# include # include # include # include # include # include # include # include using namespace std; # include "subpak.hpp" //****************************************************************************80 double angle_shift ( double alpha, double beta ) //****************************************************************************80 // // Purpose: // // ANGLE_SHIFT shifts angle ALPHA to lie between BETA and BETA+2PI. // // Discussion: // // The input angle ALPHA is shifted by multiples of 2 * PI to lie // between BETA and BETA+2*PI. // // The resulting angle GAMMA has all the same trigonometric function // values as ALPHA. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 June 2007 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the angle to be shifted. // // Input, double BETA, defines the lower endpoint of // the angle range. // // Output, double ANGLE_SHIFT, the shifted angle. // { double gamma; double pi = 3.141592653589793; if ( alpha < beta ) { gamma = beta - fmod ( beta - alpha, 2.0 * pi ) + 2.0 * pi; } else { gamma = beta + fmod ( alpha - beta, 2.0 * pi ); } return gamma; } //****************************************************************************80 double angle_shift_deg ( double alpha, double beta ) //****************************************************************************80 // // Purpose: // // ANGLE_SHIFT_DEG shifts angle ALPHA to lie between BETA and BETA+360. // // Discussion: // // The input angle ALPHA is shifted by multiples of 360 to lie // between BETA and BETA+360. // // The resulting angle GAMMA has all the same trigonometric function // values as ALPHA. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 June 2007 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the angle to be shifted. // // Input, double BETA, defines the lower endpoint of // the angle range. // // Output, double ANGLE_SHIFT, the shifted angle. // { double gamma; if ( alpha < beta ) { gamma = beta - fmod ( beta - alpha, 360.0 ) + 360.0; } else { gamma = beta + fmod ( alpha - beta, 360.0 ); } return gamma; } //****************************************************************************80 double *angle_to_rgb ( double angle ) //****************************************************************************80 // // Purpose: // // ANGLE_TO_RGB returns a color on the perimeter of the color hexagon. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double ANGLE, the angle in the color hexagon. The sextants are // defined by the following points: // 0 degrees, 1, 0, 0, red; // 60 degrees, 1, 1, 0, yellow; // 120 degrees, 0, 1, 0, green; // 180 degrees, 0, 1, 1, cyan; // 240 degrees, 0, 0, 1, blue; // 300 degrees, 1, 0, 1, magenta. // // Output, double ANGLE_TO_RGB[3], the RGB specifications for the // color that lies at the given angle, on the perimeter of the // color hexagon. One value will be 1, and one value will be 0. // { # define DEGREES_TO_RADIANS ( 3.141592653589793 / 180.0 ) double angle2; double *rgb; rgb = new double[3]; angle = r8_modp ( angle, 360.0 ); if ( angle <= 60.0 ) { angle2 = DEGREES_TO_RADIANS * 3.0 * angle / 4.0; rgb[0] = 1.0; rgb[1] = tan ( angle2 ); rgb[2] = 0.0; } else if ( angle <= 120.0 ) { angle2 = DEGREES_TO_RADIANS * 3.0 * angle / 4.0; rgb[0] = cos ( angle2 ) / sin ( angle2 ); rgb[1] = 1.0; rgb[2] = 0.0; } else if ( angle <= 180.0 ) { angle2 = DEGREES_TO_RADIANS * 3.0 * ( angle - 120.0 ) / 4.0; rgb[0] = 0.0; rgb[1] = 1.0; rgb[2] = tan ( angle2 ); } else if ( angle <= 240.0 ) { angle2 = DEGREES_TO_RADIANS * 3.0 * ( angle - 120.0 ) / 4.0; rgb[0] = 0.0; rgb[1] = cos ( angle2 ) / sin ( angle2 ); rgb[2] = 1.0; } else if ( angle <= 300.0 ) { angle2 = DEGREES_TO_RADIANS * 3.0 * ( angle - 240.0 ) / 4.0; rgb[0] = tan ( angle2 ); rgb[1] = 0.0; rgb[2] = 1.0; } else if ( angle <= 360.0 ) { angle2 = DEGREES_TO_RADIANS * 3.0 * ( angle - 240.0 ) / 4.0; rgb[0] = 1.0; rgb[1] = 0.0; rgb[2] = cos ( angle2 ) / sin ( angle2 ); } return rgb; # undef DEGREES_TO_RADIANS } //****************************************************************************80 void axis_limits ( double xmin, double xmax, int ndivs, double *pxmin, double *pxmax, double *pxdiv, int *nticks ) //****************************************************************************80 // // Purpose: // // AXIS_LIMITS returns "nice" axis limits for a plot. // // Discussion: // // The routine is given information about the range of a variable, and // the number of divisions desired. It returns suggestions for // labeling a plotting axis for the variable, including the // starting and ending points, the length of a single division, // and a suggested tick marking for the axis. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double XMIN, XMAX, the lower and upper values that must be // included on the axis. XMIN must be less than XMAX. // // Input, int NDIVS, the number of divisions desired along // the axis. // // Output, double *PXMIN, *PXMAX, the recommended lower and upper axis // bounds. It will be the case that PXMIN <= XMIN < XMAX <= PXMAX. // // Output, double *PXDIV, the recommended size of a single division. // // Output, int *NTICKS, a suggested number of ticks to use, // if subdividing each of the NDIVS divisions of the axis. // { # define NSTEPS 5 double best; double good; int i; int ihi; int ilo; int intlog; int iticks[NSTEPS] = { 5, 4, 4, 5, 5 }; int ival; int j; double pxmax2; double pxmin2; double pxdiv2; double reldif; double steps[NSTEPS] = { 1.0, 2.0, 4.0, 5.0, 10.0 }; double temp; if ( xmin == xmax ) { xmin = xmin - 0.5; xmax = xmax + 0.5; } else if ( xmax < xmin ) { temp = xmin; xmin = xmax; xmax = temp; } if ( ndivs <= 0 ) { ndivs = 5; } // // Set RELDIF, the size of the X interval divided by the largest X. // if ( xmax != xmin ) { reldif = ( xmax - xmin ) / r8_max ( fabs ( xmax ), fabs ( xmin ) ); } else { reldif = 0.0; } // // If RELDIF tells us that XMIN and XMAX are extremely close, // do some simple things. // if ( reldif < 0.00001 ) { if ( xmax == 0.0 ) { *pxdiv = 1.0; } else { intlog = ( int ) ( r8_log_10 ( xmax ) ); if ( intlog < 0 ) { intlog = intlog - 1; } *pxdiv = pow ( 10.0, intlog ); if ( 1.0 < *pxdiv ) { *pxdiv = 1.0; } } *nticks = 5; *pxmin = xmax - ( double ) ( ndivs / 2 ) * (*pxdiv); *pxmax = xmax + ( double ) ( ndivs - ( ndivs / 2 ) ) * (*pxdiv); } // // But now handle the more general case, when XMIN and XMAX // are relatively far apart. // else { best = -999.0; // // On second loop, increase INTLOG by 1. // for ( j = 1; j <= 2; j++ ) { // // Compute INTLOG, roughly the logarithm base 10 of the range // divided by the number of divisions. // intlog = ( int ) ( r8_log_10 ( ( xmax - xmin ) / ( double ) ( ndivs ) ) ) + ( j - 1 ); if ( xmax - xmin < ( double ) ( ndivs ) ) { intlog = intlog - 1; } // // Now consider taking 1, 2, 4, 5 or 10 steps of size 10**INTLOG: // for ( i = 1; i <= NSTEPS; i++ ) { // // Compute the size of each step. // pxdiv2 = steps[i-1] * pow ( 10.0, intlog ); // // Make sure NDIVS steps can reach from XMIN to XMAX, at least. // if ( xmax <= xmin + ndivs * pxdiv2 ) { // // Now decide where to start the axis. // Start the axis at PXMIN2, to the left of XMIN, and // representing a whole number of steps of size PXDIV2. // if ( 0.0 <= xmin ) { ival = ( int ) ( xmin / pxdiv2 ); } else { ival = ( int ) ( xmin / pxdiv2 ) - 1; } pxmin2 = ival * pxdiv2; // // PXMAX2 is, of course, NDIVS steps above PXMIN2. // pxmax2 = pxmin2 + ndivs * pxdiv2; // // Only consider going on if PXMAX2 is at least XMAX. // if ( xmax <= pxmax2 ) { // // Now judge this grid by the relative amount of wasted axis length. // good = ( xmax - xmin ) / ( pxmax2 - pxmin2 ); if ( best < good ) { best = good; *pxmax = pxmax2; *pxmin = pxmin2; *pxdiv = pxdiv2; *nticks = iticks[i-1]; } } } } } } // // If necessary, adjust the locations of PXMIN and PXMAX so that the // interval is more symmetric in containing XMIN through XMAX. // for ( ; ; ) { ilo = ( int ) ( ( xmin - *pxmin ) / (*pxdiv) ); ihi = ( int ) ( ( *pxmax - xmax ) / (*pxdiv) ); if ( ihi < ilo + 2 ) { break; } *pxmin = *pxmin - (*pxdiv); *pxmax = *pxmax - (*pxdiv); } return; # undef NSTEPS } //****************************************************************************80 int bar_check ( int digit[12] ) //****************************************************************************80 // // Purpose: // // BAR_CHECK computes the check digit for a barcode. // // Discussion: // // CHECK = SUM ( I = 1, 11, by 2's ) DIGIT(I) // + 3 * SUM ( I = 2, 10, by 2's ) DIGIT(I) // // CHECK = MOD ( 10 - MOD ( CHECK, 10 ), 10 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIGIT[12], entries 1 through 11 of DIGIT contain // the digits of the bar code. Each entry must be between 0 and 9. // The 12th digit should be the check digit. // // Output, int BAR_CHECK, the correct check digit. If the bar code // is correct, then DIGIT(12) should equal BAR_CHECK. // { int check; check = ( digit[0] + digit[2] + digit[4] + digit[6] + digit[8] + digit[10] ) + 3 * ( digit[1] + digit[3] + digit[5] + digit[7] + digit[9] ); check = ( 10 - ( check % 10 ) ) % 10; return check; } //****************************************************************************80 char *bar_code ( int digit[] ) //****************************************************************************80 // // Purpose: // // BAR_CODE constructs the 113 character barcode from 11 digits. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input/output, int DIGIT(12). // On input, the first 11 entries of DIGIT contain a code to be // turned into a barcode. // On output, the 12-th entry of DIGIT is a check digit. // // Output, char BAR_CODE[114], the 113 character bar code corresponding // to the digit information. // { char *bar; int check; char *codel; char *coder; int i; bar = new char[114]; // // 9 character quiet zone. // strcpy ( bar, "000000000" ); // // 3 character guard pattern. // strcpy ( bar+9, "101" ); // // 7 character product category. // codel = bar_digit_code_left ( digit[0] ); strcpy ( bar+12, codel ); delete [] codel; // // 35 characters contain the 5 digit manufacturer code. // for ( i = 0; i < 5; i++ ) { codel = bar_digit_code_left ( digit[i+1] ); strcpy ( bar+19+i*7, codel ); delete [] codel; } // // Center guard pattern. // strcpy ( bar+54, "01010" ); // // 35 characters contain the 5 digit product code. // for ( i = 0; i < 5; i++ ) { coder = bar_digit_code_right ( digit[i+6] ); strcpy ( bar+59+i*7, coder ); delete [] coder; } // // Compute the check digit. // check = bar_check ( digit ); digit[11] = check; coder = bar_digit_code_right ( check ); strcpy ( bar+94, coder ); // // Guard pattern. // strcpy ( bar+101, "101" ); // // Quiet zone. // strcpy ( bar+104, "000000000" ); bar[113] = '\0'; return bar; } //****************************************************************************80 char *bar_digit_code_left ( int digit ) //****************************************************************************80 // // Purpose: // // BAR_DIGIT_CODE_LEFT returns the 7 character left bar code for a digit. // // Example: // // DIGIT = 3 // CODEL = '0111101' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIGIT, the digit, between 0 and 9. // // Output, char BAR_CODE_DIGIT_LEFT[8], the 7 character left code for the digit. // { char *codel; codel = new char[8]; if ( digit == 0 ) { strcpy ( codel, "0001101" ); } else if ( digit == 1 ) { strcpy ( codel, "0011001" ); } else if ( digit == 2 ) { strcpy ( codel, "0010011" ); } else if ( digit == 3 ) { strcpy ( codel, "0111101" ); } else if ( digit == 4 ) { strcpy ( codel, "0100011" ); } else if ( digit == 5 ) { strcpy ( codel, "0110001" ); } else if ( digit == 6 ) { strcpy ( codel, "0101111" ); } else if ( digit == 7 ) { strcpy ( codel, "0111011" ); } else if ( digit == 8 ) { strcpy ( codel, "0110111" ); } else if ( digit == 9 ) { strcpy ( codel, "0001011" ); } else { strcpy ( codel, "???????" ); } return codel; } //****************************************************************************80 char *bar_digit_code_right ( int digit ) //****************************************************************************80 // // Purpose: // // BAR_DIGIT_CODE_RIGHT returns the 7 character right bar code for a digit. // // Example: // // DIGIT = 3 // CODER = "1000010" // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIGIT, the digit, between 0 and 9. // // Output, char BAR_DIGIT_CODE_RIGHT[8], the 7 character right code. // { char *coder; coder = new char[8]; if ( digit == 0 ) { strcpy ( coder, "1110010" ); } else if ( digit == 1 ) { strcpy ( coder, "1100110" ); } else if ( digit == 2 ) { strcpy ( coder, "1101100" ); } else if ( digit == 3 ) { strcpy ( coder, "1000010" ); } else if ( digit == 4 ) { strcpy ( coder, "1011100" ); } else if ( digit == 5 ) { strcpy ( coder, "1001110" ); } else if ( digit == 6 ) { strcpy ( coder, "1010000" ); } else if ( digit == 7 ) { strcpy ( coder, "1000100" ); } else if ( digit == 8 ) { strcpy ( coder, "1001000" ); } else if ( digit == 9 ) { strcpy ( coder, "1110100" ); } else { strcpy ( coder, "???????" ); } return coder; } //****************************************************************************80 double bmi_english ( double w_lb, double h_ft, double h_in ) //****************************************************************************80 // // Purpose: // // BMI_ENGLISH computes the body mass index given English measurements. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double W_LB, the body weight in pounds. // // Input, double H_FT, H_IN, the body height in feet and inches // // Output, double BMI_ENGLISH, the body mass index. // { double h_m; double value; double w_kg; w_kg = pounds_to_kilograms ( w_lb ); h_m = feet_to_meters ( h_ft + ( h_in / 12.0 ) ); value = bmi_metric ( w_kg, h_m ); return value; } //****************************************************************************80 double bmi_metric ( double w_kg, double h_m ) //****************************************************************************80 // // Purpose: // // BMI_METRIC computes the body mass index given metric measurements. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double W_KG, the body weight in kilograms. // // Input, double H_M, the body height in meters. // // Output, double BMI_METRIC, the body mass index. // { double value; value = w_kg / ( h_m * h_m ); return value; } //****************************************************************************80 double c8_argument ( complex x ) //****************************************************************************80 // // Purpose: // // C8_ARGUMENT returns the argument of a C8. // // Discussion: // // A C8 is a double precision complex value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, complex X, the value whose argument is desired. // // Output, double C8_ARGUMENT, the argument of X. // { double value; if ( imag ( x ) == 0.0 && real ( x ) == 0.0 ) { value = 0.0; } else { value = atan2 ( imag ( x ), real ( x ) ); } return value; } //****************************************************************************80 double c8_magnitude ( complex x ) //****************************************************************************80 // // Purpose: // // C8_MAGNITUDE returns the magnitude of a C8. // // Discussion: // // A C8 is a double precision complex value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, complex X, the value whose norm is desired. // // Output, double C8_MAGNITUDE, the magnitude of X. // { double magnitude; magnitude = sqrt ( pow ( real ( x ), 2 ) + pow ( imag ( x ), 2 ) ); return magnitude; } //****************************************************************************80 complex c8_sqrt ( complex x ) //****************************************************************************80 // // Purpose: // // C8_SQRT returns the principal square root of a C8. // // Discussion: // // A C8 is a double precision complex value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, complex X, the number whose square root is desired. // // Output, complex C8_SQRT, the square root of X. // { double argument; double magnitude; complex value; argument = c8_argument ( x ); magnitude = c8_magnitude ( x ); if ( magnitude == 0.0 ) { value = complex ( 0.0, 0.0 ); } else { value = sqrt ( magnitude ) * complex ( cos ( argument / 2.0 ), sin ( argument / 2.0 ) ); } return value; } //****************************************************************************80 char ch_cap ( char c ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char C, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= c && c <= 122 ) { c = c - 32; } return c; } //****************************************************************************80 bool ch_eqi ( char ch1, char ch2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH1, CH2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { bool value; if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } value = ( ch1 == ch2 ); return value; } //****************************************************************************80 bool ch_is_digit ( char c ) //****************************************************************************80 // // Purpose: // // CH_IS_DIGIT returns TRUE if a character is a decimal digit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 December 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char C, the character to be analyzed. // // Output, bool CH_IS_DIGIT, is TRUE if C is a digit. // { bool value; if ( '0' <= c && c <= '9' ) { value = true; } else { value = false; } return value; } //****************************************************************************80 int ch_to_digit ( char ch ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // CH DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If the // character was 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 int charstar_len_trim ( char *s ) //****************************************************************************80 // // Purpose: // // CHARSTAR_LEN_TRIM returns the length of a CHAR* to the last nonblank. // // Discussion: // // This function used to be called S_LEN_TRIM. However, it seems preferable // to use the STRING class rather than CHAR*. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, a pointer to a string. // // Output, int CHARSTAR_LEN_TRIM, the length of the string to the last nonblank. // If CHARSTAR_LEN_TRIM is 0, then the string is entirely blank. // { int n; char *t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' ) { return n; } t--; n--; } return n; } //****************************************************************************80 double degrees_to_radians ( double degrees ) //****************************************************************************80 // // Purpose: // // DEGREES_TO_RADIANS converts an angle measure from degrees to radians. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 April 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double DEGREES, the angle measure in degrees. // // Output, double DEGREES_TO_RADIANS, the angle measure in radians. // { double value; value = ( degrees / 180.0 ) * 3.141592653589793; return value; } //****************************************************************************80 double e_constant ( ) //****************************************************************************80 // // Purpose: // // E_CONSTANT returns the value of E. // // Discussion: // // "E" was named in honor of Euler, but is known as Napier's constant. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 September 2005 // // Author: // // John Burkardt // // Parameters: // // Output, double E_CONSTANT, the base of the natural // logarithm system. // { double value = 2.718281828459045; return value; } //****************************************************************************80 double euler_constant ( ) //****************************************************************************80 // // Purpose: // // EULER_CONSTANT returns the value of the Euler-Mascheroni constant. // // Discussion: // // The Euler-Mascheroni constant is often denoted by a lower-case // Gamma. Gamma is defined as // // Gamma = limit ( M -> oo ) ( Sum ( 1 <= N <= M ) 1 / N ) - Log ( M ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 September 2005 // // Author: // // John Burkardt // // Parameters: // // Output, double EULER_CONSTANT, the value of the // Euler-Mascheroni constant. // { double value = 0.5772156649015328; return value; } //****************************************************************************80 void fac_div ( int prime_num, int npower1[], int npower2[], int npower3[] ) //****************************************************************************80 // // Purpose: // // FAC_DIV divides two quantities represented as prime factors. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int PRIME_NUM, the index of the highest prime number // used in the representations. // // Input, int NPOWER1[PRIME_NUM], the powers of primes // in the representation of the first quantity. // // Input, int NPOWER2[PRIME_NUM], the powers of primes // in the representation of the second quantity. // // Output, int NPOWER3[PRIME_NUM], the powers of primes // in the representation of the quotient. // { int i; for ( i = 0; i < prime_num; i++ ) { npower3[i] = npower1[i] - npower2[i]; } return; } //****************************************************************************80 void fac_gcd ( int prime_num, int npower1[], int npower2[], int npower3[] ) //****************************************************************************80 // // Purpose: // // FAC_GCD finds the GCD of two products of prime factors. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int PRIME_NUM, the index of the highest prime number // used in the representations. // // Input, int NPOWER1[PRIME_NUM], the powers of primes // in the representation of the first quantity. All the powers // must be nonnegative. // // Input, int NPOWER2[PRIME_NUM], the powers of primes // in the representation of the second quantity. All the powers // must be nonnegative. // // Output, int NPOWER3[PRIME_NUM], the powers of primes // in the representation of the GCD. // { int i; for ( i = 0; i < prime_num; i++ ) { if ( npower1[i] < 0 ) { cerr << "\n"; cerr << "FAC_GCD - Fatal error!\n"; cerr << " One of the powers is negative.\n"; exit ( 1 ); } if ( npower2[i] < 0 ) { cerr << "\n"; cerr << "FAC_GCD - Fatal error!\n"; cerr << " One of the powers is negative.\n"; exit ( 1 ); } npower3[i] = i4_min ( npower1[i], npower2[i] ); } return; } //****************************************************************************80 void fac_lcm ( int prime_num, int npower1[], int npower2[], int npower3[] ) //****************************************************************************80 // // Purpose: // // FAC_LCM finds the LCM of two products of prime factors. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int PRIME_NUM, the index of the highest prime number // used in the representations. // // Input, int NPOWER1[PRIME_NUM], the powers of primes // in the representation of the first quantity. // // Input, int NPOWER2[PRIME_NUM], the powers of primes // in the representation of the second quantity. // // Output, int NPOWER3[PRIME_NUM], the powers of primes // in the representation of the LCM. // { int i; for ( i = 0; i < prime_num; i++ ) { if ( npower1[i] < 0 ) { cerr << "\n"; cerr << "FAC_LCM - Fatal error!\n"; cerr << " One of the powers is negative.\n"; exit ( 1 ); } if ( npower2[i] < 0 ) { cerr << "\n"; cerr << "FAC_LCM - Fatal error!\n"; cerr << " One of the powers is negative.\n"; exit ( 1 ); } npower3[i] = i4_max ( npower1[i], npower2[i] ); } return; } //****************************************************************************80 void fac_mul ( int prime_num, int npower1[], int npower2[], int npower3[] ) //****************************************************************************80 // // Purpose: // // FAC_MUL multiplies two quantities represented as prime factors. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int PRIME_NUM, the index of the highest prime number // used in the representations. // // Input, int NPOWER1[PRIME_NUM], the powers of primes // in the representation of the first quantity. // // Input, int NPOWER2[PRIME_NUM], the powers of primes // in the representation of the second quantity. // // Output, int NPOWER3[PRIME_NUM], the powers of primes // in the representation of the product. // { int i; for ( i = 0; i < prime_num; i++ ) { npower3[i] = npower1[i] + npower2[i]; } return; } //****************************************************************************80 void fac_print ( int prime_num, int npower[] ) //****************************************************************************80 // // Purpose: // // FAC_PRINT prints a product of prime factors. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int PRIME_NUM, the index of the highest prime number // used in the representations. // // Input, int NPOWER[PRIME_NUM], the powers of primes // in the representation of the quantity. // { int i; cout << "\n"; cout << " Prime Power\n"; cout << "\n"; for ( i = 0; i < prime_num; i++ ) { if ( npower[i] != 0 ) { cout << " " << setw(8) << prime ( i+1 ) << " " << setw(8) << npower[i] << "\n"; } } return; } //****************************************************************************80 int fac_to_i4 ( int prime_num, int npower[] ) //****************************************************************************80 // // Purpose: // // FAC_TO_I4 converts a product of prime factors into an I4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int PRIME_NUM, the index of the highest prime number // used in the representations. // // Input, int NPOWER[PRIME_NUM], the powers of primes // in the representation of the quantity. If any of these powers // are negative, then INTVAL will be set to 0. // // Output, int FAC_TO_I4, the integer represented by the product of the // prime factors. // { int factor; int i; int intval; int j; intval = 1; for ( i = 0; i < prime_num; i++ ) { if ( npower[i] < 0 ) { cerr << "\n"; cerr << "FAC_TO_I4 - Fatal error!\n"; cerr << " One of the powers is negative.\n"; exit ( 1 ); } factor = prime ( i+1 ); for ( j = 1; j <= npower[i]; j++ ) { intval = intval * factor; } } return intval; } //****************************************************************************80 void fac_to_rat ( int prime_num, int npower[], int *top, int *bot ) //****************************************************************************80 // // Purpose: // // FAC_TO_RAT converts a prime factorization into a rational value. // // Example: // // Start with the prime factorization representation: // // 40/9 = 2**3 * 3**(-2) * 5 // // Input: // // NPOWER = ( 3, -2, 1 ) // // Output: // // TOP = 40 ( = 2**3 * 5**1 = PRIME(1)**3 * PRIME(3)**1 ) // BOT = 9 ( = 3**2 = PRIME(2)**2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int PRIME_NUM, the index of the highest prime number // used in the representations. // // Input, int NPOWER[PRIME_NUM]. NPOWER(I) is the power of // the I-th prime in the prime factorization. NPOWER(I) may // be positive or negative. // // Output, int TOP, BOT, the top and bottom of a rational value. // { int i; *top = 1; *bot = 1; for ( i = 0; i < prime_num; i++ ) { if ( 0 < npower[i] ) { *top = *top * i4_power ( prime ( i + 1 ), npower[i] ); } else if ( npower[i] < 0 ) { *bot = *bot * i4_power ( prime ( i + 1 ), -npower[i] ); } } return; } //****************************************************************************80 double feet_to_meters ( double ft ) //****************************************************************************80 // // Purpose: // // FEET_TO_METERS converts a measurement in feet to meters. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double FT, the length in feet. // // Output, double FEET_TO_METERS, the corresponding length in meters. // { double value; value = 0.0254 * 12.0 * ft; return value; } //****************************************************************************80 double gauss_sum ( int ndim, int n, double amplitude[], double center[], double width[], double x[] ) //****************************************************************************80 // // Purpose: // // GAUSS_SUM evaluates a function that is the sum of Gaussians. // // Discussion: // // Gauss_Sum(X) = Sum ( 1 <= J <= Ngauss ) Amplitude(I) * exp ( -Arg ) // // where // // Arg = sum ( 1 <= I <= NDIM ) ( ( ( X(I) - Center(I,J) ) / Width(J) )^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int NDIM, the spatial dimension. // // Input, int N, the number of component Gaussian functions. // // Input, double AMPLITUDE[N], CENTER[NDIM*N], WIDTH[N], // the amplitude, center and width for the component Gaussian functions. // // Input, double X[NDIM], the point at which the function // is to be evaluated. // // Output, double GAUSS_SUM, the value of the function. // { double arg; int i; int j; double value; value = 0.0; for ( j = 0; j < n; j++ ) { arg = 0.0; for ( i = 0; i < ndim; i++ ) { arg = arg + pow ( ( x[i] - center[i+j*ndim] ) / width[j], 2 ); } value = value + amplitude[j] * exp ( -arg ); } return value; } //****************************************************************************80 unsigned long get_seed ( ) //****************************************************************************80 // // Purpose: // // GET_SEED returns a random seed for the random number generator. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 September 2003 // // Author: // // John Burkardt // // Parameters: // // Output, unsigned long GET_SEED, a random seed value. // { # define UNSIGNED_LONG_MAX 4294967295UL time_t clock; int hours; int minutes; int seconds; struct tm *lt; static unsigned long seed = 0; time_t tloc; // // If the internal seed is 0, generate a value based on the time. // if ( seed == 0 ) { clock = time ( &tloc ); lt = localtime ( &clock ); // // Extract HOURS. // hours = lt->tm_hour; // // In case of 24 hour clocks, shift so that HOURS is between 1 and 12. // if ( 12 < hours ) { hours = hours - 12; } // // Move HOURS to 0, 1, ..., 11 // hours = hours - 1; minutes = lt->tm_min; seconds = lt->tm_sec; seed = seconds + 60 * ( minutes + 60 * hours ); // // We want values in [1,43200], not [0,43199]. // seed = seed + 1; // // Remap SEED from [1,43200] to [1,UNSIGNED_LONG_MAX]. // seed = ( unsigned long ) ( ( ( double ) seed ) * ( ( double ) UNSIGNED_LONG_MAX ) / ( 60.0 * 60.0 * 12.0 ) ); } // // Never use a seed of 0. // if ( seed == 0 ) { seed = 1; } return seed; # undef UNSIGNED_LONG_MAX } //****************************************************************************80 double *grid1 ( int dim_num, int nstep, double x1[], double x2[] ) //****************************************************************************80 // // Purpose: // // GRID1 finds grid points between X1 and X2 in N dimensions. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the points X1 and X2. // // Input, int NSTEP, the number of points to be generated. // NSTEP must be at least 2. // // Input, double X1[DIM_NUM], X2[DIM_NUM], the first and last // points, between which the equally spaced points are // to be computed. // // Output, double X[DIM_NUM*NSTEP], the set of equally spaced // points. Each column of X represents one point, with X[*,1] = X1 // and X[*,NSTEP] = X2. // { int i; int j; double *x; if ( dim_num < 1 ) { cerr << "\n"; cerr << "GRID1 - Fatal error!\n"; cerr << " DIM_NUM < 1.\n"; cerr << " DIM_NUM = " << dim_num << "\n"; exit ( 1 ); } if ( nstep < 2 ) { cerr << "\n"; cerr << "GRID1 - Fatal error!\n"; cerr << " NSTEP < 2.\n"; cerr << " NSTEP = " << nstep << "\n"; exit ( 1 ); } x = new double[dim_num*nstep]; for ( j = 1; j <= nstep; j++ ) { for ( i = 0; i < dim_num; i++ ) { x[i+(j-1)*dim_num] = ( ( double ) ( nstep - j ) * x1[i] + ( double ) ( j - 1 ) * x2[i] ) / ( double ) ( nstep - 1 ); } } return x; } //****************************************************************************80 double *grid1n ( int j, int dim_num, int nstep, double x1[], double x2[] ) //****************************************************************************80 // // Purpose: // // GRID1N finds the I-th grid point between X1 and X2 in N dimensions. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int J, the number of the desired point. // Normally J would be between 1 and NSTEP, but that is // not necessary. Note that J = 1 returns X1 and J = NSTEP // returns X2. // // Input, int DIM_NUM, the dimension of the points X, X1 and X2. // // Input, int NSTEP, this is the number of equally // spaced points that are between X1 and X2. NSTEP must // be at least 2, because X1 and X2 are always included // in the set of points. // // Input, double X1[DIM_NUM], X2[DIM_NUM], the first and last // points, between which the equally spaced points lie. // // Output, double GRID1N[DIM_NUM], the J-th grid point between X1 // and X2. // { int i; double *x; if ( dim_num < 1 ) { cerr << "\n"; cerr << "GRID1N - Fatal error!\n"; cerr << " DIM_NUM < 1.\n"; cerr << " DIM_NUM = " << dim_num << "\n"; exit ( 1 ); } if ( nstep < 2 ) { cerr << "\n"; cerr << "GRID1N - Fatal error!\n"; cerr << " NSTEP < 2.\n"; cerr << " NSTEP = " << nstep << "\n"; exit ( 1 ); } x = new double[dim_num]; for ( i = 0; i < dim_num; i++ ) { x[i] = ( ( double ) ( nstep - j ) * x1[i] + ( double ) ( j - 1 ) * x2[i] ) / ( double ) ( nstep - 1 ); } return x; } //****************************************************************************80 double *grid2 ( int j1, int j2, int dim_num, int nstep, double x1[], double x2[] ) //****************************************************************************80 // // Purpose: // // GRID2 computes grid points between X1 and X2 in N dimensions. // // Discussion: // // GRID2 computes grid points between X1 and X2 in N dimensions. // // However, X1 need not be the first point computed, nor X2 the last. // The user must specify the steps on which X1 and X2 are passed // through. These steps may even be outside the range of 1 through NSTEP. // // We assume that a set of equally spaced points have // been drawn on the line through X1 and X2, and that // they have been numbered, with X1 labeled J1 and X2 // labeled J2. J1 or J2 may be between 1 and NSTEP, // in which case X1 or X2 will actually be returned in the // X array, but there is no requirement that J1 or J2 // satisfy this condition. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int J1, J2. J1 specifies the step on which // X1 would be computed, and similarly for J2. // J1 and J2 must be distinct. // // Input, int DIM_NUM, the dimension of the points X1 and X2. // // Input, int NSTEP, this is the number of equally // spaced points that are to be generated. // NSTEP should be at least 1. // // Input, double X1[DIM_NUM], X2[DIM_NUM], the points that define // the line along which the equally spaced points are generated, and // which may or may not be included in the set of computed points. // // Output, double GRID2[DIM_NUM*NSTEP], the set of equally spaced // points. Each column of X represents one point. // If 1 <= J1 <= NSTEP, then X(*,J1) = X1, and similarly for J2. // { int i; int j; double *x; if ( dim_num < 1 ) { cerr << "\n"; cerr << "GRID2 - Fatal error!\n"; cerr << " DIM_NUM < 1.\n"; cerr << " DIM_NUM = " << dim_num << "\n"; exit ( 1 ); } if ( j1 == j2 ) { cerr << "\n"; cerr << "GRID2 - Fatal error!\n"; cerr << " J1 = J2, leading to zero denominator.\n"; cerr << " J1 = " << j1 << "\n"; cerr << " J2 = " << j2 << "\n"; exit ( 1 ); } x = new double[nstep*dim_num]; for ( j = 1; j <= nstep; j++ ) { for ( i = 0; i < dim_num; i++ ) { x[i+(j-1)*dim_num] = ( ( double ) ( j2 - j ) * x1[i] + ( double ) ( j - j1 ) * x2[i] ) / ( double ) ( j2 - j1 ); } } return x; } //****************************************************************************80 double *grid2n ( int j, int j1, int j2, int dim_num, double x1[], double x2[] ) //****************************************************************************80 // // Purpose: // // GRID2N computes one grid point between X1 and X2 in N dimensions. // // Discussion: // // However, X1 need not be the first point computed, nor X2 the last. // The user must specify the steps on which X1 and X2 are passed through. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int J, the J coordinate of the desired point. // Note that if J = J1, X will be returned as X1, and if // J = J2, X will be returned as X2. // // Input, int J1, J2. J1 specifies the step on which // X1 would be computed, and similarly for J2. That is, // we assume that a set of equally spaced points have // been drawn on the line through X1 and X2, and that // they have been numbered, with X1 labeled J1 and X2 // labeled J2. J1 and J2 must be distinct. // // Input, int DIM_NUM, the dimension of the points X1 and X2. // // Input, double X1[DIM_NUM], X2[DIM_NUM], the points that define // the line along which the equally spaced points are // generated, and which may or may not be included in the // set of computed points. // // Output, double GRID_2N[DIM_NUM]. X(I) is the J-th point from the // set of equally spaced points. // { int i; double *x; x = new double[dim_num]; if ( dim_num < 1 ) { cerr << "\n"; cerr << "GRID2N - Fatal error!\n"; cerr << " DIM_NUM < 1.\n"; cerr << " DIM_NUM = " << dim_num << "\n"; exit ( 1 ); } if ( j1 == j2 ) { cerr << "\n"; cerr << "GRID2N - Fatal error!\n"; cerr << " J1 = J2, leading to zero denominator.\n"; cerr << " J1 = " << j1 << "\n"; cerr << " J2 = " << j2 << "\n"; exit ( 1 ); } for ( i = 0; i < dim_num; i++ ) { x[i] = ( ( double ) ( j2 - j ) * x1[i] + ( double ) ( j - j1 ) * x2[i] ) / ( double ) ( j2 - j1 ); } return x; } //****************************************************************************80 double *grid3 ( int dim_num, int nstep1, int nstep2, double x1[], double x2[], double x3[] ) //****************************************************************************80 // // Purpose: // // GRID3 computes a grid on the parallelogram set by X1, X2 and X3 in N space. // // Discussion: // // The line between X1 and X2 will have NSTEP1 points generated along // it, and the line between X1 and X3 will have NSTEP2 points generated // along it. // // Fixing the second and third indices of X represents one point, with // the following special values: // // X(*,1,1) = X1 // X(*,NSTEP1,1) = X2 // X(*,1,NSTEP2) = X3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the dimension of the points X1, X2 and X3. // // Input, int NSTEP1, NSTEP2. These are the number of // equally spaced points to generate in the first and second // directions. NSTEP1 and NSTEP2 must be at least 2, because X1, X2 and // X3 are always included in the set of points. // // Input, double X1[DIM_NUM], X2[DIM_NUM], X3[DIM_NUM], the points // which define three corners of the parallelogram on // which the grid will be generated. // // Output, double GRID3[DIM_NUM*NSTEP1*NSTEP2], the set of equally // spaced points. // { int i; int j; int k; double psi1; double psi2; double psi3; double *x; if ( dim_num < 1 ) { cerr << "\n"; cerr << "GRID3 - Fatal error!\n"; cerr << " DIM_NUM < 1.\n"; cerr << " DIM_NUM = " << dim_num << "\n"; exit ( 1 ); } if ( nstep1 < 2 ) { cerr << "\n"; cerr << "GRID3 - Fatal error!\n"; cerr << " NSTEP1 < 2.\n"; cerr << " NSTEP1 = " << nstep1 << "\n"; exit ( 1 ); } if ( nstep2 < 2 ) { cerr << "\n"; cerr << "GRID3 - Fatal error!\n"; cerr << " NSTEP2 < 2.\n"; cerr << " NSTEP2 = " << nstep2 << "\n"; exit ( 1 ); } x = new double[dim_num*nstep1*nstep2]; for ( j = 1; j <= nstep1; j++ ) { psi2 = ( double ) ( j - 1 ) / ( double ) ( nstep1 - 1 ); for ( k = 1; k <= nstep2; k++ ) { psi3 = ( double ) ( k - 1 ) / ( double ) ( nstep2 - 1 ); psi1 = 1.0 - psi2 - psi3; for ( i = 0; i < dim_num; i++ ) { x[i+(j-1)*dim_num+(k-1)*dim_num*nstep1] = psi1 * x1[i] + psi2 * x2[i] + psi3 * x3[i]; } } } return x; } //****************************************************************************80 double *grid3n ( int j, int k, int dim_num, int nstep1, int nstep2, double x1[], double x2[], double x3[] ) //****************************************************************************80 // // Purpose: // // GRID3N computes a parallelogram grid on 3 points in N dimensions. // // Discussion: // // The line between X1 and X2 will have NSTEP1 // points generated along it, and the line between X1 and // X3 will have NSTEP2 points generated along it. // // The following special values are: // // J K X // // 1 1 X1 // NSTEP1 1 X2 // 1 NSTEP2 X3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int J, K, the parallelogram coordinates // of the point. J measures steps from X1 to X2, and // K measures steps from X1 to X3. Normally, J would // be between 1 and NSTEP1, K between 1 and NSTEP2, // but this is not necessary. // // Input, int DIM_NUM, the dimension of the points X1, X2 and X3. // // Input, int NSTEP1, NSTEP2. These are the number of // equally spaced points to generate in the first and second // directions. NSTEP1 and NSTEP2 must be at least 2, because X1, X2 and // X3 are always included in the set of points. // // Input, double X1[DIM_NUM], X2[DIM_NUM], X3[DIM_NUM], the points // which define three corners of the parallelogram on // which the grid will be generated. // // Output, double GRID3N[DIM_NUM], the point with coordinates (J,K) // from the the set of equally spaced points. // { int i; double psi1; double psi2; double psi3; double *x; if ( dim_num < 1 ) { cerr << "\n"; cerr << "GRID3N - Fatal error!\n"; cerr << " DIM_NUM < 1.\n"; cerr << " DIM_NUM = " << dim_num << "\n"; exit ( 1 ); } if ( nstep1 < 2 ) { cerr << "\n"; cerr << "GRID3N - Fatal error!\n"; cerr << " NSTEP1 < 2.\n"; cerr << " NSTEP1 = " << nstep1 << "\n"; exit ( 1 ); } if ( nstep2 < 2 ) { cerr << "\n"; cerr << "GRID3N - Fatal error!\n"; cerr << " NSTEP2 < 2.\n"; cerr << " NSTEP2 = " << nstep2 << "\n"; exit ( 1 ); } x = new double[dim_num]; psi2 = ( double ) ( j - 1 ) / ( double ) ( nstep1 - 1 ); psi3 = ( double ) ( k - 1 ) / ( double ) ( nstep2 - 1 ); psi1 = 1.0 - psi2 - psi3; for ( i = 0; i < dim_num; i++ ) { x[i] = psi1 * x1[i] + psi2 * x2[i] + psi3 * x3[i]; } return x; } //****************************************************************************80 double *grid4 ( int j1, int j2, int k1, int k2, int dim_num, int nstep1, int nstep2, double x1[], double x2[], double x3[] ) //****************************************************************************80 // // Purpose: // // GRID4 computes a grid on the parallelogram set by X1, X2 and X3 in N space. // // Discussion: // // Unlike GRID3, GRID4 does not necessarily place X1 at the // "origin" of the parallelogram, with X2 and X3 set at the // extreme J and K coordinates. Instead, the user is free // to specify the J and K coordinates of the points, although // they are required to lie on a subparallelogram of the // larger one. // // The line through X1 and X2 will have NSTEP1 // points generated along it, and the line through X1 and // X3 will have NSTEP2 points generated along it. // // If we imagine that the // main parallelogram is drawn first, with coordinate // ranges 1 <= J <= NSTEP1 and 1 <= K <= NSTEP2, then // these indices determine the (J,K) coordinates of the // three points, namely: // // X1 : (J1,K1) // X2 : (J2,K1) // X3 : (J1,K2) // // Of course, we actually start with the points X1, X2, // and X3, and they define a parallelogram and a (J,K) // coordinate system over the plane containing them. We // then are free to consider the parallelogram defined // by the three points (1,1), (NSTEP1,1) and (1,NSTEP2), // which may or may not contain any of the points X1, X2 // and X3. // // Assuming that the indices J1, J2, K1 and K2 are "within // bounds", the following special values will be computed: // // X(*,J1,K1) = X1 // X(*,J2,K1) = X2 // X(*,J1,K2) = X3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int J1, J2, K1, K2, the indices. // // Input, int DIM_NUM, the dimension of the points X1, X2 and X3. // // Input, int NSTEP1, NSTEP2. These are the number of // equally spaced points to generate in the first and second // directions. NSTEP1 and NSTEP2 should be at least 1. // // Input, double X1[DIM_NUM], X2[DIM_NUM], X3[DIM_NUM], the points // which define three corners of the parallelogram on // which the grid will be generated. // // Output, double X[DIM_NUM*NSTEP1*NSTEP2], the set of equally // spaced points. Fixing the second and third indices // of X represents one point. // { int i; int j; int k; double psi1; double psi2; double psi3; double *x; if ( dim_num < 1 ) { cerr << "\n"; cerr << "GRID4 - Fatal error!\n"; cerr << " DIM_NUM < 1.\n"; cerr << " DIM_NUM = " << dim_num << "\n"; exit ( 1 ); } if ( nstep1 < 2 ) { cerr << "\n"; cerr << "GRID4 - Fatal error!\n"; cerr << " NSTEP1 < 2.\n"; cerr << " NSTEP1 = " << nstep1 << "\n"; exit ( 1 ); } if ( nstep2 < 2 ) { cerr << "\n"; cerr << "GRID4 - Fatal error!\n"; cerr << " NSTEP2 < 2.\n"; cerr << " NSTEP2 = " << nstep2 << "\n"; exit ( 1 ); } if ( j1 == j2 ) { cerr << "\n"; cerr << "GRID4 - Fatal error!\n"; cerr << " J1 = J2, leading to zero denominator.\n"; cerr << " J1 = " << j1 << "\n"; cerr << " J2 = " << j2 << "\n"; exit ( 1 ); } if ( k1 == k2 ) { cerr << "\n"; cerr << "GRID4 - Fatal error!\n"; cerr << " K1 = K2, leading to zero denominator.\n"; cerr << " K1 = " << k1 << "\n"; cerr << " K2 = " << k2 << "\n"; exit ( 1 ); } x = new double[dim_num*nstep1*nstep2]; for ( j = 1; j <= nstep1; j++ ) { psi2 = ( double ) ( j - j1 ) / ( double ) ( j2 - j1 ); for ( k = 1; k <= nstep2; k++ ) { psi3 = ( double ) ( k - k1 ) / ( double ) ( k2 - k1 ); psi1 = 1.0 - psi2 - psi3; for ( i = 0; i < dim_num; i++ ) { x[i+(j-1)*dim_num+(k-1)*dim_num*nstep1] = psi1 * x1[i] + psi2 * x2[i] + psi3 * x3[i]; } } } return x; } //****************************************************************************80 double *grid4n ( int j, int j1, int j2, int k, int k1, int k2, int dim_num, int nstep1, int nstep2, double x1[], double x2[], double x3[] ) //****************************************************************************80 // // Purpose: // // GRID4N computes a single point on a parallelogram grid in N space. // // Discussion: // // The computation is identical to that of GRID4, except that // only one point at a time is computed. // // The line through X1 and X2 will have NSTEP1 // points generated along it, and the line through X1 and // X3 will have NSTEP2 points generated along it. // // The following special values will be computed: // // J K X // // J1 K1 X1 // J2 K2 X2 // J1 K2 X3 // // If we imagine that the main parallelogram is drawn first, with // coordinate ranges 1 <= J <= NSTEP1 and 1 <= K <= NSTEP2, then // the indices J and K determine the (J,K) coordinates of the // three points X1, X2, and X3, namely: // // X1 : (J1,K1) // X2 : (J2,K1) // X3 : (J1,K2) // // Of course, we actually start with the points X1, X2, // and X3, and they define a parallelogram and an (J,K) // coordinate system over the plane containing them. We // then are free to consider the parallelogram defined // by the three points (1,1), (NSTEP1,1) and (1,NSTEP2), // which may or may not contain any of the points X1, X2 // and X3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int J, the J coordinate of the point X. // // Input, int J1, J2. See discussion. // // Input, int K, the K coordinate of the point X. // // Input, int K1, K2. See discussion. // // Input, int DIM_NUM, the dimension of the points X, X1, X2 and X3. // // Input, int NSTEP1, NSTEP2. These are the number of // equally spaced points generated in the first and second // directions. // NSTEP1 and NSTEP2 should be at least 1. // // Input, double X1[DIM_NUM], X2[DIM_NUM], X3[DIM_NUM], the points // which define three corners of the parallelogram on // which the grid will be generated. // // Output, double GRID4N[DIM_NUM], the point whose parallelogram // coordinates are (J,K). // { int i; double psi1; double psi2; double psi3; double *x; if ( dim_num < 1 ) { cerr << "\n"; cerr << "GRID4N - Fatal error!\n"; cerr << " DIM_NUM < 1.\n"; cerr << " DIM_NUM = " << dim_num << "\n"; exit ( 1 ); } if ( nstep1 < 2 ) { cerr << "\n"; cerr << "GRID4N - Fatal error!\n"; cerr << " NSTEP1 < 2.\n"; cerr << " NSTEP1 = " << nstep1 << "\n"; exit ( 1 ); } if ( nstep2 < 2 ) { cerr << "\n"; cerr << "GRID4N - Fatal error!\n"; cerr << " NSTEP2 < 2.\n"; cerr << " NSTEP2 = " << nstep2 << "\n"; exit ( 1 ); } if ( j1 == j2 ) { cerr << "\n"; cerr << "GRID4N - Fatal error!\n"; cerr << " J1 = J2, leading to zero denominator.\n"; cerr << " J1 = " << j1 << "\n"; cerr << " J2 = " << j2 << "\n"; exit ( 1 ); } if ( k1 == k2 ) { cerr << "\n"; cerr << "GRID4N - Fatal error!\n"; cerr << " K1 = K2, leading to zero denominator.\n"; cerr << " K1 = " << k1 << "\n"; cerr << " K2 = " << k2 << "\n"; exit ( 1 ); } psi2 = ( double ) ( j - j1 ) / ( double ) ( j2 - j1 ); psi3 = ( double ) ( k - k1 ) / ( double ) ( k2 - k1 ); psi1 = 1.0 - psi2 - psi3; x = new double[dim_num]; for ( i = 0; i < dim_num; i++ ) { x[i] = psi1 * x1[i] + psi2 * x2[i] + psi3 * x3[i]; } return x; } //****************************************************************************80 short int i2_reverse_bytes ( short int x ) //****************************************************************************80 // // Purpose: // // I2_REVERSE_BYTES reverses the two bytes in an I2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 May 2007 // // Author: // // John Burkardt // // Parameters: // // Input, short int X, a value whose bytes are to be reversed. // // Output, short int I2_REVERSE_BYTES, a value with // bytes in reverse order. // { char c; union { short int yshortint; char ychar[2]; } y; y.yshortint = x; c = y.ychar[0]; y.ychar[0] = y.ychar[1]; y.ychar[1] = c; return ( y.yshortint ); } //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of an I4. // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_modp ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_MODP returns the nonnegative remainder of I4 division. // // Discussion: // // If // NREM = I4_MODP ( I, J ) // NMULT = ( I - NREM ) / J // then // I = J * NMULT + NREM // where NREM is always nonnegative. // // The MOD function computes a result with the same sign as the // quantity being divided. Thus, suppose you had an angle A, // and you wanted to ensure that it was between 0 and 360. // Then mod(A,360) would do, if A was positive, but if A // was negative, your result would be between -360 and 0. // // On the other hand, I4_MODP(A,360) is between 0 and 360, always. // // I J MOD I4_MODP I4_MODP Factorization // // 107 50 7 7 107 = 2 * 50 + 7 // 107 -50 7 7 107 = -2 * -50 + 7 // -107 50 -7 43 -107 = -3 * 50 + 43 // -107 -50 -7 43 -107 = 3 * -50 + 43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number to be divided. // // Input, int J, the number that divides I. // // Output, int I4_MODP, the nonnegative remainder when I is // divided by J. // { int value; if ( j == 0 ) { cerr << "\n"; cerr << "I4_MODP - Fatal error!\n"; cerr << " I4_MODP ( I, J ) called with J = " << j << "\n"; exit ( 1 ); } value = i % j; if ( value < 0 ) { value = value + abs ( j ); } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 int i4_sign ( int i ) //****************************************************************************80 // // Purpose: // // I4_SIGN returns the sign of an I4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the integer whose sign is desired. // // Output, int I4_SIGN, the sign of I. { int value; if ( i < 0 ) { value = -1; } else { value = 1; } return value; } //****************************************************************************80 void i4_swap ( int *i, int *j ) //****************************************************************************80 // // Purpose: // // I4_SWAP switches two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 January 2002 // // Author: // // John Burkardt // // Parameters: // // Input/output, int *I, *J. On output, the values of I and // J have been interchanged. // { int k; k = *i; *i = *j; *j = k; return; } //****************************************************************************80 int *i4_to_digits_decimal ( int i, int n ) //****************************************************************************80 // // Purpose: // // I4_TO_DIGITS_DECIMAL determines the last N decimal digits of an I4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the integer to be analyzed. // // Input, int N, the number of digits to determine. // // Output, int I4_TO_DIGITS_DECIMAL[N], the last N decimal digits of I. // DIGIT[I-1] is the "coefficient" of 10**(I-1). // { int *digit; int j; digit = new int[n]; i = abs ( i ); for ( j = 1; j <= n; j++ ) { digit[j-1] = i % 10; i = ( i - digit[j-1] ) / 10; } return digit; } //****************************************************************************80 int *i4_to_fac ( int i, int prime_num ) //****************************************************************************80 // // Purpose: // // I4_TO_FAC converts an I4 into a product of prime factors. // // Discussion: // // This routine will fail if the input integer is not positive, // or if PRIME_NUM is too small to account for the factors of the integer. // // The formula is: // // I = Product ( 1 <= J <= PRIME_NUM ) PRIME(J)**NPOWER(J). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the integer to be factored. // // Input, int PRIME_NUM, the number of prime factors for // which storage has been allocated. // // Output, int I4_TO_FAC[PRIME_NUM], the powers of the primes. // { int j; int *npower; int p; if ( i <= 0 ) { cerr << "\n"; cerr << "I4_TO_FAC - Fatal error!\n"; cerr << " Input integer I is not positive.\n"; exit ( 1 ); } npower = new int[prime_num]; // // Try dividing the remainder by each prime. // for ( j = 1; j <= prime_num; j++ ) { npower[j-1] = 0; p = prime ( j ); while ( ( i % p ) == 0 ) { npower[j-1] = npower[j-1] + 1; i = i / p; } } return npower; } //****************************************************************************80 char i4_to_isbn ( int i ) //****************************************************************************80 // // Purpose: // // I4_TO_ISBN converts an I4 to an ISBN digit. // // Discussion: // // Only the integers 0 through 10 can be input. The representation // of 10 is 'X'. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Reference: // // Book Industry Study Group, // The Evolution in Product Identification: // Sunrise 2005 and the ISBN-13, // http://www.bisg.org/docs/The_Evolution_in_Product_ID.pdf // // Parameters: // // Input, int I, an integer between 0 and 10. // // Output, char I4_TO_ISBN, the ISBN character code of the integer. // If I is illegal, then I4_TO_ISBN is set to '?'. // { if ( i == 0 ) { return '0'; } else if ( i == 1 ) { return '1'; } else if ( i == 2 ) { return '2'; } else if ( i == 3 ) { return '3'; } else if ( i == 4 ) { return '4'; } else if ( i == 5 ) { return '5'; } else if ( i == 6 ) { return '6'; } else if ( i == 7 ) { return '7'; } else if ( i == 8 ) { return '8'; } else if ( i == 9 ) { return '9'; } else if ( i == 10 ) { return 'X'; } else { return '?'; } } //****************************************************************************80 int i4_uniform ( int a, int b, int *seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM returns a scaled pseudorandom I4. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 November 2006 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley Interscience, page 95, 1998. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Peter Lewis, Allen Goodman, James Miller // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int *SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM, a number between A and B. // { int k; float r; int value; if ( *seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } r = ( float ) ( *seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) ( i4_min ( a, b ) ) - 0.5 ) + r * ( ( float ) ( i4_max ( a, b ) ) + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = r4_nint ( r ); value = i4_max ( value, i4_min ( a, b ) ); value = i4_min ( value, i4_max ( a, b ) ); return value; } //****************************************************************************80 double i4int_to_r8int ( int imin, int imax, int i, double rmin, double rmax ) //****************************************************************************80 // // Purpose: // // I4INT_TO_R8INT maps an I4 interval to an R8 interval. // // Discussion: // // The formula is // // R := RMIN + ( RMAX - RMIN ) * ( I - IMIN ) / ( IMAX - IMIN ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int IMIN, IMAX, the range. // // Input, int I, the integer to be converted. // // Input, double RMIN, RMAX, the range. // // Output, double R, the corresponding value in [RMIN,RMAX]. // { double r; if ( imax == imin ) { r = 0.5 * ( rmin + rmax ); } else { r = ( ( double ) ( imax - i ) * rmin + ( double ) ( i - imin ) * rmax ) / ( double ) ( imax - imin ); } return r; } //****************************************************************************80 void i4vec_copy ( int n, int a1[], int a2[] ) //****************************************************************************80 // // Purpose: // // I4VEC_COPY copies an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 April 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, int A1[N], the vector to be copied. // // Output, int A2[N], the copy of A1. // { int i; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return; } //****************************************************************************80 int *i4vec_indicator_new ( int n ) //****************************************************************************80 // // Purpose: // // I4VEC_INDICATOR_NEW sets an I4VEC to the indicator vector. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, int I4VEC_INDICATOR_NEW[N], the array. // { int *a; int i; a = new int[n]; for ( i = 0; i < n; i++ ) { a[i] = i + 1; } return a; } //****************************************************************************80 int i4vec_min ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_MIN returns the value of the minimum element in an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, int A[N], the array to be checked. // // Output, int I4VEC_MIN, the value of the minimum element. This // is set to 0 if N <= 0. // { int i; int value; if ( n <= 0 ) { return 0; } value = a[0]; for ( i = 1; i < n; i++ ) { if ( a[i] < value ) { value = a[i]; } } return value; } //****************************************************************************80 void i4vec_permute ( int n, int p[], int base, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_PERMUTE permutes an I4VEC in place. // // Discussion: // // An I4VEC is a vector of I4's. // // This routine permutes an array of integer "objects", but the same // logic can be used to permute an array of objects of any arithmetic // type, or an array of objects of any complexity. The only temporary // storage required is enough to store a single object. The number // of data movements made is N + the number of cycles of order 2 or more, // which is never more than N + N/2. // // Example: // // Input: // // N = 5 // P = ( 1, 3, 4, 0, 2 ) // A = ( 1, 2, 3, 4, 5 ) // // Output: // // A = ( 2, 4, 5, 1, 3 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of objects. // // Input, int P[N], the permutation. P(I) = J means // that the I-th element of the output array should be the J-th // element of the input array. // // Input, int BASE, is 0 for a 0-based permutation and 1 for // a 1-based permutation. // // Input/output, int A[N], the array to be permuted. // { int a_temp; int i; int iget; int iput; int istart; if ( !perm_check ( n, p, base ) ) { cerr << "\n"; cerr << "I4VEC_PERMUTE - Fatal error!\n"; cerr << " PERM_CHECK rejects this permutation.\n"; exit ( 1 ); } // // In order for the sign negation trick to work, we need to assume that the // entries of P are strictly positive. Presumably, the lowest number is BASE. // So temporarily add 1-BASE to each entry to force positivity. // for ( i = 0; i < n; i++ ) { p[i] = p[i] + 1 - base; } // // Search for the next element of the permutation that has not been used. // for ( istart = 1; istart <= n; istart++ ) { if ( p[istart-1] < 0 ) { continue; } else if ( p[istart-1] == istart ) { p[istart-1] = - p[istart-1]; continue; } else { a_temp = a[istart-1]; iget = istart; // // Copy the new value into the vacated entry. // for ( ; ; ) { iput = iget; iget = p[iget-1]; p[iput-1] = - p[iput-1]; if ( iget < 1 || n < iget ) { cerr << "\n"; cerr << "I4VEC_PERMUTE - Fatal error!\n"; cerr << " Entry IPUT = " << iput << " of the permutation has\n"; cerr << " an illegal value IGET = " << iget << ".\n"; exit ( 1 ); } if ( iget == istart ) { a[iput-1] = a_temp; break; } a[iput-1] = a[iget-1]; } } } // // Restore the signs of the entries. // for ( i = 0; i < n; i++ ) { p[i] = - p[i]; } // // Restore the base of the entries. // for ( i = 0; i < n; i++ ) { p[i] = p[i] - 1 + base; } return; } //****************************************************************************80 void i4vec_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(8) << a[i] << "\n"; } return; } //****************************************************************************80 int i4vec_sum ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SUM sums the entries of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // Input: // // A = ( 1, 2, 3, 4 ) // // Output: // // I4VEC_SUM = 10 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector to be summed. // // Output, int I4VEC_SUM, the sum of the entries of A. // { int i; int sum; sum = 0; for ( i = 0; i < n; i++ ) { sum = sum + a[i]; } return sum; } //****************************************************************************80 void i4vec_zero ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_ZERO zeroes an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, int A[N], a vector of zeroes. // { int i; for ( i = 0; i < n; i++ ) { a[i] = 0; } return; } //****************************************************************************80 int *i4vec_zero_new ( int n ) //****************************************************************************80 // // Purpose: // // I4VEC_ZERO_NEW creates and zeroes an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, int I4VEC_ZERO_NEW[N], a vector of zeroes. // { int *a; int i; a = new int[n]; for ( i = 0; i < n; i++ ) { a[i] = 0; } return a; } //****************************************************************************80 void ij_next ( int *i, int *j, int n ) //****************************************************************************80 // // Purpose: // // IJ_NEXT returns the next matrix index. // // Discussion: // // For N = 3, the sequence of indices returned is: // // (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (0,0). // // Note that once the value (N,N) is returned, the next value returned // will be (0,0). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input/output, int *I, *J. On input, the current pair of indices. // On output, the next pair of indices. If either index is illegal on // input, the output value of (I,J) will be (1,1). // // Input, int N, the maximum value for I and J. // { if ( n < 1 ) { *i = 0; *j = 0; return; } if ( *i < 1 || n < *i || *j < 1 || n < *j ) { *i = 1; *j = 1; return; } if ( *j < n ) { *j = *j + 1; } else if ( *i < n ) { *i = *i + 1; *j = 1; } else { *i = 0; *j = 0; } return; } //****************************************************************************80 void ij_next_gt ( int *i, int *j, int n ) //****************************************************************************80 // // Purpose: // // IJ_NEXT_GT returns the next matrix index, with the constraint that I < J. // // Discussion: // // For N = 5, the sequence of indices returned is: // // (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input/output, int *I, *J. On input, the current pair of indices. // On output, the next pair of indices. If either index is illegal on // input, the output value of (I,J) will be (1,2). // // Input, int N, the maximum value for I and J. // A value of N less than 2 is nonsense. // { if ( n < 2 ) { *i = 0; *j = 0; return; } if ( *i < 1 || n < *i || *j < 1 || n < *j || *j <= *i ) { *i = 1; *j = 2; return; } if ( *j < n ) { *j = *j + 1; } else if ( *i < n - 1 ) { *i = *i + 1; *j = *i + 1; } else { *i = 0; *j = 0; } return; } //****************************************************************************80 void index_box2_next_2d ( int n1, int n2, int ic, int jc, int *i, int *j, int *more ) //****************************************************************************80 // // Purpose: // // INDEX_BOX2_NEXT_2D produces indices on the surface of a box in 2D. // // Discussion: // // The box has center at (IC,JC), and has half-widths N1 and N2. // The indices are exactly those which are between (IC-N1,JC-N2) and // (IC+N1,JC+N2) with the property that at least one of I and J // is an "extreme" value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the half-widths of the box, that is, the // maximum distance allowed between (IC,JC) and (I,J). // // Input, int IC, JC, the central cell of the box. // // Input/output, int *I, *J. On input, the previous index set. // On output, the next index set. On the first call, MORE should // be set to FALSE, and the input values of I and J are ignored. // // Input/output, bool *MORE. // On the first call for a given box, the user should set MORE to FALSE. // On return, the routine sets MORE to TRUE. // When there are no more indices, the routine sets MORE to FALSE. // { if ( !(*more) ) { *more = true; *i = ic - n1; *j = jc - n2; return; } if ( *i == ic + n1 && *j == jc + n2 ) { *more = false; return; } // // Increment J. // *j = *j + 1; // // Check J. // if ( jc + n2 < *j ) { *j = jc - n2; *i = *i + 1; } else if ( *j < jc + n2 && ( *i == ic - n1 || *i == ic + n1 ) ) { return; } else { *j = jc + n2; return; } return; } //****************************************************************************80 void index_box2_next_3d ( int n1, int n2, int n3, int ic, int jc, int kc, int *i, int *j, int *k, bool *more ) //****************************************************************************80 // // Purpose: // // INDEX_BOX2_NEXT_3D produces indices on the surface of a box in 3D. // // Discussion: // // The box has a central cell of (IC,JC,KC), with a half widths of // (N1,N2,N3). The indices are exactly those between (IC-N1,JC-N2,KC-N3) and // (IC+N1,JC+N2,KC+N3) with the property that at least one of I, J, and K // is an "extreme" value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, N3, the "half widths" of the box, that is, the // maximum distances from the central cell allowed for I, J and K. // // Input, int IC, JC, KC, the central cell of the box. // // Input/output, int *I, *J, *K. On input, the previous index set. // On output, the next index set. On the first call, MORE should // be set to FALSE, and the input values of I, J, and K are ignored. // // Input/output, bool *MORE. // On the first call for a given box, the user should set MORE to FALSE. // On return, the routine sets MORE to TRUE. // When there are no more indices, the routine sets MORE to FALSE. // { if ( !(*more) ) { *more = true; *i = ic - n1; *j = jc - n2; *k = kc - n3; return; } if ( *i == ic + n1 && *j == jc + n2 && *k == kc + n3 ) { *more = false; return; } // // Increment K. // *k = *k + 1; // // Check K. // if ( kc + n3 < *k ) { *k = kc - n3; *j = *j + 1; } else if ( *k < kc + n3 && ( *i == ic - n1 || *i == ic + n1 || *j == jc - n2 || *j == jc + n2 ) ) { return; } else { *k = kc + n3; return; } // // Check J. // if ( jc + n2 < *j ) { *j = jc - n2; *i = *i + 1; } else if ( *j < jc + n2 && ( *i == ic - n1 || *i == ic + n1 || *k == kc - n3 || *k == kc + n3 ) ) { return; } else { *j = jc + n2; return; } return; } //****************************************************************************80 int index1_col ( int i_min, int i, int i_max, int index_min ) //****************************************************************************80 // // Purpose: // // INDEX1_COL indexes a 1D vector by columns. // // Discussion: // // This 1D routine is provided primarily for analogy. // Moreover, in 1D there is no difference between row and column indexing. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int I_MIN, I, I_MAX, for the first index, // the minimum, the index, and the maximum. // // Input, int INDEX_MIN, the index of element I_MIN. // Typically, this is 0 or 1. // // Output, int INDEX1_COL, the index of element I. // { int value; value = index_min + ( i - i_min ); return value; } //****************************************************************************80 int index1_row ( int i_min, int i, int i_max, int index_min ) //****************************************************************************80 // // Purpose: // // INDEX1_ROW indexes a 1D vector by rows. // // Discussion: // // This 1D routine is provided primarily for analogy. // Moreover, in 1D there is no difference between row and column indexing. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int I_MIN, I, I_MAX, for the first index, // the minimum, the index, and the maximum. // // Input, int INDEX_MIN, the index of element I_MIN. // Typically, this is 0 or 1. // // Output, int INDEX1_ROW, the index of element I. // { int value; value = index_min + ( i - i_min ); return value; } //****************************************************************************80 int index2_col ( int i_min, int i, int i_max, int j_min, int j, int j_max, int index_min ) //****************************************************************************80 // // Purpose: // // INDEX2_COL indexes a 2D array by columns. // // Discussion: // // Entries of the array are indexed starting at entry (I_MIN,J_MIN), // and increasing the row index first. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int I_MIN, I, I_MAX, for row indices, // the minimum, the index, and the maximum. // // Input, int J_MIN, J, J_MAX, for column indices, // the minimum, the index, and the maximum. // // Input, int INDEX_MIN, the index of element (I_MIN,J_MIN). // Typically, this is 0 or 1. // // Output, int INDEX2_COL, the index of element (I,J). // { int value; value = index_min + ( i - i_min ) + ( j - j_min ) * ( i_max + 1 - i_min ); return value; } //****************************************************************************80 int index2_row ( int i_min, int i, int i_max, int j_min, int j, int j_max, int index_min ) //****************************************************************************80 // // Purpose: // // INDEX2_ROW indexes a 2D array by row. // // Discussion: // // Entries of the array are indexed starting at entry (I_MIN,J_MIN), // and increasing the column index first. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int I_MIN, I, I_MAX, for row indices, // the minimum, the index, and the maximum. // // Input, int J_MIN, J, J_MAX, for column indices, // the minimum, the index, and the maximum. // // Input, int INDEX_MIN, the index of element (I_MIN,J_MIN). // Typically, this is 0 or 1. // // Output, int INDEX2_ROW, the index of element (I,J). // { int value; value = index_min + ( j - j_min ) + ( i - i_min ) * ( j_max + 1 - j_min ); return value; } //****************************************************************************80 int index3_col ( int i_min, int i, int i_max, int j_min, int j, int j_max, int k_min, int k, int k_max, int index_min ) //****************************************************************************80 // // Purpose: // // INDEX3_COL indexes a 3D array by columns. // // Discussion: // // Entries of the array are indexed starting at entry (I_MIN,J_MIN,K_MIN), // and increasing the row index first, then the column index. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int I_MIN, I, I_MAX, for row indices, // the minimum, the index, and the maximum. // // Input, int J_MIN, J, J_MAX, for column indices, // the minimum, the index, and the maximum. // // Input, int K_MIN, K, K_MAX, for plane indices, // the minimum, the index, and the maximum. // // Input, int INDEX_MIN, the index of (I_MIN,J_MIN,K_MIN). // Typically, this is 0 or 1. // // Output, int INDEX3_COL, the index of element (I,J,K). // { int value; value = index_min + ( i - i_min ) + ( j - j_min ) * ( i_max + 1 - i_min ) + ( k - k_min ) * ( j_max + 1 - j_min ) * ( i_max + 1 - i_min ); return value; } //****************************************************************************80 int index3_row ( int i_min, int i, int i_max, int j_min, int j, int j_max, int k_min, int k, int k_max, int index_min ) //****************************************************************************80 // // Purpose: // // INDEX3_ROW indexes a 3D array by rows. // // Discussion: // // When we say "by rows", we really just mean that entries of the array are // indexed starting at entry (I_MIN,J_MIN,K_MIN), and the increasing the LAST // index first, then the next-to-the-last, and so on. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int I_MIN, I, I_MAX, for row indices, // the minimum, the index, and the maximum. // // Input, int J_MIN, J, J_MAX, for column indices, // the minimum, the index, and the maximum. // // Input, int K_MIN, K, K_MAX, for plane indices, // the minimum, the index, and the maximum. // // Input, int INDEX_MIN, the index of (I_MIN,J_MIN,K_MIN). // Typically, this is 0 or 1. // // Output, int INDEX3_ROW, the index of element (I,J,K). // { int value; value = index_min + ( k - k_min ) + ( j - j_min ) * ( k_max + 1 - k_min ) + ( i - i_min ) * ( j_max + 1 - j_min ) * ( k_max + 1 - k_min ); return value; } //****************************************************************************80 int index4_col ( int i1_min, int i1, int i1_max, int i2_min, int i2, int i2_max, int i3_min, int i3, int i3_max, int i4_min, int i4, int i4_max, int index_min ) //****************************************************************************80 // // Purpose: // // INDEX4_COL indexes a 4D array by columns. // // Discussion: // // Entries of the array are indexed starting at (I1_MIN,I2_MIN,I3_MIN,I4_MIN), // and increasing the initial index first, then the second, third and so on. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int I1_MIN, I1, I1_MAX, for index 1, // the minimum, the index, and the maximum. // // Input, int I2_MIN, I2, I2_MAX, for index 2, // the minimum, the index, and the maximum. // // Input, int I3_MIN, I3, I3_MAX, for index 3, // the minimum, the index, and the maximum. // // Input, int I4_MIN, I4, I4_MAX, for index 4, // the minimum, the index, and the maximum. // // Input, int INDEX_MIN, the index of // (I1_MIN,I2_MIN,I3_MIN,I4_MIN). Typically, this is 0 or 1. // // Output, int INDEX4_COL, the index of element (I1,I2,I3,I4). // { int value; value = index_min + ( i1 - i1_min ) + ( i2 - i2_min ) * ( i1_max + 1 - i1_min ) + ( i3 - i3_min ) * ( i2_max + 1 - i2_min ) * ( i1_max + 1 - i1_min ) + ( i4 - i4_min ) * ( i3_max + 1 - i3_min ) * ( i2_max + 1 - i2_min ) * ( i1_max + 1 - i1_min ); return value; } //****************************************************************************80 int index4_row ( int i1_min, int i1, int i1_max, int i2_min, int i2, int i2_max, int i3_min, int i3, int i3_max, int i4_min, int i4, int i4_max, int index_min ) //****************************************************************************80 // // Purpose: // // INDEX4_ROW indexes a 4D array by rows. // // Discussion: // // Entries of the array are indexed starting at (I1_MIN,I2_MIN,I3_MIN,I4_MIN), // and increasing the last index, then the next to last, and so on. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int I1_MIN, I1, I1_MAX, for index 1, // the minimum, the index, and the maximum. // // Input, int I2_MIN, I2, I2_MAX, for index 2, // the minimum, the index, and the maximum. // // Input, int I3_MIN, I3, I3_MAX, for index 3, // the minimum, the index, and the maximum. // // Input, int I4_MIN, I4, I4_MAX, for index 4, // the minimum, the index, and the maximum. // // Input, int INDEX_MIN, the index of element // (I1_MIN,I2_MIN,I3_MIN,I4_MIN). Typically, this is 0 or 1. // // Output, int INDEX4_ROW, the index of element (I1,I2,I3,I4). // { int value; value = index_min + ( i4 - i4_min ) + ( i3 - i3_min ) * ( i4_max + 1 - i4_min ) + ( i2 - i2_min ) * ( i3_max + 1 - i3_min ) * ( i4_max + 1 - i4_min ) + ( i1 - i1_min ) * ( i2_max + 1 - i2_min ) * ( i3_max + 1 - i3_min ) * ( i4_max + 1 - i4_min ); return value; } //****************************************************************************80 int indexn_col ( int n, int i_min[], int i[], int i_max[], int index_min ) //****************************************************************************80 // // Purpose: // // INDEXN_COL indexes an ND array by columns. // // Discussion: // // Entries of the array are indexed starting at entry // ( I_MIN(1), I_MIN(2),...,I_MIN(N) ), // and increasing the first index up to I_MAX(1), // then the second and so on. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of indices. // // Input, int I_MIN[N], the minimum indices. // // Input, int I[N], the indices. // // Input, int I_MAX[N], for maximum indices. // // Input, int INDEX_MIN, the index of // ( I_MIN[0], I_MIN[1],...,I_MIN[N-1] ). Typically, this is 0 or 1. // // Output, int INDEXN_COL, the index of element I. // { int j; int value; value = ( i[n-1] - i_min[n-1] ); for ( j = n - 2; 0 <= j; j-- ) { value = value * ( i_max[j] + 1 - i_min[j] ) + ( i[j] - i_min[j] ); } value = value + index_min; return value; } //****************************************************************************80 int indexn_row ( int n, int i_min[], int i[], int i_max[], int index_min ) //****************************************************************************80 // // Purpose: // // INDEXN_ROW indexes an ND array by rows. // // Discussion: // // Entries of the array are indexed starting at entry // ( I_MIN(1), I_MIN(2),...,I_MIN(N) ), // and increasing the last index up to I_MAX(N), // then the next-to-last and so on. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of indices. // // Input, int I_MIN[N], the minimum indices. // // Input, int I[N], the indices. // // Input, int I_MAX[N], for maximum indices. // // Input, int INDEX_MIN, the index of // ( I_MIN[0], I_MIN[1],...,I_MIN[N-1] ). Typically, this is 0 or 1. // // Output, int INDEXN_ROW, the index of element I. // { int j; int value; value = ( i[0] - i_min[0] ); for ( j = 1; j < n; j++ ) { value = value * ( i_max[j] + 1 - i_min[j] ) + ( i[j] - i_min[j] ); } value = value + index_min; return value; } //****************************************************************************80 int isbn_check ( string isbn ) //****************************************************************************80 // // Purpose: // // ISBN_CHECK checks an ISBN code. // // Discussion: // // ISBN stands for International Standard Book Number. A unique ISBN // is assigned to each new book. The ISBN includes 10 digits. There is // an initial digit, then a dash, then a set of digits which are a // code for the publisher, another digit, and then the check digit: // // initial-publisher-book-check // // The number of digits used for the publisher and book codes can vary, // but the check digit is always one digit, and the total number of // digits is always 10. // // The check digit is interesting, because it is a way of trying to // make sure that an ISBN has not been incorrectly copied. Specifically, // if the ISBN is correct, then its ten digits will satisfy // // 10 * A + 9 * B + 8 * C + 7 * D + 6 * E // + 5 * F * 4 * G * 3 * H + 2 * I + J = 0 mod 11. // // Here, we've taken 'A' to represent the first digit and 'J' the // last (which is the check digit). In order for the code to work, // the value of J must be allowed to be anything from 0 to 10. In // cases where J works out to be 10, the special digit 'X' is used. // An 'X' digit can only occur in this last check-digit position // on an ISBN. // // Example: // // 0-8493-9640-9 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 September 2005 // // Author: // // John Burkardt // // Reference: // // Book Industry Study Group, // The Evolution in Product Identification: // Sunrise 2005 and the ISBN-13, // http://www.bisg.org/docs/The_Evolution_in_Product_ID.pdf // // Parameters: // // Input, string ISBN, an ISBN code. // // Output, int ISBN_CHECK, the value of the ISBN check sum. // If CHECK is zero, the ISBN code is legitimate. // If CHECK is -1, then the ISBN code is not legitimate because it does // not contain exactly 10 digits. If CHECK is between 1 and 10, then // the ISBN code has the right number of digits, but at least one of // the digits is incorrect. // { char c; int check; int digit[10]; int i; int lenc; int num_digit; // // Determine how many digits have been supplied. // lenc = s_len_trim ( isbn ); i = 0; num_digit = 0; for ( ; ; ) { i = i + 1; if ( lenc < i ) { break; } c = isbn[i-1]; if ( ch_is_digit ( c ) ) { digit[num_digit] = isbn_to_i4 ( c ); num_digit = num_digit + 1; } else if ( ( num_digit == 9 && isbn[i-1] == 'X' ) || ( num_digit == 9 && isbn[i-1] == 'x' ) ) { digit[num_digit] = isbn_to_i4 ( c ); num_digit = num_digit + 1; } if ( 10 <= num_digit ) { break; } } // // If we didn't get exactly 10 digits, return with an error. // if ( num_digit != 10 ) { check = -1; return check; } // // Compute the checksum. // check = 0; for ( i = 0; i < 10; i++ ) { check = check + ( 11 - i ) * digit[i]; } check = ( check % 11 ); return check; } //****************************************************************************80 void isbn_fill ( string isbn ) //****************************************************************************80 // // Purpose: // // ISBN_FILL fills in a missing digit in an ISBN code. // // Example: // // Input: // // 0-8493-9?40-9 // // Output: // // 0-8493-9640-9 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 October 2005 // // Author: // // John Burkardt // // Reference: // // Book Industry Study Group, // The Evolution in Product Identification: // Sunrise 2005 and the ISBN-13, // http://www.bisg.org/docs/The_Evolution_in_Product_ID.pdf // // Parameters: // // Input/output, string ISBN, a partial ISBN code. On input, // a single digit has been replaced by the character '?', signifying // that that digit is missing. The routine replaces the question // mark by the correct digit. // { char c; int check; int digit[10]; int digit_pos; int i; int isbn_pos; int j; int k; int lenc; int num_digit; lenc = s_len_trim ( isbn ); i = 0; isbn_pos = -1; digit_pos = -1; num_digit = 0; for ( ; ; ) { i = i + 1; if ( lenc < i ) { break; } c = isbn[i-1]; if ( ch_is_digit ( c ) ) { num_digit = num_digit + 1; digit[num_digit-1] = isbn_to_i4 ( c ); } else if ( ( num_digit == 9 && isbn[i-1] == 'X' ) || ( num_digit == 9 && isbn[i-1] == 'x' ) ) { num_digit = num_digit + 1; digit[num_digit-1] = isbn_to_i4 ( c ); } else if ( c == '?' ) { if ( isbn_pos == -1 ) { num_digit = num_digit + 1; digit[num_digit-1] = 0; digit_pos = num_digit; isbn_pos = i; } else { cerr << "\n"; cerr << "ISBN_FILL - Fatal error!\n"; cerr << " Only one question mark is allowed.\n"; exit ( 1 ); } } if ( 10 <= num_digit ) { break; } } if ( num_digit != 10 ) { cerr << "\n"; cerr << "ISBN_FILL - Fatal error!\n"; cerr << " The input ISBN code did not have 10 digits.\n"; exit ( 1 ); } if ( isbn_pos == -1 ) { cerr << "\n"; cerr << "ISBN_FILL - Fatal error!\n"; cerr << " A question mark is required.\n"; exit ( 1 ); } check = 0; for ( i = 1; i <= 10; i++ ) { check = check + ( 11 - i ) * digit[i-1]; } check = ( check % 11 ); if ( check == 0 ) { k = 0; } // // Need to solve the modular equation: // // A * X = B mod C // // Below is a stupid way. One day I will come back and fix this up. // else { for ( i = 1; i <= 10; i++ ) { j = ( 11 - digit_pos ) * i + check; if ( ( j % 11 ) == 0 ) { k = i; } } } isbn[isbn_pos-1] = i4_to_isbn ( k ); return; } //****************************************************************************80 int isbn_to_i4 ( char c ) //****************************************************************************80 // // Purpose: // // ISBN_TO_I4 converts an ISBN character into an I4. // // Discussion: // // The characters '0' through '9' stand for themselves, but // the character 'X' or 'x' stands for 10. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 April 2004 // // Author: // // John Burkardt // // Reference: // // Book Industry Study Group, // The Evolution in Product Identification: // Sunrise 2005 and the ISBN-13, // http://www.bisg.org/docs/The_Evolution_in_Product_ID.pdf // // Parameters: // // Input, char C, the ISBN character code to be converted. // // Output, int ISBN_TO_I4, the numeric value of the character // code, between 0 and 10. This value is returned as -1 if C is // not a valid character code. // { int value; if ( '0' <= c && c <= '9' ) { value = c - '0'; } else if ( c == 'X' || c == 'x' ) { value = 10; } else { value = -1; } return value; } //****************************************************************************80 int iset2_compare ( int x1, int y1, int x2, int y2 ) //****************************************************************************80 // // Purpose: // // ISET2_COMPARE compares two I2 sets. // // Discussion: // // The I2 set (X1,Y1) < (X2,Y2) if // // min ( X1, Y1 ) < min ( X2, Y2 ) or // min ( X1, Y1 ) = min ( X2, Y2 ) and max ( X1, Y1 ) < max ( X2, Y2 ) // // The I2 set (X1,Y1) = (X2,Y2) if // // min ( X1, Y1 ) = min ( X2, Y2 ) and max ( X1, Y1 ) = max ( X2, Y2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int X1, Y1, the first I2 set. // // Input, int X2, Y2, the second I2 set. // // Output, int ISET2_COMPARE: // -1, (X1,Y1) < (X2,Y2). // 0, (X1,Y1) = (X2,Y2). // +1, (X1,Y1) > (X2,Y2). // { int a1; int a2; int b1; int b2; int value; a1 = i4_min ( x1, y1 ); b1 = i4_max ( x1, y1 ); a2 = i4_min ( x2, y2 ); b2 = i4_max ( x2, y2 ); if ( a1 < a2 ) { value = -1; } else if ( a2 < a1 ) { value = +1; } else if ( b1 < b2 ) { value = -1; } else if ( b2 < b1 ) { value = +1; } else { value = 0; } return value; } //****************************************************************************80 void l4mat_print ( int m, int n, bool a[], string title ) //****************************************************************************80 // // Purpose: // // L4MAT_PRINT prints an L4MAT. // // Discussion: // // An L4MAT is an array of L4 values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 November 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, bool A[M*N], the matrix. // // Input, string TITLE, a title. // { l4mat_print_some ( m, n, a, 0, 0, m - 1, n - 1, title ); return; } //****************************************************************************80 void l4mat_print_some ( int m, int n, bool a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // L4MAT_PRINT_SOME prints some of an L4MAT. // // Discussion: // // An L4MAT is an array of L4 values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 November 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, bool A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { int i; int i2hi; int i2lo; int inc; int incx = 35; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; for ( j2lo = jlo; j2lo <= i4_min ( jhi, n - 1 ); j2lo = j2lo + incx ) { j2hi = j2lo + incx - 1; if ( n - 1 < j2hi ) { j2hi = n - 1; } if ( jhi < j2hi ) { j2hi = jhi; } inc = j2hi + 1 - j2lo; cout << "\n"; if ( 100 <= j2hi ) { cout << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(1) << j / 100; } cout << "\n"; } if ( 10 <= j2hi ) { cout << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(1) << ( j / 10 ) % 10; } cout << "\n"; } cout << " Col "; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(1) << j % 10; } cout << "\n"; cout << " Row\n"; cout << "\n"; i2lo = 0; if ( i2lo < ilo ) { i2lo = ilo; } i2hi = m - 1; if ( ihi < i2hi ) { i2hi = ihi; } for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(5) << i << ":"; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(1) << a[i+j*m]; } cout << "\n"; } } return; } //****************************************************************************80 void l4mat_transpose_print ( int m, int n, bool a[], string title ) //****************************************************************************80 // // Purpose: // // L4MAT_TRANSPOSE_PRINT prints an L4MAT, transposed. // // Discussion: // // An L4MAT is an array of L4 values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 November 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, bool A[M*N], an M by N matrix to be printed. // // Input, string TITLE, a title. // { l4mat_transpose_print_some ( m, n, a, 0, 0, m - 1, n - 1, title ); return; } //****************************************************************************80 void l4mat_transpose_print_some ( int m, int n, bool a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // L4MAT_TRANSPOSE_PRINT_SOME prints some of an L4MAT, transposed. // // Discussion: // // An L4MAT is an array of L4 values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 November 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, bool A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { int i; int i2hi; int i2lo; int inc; int incx = 35; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; for ( i2lo = i4_max ( ilo, 0 ); i2lo <= i4_min ( ihi, m - 1 ); i2lo = i2lo + incx ) { i2hi = i2lo + incx - 1; i2hi = i4_min ( i2hi, m - 1 ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; if ( 100 <= i2hi ) { cout << " "; for ( i = i2lo; i <= i2hi; i++ ) { cout << " " << setw(1) << i / 100; } cout << "\n"; } if ( 10 <= i2hi ) { cout << " "; for ( i = i2lo; i <= i2hi; i++ ) { cout << " " << setw(1) << ( i / 10 ) % 10; } cout << "\n"; } cout << " Row "; for ( i = i2lo; i <= i2hi; i++ ) { cout << " " << setw(1) << i % 10; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 0 ); j2hi = i4_min ( jhi, n - 1 ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << ":"; for ( i = i2lo; i <= i2hi; i++ ) { cout << " " << setw(1) << a[i+j*m]; } cout << "\n"; } } return; } //****************************************************************************80 void l4vec_print ( int n, bool a[], string title ) //****************************************************************************80 // // Purpose: // // L4VEC_PRINT prints an L4VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, bool A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(1) << a[i] << "\n"; } return; } //****************************************************************************80 int lcm_12n ( int n ) //****************************************************************************80 // // Purpose: // // LCM_12N computes the least common multiple of the integers 1 through N. // // Example: // // N LCM_12N // // 1 1 // 2 2 // 3 3 // 4 12 // 5 60 // 6 60 // 7 420 // 8 840 // 9 2520 // 10 2520 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the value of N. // // Output, int LCM_12N, the least common multiple of the integers 1 to N. // { int i; int imult; int j; int value; value = 1; for ( i = 2; i <= n; i++ ) { imult = i; for ( j = 1; j < i; j++ ) { if ( ( imult % ( i - j ) ) == 0 ) { imult = imult / ( i - j ); } } value = value * imult; } return value; } //****************************************************************************80 int luhn_check ( int digit_num, int digit[] ) //****************************************************************************80 // // Purpose: // // LUHN_CHECK computes the Luhn checksum for a string of digits. // // Discussion: // // To compute the Luhn checksum, begin at the end of the string, and double // every other digit. If a doubled digit is greater than 9, subtract 9. // Then sum the digits to get CHECK_SUM. // // If mod ( CHECK_SUM, 10 ) = 0 the digit sequence is accepted. // // The Luhn check sum will detect any single digit error, as well as // most errors involving a transposition of adjacent digits; it cannot // detect the transposition of the adjacent digits 0 and 9, however. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int DIGIT_NUM, the number of digits. // // Input, int DIGIT[DIGIT_NUM], the string of digits. // Normally, these are true digits, that is, values between 0 and 9. // // Output, int LUHN_CHECK, the check sum, which // should be divisible by 10 if the digit sequence is correct. // { int check_sum; int *digit_copy; int i; digit_copy = new int[digit_num]; for ( i = 0; i < digit_num; i++ ) { digit_copy[i] = digit[i]; } for ( i = digit_num - 2; 0 <= i; i = i - 2 ) { digit_copy[i] = 2 * digit_copy[i]; } for ( i = 0; i < digit_num; i++ ) { if ( 9 < digit_copy[i] ) { digit_copy[i] = digit_copy[i] - 9; } } check_sum = i4vec_sum ( digit_num, digit_copy ); delete [] digit_copy; return check_sum; } //****************************************************************************80 int pause_input ( ) //****************************************************************************80 // // Purpose: // // PAUSE_INPUT waits until an input character is entered. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 1999 // // Author: // // John Burkardt // // Parameters: // // Output, int PAUSE_INPUT, the character read from STDIN. // { int value; cout << "Press RETURN to continue.\n"; value = getc ( stdin ); return value; } //****************************************************************************80 void pause_seconds ( int seconds ) //****************************************************************************80 // // Purpose: // // PAUSE_SECONDS waits a specified number of seconds. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int SECONDS, the number of seconds to pause. // { time_t t1; time_t t2; t1 = time ( NULL ); t2 = t1; while ( t2 - t1 < seconds ) { t2 = time ( NULL ); } return; } //****************************************************************************80 bool perm_check ( int n, int p[], int base ) //****************************************************************************80 // // Purpose: // // PERM_CHECK checks that a vector represents a permutation. // // Discussion: // // The routine verifies that each of the integers from BASE to // to BASE+N-1 occurs among the N entries of the permutation. // // Set the input quantity BASE to 0, if P is a 0-based permutation, // or to 1 if P is a 1-based permutation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries. // // Input, int P[N], the array to check. // // Input, int BASE, the index base. // // Output, bool PERM_CHECK, is TRUE if the permutation is OK. // { bool found; int i; int seek; for ( seek = base; seek < base + n; seek++ ) { found = false; for ( i = 0; i < n; i++ ) { if ( p[i] == seek ) { found = true; break; } } if ( !found ) { return false; } } return true; } //****************************************************************************80 void perm_cycle ( int n, int p[], int *isgn, int *ncycle, int iopt ) //****************************************************************************80 // // Purpose: // // PERM_CYCLE analyzes a permutation. // // Discussion: // // The routine will count cycles, find the sign of a permutation, // and tag a permutation. // // Example: // // Input: // // N = 9 // IOPT = 1 // P = 2, 3, 9, 6, 7, 8, 5, 4, 1 // // Output: // // NCYCLE = 3 // ISGN = +1 // P = -2, 3, 9, -6, -7, 8, 5, 4, 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 May 2003 // // Author: // // FORTRAN77 original version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt. // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the number of objects being permuted. // // Input/output, int P[N]. On input, P describes a // permutation, in the sense that entry I is to be moved to P[I]. // If IOPT = 0, then P will not be changed by this routine. // If IOPT = 1, then on output, P will be "tagged". That is, // one element of every cycle in P will be negated. In this way, // a user can traverse a cycle by starting at any entry I1 of P // which is negative, moving to I2 = ABS(P[I1]), then to // P[I2], and so on, until returning to I1. // // Output, int *ISGN, the "sign" of the permutation, which is // +1 if the permutation is even, -1 if odd. Every permutation // may be produced by a certain number of pairwise switches. // If the number of switches is even, the permutation itself is // called even. // // Output, int *NCYCLE, the number of cycles in the permutation. // // Input, int IOPT, requests tagging. // 0, the permutation will not be tagged. // 1, the permutation will be tagged. // { int base = 1; int i; int i1; int i2; int is; if ( !perm_check ( n, p, base ) ) { cerr << "\n"; cerr << "PERM_CYCLE - Fatal error!\n"; cerr << " PERM_CHECK rejects this permutation.\n"; exit ( 1 ); } is = 1; *ncycle = n; for ( i = 1; i <= n; i++ ) { i1 = p[i-1]; while ( i < i1 ) { *ncycle = *ncycle - 1; i2 = p[i1-1]; p[i1-1] = -i2; i1 = i2; } if ( iopt != 0 ) { is = - i4_sign ( p[i-1] ); } p[i-1] = abs ( p[i-1] ) * i4_sign ( is ); } *isgn = 1 - 2 * ( ( n - *ncycle ) % 2 ); return; } //****************************************************************************80 int *perm_free ( int npart, int ipart[], int nfree ) //****************************************************************************80 // // Purpose: // // PERM_FREE reports the number of unused items in a partial permutation. // // Discussion: // // It is assumed that the N objects being permuted are the integers // from 1 to N, and that IPART contains a "partial" permutation, that // is, the NPART entries of IPART represent the beginning of a // permutation of all N items. // // The routine returns in IFREE the items that have not been used yet. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NPART, the number of entries in IPART. NPART may be 0. // // Input, int IPART(NPART), the partial permutation, which should // contain, at most once, some of the integers between 1 and // NPART+NFREE. // // Input, int NFREE, the number of integers that have not been // used in IPART. This is simply N - NPART. NFREE may be zero. // // Output, int PERM_FREE[NFREE], the integers between 1 and NPART+NFREE // that were not used in IPART. // { int i; int *ifree; int j; int k; int match; int n; n = npart + nfree; if ( npart < 0 ) { cerr << "\n"; cerr << "PERM_FREE - Fatal error!\n"; cerr << " NPART < 0.\n"; cerr << " NPART = " << npart << "\n"; exit ( 1 ); } else if ( npart == 0 ) { ifree = i4vec_indicator_new ( n ); return ifree; } else if ( nfree < 0 ) { cerr << "\n"; cerr << "PERM_FREE - Fatal error!\n"; cerr << " NFREE < 0.\n"; cerr << " NFREE = << nfree << \n"; exit ( 1 ); } else if ( nfree == 0 ) { return NULL; } else { ifree = new int[nfree]; k = 0; for ( i = 1; i <= n; i++ ) { match = 0; for ( j = 1; j <= npart; j++ ) { if ( ipart[j-1] == i ) { match = j; break; } } if ( match == 0 ) { k = k + 1; if ( nfree < k ) { cerr << "\n"; cerr << "PERM_FREE - Fatal error!\n"; cerr << " The partial permutation is illegal.\n"; cerr << " It should contain, at most once, some of\n"; cerr << " the integers between 1 and N = " << n << "\n"; cerr << " The number of integers that have not\n"; cerr << " been used is at least K = " << k << "\n"; cerr << " This should be exactly NFREE = " << nfree << "\n"; i4vec_print ( npart, ipart, " The partial permutation:" ); exit ( 1 ); } ifree[k-1] = i; } } } return ifree; } //****************************************************************************80 void perm_inverse ( int n, int p[] ) //****************************************************************************80 // // Purpose: // // PERM_INVERSE inverts a permutation "in place". // // Discussion: // // This algorithm assumes that the entries in the permutation vector are // strictly positive. In particular, the value 0 must not occur. // // When necessary, this function shifts the data temporarily so that // this requirement is satisfied. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of objects being permuted. // // Input/output, int P[N], the permutation, in standard index form. // On output, P describes the inverse permutation // { int base; int i; int i0; int i1; int i2; int is; int p_min; if ( n <= 0 ) { cerr << "\n"; cerr << "PERM_INVERSE - Fatal error!\n"; cerr << " Input value of N = " << n << "\n"; exit ( 1 ); } // // Find the least value, and shift data so it begins at 1. // p_min = i4vec_min ( n, p ); base = 1; for ( i = 0; i < n; i++ ) { p[i] = p[i] - p_min + base; } // // Now we can safely check the permutation. // if ( !perm_check ( n, p, base ) ) { cerr << "\n"; cerr << "PERM_INVERSE - Fatal error!\n"; cerr << " PERM_CHECK rejects this permutation.\n"; exit ( 1 ); } // // Now we can invert the permutation. // is = 1; for ( i = 1; i <= n; i++ ) { i1 = p[i-1]; while ( i < i1 ) { i2 = p[i1-1]; p[i1-1] = -i2; i1 = i2; } is = - i4_sign ( p[i-1] ); p[i-1] = i4_sign ( is ) * abs ( p[i-1] ); } for ( i = 1; i <= n; i++ ) { i1 = - p[i-1]; if ( 0 <= i1 ) { i0 = i; for ( ; ; ) { i2 = p[i1-1]; p[i1-1] = i0; if ( i2 < 0 ) { break; } i0 = i1; i1 = i2; } } } // // Now we can restore the permutation. // for ( i = 0; i < n; i++ ) { p[i] = p[i] + p_min - base; } return; } //****************************************************************************80 void perm_print ( int n, int p[], string title ) //****************************************************************************80 // // Purpose: // // PERM_PRINT prints a permutation. // // Example: // // Input: // // P = 7 2 4 1 5 3 6 // // Printed output: // // "This is the permutation:" // // 1 2 3 4 5 6 7 // 7 2 4 1 5 3 6 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 April 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of objects permuted. // // Input, int P[N], the permutation, in standard index form. // // Input, string TITLE, a title. // { int i; int ihi; int ilo; int inc = 20; cout << "\n"; cout << title << "\n"; for ( ilo = 0; ilo < n; ilo = ilo + inc ) { ihi = ilo + inc; if ( n < ihi ) { ihi = n; } cout << "\n"; for ( i = ilo; i < ihi; i++ ) { cout << setw(4) << i+1; } cout << "\n"; for ( i = ilo; i < ihi; i++ ) { cout << setw(4) << p[i]; } cout << "\n"; } return; } //****************************************************************************80 int *perm_uniform_new ( int n, int base, int *seed ) //****************************************************************************80 // // Purpose: // // PERM_UNIFORM_NEW selects a random permutation of N objects. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 October 2008 // // Author: // // John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the number of objects to be permuted. // // Input, int BASE, is 0 for a 0-based permutation and 1 for // a 1-based permutation. // // Input/output, int *SEED, a seed for the random number generator. // // Output, int PERM_UNIFORM_NEW[N], a permutation of // (BASE, BASE+1, ..., BASE+N-1). // { int i; int j; int k; int *p; p = new int[n]; for ( i = 0; i < n; i++ ) { p[i] = i + base; } for ( i = 0; i < n; i++ ) { j = i4_uniform ( i, n - 1, seed ); k = p[i]; p[i] = p[j]; p[j] = k; } return p; } //****************************************************************************80 double pounds_to_kilograms ( double lb ) //****************************************************************************80 // // Purpose: // // POUNDS_TO_KILOGRAMS converts a measurement in pounds to kilograms. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double LB, the weight in pounds. // // Output, double POUNDS_TO_KILOGRAMS, the corresponding weight in kilograms. // { double value; value = 0.4535924 * lb; return value; } //****************************************************************************80 int prime ( int n ) //****************************************************************************80 // // Purpose: // // PRIME returns any of the first PRIME_MAX prime numbers. // // Discussion: // // PRIME_MAX is 1600, and the largest prime stored is 13499. // // Thanks to Bart Vandewoestyne for pointing out a typo, 18 February 2005. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 February 2005 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, pages 95-98. // // Parameters: // // Input, int N, the index of the desired prime number. // In general, is should be true that 0 <= N <= PRIME_MAX. // N = -1 returns PRIME_MAX, the index of the largest prime available. // N = 0 is legal, returning PRIME = 1. // // Output, int PRIME, the N-th prime. If N is out of range, PRIME // is returned as -1. // { # define PRIME_MAX 1600 int npvec[PRIME_MAX] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973,10007, 10009,10037,10039,10061,10067,10069,10079,10091,10093,10099, 10103,10111,10133,10139,10141,10151,10159,10163,10169,10177, 10181,10193,10211,10223,10243,10247,10253,10259,10267,10271, 10273,10289,10301,10303,10313,10321,10331,10333,10337,10343, 10357,10369,10391,10399,10427,10429,10433,10453,10457,10459, 10463,10477,10487,10499,10501,10513,10529,10531,10559,10567, 10589,10597,10601,10607,10613,10627,10631,10639,10651,10657, 10663,10667,10687,10691,10709,10711,10723,10729,10733,10739, 10753,10771,10781,10789,10799,10831,10837,10847,10853,10859, 10861,10867,10883,10889,10891,10903,10909,10937,10939,10949, 10957,10973,10979,10987,10993,11003,11027,11047,11057,11059, 11069,11071,11083,11087,11093,11113,11117,11119,11131,11149, 11159,11161,11171,11173,11177,11197,11213,11239,11243,11251, 11257,11261,11273,11279,11287,11299,11311,11317,11321,11329, 11351,11353,11369,11383,11393,11399,11411,11423,11437,11443, 11447,11467,11471,11483,11489,11491,11497,11503,11519,11527, 11549,11551,11579,11587,11593,11597,11617,11621,11633,11657, 11677,11681,11689,11699,11701,11717,11719,11731,11743,11777, 11779,11783,11789,11801,11807,11813,11821,11827,11831,11833, 11839,11863,11867,11887,11897,11903,11909,11923,11927,11933, 11939,11941,11953,11959,11969,11971,11981,11987,12007,12011, 12037,12041,12043,12049,12071,12073,12097,12101,12107,12109, 12113,12119,12143,12149,12157,12161,12163,12197,12203,12211, 12227,12239,12241,12251,12253,12263,12269,12277,12281,12289, 12301,12323,12329,12343,12347,12373,12377,12379,12391,12401, 12409,12413,12421,12433,12437,12451,12457,12473,12479,12487, 12491,12497,12503,12511,12517,12527,12539,12541,12547,12553, 12569,12577,12583,12589,12601,12611,12613,12619,12637,12641, 12647,12653,12659,12671,12689,12697,12703,12713,12721,12739, 12743,12757,12763,12781,12791,12799,12809,12821,12823,12829, 12841,12853,12889,12893,12899,12907,12911,12917,12919,12923, 12941,12953,12959,12967,12973,12979,12983,13001,13003,13007, 13009,13033,13037,13043,13049,13063,13093,13099,13103,13109, 13121,13127,13147,13151,13159,13163,13171,13177,13183,13187, 13217,13219,13229,13241,13249,13259,13267,13291,13297,13309, 13313,13327,13331,13337,13339,13367,13381,13397,13399,13411, 13417,13421,13441,13451,13457,13463,13469,13477,13487,13499 }; if ( n == -1 ) { return PRIME_MAX; } else if ( n == 0 ) { return 1; } else if ( n <= PRIME_MAX ) { return npvec[n-1]; } else { cerr << "\n"; cerr << "PRIME - Fatal error!\n"; cerr << " Unexpected input value of n = " << n << "\n"; exit ( 1 ); } return 0; # undef PRIME_MAX } //****************************************************************************80 int prime_ge ( int n ) //****************************************************************************80 // // Purpose: // // PRIME_GE returns the smallest prime greater than or equal to N. // // Example: // // N PRIME_GE // // -10 2 // 1 2 // 2 2 // 3 3 // 4 5 // 5 5 // 6 7 // 7 7 // 8 11 // 9 11 // 10 11 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 March 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number to be bounded. // // Output, int PRIME_GE, the smallest prime number that is greater // than or equal to N. However, if N is larger than the // largest prime stored, then PRIME_GE is returned as -1. // { int i_hi; int i_lo; int i_mid; int p; int p_hi; int p_lo; int p_mid; if ( n <= 2 ) { p = 2; } else { i_lo = 1; p_lo = prime(i_lo); i_hi = prime(-1); p_hi = prime(i_hi); if ( p_hi < n ) { p = - p_hi; } else { for ( ; ; ) { if ( i_lo + 1 == i_hi ) { p = p_hi; break; } i_mid = ( i_lo + i_hi ) / 2; p_mid = prime(i_mid); if ( p_mid < n ) { i_lo = i_mid; p_lo = p_mid; } else if ( n <= p_mid ) { i_hi = i_mid; p_hi = p_mid; } } } } return p; } //****************************************************************************80 int r4_nint ( float x ) //****************************************************************************80 // // Purpose: // // R4_NINT returns the nearest integer to an R4. // // Example: // // X R4_NINT // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the value. // // Output, int R4_NINT, the nearest integer to X. // { int value; if ( x < 0.0 ) { value = - ( int ) ( - x + 0.5 ); } else { value = ( int ) ( x + 0.5 ); } return value; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 double r8_log_10 ( double x ) //****************************************************************************80 // // Purpose: // // R8_LOG_10 returns the logarithm base 10 of the absolute value of an R8. // // Discussion: // // value = Log10 ( |X| ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number whose base 2 logarithm is desired. // X should not be 0. // // Output, double R8_LOG_10, the logarithm base 10 of the absolute // value of X. It should be true that |X| = 10**R_LOG_10. // { double value; if ( x == 0.0 ) { value = - r8_huge ( ); } else { value = log10 ( fabs ( x ) ); } return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_modp ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MODP returns the nonnegative remainder of R8 division. // // Discussion: // // The MOD function computes a result with the same sign as the // quantity being divided. Thus, suppose you had an angle A, // and you wanted to ensure that it was between 0 and 360. // Then mod(A,360.0) would do, if A was positive, but if A // was negative, your result would be between -360 and 0. // // On the other hand, R8_MODP(A,360.0) is between 0 and 360, always. // // If // REM = R8_MODP ( X, Y ) // RMULT = ( X - REM ) / Y // then // X = Y * RMULT + REM // where REM is always nonnegative. // // Example: // // I J MOD R8_MODP R8_MODP Factorization // // 107 50 7 7 107 = 2 * 50 + 7 // 107 -50 7 7 107 = -2 * -50 + 7 // -107 50 -7 43 -107 = -3 * 50 + 43 // -107 -50 -7 43 -107 = 3 * -50 + 43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number to be divided. // // Input, double Y, the number that divides X. // // Output, double R8_MODP, the nonnegative remainder when X is divided by Y. // { double value; if ( y == 0.0 ) { cerr << "\n"; cerr << "R8_MODP - Fatal error!\n"; cerr << " R8_MODP ( X, Y ) called with Y = " << y << "\n"; exit ( 1 ); } value = x - ( ( double ) ( ( int ) ( x / y ) ) ) * y; if ( value < 0.0 ) { value = value + fabs ( y ); } return value; } //****************************************************************************80 double r8_uniform ( double b, double c, int *seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM returns a scaled pseudorandom R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double B, C, the minimum and maximum values. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R8_UNIFORM, the randomly chosen value. // { double t; t = r8_uniform_01 ( seed ); t = ( 1.0 - t ) * b + t * c; return t; } //****************************************************************************80 double r8_uniform_01 ( int *seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int *SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { int i4_huge = 2147483647; int k; double r; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } // // Although SEED can be represented exactly as a 32 bit integer, // it generally cannot be represented exactly as a 32 bit real number. // r = ( double ) ( *seed ) * 4.656612875E-10; return r; } //****************************************************************************80 void r8mat_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT prints an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*M] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT_SOME prints some of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << ": "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, string TITLE, a title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << ":"; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 int r8poly_degree ( int na, double a[] ) //****************************************************************************80 // // Purpose: // // R8POLY_DEGREE returns the degree of a polynomial. // // Discussion: // // The degree of a polynomial is the index of the highest power // of X with a nonzero coefficient. // // The degree of a constant polynomial is 0. The degree of the // zero polynomial is debatable, but this routine returns the // degree as 0. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NA, the dimension of A. // // Input, double A[NA+1], the coefficients of the polynomials. // // Output, int R8POLY_DEGREE, the degree of A. // { int degree; degree = na; while ( 0 < degree ) { if ( a[degree] != 0.0 ) { return degree; } degree = degree - 1; } return degree; } //****************************************************************************80 void r8poly_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8POLY_PRINT prints out a polynomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of A. // // Input, double A[N+1], the polynomial coefficients. // A(0) is the constant term and // A(N) is the coefficient of X**N. // // Input, string TITLE, a title. // { int i; double mag; int n2; char plus_minus; cout << "\n"; cout << title << "\n"; cout << "\n"; n2 = r8poly_degree ( n, a ); if ( n2 <= 0 ) { cout << " p(x) = 0\n"; return; } if ( a[n2] < 0.0 ) { plus_minus = '-'; } else { plus_minus = ' '; } mag = fabs ( a[n2] ); if ( 2 <= n2 ) { cout << " p(x) = " << plus_minus << setw(14) << mag << " * x ^ " << n2 << "\n"; } else if ( n2 == 1 ) { cout << " p(x) = " << plus_minus << setw(14) << mag << " * x\n"; } else if ( n2 == 0 ) { cout << " p(x) = " << plus_minus << setw(14) << mag << "\n"; } for ( i = n2-1; 0 <= i; i-- ) { if ( a[i] < 0.0 ) { plus_minus = '-'; } else { plus_minus = '+'; } mag = fabs ( a[i] ); if ( mag != 0.0 ) { if ( 2 <= i ) { cout << " " << plus_minus << setw(14) << mag << " * x ^ " << i << "\n"; } else if ( i == 1 ) { cout << " " << plus_minus << setw(14) << mag << " * x\n"; } else if ( i == 0 ) { cout << " " << plus_minus << setw(14) << mag << "\n"; } } } return; } //****************************************************************************80 double *r8vec_indicator_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR_NEW sets an R8VEC to the indicator vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR_NEW[N], the indicator array. // { double *a; int i; a = new double[n]; for ( i = 0; i <= n-1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 double r8vec_max ( int n, double r8vec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MAX returns the value of the maximum element in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double R8VEC[N], a pointer to the first entry of the array. // // Output, double R8VEC_MAX, the value of the maximum element. This // is set to 0.0 if N <= 0. // { int i; double value; value = - r8_huge ( ); if ( n <= 0 ) { return value; } for ( i = 0; i < n; i++ ) { if ( value < r8vec[i] ) { value = r8vec[i]; } } return value; } //****************************************************************************80 double r8vec_mean ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MEAN returns the mean of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 December 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double X[N], the vector whose mean is desired. // // Output, double R8VEC_MEAN, the mean, or average, of the vector entries. // { int i; double mean; mean = 0.0; for ( i = 0; i < n; i++ ) { mean = mean + x[i]; } mean = mean / ( double ) n; return mean; } ///****************************************************************************80 double r8vec_min ( int n, double r8vec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MIN returns the value of the minimum element in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double R8VEC[N], the array to be checked. // // Output, double R8VEC_MIN, the value of the minimum element. // { int i; double value; value = r8_huge ( ); if ( n <= 0 ) { return value; } for ( i = 0; i < n; i++ ) { if ( r8vec[i] < value ) { value = r8vec[i]; } } return value; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double r8vec_variance ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_VARIANCE returns the variance of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double X[N], the vector whose variance is desired. // // Output, double R8VEC_VARIANCE, the variance of the vector entries. // { int i; double mean; double variance; mean = r8vec_mean ( n, x ); variance = 0.0; for ( i = 0; i < n; i++ ) { variance = variance + ( x[i] - mean ) * ( x[i] - mean ); } if ( 1 < n ) { variance = variance / ( double ) ( n - 1 ); } else { variance = 0.0; } return variance; } //****************************************************************************80 double *r8vec_zero_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZERO_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZERO_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 double radians_to_degrees ( double angle ) //****************************************************************************80 // // Purpose: // // RADIANS_TO_DEGREES converts an angle from radians to degrees. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, double ANGLE, an angle in radians. // // Output, double RADIANS_TO_DEGREES, the equivalent angle in degrees. // { double pi = 3.141592653589793; double value; value = ( angle / pi ) * 180.0; return value; } //****************************************************************************80 unsigned long rand_initialize ( unsigned long seed ) //****************************************************************************80 // // Purpose: // // RAND_INITIALIZE initializes the random number generator. // // Discussion: // // If you don't initialize RAND, the random number generator, // it will behave as though it were seeded with value 1. // This routine will either take a user-specified seed, or // (if the user passes a 0) make up a "random" one. In either // case, the seed is passed to SRAND (the appropriate routine // to call when setting the seed for RAND). The seed is also // returned to the user as the value of the function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, unsigned long SEED, is either 0, which means that the user // wants this routine to come up with a seed, or nonzero, in which // case the user has supplied the seed. // // Output, unsigned long RAND_INITIALIZE, is the value of the seed // passed to SRAND, which is either the user's input value, or if // that was zero, the value selected by this routine. // { if ( seed != 0 ) { cout << "\n"; cout << "RAND_INITIALIZE:\n"; cout << " Initialize RAND with user SEED = " << seed << "\n"; } else { seed = get_seed ( ); cout << "\n"; cout << "RAND_INITIALIZE:\n"; cout << " Initialize RAND with arbitrary SEED = " << seed << "\n"; } // // Now set the seed. // srand ( seed ); return seed; } //****************************************************************************80 unsigned long random_initialize ( unsigned long seed ) //****************************************************************************80 // // Purpose: // // RANDOM_INITIALIZE initializes the RANDOM random number generator. // // Discussion: // // If you don't initialize RANDOM, the random number generator, // it will behave as though it were seeded with value 1. // This routine will either take a user-specified seed, or // (if the user passes a 0) make up a "random" one. In either // case, the seed is passed to SRANDOM (the appropriate routine // to call when setting the seed for RANDOM). The seed is also // returned to the user as the value of the function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, unsigned long SEED, is either 0, which means that the user // wants this routine to come up with a seed, or nonzero, in which // case the user has supplied the seed. // // Output, unsigned long RANDOM_INITIALIZE, is the value of the seed // passed to SRANDOM, which is either the user's input value, or if // that was zero, the value selected by this routine. // { # define DEBUG 0 if ( seed != 0 ) { if ( DEBUG ) { cout << "\n"; cout << "RANDOM_INITIALIZE:\n"; cout << " Initialize RANDOM with user SEED = " << seed << "\n"; } } else { seed = get_seed ( ); if ( DEBUG ) { cout << "\n"; cout << "RANDOM_INITIALIZE:\n"; cout << " Initialize RANDOM with arbitrary SEED = " << seed << "\n"; } } // // Now set the seed. // srandom ( seed ); return seed; # undef DEBUG } //****************************************************************************80 void rat_factor ( int m, int n, int factor_max, int *factor_num, int factor[], int power[], int *mleft, int *nleft ) //****************************************************************************80 // // Purpose: // // RAT_FACTOR factors a rational value into a product of prime factors. // // Discussion: // // ( M / N ) = ( MLEFT / NLEFT ) * Product ( I = 1 to FACTOR_NUM ) // FACTOR(I)**POWER(I). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the top and bottom of a rational value. // The ratio of M and N must be positive. // // Input, int FACTOR_MAX, the maximum number of factors for // which storage has been allocated. // // Output, int *FACTOR_NUM, the number of prime factors of M/N. // // Output, int FACTOR[FACTOR_MAX], the prime factors of M/N. // // Output, int POWER[FACTOR_MAX]. POWER(I) is the power of // the FACTOR(I) in the representation of M/N. // // Output, int *MLEFT, *NLEFT, the top and bottom of the factor of // M / N that remains. If ABS ( MLEFT / NLEFT ) is not 1, then // the rational value was not completely factored. // { int i; int p; int prime_max; *factor_num = 0; *mleft = m; *nleft = n; // // NLEFT should be nonnegative. // if ( *nleft < 0 ) { *mleft = -(*mleft); *nleft = -(*nleft); } if ( m == 0 || n == 0 ) { return; } if ( m == n ) { *factor_num = 1; factor[0] = 1; power[0] = 1; return; } // // Find out how many primes we stored. // prime_max = prime ( -1 ); for ( i = 1; i <= prime_max; i++ ) { p = prime ( i ); if ( ( *nleft % p ) == 0 || ( abs ( *mleft ) % p ) == 0 ) { if ( *factor_num < factor_max ) { *factor_num = *factor_num + 1; factor[*factor_num-1] = p; power[*factor_num-1] = 0; // // Divide MLEFT by PRIME(I) as often as you can. // if ( ( abs ( *mleft ) % p ) == 0 ) { for ( ; ; ) { power[*factor_num-1] = power[*factor_num-1] + 1; *mleft = *mleft / p; if ( ( abs ( *mleft ) % p ) != 0 ) { break; } } } // // Divide NLEFT by PRIME(I) as often as you can. // if ( ( *nleft % p ) == 0 ) { for ( ; ; ) { power[*factor_num-1] = power[*factor_num-1] - 1; *nleft = *nleft / p; if ( ( *nleft % p ) != 0 ) { break; } } } if ( power[*factor_num-1] == 0 ) { *factor_num = *factor_num - 1; } } } } return; } //****************************************************************************80 double rickey ( int ab, int bb, int er, double f, int h, int hb, int hp, int r, int so, int tb ) //****************************************************************************80 // // Purpose: // // RICKEY evaluates Branch Rickey's baseball index. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 October 2005 // // Author: // // John Burkardt // // Reference: // // Alan Schwarz, // Looking Beyond the Batting Average, // The New York Times, // Sunday, 1 August 2004. // // Branch Rickey, // Goodby to Some Old Baseball Ideas, // Life Magazine, // 2 August 1954. // // Parameters: // // Input, int AB, number of at-bats. // // Input, int BB, base on balls. // // Input, int ER, earned runs. // // Input, double F, the fielding rating. // // Input, int H, number of hits. // // Input, int HB, hit batsmen. // // Input, int HP, hit by pitcher. // // Input, int R, runs. // // Input, int SO, strike outs. // // Input, int TB, total bases. // // Output, double RICKEY, the Branch Rickey index, an estimate for the // expected winning percentage of a team with the given statistics. // (0.5 has already been subtracted from this value.) // { double g;; double hitting; double pitching; hitting = ( double ) ( h + bb + hp ) / ( double ) ( ab + bb + hp ) + ( double ) ( 3 * ( tb - h ) ) / ( double ) ( 4 * ab ) + ( double ) ( r ) / ( double ) ( h + bb + hp ); pitching = ( double ) ( h ) / ( double ) ( ab ) + ( double ) ( bb + hb ) / ( double ) ( ab + bb + hb ) + ( double ) ( er ) / ( double ) ( h + bb + hb ) - ( double ) ( so ) / ( double ) ( 8 * ( ab + bb + hb ) ); g = hitting - pitching - f; return g; } //****************************************************************************80 int *roots_to_i4poly ( int n, int x[] ) //****************************************************************************80 // // Purpose: // // ROOTS_TO_I4POLY converts polynomial roots to polynomial coefficients. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of roots specified. // // Input, int X[N], the roots. // // Output, int ROOTS_TO_I4POLY[N+1], the coefficients of the polynomial. // { int *c; int i; int j; c = i4vec_zero_new ( n + 1 ); // // Initialize C to (0, 0, ..., 0, 1). // Essentially, we are setting up a divided difference table. // c[n] = 1; // // Convert to standard polynomial form by shifting the abscissas // of the divided difference table to 0. // for ( j = 1; j <= n; j++ ) { for ( i = 1; i <= n+1-j; i++ ) { c[n-i] = c[n-i] - x[n+1-i-j] * c[n-i+1]; } } return c; } //****************************************************************************80 double *roots_to_r8poly ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // ROOTS_TO_R8POLY converts polynomial roots to polynomial coefficients. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 December 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of roots specified. // // Input, double X[N], the roots. // // Output, double ROOTS_TO_R8POLY[N+1], the coefficients of the polynomial. // { double *c; int i; int j; c = r8vec_zero_new ( n + 1 ); // // Initialize C to (0, 0, ..., 0, 1). // Essentially, we are setting up a divided difference table. // c[n] = 1.0; // // Convert to standard polynomial form by shifting the abscissas // of the divided difference table to 0. // for ( j = 1; j <= n; j++ ) { for ( i = 1; i <= n+1-j; i++ ) { c[n-i] = c[n-i] - x[n+1-i-j] * c[n-i+1]; } } return c; } //****************************************************************************80 bool s_eqi ( string s1, string s2 ) //****************************************************************************80 // // Purpose: // // S_EQI reports whether two strings are equal, ignoring case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S1, S2, two strings. // // Output, bool S_EQI, is true if the strings are equal. // { int i; int nchar; int s1_length; int s2_length; s1_length = s1.length ( ); s2_length = s2.length ( ); if ( s1_length < s2_length ) { nchar = s1_length; } else { nchar = s2_length; } // // The strings are not equal if they differ over their common length. // for ( i = 0; i < nchar; i++ ) { if ( ch_cap ( s1[i] ) != ch_cap ( s2[i] ) ) { return false; } } // // The strings are not equal if the longer one includes nonblanks // in the tail. // if ( nchar < s1_length ) { for ( i = nchar; i < s1_length; i++ ) { if ( s1[i] != ' ' ) { return false; } } } else if ( nchar < s2_length ) { for ( i = nchar; i < s2_length; i++ ) { if ( s2[i] != ' ' ) { return false; } } } return true; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( char *s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an integer value from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; while ( *s ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = charstar_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_i4vec ( char *s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { bool error; int i; int lchar; error = false; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s, &lchar, &error ); if ( error ) { cerr << "\n"; cerr << "S_TO_I4VEC - Fatal error!\n"; cerr << " S_TO_I4 returned error while reading item " << i << "\n"; exit ( 1 ); } s = s + lchar; } return error; } //****************************************************************************80 double s_to_r8 ( char *s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = charstar_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7// // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( char *s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2001 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { bool error; int i; int lchar; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s, &lchar, &error ); if ( error ) { return error; } s = s + lchar; } return error; } //****************************************************************************80 void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ) //****************************************************************************80 // // Purpose: // // SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. // // Discussion: // // The actual list is not passed to the routine. Hence it may // consist of integers, reals, numbers, names, etc. The user, // after each return from the routine, will be asked to compare or // interchange two items. // // The current version of this code mimics the FORTRAN version, // so the values of I and J, in particular, are FORTRAN indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2004 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the length of the input list. // // Input/output, int *INDX. // The user must set INDX to 0 before the first call. // On return, // if INDX is greater than 0, the user must interchange // items I and J and recall the routine. // If INDX is less than 0, the user is to compare items I // and J and return in ISGN a negative value if I is to // precede J, and a positive value otherwise. // If INDX is 0, the sorting is done. // // Output, int *I, *J. On return with INDX positive, // elements I and J of the user's list should be // interchanged. On return with INDX negative, elements I // and J are to be compared by the user. // // Input, int ISGN. On return with INDX negative, the // user should compare elements I and J of the list. If // item I is to precede item J, set ISGN negative, // otherwise set ISGN positive. // { static int i_save = 0; static int j_save = 0; static int k = 0; static int k1 = 0; static int n1 = 0; // // INDX = 0: This is the first call. // if ( *indx == 0 ) { i_save = 0; j_save = 0; k = n / 2; k1 = k; n1 = n; } // // INDX < 0: The user is returning the results of a comparison. // else if ( *indx < 0 ) { if ( *indx == -2 ) { if ( isgn < 0 ) { i_save = i_save + 1; } j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } if ( 0 < isgn ) { *indx = 2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; } *i = i_save; *j = j_save; return; } k = k - 1; k1 = k; } // // 0 < INDX: the user was asked to make an interchange. // else if ( *indx == 1 ) { k1 = k; } for ( ; ; ) { i_save = 2 * k1; if ( i_save == n1 ) { j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } else if ( i_save <= n1 ) { j_save = i_save + 1; *indx = -2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { break; } k = k - 1; k1 = k; } if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; *i = i_save; *j = j_save; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; *i = i_save; *j = j_save; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 void tuple_next2 ( int n, int xmin[], int xmax[], int x[], int *rank ) //****************************************************************************80 // // Purpose: // // TUPLE_NEXT2 computes the next element of an integer tuple space. // // Discussion: // // The elements X are N vectors. // // Each entry X(I) is constrained to lie between XMIN(I) and XMAX(I). // // The elements are produced one at a time. // // The first element is // (XMIN(1), XMIN(2), ..., XMIN(N)), // the second is (probably) // (XMIN(1), XMIN(2), ..., XMIN(N)+1), // and the last element is // (XMAX(1), XMAX(2), ..., XMAX(N)) // // Intermediate elements are produced in a lexicographic order, with // the first index more important than the last, and the ordering of // values at a fixed index implicitly defined by the sign of // XMAX(I) - XMIN(I). // // Example: // // N = 2, // XMIN = (/ 1, 10 /) // XMAX = (/ 3, 8 /) // // RANK X // ---- ----- // 1 1 10 // 2 1 9 // 3 1 8 // 4 2 10 // 5 2 9 // 6 2 8 // 7 3 10 // 8 3 9 // 9 3 8 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 April 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components. // // Input, int XMIN[N], XMAX[N], the "minimum" and "maximum" entry values. // These values are minimum and maximum only in the sense of the // lexicographic ordering. In fact, XMIN(I) may be less than, equal to, // or greater than XMAX(I). // // Input/output, int X[N], on input the previous tuple. // On output, the next tuple. // // Input/output, int *RANK, the rank of the item. On first call, // set RANK to 0 to start up the sequence. On return, if RANK is zero, // there are no more items in the sequence. // { int i; int test; if ( *rank < 0 ) { cerr << "\n"; cerr << "TUPLE_NEXT2 - Fatal error!\n"; cerr << " Illegal value of RANK = " << *rank << "\n"; exit ( 1 ); } test = 1; for ( i = 0; i < n; i++ ) { test = test * ( 1 + abs ( xmax[i] - xmin[i] ) ); } if ( test < *rank ) { cerr << "\n"; cerr << "TUPLE_NEXT2 - Fatal error!\n"; cerr << " Illegal value of RANK = " << *rank << "\n"; exit ( 1 ); } if ( *rank == 0 ) { for ( i = 0; i < n; i++ ) { x[i] = xmin[i]; } *rank = 1; return; } *rank = *rank + 1; i = n - 1; for ( ; ; ) { if ( x[i] != xmax[i] ) { if ( xmin[i] < xmax[i] ) { x[i] = x[i] + 1; } else { x[i] = x[i] - 1; } break; } x[i] = xmin[i]; if ( i == 0 ) { *rank = 0; break; } i = i - 1; } return; } //****************************************************************************80 double *tvec_even ( int nt ) //****************************************************************************80 // // Purpose: // // TVEC_EVEN computes an evenly spaced set of angles between 0 and 2*PI. // // Discussion: // // The computation realizes that 0 = 2 * PI. // // Example: // // NT = 4 // // T = ( 0, PI/2, PI, 3*PI/2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the number of values to compute. // // Output, double TVEC[NT], the evenly spaced angles, in radians. // { int i; double pi = 3.141592653589793; double *t; if ( nt < 1 ) { return NULL; } t = new double[nt]; for ( i = 1; i <= nt; i++ ) { t[i-1] = ( double ) ( 2 * ( i - 1 ) ) * pi / ( double ) ( nt ); } return t; } //****************************************************************************80 double *tvec_even2 ( int nt ) //****************************************************************************80 // // Purpose: // // TVEC_EVEN2 computes evenly spaced angles between 0 and 2*PI. // // Discussion: // // The computation realizes that 0 = 2 * PI. The values are equally // spaced in the circle, do not include 0, and are symmetric about 0. // // Example: // // NT = 4 // // T = ( PI/4, 3*PI/4, 5*PI/4, 7*PI/4 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the number of values to compute. // // Output, double TVEC[NT], the evenly spaced angles, in radians. // { int i; double pi = 3.141592653589793; double *t; if ( nt < 1 ) { return NULL; } t = new double[nt]; for ( i = 1; i <= nt; i++ ) { t[i-1] = ( double ) ( 2 * i - 1 ) * pi / ( double ) ( nt ); } return t; } //****************************************************************************80 double *tvec_even3 ( int nt ) //****************************************************************************80 // // Purpose: // // TVEC_EVEN3 computes an evenly spaced set of angles between 0 and 2*PI. // // Discussion: // // The angles begin with 0 and end with 2*PI. // // Example: // // NT = 4 // // T = ( 0, 2*PI/3, 4*PI/3 2*PI ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the number of values to compute. // // Output, double TVEC[NT], the evenly spaced angles, in radians. // { int i; double pi = 3.141592653589793; double *t; if ( nt < 1 ) { return NULL; } t = new double[nt]; if ( nt == 1 ) { t[0] = pi; } else { for ( i = 1; i <= nt; i++ ) { t[i-1] = ( double ) ( 2 * ( i - 1 ) ) * pi / ( double ) ( nt - 1 ); } } return t; } //****************************************************************************80 double *tvec_even_bracket ( int nt, double theta1, double theta2 ) //****************************************************************************80 // // Purpose: // // TVEC_EVEN_BRACKET computes evenly spaced angles between THETA1 and THETA2. // // Example: // // NT = 4 // THETA1 = 30 // THETA2 = 90 // // T = ( 30, 50, 70, 90 ) // // Discussion: // // The interval between THETA1 and THETA2 is divided into NT-1 subintervals. // // The angles returned are the breakpoints of these subintervals, // including THETA1 and THETA2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the number of values to compute. // // Input, double THETA1, THETA2, the limiting angles. // // Output, double TVEC_EVEN_BRACKET[NT], the evenly spaced angles. // { int i; double *t; if ( nt < 1 ) { return NULL; } t = new double[nt]; if ( nt == 1 ) { t[0] = ( theta1 + theta2 ) / 2.0; } else { for ( i = 1; i <= nt; i++ ) { t[i-1] = ( ( double ) ( nt - i ) * theta1 + ( double ) ( i - 1 ) * theta2 ) / ( double ) ( nt - 1 ); } } return t; } //****************************************************************************80 double *tvec_even_bracket2 ( int nt, double theta1, double theta2 ) //****************************************************************************80 // // Purpose: // // TVEC_EVEN_BRACKET2 computes evenly spaced angles from THETA1 to THETA2. // // Discussion: // // The interval between THETA1 and THETA2 is divided into NT+1 subintervals. // // The angles returned are the internal NT breakpoints of the subintervals. // // Example: // // NT = 5 // THETA1 = 30 // THETA2 = 90 // // T = ( 40, 50, 60, 70, 80 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the number of values to compute. // // Input, double THETA1, THETA2, the limiting angles. // // Output, double TVEC_EVEN_BRACKET2[NT], the evenly spaced angles. // { int i; double *t; if ( nt < 1 ) { return NULL; } t = new double[nt]; for ( i = 1; i <= nt; i++ ) { t[i-1] = ( ( double ) ( nt + 1 - i ) * theta1 + ( double ) ( i ) * theta2 ) / ( double ) ( nt + 1 ); } return t; } //****************************************************************************80 double *tvec_even_bracket3 ( int nt, double theta1, double theta2 ) //****************************************************************************80 // // Purpose: // // TVEC_EVEN_BRACKET3 computes evenly spaced angles from THETA1 to THETA2. // // Discussion: // // The interval between THETA1 and THETA2 is divided into NT subintervals. // // The angles returned are the midpoints of each subinterval. // // Example: // // NT = 3 // THETA1 = 30 // THETA2 = 90 // // T = ( 40, 60, 80 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the number of values to compute. // // Input, double THETA1, THETA2, the limiting angles. // // Output, double TVEC_EVEN_BRACKET3[NT], the evenly spaced angles. // { int i; double *t; t = new double[nt]; for ( i = 1; i <= nt; i++ ) { t[i-1] = ( ( double ) ( 2 * nt - 2 * i + 1 ) * theta1 + ( double ) ( 2 * i - 1 ) * theta2 ) / ( double ) ( 2 * nt ); } return t; } //****************************************************************************80 int upc_check_digit ( int p, int l, int r ) //****************************************************************************80 // // Purpose: // // UPC_CHECK_DIGIT returns the check digit of a UPC. // // Discussion: // // UPC stands for Universal Price Code. // // A full UPC is a string of 12 digits, in groups of size 1, 5, 5, and 1, // of the form P-LLLLL-RRRRR-C, where: // // P is the one-digit product type code. // L is the five-digit manufacturer code. // R is the five_digit product code // C is the check digit. // // Example: // // 0-72890-00011-8 // 0-12345-67890-5 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int P, the one-digit product type code. // // Input, int L, the five-digit manufacturer code. // // Input, int R, the five-digit product code. // // Output, int UPC_CHECK_DIGIT, the check digit. // { int c; int *lc; int *rc; if ( p < 0 || 9 < p ) { cerr << "\n"; cerr << "UPC_CHECK_DIGIT - Fatal error!\n"; cerr << " P < 0 or 9 < P.\n"; exit ( 1 ); } if ( l < 0 || 99999 < l ) { cerr << "\n"; cerr << "UPC_CHECK_DIGIT - Fatal error!\n"; cerr << " L < 0 or 99999 < L.\n"; exit ( 1 ); } if ( r < 0 || 99999 < r ) { cerr << "\n"; cerr << "UPC_CHECK_DIGIT - Fatal error!\n"; cerr << " R < 0 or 99999 < R.\n"; exit ( 1 ); } lc = i4_to_digits_decimal ( l, 5 ); rc = i4_to_digits_decimal ( r, 5 ); c = ( p + lc[1] + lc[3] + rc[0] + rc[2] + rc[4] ) * 3 + lc[0] + lc[2] + lc[4] + rc[1] + rc[3]; c = c % 10; c = ( 10 - c ) % 10; delete [] rc; delete [] lc; return c; } //****************************************************************************80 double versine_pulse ( double t, double ta, double tb, double v1, double amp ) //****************************************************************************80 // // Purpose: // // VERSINE_PULSE adds a versine pulse to a constant. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 March 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double T, the current time. // // Input, double TA, the time at which the pulse begins. // // Input, double TB, the time at which the pulse finishes. // // Input, double V1, the constant value. // // Input, double AMP, the amplitude of the pulse. // // Output, double VERSINE_PULSE, the value of the signal at time T. // { double pi = 3.141592653589793; double v; v = v1; if ( ta <= t && t <= tb ) { v = v + ( 0.5 * amp * ( 1.0 - cos ( 2.0 * pi * ( t - ta ) / ( tb - ta ) ) ) ); } return v; }