# include # include # include # include # include using namespace std; # include "test_optimization.hpp" //****************************************************************************80 void p00_ab ( int problem, int m, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // P00_AB evaluates the limits of the optimization region for any problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int PROBLEM, the problem number. // // Input, int M, the number of variables. // // Output, double A[M], B[M], the lower and upper bounds. // { if ( problem == 1 ) { p01_ab ( m, a, b ); } else if ( problem == 2 ) { p02_ab ( m, a, b ); } else if ( problem == 3 ) { p03_ab ( m, a, b ); } else if ( problem == 4 ) { p04_ab ( m, a, b ); } else if ( problem == 5 ) { p05_ab ( m, a, b ); } else if ( problem == 6 ) { p06_ab ( m, a, b ); } else if ( problem == 7 ) { p07_ab ( m, a, b ); } else if ( problem == 8 ) { p08_ab ( m, a, b ); } else if ( problem == 9 ) { p09_ab ( m, a, b ); } else if ( problem == 10 ) { p10_ab ( m, a, b ); } else if ( problem == 11 ) { p11_ab ( m, a, b ); } else if ( problem == 12 ) { p12_ab ( m, a, b ); } else { cerr << "\n"; cerr << "P00_AB - Fatal error!\n"; cerr << " Illegal value of PROBLEM = " << problem << "\n"; exit ( 1 ); } return; } //****************************************************************************80 double *p00_compass_search ( int problem, int m, double x0[], double delta_tol, double delta_init, int k_max, double *fx, int *k ) //****************************************************************************80 // // Purpose: // // P00_COMPASS_SEARCH carries out a direct search minimization algorithm. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Tamara Kolda, Robert Michael Lewis, Virginia Torczon, // Optimization by Direct Search: New Perspectives on Some Classical // and Modern Methods, // SIAM Review, // Volume 45, Number 3, 2003, pages 385-482. // // Parameters: // // Input, int PROBLEM, the problem number. // // Input, int M, the number of variables. // // Input, double X0[M], a starting estimate for the minimizer. // // Input, double DELTA_TOL, the smallest step size that is allowed. // // Input, double DELTA_INIT, the starting stepsize. // // Input, int K_MAX, the maximum number of steps allowed. // // Output, double COMPASS_SEARCH[M], the estimated minimizer. // // Output, double *FX, the function value at X. // // Output, int *K, the number of steps taken. // { int decrease; double delta; double *fxd; int i; int ii; int n = 1; double s; double *x; double *xd; *k = 0; x = new double[m]; xd = new double[m]; r8vec_copy ( m, x0, x ); fxd = p00_f ( problem, m, n, x ); *fx = fxd[0]; delete [] fxd; if ( delta_tol <= 0 ) { cerr << "\n"; cerr << "P00_COMPASS_SEARCH - Fatal error!\n"; cerr << " DELTA_TOL <= 0.0.\n"; cerr << " DELTA_TOL = " << delta_tol << "\n"; exit ( 1 ); } if ( delta_init <= delta_tol ) { cerr << "\n"; cerr << "P00_COMPASS_SEARCH - Fatal error!\n"; cerr << " DELTA_INIT < DELTA_TOL.\n"; cerr << " DELTA_INIT = " << delta_init << "\n"; cerr << " DELTA_TOL = " << delta_tol << "\n"; exit ( 1 ); } delta = delta_init; while ( *k < k_max ) { *k = *k + 1; // // For each coordinate direction I, seek a lower function value // by increasing or decreasing X(I) by DELTA. // decrease = 0; s = + 1.0; i = 0; for ( ii = 1; ii <= 2 * m; ii++ ) { r8vec_copy ( m, x, xd ); xd[i] = xd[i] + s * delta; fxd = p00_f ( problem, m, n, xd ); // // As soon as a decrease is noticed, accept the new point. // if ( fxd[0] < *fx ) { r8vec_copy ( m, xd, x ); *fx = fxd[0]; decrease = 1; break; } delete [] fxd; s = - s; if ( s == + 1.0 ) { i = i + 1; } } // // If no decrease occurred, reduce DELTA. // if ( !decrease ) { delta = delta / 2.0; if ( delta < delta_tol ) { break; } } } delete [] xd; return x; } //****************************************************************************80 double *p00_f ( int problem, int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P00_F evaluates the objective function for any problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int PROBLEM, the problem number. // // Input, int M, the spatial dimension. // // Input, int N, the number of arguments. // // Input, double X[M*N], the argument of the objective function. // // Output, double P00_F[N], the objective function evaluated at // each argument. // { double *f; if ( problem == 1 ) { f = p01_f ( m, n, x ); } else if ( problem == 2 ) { f = p02_f ( m, n, x ); } else if ( problem == 3 ) { f = p03_f ( m, n, x ); } else if ( problem == 4 ) { f = p04_f ( m, n, x ); } else if ( problem == 5 ) { f = p05_f ( m, n, x ); } else if ( problem == 6 ) { f = p06_f ( m, n, x ); } else if ( problem == 7 ) { f = p07_f ( m, n, x ); } else if ( problem == 8 ) { f = p08_f ( m, n, x ); } else if ( problem == 9 ) { f = p09_f ( m, n, x ); } else if ( problem == 10 ) { f = p10_f ( m, n, x ); } else if ( problem == 11 ) { f = p11_f ( m, n, x ); } else if ( problem == 12 ) { f = p12_f ( m, n, x ); } else { cerr << "\n"; cerr << "P00_F - Fatal error!