0.175615257433204; u = 0.053347235608839; v = 0.077113760890257; xtab[0] = h; xtab[1] = a; xtab[2] = b; xtab[3] = b; xtab[4] = c; xtab[5] = d; xtab[6] = d; xtab[7] = e; xtab[8] = e; xtab[9] = f; xtab[10] = f; xtab[11] = g; xtab[12] = g; ytab[0] = h; ytab[1] = b; ytab[2] = a; ytab[3] = b; ytab[4] = d; ytab[5] = c; ytab[6] = d; ytab[7] = f; ytab[8] = g; ytab[9] = e; ytab[10] = g; ytab[11] = e; ytab[12] = f; weight[0] = w; weight[1] = t; weight[2] = t; weight[3] = t; weight[4] = u; weight[5] = u; weight[6] = u; weight[7] = v; weight[8] = v; weight[9] = v; weight[10] = v; weight[11] = v; weight[12] = v; } // // 7 points, precision 3. // else if ( rule == 14 ) { a = 1.0 / 3.0; b = 1.0; c = 0.5; z = 0.0; u = 27.0 / 60.0; v = 3.0 / 60.0; w = 8.0 / 60.0; xtab[0] = a; xtab[1] = b; xtab[2] = z; xtab[3] = z; xtab[4] = z; xtab[5] = c; xtab[6] = c; ytab[0] = a; ytab[1] = z; ytab[2] = b; ytab[3] = z; ytab[4] = c; ytab[5] = z; ytab[6] = c; weight[0] = u; weight[1] = v; weight[2] = v; weight[3] = v; weight[4] = w; weight[5] = w; weight[6] = w; } // // 16 points, precision 5, Stroud T2:7-1. // else if ( rule == 15 ) { // // Legendre rule of order 4. // order2 = 4; xtab[0] = - 0.861136311594052575223946488893; xtab[1] = - 0.339981043584856264802665759103; xtab[2] = 0.339981043584856264802665759103; xtab[3] = 0.861136311594052575223946488893; weight1[0] = 0.347854845137453857373063949222; weight1[1] = 0.652145154862546142626936050778; weight1[2] = 0.652145154862546142626936050778; weight1[3] = 0.347854845137453857373063949222; for ( i = 0; i < order2; i++ ) { xtab1[i] = 0.5 * ( xtab1[i] + 1.0 ); } weight2[0] = 0.1355069134; weight2[1] = 0.2034645680; weight2[2] = 0.1298475476; weight2[3] = 0.0311809709; xtab2[0] = 0.0571041961; xtab2[1] = 0.2768430136; xtab2[2] = 0.5835904324; xtab2[3] = 0.8602401357; k = 0; for ( i = 0; i < order2; i++ ) { for ( j = 0; j < order2; j++ ) { xtab[k] = xtab2[j]; ytab[k] = xtab1[i] * ( 1.0 - xtab2[j] ); weight[k] = weight1[i] * weight2[j]; k = k + 1; } } } // // 64 points, precision 15. // else if ( rule == 16 ) { // // Legendre rule of order 8. // order2 = 8; xtab1[0] = -0.960289856497536231683560868569; xtab1[1] = -0.796666477413626739591553936476; xtab1[2] = -0.525532409916328985817739049189; xtab1[3] = -0.183434642495649804939476142360; xtab1[4] = 0.183434642495649804939476142360; xtab1[5] = 0.525532409916328985817739049189; xtab1[6] = 0.796666477413626739591553936476; xtab1[7] = 0.960289856497536231683560868569; weight1[0] = 0.101228536290376259152531354310; weight1[1] = 0.222381034453374470544355994426; weight1[2] = 0.313706645877887287337962201987; weight1[3] = 0.362683783378361982965150449277; weight1[4] = 0.362683783378361982965150449277; weight1[5] = 0.313706645877887287337962201987; weight1[6] = 0.222381034453374470544355994426; weight1[7] = 0.101228536290376259152531354310; weight2[0] = 0.00329519144; weight2[1] = 0.01784290266; weight2[2] = 0.04543931950; weight2[3] = 0.07919959949; weight2[4] = 0.10604735944; weight2[5] = 0.11250579947; weight2[6] = 0.09111902364; weight2[7] = 0.04455080436; xtab2[0] = 0.04463395529; xtab2[1] = 0.14436625704; xtab2[2] = 0.28682475714; xtab2[3] = 0.45481331520; xtab2[4] = 0.62806783542; xtab2[5] = 0.78569152060; xtab2[6] = 0.90867639210; xtab2[7] = 0.98222008485; k = 0; for ( i = 0; i < order2; i++ ) { for ( j = 0; j < order2; j++ ) { xtab[k] = 1.0 - xtab2[j]; ytab[k] = 0.5 * ( 1.0 + xtab1[i] ) * xtab2[j]; weight[k] = weight1[i] * weight2[j]; k = k + 1; } } } // // 19 points, precision 8, from CUBTRI. // else if ( rule == 17 ) { a = 1.0 / 3.0; b = ( 9.0 + 2.0 * sqrt ( 15.0 ) ) / 21.0; c = ( 6.0 - sqrt ( 15.0 ) ) / 21.0; d = ( 9.0 - 2.0 * sqrt ( 15.0 ) ) / 21.0; e = ( 6.0 + sqrt ( 15.0 ) ) / 21.0; f = ( 40.0 - 10.0 * sqrt ( 15.0 ) + 10.0 * sqrt ( 7.0 ) + 2.0 * sqrt ( 105.0 ) ) / 90.0; g = ( 25.0 + 5.0 * sqrt ( 15.0 ) - 5.0 * sqrt ( 7.0 ) - sqrt ( 105.0 ) ) / 90.0; p = ( 40.0 + 10.0 * sqrt ( 15.0 ) + 10.0 * sqrt ( 7.0 ) - 2.0 * sqrt ( 105.0 ) ) / 90.0; q = ( 25.0 - 5.0 * sqrt ( 15.0 ) - 5.0 * sqrt ( 7.0 ) + sqrt ( 105.0 ) ) / 90.0; r = ( 40.0 + 10.0 * sqrt ( 7.0 ) ) / 90.0; s = ( 25.0 + 5.0 * sqrt ( 15.0 ) - 5.0 * sqrt ( 7.0 ) - sqrt ( 105.0 ) ) / 90.0; t = ( 25.0 - 5.0 * sqrt ( 15.0 ) - 5.0 * sqrt ( 7.0 ) + sqrt ( 105.0 ) ) / 90.0; w1 = ( 7137.0 - 1800.0 * sqrt ( 7.0 ) ) / 62720.0; w2 = -9301697.0 / 4695040.0 - 13517313.0 * sqrt ( 15.0 ) / 23475200.0 + 764885.0 * sqrt ( 7.0 ) / 939008.0 + 198763.0 * sqrt ( 105.0 ) / 939008.0; w2 = w2 / 3.0; w3 = -9301697.0 / 4695040.0 + 13517313.0 * sqrt ( 15.0 ) / 23475200.0 + 764885.0 * sqrt ( 7.0 ) / 939008.0 - 198763.0 * sqrt ( 105.0 ) / 939008.0; w3 = w3 / 3.0; w4 = ( 102791225.0 - 23876225.0 * sqrt ( 15.0 ) - 34500875.0 * sqrt ( 7.0 ) + 9914825.0 * sqrt ( 105.0 ) ) / 59157504.0; w4 = w4 / 3.0; w5 = ( 102791225.0 + 23876225.0 * sqrt ( 15.0 ) - 34500875.0 * sqrt ( 7.0 ) - 9914825 * sqrt ( 105.0 ) ) / 59157504.0; w5 = w5 / 3.0; w6 = ( 11075.0 - 3500.0 * sqrt ( 7.0 ) ) / 8064.0; w6 = w6 / 6.0; xtab[0] = a; xtab[1] = b; xtab[2] = c; xtab[3] = c; xtab[4] = d; xtab[5] = e; xtab[6] = e; xtab[7] = f; xtab[8] = g; xtab[9] = g; xtab[10] = p; xtab[11] = q; xtab[12] = q; xtab[13] = r; xtab[14] = r; xtab[15] = s; xtab[16] = s; xtab[17] = t; xtab[18] = t; ytab[0] = a; ytab[1] = c; ytab[2] = b; ytab[3] = c; ytab[4] = e; ytab[5] = d; ytab[6] = e; ytab[7] = g; ytab[8] = f; ytab[9] = g; ytab[10] = q; ytab[11] = p; ytab[12] = q; ytab[13] = s; ytab[14] = t; ytab[15] = r; ytab[16] = t; ytab[17] = r; ytab[18] = s; weight[0] = w1; weight[1] = w2; weight[2] = w2; weight[3] = w2; weight[4] = w3; weight[5] = w3; weight[6] = w3; weight[7] = w4; weight[8] = w4; weight[9] = w4; weight[10] = w5; weight[11] = w5; weight[12] = w5; weight[13] = w6; weight[14] = w6; weight[15] = w6; weight[16] = w6; weight[17] = w6; weight[18] = w6; } // // 19 points, precision 9. // Lyness and Jesperson. // else if ( rule == 18 ) { a = 1.0 / 3.0; b = 0.02063496160252593; c = 0.4896825191987370; d = 0.1258208170141290; e = 0.4370895914929355; f = 0.6235929287619356; g = 0.1882035356190322; r = 0.9105409732110941; s = 0.04472951339445297; t = 0.7411985987844980; u = 0.03683841205473626; v = 0.22196298916076574; w1 = 0.09713579628279610; w2 = 0.03133470022713983; w3 = 0.07782754100477543; w4 = 0.07964773892720910; w5 = 0.02557767565869810; w6 = 0.04328353937728940; xtab[0] = a; xtab[1] = b; xtab[2] = c; xtab[3] = c; xtab[4] = d; xtab[5] = e; xtab[6] = e; xtab[7] = f; xtab[8] = g; xtab[9] = g; xtab[10] = r; xtab[11] = s; xtab[12] = s; xtab[13] = t; xtab[14] = t; xtab[15] = u; xtab[16] = u; xtab[17] = v; xtab[18] = v; ytab[0] = a; ytab[1] = c; ytab[2] = b; ytab[3] = c; ytab[4] = e; ytab[5] = d; ytab[6] = e; ytab[7] = g; ytab[8] = f; ytab[9] = s; ytab[10] = r; ytab[11] = s; ytab[12] = u; ytab[13] = v; ytab[14] = t; ytab[15] = t; ytab[16] = v; ytab[17] = t; ytab[18] = u; weight[0] = w1; weight[1] = w2; weight[2] = w2; weight[3] = w2; weight[4] = w3; weight[5] = w3; weight[6] = w3; weight[7] = w4; weight[8] = w4; weight[9] = w4; weight[10] = w5; weight[11] = w5; weight[12] = w5; weight[13] = w6; weight[14] = w6; weight[15] = w6; weight[16] = w6; weight[17] = w6; weight[18] = w6; } // // 28 points, precision 11. // Lyness and Jesperson. // else if ( rule == 19 ) { a = 1.0 / 3.0; b = 0.9480217181434233; c = 0.02598914092828833; d = 0.8114249947041546; e = 0.09428750264792270; f = 0.01072644996557060; g = 0.4946367750172147; p = 0.5853132347709715; q = 0.2073433826145142; r = 0.1221843885990187; s = 0.4389078057004907; t = 0.6779376548825902; u = 0.04484167758913055; v = 0.27722066752827925; w = 0.8588702812826364; x = 0.0; y = 0.1411297187173636; w1 = 0.08797730116222190; w2 = 0.008744311553736190; w3 = 0.03808157199393533; w4 = 0.01885544805613125; w5 = 0.07215969754474100; w6 = 0.06932913870553720; w7 = 0.04105631542928860; w8 = 0.007362383783300573; xtab[0] = a; xtab[1] = b; xtab[2] = c; xtab[3] = c; xtab[4] = d; xtab[5] = e; xtab[6] = e; xtab[7] = f; xtab[8] = g; xtab[9] = g; xtab[10] = p; xtab[11] = q; xtab[12] = q; xtab[13] = r; xtab[14] = s; xtab[15] = s; xtab[16] = t; xtab[17] = t; xtab[18] = u; xtab[19] = u; xtab[20] = v; xtab[21] = v; xtab[22] = w; xtab[23] = w; xtab[24] = x; xtab[25] = x; xtab[26] = y; xtab[27] = y; ytab[0] = a; ytab[1] = c; ytab[2] = b; ytab[3] = c; ytab[4] = e; ytab[5] = d; ytab[6] = e; ytab[7] = g; ytab[8] = f; ytab[9] = g; ytab[10] = q; ytab[11] = p; ytab[12] = q; ytab[13] = s; ytab[14] = r; ytab[15] = s; ytab[16] = u; ytab[17] = v; ytab[18] = t; ytab[19] = v; ytab[20] = t; ytab[21] = u; ytab[22] = x; ytab[23] = y; ytab[24] = w; ytab[25] = y; ytab[26] = w; ytab[27] = x; weight[0] = w1; weight[1] = w2; weight[2] = w2; weight[3] = w2; weight[4] = w3; weight[5] = w3; weight[6] = w3; weight[7] = w4; weight[8] = w4; weight[9] = w4; weight[10] = w5; weight[11] = w5; weight[12] = w5; weight[13] = w6; weight[14] = w6; weight[15] = w6; weight[16] = w7; weight[17] = w7; weight[18] = w7; weight[19] = w7; weight[20] = w7; weight[21] = w7; weight[22] = w8; weight[23] = w8; weight[24] = w8; weight[25] = w8; weight[26] = w8; weight[27] = w8; } // // 37 points, precision 13. // else if ( rule == 20 ) { a = 1.0 / 3.0; b = 0.950275662924105565450352089520; c = 0.024862168537947217274823955239; d = 0.171614914923835347556304795551; e = 0.414192542538082326221847602214; f = 0.539412243677190440263092985511; g = 0.230293878161404779868453507244; w1 = 0.051739766065744133555179145422; w2 = 0.008007799555564801597804123460; w3 = 0.046868898981821644823226732071; w4 = 0.046590940183976487960361770070; w5 = 0.031016943313796381407646220131; w6 = 0.010791612736631273623178240136; w7 = 0.032195534242431618819414482205; w8 = 0.015445834210701583817692900053; w9 = 0.017822989923178661888748319485; wx = 0.037038683681384627918546472190; xtab[0] = a; xtab[1] = b; xtab[2] = c; xtab[3] = c; xtab[4] = d; xtab[5] = e; xtab[6] = e; xtab[7] = f; xtab[8] = g; xtab[9] = g; ytab[0] = a; ytab[1] = c; ytab[2] = b; ytab[3] = c; ytab[4] = e; ytab[5] = d; ytab[6] = e; ytab[7] = g; ytab[8] = f; ytab[9] = g; weight[0] = w1; weight[1] = w2; weight[2] = w2; weight[3] = w2; weight[4] = w3; weight[5] = w3; weight[6] = w3; weight[7] = w4; weight[8] = w4; weight[9] = w4; weight[10] = w5; weight[11] = w5; weight[12] = w5; weight[13] = w6; weight[14] = w6; weight[15] = w6; weight[16] = w7; weight[17] = w7; weight[18] = w7; weight[19] = w8; weight[20] = w8; weight[21] = w8; weight[22] = w8; weight[23] = w8; weight[24] = w8; weight[25] = w9; weight[26] = w9; weight[27] = w9; weight[28] = w9; weight[29] = w9; weight[30] = w9; weight[31] = wx; weight[32] = wx; weight[33] = wx; weight[34] = wx; weight[35] = wx; weight[36] = wx; a = 0.772160036676532561750285570113; b = 0.113919981661733719124857214943; xtab[10] = a; ytab[10] = b; xtab[11] = b; ytab[11] = a; xtab[12] = b; ytab[12] = b; a = 0.009085399949835353883572964740; b = 0.495457300025082323058213517632; xtab[13] = a; ytab[13] = b; xtab[14] = b; ytab[14] = a; xtab[15] = b; ytab[15] = b; a = 0.062277290305886993497083640527; b = 0.468861354847056503251458179727; xtab[16] = a; ytab[16] = b; xtab[17] = b; ytab[17] = a; xtab[18] = b; ytab[18] = b; a = 0.022076289653624405142446876931; b = 0.851306504174348550389457672223; c = 0.126617206172027096933163647918263; xtab[19] = a; ytab[19] = b; xtab[20] = a; ytab[20] = c; xtab[21] = b; ytab[21] = a; xtab[22] = b; ytab[22] = c; xtab[23] = c; ytab[23] = a; xtab[24] = c; ytab[24] = b; a = 0.018620522802520968955913511549; b = 0.689441970728591295496647976487; c = 0.291937506468887771754472382212953; xtab[25] = a; ytab[25] = b; xtab[26] = a; ytab[26] = c; xtab[27] = b; ytab[27] = a; xtab[28] = b; ytab[28] = c; xtab[29] = c; ytab[29] = a; xtab[30] = c; ytab[30] = b; a = 0.096506481292159228736516560903; b = 0.635867859433872768286976979827; c = 0.267625659273967961282458816185681; xtab[31] = a; ytab[31] = b; xtab[32] = a; ytab[32] = c; xtab[33] = b; ytab[33] = a; xtab[34] = b; ytab[34] = c; xtab[35] = c; ytab[35] = a; xtab[36] = c; ytab[36] = b; } else { cerr << "\n"; cerr << "TRIANGLE_UNIT_SET - Fatal error!\n"; cerr << " Illegal value of RULE = " << rule << "\n"; exit ( 1 ); } return; } //****************************************************************************80 int triangle_unit_size ( int rule ) //****************************************************************************80 // // Purpose: // // TRIANGLE_UNIT_SIZE returns the "size" of a unit triangle quadrature rule. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 March 2008 // // Author: // // John Burkardt // // Reference: // // Jarle Berntsen, Terje Espelid, // Algorithm 706, // DCUTRI: an algorithm for adaptive cubature over a collection of triangles, // ACM Transactions on Mathematical Software, // Volume 18, Number 3, September 1992, pages 329-342. // // Elise deDoncker, Ian Robinson, // Algorithm 612: // Integration over a Triangle Using Nonlinear Extrapolation, // ACM Transactions on Mathematical Software, // Volume 10, Number 1, March 1984, pages 17-22. // // DP Laurie, // Algorithm 584, // CUBTRI, Automatic Cubature Over a Triangle, // ACM Transactions on Mathematical Software, // Volume 8, Number 2, 1982, pages 210-218. // // James Lyness, Dennis Jespersen, // Moderate Degree Symmetric Quadrature Rules for the Triangle, // Journal of the Institute of Mathematics and its Applications, // Volume 15, Number 1, February 1975, pages 19-32. // // Hans Rudolf Schwarz, // Methode der Finiten Elemente, // Teubner Studienbuecher, 1980, // ISBN: 3-519-02349-0. // // Gilbert Strang, George Fix, // An Analysis of the Finite Element Method, // Prentice Hall, 1973, page 184, // ISBN: 096140888X, // LC: TA335.S77. // // Arthur Stroud, // Approximate Calculation of Multiple Integrals, // Prentice Hall, 1971, // ISBN: 0130438936, // LC: QA311.S85. // // Olgierd Zienkiewicz, // The Finite Element Method, // Sixth Edition, // Butterworth-Heinemann, 2005, // ISBN: 0750663200, // TA640.2.Z54 // // Parameters: // // Input, int RULE, the index of the rule. // 1, ORDER = 1, precision 1, Zienkiewicz #1. // 2, ORDER = 2, precision 1, (the "vertex rule"). // 3, ORDER = 3, precision 2, Strang and Fix formula #1. // 4, ORDER = 3, precision 2, Strang and Fix formula #2, Zienkiewicz #2. // 5, ORDER = 4, precision 3, Strang and Fix formula #3, Zienkiewicz #3. // 6, ORDER = 6, precision 3, Strang and Fix formula #4. // 7, ORDER = 6, precision 3, Stroud formula T2:3-1. // 8, ORDER = 6, precision 4, Strang and Fix formula #5. // 9, ORDER = 7, precision 4, Strang and Fix formula #6. // 10, ORDER = 7, precision 5, Strang and Fix formula #7, // Stroud formula T2:5-1, Zienkiewicz #4, Schwarz Table 2.2. // 11, ORDER = 9, precision 6, Strang and Fix formula #8. // 12, ORDER = 12, precision 6, Strang and Fix formula #9. // 13, ORDER = 13, precision 7, Strang and Fix formula #10. // 14, ORDER = 7, precision ?. // 15, ORDER = 16, precision 7, conical product Gauss, Stroud formula T2:7-1. // 16, ORDER = 64, precision 15, triangular product Gauss rule. // 17, ORDER = 19, precision 8, from CUBTRI, ACM TOMS #584. // 18, ORDER = 19, precision 9, from TRIEX, Lyness and Jespersen. // 19, ORDER = 28, precision 11, from TRIEX, Lyness and Jespersen. // 20, ORDER = 37, precision 13, from ACM TOMS #706. // // Output, int TRIANGLE_UNIT_SIZE, the order of the rule. // { int size; if ( rule == 1 ) { size = 1; } else if ( rule == 2 ) { size = 3; } else if ( rule == 3 ) { size = 3; } else if ( rule == 4 ) { size = 3; } else if ( rule == 5 ) { size = 4; } else if ( rule == 6 ) { size = 6; } else if ( rule == 7 ) { size = 6; } else if ( rule == 8 ) { size = 6; } else if ( rule == 9 ) { size = 7; } else if ( rule == 10 ) { size = 7; } else if ( rule == 11 ) { size = 9; } else if ( rule == 12 ) { size = 12; } else if ( rule == 13 ) { size = 13; } else if ( rule == 14 ) { size = 7; } else if ( rule == 15 ) { size = 16; } else if ( rule == 16 ) { size = 64; } else if ( rule == 17 ) { size = 19; } else if ( rule == 18 ) { size = 19; } else if ( rule == 19 ) { size = 28; } else if ( rule == 20 ) { size = 37; } else { size = -1; } return size; } //****************************************************************************80 double triangle_unit_sum ( double func ( double x, double y ), int order, double xtab[], double ytab[], double weight[] ) //****************************************************************************80 // //// TRIANGLE_UNIT_SUM carries out a quadrature rule in the unit triangle. // // Integration region: // // 0 <= X, // and // 0 <= Y, // and // X + Y <= 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double FUNC ( double x, double y ), the name of the // user supplied function to be integrated. // // Input, int ORDER, the order of the rule. // // Input, double XTAB[ORDER], YTAB[ORDER], the abscissas. // // Input, double WEIGHT[ORDER], the weights of the rule. // // Output, double RESULT, the approximate integral of the function. // { int i; double quad; double result; double volume; quad = 0.0; for ( i = 0; i < order; i++ ) { quad = quad + weight[i] * func ( xtab[i], ytab[i] ); } volume = triangle_unit_volume ( ); result = quad * volume; return result; } //****************************************************************************80 double triangle_unit_volume ( ) //****************************************************************************80 // // Purpose: // // TRIANGLE_UNIT_VOLUME returns the "volume" of the unit triangle in 2D. // // Integration region: // // 0 <= X, // and // 0 <= Y, // and // X + Y <= 1. // // Discussion: // // The "volume" of a triangle is usually called its area. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double TRIANGLE_UNIT_VOLUME, the volume of the unit // triangle. // { double volume; volume = 1.0 / 2.0; return volume; } //****************************************************************************80 double triangle_volume ( double x[3], double y[3] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_VOLUME returns the "volume" of a triangle in 2D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 March 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double X[3], Y[3], the vertices of the triangle. // // Output, double TRIANGLE_VOLUME, the volume of the triangle. // { double value; value = 0.5 * fabs ( x[0] * ( y[1] - y[2] ) + x[1] * ( y[2] - y[0] ) + x[2] * ( y[0] - y[1] ) ); return value; } //****************************************************************************80 double *tvec_even ( int nt ) //****************************************************************************80 // // Purpose: // // TVEC_EVEN computes an evenly spaced set of angles between 0 and 2*PI. // // Discussion: // // The computation realizes that 0 = 2 * PI. // // Example: // // NT = 4 // // T = ( 0, PI/2, PI, 3*PI/2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the number of values to compute. // // Output, double TVEC[NT], the evenly spaced angles, in radians. // { int i; double pi = 3.141592653589793; double *t; if ( nt < 1 ) { return NULL; } t = new double[nt]; for ( i = 1; i <= nt; i++ ) { t[i-1] = ( double ) ( 2 * ( i - 1 ) ) * pi / ( double ) ( nt ); } return t; } //****************************************************************************80 double *tvec_even2 ( int nt ) //****************************************************************************80 // // Purpose: // // TVEC_EVEN2 computes evenly spaced angles between 0 and 2*PI. // // Discussion: // // The computation realizes that 0 = 2 * PI. The values are equally // spaced in the circle, do not include 0, and are symmetric about 0. // // Example: // // NT = 4 // // T = ( PI/4, 3*PI/4, 5*PI/4, 7*PI/4 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the number of values to compute. // // Output, double TVEC[NT], the evenly spaced angles, in radians. // { int i; double pi = 3.141592653589793; double *t; if ( nt < 1 ) { return NULL; } t = new double[nt]; for ( i = 1; i <= nt; i++ ) { t[i-1] = ( double ) ( 2 * i - 1 ) * pi / ( double ) ( nt ); } return t; } //****************************************************************************80 double *tvec_even3 ( int nt ) //****************************************************************************80 // // Purpose: // // TVEC_EVEN3 computes an evenly spaced set of angles between 0 and 2*PI. // // Discussion: // // The angles begin with 0 and end with 2*PI. // // Example: // // NT = 4 // // T = ( 0, 2*PI/3, 4*PI/3 2*PI ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the number of values to compute. // // Output, double TVEC[NT], the evenly spaced angles, in radians. // { int i; double pi = 3.141592653589793; double *t; if ( nt < 1 ) { return NULL; } t = new double[nt]; if ( nt == 1 ) { t[0] = pi; } else { for ( i = 1; i <= nt; i++ ) { t[i-1] = ( double ) ( 2 * ( i - 1 ) ) * pi / ( double ) ( nt - 1 ); } } return t; } //****************************************************************************80 double *tvec_even_bracket ( int nt, double theta1, double theta2 ) //****************************************************************************80 // // Purpose: // // TVEC_EVEN_BRACKET computes evenly spaced angles between THETA1 and THETA2. // // Example: // // NT = 4 // THETA1 = 30 // THETA2 = 90 // // T = ( 30, 50, 70, 90 ) // // Discussion: // // The interval between THETA1 and THETA2 is divided into NT-1 subintervals. // // The angles returned are the breakpoints of these subintervals, // including THETA1 and THETA2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the number of values to compute. // // Input, double THETA1, THETA2, the limiting angles. // // Output, double TVEC_EVEN_BRACKET[NT], the evenly spaced angles. // { int i; double *t; if ( nt < 1 ) { return NULL; } t = new double[nt]; if ( nt == 1 ) { t[0] = ( theta1 + theta2 ) / 2.0; } else { for ( i = 1; i <= nt; i++ ) { t[i-1] = ( ( double ) ( nt - i ) * theta1 + ( double ) ( i - 1 ) * theta2 ) / ( double ) ( nt - 1 ); } } return t; } //****************************************************************************80 double *tvec_even_bracket2 ( int nt, double theta1, double theta2 ) //****************************************************************************80 // // Purpose: // // TVEC_EVEN_BRACKET2 computes evenly spaced angles from THETA1 to THETA2. // // Discussion: // // The interval between THETA1 and THETA2 is divided into NT+1 subintervals. // // The angles returned are the internal NT breakpoints of the subintervals. // // Example: // // NT = 5 // THETA1 = 30 // THETA2 = 90 // // T = ( 40, 50, 60, 70, 80 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the number of values to compute. // // Input, double THETA1, THETA2, the limiting angles. // // Output, double TVEC_EVEN_BRACKET2[NT], the evenly spaced angles. // { int i; double *t; if ( nt < 1 ) { return NULL; } t = new double[nt]; for ( i = 1; i <= nt; i++ ) { t[i-1] = ( ( double ) ( nt + 1 - i ) * theta1 + ( double ) ( i ) * theta2 ) / ( double ) ( nt + 1 ); } return t; } //****************************************************************************80 double *tvec_even_bracket3 ( int nt, double theta1, double theta2 ) //****************************************************************************80 // // Purpose: // // TVEC_EVEN_BRACKET3 computes evenly spaced angles from THETA1 to THETA2. // // Discussion: // // The interval between THETA1 and THETA2 is divided into NT subintervals. // // The angles returned are the midpoints of each subinterval. // // Example: // // NT = 3 // THETA1 = 30 // THETA2 = 90 // // T = ( 40, 60, 80 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the number of values to compute. // // Input, double THETA1, THETA2, the limiting angles. // // Output, double TVEC_EVEN_BRACKET3[NT], the evenly spaced angles. // { int i; double *t; t = new double[nt]; for ( i = 1; i <= nt; i++ ) { t[i-1] = ( ( double ) ( 2 * nt - 2 * i + 1 ) * theta1 + ( double ) ( 2 * i - 1 ) * theta2 ) / ( double ) ( 2 * nt ); } return t; } //****************************************************************************80 void vec_lex_next ( int dim_num, int base, int a[], bool *more ) //****************************************************************************80 // // Purpose: // // VEC_LEX_NEXT generates vectors in lex order. // // Discussion: // // The vectors are produced in lexical order, starting with // (0,0,...,0), // (0,0,...,1), // ... // (BASE-1,BASE-1,...,BASE-1). // // Examples: // // DIM_NUM = 2, // BASE = 3 // // 0 0 // 0 1 // 0 2 // 1 0 // 1 1 // 1 2 // 2 0 // 2 1 // 2 2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 May 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the size of the vectors to be used. // // Input, int BASE, the base to be used. BASE = 2 will // give vectors of 0's and 1's, for instance. // // Output, int A[DIM_NUM], the next vector. // // Input/output, bool *MORE. Set this variable false before // the first call. On return, MORE is TRUE if another vector has // been computed. If MORE is returned FALSE, ignore the output // vector and stop calling the routine. // { int i; if ( !( *more ) ) { for ( i = 0; i < dim_num; i++ ) { a[i] = 0; } *more = true; } else { for ( i = dim_num - 1; 0 <= i; i-- ) { a[i] = a[i] + 1; if ( a[i] < base ) { return; } a[i] = 0; } *more = false; } return; }