# include # include # include # include # include # include # include using namespace std; # include "quality.hpp" int main ( int argc, char *argv[] ); void handle ( char *input_filename, double *sample_routine ( int dim_num, int n, int *seed ) ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for TABLE_QUALITY. // // Discussion: // // TABLE_QUALITY determines quality measures for a given set of points. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Reference: // // Max Gunzburger, John Burkardt, // Uniformity Measures for Point Samples in Hypercubes. // // Local parameters: // // Local, int DIM_NUM, the spatial dimension of the point set. // // Local, int N, the number of points. // // Local, double Z[DIM_NUM*N], the point set. // // Local, int NS, the number of sample points. // { int i; char input_filename[81]; cout << "\n"; timestamp ( ); cout << "\n"; cout << "TABLE_QUALITY\n"; cout << " C++ version:\n"; cout << " Compute measures of uniform dispersion for a pointset.\n"; cout << "\n"; cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n"; cout << "\n"; cout << " Note: this routine assumes that the input pointset\n"; cout << " is contained in the unit hypercube. If this is not\n"; cout << " the case, then you must rewrite the routine\n"; cout << " SAMPLE_ROUTINE\n"; cout << " so that it properly returns sample points in your\n"; cout << " region, with a uniform density, or a probability\n"; cout << " density of your choosing.\n"; // // If the input file was not specified, get it now. // if ( argc <= 1 ) { cout << "\n"; cout << "TABLE_QUALITY:\n"; cout << " Please enter the name of a file to be analyzed.\n"; cin.getline ( input_filename, sizeof ( input_filename ) ); handle ( input_filename, sample_hypercube_uniform ); } else { for ( i = 1; i < argc; i++ ) { handle ( argv[i], sample_hypercube_uniform ); } } // // Terminate. // cout << "\n"; cout << "TABLE_QUALITY:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void handle ( char *input_filename, double *sample_routine ( int dim_num, int n, int *seed ) ) //****************************************************************************80 // // Purpose: // // HANDLE handles a single file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Reference: // // Max Gunzburger, John Burkardt, // Uniformity Measures for Point Samples in Hypercubes. // // Parameters: // // Input, char *INPUT_FILENAME, the name of the input file. // // Local parameters: // // Local, int DIM_NUM, the spatial dimension of the point set. // // Local, int N, the number of points. // // Local, double Z[DIM_NUM*N], the point set. // // Local, int NS, the number of sample points. // // Input, double *SAMPLE_ROUTINE, the name of a routine which // is used to produce an DIM_NUM by N array of sample points in the region, // of the form: // double *sample_routine ( int dim_num, int n, int *seed ) // { int flag; double *gamma; double gamma_ave; double gamma_max; double gamma_min; double gamma_std; int i; int n; int dim_num; int ns = 100000; int nt; int seed_init = 123456789; int *triangle; int *triangle_neighbor; int triangle_order; double *z; dtable_header_read ( input_filename, &dim_num, &n ); // // Read the point set. // z = dtable_data_read ( input_filename, dim_num, n ); // // For 2D datasets, compute the Delaunay triangulation. // if ( dim_num == 2 ) { triangle = new int[3*2*n]; triangle_neighbor = new int[3*2*n]; flag = dtris2 ( n, z, &nt, triangle, triangle_neighbor ); cout << "\n"; cout << " Triangulated data generates " << nt << " triangles.\n"; } else { nt = 0; } cout << "\n"; cout << " Measures of uniform point dispersion.\n"; cout << "\n"; cout << " The pointset was read from \"" << input_filename << "\".\n"; cout << " The sample routine will be SAMPLE_HYPERCUBE_UNIFORM.\n"; cout << "\n"; cout << " Spatial dimension DIM_NUM = " << dim_num << "\n"; cout << " The number of points N = " << n << "\n"; cout << " The number of sample points NS = " << ns << "\n"; cout << " The random number SEED_INIT = " << seed_init << "\n" << flush; cout << "\n"; if ( dim_num == 2 ) { triangle_order = 3; cout << " The minimum angle measure Alpha = " << alpha_measure ( n, z, triangle_order, nt, triangle ) << "\n"; } else { cout << " The minimum angle measure Alpha = (omitted)\n"; } cout << " Relative spacing deviation Beta = " << beta_measure ( dim_num, n, z ) << "\n"; cout << " The regularity measure Chi = " << chi_measure ( dim_num, n, z, ns, sample_hypercube_uniform, seed_init ) << "\n"; cout << " 2nd moment determinant measure D = " << d_measure ( dim_num, n, z, ns, sample_hypercube_uniform, seed_init ) << "\n"; cout << " The Voronoi energy measure E = " << e_measure ( dim_num, n, z, ns, sample_hypercube_uniform, seed_init ) << "\n"; cout << " The mesh ratio Gamma = " << gamma_measure ( dim_num, n, z ) << "\n"; cout << " The point distribution norm H = " << h_measure ( dim_num, n, z, ns, sample_hypercube_uniform, seed_init ) << "\n"; cout << " The COV measure Lambda = " << lambda_measure ( dim_num, n, z ) << "\n"; cout << " The point distribution ratio Mu = " << mu_measure ( dim_num, n, z, ns, sample_hypercube_uniform, seed_init ) << "\n"; cout << " The cell volume deviation Nu = " << nu_measure ( dim_num, n, z, ns, sample_hypercube_uniform, seed_init ) << "\n"; if ( dim_num == 2 ) { triangle_order = 2; cout << " The triangle uniformity measure Q = " << q_measure ( n, z, triangle_order, nt, triangle ) << "\n"; } else { cout << " The triangle uniformity measure Q = (omitted)\n"; } cout << " The Riesz S = 0 energy measure R0 = " << r0_measure ( dim_num, n, z ) << "\n"; if ( r8mat_in_01 ( dim_num, n, z ) ) { cout << " Nonintersecting sphere volume S = " << sphere_measure ( dim_num, n, z ) << "\n"; } else { cout << " Nonintersecting sphere volume S = (omitted)\n"; } cout << " 2nd moment trace measure Tau = " << tau_measure ( dim_num, n, z, ns, sample_hypercube_uniform, seed_init ) << "\n"; gamma = pointset_spacing ( dim_num, n, z ); gamma_ave = 0.0; for ( i = 0; i < n; i++ ) { gamma_ave = gamma_ave + gamma[i]; } gamma_ave = gamma_ave / ( double ) ( n ); if ( 1 < n ) { gamma_std = 0.0; for ( i = 0; i < n; i++ ) { gamma_std = gamma_std + pow ( gamma[i] - gamma_ave, 2 ); } gamma_std = sqrt ( gamma_std / ( double ) ( n - 1 ) ); } else { gamma_std = 0.0; } cout << "\n"; cout << " Minimum spacing Gamma_min = " << gamma_min << "\n"; cout << " Average spacing Gamma_ave = " << gamma_ave << "\n"; cout << " Maximum spacing Gamma_max = " << gamma_max << "\n"; cout << " Spacing standard deviate Gamma_std = " << gamma_std << "\n"; delete [] gamma; if ( dim_num == 2 ) { delete [] triangle; delete [] triangle_neighbor; } delete [] z; return; }