# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); char ch_cap ( char c ); bool ch_eqi ( char c1, char c2 ); int ch_to_digit ( char c ); int diaedg ( double x0, double y0, double x1, double y1, double x2, double y2, double x3, double y3 ); double *dtable_data_read ( char *input_filename, int m, int n ); void dtable_header_read ( char *input_filename, int *m, int *n ); int dtris2 ( int point_num, double point_xy[], int *tri_num, int tri_vert[], int tri_nabe[] ); int file_column_count ( char *input_filename ); int file_row_count ( char *input_filename ); void handle_file ( char *input_filename ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); int i4_modp ( int i, int j ); int i4_sign ( int i ); int i4_wrap ( int ival, int ilo, int ihi ); void i4mat_transpose_print ( int m, int n, int a[], char *title ); void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, char *title ); int *i4vec_indicator ( int n ); void i4vec_print ( int n, int a[], char *title ); double *line_exp_normal_2d ( double p1[], double p2[] ); int lrline ( double xu, double yu, double xv1, double yv1, double xv2, double yv2, double dv ); bool perm_check ( int n, int p[] ); void perm_inv ( int n, int p[] ); double r8_epsilon ( ); double r8_max ( double x, double y ); double r8_min ( double x, double y ); void r82vec_permute ( int n, double a[], int p[] ); int *r82vec_sort_heap_index_a ( int n, double a[] ); void r8mat_transpose_print ( int m, int n, double a[], char *title ); void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, char *title ); int s_len_trim ( char *s ); double s_to_r8 ( char *s, int *lchar, bool *error ); bool s_to_r8vec ( char *s, int n, double rvec[] ); int s_word_count ( char *s ); int swapec ( int i, int *top, int *btri, int *bedg, int point_num, double point_xy[], int tri_num, int tri_vert[], int tri_nabe[], int stack[] ); void timestamp ( void ); int tri_augment ( int v_num, int nodtri[] ); double *triangle_circumcenter_2d ( double t[] ); void vbedg ( double x, double y, int point_num, double point_xy[], int tri_num, int tri_vert[], int tri_nabe[], int *ltri, int *ledg, int *rtri, int *redg ); void voronoi_data ( int g_num, double g_xy[], int g_degree[], int g_start[], int g_face[], int *v_num, double v_xy[], int *i_num, double i_xy[] ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for TABLE_VORONOI. // // Discussion: // // TABLE_VORONOI uses GEOMPACK to get some Voronoi diagram information. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 May 2005 // // Author: // // John Burkardt // // Reference: // // Max Gunzburger and John Burkardt, // Uniformity Measures for Point Samples in Hypercubes. // // Parameters: // // Command line argument FILE_NAME, is the name of a file in the TABLE format // containing the coordinates of a point set to be analyzed. // { int i; char file_name[81]; cout << "\n"; timestamp ( ); cout << "\n"; cout << "TABLE_VORONOI\n"; cout << " C++ version\n"; cout << "\n"; cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n"; cout << "\n"; cout << " This program is given the coordinates of a set of\n"; cout << " points in the plane, calls GEOMPACK to determine the\n"; cout << " Delaunay triangulation of those points, and then\n"; cout << " digests that data to produce information defining\n"; cout << " the Voronoi diagram.\n"; cout << "\n"; cout << " The input file contains the following data:\n"; cout << "\n"; cout << " G_NUM: the number of generators;\n"; cout << " G_XY: the (X,Y) coordinates of the generators.\n"; cout << "\n"; cout << " The computed Voronoi information includes:\n"; cout << "\n"; cout << " G_DEGREE: the degree of each Voronoi cell;\n"; cout << " G_START: the index of the first Voronoi vertex;\n"; cout << " G_FACE: the list of all Voronoi vertices;\n"; cout << "\n"; cout << " V_NUM: the number of (finite) Voronoi vertices;\n"; cout << " V_XY: the (X,Y) coordinates of the Voronoi vertices;\n"; cout << "\n"; cout << " I_NUM: the number of Voronoi vertices at infinity;\n"; cout << " I_XY: the directions associated with the Voronoi\n"; cout << " vertices at infinity.\n"; // // If the input file was not specified, get it now. // if ( argc <= 1 ) { cout << "\n"; cout << "TABLE_VORONOI:\n"; cout << " Please enter the name of a file to be analyzed.\n"; cin.getline ( file_name, sizeof ( file_name ) ); handle_file ( file_name ); } else { for ( i = 1; i < argc; i++ ) { handle_file ( argv[i] ); } } cout << "\n"; cout << "TABLE_VORONOI:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 char ch_cap ( char c ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char C, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= c && c <= 122 ) { c = c - 32; } return c; } //****************************************************************************80* bool ch_eqi ( char c1, char c2 ) //****************************************************************************80* // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char C1, char C2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= c1 && c1 <= 122 ) { c1 = c1 - 32; } if ( 97 <= c2 && c2 <= 122 ) { c2 = c2 - 32; } return ( c1 == c2 ); } //****************************************************************************80 int ch_to_digit ( char c ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // C DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char C, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If C was // 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= c && c <= '9' ) { digit = c - '0'; } else if ( c == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 int diaedg ( double x0, double y0, double x1, double y1, double x2, double y2, double x3, double y3 ) //****************************************************************************80 // // Purpose: // // DIAEDG chooses a diagonal edge. // // Discussion: // // The routine determines whether 0--2 or 1--3 is the diagonal edge // that should be chosen, based on the circumcircle criterion, where // (X0,Y0), (X1,Y1), (X2,Y2), (X3,Y3) are the vertices of a simple // quadrilateral in counterclockwise order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 August 2003 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double X0, Y0, X1, Y1, X2, Y2, X3, Y3, the coordinates of the // vertices of a quadrilateral, given in counter clockwise order. // // Output, int DIAEDG, chooses a diagonal: // +1, if diagonal edge 02 is chosen; // -1, if diagonal edge 13 is chosen; // 0, if the four vertices are cocircular. // { double ca; double cb; double dx10; double dx12; double dx30; double dx32; double dy10; double dy12; double dy30; double dy32; double s; double tol; double tola; double tolb; int value; tol = 100.0 * r8_epsilon ( ); dx10 = x1 - x0; dy10 = y1 - y0; dx12 = x1 - x2; dy12 = y1 - y2; dx30 = x3 - x0; dy30 = y3 - y0; dx32 = x3 - x2; dy32 = y3 - y2; tola = tol * r8_max ( fabs ( dx10 ), r8_max ( fabs ( dy10 ), r8_max ( fabs ( dx30 ), fabs ( dy30 ) ) ) ); tolb = tol * r8_max ( fabs ( dx12 ), r8_max ( fabs ( dy12 ), r8_max ( fabs ( dx32 ), fabs ( dy32 ) ) ) ); ca = dx10 * dx30 + dy10 * dy30; cb = dx12 * dx32 + dy12 * dy32; if ( tola < ca && tolb < cb ) { value = -1; } else if ( ca < -tola && cb < -tolb ) { value = 1; } else { tola = r8_max ( tola, tolb ); s = ( dx10 * dy30 - dx30 * dy10 ) * cb + ( dx32 * dy12 - dx12 * dy32 ) * ca; if ( tola < s ) { value = -1; } else if ( s < -tola ) { value = 1; } else { value = 0; } } return value; } //****************************************************************************80 double *dtable_data_read ( char *input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // DTABLE_DATA_READ reads the data from a real TABLE file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with the '#' character are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, char *INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double DTABLE_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; char line[255]; double *table; double *x; input.open ( input_filename ); if ( !input ) { cout << "\n"; cout << "DTABLE_DATA_READ - Fatal error!\n"; cout << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { input.getline ( line, sizeof ( line ) ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void dtable_header_read ( char *input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // DTABLE_HEADER_READ reads the header from a real TABLE file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 June 2004 // // Author: // // John Burkardt // // Parameters: // // Input, char *INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points. // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cout << "\n"; cout << "DTABLE_HEADER_READ - Fatal error!\n"; cout << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cout << "\n"; cout << "DTABLE_HEADER_READ - Fatal error!\n"; cout << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 int dtris2 ( int point_num, double point_xy[], int *tri_num, int tri_vert[], int tri_nabe[] ) //****************************************************************************80 // // Purpose: // // DTRIS2 constructs a Delaunay triangulation of 2D vertices. // // Discussion: // // The routine constructs the Delaunay triangulation of a set of 2D vertices // using an incremental approach and diagonal edge swaps. Vertices are // first sorted in lexicographically increasing (X,Y) order, and // then are inserted one at a time from outside the convex hull. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 January 2004 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, int POINT_NUM, the number of vertices. // // Input/output, double POINT_XY[POINT_NUM*2], the coordinates of the vertices. // On output, the vertices have been sorted into dictionary order. // // Output, int *TRI_NUM, the number of triangles in the triangulation; // TRI_NUM is equal to 2*POINT_NUM - NB - 2, where NB is the number // of boundary vertices. // // Output, int TRI_VERT[TRI_NUM*3], the nodes that make up each triangle. // The elements are indices of POINT_XY. The vertices of the triangles are // in counter clockwise order. // // Output, int TRI_NABE[TRI_NUM*3], the triangle neighbor list. // Positive elements are indices of TIL; negative elements are used for links // of a counter clockwise linked list of boundary edges; LINK = -(3*I + J-1) // where I, J = triangle, edge index; TRI_NABE[I,J] refers to // the neighbor along edge from vertex J to J+1 (mod 3). // // Output, int DTRIS2, is 0 for no error. { double cmax; int e; int error; int i; int *indx; int j; int k; int l; int ledg; int lr; int ltri; int m; int m1; int m2; int n; int redg; int rtri; int *stack; int t; double tol; int top; stack = new int[point_num]; tol = 100.0 * r8_epsilon ( ); // // Sort the vertices by increasing (x,y). // indx = r82vec_sort_heap_index_a ( point_num, point_xy ); r82vec_permute ( point_num, point_xy, indx ); // // Make sure that the data points are "reasonably" distinct. // m1 = 1; for ( i = 2; i <= point_num; i++ ) { m = m1; m1 = i; k = -1; for ( j = 0; j <= 1; j++ ) { cmax = r8_max ( fabs ( point_xy[2*(m-1)+j] ), fabs ( point_xy[2*(m1-1)+j] ) ); if ( tol * ( cmax + 1.0 ) < fabs ( point_xy[2*(m-1)+j] - point_xy[2*(m1-1)+j] ) ) { k = j; break; } } if ( k == -1 ) { cout << "\n"; cout << "DTRIS2 - Fatal error!\n"; cout << " Fails for point number I = " << i << "\n"; cout << " M = " << m << "\n"; cout << " M1 = " << m1 << "\n"; cout << " X,Y(M) = " << point_xy[2*(m-1)+0] << " " << point_xy[2*(m-1)+1] << "\n"; cout << " X,Y(M1) = " << point_xy[2*(m1-1)+0] << " " << point_xy[2*(m1-1)+1] << "\n"; delete [] stack; return 224; } } // // Starting from points M1 and M2, search for a third point M that // makes a "healthy" triangle (M1,M2,M) // m1 = 1; m2 = 2; j = 3; for ( ; ; ) { if ( point_num < j ) { cout << "\n"; cout << "DTRIS2 - Fatal error!\n"; delete [] stack; return 225; } m = j; lr = lrline ( point_xy[2*(m-1)+0], point_xy[2*(m-1)+1], point_xy[2*(m1-1)+0], point_xy[2*(m1-1)+1], point_xy[2*(m2-1)+0], point_xy[2*(m2-1)+1], 0.0 ); if ( lr != 0 ) { break; } j = j + 1; } // // Set up the triangle information for (M1,M2,M), and for any other // triangles you created because points were collinear with M1, M2. // *tri_num = j - 2; if ( lr == -1 ) { tri_vert[3*0+0] = m1; tri_vert[3*0+1] = m2; tri_vert[3*0+2] = m; tri_nabe[3*0+2] = -3; for ( i = 2; i <= *tri_num; i++ ) { m1 = m2; m2 = i+1; tri_vert[3*(i-1)+0] = m1; tri_vert[3*(i-1)+1] = m2; tri_vert[3*(i-1)+2] = m; tri_nabe[3*(i-1)+0] = -3 * i; tri_nabe[3*(i-1)+1] = i; tri_nabe[3*(i-1)+2] = i - 1; } tri_nabe[3*(*tri_num-1)+0] = -3 * (*tri_num) - 1; tri_nabe[3*(*tri_num-1)+1] = -5; ledg = 2; ltri = *tri_num; } else { tri_vert[3*0+0] = m2; tri_vert[3*0+1] = m1; tri_vert[3*0+2] = m; tri_nabe[3*0+0] = -4; for ( i = 2; i <= *tri_num; i++ ) { m1 = m2; m2 = i+1; tri_vert[3*(i-1)+0] = m2; tri_vert[3*(i-1)+1] = m1; tri_vert[3*(i-1)+2] = m; tri_nabe[3*(i-2)+2] = i; tri_nabe[3*(i-1)+0] = -3 * i - 3; tri_nabe[3*(i-1)+1] = i - 1; } tri_nabe[3*(*tri_num-1)+2] = -3 * (*tri_num); tri_nabe[3*0+1] = -3 * (*tri_num) - 2; ledg = 2; ltri = 1; } // // Insert the vertices one at a time from outside the convex hull, // determine visible boundary edges, and apply diagonal edge swaps until // Delaunay triangulation of vertices (so far) is obtained. // top = 0; for ( i = j+1; i <= point_num; i++ ) { m = i; m1 = tri_vert[3*(ltri-1)+ledg-1]; if ( ledg <= 2 ) { m2 = tri_vert[3*(ltri-1)+ledg]; } else { m2 = tri_vert[3*(ltri-1)+0]; } lr = lrline ( point_xy[2*(m-1)+0], point_xy[2*(m-1)+1], point_xy[2*(m1-1)+0], point_xy[2*(m1-1)+1], point_xy[2*(m2-1)+0], point_xy[2*(m2-1)+1], 0.0 ); if ( 0 < lr ) { rtri = ltri; redg = ledg; ltri = 0; } else { l = -tri_nabe[3*(ltri-1)+ledg-1]; rtri = l / 3; redg = (l % 3) + 1; } vbedg ( point_xy[2*(m-1)+0], point_xy[2*(m-1)+1], point_num, point_xy, *tri_num, tri_vert, tri_nabe, <ri, &ledg, &rtri, &redg ); n = *tri_num + 1; l = -tri_nabe[3*(ltri-1)+ledg-1]; for ( ; ; ) { t = l / 3; e = ( l % 3 ) + 1; l = -tri_nabe[3*(t-1)+e-1]; m2 = tri_vert[3*(t-1)+e-1]; if ( e <= 2 ) { m1 = tri_vert[3*(t-1)+e]; } else { m1 = tri_vert[3*(t-1)+0]; } *tri_num = *tri_num + 1; tri_nabe[3*(t-1)+e-1] = *tri_num; tri_vert[3*(*tri_num-1)+0] = m1; tri_vert[3*(*tri_num-1)+1] = m2; tri_vert[3*(*tri_num-1)+2] = m; tri_nabe[3*(*tri_num-1)+0] = t; tri_nabe[3*(*tri_num-1)+1] = *tri_num - 1; tri_nabe[3*(*tri_num-1)+2] = *tri_num + 1; top = top + 1; if ( point_num < top ) { cout << "\n"; cout << "DTRIS2 - Fatal error!\n"; cout << " Stack overflow.\n"; delete [] stack; return 8; } stack[top-1] = *tri_num; if ( t == rtri && e == redg ) { break; } } tri_nabe[3*(ltri-1)+ledg-1] = -3 * n - 1; tri_nabe[3*(n-1)+1] = -3 * (*tri_num) - 2; tri_nabe[3*(*tri_num-1)+2] = -l; ltri = n; ledg = 2; error = swapec ( m, &top, <ri, &ledg, point_num, point_xy, *tri_num, tri_vert, tri_nabe, stack ); if ( error != 0 ) { cout << "\n"; cout << "DTRIS2 - Fatal error!\n"; cout << " Error return from SWAPEC.\n"; delete [] stack; return error; } } // // Now account for the sorting that we did. // for ( i = 0; i < 3; i++ ) { for ( j = 0; j < *tri_num; j++ ) { tri_vert[i+j*3] = indx [ tri_vert[i+j*3] - 1 ]; } } perm_inv ( point_num, indx ); r82vec_permute ( point_num, point_xy, indx ); delete [] indx; delete [] stack; return 0; } //****************************************************************************80 int file_column_count ( char *input_filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the number of columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file is presumed to consist of COLUMN_NUM words, separated // by spaces. There may also be some blank lines, and some comment lines, // which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *INPUT_FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; char line[256]; // // Open the file. // input.open ( input_filename ); if ( !input ) { column_num = -1; cout << "\n"; cout << "FILE_COLUMN_COUNT - Fatal error!\n"; cout << " Could not open the file:\n"; cout << " \"" << input_filename << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { input.getline ( line, sizeof ( line ) ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } if ( line[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( input_filename ); for ( ; ; ) { input.getline ( line, sizeof ( line ) ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cout << "\n"; cout << "FILE_COLUMN_COUNT - Warning!\n"; cout << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( line ); return column_num; } //****************************************************************************80 int file_row_count ( char *input_filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *INPUT_FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int bad_num; int comment_num; ifstream input; int i; char line[100]; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; bad_num = 0; input.open ( input_filename ); if ( !input ) { cout << "\n"; cout << "FILE_ROW_COUNT - Fatal error!\n"; cout << " Could not open the input file: \"" << input_filename << "\"\n"; return (-1); } for ( ; ; ) { input.getline ( line, sizeof ( line ) ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 void handle_file ( char *file_name ) //****************************************************************************80 // // Purpose: // // HANDLE_FILE handles a single file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, character FILE_NAME, the name of a file whose data // is to be read and processed. // { # define NDIM 2 int *g_degree; int *g_face; int g_num; int *g_start; double *g_xy; int i; int i_num; double *i_xy; int j; int k; int m; int v_num; double *v_xy; cout << "\n"; cout << "HANDLE_FILE\n"; cout << " Read the TABLE file \"" << file_name << "\".\n"; dtable_header_read ( file_name, &m, &g_num ); cout << "\n"; cout << " DTABLE_HEADER_READ has read the header.\n"; cout << "\n"; cout << " The spatial dimension of the data M = " << m << "\n"; cout << " The number of generators, G_NUM = " << g_num << "\n"; if ( m < NDIM ) { cout << "\n"; cout << "HANDLE - Fatal error!\n"; cout << " The input spatial dimension is less than 2.\n"; exit ( 1 ); } else if ( NDIM < m ) { cout << "\n"; cout << "HANDLE - Warning:\n"; cout << " The input spatial dimension is greater than 2.\n"; cout << " Only the first two coordinates will be considered.\n"; } i_xy = new double[NDIM*g_num]; g_degree = new int[g_num]; g_face = new int[6*g_num]; g_start = new int[g_num]; v_xy = new double[NDIM*2*g_num]; g_xy = dtable_data_read ( file_name, NDIM, g_num ); cout << "\n"; cout << " DTABLE_DATA_READ has read the data.\n"; r8mat_transpose_print ( NDIM, g_num, g_xy, " The generators" ); voronoi_data ( g_num, g_xy, g_degree, g_start, g_face, &v_num, v_xy, &i_num, i_xy ); cout << "\n"; cout << " V_NUM: Number of Voronoi vertices = " << v_num << "\n"; r8mat_transpose_print ( NDIM, v_num, v_xy, " Voronoi vertices:" ); cout << "\n"; cout << " I_NUM: Number of Voronoi vertices at infinity = " << i_num << "\n"; cout << "\n"; cout << " I_XY, the directions of the Voronoi vertices at infinity:\n"; cout << "\n"; r8mat_transpose_print ( NDIM, i_num, i_xy, " Directions at infinity:" ); delete [] i_xy; delete [] g_degree; delete [] g_face; delete [] g_start; delete [] g_xy; delete [] v_xy; return; # undef NDIM } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { if ( i2 < i1 ) { return i1; } else { return i2; } } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the smaller of two I4's. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { if ( i1 < i2 ) { return i1; } else { return i2; } } //****************************************************************************80 int i4_modp ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_MODP returns the nonnegative remainder of I4 division. // // Discussion: // // If // NREM = I4_MODP ( I, J ) // NMULT = ( I - NREM ) / J // then // I = J * NMULT + NREM // where NREM is always nonnegative. // // The MOD function computes a result with the same sign as the // quantity being divided. Thus, suppose you had an angle A, // and you wanted to ensure that it was between 0 and 360. // Then mod(A,360) would do, if A was positive, but if A // was negative, your result would be between -360 and 0. // // On the other hand, I4_MODP(A,360) is between 0 and 360, always. // // Example: // // I J MOD I4_MODP I4_MODP Factorization // // 107 50 7 7 107 = 2 * 50 + 7 // 107 -50 7 7 107 = -2 * -50 + 7 // -107 50 -7 43 -107 = -3 * 50 + 43 // -107 -50 -7 43 -107 = 3 * -50 + 43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number to be divided. // // Input, int J, the number that divides I. // // Output, int I4_MODP, the nonnegative remainder when I is // divided by J. // { int value; if ( j == 0 ) { cout << "\n"; cout << "I4_MODP - Fatal error!\n"; cout << " I4_MODP ( I, J ) called with J = " << j << "\n"; exit ( 1 ); } value = i % j; if ( value < 0 ) { value = value + abs ( j ); } return value; } //****************************************************************************80 int i4_sign ( int i ) //****************************************************************************80 // // Purpose: // // I4_SIGN returns the sign of an I4. // // Discussion: // // The sign of 0 and all positive integers is taken to be +1. // The sign of all negative integers is -1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the integer whose sign is desired. // // Output, int I4_SIGN, the sign of I. { if ( i < 0 ) { return (-1); } else { return 1; } } //****************************************************************************80* int i4_wrap ( int ival, int ilo, int ihi ) //****************************************************************************80* // // Purpose: // // I4_WRAP forces an I4 to lie between given limits by wrapping. // // Example: // // ILO = 4, IHI = 8 // // I I4_WRAP // // -2 8 // -1 4 // 0 5 // 1 6 // 2 7 // 3 8 // 4 4 // 5 5 // 6 6 // 7 7 // 8 8 // 9 4 // 10 5 // 11 6 // 12 7 // 13 8 // 14 4 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int IVAL, an integer value. // // Input, int ILO, IHI, the desired bounds for the integer value. // // Output, int I4_WRAP, a "wrapped" version of IVAL. // { int jhi; int jlo; int value; int wide; jlo = i4_min ( ilo, ihi ); jhi = i4_max ( ilo, ihi ); wide = jhi + 1 - jlo; if ( wide == 1 ) { value = jlo; } else { value = jlo + i4_modp ( ival - jlo, wide ); } return value; } //****************************************************************************80 void i4mat_transpose_print ( int m, int n, int a[], char *title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT prints an I4MAT, transposed. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Input, char *TITLE, a title to be printed. // { int i; int j; int jhi; int jlo; i4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, char *title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, char *TITLE, a title for the matrix. { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); cout << "\n"; // // For each row I in the current range... // // Write the header. // cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // cout << setw(5) << j << " "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } cout << "\n"; return; # undef INCX } //****************************************************************************80 int *i4vec_indicator ( int n ) //****************************************************************************80 // // Purpose: // // I4VEC_INDICATOR sets an I4VEC to the indicator vector. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, int I4VEC_INDICATOR(N), the initialized array. // { int *a; int i; a = new int[n]; for ( i = 0; i < n; i++ ) { a[i] = i + 1; } return a; } //****************************************************************************80 void i4vec_print ( int n, int a[], char *title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, char *TITLE, a title to be printed first. // TITLE may be blank. // { int i; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } cout << "\n"; for ( i = 0; i <= n-1; i++ ) { cout << setw(6) << i + 1 << " " << setw(8) << a[i] << "\n"; } return; } //****************************************************************************80 double *line_exp_normal_2d ( double p1[], double p2[] ) //****************************************************************************80 // // Purpose: // // LINE_EXP_NORMAL_2D computes the unit normal vector to a line in 2D. // // Discussion: // // The explicit form of a line in 2D is: // // (X1,Y1), (X2,Y2). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double P1(2), P2(2), two points on the line. // // Output, double LINE_EXP_NORMAL_2D[2], the components of a unit normal vector to the line. // If the two points are equal, then N1 = N2 = 0. // { double norm; double *normal; normal = new double[2]; norm = sqrt ( ( p2[0] - p1[0] ) * ( p2[0] - p1[0] ) + ( p2[1] - p1[1] ) * ( p2[1] - p1[1] ) ); if ( norm == 0.0 ) { normal[0] = 0.0; normal[1] = 0.0; } else { normal[0] = ( p2[1] - p1[1] ) / norm; normal[1] = - ( p2[0] - p1[0] ) / norm; } return normal; } //****************************************************************************80 int lrline ( double xu, double yu, double xv1, double yv1, double xv2, double yv2, double dv ) //****************************************************************************80 // // Purpose: // // LRLINE determines where a point lies in relation to a directed line. // // Discussion: // // LRLINE determines whether a point is to the left of, right of, // or on a directed line parallel to a line through given points. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 August 2003 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double XU, YU, XV1, YV1, XV2, YV2, are vertex coordinates; the // directed line is parallel to and at signed distance DV to the left of // the directed line from (XV1,YV1) to (XV2,YV2); (XU,YU) is the vertex for // which the position relative to the directed line is to be determined. // // Input, double DV, the signed distance, positive for left. // // Output, int LRLINE, is +1, 0, or -1 depending on whether (XU,YU) is // to the right of, on, or left of the directed line. LRLINE is 0 if // the line degenerates to a point. // { double dx; double dxu; double dy; double dyu; double t; double tol = 0.0000001; double tolabs; int value; // dx = xv2 - xv1; dy = yv2 - yv1; dxu = xu - xv1; dyu = yu - yv1; tolabs = tol * r8_max ( fabs ( dx ), r8_max ( fabs ( dy ), r8_max ( fabs ( dxu ), r8_max ( fabs ( dyu ), fabs ( dv ) ) ) ) ); t = dy * dxu - dx * dyu + dv * sqrt ( dx * dx + dy * dy ); if ( tolabs < t ) { value = 1; } else if ( -tolabs <= t ) { value = 0; } else if ( t < -tolabs ) { value = -1; } return value; } //****************************************************************************80 bool perm_check ( int n, int p[] ) //****************************************************************************80 // // Purpose: // // PERM_CHECK checks that a vector represents a permutation. // // Discussion: // // The routine verifies that each of the integers from 1 // to N occurs among the N entries of the permutation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries. // // Input, int P[N], the array to check. // // Output, bool PERM_CHECK, is TRUE if the permutation is OK. // { bool found; int i; int seek; for ( seek = 1; seek <= n; seek++ ) { found = false; for ( i = 0; i < n; i++ ) { if ( p[i] == seek ) { found = true; break; } } if ( !found ) { return false; } } return true; } //****************************************************************************80 void perm_inv ( int n, int p[] ) //****************************************************************************80 // // Purpose: // // PERM_INV inverts a permutation "in place". // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of objects being permuted. // // Input/output, int P[N], the permutation, in standard index form. // On output, P describes the inverse permutation // { int i; int i0; int i1; int i2; int is; // if ( n <= 0 ) { cout << "\n"; cout << "PERM_INV - Fatal error!\n"; cout << " Input value of N = " << n << "\n"; exit ( 1 ); } if ( !perm_check ( n, p ) ) { cout << "\n"; cout << "PERM_INV - Fatal error!\n"; cout << " The input array does not represent\n"; cout << " a proper permutation.\n"; exit ( 1 ); } is = 1; for ( i = 1; i <= n; i++ ) { i1 = p[i-1]; while ( i < i1 ) { i2 = p[i1-1]; p[i1-1] = -i2; i1 = i2; } is = - i4_sign ( p[i-1] ); p[i-1] = i4_sign ( is ) * abs ( p[i-1] ); } for ( i = 1; i <= n; i++ ) { i1 = -p[i-1]; if ( 0 <= i1 ) { i0 = i; for ( ; ; ) { i2 = p[i1-1]; p[i1-1] = i0; if ( i2 < 0 ) { break; } i0 = i1; i1 = i2; } } } return; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 January 2002 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { if ( y < x ) { return x; } else { return y; } } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { if ( y < x ) { return y; } else { return x; } } //****************************************************************************80* void r82vec_permute ( int n, double a[], int p[] ) //****************************************************************************80* // // Purpose: // // R82VEC_PERMUTE permutes an R2 vector in place. // // Discussion: // // This routine permutes an array of real "objects", but the same // logic can be used to permute an array of objects of any arithmetic // type, or an array of objects of any complexity. The only temporary // storage required is enough to store a single object. The number // of data movements made is N + the number of cycles of order 2 or more, // which is never more than N + N/2. // // Example: // // Input: // // N = 5 // P = ( 2, 4, 5, 1, 3 ) // A = ( 1.0, 2.0, 3.0, 4.0, 5.0 ) // (11.0, 22.0, 33.0, 44.0, 55.0 ) // // Output: // // A = ( 2.0, 4.0, 5.0, 1.0, 3.0 ) // ( 22.0, 44.0, 55.0, 11.0, 33.0 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of objects. // // Input/output, double A[2*N], the array to be permuted. // // Input, int P[N], the permutation. P(I) = J means // that the I-th element of the output array should be the J-th // element of the input array. P must be a legal permutation // of the integers from 1 to N, otherwise the algorithm will // fail catastrophically. // { double a_temp[2]; int i; int iget; int iput; int istart; if ( !perm_check ( n, p ) ) { cout << "\n"; cout << "R82VEC_PERMUTE - Fatal error!\n"; cout << " The input array does not represent\n"; cout << " a proper permutation.\n"; exit ( 1 ); } // // Search for the next element of the permutation that has not been used. // for ( istart = 1; istart <= n; istart++ ) { if ( p[istart-1] < 0 ) { continue; } else if ( p[istart-1] == istart ) { p[istart-1] = -p[istart-1]; continue; } else { a_temp[0] = a[0+(istart-1)*2]; a_temp[1] = a[1+(istart-1)*2]; iget = istart; // // Copy the new value into the vacated entry. // for ( ; ; ) { iput = iget; iget = p[iget-1]; p[iput-1] = -p[iput-1]; if ( iget < 1 || n < iget ) { cout << "\n"; cout << "D2VEC_PERMUTE - Fatal error!\n"; exit ( 1 ); } if ( iget == istart ) { a[0+(iput-1)*2] = a_temp[0]; a[1+(iput-1)*2] = a_temp[1]; break; } a[0+(iput-1)*2] = a[0+(iget-1)*2]; a[1+(iput-1)*2] = a[1+(iget-1)*2]; } } } // // Restore the signs of the entries. // for ( i = 0; i < n; i++ ) { p[i] = -p[i]; } return; } //****************************************************************************80 int *r82vec_sort_heap_index_a ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R82VEC_SORT_HEAP_INDEX_A does an indexed heap ascending sort of an R2 vector. // // Discussion: // // The sorting is not actually carried out. Rather an index array is // created which defines the sorting. This array may be used to sort // or index the array, or to sort or index related arrays keyed on the // original array. // // Once the index array is computed, the sorting can be carried out // "implicitly: // // A(1:2,INDX(I)), I = 1 to N is sorted, // // or explicitly, by the call // // call R82VEC_PERMUTE ( N, A, INDX ) // // after which A(1:2,I), I = 1 to N is sorted. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double A[2*N], an array to be index-sorted. // // Output, int R82VEC_SORT_HEAP_INDEX_A[N], the sort index. The // I-th element of the sorted array is A(0:1,R82VEC_SORT_HEAP_INDEX_A(I-1)). // { double aval[2]; int i; int *indx; int indxt; int ir; int j; int l; // if ( n < 1 ) { return NULL; } if ( n == 1 ) { indx = new int[1]; indx[0] = 1; return indx; } indx = i4vec_indicator ( n ); l = n / 2 + 1; ir = n; for ( ; ; ) { if ( 1 < l ) { l = l - 1; indxt = indx[l-1]; aval[0] = a[0+(indxt-1)*2]; aval[1] = a[1+(indxt-1)*2]; } else { indxt = indx[ir-1]; aval[0] = a[0+(indxt-1)*2]; aval[1] = a[1+(indxt-1)*2]; indx[ir-1] = indx[0]; ir = ir - 1; if ( ir == 1 ) { indx[0] = indxt; break; } } i = l; j = l + l; while ( j <= ir ) { if ( j < ir ) { if ( a[0+(indx[j-1]-1)*2] < a[0+(indx[j]-1)*2] || ( a[0+(indx[j-1]-1)*2] == a[0+(indx[j]-1)*2] && a[1+(indx[j-1]-1)*2] < a[1+(indx[j]-1)*2] ) ) { j = j + 1; } } if ( aval[0] < a[0+(indx[j-1]-1)*2] || ( aval[0] == a[0+(indx[j-1]-1)*2] && aval[1] < a[1+(indx[j-1]-1)*2] ) ) { indx[i-1] = indx[j-1]; i = j; j = j + j; } else { j = ir + 1; } } indx[i-1] = indxt; } return indx; } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], char *title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, char *TITLE, an optional title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, char *title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, char *TITLE, an optional title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << " "; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } cout << "\n"; return; # undef INCX } //****************************************************************************80 int s_len_trim ( char *s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 April 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, a pointer to a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; char* t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' ) { return n; } t--; n--; } return n; } //****************************************************************************80 double s_to_r8 ( char *s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( char *s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2001 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { bool error; int i; int lchar; double x; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s, &lchar, &error ); if ( error ) { return error; } s = s + lchar; } return error; } //****************************************************************************80 int s_word_count ( char *s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int i; int nword; nword = 0; blank = true; while ( *s ) { if ( *s == ' ' ) { blank = true; } else if ( blank ) { nword = nword + 1; blank = false; } *s++; } return nword; } //****************************************************************************80 int swapec ( int i, int *top, int *btri, int *bedg, int point_num, double point_xy[], int tri_num, int tri_vert[], int tri_nabe[], int stack[] ) //****************************************************************************80 // // Purpose: // // SWAPEC swaps diagonal edges until all triangles are Delaunay. // // Discussion: // // The routine swaps diagonal edges in a 2D triangulation, based on // the empty circumcircle criterion, until all triangles are Delaunay, // given that I is the index of the new vertex added to the triangulation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 September 2003 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, int I, the index of the new vertex. // // Input/output, int *TOP, the index of the top of the stack. // On output, TOP is zero. // // Input/output, int *BTRI, *BEDG; on input, if positive, are the // triangle and edge indices of a boundary edge whose updated indices // must be recorded. On output, these may be updated because of swaps. // // Input, int POINT_NUM, the number of points. // // Input, double POINT_XY[POINT_NUM*2], the coordinates of the points. // // Input, int TRI_NUM, the number of triangles. // // Input/output, int TRI_VERT[TRI_NUM*3], the triangle incidence list. // May be updated on output because of swaps. // // Input/output, int TRI_NABE[TRI_NUM*3], the triangle neighbor list; // negative values are used for links of the counter-clockwise linked // list of boundary edges; May be updated on output because of swaps. // // LINK = -(3*I + J-1) where I, J = triangle, edge index. // // Workspace, int STACK[MAXST]; on input, entries 1 through TOP // contain the indices of initial triangles (involving vertex I) // put in stack; the edges opposite I should be in interior; entries // TOP+1 through MAXST are used as a stack. // // Output, int SWAPEC, is set to 8 for abnormal return. // { int a; int b; int c; int e; int ee; int em1; int ep1; int f; int fm1; int fp1; int l; int r; int s; int swap; int t; int tt; int u; double x; double y; // // Determine whether triangles in stack are Delaunay, and swap // diagonal edge of convex quadrilateral if not. // x = point_xy[2*(i-1)+0]; y = point_xy[2*(i-1)+1]; for ( ; ; ) { if ( *top <= 0 ) { break; } t = stack[(*top)-1]; *top = *top - 1; if ( tri_vert[3*(t-1)+0] == i ) { e = 2; b = tri_vert[3*(t-1)+2]; } else if ( tri_vert[3*(t-1)+1] == i ) { e = 3; b = tri_vert[3*(t-1)+0]; } else { e = 1; b = tri_vert[3*(t-1)+1]; } a = tri_vert[3*(t-1)+e-1]; u = tri_nabe[3*(t-1)+e-1]; if ( tri_nabe[3*(u-1)+0] == t ) { f = 1; c = tri_vert[3*(u-1)+2]; } else if ( tri_nabe[3*(u-1)+1] == t ) { f = 2; c = tri_vert[3*(u-1)+0]; } else { f = 3; c = tri_vert[3*(u-1)+1]; } swap = diaedg ( x, y, point_xy[2*(a-1)+0], point_xy[2*(a-1)+1], point_xy[2*(c-1)+0], point_xy[2*(c-1)+1], point_xy[2*(b-1)+0], point_xy[2*(b-1)+1] ); if ( swap == 1 ) { em1 = i4_wrap ( e - 1, 1, 3 ); ep1 = i4_wrap ( e + 1, 1, 3 ); fm1 = i4_wrap ( f - 1, 1, 3 ); fp1 = i4_wrap ( f + 1, 1, 3 ); tri_vert[3*(t-1)+ep1-1] = c; tri_vert[3*(u-1)+fp1-1] = i; r = tri_nabe[3*(t-1)+ep1-1]; s = tri_nabe[3*(u-1)+fp1-1]; tri_nabe[3*(t-1)+ep1-1] = u; tri_nabe[3*(u-1)+fp1-1] = t; tri_nabe[3*(t-1)+e-1] = s; tri_nabe[3*(u-1)+f-1] = r; if ( 0 < tri_nabe[3*(u-1)+fm1-1] ) { *top = *top + 1; stack[(*top)-1] = u; } if ( 0 < s ) { if ( tri_nabe[3*(s-1)+0] == u ) { tri_nabe[3*(s-1)+0] = t; } else if ( tri_nabe[3*(s-1)+1] == u ) { tri_nabe[3*(s-1)+1] = t; } else { tri_nabe[3*(s-1)+2] = t; } *top = *top + 1; if ( point_num < *top ) { return 8; } stack[(*top)-1] = t; } else { if ( u == *btri && fp1 == *bedg ) { *btri = t; *bedg = e; } l = - ( 3 * t + e - 1 ); tt = t; ee = em1; while ( 0 < tri_nabe[3*(tt-1)+ee-1] ) { tt = tri_nabe[3*(tt-1)+ee-1]; if ( tri_vert[3*(tt-1)+0] == a ) { ee = 3; } else if ( tri_vert[3*(tt-1)+1] == a ) { ee = 1; } else { ee = 2; } } tri_nabe[3*(tt-1)+ee-1] = l; } if ( 0 < r ) { if ( tri_nabe[3*(r-1)+0] == t ) { tri_nabe[3*(r-1)+0] = u; } else if ( tri_nabe[3*(r-1)+1] == t ) { tri_nabe[3*(r-1)+1] = u; } else { tri_nabe[3*(r-1)+2] = u; } } else { if ( t == *btri && ep1 == *bedg ) { *btri = u; *bedg = f; } l = - ( 3 * u + f - 1 ); tt = u; ee = fm1; while ( 0 < tri_nabe[3*(tt-1)+ee-1] ) { tt = tri_nabe[3*(tt-1)+ee-1]; if ( tri_vert[3*(tt-1)+0] == b ) { ee = 3; } else if ( tri_vert[3*(tt-1)+1] == b ) { ee = 1; } else { ee = 2; } } tri_nabe[3*(tt-1)+ee-1] = l; } } } return 0; } //****************************************************************************80 void timestamp ( void ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 August 2002 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 29 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); if ( len != 0 ) { cout << time_buffer << "\n"; } return; # undef TIME_SIZE } //****************************************************************************80 int tri_augment ( int v_num, int nodtri[] ) //****************************************************************************80 // // Purpose: // // TRI_AUGMENT augments the triangle data using vertices at infinity. // // Discussion: // // The algorithm simply looks at the list of triangle edges stored // in NODTRI, and determines which edges, of the form (P1,P2), do // not have a matching (P2,P1) occurrence. These correspond to // boundary edges of the convex hull. To simplify our computations, // we adjust the NODTRI array to accommodate an extra triangle with // one vertex at infinity for each such unmatched edge. // // The algorithm used here is ruinously inefficient for large V_NUM. // Assuming that this data structure modification is the way to go, // the routine should be rewritten to determine the boundary edges // more efficiently. // // The fictitious vertices at infinity show up in the augmenting // rows of the NODTRI array with negative indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int V_NUM, the number of Voronoi vertices. // // Input/output, int NODTRI[3*(V_NUM+V_INF)], the list of nodes that // comprise each Delaunay triangle. On input, there are V_NUM // sets of this data. On output, for every pair of nodes (P1,P2) // for which the pair (P2,P1) does not occur, an augmenting triangle // has been created with exactly this edge (plus a vertex at infinity). // On output, there are V_NUM + V_INF sets of data. // // Output, int TRI_AUGMENT, the value of V_INF, the number of // augmenting triangles and vertices at infinity that were created. // { bool found; int i; int i2; int ip1; int s; int s2; int t; int t2; int v; int v_inf; int v2; v_inf = 0; for ( v = 0; v < v_num; v++ ) { for ( i = 0; i < 3; i++ ) { s = nodtri[i+v*3]; ip1 = i4_wrap ( i + 1, 0, 2 ); t = nodtri[ip1+v*3]; found = false; for ( v2 = 0; v2 < v_num; v2++ ) { for ( i2 = 0; i2 < 3; i2++ ) { s2 = nodtri[i2+v2*3]; ip1 = i4_wrap ( i2 + 1, 0, 2 ); t2 = nodtri[ip1+v2*3]; if ( s == t2 && t == s2 ) { found = true; break; } } if ( found ) { break; } } if ( !found ) { nodtri[0+(v_num+v_inf)*3] = -(v_inf+1); nodtri[1+(v_num+v_inf)*3] = t; nodtri[2+(v_num+v_inf)*3] = s; v_inf = v_inf + 1; } } } cout << "\n"; cout << "TRI_AUGMENT:\n"; cout << " Number of boundary triangles = " << v_inf << "\n"; return v_inf; } //****************************************************************************80 double *triangle_circumcenter_2d ( double t[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_CIRCUMCENTER_2D computes the circumcenter of a triangle in 2D. // // Discussion: // // The circumcenter of a triangle is the center of the circumcircle, the // circle that passes through the three vertices of the triangle. // // The circumcircle contains the triangle, but it is not necessarily the // smallest triangle to do so. // // If all angles of the triangle are no greater than 90 degrees, then // the center of the circumscribed circle will lie inside the triangle. // Otherwise, the center will lie outside the triangle. // // The circumcenter is the intersection of the perpendicular bisectors // of the sides of the triangle. // // In geometry, the circumcenter of a triangle is often symbolized by "O". // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the triangle vertices. // // Output, double *TRIANGLE_CIRCUMCENTER_2D[2], the circumcenter of the triangle. // { # define NDIM 2 double asq; double bot; double *center; double csq; double top1; double top2; center = new double[NDIM]; asq = ( t[0+1*2] - t[0+0*2] ) * ( t[0+1*2] - t[0+0*2] ) + ( t[1+1*2] - t[1+0*2] ) * ( t[1+1*2] - t[1+0*2] ); csq = ( t[0+2*2] - t[0+0*2] ) * ( t[0+2*2] - t[0+0*2] ) + ( t[1+2*2] - t[1+0*2] ) * ( t[1+2*2] - t[1+0*2] ); top1 = ( t[1+1*2] - t[1+0*2] ) * csq - ( t[1+2*2] - t[1+0*2] ) * asq; top2 = - ( t[0+1*2] - t[0+0*2] ) * csq + ( t[0+2*2] - t[0+0*2] ) * asq; bot = ( t[1+1*2] - t[1+0*2] ) * ( t[0+2*2] - t[0+0*2] ) - ( t[1+2*2] - t[1+0*2] ) * ( t[0+1*2] - t[0+0*2] ); center[0] = t[0+0*2] + 0.5 * top1 / bot; center[1] = t[1+0*2] + 0.5 * top2 / bot; return center; # undef NDIM } //****************************************************************************80 void vbedg ( double x, double y, int point_num, double point_xy[], int tri_num, int tri_vert[], int tri_nabe[], int *ltri, int *ledg, int *rtri, int *redg ) //****************************************************************************80 // // Purpose: // // VBEDG determines which boundary edges are visible to a point. // // Discussion: // // The point (X,Y) is assumed to be outside the convex hull of the // region covered by the 2D triangulation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 September 2003 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double X, Y, the coordinates of a point outside the convex hull // of the current triangulation. // // Input, int POINT_NUM, the number of points. // // Input, double POINT_XY[POINT_NUM*2], the coordinates of the vertices. // // Input, int TRI_NUM, the number of triangles. // // Input, int TRI_VERT[TRI_NUM*3], the triangle incidence list. // // Input, int TRI_NABE[TRI_NUM*3], the triangle neighbor list; negative // values are used for links of a counter clockwise linked list of boundary // edges; // LINK = -(3*I + J-1) where I, J = triangle, edge index. // // Input/output, int *LTRI, *LEDG. If LTRI != 0 then these values are // assumed to be already computed and are not changed, else they are updated. // On output, LTRI is the index of boundary triangle to the left of the // leftmost boundary triangle visible from (X,Y), and LEDG is the boundary // edge of triangle LTRI to the left of the leftmost boundary edge visible // from (X,Y). 1 <= LEDG <= 3. // // Input/output, int *RTRI. On input, the index of the boundary triangle // to begin the search at. On output, the index of the rightmost boundary // triangle visible from (X,Y). // // Input/output, int *REDG, the edge of triangle RTRI that is visible // from (X,Y). 1 <= REDG <= 3. // { int a; double ax; double ay; int b; double bx; double by; bool done; int e; int l; int lr; int t; // // Find the rightmost visible boundary edge using links, then possibly // leftmost visible boundary edge using triangle neighbor information. // if ( *ltri == 0 ) { done = false; *ltri = *rtri; *ledg = *redg; } else { done = true; } for ( ; ; ) { l = -tri_nabe[3*((*rtri)-1)+(*redg)-1]; t = l / 3; e = 1 + l % 3; a = tri_vert[3*(t-1)+e-1]; if ( e <= 2 ) { b = tri_vert[3*(t-1)+e]; } else { b = tri_vert[3*(t-1)+0]; } ax = point_xy[2*(a-1)+0]; ay = point_xy[2*(a-1)+1]; bx = point_xy[2*(b-1)+0]; by = point_xy[2*(b-1)+1]; lr = lrline ( x, y, ax, ay, bx, by, 0.0 ); if ( lr <= 0 ) { break; } *rtri = t; *redg = e; } if ( done ) { return; } t = *ltri; e = *ledg; for ( ; ; ) { b = tri_vert[3*(t-1)+e-1]; e = i4_wrap ( e-1, 1, 3 ); while ( 0 < tri_nabe[3*(t-1)+e-1] ) { t = tri_nabe[3*(t-1)+e-1]; if ( tri_vert[3*(t-1)+0] == b ) { e = 3; } else if ( tri_vert[3*(t-1)+1] == b ) { e = 1; } else { e = 2; } } a = tri_vert[3*(t-1)+e-1]; ax = point_xy[2*(a-1)+0]; ay = point_xy[2*(a-1)+1]; bx = point_xy[2*(b-1)+0]; by = point_xy[2*(b-1)+1]; lr = lrline ( x, y, ax, ay, bx, by, 0.0 ); if ( lr <= 0 ) { break; } } *ltri = t; *ledg = e; return; } //****************************************************************************80 void voronoi_data ( int g_num, double g_xy[], int g_degree[], int g_start[], int g_face[], int *v_num, double v_xy[], int *i_num, double i_xy[] ) //****************************************************************************80 // // Purpose: // // VORONOI_DATA returns data defining the Voronoi diagram. // // Discussion: // // The routine first determines the Delaunay triangulation. // // The Voronoi diagram is then determined from this information. // // In particular, the circumcenter of each Delaunay triangle // is a vertex of a Voronoi polygon. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int G_NUM, the number of generators. // // Input, double G_XY[2*G_NUM], the point coordinates. // // Output, int G_DEGREE[G_NUM], the degree of each Voronoi cell. // // Output, int G_START[G_NUM], the index in G_FACE of the first // vertex at which to begin a traversal of the boundary of the // cell associated with each point. // // Output, int G_FACE[6*G_NUM], the sequence of vertices to be used // in a traversal of the boundary of the cell associated with each point. // // Output, int *V_NUM, the number of vertices of the Voronoi diagram. // // Output, double V_XY[2*V_NUM], the coordinates of the vertices // of the Voronoi diagram. // // Output, int *I_NUM, the number of vertices at infinity of the // Voronoi diagram. // // Output, double I_XY[2*I_NUM], the direction of the // vertices at infinity. // { # define NDIM 2 double *center; int count; bool debug = true; int g; int g_next; int i; int i1; int i2; int i3; int ix1; int ix2; int j; int jp1; int jp2; int k; int *nodtri; double *normal; int s; int sp1; int s_next; double t[NDIM*3]; int *tnbr; int v; int v_inf; int v_next; int v_old; int v_save; double x1; double x2; double y1; double y2; // // Compute the Delaunay triangulation. // nodtri = new int[3*(2*g_num)]; tnbr = new int[3*(2*g_num)]; dtris2 ( g_num, g_xy, v_num, nodtri, tnbr ); // // At this point, you could extend the NODTRI and TNBR data structures // to account for the "vertices at infinity." // v_inf = tri_augment ( *v_num, nodtri ); if ( debug ) { cout << "\n"; cout << " The generators that form each Delaunay triangle:\n"; cout << " (Negative values are fictitious nodes at infinity.)\n"; cout << "\n"; i4mat_transpose_print ( 3, *v_num + v_inf, nodtri, " Triangle nodes:" ); } // // Negative entries in TNBR indicate a semi-infinite Voronoi side. // However, DTRIS2 uses a peculiar numbering. Renumber them. // *i_num = 0; for ( v = 0; v < *v_num; v++ ) { for ( i = 0; i < 3; i++ ) { if ( tnbr[i+v*3] < 0 ) { *i_num = *i_num + 1; tnbr[i+v*3] = -(*i_num); } } } if ( debug ) { cout << "\n"; cout << " Neighboring triangles of each Delaunay triangle:\n"; cout << " Negative values indicate no finite neighbor.\n"; cout << "\n"; i4mat_transpose_print ( 3, *v_num, tnbr, " Neighbor triangles:" ); } // // Determine the degree of each cell. // for ( g = 0; g < g_num; g++ ) { g_degree[g] = 0; } for ( j = 0; j < *v_num + v_inf; j++ ) { for ( i = 0; i < 3; i++ ) { k = nodtri[i+j*3]; if ( 0 < k ) { g_degree[k-1] = g_degree[k-1] + 1; } } } if ( debug ) { i4vec_print ( g_num, g_degree, " Voronoi cell degrees:" ); } // // Each (finite) Delaunay triangle contains a vertex of the Voronoi polygon, // at the triangle's circumcenter. // for ( j = 0; j < *v_num; j++ ) { i1 = nodtri[0+j*3]; i2 = nodtri[1+j*3]; i3 = nodtri[2+j*3]; t[0+0*2] = g_xy[0+(i1-1)*2]; t[1+0*2] = g_xy[1+(i1-1)*2]; t[0+1*2] = g_xy[0+(i2-1)*2]; t[1+1*2] = g_xy[1+(i2-1)*2]; t[0+2*2] = g_xy[0+(i3-1)*2]; t[1+2*2] = g_xy[1+(i3-1)*2]; center = triangle_circumcenter_2d ( t ); v_xy[0+j*2] = center[0]; v_xy[1+j*2] = center[1]; delete [] center; } if ( debug ) { r8mat_transpose_print ( 2, *v_num, v_xy, " The Voronoi vertices:" ); } // // For each generator G: // Determine if its region is infinite. // Find a Delaunay triangle containing G. // Seek another triangle containing the next node in that triangle. // count = 0; for ( g = 0; g < g_num; g++ ) { g_start[g] = 0; } for ( g = 1; g <= g_num; g++ ) { v_next = 0; for ( v = 1; v <= *v_num + v_inf; v++ ) { for ( s = 1; s <= 3; s++ ) { if ( nodtri[s-1+(v-1)*3] == g ) { v_next = v; s_next = s; break; } } if ( v_next != 0 ) { break; } } v_save = v_next; for ( ; ; ) { s_next = i4_wrap ( s_next + 1, 1, 3 ); g_next = nodtri[s_next-1+(v_next-1)*3]; if ( g_next == g ) { s_next = i4_wrap ( s_next + 1, 1, 3 ); g_next = nodtri[s_next-1+(v_next-1)*3]; } v_old = v_next; v_next = 0; for ( v = 1; v <= *v_num + v_inf; v++ ) { if ( v == v_old ) { continue; } for ( s = 1; s <= 3; s++ ) { if ( nodtri[s-1+(v-1)*3] == g ) { sp1 = i4_wrap ( s + 1, 1, 3 ); if ( nodtri[sp1-1+(v-1)*3] == g_next ) { v_next = v; s_next = sp1; break; } sp1 = i4_wrap ( s + 2, 1, 3 ); if ( nodtri[sp1-1+(v-1)*3] == g_next ) { v_next = v; s_next = sp1; break; } } } if ( v_next != 0 ) { break; } } if ( v_next == v_save ) { break; } if ( v_next == 0 ) { v_next = v_old; break; } } // // Now, starting in the current triangle, V_NEXT, cycle again, // and copy the list of nodes into the array. // v_save = v_next; count = count + 1; g_start[g-1] = count; g_face[count-1] = v_next; for ( ; ; ) { s_next = i4_wrap ( s_next + 1, 1, 3 ); g_next = nodtri[s_next-1+(v_next-1)*3]; if ( g_next == g ) { s_next = i4_wrap ( s_next + 1, 1, 3 ); g_next = nodtri[s_next-1+(v_next-1)*3]; } v_old = v_next; v_next = 0; for ( v = 1; v <= *v_num + v_inf; v++ ) { if ( v == v_old ) { continue; } for ( s = 1; s <= 3; s++ ) { if ( nodtri[s-1+(v-1)*3] == g ) { sp1 = i4_wrap ( s + 1, 1, 3 ); if ( nodtri[sp1-1+(v-1)*3] == g_next ) { v_next = v; s_next = sp1; break; } sp1 = i4_wrap ( s + 2, 1, 3 ); if ( nodtri[sp1-1+(v-1)*3] == g_next ) { v_next = v; s_next = sp1; break; } } } if ( v_next != 0 ) { break; } } if ( v_next == v_save ) { break; } if ( v_next == 0 ) { break; } count = count + 1; g_face[count-1] = v_next; } } // // Mark all the vertices at infinity with a negative sign, // so that the data in G_FACE is easier to interpret. // for ( i = 0; i < count; i++ ) { if ( *v_num < g_face[i] ) { g_face[i] = -g_face[i]; } } cout << "\n"; cout << " G_START: The index of the first Voronoi vertex\n"; cout << " G_FACE: The Voronoi vertices\n"; cout << "\n"; cout << " G G_START G_FACE\n"; cout << "\n"; for ( j = 0; j < g_num; j++ ) { k = g_start[j] - 1; cout << "\n"; cout << " " << setw(4) << j+1 << " " << setw(4) << k+1 << " " << setw(4) << g_face[k] << "\n"; for ( i = 1; i < g_degree[j]; i++ ) { k = k + 1; cout << " " << setw(4) << g_face[k] << "\n"; } } // // For each (finite) Delaunay triangle, I // For each side J, // for ( i = 0; i < *v_num; i++ ) { for ( j = 0; j < 3; j++ ) { k = tnbr[j+i*3]; // // If there is no neighboring triangle on that side, // extend a line from the circumcenter of I in the direction of the // outward normal to that side. This is an infinite edge of // an infinite Voronoi polygon. // if ( k < 0 ) { ix1 = nodtri[j+i*3]; // x1 = g_xy[0+(ix1-1)*2]; // y1 = g_xy[1+(ix1-1)*2]; jp1 = i4_wrap ( j+1, 0, 2 ); ix2 = nodtri[jp1+i*3]; // x2 = g_xy[0+(ix2-1)*2]; // y2 = g_xy[1+(ix2-1)*2]; // // Compute the direction I_XY(1:2,-K). // normal = line_exp_normal_2d ( g_xy+(ix1-1)*2, g_xy+(ix2-1)*2 ); i_xy[0+(-k-1)*2] = normal[0]; i_xy[1+(-k-1)*2] = normal[1]; delete [] normal; } } } return; # undef NDIM }