\n"; cerr << " Illegal value of PROBLEM = " << problem << "\n"; exit ( 1 ); } return f; } //****************************************************************************80 int p00_problem_num ( ) //****************************************************************************80 // // Purpose: // // P00_PROBLEM_NUM returns the number of problems available. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, int P00_PROBLEM_NUM, the number of problems available. // { int problem_num; problem_num = 12; return problem_num; } //****************************************************************************80 double *p00_sol ( int problem, int m, int &know ) //****************************************************************************80 // // Purpose: // // P00_SOL returns the solution for any problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the problem number. // // Input, int M, the spatial dimension. // // Input/output, int &KNOW. // On input, KNOW is 0, or the index of the previously returned solution. // On output, KNOW is 0 if there are no more solutions, or it is the // index of the next solution. // // Output, P00_SOL[M], the solution, if known. // { double *x; if ( problem == 1 ) { x = p01_sol ( m, know ); } else if ( problem == 2 ) { x = p02_sol ( m, know ); } else if ( problem == 3 ) { x = p03_sol ( m, know ); } else if ( problem == 4 ) { x = p04_sol ( m, know ); } else if ( problem == 5 ) { x = p05_sol ( m, know ); } else if ( problem == 6 ) { x = p06_sol ( m, know ); } else if ( problem == 7 ) { x = p07_sol ( m, know ); } else if ( problem == 8 ) { x = p08_sol ( m, know ); } else if ( problem == 9 ) { x = p09_sol ( m, know ); } else if ( problem == 10 ) { x = p10_sol ( m, know ); } else if ( problem == 11 ) { x = p11_sol ( m, know ); } else if ( problem == 12 ) { x = p12_sol ( m, know ); } else { cerr << "\n"; cerr << "P00_SOL - Fatal error!\n"; cerr << " Illegal value of PROBLEM = " << problem << "\n"; exit ( 1 ); } return x; } //****************************************************************************80 string p00_title ( int problem ) //****************************************************************************80 // // Purpose: // // P00_TITLE returns a title for any problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the number of the problem. // // Output, string P00_TITLE, a title for the problem. // { string title; if ( problem == 1 ) { title = p01_title ( ); } else if ( problem == 2 ) { title = p02_title ( ); } else if ( problem == 3 ) { title = p03_title ( ); } else if ( problem == 4 ) { title = p04_title ( ); } else if ( problem == 5 ) { title = p05_title ( ); } else if ( problem == 6 ) { title = p06_title ( ); } else if ( problem == 7 ) { title = p07_title ( ); } else if ( problem == 8 ) { title = p08_title ( ); } else if ( problem == 9 ) { title = p09_title ( ); } else if ( problem == 10 ) { title = p10_title ( ); } else if ( problem == 11 ) { title = p11_title ( ); } else if ( problem == 12 ) { title = p12_title ( ); } else { cerr << "\n"; cerr << "P00_TITLE - Fatal error!\n"; cerr << " Illegal value of PROBLEM = " << problem << "\n"; exit ( 1 ); } return title; } //****************************************************************************80 void p01_ab ( int m, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // P01_AB evaluates the limits of the optimization region for problem 01. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Output, double A[M], B[M], the lower and upper bounds. // { int i; for ( i = 0; i < m; i++ ) { a[i] = -5.0; b[i] = +5.0; } return; } //****************************************************************************80 double *p01_f ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P01_F evaluates the objective function for problem 01. // // Discussion: // // The function is continuous, convex, and unimodal. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 February 2012 // // Author: // // John Burkardt // // Reference: // // Hugues Bersini, Marco Dorigo, Stefan Langerman, Gregory Seront, // Luca Gambardella, // Results of the first international contest on evolutionary optimisation, // In Proceedings of 1996 IEEE International Conference on Evolutionary // Computation, // IEEE Press, pages 611-615, 1996. // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of arguments. // // Input, double X[M*N], the arguments. // // Output, double P01_F[N], the function evaluated at the arguments. // { double *f; int i; int j; f = new double[n]; for ( j = 0; j < n; j++ ) { f[j] = 0.0; for ( i = 0; i < m; i++ ) { f[j] = f[j] + pow ( x[i+j*m] - 1.0, 2 ); } } return f; } //****************************************************************************80 double *p01_sol ( int m, int &know ) //****************************************************************************80 // // Purpose: // // P01_SOL returns the solution for problem 01. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int &KNOW. // On input, KNOW is 0, or the index of the previously returned solution. // On output, KNOW is 0 if there are no more solutions, or it is the // index of the next solution. // // Output, double P01_SOL[M], the solution, if known. // { int i; double *x; if ( know == 0 ) { know = 1; x = new double[m]; for ( i = 0; i < m; i++ ) { x[i] = 1.0; } } else { know = 0; x = NULL; } return x; } //****************************************************************************80 string p01_title ( ) //****************************************************************************80 // // Purpose: // // P01_TITLE returns a title for problem 01. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, string TITLE, a title for the problem. // { string title; title = "The sphere model."; return title; } //****************************************************************************80 void p02_ab ( int m, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // P02_AB evaluates the limits of the optimization region for problem 02. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Output, double A[M], B[M], the lower and upper bounds. // { int i; for ( i = 0; i < m; i++ ) { a[i] = -5.12; b[i] = +5.12; } return; } //****************************************************************************80 double *p02_f ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P02_F evaluates the objective function for problem 02. // // Discussion: // // This function is also known as the weighted sphere model. // // The function is continuous, convex, and unimodal. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of arguments. // // Input, double X[M*N], the arguments. // // Output, double P02_F[N], the function evaluated at the arguments. // { double *f; int i; int j; f = new double[n]; for ( j = 0; j < n; j++ ) { f[j] = 0.0; for ( i = 0; i < m; i++ ) { f[j] = f[j] + ( double ) ( i + 1 ) * pow ( x[i+j*m], 2 ); } } return f; } //****************************************************************************80 double *p02_sol ( int m, int &know ) //****************************************************************************80 // // Purpose: // // P02_SOL returns the solution for problem 02. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int &KNOW. // On input, KNOW is 0, or the index of the previously returned solution. // On output, KNOW is 0 if there are no more solutions, or it is the // index of the next solution. // // Output, double P02_SOL[M], the solution, if known. // { int i; double *x; if ( know == 0 ) { know = 1; x = new double[m]; for ( i = 0; i < m; i++ ) { x[i] = 0.0; } } else { know = 0; x = NULL; } return x; } //****************************************************************************80 string p02_title ( ) //****************************************************************************80 // // Purpose: // // P02_TITLE returns a title for problem 02. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, string TITLE, a title for the problem. // { string title; title = "The axis-parallel hyper-ellipsoid function."; return title; } //****************************************************************************80 void p03_ab ( int m, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // P03_AB evaluates the limits of the optimization region for problem 03. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Output, double A[M], B[M], the lower and upper bounds. // { int i; for ( i = 0; i < m; i++ ) { a[i] = -65.536; b[i] = +65.536; } return; } //****************************************************************************80 double *p03_f ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P03_F evaluates the objective function for problem 03. // // Discussion: // // This function is also known as the weighted sphere model. // // The function is continuous, convex, and unimodal. // // There is a typographical error in Molga and Smutnicki, so that the // formula for this function is given incorrectly. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of arguments. // // Input, double X[M*N], the arguments. // // Output, double P03_F[N], the function evaluated at the arguments. // { double *f; int i; int j; double x_sum; f = new double[n]; for ( j = 0; j < n; j++ ) { f[j] = 0.0; x_sum = 0.0; for ( i = 0; i < m; i++ ) { x_sum = x_sum + x[i+j*m]; f[j] = f[j] + x_sum * x_sum; } } return f; } //****************************************************************************80 double *p03_sol ( int m, int &know ) //****************************************************************************80 // // Purpose: // // P03_SOL returns the solution for problem 03. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int &KNOW. // On input, KNOW is 0, or the index of the previously returned solution. // On output, KNOW is 0 if there are no more solutions, or it is the // index of the next solution. // // Output, double P03_SOL[M], the solution, if known. // { int i; double *x; if ( know == 0 ) { know = 1; x = new double[m]; for ( i = 0; i < m; i++ ) { x[i] = 0.0; } } else { know = 0; x = NULL; } return x; } //****************************************************************************80 string p03_title ( ) //****************************************************************************80 // // Purpose: // // P03_TITLE returns a title for problem 03. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, string TITLE, a title for the problem. // { string title; title = "The rotated hyper-ellipsoid function."; return title; } //****************************************************************************80 void p04_ab ( int m, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // P04_AB evaluates the limits of the optimization region for problem 04. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Output, double A[M], B[M], the lower and upper bounds. // { int i; for ( i = 0; i < m; i++ ) { a[i] = -2.048; b[i] = +2.048; } return; } //****************************************************************************80 double *p04_f ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P04_F evaluates the objective function for problem 04. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Howard Rosenbrock, // An Automatic Method for Finding the Greatest or Least Value of a Function, // Computer Journal, // Volume 3, 1960, pages 175-184. // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of arguments. // // Input, double X[M*N], the arguments. // // Output, double P04_F[N], the function evaluated at the arguments. // { double *f; int i; int j; f = new double[n]; for ( j = 0; j < n; j++ ) { f[j] = 0.0; for ( i = 0; i < m; i++ ) { f[j] = f[j] + pow ( 1.0 - x[i+j*m], 2 ); } for ( i = 0; i < m - 1; i++ ) { f[j] = f[j] + pow ( x[i+1+j*m] - x[i+j*m], 2 ); } } return f; } //****************************************************************************80 double *p04_sol ( int m, int &know ) //****************************************************************************80 // // Purpose: // // P04_SOL returns the solution for problem 04. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int &KNOW. // On input, KNOW is 0, or the index of the previously returned solution. // On output, KNOW is 0 if there are no more solutions, or it is the // index of the next solution. // // Output, double P04_SOL[M], the solution, if known. // { int i; double *x; if ( know == 0 ) { know = 1; x = new double[m]; for ( i = 0; i < m; i++ ) { x[i] = 1.0; } } else { know = 0; x = NULL; } return x; } //****************************************************************************80 string p04_title ( ) //****************************************************************************80 // // Purpose: // // P04_TITLE returns a title for problem 04. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, string TITLE, a title for the problem. // { string title; title = "Rosenbrock's valley."; return title; } //****************************************************************************80 void p05_ab ( int m, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // P05_AB evaluates the limits of the optimization region for problem 05. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Output, double A[M], B[M], the lower and upper bounds. // { int i; for ( i = 0; i < m; i++ ) { a[i] = -5.12; b[i] = +5.12; } return; } //****************************************************************************80 double *p05_f ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P05_F evaluates the objective function for problem 05. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of arguments. // // Input, double X[M*N], the arguments. // // Output, double P05_F[N], the function evaluated at the arguments. // { double *f; int i; int j; double pi = 3.141592653589793; f = new double[n]; for ( j = 0; j < n; j++ ) { f[j] = ( double ) ( 10 * m ); for ( i = 0; i < m; i++ ) { f[j] = f[j] + pow ( x[i+j*m], 2 ) - 10.0 * cos ( 2.0 * pi * x[i+j*m] ); } } return f; } //****************************************************************************80 double *p05_sol ( int m, int &know ) //****************************************************************************80 // // Purpose: // // P05_SOL returns the solution for problem 05. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int &KNOW. // On input, KNOW is 0, or the index of the previously returned solution. // On output, KNOW is 0 if there are no more solutions, or it is the // index of the next solution. // // Output, double P05_SOL[M], the solution, if known. // { int i; double *x; if ( know == 0 ) { know = 1; x = new double[m]; for ( i = 0; i < m; i++ ) { x[i] = 0.0; } } else { know = 0; x = NULL; } return x; } //****************************************************************************80 string p05_title ( ) //****************************************************************************80 // // Purpose: // // P05_TITLE returns a title for problem 05. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, string TITLE, a title for the problem. // { string title; title = "Rastrigin's function."; return title; } //****************************************************************************80 void p06_ab ( int m, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // P06_AB evaluates the limits of the optimization region for problem 06. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Output, double A[M], B[M], the lower and upper bounds. // { int i; for ( i = 0; i < m; i++ ) { a[i] = -500.0; b[i] = +500.0; } return; } //****************************************************************************80 double *p06_f ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P06_F evaluates the objective function for problem 06. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Hans-Paul Schwefel, // Numerical optimization of computer models, // Wiley, 1981, // ISBN13: 978-0471099888, // LC: QA402.5.S3813. // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of arguments. // // Input, double X[M*N], the arguments. // // Output, double P06_F[N], the function evaluated at the arguments. // { double *f; int i; int j; f = new double[n]; for ( j = 0; j < n; j++ ) { f[j] = 0.0; for ( i = 0; i < m; i++ ) { f[j] = f[j] - x[i+j*m] * sin ( sqrt ( r8_abs ( x[i+j*m] ) ) ); } } return f; } //****************************************************************************80 double *p06_sol ( int m, int &know ) //****************************************************************************80 // // Purpose: // // P06_SOL returns the solution for problem 06. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int &KNOW. // On input, KNOW is 0, or the index of the previously returned solution. // On output, KNOW is 0 if there are no more solutions, or it is the // index of the next solution. // // Output, double P06_SOL[M], the solution, if known. // { int i; double *x; if ( know == 0 ) { know = 1; x = new double[m]; for ( i = 0; i < m; i++ ) { x[i] = 420.9687; } } else { know = 0; x = NULL; } return x; } //****************************************************************************80 string p06_title ( ) //****************************************************************************80 // // Purpose: // // P06_TITLE returns a title for problem 06. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, string TITLE, a title for the problem. // { string title; title = "Schwefel's function."; return title; } //****************************************************************************80 void p07_ab ( int m, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // P07_AB evaluates the limits of the optimization region for problem 07. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Output, double A[M], B[M], the lower and upper bounds. // { int i; for ( i = 0; i < m; i++ ) { a[i] = -600.0; b[i] = +600.0; } return; } //****************************************************************************80 double *p07_f ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P07_F evaluates the objective function for problem 07. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of arguments. // // Input, double X[M*N], the arguments. // // Output, double P07_F[N], the function evaluated at the arguments. // { double *f; int i; int j; double p; double s; double *y; y = r8vec_indicator_new ( m ); for ( i = 0; i < m; i++ ) { y[i] = sqrt ( y[i] ); } f = new double[n]; for ( j = 0; j < n; j++ ) { s = 0.0; p = 1.0; for ( i = 0; i < m; i++ ) { s = s + pow ( x[i+j*m], 2 ); p = p * cos ( x[i+j*m] / y[i] ); } f[j] = s / 4000.0 - p + 1.0; } delete [] y; return f; } //****************************************************************************80 double *p07_sol ( int m, int &know ) //****************************************************************************80 // // Purpose: // // P07_SOL returns the solution for problem 07. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int &KNOW. // On input, KNOW is 0, or the index of the previously returned solution. // On output, KNOW is 0 if there are no more solutions, or it is the // index of the next solution. // // Output, double P07_SOL[M], the solution, if known. // { int i; double *x; if ( know == 0 ) { know = 1; x = new double[m]; for ( i = 0; i < m; i++ ) { x[i] = 0.0; } } else { know = 0; x = NULL; } return x; } //****************************************************************************80 string p07_title ( ) //****************************************************************************80 // // Purpose: // // P07_TITLE returns a title for problem 07. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, string TITLE, a title for the problem. // { string title; title = "Griewank's function."; return title; } //****************************************************************************80 void p08_ab ( int m, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // P08_AB evaluates the limits of the optimization region for problem 08. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Output, double A[M], B[M], the lower and upper bounds. // { int i; for ( i = 0; i < m; i++ ) { a[i] = -1.0; b[i] = +1.0; } return; } //****************************************************************************80 double *p08_f ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P08_F evaluates the objective function for problem 08. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of arguments. // // Input, double X[M*N], the arguments. // // Output, double P08_F[N], the function evaluated at the arguments. // { double *f; int i; int j; f = new double[n]; for ( j = 0; j < n; j++ ) { f[j] = 0.0; for ( i = 0; i < m; i++ ) { f[j] = f[j] + pow ( r8_abs ( x[i+j*m] ), i + 2 ); } } return f; } //****************************************************************************80 double *p08_sol ( int m, int &know ) //****************************************************************************80 // // Purpose: // // P08_SOL returns the solution for problem 08. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int &KNOW. // On input, KNOW is 0, or the index of the previously returned solution. // On output, KNOW is 0 if there are no more solutions, or it is the // index of the next solution. // // Output, double P08_SOL[M], the solution, if known. // { int i; double *x; if ( know == 0 ) { know = 1; x = new double[m]; for ( i = 0; i < m; i++ ) { x[i] = 0.0; } } else { know = 0; x = NULL; } return x; } //****************************************************************************80 string p08_title ( ) //****************************************************************************80 // // Purpose: // // P08_TITLE returns a title for problem 08. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, string TITLE, a title for the problem. // { string title; title = "The power sum function."; return title; } //****************************************************************************80 void p09_ab ( int m, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // P09_AB evaluates the limits of the optimization region for problem 09. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Output, double A[M], B[M], the lower and upper bounds. // { int i; for ( i = 0; i < m; i++ ) { a[i] = -32.768; b[i] = +32.768; } return; } //****************************************************************************80 double *p09_f ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P09_F evaluates the objective function for problem 09. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of arguments. // // Input, double X[M*N], the arguments. // // Output, double P09_F[N], the function evaluated at the arguments. // { double a = 20.0; double b = 0.2; double c = 0.2; double *f; int i; int j; double pi = 3.141592653589793; double s1; double s2; f = new double[n]; for ( j = 0; j < n; j++ ) { s1 = 0.0; s2 = 0.0; for ( i = 0; i < m; i++ ) { s1 = s1 + pow ( x[i+j*m], 2 ); s2 = s2 + cos ( c * pi * x[i+j*m] ); } f[j] = - a * exp ( - b * sqrt ( s1 / ( double ) ( m ) ) ) - exp ( s2 / ( double ) ( m ) ) + a + exp ( 1.0 ); } return f; } //****************************************************************************80 double *p09_sol ( int m, int &know ) //****************************************************************************80 // // Purpose: // // P09_SOL returns the solution for problem 09. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int &KNOW. // On input, KNOW is 0, or the index of the previously returned solution. // On output, KNOW is 0 if there are no more solutions, or it is the // index of the next solution. // // Output, double P09_SOL[M], the solution, if known. // { int i; double *x; if ( know == 0 ) { know = 1; x = new double[m]; for ( i = 0; i < m; i++ ) { x[i] = 0.0; } } else { know = 0; x = NULL; } return x; } //****************************************************************************80 string p09_title ( ) //****************************************************************************80 // // Purpose: // // P09_TITLE returns a title for problem 09. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, string TITLE, a title for the problem. // { string title; title = "Ackley's function."; return title; } //****************************************************************************80 void p10_ab ( int m, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // P10_AB evaluates the limits of the optimization region for problem 10. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Output, double A[M], B[M], the lower and upper bounds. // { int i; double pi = 3.141592653589793; for ( i = 0; i < m; i++ ) { a[i] = 0.0; b[i] = pi; } return; } //****************************************************************************80 double *p10_f ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P10_F evaluates the objective function for problem 10. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of arguments. // // Input, double X[M*N], the arguments. // // Output, double P10_F[N], the function evaluated at the arguments. // { double *f; int i; int j; int p = 10; double pi = 3.141592653589793; double s; f = new double[n]; for ( j = 0; j < n; j++ ) { s = 0.0; for ( i = 0; i < m; i++ ) { s = s - sin ( x[i+j*m] ) * pow ( sin ( x[i+j*m] * x[i+j*m] * ( double ) ( i + 1 ) / pi ), 2 * p ); } f[j] = s; } return f; } //****************************************************************************80 double *p10_sol ( int m, int &know ) //****************************************************************************80 // // Purpose: // // P10_SOL returns the solution for problem 10. // // Discussion: // // The minimum value is - 0.966 * M. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int &KNOW. // On input, KNOW is 0, or the index of the previously returned solution. // On output, KNOW is 0 if there are no more solutions, or it is the // index of the next solution. // // Output, double P10_SOL[M], the solution, if known. // { double *x; know = 0; x = NULL; return x; } //****************************************************************************80 string p10_title ( ) //****************************************************************************80 // // Purpose: // // P10_TITLE returns a title for problem 10. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, string TITLE, a title for the problem. // { string title; title = "Michalewicz's function."; return title; } //****************************************************************************80 void p11_ab ( int m, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // P11_AB evaluates the limits of the optimization region for problem 11. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Output, double A[M], B[M], the lower and upper bounds. // { int i; for ( i = 0; i < m; i++ ) { a[i] = -5.12; b[i] = +5.12; } return; } //****************************************************************************80 double *p11_f ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P11_F evaluates the objective function for problem 11. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of arguments. // // Input, double X[M*N], the arguments. // // Output, double P11_F[N], the function evaluated at the arguments. // { double *f; int i; int j; double rsq; f = new double[n]; for ( j = 0; j < n; j++ ) { rsq = 0.0; for ( i = 0; i < m; i++ ) { rsq = rsq + pow ( x[i+j*m], 2 ); } f[j] = - ( 1.0 + cos ( 12.0 * sqrt ( rsq ) ) ) / ( 0.5 * rsq + 2.0 ); } return f; } //****************************************************************************80 double *p11_sol ( int m, int &know ) //****************************************************************************80 // // Purpose: // // P11_SOL returns the solution for problem 11. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int &KNOW. // On input, KNOW is 0, or the index of the previously returned solution. // On output, KNOW is 0 if there are no more solutions, or it is the // index of the next solution. // // Output, double P01_SOL[M], the solution, if known. // { int i; double *x; if ( know == 0 ) { know = 1; x = new double[m]; for ( i = 0; i < m; i++ ) { x[i] = 0.0; } } else { know = 0; x = NULL; } return x; } //****************************************************************************80 string p11_title ( ) //****************************************************************************80 // // Purpose: // // P11_TITLE returns a title for problem 11. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, string TITLE, a title for the problem. // { string title; title = "Drop wave function."; return title; } //****************************************************************************80 void p12_ab ( int m, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // P12_AB evaluates the limits of the optimization region for problem 12. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Output, double A[M], B[M], the lower and upper bounds. // { int i; for ( i = 0; i < m; i++ ) { a[i] = 0.0; b[i] = 1.0; } return; } //****************************************************************************80 double *p12_f ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P12_F evaluates the objective function for problem 12. // // Discussion: // // In dimension I, the function is a piecewise linear function with // local minima at 0 and 1.0, and a global minimum at ALPHA(I) = I/(M+1). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Reference: // // Marcin Molga, Czeslaw Smutnicki, // Test functions for optimization needs. // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of arguments. // // Input, double X[M*N], the arguments. // // Output, double P12_F[N], the function evaluated at the arguments. // { double *alpha; double beta = 2.0; double *f; double g; int i; int j; alpha = new double[m]; for ( i = 0; i < m; i++ ) { alpha[i] = ( double ) ( i + 1 ) / ( double ) ( m + 1 ); } f = new double[n]; for ( j = 0; j < n; j++ ) { f[j] = 0.0; for ( i = 0; i < m; i++ ) { if ( x[i+j*m] <= 0.0 ) { g = x[i+j*m]; } else if ( x[i+j*m] <= 0.8 * alpha[i] ) { g = 0.8 - x[i+j*m] / alpha[i]; } else if ( x[i+j*m] <= alpha[i] ) { g = 5.0 * x[i+j*m] / alpha[i] - 4.0; } else if ( x[i+j*m] <= ( 1.0 + 4.0 * alpha[i] ) / 5.0 ) { g = 1.0 + 5.0 * ( x[i+j*m] - alpha[i] ) / ( alpha[i] - 1.0 ); } else if ( x[i+j*m] <= 1.0 ) { g = 0.8 + ( x[i+j*m] - 1.0 ) / ( 1.0 - alpha[i] ); } else { g = x[i+j*m] - 1.0; } f[j] = f[j] + g; } f[j] = f[j] / ( double ) ( m ); f[j] = - pow ( f[j], beta ); } delete [] alpha; return f; } //****************************************************************************80 double *p12_sol ( int m, int &know ) //****************************************************************************80 // // Purpose: // // P12_SOL returns the solution for problem 12. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int &KNOW. // On input, KNOW is 0, or the index of the previously returned solution. // On output, KNOW is 0 if there are no more solutions, or it is the // index of the next solution. // // Output, double P12_SOL[M], the solution, if known. // { int i; double *x; if ( know == 0 ) { x = new double[m]; for ( i = 0; i < m; i++ ) { x[i] = ( double ) ( i + 1 ) / ( double ) ( m + 1 ); } know = 1; } else { know = 0; x = NULL; } return x; } //****************************************************************************80 string p12_title ( ) //****************************************************************************80 // // Purpose: // // P12_TITLE returns a title for problem 12. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2012 // // Author: // // John Burkardt // // Parameters: // // Output, string TITLE, a title for the problem. // { string title; title = "The deceptive function."; return title; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = + x; } else { value = - x; } return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double *r8col_uniform_new ( int m, int n, double a[], double b[], int *seed ) //****************************************************************************80 // // Purpose: // // R8COL_UNIFORM_NEW fills an R8COL with scaled pseudorandom numbers. // // Discussion: // // An R8COL is an array of R8 values, regarded as a set of column vectors. // // The user specifies a minimum and maximum value for each row. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 December 2011 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Philip Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M], B[M], the upper and lower limits. // // Input/output, int *SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8COL_UNIFORM_NEW[M*N], a matrix of pseudorandom values. // { int i; int j; int k; double *r; r = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } r[i+j*m] = a[i] + ( b[i] - a[i] ) * ( double ) ( *seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 void r8vec_copy ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_COPY copies an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], the vector to be copied. // // Output, double A2[N], the copy of A1. // { int i; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return; } //****************************************************************************80 double *r8vec_indicator_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR_NEW sets an R8VEC to the indicator vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR_NEW[N], the indicator array. // { double *a; int i; a = new double[n]; for ( i = 0; i <= n-1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 double r8vec_max ( int n, double r8vec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MAX returns the value of the maximum element in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double R8VEC[N], a pointer to the first entry of the array. // // Output, double R8VEC_MAX, the value of the maximum element. This // is set to 0.0 if N <= 0. // { int i; double value; value = r8vec[0]; for ( i = 1; i < n; i++ ) { if ( value < r8vec[i] ) { value = r8vec[i]; } } return value; } //****************************************************************************80 double r8vec_min ( int n, double r8vec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MIN returns the value of the minimum element in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double R8VEC[N], the array to be checked. // // Output, double R8VEC_MIN, the value of the minimum element. // { int i; double value; value = r8vec[0]; for ( i = 1; i < n; i++ ) { if ( r8vec[i] < value ) { value = r8vec[i]; } } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }