# include # include # include # include # include using namespace std; # include "test_min.hpp" //****************************************************************************80 double p00_f ( int problem, double x ) //****************************************************************************80 // // Purpose: // // P00_F evaluates the function for any problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the problem number. // // Input, double X, the argument of the objective function. // // Output, double P00_F, the value of the objective function. // { double f; if ( problem == 1 ) { f = p01_f ( x ); } else if ( problem == 2 ) { f = p02_f ( x ); } else if ( problem == 3 ) { f = p03_f ( x ); } else if ( problem == 4 ) { f = p04_f ( x ); } else if ( problem == 5 ) { f = p05_f ( x ); } else if ( problem == 6 ) { f = p06_f ( x ); } else if ( problem == 7 ) { f = p07_f ( x ); } else if ( problem == 8 ) { f = p08_f ( x ); } else if ( problem == 9 ) { f = p09_f ( x ); } else if ( problem == 10 ) { f = p10_f ( x ); } else if ( problem == 11 ) { f = p11_f ( x ); } else { cerr << "\n"; cerr << "P00_F - Fatal error!\n"; cerr << " Illegal problem number PROBLEM = " << problem << "\n"; exit ( 1 ); } return f; } //****************************************************************************80 double p00_f1 ( int problem, double x ) //****************************************************************************80 // // Purpose: // // P00_F1 evaluates the first derivative for any problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the problem number. // // Input, double X, the value of the variable. // // Output, double F1, the first derivative of the // objective function. // { double f1; if ( problem == 1 ) { f1 = p01_f1 ( x ); } else if ( problem == 2 ) { f1 = p02_f1 ( x ); } else if ( problem == 3 ) { f1 = p03_f1 ( x ); } else if ( problem == 4 ) { f1 = p04_f1 ( x ); } else if ( problem == 5 ) { f1 = p05_f1 ( x ); } else if ( problem == 6 ) { f1 = p06_f1 ( x ); } else if ( problem == 7 ) { f1 = p07_f1 ( x ); } else if ( problem == 8 ) { f1 = p08_f1 ( x ); } else if ( problem == 9 ) { f1 = p09_f1 ( x ); } else if ( problem == 10 ) { f1 = p10_f1 ( x ); } else if ( problem == 11 ) { f1 = p11_f1 ( x ); } else { cerr << "\n"; cerr << "P00_F1 - Fatal error!\n"; cerr << " Illegal problem number PROBLEM = " << problem << "\n"; exit ( 1 ); } return f1; } //****************************************************************************80 double p00_f1_dif ( int problem, double x ) //****************************************************************************80 // // Purpose: // // P00_F1_DIF approximates the first derivative via finite differences. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the problem number. // // Input, double X, the point where the gradient is to // be approximated. // // Output, double F1_DIF, the approximated gradient vector. // { double dx; double eps; double f1_dif; double fminus; double fplus; double xi; eps = pow ( r8_epsilon ( ), 0.33 ); if ( 0.0 <= x ) { dx = eps * ( x + 1.0 ); } else { dx = eps * ( x - 1.0 ); } xi = x; x = xi + dx; fplus = p00_f ( problem, x ); x = xi - dx; fminus = p00_f ( problem, x ); f1_dif = ( fplus - fminus ) / ( 2.0 * dx ); x = xi; return f1_dif; } //****************************************************************************80 double p00_f2 ( int problem, double x ) //****************************************************************************80 // // Purpose: // // P00_F2 evaluates the second derivative for any problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the values of the variables. // // Output, double F2, the second derivative. // { double f2; if ( problem == 1 ) { f2 = p01_f2 ( x ); } else if ( problem == 2 ) { f2 = p02_f2 ( x ); } else if ( problem == 3 ) { f2 = p03_f2 ( x ); } else if ( problem == 4 ) { f2 = p04_f2 ( x ); } else if ( problem == 5 ) { f2 = p05_f2 ( x ); } else if ( problem == 6 ) { f2 = p06_f2 ( x ); } else if ( problem == 7 ) { f2 = p07_f2 ( x ); } else if ( problem == 8 ) { f2 = p08_f2 ( x ); } else if ( problem == 9 ) { f2 = p09_f2 ( x ); } else if ( problem == 10 ) { f2 = p10_f2 ( x ); } else if ( problem == 11 ) { f2 = p11_f2 ( x ); } else { cerr << "\n"; cerr << "P00_F2 - Fatal error!\n"; cerr << " Illegal problem number PROBLEM = " << problem << "\n"; exit ( 1 ); } return f2; } //****************************************************************************80 double p00_f2_dif ( int problem, double x ) //****************************************************************************80 // // Purpose: // // P00_F2_DIF approximates the second derivative via finite differences. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the problem number. // // Input, double X, the value of the variable. // // Output, double F2_DIF, the approximate second derivative. // { double eps; double f00; double f2_dif; double fmm; double fpp; double s; double xi; // // Choose the stepsize. // eps = pow ( r8_epsilon ( ), 0.33 ); s = eps * ( r8_abs ( x ) + 1.0 ); xi = x; f00 = p00_f ( problem, x ); x = xi + s; fpp = p00_f ( problem, x ); x = xi - s; fmm = p00_f ( problem, x ); f2_dif = ( ( fpp - f00 ) + ( fmm - f00 ) ) / s / s; x = xi; return f2_dif; } //****************************************************************************80 double p00_fmin ( double *a, double *b, int problem, double tol ) //****************************************************************************80 // // Purpose: // // P00_FMIN seeks a minimizer of a scalar function of a scalar variable. // // Discussion: // // FMIN seeks an approximation to the point where F attains a minimum on // the interval (A,B). // // The method used is a combination of golden section search and // successive parabolic interpolation. Convergence is never much // slower than that for a Fibonacci search. If F has a continuous // second derivative which is positive at the minimum (which is not // at A or B), then convergence is superlinear, and usually of the // order of about 1.324.... // // The function F is never evaluated at two points closer together // than EPS * ABS ( FMIN ) + (TOL/3), where EPS is approximately the // square root of the relative machine precision. If F is a unimodal // function and the computed values of F are always unimodal when // separated by at least EPS * ABS ( XSTAR ) + (TOL/3), then FMIN // approximates the abcissa of the global minimum of F on the // interval [A, B] with an error less than 3 * EPS * ABS ( FMIN ) + TOL. // If F is not unimodal, then FMIN may approximate a local, but // perhaps non-global, minimum to the same accuracy. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // Richard Brent, // Algorithms for Minimization without Derivatives, // Prentice Hall, 1973. // // David Kahaner, Cleve Moler, Steven Nash, // Numerical Methods and Software, // Prentice Hall, 1988. // // Parameters // // Input/output, double A, B. On input, the left and right // endpoints of the initial interval. On output, the lower and upper // bounds for the minimizer. // // Input, int PROBLEM, the index of a problem. // // Input, double TOL, the desired length of the interval of // uncertainty of the final result. TOL must not be negative. // // Output, double P00_FMIN, the abcissa approximating the // minimizer of f. // { double c; double d; double e; double eps; double fu; double fv; double fw; double fx; double midpoint; double p; double q; double r; double tol1; double tol2; double u; double v; double w; double x; c = 0.5 * ( 3.0 - sqrt ( 5.0 ) ); // // C is the squared inverse of the golden ratio. // // EPS is the square root of the relative machine precision. // eps = sqrt ( r8_epsilon ( ) ); // // Initialization. // v = *a + c * ( *b - *a ); w = v; x = v; e = 0.0; fx = p00_f ( problem, x ); fv = fx; fw = fx; // // The main loop starts here. // for ( ; ; ) { midpoint = 0.5 * ( *a + *b ); tol1 = eps * r8_abs ( x ) + tol / 3.0; tol2 = 2.0 * tol1; // // Check the stopping criterion. // if ( r8_abs ( x - midpoint ) <= ( tol2 - 0.5 * ( *b - *a ) ) ) { break; } // // Is golden-section necessary? // if ( r8_abs ( e ) <= tol1 ) { if ( midpoint <= x ) { e = *a - x; } else { e = *b - x; } d = c * e; } // // Consider fitting a parabola. // else { r = ( x - w ) * ( fx - fv ); q = ( x - v ) * ( fx - fw ); p = ( x - v ) * q - ( x - w ) * r; q = 2.0 * ( q - r ); if ( 0.0 < q ) { p = -p; } q = r8_abs ( q ); r = e; e = d; // // Choose a golden-section step if the parabola is not advised. // if ( ( r8_abs ( 0.5 * q * r ) <= r8_abs ( p ) ) || ( p <= q * ( *a - x ) ) || ( q * ( *b - x ) <= p ) ) { if ( midpoint <= x ) { e = *a - x; } else { e = *b - x; } d = c * e; } // // Choose a parabolic interpolation step. // else { d = p / q; u = x + d; if ( ( u - *a ) < tol2 ) { d = r8_abs ( tol1 ) * r8_sign ( midpoint - x ); } if ( ( *b - u ) < tol2 ) { d = r8_abs ( tol1 ) * r8_sign ( midpoint - x ); } } } // // F must not be evaluated too close to X. // if ( tol1 <= r8_abs ( d ) ) { u = x + d; } if ( r8_abs ( d ) < tol1 ) { u = x + r8_abs ( tol1 ) * r8_sign ( d ); } fu = p00_f ( problem, u ); // // Update the data. // if ( fu <= fx ) { if ( x <= u ) { *a = x; } else { *b = x; } v = w; fv = fw; w = x; fw = fx; x = u; fx = fu; continue; } if ( u < x ) { *a = u; } else { *b = u; } if ( fu <= fw || w == x ) { v = w; fv = fw; w = u; fw = fu; } else if ( fu <= fv || v == x || v == w ) { v = u; fv = fu; } } return x; } //****************************************************************************80 void p00_interval ( int problem, double *a, double *b ) //****************************************************************************80 // // Purpose: // // P00_INTERVAL returns a bracketing interval for any problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the problem index. // // Output, double *A, *B, two points, between which a local // minimizer should be sought. // { if ( problem == 1 ) { p01_interval ( a, b ); } else if ( problem == 2 ) { p02_interval ( a, b ); } else if ( problem == 3 ) { p03_interval ( a, b ); } else if ( problem == 4 ) { p04_interval ( a, b ); } else if ( problem == 5 ) { p05_interval ( a, b ); } else if ( problem == 6 ) { p06_interval ( a, b ); } else if ( problem == 7 ) { p07_interval ( a, b ); } else if ( problem == 8 ) { p08_interval ( a, b ); } else if ( problem == 9 ) { p09_interval ( a, b ); } else if ( problem == 10 ) { p10_interval ( a, b ); } else if ( problem == 11 ) { p11_interval ( a, b ); } else { cerr << "\n"; cerr << "P00_INTERVAL - Fatal error!\n"; cerr << " Illegal problem number PROBLEM = " << problem << "\n"; exit ( 1 ); } return; } //****************************************************************************80 int p00_problem_num ( ) //****************************************************************************80 // // Purpose: // // P00_PROBLEM_NUM returns the number of problems available. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, int P00_PROBLEM_NUM, the number of problems. // { int problem_num; problem_num = 11; return problem_num; } //****************************************************************************80 void p00_sol ( int problem, int *know, double *x ) //****************************************************************************80 // // Purpose: // // P00_SOL returns the solution for any problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the problem number. // // Output, int *KNOW. // If KNOW is 0, then the solution is not known. // If KNOW is positive, then the solution is known, and is returned in X. // // Output, double *X, the solution, if known. // { if ( problem == 1 ) { p01_sol ( know, x ); } else if ( problem == 2 ) { p02_sol ( know, x ); } else if ( problem == 3 ) { p03_sol ( know, x ); } else if ( problem == 4 ) { p04_sol ( know, x ); } else if ( problem == 5 ) { p05_sol ( know, x ); } else if ( problem == 6 ) { p06_sol ( know, x ); } else if ( problem == 7 ) { p07_sol ( know, x ); } else if ( problem == 8 ) { p08_sol ( know, x ); } else if ( problem == 9 ) { p09_sol ( know, x ); } else if ( problem == 10 ) { p10_sol ( know, x ); } else if ( problem == 11 ) { p11_sol ( know, x ); } else { cerr << "\n"; cerr << "P00_SOL - Fatal error!\n"; cerr << " Illegal problem number PROBLEM = " << problem << "\n"; exit ( 1 ); } return; } //****************************************************************************80 double p00_start ( int problem ) //****************************************************************************80 // // Purpose: // // P00_START returns a starting point for optimization for any problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the problem index. // // Output, double P00_START, a starting point for the optimization. // { double x; if ( problem == 1 ) { x = p01_start ( ); } else if ( problem == 2 ) { x = p02_start ( ); } else if ( problem == 3 ) { x = p03_start ( ); } else if ( problem == 4 ) { x = p04_start ( ); } else if ( problem == 5 ) { x = p05_start ( ); } else if ( problem == 6 ) { x = p06_start ( ); } else if ( problem == 7 ) { x = p07_start ( ); } else if ( problem == 8 ) { x = p08_start ( ); } else if ( problem == 9 ) { x = p09_start ( ); } else if ( problem == 10 ) { x = p10_start ( ); } else if ( problem == 11 ) { x = p11_start ( ); } else { cerr << "\n"; cerr << "P00_START - Fatal error!\n"; cerr << " Illegal problem number PROBLEM = " << problem << "\n"; exit ( 1 ); } return x; } //****************************************************************************80 string p00_title ( int problem ) //****************************************************************************80 // // Purpose: // // P00_TITLE returns a title for any problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the problem index. // // Output, string P00_TITLE, a title for the problem. // { string title; if ( problem == 1 ) { title = p01_title ( ); } else if ( problem == 2 ) { title = p02_title ( ); } else if ( problem == 3 ) { title = p03_title ( ); } else if ( problem == 4 ) { title = p04_title ( ); } else if ( problem == 5 ) { title = p05_title ( ); } else if ( problem == 6 ) { title = p06_title ( ); } else if ( problem == 7 ) { title = p07_title ( ); } else if ( problem == 8 ) { title = p08_title ( ); } else if ( problem == 9 ) { title = p09_title ( ); } else if ( problem == 10 ) { title = p10_title ( ); } else if ( problem == 11 ) { title = p11_title ( ); } else { cerr << "\n"; cerr << " 'P00_TITLE - Fatal error!\n"; cerr << " Illegal problem number PROBLEM = " << problem << "\n"; exit ( 1 ); } return title; } //****************************************************************************80 double p01_f ( double x ) //****************************************************************************80 // // Purpose: // // P01_F evaluates the objective function for problem 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the argument of the objective function. // // Output, double P01_F, the value of the objective function. // { double f; f = ( x - 2.0 ) * ( x - 2.0 ) + 1.0; return f; } //****************************************************************************80 double p01_f1 ( double x ) //****************************************************************************80 // // Purpose: // // P01_F1 evaluates the first derivative for problem 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value of the variable. // // Output, double P01_F1, the first derivative of the // objective function. // { double f1; f1 = 2.0 * ( x - 2.0 ); return f1; } //****************************************************************************80 double p01_f2 ( double x ) //****************************************************************************80 // // Purpose: // // P01_F2 evaluates the second derivative for problem 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the values of the variables. // // Output, double P01_F2, the second derivative. // { double f2; f2 = 2.0; return f2; } //****************************************************************************80 void p01_interval ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // P01_INTERVAL returns a starting interval for optimization for problem 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double *A, *B, two points defining an interval in which // the local minimizer should be sought. // { *a = 0.0; *b = 3.141592653589793; return; } //****************************************************************************80 void p01_sol ( int *know, double *x ) //****************************************************************************80 // // Purpose: // // P01_SOL returns the solution for problem 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, int *KNOW. // If KNOW is 0, then the solution is not known. // If KNOW is positive, then the solution is known, and is returned in X. // // Output, double *X, the solution, if known. // { *know = 1; *x = 2.0; return; } //****************************************************************************80 double p01_start ( ) //****************************************************************************80 // // Purpose: // // P01_START returns a starting point for optimization for problem 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double P01_START, a starting point for the optimization. // { double x; x = 3.141592653589793; return x; } //****************************************************************************80 string p01_title ( ) //****************************************************************************80 // // Purpose: // // P01_TITLE returns a title for problem 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P01_TITLE, a title for the problem. // { string title; title = "Simple quadratic, (x-2)^2+1."; return title; } //****************************************************************************80 double p02_f ( double x ) //****************************************************************************80 // // Purpose: // // P02_F evaluates the objective function for problem 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // LE Scales, // Introduction to Non-Linear Optimization, // Springer, 1985. // // Parameters: // // Input, double X, the argument of the objective function. // // Output, double P02_F, the value of the objective function. // { double f; f = x * x + exp ( - x ); return f; } //****************************************************************************80 double p02_f1 ( double x ) //****************************************************************************80 // // Purpose: // // P02_F1 evaluates the first derivative for problem 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value of the variable. // // Output, double P02_F1, the first derivative of the // objective function. // { double f1; f1 = 2.0 * x - exp ( -x ); return f1; } //****************************************************************************80 double p02_f2 ( double x ) //****************************************************************************80 // // Purpose: // // P02_F2 evaluates the second derivative for problem 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // LE Scales, // Introduction to Non-Linear Optimization, // Springer, 1985. // // Parameters: // // Input, double X, the values of the variables. // // Output, double P02_2, the second derivative. // { double f2; f2 = 2.0 + exp ( -x ); return f2; } //****************************************************************************80 void p02_interval ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // P02_INTERVAL returns a starting interval for optimization for problem 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double *A, *B, two points defining an interval in which // the local minimizer should be sought. // { *a = 0.0; *b = 1.0; return; } //****************************************************************************80 void p02_sol ( int *know, double *x ) //****************************************************************************80 // // Purpose: // // P02_SOL returns the solution for problem 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, int *KNOW. // If KNOW is 0, then the solution is not known. // If KNOW is positive, then the solution is known, and is returned in X. // // Output, double *X, the solution, if known. // { *know = 1; *x = 0.351734; return; } //****************************************************************************80 double p02_start ( ) //****************************************************************************80 // // Purpose: // // P02_START returns a starting point for optimization for problem 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double P02_START, a starting point for the optimization. // { double x; x = 0.8; return x; } //****************************************************************************80 string p02_title ( ) //****************************************************************************80 // // Purpose: // // P02_TITLE returns a title for problem 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P02_TITLE, a title for the problem. // { string title; title = "Quadratic plus exponential, x^2 + e^(-x)."; return title; } //****************************************************************************80 double p03_f ( double x ) //****************************************************************************80 // // Purpose: // // P03_F evaluates the objective function for problem 3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // LE Scales, // Introduction to Non-Linear Optimization, // Springer, 1985. // // Parameters: // // Input, double X, the argument of the objective function. // // Output, double P03_F, the value of the objective function. // { double f; f = ( ( x * x + 2.0 ) * x + 1.0 ) * x + 3.0; return f; } //****************************************************************************80 double p03_f1 ( double x ) //****************************************************************************80 // // Purpose: // // P03_F1 evaluates the first derivative for problem 3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value of the variable. // // Output, double P03_F1, the first derivative of the // objective function. // { double f1; f1 = ( 4.0 * x * x + 4.0 ) * x + 1.0; return f1; } //****************************************************************************80 double p03_f2 ( double x ) //****************************************************************************80 // // Purpose: // // P03_F2 evaluates the second derivative for problem 3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // LE Scales, // Introduction to Non-Linear Optimization, // Springer, 1985. // // Parameters: // // Input, double X, the values of the variables. // // Output, double P03_F2, the second derivative. // { double f2; f2 = 12.0 * x * x + 4.0; return f2; } //****************************************************************************80 void p03_interval ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // P03_INTERVAL returns a starting interval for optimization for problem 3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double *A, *B, two points defining an interval in which // the local minimizer should be sought. // { *a = -2.0; *b = +2.0; return; } //****************************************************************************80 void p03_sol ( int *know, double *x ) //****************************************************************************80 // // Purpose: // // P03_SOL returns the solution for problem 3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, int *KNOW. // If KNOW is 0, then the solution is not known. // If KNOW is positive, then the solution is known, and is returned in X. // // Output, double *X, the solution, if known. // { *know = 1; *x = -0.236733; return; } //****************************************************************************80 double p03_start ( ) //****************************************************************************80 // // Purpose: // // P03_START returns a starting point for optimization for problem 3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double P03_START, a starting point for the optimization. // { double x; x = 1.5; return x; } //****************************************************************************80 string p03_title ( ) //****************************************************************************80 // // Purpose: // // P03_TITLE returns a title for problem 3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P03_TITLE, a title for the problem. // { string title; title = "Quartic, x^4 + 2x^2 + x + 3."; return title; } //****************************************************************************80 double p04_f ( double x ) //****************************************************************************80 // // Purpose: // // P04_F evaluates the objective function for problem 4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // LE Scales, // Introduction to Non-Linear Optimization, // Springer, 1985. // // Parameters: // // Input, double X, the argument of the objective function. // // Output, double P04_F, the value of the objective function. // { double f; f = exp ( x ) + 0.01 / x; return f; } //****************************************************************************80 double p04_f1 ( double x ) //****************************************************************************80 // // Purpose: // // P04_F1 evaluates the first derivative for problem 4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value of the variable. // // Output, double P04_F1, the first derivative of the // objective function. // { double f1; f1 = exp ( x ) - 0.01 / x / x; return f1; } //****************************************************************************80 double p04_f2 ( double x ) //****************************************************************************80 // // Purpose: // // P04_F2 evaluates the second derivative for problem 4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // LE Scales, // Introduction to Non-Linear Optimization, // Springer, 1985. // // Parameters: // // Input, double X, the values of the variables. // // Output, double P04_F2, the second derivative. // { double f2; f2 = exp ( x ) + 0.02 / x / x / x; return f2; } //****************************************************************************80 void p04_interval ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // P04_INTERVAL returns a starting interval for optimization for problem 4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double *A, *B, two points defining an interval in which // the local minimizer should be sought. // { *a = 0.0001; *b = 1.0; return; } //****************************************************************************80 void p04_sol ( int *know, double *x ) //****************************************************************************80 // // Purpose: // // P04_SOL returns the solution for problem 4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, int KNOW. // If KNOW is 0, then the solution is not known. // If KNOW is positive, then the solution is known, and is returned in X. // // Output, double X, the solution, if known. // { *know = 1; *x = 0.0953446; return; } //****************************************************************************80 double p04_start ( ) //****************************************************************************80 // // Purpose: // // P04_START returns a starting point for optimization for problem 4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double P04_START, a starting point for the optimization. // { double x; x = 0.95; return x; } //****************************************************************************80 string p04_title ( ) //****************************************************************************80 // // Purpose: // // P04_TITLE returns a title for problem 4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P04_TITLE, a title for the problem. // { string title; title = "Steep valley, e^x + 1/(100x)."; return title; } //****************************************************************************80 double p05_f ( double x ) //****************************************************************************80 // // Purpose: // // P05_F evaluates the objective function for problem 5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // LE Scales, // Introduction to Non-Linear Optimization, // Springer, 1985. // // Parameters: // // Input, double X, the argument of the objective function. // // Output, double P05_F, the value of the objective function. // { double f; f = exp ( x ) - 2.0 * x + 0.01 / x - 0.000001 / x / x; return f; } //****************************************************************************80 double p05_f1 ( double x ) //****************************************************************************80 // // Purpose: // // P05_F1 evaluates the first derivative for problem 5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value of the variable. // // Output, double P05_F1, the first derivative of the // objective function. // { double f1; f1 = exp ( x ) - 2.0 - 0.01 / x / x + 0.000002 / x / x / x; return f1; } //****************************************************************************80 double p05_f2 ( double x ) //****************************************************************************80 // // Purpose: // // P05_F2 evaluates the second derivative for problem 5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // LE Scales, // Introduction to Non-Linear Optimization, // Springer, 1985. // // Parameters: // // Input, double X, the values of the variables. // // Output, double P05_F2, the second derivative. // { double f2; f2 = exp ( x ) + 0.02 / x / x / x - 0.000006 / x / x / x / x; return f2; } //****************************************************************************80 void p05_interval ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // P05_INTERVAL returns a starting interval for optimization for problem 5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double *A, *B, two points defining an interval in which // the local minimizer should be sought. // { *a = 0.0002; *b = 2.0; return; } //****************************************************************************80 void p05_sol ( int *know, double *x ) //****************************************************************************80 // // Purpose: // // P05_SOL returns the solution for problem 5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, int *KNOW. // If KNOW is 0, then the solution is not known. // If KNOW is positive, then the solution is known, and is returned in X. // // Output, double *X, the solution, if known. // { *know = 1; *x = 0.703206; return; } //****************************************************************************80 double p05_start ( ) //****************************************************************************80 // // Purpose: // // P05_START returns a starting point for optimization for problem 5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double P05_START, a starting point for the optimization. // { double x; x = 1.5; return x; } //****************************************************************************80 string p05_title ( ) //****************************************************************************80 // // Purpose: // // P05_TITLE returns a title for problem 5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P05_TITLE, a title for the problem. // { string title; title = "Steep valley, e^x - 2x + 1/(100x) - 1/(1000000x^2)."; return title; } //****************************************************************************80 double p06_f ( double x ) //****************************************************************************80 // // Purpose: // // P06_F evaluates the objective function for problem 6. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // Richard Brent, // Algorithms for Minimization Without Derivatives, // Prentice Hall 1973, // Reprinted Dover, 2002 // // Parameters: // // Input, double X, the argument of the objective function. // // Output, double P06_F, the value of the objective function. // { double f; f = 2.0 - x; return f; } //****************************************************************************80 double p06_f1 ( double x ) //****************************************************************************80 // // Purpose: // // P06_F1 evaluates the first derivative for problem 6. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value of the variable. // // Output, double P06_F1, the first derivative of the // objective function. // { double f1; f1 = -1.0; return f1; } //****************************************************************************80 double p06_f2 ( double x ) //****************************************************************************80 // // Purpose: // // P06_F2 evaluates the second derivative for problem 6. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // LE Scales, // Introduction to Non-Linear Optimization, // Springer, 1985. // // Parameters: // // Input, double X, the values of the variables. // // Output, double P06_F2, the second derivative. // { double f2; f2 = 0.0; return f2; } //****************************************************************************80 void p06_interval ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // P06_INTERVAL returns a starting interval for optimization for problem 6. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double *A, *B, two points defining an interval in which // the local minimizer should be sought. // { *a = 7.0; *b = 9.0; return; } //****************************************************************************80 void p06_sol ( int *know, double *x ) //****************************************************************************80 // // Purpose: // // P06_SOL returns the solution for problem 6. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, int *KNOW. // If KNOW is 0, then the solution is not known. // If KNOW is positive, then the solution is known, and is returned in X. // // Output, double *X, the solution, if known. // { *know = 1; *x = 9.0; return; } //****************************************************************************80 double p06_start ( ) //****************************************************************************80 // // Purpose: // // P06_START returns a starting point for optimization for problem 6. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double P06_START, a starting point for the optimization. // { double x; x = 7.2; return x; } //****************************************************************************80 string p06_title ( ) //****************************************************************************80 // // Purpose: // // P06_TITLE returns a title for problem 6. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P06_TITLE, a title for the problem. // { string title; title = "line, 2 - x."; return title; } //****************************************************************************80 double p07_f ( double x ) //****************************************************************************80 // // Purpose: // // P07_F evaluates the objective function for problem 7. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // Richard Brent, // Algorithms for Minimization Without Derivatives, // Prentice Hall 1973, // Reprinted Dover, 2002 // // Parameters: // // Input, double X, the argument of the objective function. // // Output, double P07_F, the value of the objective function. // { double f; f = ( x + sin ( x ) ) * exp ( - x * x ); return f; } //****************************************************************************80 double p07_f1 ( double x ) //****************************************************************************80 // // Purpose: // // P07_F1 evaluates the first derivative for problem 7. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value of the variable. // // Output, double P07_F1, the first derivative of the // objective function. // { double f1; f1 = ( 1.0 - 2.0 * x * x + cos ( x ) - 2.0 * x * sin ( x ) ) * exp ( - x * x ); return f1; } //****************************************************************************80 double p07_f2 ( double x ) //****************************************************************************80 // // Purpose: // // P07_F2 evaluates the second derivative for problem 7. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the values of the variables. // // Output, double P07_F2, the second derivative. // { double f2; f2 = ( - 4.0 - 2.0 * x - 4.0 * x * x * x - 3.0 * sin ( x ) - 4.0 * x * cos ( x ) + 4.0 * x * x * sin ( x ) ) * exp ( - x * x ); return f2; } //****************************************************************************80 void p07_interval ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // P07_INTERVAL returns a starting interval for optimization for problem 7. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double *A, *B, two points defining an interval in which // the local minimizer should be sought. // { *a = -10.0; *b = +10.0; return; } //****************************************************************************80 void p07_sol ( int *know, double *x ) //****************************************************************************80 // // Purpose: // // P07_SOL returns the solution for problem 7. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, int *KNOW. // If KNOW is 0, then the solution is not known. // If KNOW is positive, then the solution is known, and is returned in X. // // Output, double *X, the solution, if known. // { *know = 1; *x = -0.6795786599525; return; } //****************************************************************************80 double p07_start ( ) //****************************************************************************80 // // Purpose: // // P07_START returns a starting point for optimization for problem 7. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double P07_START, a starting point for the optimization. // { double x; x = -5.0; return x; } //****************************************************************************80 string p07_title ( ) //****************************************************************************80 // // Purpose: // // P07_TITLE returns a title for problem 7. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P07_TITLE, a title for the problem. // { string title; title = "The dying snake, ( x + sin(x) ) * e^(-x^2)."; return title; } //****************************************************************************80 double p08_f ( double x ) //****************************************************************************80 // // Purpose: // // P08_F evaluates the objective function for problem 8. // // Discussion: // // This function looks positive, but has a pole at x = pi, // near which f -> negative infinity, and has two zeroes nearby. // None of this will show up computationally. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // Arnold Krommer, Chriexit ( 1 );h Ueberhuber, // Numerical Integration on Advanced Systems, // Springer, 1994, pages 185-186. // // Parameters: // // Input, double X, the argument of the objective function. // // Output, double P08_F, the value of the objective function. // { double f; double pi = 3.141592653589793; if ( x == pi ) { f = - 10000.0; } else { f = 3.0 * x * x + 1.0 + ( log ( ( x - pi ) * ( x - pi ) ) ) / pow ( pi, 4 ); } return f; } //****************************************************************************80 double p08_f1 ( double x ) //****************************************************************************80 // // Purpose: // // P08_F1 evaluates the first derivative for problem 8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value of the variable. // // Output, double P08_F1, the first derivative of the // objective function. // { double f1; double pi = 3.141592653589793; if ( x == pi ) { f1 = 0.0; } else { f1 = 6.0 * x + ( 2.0 / ( x - pi ) ) / pow ( pi, 4 ); } return f1; } //****************************************************************************80 double p08_f2 ( double x ) //****************************************************************************80 // // Purpose: // // P08_F2 evaluates the second derivative for problem 8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the values of the variables. // // Output, double P08_F2, the second derivative. // { double f2; double pi = 3.141592653589793; if ( x == pi ) { f2 = 1.0; } else { f2 = 6.0 + ( - 2.0 / ( x - pi ) / ( x - pi ) ) / pow ( pi, 4 ); } return f2; } //****************************************************************************80 void p08_interval ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // P08_INTERVAL returns a starting interval for optimization for problem 8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double *A, *B, two points defining an interval in which // the local minimizer should be sought. // { *a = 2.0; *b = 4.0; return; } //****************************************************************************80 void p08_sol ( int *know, double *x ) //****************************************************************************80 // // Purpose: // // P08_SOL returns the solution for problem 8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, int *KNOW. // If KNOW is 0, then the solution is not known. // If KNOW is positive, then the solution is known, and is returned in X. // // Output, double *X, the solution, if known. // { double pi = 3.141592653589793; *know = 1; *x = pi; return; } //****************************************************************************80 double p08_start ( ) //****************************************************************************80 // // Purpose: // // P08_START returns a starting point for optimization for problem 8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double P08_START, a starting point for the optimization. // { double x; x = 3.1; return x; } //****************************************************************************80 string p08_title ( ) //****************************************************************************80 // // Purpose: // // P08_TITLE returns a title for problem 8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P08_TITLE, a title for the problem. // { string title; title = "The \"Thin Pole\", x^2+1+log((pi-x)^2)/pi^4"; return title; } //****************************************************************************80 double p09_f ( double x ) //****************************************************************************80 // // Purpose: // // P09_F evaluates the objective function for problem 9. // // Discussion: // // This function is oscillatory, with many local minima. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the argument of the objective function. // // Output, double P09_F, the value of the objective function. // { double f; f = x * x - 10.0 * sin ( x * x - 3.0 * x + 2.0 ); return f; } //****************************************************************************80 double p09_f1 ( double x ) //****************************************************************************80 // // Purpose: // // P09_F1 evaluates the first derivative for problem 9. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value of the variable. // // Output, double P09_F1, the first derivative of the // objective function. // { double f1; f1 = 2.0 * x - 10.0 * cos ( x * x - 3.0 * x + 2.0 ) * ( 2.0 * x - 3.0 ); return f1; } //****************************************************************************80 double p09_f2 ( double x ) //****************************************************************************80 // // Purpose: // // P09_F2 evaluates the second derivative for problem 9. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the values of the variables. // // Output, double P09_F2, the second derivative. // { double f2; f2 = 2.0 + 10.0 * sin ( x * x - 3.0 * x + 2.0 ) * ( 2.0 * x - 3.0 ) * ( 2.0 * x - 3.0 ) - 20.0 * cos ( x * x - 3.0 * x + 2.0 ); return f2; } //****************************************************************************80 void p09_interval ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // P09_INTERVAL returns a starting interval for optimization for problem 9. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double *A, *B, two points defining an interval in which // the local minimizer should be sought. // { *a = -5.0; *b = +5.0; return; } //****************************************************************************80 void p09_sol ( int *know, double *x ) //****************************************************************************80 // // Purpose: // // P09_SOL returns the solution for problem 9. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, int *KNOW. // If KNOW is 0, then the solution is not known. // If KNOW is positive, then the solution is known, and is returned in X. // // Output, double *X, the solution, if known. // { *know = 1; *x = 0.146621498932095; return; } //****************************************************************************80 double p09_start ( ) //****************************************************************************80 // // Purpose: // // P09_START returns a starting point for optimization for problem 9. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double P09_START, a starting point for the optimization. // { double x; x = -2.0; return x; } //****************************************************************************80 string p09_title ( ) //****************************************************************************80 // // Purpose: // // P09_TITLE returns a title for problem 9. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P09_TITLE, a title for the problem. // { string title; title = "The oscillatory parabola"; return title; } //****************************************************************************80 double p10_f ( double x ) //****************************************************************************80 // // Purpose: // // P10_F evaluates the objective function for problem 10. // // Discussion: // // This function is oscillatory. // // The function has a local minimum at 1.7922 whose function value is // very close to the minimum value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Reference: // // Isabel Beichl, Dianne O'Leary, Francis Sullivan, // Monte Carlo Minimization and Counting: One, Two, Too Many, // Computing in Science and Engineering, // Volume 9, Number 1, January/February 2007. // // Dianne O'Leary, // Scientific Computing with Case Studies, // SIAM, 2008, // ISBN13: 978-0-898716-66-5, // LC: QA401.O44. // // Parameters: // // Input, double X, the argument of the objective function. // // Output, double P10_F, the value of the objective function. // { double f; f = cos ( x ) + 5.0 * cos ( 1.6 * x ) - 2.0 * cos ( 2.0 * x ) + 5.0 * cos ( 4.5 * x ) + 7.0 * cos ( 9.0 * x ); return f; } //****************************************************************************80 double p10_f1 ( double x ) //****************************************************************************80 // // Purpose: // // P10_F1 evaluates the first derivative for problem 10. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value of the variable. // // Output, double P10_F1, the first derivative of the // objective function. // { double f1; f1 = - sin ( x ) - 5.0 * 1.6 * sin ( 1.6 * x ) + 2.0 * 2.0 * sin ( 2.0 * x ) - 5.0 * 4.5 * sin ( 4.5 * x ) - 7.0 * 9.0 * sin ( 9.0 * x ); return f1; } //****************************************************************************80 double p10_f2 ( double x ) //****************************************************************************80 // // Purpose: // // P10_F2 evaluates the second derivative for problem 10. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the values of the variables. // // Output, double P10_F2, the second derivative. // { double f2; f2 = - cos ( x ) - 5.0 * 1.6 * 1.6 * cos ( 1.6 * x ) + 2.0 * 2.0 * 2.0 * cos ( 2.0 * x ) - 5.0 * 4.5 * 4.5 * cos ( 4.5 * x ) - 7.0 * 9.0 * 9.0 * cos ( 9.0 * x ); return f2; } //****************************************************************************80 void p10_interval ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // P10_INTERVAL returns a starting interval for optimization for problem 10. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double *A, *B, two points defining an interval in which // the local minimizer should be sought. // { *a = 0.0; *b = 7.0; return; } //****************************************************************************80 void p10_sol ( int *know, double *x ) //****************************************************************************80 // // Purpose: // // P10_SOL returns the solution for problem 10. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, int *KNOW. // If KNOW is 0, then the solution is not known. // If KNOW is positive, then the solution is known, and is returned in X. // // Output, double *X, the solution, if known. // { *know = 1; *x = 5.975691087433868; return; } //****************************************************************************80 double p10_start ( ) //****************************************************************************80 // // Purpose: // // P10_START returns a starting point for optimization for problem 10. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double P10_START, a starting point for the optimization. // { double x; x = 0.5; return x; } //****************************************************************************80 string p10_title ( ) //****************************************************************************80 // // Purpose: // // P10_TITLE returns a title for problem 10. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P10_TITLE, a title for the problem. // { string title; title = "The cosine combo"; return title; } //****************************************************************************80 double p11_f ( double x ) //****************************************************************************80 // // Purpose: // // P11_F evaluates the objective function for problem 11. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the argument of the objective function. // // Output, double P11_F, the value of the objective function. // { double f; f = 1.0 + r8_abs ( 3.0 * x - 1.0 ); return f; } //****************************************************************************80 double p11_f1 ( double x ) //****************************************************************************80 // // Purpose: // // P11_F1 evaluates the first derivative for problem 11. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value of the variable. // // Output, double P11_F1, the first derivative of the // objective function. // { double f1; if ( 3.0 * x - 1.0 < 0.0 ) { f1 = - 3.0; } else { f1 = + 3.0; } return f1; } //****************************************************************************80 double p11_f2 ( double x ) //****************************************************************************80 // // Purpose: // // P11_F2 evaluates the second derivative for problem 11. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the values of the variables. // // Output, double P11_F2, the second derivative. // { double f2; f2 = 0.0; return f2; } //****************************************************************************80 void p11_interval ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // P11_INTERVAL returns a starting interval for optimization for problem 11. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double *A, *B, two points defining an interval in which // the local minimizer should be sought. // { *a = 0.0; *b = 1.0; return; } //****************************************************************************80 void p11_sol ( int *know, double *x ) //****************************************************************************80 // // Purpose: // // P11_SOL returns the solution for problem 11. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, int *KNOW. // If KNOW is 0, then the solution is not known. // If KNOW is positive, then the solution is known, and is returned in X. // // Output, double *X, the solution, if known. // { *know = 1; *x = 1.0 / 3.0; return; } //****************************************************************************80 double p11_start ( ) //****************************************************************************80 // // Purpose: // // P11_START returns a starting point for optimization for problem 11. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double P11_START, a starting point for the optimization. // { double x; x = 0.75; return x; } //****************************************************************************80 string p11_title ( ) //****************************************************************************80 // // Purpose: // // P11_TITLE returns a title for problem 11. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, string P11_TITLE, a title for the problem. // { string title; title = "1 + |3x-1|"; return title; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = x; } else { value = - x; } return value; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_sign ( double x ) //****************************************************************************80 // // Purpose: // // R8_SIGN returns the sign of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number whose sign is desired. // // Output, double R8_SIGN, the sign of X. // { double value; if ( x < 0.0 ) { value = -1.0; } else { value = 1.0; } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }