# include # include # include # include # include # include using namespace std; # include "tet_mesh.hpp" //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 void i4_swap ( int *i, int *j ) //****************************************************************************80 // // Purpose: // // I4_SWAP switches two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 January 2002 // // Author: // // John Burkardt // // Parameters: // // Input/output, int *I, *J. On output, the values of I and // J have been interchanged. // { int k; k = *i; *i = *j; *j = k; return; } //****************************************************************************80 int i4_uniform_ab ( int a, int b, int *seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM_AB returns a scaled pseudorandom I4. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 November 2006 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley Interscience, page 95, 1998. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Peter Lewis, Allen Goodman, James Miller // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int *SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM_AB, a number between A and B. // { int k; float r; int value; if ( *seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } r = ( float ) ( *seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) ( i4_min ( a, b ) ) - 0.5 ) + r * ( ( float ) ( i4_max ( a, b ) ) + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = r4_nint ( r ); value = i4_max ( value, i4_min ( a, b ) ); value = i4_min ( value, i4_max ( a, b ) ); return value; } //****************************************************************************80 int i4col_compare ( int m, int n, int a[], int i, int j ) //****************************************************************************80 // // Purpose: // // I4COL_COMPARE compares columns I and J of an I4COL. // // Example: // // Input: // // M = 3, N = 4, I = 2, J = 4 // // A = ( // 1 2 3 4 // 5 6 7 8 // 9 10 11 12 ) // // Output: // // I4COL_COMPARE = -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A[M*N], an array of N columns of vectors of length M. // // Input, int I, J, the columns to be compared. // I and J must be between 1 and N. // // Output, int I4COL_COMPARE, the results of the comparison: // -1, column I < column J, // 0, column I = column J, // +1, column J < column I. // { int k; // // Check. // if ( i < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index I = " << i << " is less than 1.\n"; exit ( 1 ); } if ( n < i ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index I = " << i << ".\n"; exit ( 1 ); } if ( j < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index J = " << j << " is less than 1.\n"; exit ( 1 ); } if ( n < j ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index J = " << j << ".\n"; exit ( 1 ); } if ( i == j ) { return 0; } k = 1; while ( k <= m ) { if ( a[k-1+(i-1)*m] < a[k-1+(j-1)*m] ) { return (-1); } else if ( a[k-1+(j-1)*m] < a[k-1+(i-1)*m] ) { return 1; } k = k + 1; } return 0; } //****************************************************************************80 void i4col_sort_a ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4COL_SORT_A ascending sorts the columns of an I4COL. // // Discussion: // // In lexicographic order, the statement "X < Y", applied to two // vectors X and Y of length M, means that there is some index I, with // 1 <= I <= M, with the property that // // X(J) = Y(J) for J < I, // and // X(I) < Y(I). // // In other words, X is less than Y if, at the first index where they // differ, the X value is less than the Y value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of A. // // Input, int N, the number of columns of A. // // Input/output, int A[M*N]. // On input, the array of N columns of M vectors; // On output, the columns of A have been sorted in ascending // lexicographic order. // { int i; int indx; int isgn; int j; // // Initialize. // i = 0; indx = 0; isgn = 0; j = 0; // // Call the external heap sorter. // for ( ; ; ) { sort_heap_external ( n, &indx, &i, &j, isgn ); // // Interchange the I and J objects. // if ( 0 < indx ) { i4col_swap ( m, n, a, i, j ); } // // Compare the I and J objects. // else if ( indx < 0 ) { isgn = i4col_compare ( m, n, a, i, j ); } else if ( indx == 0 ) { break; } } return; } //****************************************************************************80 void i4col_sort2_a ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4COL_SORT2_A ascending sorts the elements of each column of an I4COL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of A. // // Input, int N, the number of columns of A, and the length // of a vector of data. // // Input/output, int A[M*N]. // On input, the array of N columns of M vectors. // On output, the elements of each column of A have been sorted in ascending // order. // { int col; int i; int indx; int isgn; int j; int row; int temp; if ( m <= 1 ) { return; } if ( n <= 0 ) { return; } // // Initialize. // for ( col = 0; col < n; col++ ) { i = 0; indx = 0; isgn = 0; j = 0; // // Call the external heap sorter. // for ( ; ; ) { sort_heap_external ( m, &indx, &i, &j, isgn ); // // Interchange the I and J objects. // if ( 0 < indx ) { temp = a[i-1+col*m]; a[i-1+col*m] = a[j-1+col*m]; a[j-1+col*m] = temp; } // // Compare the I and J objects. // else if ( indx < 0 ) { if ( a[j-1+col*m] < a[i-1+col*m] ) { isgn = +1; } else { isgn = -1; } } else if ( indx == 0 ) { break; } } } return; } //****************************************************************************80 int i4col_sorted_unique_count ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4COL_SORTED_UNIQUE_COUNT counts unique elements in an I4COL. // // Discussion: // // The columns of the array may be ascending or descending sorted. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A[M*N], a sorted array, containing // N columns of data. // // Output, int I4COL_SORTED_UNIQUE_COUNT, the number of unique columns. // { int i; int j1; int j2; int unique_num; if ( n <= 0 ) { unique_num = 0; return unique_num; } unique_num = 1; j1 = 0; for ( j2 = 1; j2 < n; j2++ ) { for ( i = 0; i < m; i++ ) { if ( a[i+j1*m] != a[i+j2*m] ) { unique_num = unique_num + 1; j1 = j2; break; } } } return unique_num; } //****************************************************************************80 void i4col_swap ( int m, int n, int a[], int icol1, int icol2 ) //****************************************************************************80 // // Purpose: // // I4COL_SWAP swaps two columns of an I4COL. // // Discussion: // // The two dimensional information is stored as a one dimensional // array, by columns. // // The row indices are 1 based, NOT 0 based! However, a preprocessor // variable, called OFFSET, can be reset from 1 to 0 if you wish to // use 0-based indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int A[M*N], an array of data. // // Input, int ICOL1, ICOL2, the two columns to swap. // These indices should be between 1 and N. // { # define OFFSET 1 int i; int t; // // Check. // if ( icol1 - OFFSET < 0 || n-1 < icol1 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL1 is out of range.\n"; exit ( 1 ); } if ( icol2 - OFFSET < 0 || n-1 < icol2 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL2 is out of range.\n"; exit ( 1 ); } if ( icol1 == icol2 ) { return; } for ( i = 0; i < m; i++ ) { t = a[i+(icol1-OFFSET)*m]; a[i+(icol1-OFFSET)*m] = a[i+(icol2-OFFSET)*m]; a[i+(icol2-OFFSET)*m] = t; } return; # undef OFFSET } //****************************************************************************80 void i4i4_sort_a ( int i1, int i2, int *j1, int *j2 ) //****************************************************************************80 // // Purpose: // // I4I4_SORT_A ascending sorts a pair of I4's. // // Discussion: // // The program allows the reasonable call: // // i4i4_sort_a ( i1, i2, &i1, &i2 ); // // and this will return the reasonable result. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, the values to sort. // // Output, int J1, J2, the sorted values. // { int k1; int k2; // // Copy arguments, so that the user can make "reasonable" calls like: // // i4i4_sort_a ( i1, i2, &i1, &i2 ); // k1 = i1; k2 = i2; *j1 = i4_min ( k1, k2 ); *j2 = i4_max ( k1, k2 ); return; } //****************************************************************************80 void i4i4i4_sort_a ( int i1, int i2, int i3, int *j1, int *j2, int *j3 ) //****************************************************************************80 // // Purpose: // // I4I4I4_SORT_A ascending sorts a triple of I4's. // // Discussion: // // The program allows the reasonable call: // // i4i4i4_sort_a ( i1, i2, i3, &i1, &i2, &i3 ); // // and this will return the reasonable result. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, I3, the values to sort. // // Output, int *J1, *J2, *J3, the sorted values. // { int k1; int k2; int k3; // // Copy arguments, so that the user can make "reasonable" calls like: // // i4i4i4_sort_a ( i1, i2, i3, &i1, &i2, &i3 ); // k1 = i1; k2 = i2; k3 = i3; *j1 = i4_min ( i4_min ( k1, k2 ), i4_min ( k2, k3 ) ); *j2 = i4_min ( i4_max ( k1, k2 ), i4_min ( i4_max ( k2, k3 ), i4_max ( k3, k1 ) ) ); *j3 = i4_max ( i4_max ( k1, k2 ), i4_max ( k2, k3 ) ); return; } //****************************************************************************80 void i4mat_transpose_print ( int m, int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT prints an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Input, string TITLE, a title to be printed. // { i4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title for the matrix. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); cout << "\n"; // // For each row I in the current range... // // Write the header. // cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // cout << setw(5) << j << " "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void i4vec_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title to be printed first. // TITLE may be blank. // { int i; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << " " << setw(8) << a[i] << "\n"; } return; } //****************************************************************************80 int i4vec_sum ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SUM sums the entries of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // Input: // // A = ( 1, 2, 3, 4 ) // // Output: // // I4VEC_SUM = 10 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector to be summed. // // Output, int I4VEC_SUM, the sum of the entries of A. // { int i; int sum; sum = 0; for ( i = 0; i < n; i++ ) { sum = sum + a[i]; } return sum; } //****************************************************************************80 void i4vec_zero ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_ZERO zeroes an I4VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, int A[N], a vector of zeroes. // { int i; for ( i = 0; i < n; i++ ) { a[i] = 0; } return; } //****************************************************************************80 void mesh_base_one ( int node_num, int element_order, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // MESH_BASE_ONE ensures that the element definition is 1-based. // // Discussion: // // The ELEMENT_NODE array contains nodes indices that form elements. // The convention for node indexing might start at 0 or at 1. // // If this function detects 0-based indexing, it converts to 1-based. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int ELEMENT_ORDER, the order of the elements. // // Input, int ELEMENT_NUM, the number of elements. // // Input/output, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], the element // definitions. // { int element; const int i4_huge = 2147483647; int node; int node_max; int node_min; int order; node_min = + i4_huge; node_max = - i4_huge; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; if ( node < node_min ) { node_min = node; } if ( node_max < node ) { node_max = node; } } } if ( node_min == 0 && node_max == node_num - 1 ) { cout << "\n"; cout << "MESH_BASE_ONE:\n"; cout << " The element indexing appears to be 0-based!\n"; cout << " This will be converted to 1-based.\n"; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { element_node[order+element*element_order] = element_node[order+element*element_order] + 1; } } } else if ( node_min == 1 && node_max == node_num ) { cout << "\n"; cout << "MESH_BASE_ONE:\n"; cout << " The element indexing appears to be 1-based!\n"; cout << " No conversion is necessary.\n"; } else { cout << "\n"; cout << "MESH_BASE_ONE - Warning!\n"; cout << " The element indexing is not of a recognized type.\n"; cout << " NODE_MIN = " << node_min << "\n"; cout << " NODE_MAX = " << node_max << "\n"; cout << " NODE_NUM = " << node_num << "\n"; } return; } //****************************************************************************80 void mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // MESH_BASE_ZERO ensures that the element definition is zero-based. // // Discussion: // // The ELEMENT_NODE array contains nodes indices that form elements. // The convention for node indexing might start at 0 or at 1. // Since a C++ program will naturally assume a 0-based indexing, it is // necessary to check a given element definition and, if it is actually // 1-based, to convert it. // // This function attempts to detect 1-based node indexing and correct it. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int ELEMENT_ORDER, the order of the elements. // // Input, int ELEMENT_NUM, the number of elements. // // Input/output, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], the element // definitions. // { int element; const int i4_huge = 2147483647; int node; int node_max; int node_min; int order; node_min = + i4_huge; node_max = - i4_huge; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; if ( node < node_min ) { node_min = node; } if ( node_max < node ) { node_max = node; } } } if ( node_min == 0 && node_max == node_num - 1 ) { cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 0-based!\n"; cout << " No conversion is necessary.\n"; } else if ( node_min == 1 && node_max == node_num ) { cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 1-based!\n"; cout << " This will be converted to 0-based.\n"; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { element_node[order+element*element_order] = element_node[order+element*element_order] - 1; } } } else { cout << "\n"; cout << "MESH_BASE_ZERO - Warning!\n"; cout << " The element indexing is not of a recognized type.\n"; cout << " NODE_MIN = " << node_min << "\n"; cout << " NODE_MAX = " << node_max << "\n"; cout << " NODE_NUM = " << node_num << "\n"; } return; } //****************************************************************************80 float r4_abs ( float x ) //****************************************************************************80 // // Purpose: // // R4_ABS returns the absolute value of an R4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the quantity whose absolute value is desired. // // Output, float R4_ABS, the absolute value of X. // { float value; if ( 0.0 <= x ) { value = x; } else { value = -x; } return value; } //****************************************************************************80 int r4_nint ( float x ) //****************************************************************************80 // // Purpose: // // R4_NINT returns the nearest integer to an R4. // // Example: // // X R4_NINT // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the value. // // Output, int R4_NINT, the nearest integer to X. // { int value; if ( x < 0.0 ) { value = - ( int ) ( r4_abs ( x ) + 0.5 ); } else { value = ( int ) ( r4_abs ( x ) + 0.5 ); } return value; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // HUGE_VAL is the largest representable legal double precision number, // and is usually defined in math.h, or sometimes in stdlib.h. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { return HUGE_VAL; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 void r8_swap ( double *x, double *y ) //****************************************************************************80 // // Purpose: // // R8_SWAP switches two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input/output, double *X, *Y. On output, the values of X and // Y have been interchanged. // { double z; z = *x; *x = *y; *y = z; return; } //****************************************************************************80 double r8_uniform_01 ( int *seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = 16807 * seed mod ( 2^31 - 1 ) // r8_uniform_01 = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation // edited by Jerry Banks, // Wiley Interscience, page 95, 1998. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input/output, int *SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { int k; double r; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } // // Although SEED can be represented exactly as a 32 bit integer, // it generally cannot be represented exactly as a 32 bit real number! // r = ( double ) ( *seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double r8mat_det_4d ( double a[4*4] ) //****************************************************************************80 // // Purpose: // // R8MAT_DET_4D computes the determinant of a 4 by 4 R8MAT. // // Discussion: // // The two dimensional array is stored as a one dimensional vector, // by COLUMNS. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, double A[4*4], the matrix whose determinant is desired. // // Output, double R8MAT_DET_4D, the determinant of the matrix. // { double det; det = a[0+0*4] * ( a[1+1*4] * ( a[2+2*4] * a[3+3*4] - a[2+3*4] * a[3+2*4] ) - a[1+2*4] * ( a[2+1*4] * a[3+3*4] - a[2+3*4] * a[3+1*4] ) + a[1+3*4] * ( a[2+1*4] * a[3+2*4] - a[2+2*4] * a[3+1*4] ) ) - a[0+1*4] * ( a[1+0*4] * ( a[2+2*4] * a[3+3*4] - a[2+3*4] * a[3+2*4] ) - a[1+2*4] * ( a[2+0*4] * a[3+3*4] - a[2+3*4] * a[3+0*4] ) + a[1+3*4] * ( a[2+0*4] * a[3+2*4] - a[2+2*4] * a[3+0*4] ) ) + a[0+2*4] * ( a[1+0*4] * ( a[2+1*4] * a[3+3*4] - a[2+3*4] * a[3+1*4] ) - a[1+1*4] * ( a[2+0*4] * a[3+3*4] - a[2+3*4] * a[3+0*4] ) + a[1+3*4] * ( a[2+0*4] * a[3+1*4] - a[2+1*4] * a[3+0*4] ) ) - a[0+3*4] * ( a[1+0*4] * ( a[2+1*4] * a[3+2*4] - a[2+2*4] * a[3+1*4] ) - a[1+1*4] * ( a[2+0*4] * a[3+2*4] - a[2+2*4] * a[3+0*4] ) + a[1+2*4] * ( a[2+0*4] * a[3+1*4] - a[2+1*4] * a[3+0*4] ) ); return det; } //****************************************************************************80 double *r8mat_mv_new ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8MAT_MV_NEW multiplies a matrix times a vector. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // For this routine, the result is returned as the function value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 April 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, double A[M,N], the M by N matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8MAT_MV_NEW[M], the product A*X. // { int i; int j; double *y; y = new double[m]; for ( i = 0; i < m; i++ ) { y[i] = 0.0; for ( j = 0; j < n; j++ ) { y[i] = y[i] + a[i+j*m] * x[j]; } } return y; } //****************************************************************************80 void r8mat_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT prints an R8MAT, with an optional title. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*M] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Input, string TITLE, a title to be printed. // { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT_SOME prints some of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title for the matrix. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setprecision(6) << setw(12) << a[i-1+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 int r8mat_solve ( int n, int rhs_num, double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_SOLVE uses Gauss-Jordan elimination to solve an N by N linear system. // // Discussion: // // A R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // Entry A(I,J) is stored as A[I+J*N] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int RHS_NUM, the number of right hand sides. RHS_NUM // must be at least 0. // // Input/output, double A[N*(N+RHS_NUM)], contains in rows and columns 1 // to N the coefficient matrix, and in columns N+1 through // N+RHS_NUM, the right hand sides. On output, the coefficient matrix // area has been destroyed, while the right hand sides have // been overwritten with the corresponding solutions. // // Output, int R8MAT_SOLVE, singularity flag. // 0, the matrix was not singular, the solutions were computed; // J, factorization failed on step J, and the solutions could not // be computed. // { double apivot; double factor; int i; int ipivot; int j; int k; double temp; for ( j = 0; j < n; j++ ) { // // Choose a pivot row. // ipivot = j; apivot = a[j+j*n]; for ( i = j; i < n; i++ ) { if ( fabs ( apivot ) < fabs ( a[i+j*n] ) ) { apivot = a[i+j*n]; ipivot = i; } } if ( apivot == 0.0 ) { return j; } // // Interchange. // for ( i = 0; i < n + rhs_num; i++ ) { temp = a[ipivot+i*n]; a[ipivot+i*n] = a[j+i*n]; a[j+i*n] = temp; } // // A(J,J) becomes 1. // a[j+j*n] = 1.0; for ( k = j; k < n + rhs_num; k++ ) { a[j+k*n] = a[j+k*n] / apivot; } // // A(I,J) becomes 0. // for ( i = 0; i < n; i++ ) { if ( i != j ) { factor = a[i+j*n]; a[i+j*n] = 0.0; for ( k = j; k < n + rhs_num; k++ ) { a[i+k*n] = a[i+k*n] - factor * a[j+k*n]; } } } } return 0; } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, string TITLE, an optional title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, an optional title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << " "; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setprecision ( 6 ) << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8mat_uniform_01_new ( int m, int n, int *seed ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_01_NEW fills a double precision array with unit pseudorandom values. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // This routine implements the recursion // // seed = 16807 * seed mod ( 2^31 - 1 ) // unif = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Philip Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int *SEED, the "seed" value. Normally, this // value should not be 0, otherwise the output value of SEED // will still be 0, and R8_UNIFORM will be 0. On output, SEED has // been updated. // // Output, double R8MAT_UNIFORM_01_NEW[M*N], a matrix of pseudorandom values. // { int i; int j; int k; double *r; r = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } // // Although SEED can be represented exactly as a 32 bit integer, // it generally cannot be represented exactly as a 32 bit real number// // r[i+j*m] = ( double ) ( *seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 double *r8vec_cross_3d ( double v1[3], double v2[3] ) //****************************************************************************80 // // Purpose: // // R8VEC_CROSS_3D computes the cross product of two vectors in 3D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double V1[3], V2[3], the coordinates of the vectors. // // Output, double R8VEC_CROSS_3D[3], the cross product vector. // { double *v3; v3 = new double[3]; v3[0] = v1[1] * v2[2] - v1[2] * v2[1]; v3[1] = v1[2] * v2[0] - v1[0] * v2[2]; v3[2] = v1[0] * v2[1] - v1[1] * v2[0]; return v3; } //****************************************************************************80 bool r8vec_is_nonnegative ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_IS_NONNEGATIVE is true if all entries in an R8VEC are nonnegative. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double X[N], the vector to be checked. // // Output, bool R8VEC_IS_NONNEGATIVE is true if all elements of X // are nonnegative. // { int i; for ( i = 0; i < n; i++ ) { if ( x[i] < 0.0 ) { return false; } } return true; } //****************************************************************************80 bool r8vec_is_zero ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_IS_ZERO is true if the entries in an R8VEC are all zero. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double X[N], the vector to be checked. // // Output, bool R8VEC_IS_ZERO is true if all N elements of X // are zero. // { int i; for ( i = 0; i < n; i++ ) { if ( x[i] != 0.0 ) { return false; } } return true; } //****************************************************************************80 double r8vec_length ( int dim_num, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_LENGTH returns the Euclidean length of a R8VEC // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, double X[DIM_NUM], the vector. // // Output, double R8VEC_LENGTH, the Euclidean length of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < dim_num; i++ ) { value = value + pow ( x[i], 2 ); } value = sqrt ( value ); return value; } //****************************************************************************80 double r8vec_max ( int n, double dvec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MAX returns the maximum element in an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double DVEC[N], a pointer to the first entry of the array. // // Output, double R8VEC_MAX, the value of the maximum element. This // is set to 0.0 if N <= 0. // { int i; double *r8vec_pointer; double value; value = - r8_huge ( ); if ( n <= 0 ) { return value; } for ( i = 0; i < n; i++ ) { if ( value < dvec[i] ) { value = dvec[i]; } } return value; } //****************************************************************************80 double r8vec_mean ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MEAN returns the mean of a R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 December 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double X[N], the vector whose mean is desired. // // Output, double R8VEC_MEAN, the mean, or average, of the vector entries. // { int i; double mean; mean = 0.0; for ( i = 0; i < n; i++ ) { mean = mean + x[i]; } mean = mean / ( double ) n; return mean; } //****************************************************************************80 double r8vec_min ( int n, double dvec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MIN returns the minimum element in an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double DVEC[N], the array to be checked. // // Output, double R8VEC_MIN, the value of the minimum element. // { int i; double *r8vec_pointer; double value; value = r8_huge ( ); if ( n <= 0 ) { return value; } for ( i = 0; i < n; i++ ) { if ( dvec[i] < value ) { value = dvec[i]; } } return value; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title to be printed first. // TITLE may be blank. // { int i; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double r8vec_sum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SUM returns the sum of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_SUM, the sum of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i]; } return value; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int *seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a unit pseudorandom R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // This routine implements the recursion // // seed = 16807 * seed mod ( 2^31 - 1 ) // unif = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; int k; double *r; r = new double[n]; for ( i = 0; i < n; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } r[i] = ( double ) ( *seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double r8vec_variance ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_VARIANCE returns the variance of a double vector. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double X[N], the vector whose variance is desired. // // Output, double R8VEC_VARIANCE, the variance of the vector entries. // { int i; double mean; double variance; mean = r8vec_mean ( n, x ); variance = 0.0; for ( i = 0; i < n; i++ ) { variance = variance + ( x[i] - mean ) * ( x[i] - mean ); } if ( 1 < n ) { variance = variance / ( double ) ( n - 1 ); } else { variance = 0.0; } return variance; } //****************************************************************************80 void r8vec_zero ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_ZERO zeroes a real vector. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double A[N], a vector of zeroes. // { int i; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' && s[n-1] != '\n' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ) //****************************************************************************80 // // Purpose: // // SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. // // Discussion: // // The actual list is not passed to the routine. Hence it may // consist of integers, reals, numbers, names, etc. The user, // after each return from the routine, will be asked to compare or // interchange two items. // // The current version of this code mimics the FORTRAN version, // so the values of I and J, in particular, are FORTRAN indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2004 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt. // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the length of the input list. // // Input/output, int *INDX. // The user must set INDX to 0 before the first call. // On return, // if INDX is greater than 0, the user must interchange // items I and J and recall the routine. // If INDX is less than 0, the user is to compare items I // and J and return in ISGN a negative value if I is to // precede J, and a positive value otherwise. // If INDX is 0, the sorting is done. // // Output, int *I, *J. On return with INDX positive, // elements I and J of the user's list should be // interchanged. On return with INDX negative, elements I // and J are to be compared by the user. // // Input, int ISGN. On return with INDX negative, the // user should compare elements I and J of the list. If // item I is to precede item J, set ISGN negative, // otherwise set ISGN positive. // { static int i_save = 0; static int j_save = 0; static int k = 0; static int k1 = 0; static int n1 = 0; // // INDX = 0: This is the first call. // if ( *indx == 0 ) { i_save = 0; j_save = 0; k = n / 2; k1 = k; n1 = n; } // // INDX < 0: The user is returning the results of a comparison. // else if ( *indx < 0 ) { if ( *indx == -2 ) { if ( isgn < 0 ) { i_save = i_save + 1; } j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } if ( 0 < isgn ) { *indx = 2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; } *i = i_save; *j = j_save; return; } k = k - 1; k1 = k; } // // 0 < INDX: the user was asked to make an interchange. // else if ( *indx == 1 ) { k1 = k; } for ( ; ; ) { i_save = 2 * k1; if ( i_save == n1 ) { j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } else if ( i_save <= n1 ) { j_save = i_save + 1; *indx = -2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { break; } k = k - 1; k1 = k; } if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; *i = i_save; *j = j_save; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; *i = i_save; *j = j_save; } return; } //****************************************************************************80 int *tet_mesh_neighbor_tets ( int tetra_order, int tetra_num, int tetra_node[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_NEIGHBOR_TETS determines tetrahedron neighbors. // // Discussion: // // A tet mesh of a set of nodes can be completely described by // the coordinates of the nodes, and the list of nodes that make up // each tetrahedron. In the most common case, four nodes are used. // There is also a 10 node case, where nodes are also placed on // the midsides of the tetrahedral edges. // // This routine can handle 4 or 10-node tetrahedral meshes. The // 10-node case is handled simply by ignoring the six midside nodes, // which are presumed to be listed after the vertices. // // The tetrahedron adjacency information records which tetrahedron // is adjacent to a given tetrahedron on a particular face. // // This routine creates a data structure recording this information. // // The primary amount of work occurs in sorting a list of 4 * TETRA_NUM // data items. // // The neighbor tetrahedrons are indexed by the face they share with // the tetrahedron. // // Each face of the tetrahedron is indexed by the node which is NOT // part of the face. That is: // // * Neighbor 1 shares face 1 defined by nodes 2, 3, 4. // * Neighbor 2 shares face 2 defined by nodes 1, 3, 4; // * Neighbor 3 shares face 3 defined by nodes 1, 2, 4; // * Neighbor 4 shares face 4 defined by nodes 1, 2, 3. // // For instance, if the (transposed) TETRA_NODE array was: // // Row 1 2 3 4 // Col // // 1 4 3 5 1 // 2 4 2 5 1 // 3 4 7 3 5 // 4 4 7 8 5 // 5 4 6 2 5 // 6 4 6 8 5 // // then the (transposed) TETRA_NEIGHBOR array should be: // // Row 1 2 3 4 // Col // // 1 -1 2 -1 3 // 2 -1 1 -1 5 // 3 -1 1 4 -1 // 4 -1 6 3 -1 // 5 -1 2 6 -1 // 6 -1 4 5 -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the indices of the nodes. // // Output, int TET_MESH_NEIGHBORS[4*TETRA_NUM], the four tetrahedrons that // are direct neighbors of a given tetrahedron. If there is no neighbor // sharing a given face, the index is set to -1. // { int a; int b; int c; int face; int face1; int face2; int *faces; int i; int j; int k; int l; int tetra; int *tetra_neighbor; int tetra1; int tetra2; faces = new int[5*(4*tetra_num)]; tetra_neighbor = new int[4*tetra_num]; // // Step 1. // From the list of nodes for tetrahedron T, of the form: (I,J,K,L) // construct the four face relations: // // (J,K,L,1,T) // (I,K,L,2,T) // (I,J,L,3,T) // (I,J,K,4,T) // // In order to make matching easier, we reorder each triple of nodes // into ascending order. // for ( tetra = 0; tetra < tetra_num; tetra++ ) { i = tetra_node[0+tetra*tetra_order]; j = tetra_node[1+tetra*tetra_order]; k = tetra_node[2+tetra*tetra_order]; l = tetra_node[3+tetra*tetra_order]; i4i4i4_sort_a ( j, k, l, &a, &b, &c ); faces[0+0*5+tetra*5*4] = a; faces[1+0*5+tetra*5*4] = b; faces[2+0*5+tetra*5*4] = c; faces[3+0*5+tetra*5*4] = 0; faces[4+0*5+tetra*5*4] = tetra; i4i4i4_sort_a ( i, k, l, &a, &b, &c ); faces[0+1*5+tetra*5*4] = a; faces[1+1*5+tetra*5*4] = b; faces[2+1*5+tetra*5*4] = c; faces[3+1*5+tetra*5*4] = 1; faces[4+1*5+tetra*5*4] = tetra; i4i4i4_sort_a ( i, j, l, &a, &b, &c ); faces[0+2*5+tetra*5*4] = a; faces[1+2*5+tetra*5*4] = b; faces[2+2*5+tetra*5*4] = c; faces[3+2*5+tetra*5*4] = 2; faces[4+2*5+tetra*5*4] = tetra; i4i4i4_sort_a ( i, j, k, &a, &b, &c ); faces[0+3*5+tetra*5*4] = a; faces[1+3*5+tetra*5*4] = b; faces[2+3*5+tetra*5*4] = c; faces[3+3*5+tetra*5*4] = 3; faces[4+3*5+tetra*5*4] = tetra; } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // We only intend to sort on rows 1:3; the routine we call here // sorts on rows 1 through 5 but that won't hurt us. // // What we need is to find cases where two tetrahedrons share a face. // By sorting the columns of the FACES array, we will put shared faces // next to each other. // i4col_sort_a ( 5, 4*tetra_num, faces ); // // Step 3. Neighboring tetrahedrons show up as consecutive columns with // identical first three entries. Whenever you spot this happening, // make the appropriate entries in TETRA_NEIGHBOR. // for ( j = 0; j < tetra_num; j++ ) { for ( i = 0; i < 4; i++ ) { tetra_neighbor[i+j*4] = -1; } } face = 0; for ( ; ; ) { if ( 4 * tetra_num - 1 <= face ) { break; } if ( faces[0+face*5] == faces[0+(face+1)*5] && faces[1+face*5] == faces[1+(face+1)*5] && faces[2+face*5] == faces[2+(face+1)*5] ) { face1 = faces[3+face*5]; tetra1 = faces[4+face*5]; face2 = faces[3+(face+1)*5]; tetra2 = faces[4+(face+1)*5]; tetra_neighbor[face1+tetra1*4] = tetra2; tetra_neighbor[face2+tetra2*4] = tetra1; face = face + 2; } else { face = face + 1; } } delete [] faces; return tetra_neighbor; } //****************************************************************************80 int *tet_mesh_node_order ( int tetra_order, int tetra_num, int tetra_node[], int node_num ) //****************************************************************************80 // // Purpose: // // TET_MESH_NODE_ORDER: determines the order of nodes. // // Discussion: // // The order of a node is the number of tetrahedrons that use that node // as a vertex. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the indices of the nodes. // // Input, int NODE_NUM, the number of nodes. // // Output, int TET_MESH_NODE_ORDER[NODE_NUM], the order of each node. // { int i; int node; int *node_order; int tetra; node_order = new int[node_num]; i4vec_zero ( node_num, node_order ); for ( tetra = 0; tetra < tetra_num; tetra++ ) { for ( i = 0; i < tetra_order; i++ ) { node = tetra_node[i+tetra*tetra_order]; if ( node < 0 || node_num <= node ) { cout << "\n"; cout << "TET_MESH_NODE_ORDER - Fatal error!\n"; cout << " Illegal entry in TETRA_NODE.\n"; exit ( 1 ); } else { node_order[node] = node_order[node] + 1; } } } return node_order; } //****************************************************************************80 void tet_mesh_order4_adj_count ( int node_num, int tetra_num, int tetra_node[], int *adj_num, int adj_row[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER4_ADJ_COUNT counts the number of nodal adjacencies. // // Discussion: // // Assuming that the tet mesh is to be used in a finite element // computation, we declare that two distinct nodes are "adjacent" if and // only if they are both included in some tetrahedron. // // It is the purpose of this routine to determine the number of // such adjacency relationships. // // The initial count gets only the (I,J) relationships, for which // node I is strictly less than node J. This value is doubled // to account for symmetry. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[4*TETRA_NUM], the indices of the nodes. // // Output, int *ADJ_NUM, the total number of adjacency relationships, // // Output, int ADJ_ROW[NODE_NUM+1], the ADJ pointer array. // { int i; int j; int k; int node; int *pair; int pair_num; int pair_unique_num; int tetra; // // Each order 4 tetrahedron defines 6 adjacency pairs. // pair = new int[2*6*tetra_num]; for ( tetra = 0; tetra < tetra_num; tetra++ ) { pair[0+ tetra *2] = tetra_node[0+tetra*4]; pair[1+ tetra *2] = tetra_node[1+tetra*4]; pair[0+( tetra_num+tetra)*2] = tetra_node[0+tetra*4]; pair[1+( tetra_num+tetra)*2] = tetra_node[2+tetra*4]; pair[0+(2*tetra_num+tetra)*2] = tetra_node[0+tetra*4]; pair[1+(2*tetra_num+tetra)*2] = tetra_node[3+tetra*4]; pair[0+(3*tetra_num+tetra)*2] = tetra_node[1+tetra*4]; pair[1+(3*tetra_num+tetra)*2] = tetra_node[2+tetra*4]; pair[0+(4*tetra_num+tetra)*2] = tetra_node[1+tetra*4]; pair[1+(4*tetra_num+tetra)*2] = tetra_node[3+tetra*4]; pair[0+(5*tetra_num+tetra)*2] = tetra_node[2+tetra*4]; pair[1+(5*tetra_num+tetra)*2] = tetra_node[3+tetra*4]; } pair_num = 6 * tetra_num; // // Force the nodes of each pair to be listed in ascending order. // i4mat_transpose_print_some ( 2, pair_num, pair, 1, 1, 2, pair_num, "DEBUG: PAIR before first sort" ); i4col_sort2_a ( 2, pair_num, pair ); i4mat_transpose_print_some ( 2, pair_num, pair, 1, 1, 2, pair_num, "DEBUG: PAIR after first sort" ); // // Rearrange the columns in ascending order. // i4col_sort_a ( 2, pair_num, pair ); // // Get the number of unique columns. // pair_unique_num = i4col_sorted_unique_count ( 2, pair_num, pair ); // // The number of adjacencies is TWICE this value, plus the number of nodes. // *adj_num = 2 * pair_unique_num; // // Now set up the ADJ_ROW counts. // for ( node = 0; node < node_num; node++ ) { adj_row[node] = 0; } for ( k = 0; k < pair_num; k++ ) { if ( 0 < k ) { if ( pair[0+(k-1)*2] == pair[0+k*2] && pair[1+(k-1)*2] == pair[1+k*2] ) { continue; } } i = pair[0+k*2]; j = pair[1+k*2]; adj_row[i-1] = adj_row[i-1] + 1; adj_row[j-1] = adj_row[j-1] + 1; } // // We used ADJ_ROW to count the number of entries in each row. // Convert it to pointers into the ADJ array. // for ( node = node_num-1; 0 <= node; node-- ) { adj_row[node] = adj_row[node+1]; } adj_row[0] = 1; for ( node = 1; node <= node_num; node++ ) { adj_row[node] = adj_row[node-1] + adj_row[i]; } delete [] pair; return; } //****************************************************************************80 int *tet_mesh_order4_adj_set ( int node_num, int element_num, int element_node[], int adj_num, int adj_row[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER4_ADJ_SET sets the nodal adjacency matrix. // // Discussion: // // A compressed format is used for the nodal adjacency matrix. // // It is assumed that we know ADJ_NUM, the number of adjacency entries // and the ADJ_ROW array, which keeps track of the list of slots // in ADJ where we can store adjacency information for each row. // // We essentially repeat the work of TET_MESH_ORDER4_ADJ_COUNT, but // now we have a place to store the adjacency information. // // A copy of the ADJ_ROW array is useful, as we can use it to keep track // of the next available entry in ADJ for adjacencies associated with // a given row. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[4*TETRA_NUM], the indices of the nodes. // // Input, int ADJ_NUM, the total number of adjacency relationships, // // Input, int ADJ_ROW[NODE_NUM+1], the ADJ pointer array. // // Output, int TET_MESH_ORDER4_ADJ_SET[ADJ_NUM], // the adjacency information. // { int *adj; int *adj_row_copy; int i; int j; int k; int node; int *pair; int pair_num; int tetra; // // Each order 4 tetrahedron defines 6 adjacency pairs. // pair = new int[2*6*element_num]; for ( tetra = 0; tetra < element_num; tetra++ ) { pair[0+ tetra *2] = element_node[0+tetra*4]; pair[1+ tetra *2] = element_node[1+tetra*4]; pair[0+( element_num+tetra)*2] = element_node[0+tetra*4]; pair[1+( element_num+tetra)*2] = element_node[2+tetra*4]; pair[0+(2*element_num+tetra)*2] = element_node[0+tetra*4]; pair[1+(2*element_num+tetra)*2] = element_node[3+tetra*4]; pair[0+(3*element_num+tetra)*2] = element_node[1+tetra*4]; pair[1+(3*element_num+tetra)*2] = element_node[2+tetra*4]; pair[0+(4*element_num+tetra)*2] = element_node[1+tetra*4]; pair[1+(4*element_num+tetra)*2] = element_node[3+tetra*4]; pair[0+(5*element_num+tetra)*2] = element_node[2+tetra*4]; pair[1+(5*element_num+tetra)*2] = element_node[3+tetra*4]; } pair_num = 6 * element_num; // // Force the nodes of each pair to be listed in ascending order. // i4col_sort2_a ( 2, pair_num, pair ); // // Rearrange the columns in ascending order. // i4col_sort_a ( 2, pair_num, pair ); // // Mark all entries of ADJ so we will know later if we missed one. // adj = new int[adj_num]; for ( i = 0; i < adj_num; i++ ) { adj[i] = -1; } // // Copy the ADJ_ROW array and use it to keep track of the next // free entry for each row. // adj_row_copy = new int[node_num]; for ( node = 0; node < node_num; node++ ) { adj_row_copy[node] = adj_row[node]; } // // Now set up the ADJ_ROW counts. // for ( k = 0; k < pair_num; k++ ) { if ( 0 < k ) { if ( pair[0+(k-1)*2] == pair[0+k*2] && pair[1+(k-1)*2] == pair[1+k*2] ) { continue; } } i = pair[0+k*2]; j = pair[1+k*2]; adj[adj_row_copy[i]] = j; adj_row_copy[i] = adj_row_copy[i] + 1; adj[adj_row_copy[j]] = i; adj_row_copy[j] = adj_row_copy[j] + 1; } delete [] adj_row_copy; delete [] pair; return adj; } //****************************************************************************80 int tet_mesh_order4_boundary_face_count ( int tetra_num, int tetra_node[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER4_BOUNDARY_FACE_COUNT counts the number of boundary faces. // // Discussion: // // This routine is given a tet mesh, an abstract list of // quadruples of nodes. It is assumed that the nodes forming each // face of each tetrahedron are listed in a counterclockwise order, // although the routine should work if the nodes are consistently // listed in a clockwise order as well. // // It is assumed that each face of the tet mesh is either // * an INTERIOR face, which is listed twice, once with positive // orientation and once with negative orientation, or; // * a BOUNDARY face, which will occur only once. // // This routine should work even if the region has holes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[4*TETRA_NUM], the indices of the nodes. // // Output, int TET_MESH_ORDER4_BOUNDARY_FACE_COUNT, the number of // boundary faces. // { int boundary_face_num; int *face; int face_num; int interior_face_num; int m; int tet; int unique_face_num; face = new int[3*4*tetra_num]; m = 3; face_num = 4 * tetra_num; // // Set up the face array: // (Omit node 1) // (Omit node 2) // (Omit node 3) // (Omit node 4) // for ( tet = 0; tet < tetra_num; tet++ ) { face[0+( tet)*3] = tetra_node[1+tet*4]; face[1+( tet)*3] = tetra_node[2+tet*4]; face[2+( tet)*3] = tetra_node[3+tet*4]; face[0+( tetra_num+tet)*3] = tetra_node[0+tet*4]; face[1+( tetra_num+tet)*3] = tetra_node[2+tet*4]; face[2+( tetra_num+tet)*3] = tetra_node[3+tet*4]; face[0+(2*tetra_num+tet)*3] = tetra_node[0+tet*4]; face[1+(2*tetra_num+tet)*3] = tetra_node[1+tet*4]; face[2+(2*tetra_num+tet)*3] = tetra_node[3+tet*4]; face[0+(3*tetra_num+tet)*3] = tetra_node[0+tet*4]; face[1+(3*tetra_num+tet)*3] = tetra_node[1+tet*4]; face[2+(3*tetra_num+tet)*3] = tetra_node[2+tet*4]; } // // Force the nodes of each face to be listed in ascending order. // i4col_sort2_a ( m, face_num, face ); // // Ascending sort the columns. // i4col_sort_a ( m, face_num, face ); // // Get the number of unique columns. // unique_face_num = i4col_sorted_unique_count ( m, face_num, face ); // // Determine the number of interior and boundary faces. // interior_face_num = 4 * tetra_num - unique_face_num; boundary_face_num = 4 * tetra_num - 2 * interior_face_num; delete [] face; return boundary_face_num; } //****************************************************************************80 int tet_mesh_order4_edge_count ( int tetra_num, int tetra_node[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER4_EDGE_COUNT counts the number of edges. // // Discussion: // // This routine is given a tet mesh, an abstract list of // quadruples of nodes. Each tetrahedron defines 6 edges; however, // assuming that tetrahedrons are touching each other, most edges // will be used more than once. This routine determines the actual // number of "geometric" edges associated with the tet mesh. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[4*TETRA_NUM], the indices of the nodes. // // Output, int TET_MESH_ORDER4_EDGE_COUNT, the number of edges. // { int *edge; int edge_num; int edge_num_raw; int m; int tet; edge = new int[2*6*tetra_num]; m = 3; edge_num_raw = 6 * tetra_num; // // Set up the raw edge array: // for ( tet = 0; tet < tetra_num; tet++ ) { edge[0+ tet *2] = tetra_node[0+tet*4]; edge[1+ tet *2] = tetra_node[1+tet*4]; edge[0+( tetra_num+tet)*2] = tetra_node[0+tet*4]; edge[1+( tetra_num+tet)*2] = tetra_node[2+tet*4]; edge[0+(2*tetra_num+tet)*2] = tetra_node[0+tet*4]; edge[1+(2*tetra_num+tet)*2] = tetra_node[3+tet*4]; edge[0+(3*tetra_num+tet)*2] = tetra_node[1+tet*4]; edge[1+(3*tetra_num+tet)*2] = tetra_node[2+tet*4]; edge[0+(4*tetra_num+tet)*2] = tetra_node[1+tet*4]; edge[1+(4*tetra_num+tet)*2] = tetra_node[3+tet*4]; edge[0+(5*tetra_num+tet)*2] = tetra_node[2+tet*4]; edge[1+(5*tetra_num+tet)*2] = tetra_node[3+tet*4]; } // // Force the nodes of each face to be listed in ascending order. // i4col_sort2_a ( m, edge_num_raw, edge ); // // Ascending sort the columns. // i4col_sort_a ( m, edge_num_raw, edge ); // // Get the number of unique columns. // edge_num = i4col_sorted_unique_count ( m, edge_num_raw, edge ); delete [] edge; return edge_num; } //****************************************************************************80 void tet_mesh_order4_example_set ( int node_num, int tetra_num, double node_xyz[], int tetra_node[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER4_EXAMPLE_SET sets an example linear tet mesh. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Output, double NODE_XYZ[3*NODE_NUM], the node coordinates. // // Output, int TETRA_NODE[4*TETRA_NUM], the nodes forming each tet. // { int i; int j; double node_xyz_save[3*63] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 1.0, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.5, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.5, 0.0, 1.0, 1.0, 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.0, 1.0, 0.5, 0.5, 0.0, 0.5, 0.5, 0.5, 0.5, 0.5, 1.0, 0.5, 1.0, 0.0, 0.5, 1.0, 0.5, 0.5, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.5, 1.0, 0.0, 1.0, 1.0, 0.5, 0.0, 1.0, 0.5, 0.5, 1.0, 0.5, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.5, 1.0, 1.0, 1.0, 1.5, 0.0, 0.0, 1.5, 0.0, 0.5, 1.5, 0.0, 1.0, 1.5, 0.5, 0.0, 1.5, 0.5, 0.5, 1.5, 0.5, 1.0, 1.5, 1.0, 0.0, 1.5, 1.0, 0.5, 1.5, 1.0, 1.0, 2.0, 0.0, 0.0, 2.0, 0.0, 0.5, 2.0, 0.0, 1.0, 2.0, 0.5, 0.0, 2.0, 0.5, 0.5, 2.0, 0.5, 1.0, 2.0, 1.0, 0.0, 2.0, 1.0, 0.5, 2.0, 1.0, 1.0, 2.5, 0.0, 0.0, 2.5, 0.0, 0.5, 2.5, 0.0, 1.0, 2.5, 0.5, 0.0, 2.5, 0.5, 0.5, 2.5, 0.5, 1.0, 2.5, 1.0, 0.0, 2.5, 1.0, 0.5, 2.5, 1.0, 1.0, 3.0, 0.0, 0.0, 3.0, 0.0, 0.5, 3.0, 0.0, 1.0, 3.0, 0.5, 0.0, 3.0, 0.5, 0.5, 3.0, 0.5, 1.0, 3.0, 1.0, 0.0, 3.0, 1.0, 0.5, 3.0, 1.0, 1.0 }; int tetra_node_save[4*144] = { 1, 2, 4, 10, 2, 4, 5, 10, 2, 5, 10, 11, 2, 3, 5, 11, 4, 5, 10, 13, 3, 5, 6, 11, 5, 10, 11, 13, 4, 5, 7, 13, 5, 6, 8, 14, 5, 7, 8, 13, 6, 8, 9, 14, 11, 13, 14, 19, 12, 14, 15, 20, 3, 6, 11, 12, 5, 6, 11, 14, 6, 9, 14, 15, 6, 11, 12, 14, 6, 12, 14, 15, 7, 8, 13, 16, 5, 8, 13, 14, 10, 11, 13, 19, 8, 9, 14, 17, 11, 12, 14, 20, 5, 11, 13, 14, 8, 13, 14, 16, 9, 14, 15, 17, 13, 14, 16, 22, 8, 14, 16, 17, 14, 15, 17, 23, 14, 16, 17, 22, 9, 15, 17, 18, 15, 17, 18, 23, 14, 17, 22, 23, 13, 14, 19, 22, 11, 14, 19, 20, 14, 15, 20, 23, 15, 20, 21, 23, 21, 23, 24, 29, 20, 22, 23, 28, 14, 19, 20, 22, 15, 18, 23, 24, 12, 15, 20, 21, 15, 21, 23, 24, 16, 17, 22, 25, 19, 20, 22, 28, 17, 18, 23, 26, 20, 21, 23, 29, 14, 20, 22, 23, 17, 22, 23, 25, 18, 23, 24, 26, 22, 23, 25, 31, 17, 23, 25, 26, 23, 24, 26, 32, 23, 25, 26, 31, 18, 24, 26, 27, 24, 26, 27, 32, 23, 26, 31, 32, 22, 23, 28, 31, 20, 23, 28, 29, 23, 24, 29, 32, 24, 29, 30, 32, 30, 32, 33, 38, 29, 31, 32, 37, 23, 28, 29, 31, 24, 27, 32, 33, 21, 24, 29, 30, 24, 30, 32, 33, 25, 26, 31, 34, 28, 29, 31, 37, 26, 27, 32, 35, 29, 30, 32, 38, 23, 29, 31, 32, 26, 31, 32, 34, 27, 32, 33, 35, 31, 32, 34, 40, 26, 32, 34, 35, 32, 33, 35, 41, 32, 34, 35, 40, 27, 33, 35, 36, 33, 35, 36, 41, 32, 35, 40, 41, 31, 32, 37, 40, 29, 32, 37, 38, 32, 33, 38, 41, 33, 38, 39, 41, 39, 41, 42, 47, 38, 40, 41, 46, 32, 37, 38, 40, 33, 36, 41, 42, 30, 33, 38, 39, 33, 39, 41, 42, 34, 35, 40, 43, 37, 38, 40, 46, 35, 36, 41, 44, 38, 39, 41, 47, 32, 38, 40, 41, 35, 40, 41, 43, 36, 41, 42, 44, 40, 41, 43, 49, 35, 41, 43, 44, 41, 42, 44, 50, 41, 43, 44, 49, 36, 42, 44, 45, 42, 44, 45, 50, 41, 44, 49, 50, 40, 41, 46, 49, 38, 41, 46, 47, 41, 42, 47, 50, 42, 47, 48, 50, 48, 50, 51, 56, 47, 49, 50, 55, 41, 46, 47, 49, 42, 45, 50, 51, 39, 42, 47, 48, 42, 48, 50, 51, 43, 44, 49, 52, 46, 47, 49, 55, 44, 45, 50, 53, 47, 48, 50, 56, 41, 47, 49, 50, 44, 49, 50, 52, 45, 50, 51, 53, 49, 50, 52, 58, 44, 50, 52, 53, 50, 51, 53, 59, 50, 52, 53, 58, 45, 51, 53, 54, 51, 53, 54, 59, 50, 53, 58, 59, 49, 50, 55, 58, 47, 50, 55, 56, 50, 51, 56, 59, 51, 56, 57, 59, 50, 55, 56, 58, 51, 54, 59, 60, 48, 51, 56, 57, 51, 57, 59, 60, 52, 53, 58, 61, 53, 54, 59, 62, 50, 56, 58, 59, 53, 58, 59, 61, 54, 59, 60, 62, 53, 59, 61, 62, 54, 60, 62, 63 }; for ( j = 0; j < node_num; j++ ) { for ( i = 0; i < 3; i++ ) { node_xyz[i+j*3] = node_xyz_save[i+j*3]; } } for ( j = 0; j < tetra_num; j++ ) { for ( i = 0; i < 4; i++ ) { tetra_node[i+j*4] = tetra_node_save[i+j*4] - 1; } } return; } //****************************************************************************80 void tet_mesh_order4_example_size ( int *node_num, int *tetra_num ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER4_EXAMPLE_SIZE sizes an example linear tet mesh. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 August 2009 // // Author: // // John Burkardt // // Parameters: // // Output, int *NODE_NUM, the number of nodes. // // Output, int *TETRA_NUM, the number of tetrahedrons. // { *node_num = 63; *tetra_num = 144; return; } //****************************************************************************80 void tet_mesh_order4_refine_compute ( int node_num1, int tetra_num1, double node_xyz1[], int tetra_node1[], int node_num2, int tetra_num2, int edge_data[], double node_xyz2[], int tetra_node2[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER4_REFINE_COMPUTE computes a refined order 4 tet mesh // // Discussion: // // A refined 4-node tet mesh can be derived from a given // 4-node tet mesh by interpolating nodes at the midpoint of // every edge of the mesh. // // The mesh is described indirectly, as the sum of individual // tetrahedrons. A single physical edge may be a logical edge of // any number of tetrahedrons. It is important, however, that a // new node be created exactly once for each edge, assigned an index, // and associated with every tetrahedron that shares this edge. // // This routine handles that problem. // // The primary amount of work occurs in sorting a list of 6 * TETRA_NUM // data items, one item for every edge of every tetrahedron. Each // data item records, for a given tetrahedron edge, the global indices // of the two endpoints, the local indices of the two endpoints, // and the index of the tetrahedron. // // Through careful sorting, it is possible to arrange this data in // a way that allows the proper generation of the interpolated nodes. // // Let us add the new nodes and temporarily assign them local indices // 5 through X, based on the following ordering: // // 1, 2, 3, 4, (1+2), (1+3), (1+4), (2+3), (2+4), (3+4). // // Then let us assign these nodes to eight subtetrahedrons as follows: // // 1, 5, 6, 7 // 2, 5, 8, 9 // 3, 6, 8, 9 // 4, 7, 9, X // 5, 6, 7, 9 // 5, 6, 8, 9 // 6, 7, 9, X // 6, 8, 9, X // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 January 2007 // // Author: // // John Burkardt // // Reference: // // Anwei Liu, Barry Joe, // Quality Local Refinement of Tetrahedral Meshes Based // on 8-Subtetrahedron Subdivision, // Mathematics of Computation, // Volume 65, Number 215, July 1996, pages 1183-1200. // // Parameters: // // Input, int NODE_NUM1, the number of nodes in the input mesh. // // Input, int TETRA_NUM1, the number of tetrahedrons in the // input mesh. // // Input, double NODE_XYZ1[3*NODE_NUM1], the coordinates of // the nodes that make up the input mesh. // // Input, int TETRA_NODE1[4*TETRA_NUM], the indices of the nodes // in the input mesh. // // Input, int NODE_NUM2, the number of nodes in the refined mesh. // // Input, int TETRA_NUM2, the number of tetrahedrons in the // refined mesh. // // Input, int EDGE_DATA[5*(6*TETRA_NUM1)], edge data. // // Output, double NODE_XYZ2[3*NODE_NUM2], the coordinates of // the nodes that make up the refined mesh. // // Output, int TETRA_NODE2[4*TETRA_NUM2], the indices of the nodes // in the refined mesh. // { int dim_num = 3; int edge; int i; int j; int n1; int n1_old; int n2; int n2_old; int node; int tetra_order = 4; int tetra1; int tetra2; int v; int v1; int v2; // // Generate the index and coordinates of the new midside nodes, // and update the tetradehron-node data. // for ( j = 0; j < node_num1; j++ ) { for ( i = 0; i < dim_num; i++ ) { node_xyz2[i+j*dim_num] = node_xyz1[i+j*dim_num]; } } for ( j = 0; j < tetra_num2; j++ ) { for ( i = 0; i < tetra_order; i++ ) { tetra_node2[i+j*tetra_order] = -1; } } // // The vertices of the input tetrahedron can be assigned now. // for ( tetra1 = 0; tetra1 < tetra_num1; tetra1++ ) { tetra_node2[0+(tetra1*8+0)*tetra_order] = tetra_node1[0+tetra1*tetra_order]; tetra_node2[0+(tetra1*8+1)*tetra_order] = tetra_node1[1+tetra1*tetra_order]; tetra_node2[0+(tetra1*8+2)*tetra_order] = tetra_node1[2+tetra1*tetra_order]; tetra_node2[0+(tetra1*8+3)*tetra_order] = tetra_node1[3+tetra1*tetra_order]; } node = node_num1; n1_old = -1; n2_old = -1; for ( edge = 0; edge < 6 * tetra_num1; edge++ ) { // // Read the data defining the edge. // n1 = edge_data[0+edge*5]; n2 = edge_data[1+edge*5]; // // If this edge is new, create the coordinates and index. // if ( n1 != n1_old || n2 != n2_old ) { if ( node_num2 <= node ) { cout << "\n"; cout << "TET_MESH_ORDER4_REFINE_COMPUTE - Fatal error!\n"; cout << " Node index exceeds NODE_NUM2.\n"; exit ( 1 ); } for ( i = 0; i < dim_num; i++ ) { node_xyz2[i+node*dim_num] = ( node_xyz2[i+(n1-1)*dim_num] + node_xyz2[i+(n2-1)*dim_num] ) / 2.0; } node = node + 1; n1_old = n1; n2_old = n2; } // // Assign the node to the tetrahedron. // v1 = edge_data[2+edge*5]; v2 = edge_data[3+edge*5]; tetra1 = edge_data[4+edge*5]; // // We know the two vertices that bracket this new node. // This tells us whether it is new node number 5, 6, 7, 8, 9 or 10. // This tells us which of the new subtetrahedrons it belongs to, // and what position it occupies. // if ( v1 == 1 && v2 == 2 ) { tetra_node2[1+(tetra1*8+0)*tetra_order] = node; tetra_node2[1+(tetra1*8+1)*tetra_order] = node; tetra_node2[0+(tetra1*8+4)*tetra_order] = node; tetra_node2[0+(tetra1*8+5)*tetra_order] = node; } else if ( v1 == 1 && v2 == 3 ) { tetra_node2[2+(tetra1*8+0)*tetra_order] = node; tetra_node2[1+(tetra1*8+2)*tetra_order] = node; tetra_node2[1+(tetra1*8+4)*tetra_order] = node; tetra_node2[1+(tetra1*8+5)*tetra_order] = node; tetra_node2[0+(tetra1*8+6)*tetra_order] = node; tetra_node2[0+(tetra1*8+7)*tetra_order] = node; } else if ( v1 == 1 && v2 == 4 ) { tetra_node2[3+(tetra1*8+0)*tetra_order] = node; tetra_node2[1+(tetra1*8+3)*tetra_order] = node; tetra_node2[2+(tetra1*8+4)*tetra_order] = node; tetra_node2[1+(tetra1*8+6)*tetra_order] = node; } else if ( v1 == 2 && v2 == 3 ) { tetra_node2[2+(tetra1*8+1)*tetra_order] = node; tetra_node2[2+(tetra1*8+2)*tetra_order] = node; tetra_node2[2+(tetra1*8+5)*tetra_order] = node; tetra_node2[1+(tetra1*8+7)*tetra_order] = node; } else if ( v1 == 2 && v2 == 4 ) { tetra_node2[3+(tetra1*8+1)*tetra_order] = node; tetra_node2[3+(tetra1*8+2)*tetra_order] = node; tetra_node2[2+(tetra1*8+3)*tetra_order] = node; tetra_node2[3+(tetra1*8+4)*tetra_order] = node; tetra_node2[3+(tetra1*8+5)*tetra_order] = node; tetra_node2[2+(tetra1*8+6)*tetra_order] = node; tetra_node2[2+(tetra1*8+7)*tetra_order] = node; } else if ( v1 == 3 && v2 == 4 ) { tetra_node2[3+(tetra1*8+3)*tetra_order] = node; tetra_node2[3+(tetra1*8+6)*tetra_order] = node; tetra_node2[3+(tetra1*8+7)*tetra_order] = node; } } return; } //****************************************************************************80 void tet_mesh_order4_refine_size ( int node_num1, int tetra_num1, int tetra_node1[], int *node_num2, int *tetra_num2, int edge_data[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER4_REFINE_SIZE sizes a refined order 4 tet mesh. // // Discussion: // // A refined tet mesh can be derived from an existing one by interpolating // nodes at the midpoint of every edge of the mesh. // // The mesh is described indirectly, as the sum of individual // tetrahedrons. A single physical edge may be a logical edge of // any number of tetrahedrons. It is important, however, that a // new node be created exactly once for each edge, assigned an index, // and associated with every tetrahedron that shares this edge. // // This routine handles that problem. // // The primary amount of work occurs in sorting a list of 6 * TETRA_NUM // data items, one item for every edge of every tetrahedron. Each // data item records, for a given tetrahedron edge, the global indices // of the two endpoints, the local indices of the two endpoints, // and the index of the tetrahedron. // // Through careful sorting, it is possible to arrange this data in // a way that allows the proper generation of the interpolated nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM1, the number of nodes in the original mesh. // // Input, int TETRA_NUM1, the number of tetrahedrons in the // original mesh. // // Input, int TETRA_NODE1[4*TETRA_NUM1], the indices of the nodes // in the original mesh. // // Output, int *NODE_NUM2, the number of nodes in the refined mesh. // // Output, int *TETRA_NUM2, the number of tetrahedrons in the refined mesh. // // Output, int EDGE_DATA[5*(6*TETRA_NUM1)], edge data. // { int a; int b; int edge; int i; int j; int k; int l; int n1; int n1_old; int n2; int n2_old; int tetra; int tetra_order = 4; // // Step 1. // From the list of nodes for tetrahedron T, of the form: (I,J,K,L) // construct the six edge relations: // // (I,J,1,2,T) // (I,K,1,3,T) // (I,L,1,4,T) // (J,K,2,3,T) // (J,L,2,4,T) // (K,L,3,4,T) // // In order to make matching easier, we reorder each pair of nodes // into ascending order. // for ( tetra = 0; tetra < tetra_num1; tetra++ ) { i = tetra_node1[0+tetra*tetra_order]; j = tetra_node1[1+tetra*tetra_order]; k = tetra_node1[2+tetra*tetra_order]; l = tetra_node1[3+tetra*tetra_order]; i4i4_sort_a ( i, j, &a, &b ); edge_data[0+(6*tetra)*5] = a; edge_data[1+(6*tetra)*5] = b; edge_data[2+(6*tetra)*5] = 1; edge_data[3+(6*tetra)*5] = 2; edge_data[4+(6*tetra)*5] = tetra; i4i4_sort_a ( i, k, &a, &b ); edge_data[0+(6*tetra+1)*5] = a; edge_data[1+(6*tetra+1)*5] = b; edge_data[2+(6*tetra+1)*5] = 1; edge_data[3+(6*tetra+1)*5] = 3; edge_data[4+(6*tetra+1)*5] = tetra; i4i4_sort_a ( i, l, &a, &b ); edge_data[0+(6*tetra+2)*5] = a; edge_data[1+(6*tetra+2)*5] = b; edge_data[2+(6*tetra+2)*5] = 1; edge_data[3+(6*tetra+2)*5] = 4; edge_data[4+(6*tetra+2)*5] = tetra; i4i4_sort_a ( j, k, &a, &b ); edge_data[0+(6*tetra+3)*5] = a; edge_data[1+(6*tetra+3)*5] = b; edge_data[2+(6*tetra+3)*5] = 2; edge_data[3+(6*tetra+3)*5] = 3; edge_data[4+(6*tetra+3)*5] = tetra; i4i4_sort_a ( j, l, &a, &b ); edge_data[0+(6*tetra+4)*5] = a; edge_data[1+(6*tetra+4)*5] = b; edge_data[2+(6*tetra+4)*5] = 2; edge_data[3+(6*tetra+4)*5] = 4; edge_data[4+(6*tetra+4)*5] = tetra; i4i4_sort_a ( k, l, &a, &b ); edge_data[0+(6*tetra+5)*5] = a; edge_data[1+(6*tetra+5)*5] = b; edge_data[2+(6*tetra+5)*5] = 3; edge_data[3+(6*tetra+5)*5] = 4; edge_data[4+(6*tetra+5)*5] = tetra; } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // We only intend to sort on rows 1:2; the routine we call here // sorts on the full column but that won't hurt us. // // What we need is to find all cases where tetrahedrons share an edge. // By sorting the columns of the EDGE_DATA array, we will put shared edges // next to each other. // i4col_sort_a ( 5, 6*tetra_num1, edge_data ); // // Step 3. All the tetrahedrons which share an edge show up as consecutive // columns with identical first two entries. Figure out how many new // nodes there are, and allocate space for their coordinates. // *node_num2 = node_num1; n1_old = -1; n2_old = -1; for ( edge = 0; edge < 6 * tetra_num1; edge++ ) { n1 = edge_data[0+edge*5]; n2 = edge_data[1+edge*5]; if ( n1 != n1_old || n2 != n2_old ) { *node_num2 = *node_num2 + 1; n1_old = n1; n2_old = n2; } } *tetra_num2 = 8 * tetra_num1; return; } //****************************************************************************80 void tet_mesh_order4_to_order10_compute ( int tetra_num, int tetra_node1[], int node_num1, double node_xyz1[], int edge_data[], int tetra_node2[], int node_num2, double node_xyz2[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER4_TO_ORDER10_COMPUTE computes a quadratic tet mesh from a linear one. // // Discussion: // // A quadratic (10 node) tet mesh can be derived from a linear // (4 node) tet mesh by interpolating nodes at the midpoint of // every edge of the mesh. // // The mesh is described indirectly, as the sum of individual // tetrahedrons. A single physical edge may be a logical edge of // any number of tetrahedrons. It is important, however, that a // new node be created exactly once for each edge, assigned an index, // and associated with every tetrahedron that shares this edge. // // This routine handles that problem. // // The primary amount of work occurs in sorting a list of 6 * TETRA_NUM // data items, one item for every edge of every tetrahedron. Each // data item records, for a given tetrahedron edge, the global indices // of the two endpoints, the local indices of the two endpoints, // and the index of the tetrahedron. // // Through careful sorting, it is possible to arrange this data in // a way that allows the proper generation of the interpolated nodes. // // The node ordering for the quadratic tetrahedron is somewhat // arbitrary. In the current scheme, the vertices are listed // first, followed by the 6 midside nodes. Each midside node // may be identified by the two vertices that bracket it. Thus, // the node ordering may be suggested by: // // 1 2 3 4 (1+2) (1+3) (1+4) (2+3) (2+4) (3+4) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int TETRA_NUM, the number of tetrahedrons in the // linear mesh. // // Input, int TETRA_NODE1[4*TETRA_NUM], the indices of the nodes // in the linear mesh. // // Input, int NODE_NUM1, the number of nodes for the linear mesh. // // Input, double NODE_XYZ1[3*NODE_NUM1], the coordinates of // the nodes that make up the linear mesh. // // Input, int EDGE_DATA[5*(6*TETRA_NUM)], edge data. // // Output, int TETRA_NODE2[10*TETRA_NUM], the indices of the nodes // in the quadratic mesh. // // Input, int NODE_NUM2, the number of nodes for the quadratic mesh. // // Output, double NODE_XYZ2[3*NODE_NUM2], the coordinates of // the nodes that make up the quadratic mesh. // { int dim_num = 3; int edge; int i; int j; int n1; int n1_old; int n2; int n2_old; int node; int tetra; int tetra_order1 = 4; int tetra_order2 = 10; int v; int v1; int v2; // // Generate the index and coordinates of the new midside nodes, // and update the tetradehron-node data. // for ( j = 0; j < node_num1; j++ ) { for ( i = 0; i < dim_num; i++ ) { node_xyz2[i+j*dim_num] = node_xyz1[i+j*dim_num]; } } for ( j = 0; j < tetra_num; j++ ) { for ( i = 0; i < tetra_order1; i++ ) { tetra_node2[i+j*tetra_order2] = tetra_node1[i+j*tetra_order1]; } } node = node_num1; n1_old = -1; n2_old = -1; for ( edge = 0; edge < 6 * tetra_num; edge++ ) { // // Read the data defining the edge. // n1 = edge_data[0+edge*5]; n2 = edge_data[1+edge*5]; // // If this edge is new, create the coordinates and index. // if ( n1 != n1_old || n2 != n2_old ) { if ( node_num2 <= node ) { cout << "\n"; cout << "TET_MESH_ORDER4_TO_ORDER10_COMPUTE - Fatal error!\n"; cout << " Node index exceeds NODE_NUM2.\n"; exit ( 1 ); } for ( i = 0; i < dim_num; i++ ) { node_xyz2[i+node*dim_num] = ( node_xyz2[i+(n1-1)*dim_num] + node_xyz2[i+(n2-1)*dim_num] ) / 2.0; } node = node + 1; n1_old = n1; n2_old = n2; } // // Assign the node to the tetrahedron. // v1 = edge_data[2+edge*5]; v2 = edge_data[3+edge*5]; // // Here is where the local ordering of the nodes is effected: // if ( v1 == 1 && v2 == 2 ) { v = 5; } else if ( v1 == 1 && v2 == 3 ) { v = 6; } else if ( v1 == 1 && v2 == 4 ) { v = 7; } else if ( v1 == 2 && v2 == 3 ) { v = 8; } else if ( v1 == 2 && v2 == 4 ) { v = 9; } else if ( v1 == 3 && v2 == 4 ) { v = 10; } tetra = edge_data[4+edge*5]; tetra_node2[v-1+tetra*tetra_order2] = node; } return; } //****************************************************************************80 void tet_mesh_order4_to_order10_size ( int tetra_num, int tetra_node1[], int node_num1, int edge_data[], int *node_num2 ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER4_TO_ORDER10_SIZE sizes a quadratic tet mesh from a linear one. // // Discussion: // // A quadratic (10 node) tet mesh can be derived from a linear // (4 node) tet mesh by interpolating nodes at the midpoint of // every edge of the mesh. // // The mesh is described indirectly, as the sum of individual // tetrahedrons. A single physical edge may be a logical edge of // any number of tetrahedrons. It is important, however, that a // new node be created exactly once for each edge, assigned an index, // and associated with every tetrahedron that shares this edge. // // This routine handles that problem. // // The primary amount of work occurs in sorting a list of 6 * TETRA_NUM // data items, one item for every edge of every tetrahedron. Each // data item records, for a given tetrahedron edge, the global indices // of the two endpoints, the local indices of the two endpoints, // and the index of the tetrahedron. // // Through careful sorting, it is possible to arrange this data in // a way that allows the proper generation of the interpolated nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int TETRA_NUM, the number of tetrahedrons in the // linear mesh. // // Input, int TETRA_NODE1[4*TETRA_NUM], the indices of the nodes // in the linear mesh. // // Input, int NODE_NUM1, the number of nodes for the linear mesh. // // Output, int EDGE_DATA[5*(6*TETRA_NUM)], edge data. // // Output, int *NODE_NUM2, the number of nodes for the quadratic mesh. // { int a; int b; int edge; int i; int j; int k; int l; int n1; int n1_old; int n2; int n2_old; int tetra; int tetra_order1 = 4; // // Step 1. // From the list of nodes for tetrahedron T, of the form: (I,J,K,L) // construct the six edge relations: // // (I,J,1,2,T) // (I,K,1,3,T) // (I,L,1,4,T) // (J,K,2,3,T) // (J,L,2,4,T) // (K,L,3,4,T) // // In order to make matching easier, we reorder each pair of nodes // into ascending order. // for ( tetra = 0; tetra < tetra_num; tetra++ ) { i = tetra_node1[0+tetra*tetra_order1]; j = tetra_node1[1+tetra*tetra_order1]; k = tetra_node1[2+tetra*tetra_order1]; l = tetra_node1[3+tetra*tetra_order1]; i4i4_sort_a ( i, j, &a, &b ); edge_data[0+(6*tetra)*5] = a; edge_data[1+(6*tetra)*5] = b; edge_data[2+(6*tetra)*5] = 1; edge_data[3+(6*tetra)*5] = 2; edge_data[4+(6*tetra)*5] = tetra; i4i4_sort_a ( i, k, &a, &b ); edge_data[0+(6*tetra+1)*5] = a; edge_data[1+(6*tetra+1)*5] = b; edge_data[2+(6*tetra+1)*5] = 1; edge_data[3+(6*tetra+1)*5] = 3; edge_data[4+(6*tetra+1)*5] = tetra; i4i4_sort_a ( i, l, &a, &b ); edge_data[0+(6*tetra+2)*5] = a; edge_data[1+(6*tetra+2)*5] = b; edge_data[2+(6*tetra+2)*5] = 1; edge_data[3+(6*tetra+2)*5] = 4; edge_data[4+(6*tetra+2)*5] = tetra; i4i4_sort_a ( j, k, &a, &b ); edge_data[0+(6*tetra+3)*5] = a; edge_data[1+(6*tetra+3)*5] = b; edge_data[2+(6*tetra+3)*5] = 2; edge_data[3+(6*tetra+3)*5] = 3; edge_data[4+(6*tetra+3)*5] = tetra; i4i4_sort_a ( j, l, &a, &b ); edge_data[0+(6*tetra+4)*5] = a; edge_data[1+(6*tetra+4)*5] = b; edge_data[2+(6*tetra+4)*5] = 2; edge_data[3+(6*tetra+4)*5] = 4; edge_data[4+(6*tetra+4)*5] = tetra; i4i4_sort_a ( k, l, &a, &b ); edge_data[0+(6*tetra+5)*5] = a; edge_data[1+(6*tetra+5)*5] = b; edge_data[2+(6*tetra+5)*5] = 3; edge_data[3+(6*tetra+5)*5] = 4; edge_data[4+(6*tetra+5)*5] = tetra; } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // We only intend to sort on rows 1:2; the routine we call here // sorts on the full column but that won't hurt us. // // What we need is to find all cases where tetrahedrons share an edge. // By sorting the columns of the EDGE_DATA array, we will put shared edges // next to each other. // i4col_sort_a ( 5, 6*tetra_num, edge_data ); // // Step 3. All the tetrahedrons which share an edge show up as consecutive // columns with identical first two entries. Figure out how many new // nodes there are, and allocate space for their coordinates. // *node_num2 = node_num1; n1_old = -1; n2_old = -1; for ( edge = 0; edge < 6 * tetra_num; edge++ ) { n1 = edge_data[0+edge*5]; n2 = edge_data[1+edge*5]; if ( n1 != n1_old || n2 != n2_old ) { *node_num2 = *node_num2 + 1; n1_old = n1; n2_old = n2; } } return; } //****************************************************************************80 void tet_mesh_order10_adj_count ( int node_num, int tet_num, int tet_node[], int *adj_num, int adj_row[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER10_ADJ_COUNT counts the number of nodal adjacencies. // // Discussion: // // Assuming that the tet mesh is to be used in a finite element // computation, we declare that two distinct nodes are "adjacent" if and // only if they are both included in some tetrahedron. // // It is the purpose of this routine to determine the number of // such adjacency relationships. // // The initial count gets only the (I,J) relationships, for which // node I is strictly less than node J. This value is doubled // to account for symmetry. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 March 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TET_NUM, the number of tetrahedrons. // // Input, int TET_NODE[10*TET_NUM], the indices of the nodes. // // Output, int *ADJ_NUM, the total number of adjacency relationships, // // Output, int ADJ_ROW[NODE_NUM+1], the ADJ pointer array. // { int i; int j; int k; int l; int node; int *pair; int pair_num; int pair_unique_num; // // Each order 10 tetrahedron defines 45 adjacency pairs. // pair = new int[2*45*tet_num]; k = 0; for ( i = 0; i < 9; i++ ) { for ( j = i + 1; j < 10; j++ ) { for ( l = 0; l < tet_num; l++ ) { pair[0+(k*tet_num+l)*2] = tet_node[i+l*10]; pair[1+(k*tet_num+l)*2] = tet_node[j+l*10]; } k = k + 1; } } // // Force the nodes of each pair to be listed in ascending order. // pair_num = 45 * tet_num; i4col_sort2_a ( 2, pair_num, pair ); // // Rearrange the columns in ascending order. // i4col_sort_a ( 2, pair_num, pair ); // // Get the number of unique columns. // pair_unique_num = i4col_sorted_unique_count ( 2, pair_num, pair ); // // The number of adjacencies is TWICE this value, plus the number of nodes. // *adj_num = 2 * pair_unique_num; // // Now set up the ADJ_ROW counts. // for ( node = 0; node < node_num; node++ ) { adj_row[node] = 0; } for ( k = 0; k < pair_num; k++ ) { if ( 0 < k ) { if ( pair[0+(k-1)*2] == pair[0+k*2] && pair[1+(k-1)*2] == pair[1+k*2] ) { continue; } } i = pair[0+k*2]; j = pair[1+k*2]; adj_row[i-1] = adj_row[i-1] + 1; adj_row[j-1] = adj_row[j-1] + 1; } // // We used ADJ_ROW to count the number of entries in each row. // Convert it to pointers into the ADJ array. // for ( node = node_num-1; 0 <= node; node-- ) { adj_row[node] = adj_row[node+1]; } adj_row[0] = 1; for ( node = 1; node <= node_num; node++ ) { adj_row[node] = adj_row[node-1] + adj_row[i]; } delete [] pair; return; } //****************************************************************************80 int *tet_mesh_order10_adj_set ( int node_num, int tet_num, int tet_node[], int adj_num, int adj_row[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER10_ADJ_SET sets the nodal adjacency matrix. // // Discussion: // // A compressed format is used for the nodal adjacency matrix. // // It is assumed that we know ADJ_NUM, the number of adjacency entries // and the ADJ_ROW array, which keeps track of the list of slots // in ADJ where we can store adjacency information for each row. // // We essentially repeat the work of TET_MESH_ORDER4_ADJ_COUNT, but // now we have a place to store the adjacency information. // // A copy of the ADJ_ROW array is useful, as we can use it to keep track // of the next available entry in ADJ for adjacencies associated with // a given row. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 March 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TET_NUM, the number of tetrahedrons. // // Input, int TET_NODE[10*TET_NUM], the indices of the nodes. // // Input, int ADJ_NUM, the total number of adjacency relationships, // // Input, int ADJ_ROW[NODE_NUM+1], the ADJ pointer array. // // Output, int TET_MESH_ORDER4_ADJ_SET[ADJ_NUM], // the adjacency information. // { int *adj; int *adj_row_copy; int i; int j; int k; int l; int node; int *pair; int pair_num; // // Each order 10 tetrahedron defines 45 adjacency pairs. // pair = new int[2*45*tet_num]; k = 0; for ( i = 0; i < 9; i++ ) { for ( j = i + 1; j < 10; j++ ) { for ( l = 0; l < tet_num; l++ ) { pair[0+(k*tet_num+l)*2] = tet_node[i+l*10]; pair[1+(k*tet_num+l)*2] = tet_node[j+l*10]; } k = k + 1; } } // // Force the nodes of each pair to be listed in ascending order. // pair_num = 45 * tet_num; i4col_sort2_a ( 2, pair_num, pair ); // // Rearrange the columns in ascending order. // i4col_sort_a ( 2, pair_num, pair ); // // Mark all entries of ADJ so we will know later if we missed one. // adj = new int[adj_num]; for ( i = 0; i < adj_num; i++ ) { adj[i] = -1; } // // Copy the ADJ_ROW array and use it to keep track of the next // free entry for each row. // adj_row_copy = new int[node_num]; for ( node = 0; node < node_num; node++ ) { adj_row_copy[node] = adj_row[node]; } // // Now set up the ADJ_ROW counts. // for ( k = 0; k < pair_num; k++ ) { if ( 0 < k ) { if ( pair[0+(k-1)*2] == pair[0+k*2] && pair[1+(k-1)*2] == pair[1+k*2] ) { continue; } } i = pair[0+k*2]; j = pair[1+k*2]; adj[adj_row_copy[i]] = j; adj_row_copy[i] = adj_row_copy[i] + 1; adj[adj_row_copy[j]] = i; adj_row_copy[j] = adj_row_copy[j] + 1; } delete [] adj_row_copy; delete [] pair; return adj; } //****************************************************************************80 void tet_mesh_order10_example_set ( int node_num, int tetra_num, double node_xyz[], int tetra_node[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER10_EXAMPLE_SET sets an example quadratic tet mesh. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Output, double NODE_XYZ[3*NODE_NUM], the node coordinates. // // Output, int TETRA_NODE[10*TETRA_NUM], the nodes forming each tet. // { int i; int j; double node_xyz_save[3*27] = { 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.5, 0.0, 0.0, 0.0, 0.5, 1.0, 0.5, 0.0, 0.5, 0.5, 0.0, 1.0, 0.0, 1.0, 0.5, 0.5, 0.5, 0.0, 0.5, 1.0, 0.0, 0.5, 0.5, 0.5, 0.5, 0.5, 1.0, 0.5, 1.0, 0.5, 0.5, 1.0, 1.0, 1.0, 0.0, 0.5, 1.0, 0.5, 0.0, 1.0, 0.5, 0.5, 1.0, 0.5, 1.0, 1.0, 1.0, 0.5 }; int tetra_node_save[10*6] = { 4, 3, 5, 1, 16, 19, 17, 11, 10, 12, 4, 2, 5, 1, 13, 19, 14, 11, 9, 12, 4, 7, 3, 5, 21, 16, 18, 19, 24, 17, 4, 7, 8, 5, 21, 22, 27, 19, 24, 25, 4, 6, 2, 5, 20, 13, 15, 19, 23, 14, 4, 6, 8, 5, 20, 22, 26, 19, 23, 25 }; for ( j = 0; j < node_num; j++ ) { for ( i = 0; i < 3; i++ ) { node_xyz[i+j*3] = node_xyz_save[i+j*3]; } } for ( j = 0; j < tetra_num; j++ ) { for ( i = 0; i < 10; i++ ) { tetra_node[i+j*10] = tetra_node_save[i+j*10] - 1; } } return; } //****************************************************************************80 void tet_mesh_order10_example_size ( int *node_num, int *tetra_num ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER10_EXAMPLE_SIZE sizes an example quadratic tet mesh. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 August 2009 // // Author: // // John Burkardt // // Parameters: // // Output, int *NODE_NUM, the number of nodes. // // Output, int *TETRA_NUM, the number of tetrahedrons. // { *node_num = 27; *tetra_num = 6; return; } //****************************************************************************80 void tet_mesh_order10_to_order4_compute ( int tetra_num1, int tetra_node1[], int tetra_num2, int tetra_node2[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER10_TO_ORDER4_COMPUTE linearizes a quadratic tet mesh. // // Discussion: // // A quadratic tet mesh is assumed to consist of 10-node // tetrahedrons. // // This routine rearranges the information so as to define a 4-node // tet mesh. // // The same nodes are used, but there are 8 times as many // tetrahedrons. // // The node ordering for the quadratic tetrahedron is somewhat // arbitrary. In the current scheme, the vertices are listed // first, followed by the 6 midside nodes. Each midside node // may be identified by the two vertices that bracket it. Thus, // the node ordering may be suggested by: // // 1 2 3 4 (1+2) (1+3) (1+4) (2+3) (2+4) (3+4) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 January 2007 // // Author: // // John Burkardt // // Reference: // // Anwei Liu, Barry Joe, // Quality Local Refinement of Tetrahedral Meshes Based // on 8-Subtetrahedron Subdivision, // Mathematics of Computation, // Volume 65, Number 215, July 1996, pages 1183-1200. // // Parameters: // // Input, int TETRA_NUM1, the number of tetrahedrons in the quadratic // tet mesh. // // Input, int TETRA_NODE1[10*TETRA_NUM1], the indices of the nodes // that made up the quadratic mesh. // // Input, int TETRA_NUM2, the number of tetrahedrons in the linear // tet mesh. TETRA_NUM2 = 8 * TETRA_NUM1. // // Output, int TETRA_NODE2[4*TETRA_NUM2], the indices of the nodes // that make up the linear mesh. // { int n1; int n2; int n3; int n4; int n5; int n6; int n7; int n8; int n9; int nx; int tetra1; int tetra2; tetra2 = 0; for ( tetra1 = 0; tetra1 < tetra_num1; tetra1++ ) { n1 = tetra_node1[0+tetra1*10]; n2 = tetra_node1[1+tetra1*10]; n3 = tetra_node1[2+tetra1*10]; n4 = tetra_node1[3+tetra1*10]; n5 = tetra_node1[4+tetra1*10]; n6 = tetra_node1[5+tetra1*10]; n7 = tetra_node1[6+tetra1*10]; n8 = tetra_node1[7+tetra1*10]; n9 = tetra_node1[8+tetra1*10]; nx = tetra_node1[9+tetra1*10]; tetra_node2[0+tetra2*4] = n1; tetra_node2[1+tetra2*4] = n5; tetra_node2[2+tetra2*4] = n6; tetra_node2[3+tetra2*4] = n7; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n2; tetra_node2[1+tetra2*4] = n5; tetra_node2[2+tetra2*4] = n8; tetra_node2[3+tetra2*4] = n9; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n3; tetra_node2[1+tetra2*4] = n6; tetra_node2[2+tetra2*4] = n8; tetra_node2[3+tetra2*4] = n9; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n4; tetra_node2[1+tetra2*4] = n7; tetra_node2[2+tetra2*4] = n9; tetra_node2[3+tetra2*4] = nx; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n5; tetra_node2[1+tetra2*4] = n6; tetra_node2[2+tetra2*4] = n7; tetra_node2[3+tetra2*4] = n9; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n5; tetra_node2[1+tetra2*4] = n6; tetra_node2[2+tetra2*4] = n8; tetra_node2[3+tetra2*4] = n9; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n6; tetra_node2[1+tetra2*4] = n7; tetra_node2[2+tetra2*4] = n9; tetra_node2[3+tetra2*4] = nx; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n6; tetra_node2[1+tetra2*4] = n8; tetra_node2[2+tetra2*4] = n9; tetra_node2[3+tetra2*4] = nx; tetra2 = tetra2 + 1; } return; } //****************************************************************************80 void tet_mesh_order10_to_order4_size ( int node_num1, int tetra_num1, int *node_num2, int *tetra_num2 ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER10_TO_ORDER4_SIZE sizes a linear tet mesh from a quadratic one. // // Discussion: // // A linear (4 node) tet mesh can be derived from a quadratic // (10 node) tet mesh using the same set of nodes, but reassigning // the nodes of each quadratic tet among 8 linear subtets. // // This routine returns the number of nodes and tetrahedra in the // linear mesh. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 December 2006 // // Author: // // John Burkardt // // Reference: // // Anwei Liu, Barry Joe, // Quality Local Refinement of Tetrahedral Meshes Based // on 8-Subtetrahedron Subdivision, // Mathematics of Computation, // Volume 65, Number 215, July 1996, pages 1183-1200. // // Parameters: // // Input, int NODE_NUM1, the number of nodes in the quadratic mesh. // // Input, int TETRA_NUM1, the number of tetrahedrons in the // quadratic mesh. // // Output, int *NODE_NUM2, the number of nodes for the linear mesh. // // Output, int *TETRA_NUM2, the number of tetrahedrons in the // linear mesh. // { *node_num2 = node_num1; *tetra_num2 = 8 * tetra_num1; return; } //****************************************************************************80 void tet_mesh_quad ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], void quad_fun ( int n, double xyz_vec[], double fvec[] ), int quad_num, double quad_xyz[], double quad_w[], double *quad_value, double *region_volume ) //****************************************************************************80 // // Purpose: // // TET_MESH_QUAD approximates an integral over a tet mesh. // // Discussion: // // The routine will accept tetrahedral meshes of order higher than 4. // However, only the first four nodes (the vertices) of each // tetrahedron will be used. This will still produce correct results // for higher order tet meshes, as long as the sides of each // tetrahedron are flat (linear). // // We assume that the vertices of each tetrahedron are listed first // in the description of higher order tetrahedrons. // // The approximation of the integral is made using a quadrature rule // defined on the unit tetrahedron, and supplied by the user. // // The user also supplies the name of a subroutine, here called "QUAD_FUN", // which evaluates the integrand at a set of points. The form is: // // void quad_fun ( int n, double xyz_vec[3*n], double f_vec[n] ) // // and it returns in each entry F_VEC(1:N), the value of the integrand // at XYZ_VEC(1:3,1:N). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes in the tet mesh. // // Input, double NODE_XYZ[3*NODE_NUM], the coordinates of the nodes. // // Input, int TETRA_ORDER, the order of tetrahedrons in the tet mesh. // // Input, int TETRA_NUM, the number of tetrahedrons in the tet mesh. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], indices of the nodes. // // Input, void QUAD_FUN ( int N, double XYZ_VEC[3*N], F_VEC[N] ), the name // of the routine that evaluates the integrand. // // Input, int QUAD_NUM, the order of the quadrature rule. // // Input, double QUAD_XYZ[3*QUAD_NUM], the abscissas of the // quadrature rule, in the unit tetrahedron. // // Input, double QUAD_W[QUAD_NUM], the weights of the // quadrature rule. // // Output, double *QUAD_VALUE, the estimate of the integral // of F(X,Y) over the region covered by the tet mesh. // // Output, double *REGION_VOLUME, the volume of the region. // { int i; int j; int quad; double quad_f[quad_num]; double quad2_xyz[3*quad_num]; double temp; int tet; double tetra_volume; double tetra_xyz[3*4]; *quad_value = 0.0; *region_volume = 0.0; for ( tet = 0; tet < tetra_num; tet++ ) { for ( j = 0; j < 4; j++ ) { for ( i = 0; i < 3; i++ ) { tetra_xyz[i+j*3] = node_xyz[i+(tetra_node[j+tet*4]-1)*3]; } } tetra_volume = tetrahedron_volume ( tetra_xyz ); tetrahedron_order4_reference_to_physical ( tetra_xyz, quad_num, quad_xyz, quad2_xyz ); quad_fun ( quad_num, quad2_xyz, quad_f ); temp = 0.0; for ( quad = 0; quad < quad_num; quad++ ) { temp = temp + quad_w[quad] * quad_f[quad]; } *quad_value = *quad_value + tetra_volume * temp; *region_volume = *region_volume + tetra_volume; } return; } //****************************************************************************80 void tet_mesh_quality1 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ) //****************************************************************************80 // // Purpose: // // TET_MESH_QUALITY1 returns a tet mesh quality factor. // // Discussion: // // The tet mesh quality measure is the minimum of the // corresponding tetrahedron quality measure, over all tetrahedrons in the // tet mesh. // // This routine is designed for a 4-node tet mesh. It can handle a 10-node // tet mesh, but it simply ignores the extra nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the coordinates of the nodes. // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the indices of the nodes. // // Output, double *VALUE_MIN, *VALUE_MEAN, *VALUE_MAX, *VALUE_VAR, // the minimum, mean, maximum and variance of the quality measure. // { # define DIM_NUM 3 int i; int j; int node; int tetra; double tetrahedron[DIM_NUM*4]; double *tetrahedron_quality; tetrahedron_quality = new double[tetra_num]; for ( tetra = 0; tetra < tetra_num; tetra++ ) { for ( j = 0; j < 4; j++ ) { node = tetra_node[j+tetra*tetra_order]; for ( i = 0; i < DIM_NUM; i++ ) { tetrahedron[i+j*DIM_NUM] = node_xyz[i+(node-1)*DIM_NUM]; } } tetrahedron_quality[tetra] = tetrahedron_quality1_3d ( tetrahedron ); } *value_max = r8vec_max ( tetra_num, tetrahedron_quality ); *value_min = r8vec_min ( tetra_num, tetrahedron_quality ); *value_mean = r8vec_mean ( tetra_num, tetrahedron_quality ); *value_var = r8vec_variance ( tetra_num, tetrahedron_quality ); delete [] tetrahedron_quality; return; # undef DIM_NUM } //****************************************************************************80 void tet_mesh_quality2 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ) //****************************************************************************80 // // Purpose: // // TET_MESH_QUALITY2 returns a tet mesh quality factor. // // Discussion: // // The tet mesh quality measure is the minimum of the // corresponding tetrahedron quality measure, over all tetrahedrons in the // tet mesh. // // This routine is designed for a 4-node tet mesh. It can handle a 10-node // tet mesh, but it simply ignores the extra nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the coordinates of the nodes. // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the indices of the nodes. // // Output, double *VALUE_MIN, *VALUE_MEAN, *VALUE_MAX, *VALUE_VAR, // the minimum, mean, maximum and variance of the quality measure. // { # define DIM_NUM 3 int i; int j; int node; int tetra; double tetrahedron[DIM_NUM*4]; double *tetrahedron_quality; tetrahedron_quality = new double[tetra_num]; for ( tetra = 0; tetra < tetra_num; tetra++ ) { for ( j = 0; j < 4; j++ ) { node = tetra_node[j+tetra*tetra_order]; for ( i = 0; i < DIM_NUM; i++ ) { tetrahedron[i+j*DIM_NUM] = node_xyz[i+(node-1)*DIM_NUM]; } } tetrahedron_quality[tetra] = tetrahedron_quality2_3d ( tetrahedron ); } *value_max = r8vec_max ( tetra_num, tetrahedron_quality ); *value_min = r8vec_min ( tetra_num, tetrahedron_quality ); *value_mean = r8vec_mean ( tetra_num, tetrahedron_quality ); *value_var = r8vec_variance ( tetra_num, tetrahedron_quality ); delete [] tetrahedron_quality; return; # undef DIM_NUM } //****************************************************************************80 void tet_mesh_quality3 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ) //****************************************************************************80 // // Purpose: // // TET_MESH_QUALITY3 returns a tet mesh quality factor. // // Discussion: // // The tet mesh quality measure is the minimum of the // corresponding tetrahedron quality measure, over all tetrahedrons in the // tet mesh. // // This routine is designed for a 4-node tet mesh. It can handle a 10-node // tet mesh, but it simply ignores the extra nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the coordinates of the nodes. // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the indices of the nodes. // // Output, double *VALUE_MIN, *VALUE_MEAN, *VALUE_MAX, *VALUE_VAR, // the minimum, mean, maximum and variance of the quality measure. // { # define DIM_NUM 3 int i; int j; int node; int tetra; double tetrahedron[DIM_NUM*4]; double *tetrahedron_quality; tetrahedron_quality = new double[tetra_num]; for ( tetra = 0; tetra < tetra_num; tetra++ ) { for ( j = 0; j < 4; j++ ) { node = tetra_node[j+tetra*tetra_order]; for ( i = 0; i < DIM_NUM; i++ ) { tetrahedron[i+j*DIM_NUM] = node_xyz[i+(node-1)*DIM_NUM]; } } tetrahedron_quality[tetra] = tetrahedron_quality3_3d ( tetrahedron ); } *value_max = r8vec_max ( tetra_num, tetrahedron_quality ); *value_min = r8vec_min ( tetra_num, tetrahedron_quality ); *value_mean = r8vec_mean ( tetra_num, tetrahedron_quality ); *value_var = r8vec_variance ( tetra_num, tetrahedron_quality ); delete [] tetrahedron_quality; return; # undef DIM_NUM } //****************************************************************************80 void tet_mesh_quality4 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ) //****************************************************************************80 // // Purpose: // // TET_MESH_QUALITY4 returns a tet mesh quality factor. // // Discussion: // // The tet mesh quality measure is the minimum of the // corresponding tetrahedron quality measure, over all tetrahedrons in the // tet mesh. // // This routine is designed for a 4-node tet mesh. It can handle a 10-node // tet mesh, but it simply ignores the extra nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the coordinates of the nodes. // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the indices of the nodes. // // Output, double *VALUE_MIN, *VALUE_MEAN, *VALUE_MAX, *VALUE_VAR, // the minimum, mean, maximum and variance of the quality measure. // { # define DIM_NUM 3 int i; int j; int node; int tetra; double tetrahedron[DIM_NUM*4]; double *tetrahedron_quality; tetrahedron_quality = new double[tetra_num]; for ( tetra = 0; tetra < tetra_num; tetra++ ) { for ( j = 0; j < 4; j++ ) { node = tetra_node[j+tetra*tetra_order]; for ( i = 0; i < DIM_NUM; i++ ) { tetrahedron[i+j*DIM_NUM] = node_xyz[i+(node-1)*DIM_NUM]; } } tetrahedron_quality[tetra] = tetrahedron_quality4_3d ( tetrahedron ); } *value_max = r8vec_max ( tetra_num, tetrahedron_quality ); *value_min = r8vec_min ( tetra_num, tetrahedron_quality ); *value_mean = r8vec_mean ( tetra_num, tetrahedron_quality ); *value_var = r8vec_variance ( tetra_num, tetrahedron_quality ); delete [] tetrahedron_quality; return; # undef DIM_NUM } //****************************************************************************80 void tet_mesh_quality5 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ) //****************************************************************************80 // // Purpose: // // TET_MESH_QUALITY5 returns a tet mesh quality factor. // // Discussion: // // The tet mesh quality measure is the ratio of the minimum // tetrahedron volume to the maximum tetrahedron volume. // // This routine is designed for a 4-node tet mesh. It can handle a 10-node // tet mesh, but it simply ignores the extra nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the coordinates of the nodes. // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the indices of the nodes. // // Output, double *VALUE_MIN, *VALUE_MEAN, *VALUE_MAX, *VALUE_VAR, // the minimum, mean, maximum and variance of the quality measure. // { # define DIM_NUM 3 int i; int j; int node; double quality; int tetra; double tetrahedron[DIM_NUM*4]; double *tetrahedron_quality; double volume_max; tetrahedron_quality = new double[tetra_num]; for ( tetra = 0; tetra < tetra_num; tetra++ ) { for ( j = 0; j < 4; j++ ) { node = tetra_node[j+tetra*tetra_order]; for ( i = 0; i < DIM_NUM; i++ ) { tetrahedron[i+j*DIM_NUM] = node_xyz[i+(node-1)*DIM_NUM]; } } tetrahedron_quality[tetra] = tetrahedron_volume ( tetrahedron ); } volume_max = r8vec_max ( tetra_num, tetrahedron_quality ); for ( tetra = 0; tetra < tetra_num; tetra++ ) { tetrahedron_quality[tetra] = tetrahedron_quality[tetra] / volume_max; } *value_max = r8vec_max ( tetra_num, tetrahedron_quality ); *value_min = r8vec_min ( tetra_num, tetrahedron_quality ); *value_mean = r8vec_mean ( tetra_num, tetrahedron_quality ); *value_var = r8vec_variance ( tetra_num, tetrahedron_quality ); delete [] tetrahedron_quality; return; # undef DIM_NUM } //****************************************************************************80 int tet_mesh_search_delaunay ( int node_num, double node_xyz[], int tet_order, int tet_num, int tet_node[], int tet_neighbor[], double p[], int *face, int *step_num ) //****************************************************************************80 // // Purpose: // // TET_MESH_SEARCH_DELAUNAY searches a Delaunay tet mesh for a point. // // Discussion: // // The algorithm "walks" from one tetrahedron to its neighboring tetrahedron, // and so on, until a tetrahedron is found containing point P, or P is found // to be outside the convex hull. // // The algorithm computes the barycentric coordinates of the point with // respect to the current tetrahedron. If all 4 quantities are positive, // the point is contained in the tetrahedron. If the I-th coordinate is // negative, then P lies on the far side of edge I, which is opposite // from vertex I. This gives a hint as to where to search next. // // For a Delaunay tet mesh, the search is guaranteed to terminate. // For other meshes, a continue may occur. // // Note the surprising fact that, even for a Delaunay tet mesh of // a set of nodes, the nearest node to P need not be one of the // vertices of the tetrahedron containing P. // // The code can be called for tet meshes of any order, but only // the first 4 nodes in each tetrahedron are considered. Thus, if // higher order tetrahedrons are used, and the extra nodes are intended // to give the tetrahedron a polygonal shape, these will have no effect, // and the results obtained here might be misleading. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2009 // // Author: // // John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the coordinates of // the nodes. // // Input, int TET_ORDER, the order of the tetrahedrons. // // Input, int TET_NUM, the number of tetrahedrons. // // Input, int TET_NODE[TET_ORDER*TET_NUM], // the nodes that make up each tetrahedron. // // Input, int TET_NEIGHBOR[4*TET_NUM], the // tetrahedron neighbor list. // // Input, double P[3], the coordinates of a point. // // Output, int *FACE, indicates the position of the point P in // face TET_INDEX: // 0, the interior or boundary of the tetrahedron; // -1, outside the convex hull of the tet mesh, past face 1; // -2, outside the convex hull of the tet mesh, past face 2; // -3, outside the convex hull of the tet mesh, past face 3. // -4, outside the convex hull of the tet mesh, past face 4. // // Output, int *STEP_NUM, the number of steps taken. // // Output, int TET_MESH_SEARCH_DELAUNAY, the index of the tetrahedron // where the search ended. If a cycle occurred, then -1 is returned. // { double *alpha; int i; int j; int k; int tet_index; double tet_xyz[3*4]; static int tet_index_save = -1; // // If possible, start with the previous successful value of TET_INDEX. // if ( tet_index_save < 1 || tet_num < tet_index_save ) { tet_index = ( tet_num + 1 ) / 2; } else { tet_index = tet_index_save; } *step_num = -1; *face = 0; for ( ; ; ) { *step_num = *step_num + 1; if ( tet_num < *step_num ) { cerr << "\n"; cerr << "TET_MESH_SEARCH_DELAUNAY - Fatal error!\n"; cerr << " The algorithm seems to be cycling.\n"; tet_index = -1; *face = -1; exit ( 1 ); } for ( j = 0; j < 4; j++ ) { k = tet_node[j+tet_index*4]; for ( i = 0; i < 3; i++ ) { tet_xyz[i+j*3] = node_xyz[i+k*3]; } } alpha = tetrahedron_barycentric ( tet_xyz, p ); // // If the barycentric coordinates are all positive, then the point // is inside the tetrahedron and we're done. // if ( 0.0 <= alpha[0] && 0.0 <= alpha[1] && 0.0 <= alpha[2] && 0.0 <= alpha[3] ) { break; } // // At least one barycentric coordinate is negative. // // If there is a negative barycentric coordinate for which there exists an // opposing tetrahedron neighbor closer to the point, move to that tetrahedron. // if ( alpha[0] < 0.0 && 0 < tet_neighbor[0+tet_index*4] ) { tet_index = tet_neighbor[0+tet_index*4]; continue; } else if ( alpha[1] < 0.0 && 0 < tet_neighbor[1+tet_index*4] ) { tet_index = tet_neighbor[1+tet_index*4]; continue; } else if ( alpha[2] < 0.0 && 0 < tet_neighbor[2+tet_index*4] ) { tet_index = tet_neighbor[2+tet_index*4]; continue; } else if ( alpha[3] < 0.0 && 0 < tet_neighbor[3+tet_index*4] ) { tet_index = tet_neighbor[3+tet_index*4]; continue; } // // All negative barycentric coordinates correspond to vertices opposite // faces on the convex hull. // // Note the face and exit. // if ( alpha[0] < 0.0 ) { *face = -1; break; } else if ( alpha[1] < 0.0 ) { *face = -2; break; } else if ( alpha[2] < 0.0 ) { *face = -3; break; } else if ( alpha[3] < 0.0 ) { *face = -4; break; } } tet_index_save = tet_index; return tet_index; } //****************************************************************************80 int tet_mesh_search_naive ( int node_num, double node_xyz[], int tet_order, int tet_num, int tet_node[], double p[], int *step_num ) //****************************************************************************80 // // Purpose: // // TET_MESH_SEARCH_NAIVE naively searches a tet mesh. // // Discussion: // // The algorithm simply checks each tetrahedron to see if point P is // contained in it. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the coordinates // of the nodes. // // Input, int TET_ORDER, the order of the tetrahedrons. // // Input, int TET_NUM, the number of tetrahedrons in // the mesh. // // Input, int TET_NODE[TET_ORDER*TET_NUM], // the nodes that make up each tetrahedron. // // Input, double P[3], the coordinates of a point. // // Output, int TET_MESH_ORDER4_SEARCH_NAIE, the index of the tetrahedron // where the search ended, or -1 if no tetrahedron was found containing // the point. // // Output, int *STEP_NUM, the number of tetrahedrons examined. { double *alpha; int i; int j; int tet; int tet_index; double tet_xyz[3*4]; tet_index = -1; *step_num = 0; for ( tet = 0; tet < tet_num; tet++ ) { for ( j = 0; j < 4; j++ ) { for ( i = 0; i < 3; i++ ) { tet_xyz[i+j*3] = node_xyz[i+tet_node[j+tet*4]*3]; } } alpha = tetrahedron_barycentric ( tet_xyz, p ); if ( r8vec_is_nonnegative ( 4, alpha ) ) { tet_index = tet; *step_num = tet; return tet_index; } delete [] alpha; } return tet_index; } //****************************************************************************80 double *tetrahedron_barycentric ( double tetra[3*4], double p[3] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_BARYCENTRIC returns the barycentric coordinates of a point. // // Discussion: // // The barycentric coordinates of a point P with respect to // a tetrahedron are a set of four values C(1:4), each associated // with a vertex of the tetrahedron. The values must sum to 1. // If all the values are between 0 and 1, the point is contained // within the tetrahedron. // // The barycentric coordinate of point X related to vertex A can be // interpreted as the ratio of the volume of the tetrahedron with // vertex A replaced by vertex X to the volume of the original // tetrahedron. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the vertices of the tetrahedron. // // Input, double P[3], the point to be checked. // // Output, double C[4], the barycentric coordinates of the point with // respect to the tetrahedron. // { # define N 3 # define RHS_NUM 1 double a[N*(N+RHS_NUM)]; double *c; int info; // // Set up the linear system // // ( X2-X1 X3-X1 X4-X1 ) C1 X - X1 // ( Y2-Y1 Y3-Y1 Y4-Y1 ) C2 = Y - Y1 // ( Z2-Z1 Z3-Z1 Z4-Z1 ) C3 Z - Z1 // // which is satisfied by the barycentric coordinates. // a[0+0*N] = tetra[0+1*3] - tetra[0+0*3]; a[1+0*N] = tetra[1+1*3] - tetra[1+0*3]; a[2+0*N] = tetra[2+1*3] - tetra[2+0*3]; a[0+1*N] = tetra[0+2*3] - tetra[0+0*3]; a[1+1*N] = tetra[1+2*3] - tetra[1+0*3]; a[2+1*N] = tetra[2+2*3] - tetra[2+0*3]; a[0+2*N] = tetra[0+3*3] - tetra[0+0*3]; a[1+2*N] = tetra[1+3*3] - tetra[1+0*3]; a[2+2*N] = tetra[2+3*3] - tetra[2+0*3]; a[0+3*N] = p[0] - tetra[0+0*3]; a[1+3*N] = p[1] - tetra[1+0*3]; a[2+3*N] = p[2] - tetra[2+0*3]; // // Solve the linear system. // info = r8mat_solve ( N, RHS_NUM, a ); if ( info != 0 ) { cout << "\n"; cout << "TETRAHEDRON_BARYCENTRIC - Fatal error!\n"; cout << " The linear system is singular.\n"; cout << " The input data does not form a proper tetrahedron.\n"; exit ( 1 ); } c = new double[4]; c[1] = a[0+3*N]; c[2] = a[1+3*N]; c[3] = a[2+3*N]; c[0] = 1.0 - c[1] - c[2] - c[3]; return c; # undef N # undef RHS_NUM } //****************************************************************************80 void tetrahedron_circumsphere_3d ( double tetra[3*4], double *r, double pc[3] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_CIRCUMSPHERE_3D computes the circumsphere of a tetrahedron in 3D. // // Discussion: // // The circumsphere, or circumscribed sphere, of a tetrahedron is the sphere that // passes through the four vertices. The circumsphere is not necessarily // the smallest sphere that contains the tetrahedron. // // Surprisingly, the diameter of the sphere can be found by solving // a 3 by 3 linear system. This is because the vectors P2 - P1, // P3 - P1 and P4 - P1 are secants of the sphere, and each forms a // right triangle with the diameter through P1. Hence, the dot product of // P2 - P1 with that diameter is equal to the square of the length // of P2 - P1, and similarly for P3 - P1 and P4 - P1. This determines // the diameter vector originating at P1, and hence the radius and // center. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 August 2005 // // Author: // // John Burkardt // // Reference: // // Adrian Bowyer, John Woodwark, // A Programmer's Geometry, // Butterworths, 1983. // // Parameters: // // Input, double TETRA[3*4], the coordinates of the vertices. // // Output, double *R, PC[3], the coordinates of the center of the // circumscribed sphere, and its radius. If the linear system is // singular, then R = -1, PC[] = 0. // { # define DIM_NUM 3 # define RHS_NUM 1 double a[DIM_NUM*(DIM_NUM+RHS_NUM)]; int info; // // Set up the linear system. // a[0+0*3] = tetra[0+1*3] - tetra[0+0*3]; a[0+1*3] = tetra[1+1*3] - tetra[1+0*3]; a[0+2*3] = tetra[2+1*3] - tetra[2+0*3]; a[0+3*3] = pow ( tetra[0+1*3] - tetra[0+0*3], 2 ) + pow ( tetra[1+1*3] - tetra[1+0*3], 2 ) + pow ( tetra[2+1*3] - tetra[2+0*3], 2 ); a[1+0*3] = tetra[0+2*3] - tetra[0+0*3]; a[1+1*3] = tetra[1+2*3] - tetra[1+0*3]; a[1+2*3] = tetra[2+2*3] - tetra[2+0*3]; a[1+3*3] = pow ( tetra[0+2*3] - tetra[0+0*3], 2 ) + pow ( tetra[1+2*3] - tetra[1+0*3], 2 ) + pow ( tetra[2+2*3] - tetra[2+0*3], 2 ); a[2+0*3] = tetra[0+3*3] - tetra[0+0*3]; a[2+1*3] = tetra[1+3*3] - tetra[1+0*3]; a[2+2*3] = tetra[2+3*3] - tetra[2+0*3]; a[2+3*3] = pow ( tetra[0+3*3] - tetra[0+0*3], 2 ) + pow ( tetra[1+3*3] - tetra[1+0*3], 2 ) + pow ( tetra[2+3*3] - tetra[2+0*3], 2 ); // // Solve the linear system. // info = r8mat_solve ( DIM_NUM, RHS_NUM, a ); // // If the system was singular, return a consolation prize. // if ( info != 0 ) { *r = -1.0; r8vec_zero ( DIM_NUM, pc ); return; } // // Compute the radius and center. // *r = 0.5 * sqrt ( a[0+3*3] * a[0+3*3] + a[1+3*3] * a[1+3*3] + a[2+3*3] * a[2+3*3] ); pc[0] = tetra[0+0*3] + 0.5 * a[0+3*3]; pc[1] = tetra[1+0*3] + 0.5 * a[1+3*3]; pc[2] = tetra[2+0*3] + 0.5 * a[2+3*3]; return; # undef DIM_NUM # undef RHS_NUM } //****************************************************************************80 double *tetrahedron_edge_length_3d ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_EDGE_LENGTH_3D returns edge lengths of a tetrahedron in 3D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the coordinates of the vertices. // // Output, double EDGE_LENGTH[6], the length of the edges. // { # define DIM_NUM 3 double *edge_length; int i; int j1; int j2; int k; double v[DIM_NUM]; edge_length = new double[6]; k = 0; for ( j1 = 0; j1 < 3; j1++ ) { for ( j2 = j1 + 1; j2 < 4; j2++ ) { for ( i = 0; i < DIM_NUM; i++ ) { v[i] = tetra[i+j2*DIM_NUM] - tetra[i+j1*DIM_NUM]; } edge_length[k] = r8vec_length ( DIM_NUM, v ); k = k + 1; } } return edge_length; # undef DIM_NUM } //****************************************************************************80 void tetrahedron_insphere_3d ( double tetra[3*4], double *r, double pc[3] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_INSPHERE_3D finds the insphere of a tetrahedron in 3D. // // Discussion: // // The insphere of a tetrahedron is the inscribed sphere, which touches // each face of the tetrahedron at a single point. // // The points of contact are the centroids of the triangular faces // of the tetrahedron. Therefore, the point of contact for a face // can be computed as the average of the vertices of that face. // // The sphere can then be determined as the unique sphere through // the four given centroids. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 August 2005 // // Author: // // John Burkardt // // Reference: // // Philip Schneider, David Eberly, // Geometric Tools for Computer Graphics, // Elsevier, 2002, // ISBN: 1558605940, // LC: T385.G6974. // // Parameters: // // Input, double TETRA[3*4], the coordinates of the vertices. // // Output, double *R, PC[3], the radius and the center // of the sphere. // { # define DIM_NUM 3 double b[4*4]; double gamma; int i; int j; double l123; double l124; double l134; double l234; double *n123; double *n124; double *n134; double *n234; double v21[DIM_NUM]; double v31[DIM_NUM]; double v41[DIM_NUM]; double v32[DIM_NUM]; double v42[DIM_NUM]; double v43[DIM_NUM]; for ( i = 0; i < DIM_NUM; i++ ) { v21[i] = tetra[i+1*DIM_NUM] - tetra[i+0*DIM_NUM]; } for ( i = 0; i < DIM_NUM; i++ ) { v31[i] = tetra[i+2*DIM_NUM] - tetra[i+0*DIM_NUM]; } for ( i = 0; i < DIM_NUM; i++ ) { v41[i] = tetra[i+3*DIM_NUM] - tetra[i+0*DIM_NUM]; } for ( i = 0; i < DIM_NUM; i++ ) { v32[i] = tetra[i+2*DIM_NUM] - tetra[i+1*DIM_NUM]; } for ( i = 0; i < DIM_NUM; i++ ) { v42[i] = tetra[i+3*DIM_NUM] - tetra[i+1*DIM_NUM]; } for ( i = 0; i < DIM_NUM; i++ ) { v43[i] = tetra[i+3*DIM_NUM] - tetra[i+2*DIM_NUM]; } n123 = r8vec_cross_3d ( v21, v31 ); n124 = r8vec_cross_3d ( v41, v21 ); n134 = r8vec_cross_3d ( v31, v41 ); n234 = r8vec_cross_3d ( v42, v32 ); l123 = r8vec_length ( DIM_NUM, n123 ); l124 = r8vec_length ( DIM_NUM, n124 ); l134 = r8vec_length ( DIM_NUM, n134 ); l234 = r8vec_length ( DIM_NUM, n234 ); delete [] n123; delete [] n124; delete [] n134; delete [] n234; for ( i = 0; i < DIM_NUM; i++ ) { pc[i] = ( l234 * tetra[i+0*DIM_NUM] + l134 * tetra[i+1*DIM_NUM] + l124 * tetra[i+2*DIM_NUM] + l123 * tetra[i+3*DIM_NUM] ) / ( l234 + l134 + l124 + l123 ); } for ( j = 0; j < 4; j++ ) { for ( i = 0; i < DIM_NUM; i++ ) { b[i+j*4] = tetra[i+j*DIM_NUM]; } b[3+j*4] = 1.0; } gamma = fabs ( r8mat_det_4d ( b ) ); *r = gamma / ( l234 + l134 + l124 + l123 ); return; # undef DIM_NUM } //****************************************************************************80 void tetrahedron_order4_physical_to_reference ( double tetra[], int n, double phy[], double ref[] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_ORDER4_PHYSICAL_TO_REFERENCE maps physical points to reference points. // // Discussion: // // Given the vertices of an order 4 physical tetrahedron and a point // (X,Y,Z) in the physical tetrahedron, the routine computes the value // of the corresponding image point (R,S,T) in reference space. // // This routine may be appropriate for an order 10 tetrahedron, // if the mapping between reference and physical space is linear. // This implies, in particular, that the edges of the image tetrahedron // are straight, the faces are flat, and the "midside" nodes in the // physical tetrahedron are halfway along the sides of the physical // tetrahedron. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the coordinates of the vertices. // The vertices are assumed to be the images of // (0,0,0), (1,0,0), (0,1,0) and (0,0,1) respectively. // // Input, int N, the number of points to transform. // // Input, double PHY[3*N], the coordinates of physical points // to be transformed. // // Output, double REF[3*N], the coordinates of the corresponding // points in the reference space. // { double a[3*3]; double det; int i; int j; // // Set up the matrix. // for ( i = 0; i < 3; i++ ) { a[i+0*3] = tetra[i+1*3] - tetra[i+0*3]; a[i+1*3] = tetra[i+2*3] - tetra[i+0*3]; a[i+2*3] = tetra[i+3*3] - tetra[i+0*3]; } // // Compute the determinant. // det = a[0+0*3] * ( a[1+1*3] * a[2+2*3] - a[1+2*3] * a[2+1*3] ) + a[0+1*3] * ( a[1+2*3] * a[2+0*3] - a[1+0*3] * a[2+2*3] ) + a[0+2*3] * ( a[1+0*3] * a[2+1*3] - a[1+1*3] * a[2+0*3] ); // // If the determinant is zero, bail out. // if ( det == 0.0 ) { for ( j = 0; j < n; j++ ) { for ( i = 0; i < 3; i++ ) { ref[i+j*3] = 0.0; } } return; } // // Compute the solution. // for ( j = 0; j < n; j++ ) { ref[0+j*3] = ( ( a[1+1*3] * a[2+2*3] - a[1+2*3] * a[2+1*3] ) * ( phy[0+j*3] - tetra[0+0*3] ) - ( a[0+1*3] * a[2+2*3] - a[0+2*3] * a[2+1*3] ) * ( phy[1+j*3] - tetra[1+0*3] ) + ( a[0+1*3] * a[1+2*3] - a[0+2*3] * a[1+1*3] ) * ( phy[2+j*3] - tetra[2+0*3] ) ) / det; ref[1+j*3] = ( - ( a[1+0*3] * a[2+2*3] - a[1+2*3] * a[2+0*3] ) * ( phy[0+j*3] - tetra[0+0*3] ) + ( a[0+0*3] * a[2+2*3] - a[0+2*3] * a[2+0*3] ) * ( phy[1+j*3] - tetra[1+0*3] ) - ( a[0+0*3] * a[1+2*3] - a[0+2*3] * a[1+0*3] ) * ( phy[2+j*3] - tetra[2+0*3] ) ) / det; ref[2+j*3] = ( ( a[1+0*3] * a[2+1*3] - a[1+1*3] * a[2+0*3] ) * ( phy[0+j*3] - tetra[0+0*3] ) - ( a[0+0*3] * a[2+1*3] - a[0+1*3] * a[2+0*3] ) * ( phy[1+j*3] - tetra[1+0*3] ) + ( a[0+0*3] * a[1+1*3] - a[0+1*3] * a[1+0*3] ) * ( phy[2+j*3] - tetra[2+0*3] ) ) / det; } return; } //****************************************************************************80 void tetrahedron_order4_reference_to_physical ( double tetra[], int n, double ref[], double phy[] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_ORDER4_REFERENCE_TO_PHYSICAL maps reference points to physical points. // // Discussion: // // Given the vertices of an order 4 physical tetrahedron and a point // (R,S,T) in the reference triangle, the routine computes the value // of the corresponding image point (X,Y,Z) in physical space. // // This routine will also be correct for an order 10 tetrahedron, // if the mapping between reference and physical space // is linear. This implies, in particular, that the sides of the // image tetrahedron are straight, the faces are flat, and // the "midside" nodes in the physical tetrahedron are // halfway along the edges of the physical tetrahedron. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the coordinates of the vertices. // The vertices are assumed to be the images of (0,0,0), (1,0,0), // (0,1,0) and (0,0,1) respectively. // // Input, int N, the number of points to transform. // // Input, double REF[3*N], points in the reference tetrahedron // // Output, double PHY[3*N], corresponding points in the // physical tetrahedron. // { int i; int j; for ( i = 0; i < 3; i++ ) { for ( j = 0; j < n; j++ ) { phy[i+j*3] = tetra[i+0*3] * ( 1.0 - ref[0+j*3] - ref[1+j*3] - ref[2+j*3] ) + tetra[i+1*3] * + ref[0+j*3] + tetra[i+2*3] * + ref[1+j*3] + tetra[i+3*3] * + ref[2+j*3]; } } return; } //****************************************************************************80 double tetrahedron_quality1_3d ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_QUALITY1_3D: "quality" of a tetrahedron in 3D. // // Discussion: // // The quality of a tetrahedron is 3.0 times the ratio of the radius of // the inscribed sphere divided by that of the circumscribed sphere. // // An equilateral tetrahredron achieves the maximum possible quality of 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the coordinates of the vertices. // // Output, double TETRAHEDRON_QUALITY1_3D, the quality of the tetrahedron. // { # define DIM_NUM 3 double pc[DIM_NUM]; double quality; double r_in; double r_out; tetrahedron_circumsphere_3d ( tetra, &r_out, pc ); tetrahedron_insphere_3d ( tetra, &r_in, pc ); quality = 3.0 * r_in / r_out; return quality; # undef DIM_NUM } //****************************************************************************80 double tetrahedron_quality2_3d ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_QUALITY2_3D: "quality" of a tetrahedron in 3D. // // Discussion: // // The quality measure #2 of a tetrahedron is: // // QUALITY2 = 2 * sqrt ( 6 ) * RIN / LMAX // // where // // RIN = radius of the inscribed sphere; // LMAX = length of longest side of the tetrahedron. // // An equilateral tetrahredron achieves the maximum possible quality of 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2005 // // Author: // // John Burkardt // // Reference: // // Qiang Du, Desheng Wang, // The Optimal Centroidal Voronoi Tesselations and the Gersho's // Conjecture in the Three-Dimensional Space, // Computers and Mathematics with Applications, // Volume 49, 2005, pages 1355-1373. // // Parameters: // // Input, double TETRA[3*4], the coordinates of the vertices. // // Output, double TETRAHEDRON_QUALITY2_3D, the quality of the tetrahedron. // { # define DIM_NUM 3 double *edge_length; double l_max; double pc[DIM_NUM]; double quality2; double r_in; edge_length = tetrahedron_edge_length_3d ( tetra ); l_max = r8vec_max ( 6, edge_length ); tetrahedron_insphere_3d ( tetra, &r_in, pc ); quality2 = 2.0 * sqrt ( 6.0 ) * r_in / l_max; delete [] edge_length; return quality2; # undef DIM_NUM } //****************************************************************************80 double tetrahedron_quality3_3d ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_QUALITY3_3D computes the mean ratio of a tetrahedron. // // Discussion: // // This routine computes QUALITY3, the eigenvalue or mean ratio of // a tetrahedron. // // QUALITY3 = 12 * ( 3 * volume )**(2/3) / (sum of square of edge lengths). // // This value may be used as a shape quality measure for the tetrahedron. // // For an equilateral tetrahedron, the value of this quality measure // will be 1. For any other tetrahedron, the value will be between // 0 and 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2005 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double TETRA(3,4), the coordinates of the vertices. // // Output, double TETRAHEDRON_QUALITY3_3D, the mean ratio of the tetrahedron. // { # define DIM_NUM 3 double ab[DIM_NUM]; double ac[DIM_NUM]; double ad[DIM_NUM]; double bc[DIM_NUM]; double bd[DIM_NUM]; double cd[DIM_NUM]; double denom; int i; double lab; double lac; double lad; double lbc; double lbd; double lcd; double quality3; double volume; // // Compute the vectors representing the sides of the tetrahedron. // for ( i = 0; i < DIM_NUM; i++ ) { ab[i] = tetra[i+1*DIM_NUM] - tetra[i+0*DIM_NUM]; ac[i] = tetra[i+2*DIM_NUM] - tetra[i+0*DIM_NUM]; ad[i] = tetra[i+3*DIM_NUM] - tetra[i+0*DIM_NUM]; bc[i] = tetra[i+2*DIM_NUM] - tetra[i+1*DIM_NUM]; bd[i] = tetra[i+3*DIM_NUM] - tetra[i+1*DIM_NUM]; cd[i] = tetra[i+3*DIM_NUM] - tetra[i+2*DIM_NUM]; } // // Compute the squares of the lengths of the sides. // lab = pow ( ab[0], 2 ) + pow ( ab[1], 2 ) + pow ( ab[2], 2 ); lac = pow ( ac[0], 2 ) + pow ( ac[1], 2 ) + pow ( ac[2], 2 ); lad = pow ( ad[0], 2 ) + pow ( ad[1], 2 ) + pow ( ad[2], 2 ); lbc = pow ( bc[0], 2 ) + pow ( bc[1], 2 ) + pow ( bc[2], 2 ); lbd = pow ( bd[0], 2 ) + pow ( bd[1], 2 ) + pow ( bd[2], 2 ); lcd = pow ( cd[0], 2 ) + pow ( cd[1], 2 ) + pow ( cd[2], 2 ); // // Compute the volume. // volume = fabs ( ab[0] * ( ac[1] * ad[2] - ac[2] * ad[1] ) + ab[1] * ( ac[2] * ad[0] - ac[0] * ad[2] ) + ab[2] * ( ac[0] * ad[1] - ac[1] * ad[0] ) ) / 6.0; denom = lab + lac + lad + lbc + lbd + lcd; if ( denom == 0.0 ) { quality3 = 0.0; } else { quality3 = 12.0 * pow ( 3.0 * volume, 2.0 / 3.0 ) / denom; } return quality3; # undef DIM_NUM } //****************************************************************************80 double tetrahedron_quality4_3d ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_QUALITY4_3D computes the minimum solid angle of a tetrahedron. // // Discussion: // // This routine computes a quality measure for a tetrahedron, based // on the sine of half the minimum of the four solid angles. // // Modified: // // 17 August 2005 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double TETRA[3*4], the coordinates of the vertices. // // Output, double QUALITY4, the value of the quality measure. // { # define DIM_NUM 3 double ab[DIM_NUM]; double ac[DIM_NUM]; double ad[DIM_NUM]; double bc[DIM_NUM]; double bd[DIM_NUM]; double cd[DIM_NUM]; double denom; int i; double l1; double l2; double l3; double lab; double lac; double lad; double lbc; double lbd; double lcd; double quality4; double volume; // // Compute the vectors that represent the sides. // for ( i = 0; i < DIM_NUM; i++ ) { ab[i] = tetra[i+1*DIM_NUM] - tetra[i+0*DIM_NUM]; ac[i] = tetra[i+2*DIM_NUM] - tetra[i+0*DIM_NUM]; ad[i] = tetra[i+3*DIM_NUM] - tetra[i+0*DIM_NUM]; bc[i] = tetra[i+2*DIM_NUM] - tetra[i+1*DIM_NUM]; bd[i] = tetra[i+3*DIM_NUM] - tetra[i+1*DIM_NUM]; cd[i] = tetra[i+3*DIM_NUM] - tetra[i+2*DIM_NUM]; } // // Compute the lengths of the sides. // lab = r8vec_length ( DIM_NUM, ab ); lac = r8vec_length ( DIM_NUM, ac ); lad = r8vec_length ( DIM_NUM, ad ); lbc = r8vec_length ( DIM_NUM, bc ); lbd = r8vec_length ( DIM_NUM, bd ); lcd = r8vec_length ( DIM_NUM, cd ); // // Compute the volume. // volume = fabs ( ab[0] * ( ac[1] * ad[2] - ac[2] * ad[1] ) + ab[1] * ( ac[2] * ad[0] - ac[0] * ad[2] ) + ab[2] * ( ac[0] * ad[1] - ac[1] * ad[0] ) ) / 6.0; quality4 = 1.0; l1 = lab + lac; l2 = lab + lad; l3 = lac + lad; denom = ( l1 + lbc ) * ( l1 - lbc ) * ( l2 + lbd ) * ( l2 - lbd ) * ( l3 + lcd ) * ( l3 - lcd ); if ( denom <= 0.0 ) { quality4 = 0.0; } else { quality4 = r8_min ( quality4, 12.0 * volume / sqrt ( denom ) ); } l1 = lab + lbc; l2 = lab + lbd; l3 = lbc + lbd; denom = ( l1 + lac ) * ( l1 - lac ) * ( l2 + lad ) * ( l2 - lad ) * ( l3 + lcd ) * ( l3 - lcd ); if ( denom <= 0.0 ) { quality4 = 0.0; } else { quality4 = r8_min ( quality4, 12.0 * volume / sqrt ( denom ) ); } l1 = lac + lbc; l2 = lac + lcd; l3 = lbc + lcd; denom = ( l1 + lab ) * ( l1 - lab ) * ( l2 + lad ) * ( l2 - lad ) * ( l3 + lbd ) * ( l3 - lbd ); if ( denom <= 0.0 ) { quality4 = 0.0; } else { quality4 = r8_min ( quality4, 12.0 * volume / sqrt ( denom ) ); } l1 = lad + lbd; l2 = lad + lcd; l3 = lbd + lcd; denom = ( l1 + lab ) * ( l1 - lab ) * ( l2 + lac ) * ( l2 - lac ) * ( l3 + lbc ) * ( l3 - lbc ); if ( denom <= 0.0 ) { quality4 = 0.0; } else { quality4 = r8_min ( quality4, 12.0 * volume / sqrt ( denom ) ); } quality4 = quality4 * 1.5 * sqrt ( 6.0 ); return quality4; # undef DIM_NUM } //****************************************************************************80 void tetrahedron_reference_sample ( int n, int *seed, double p[] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_REFERENCE_SAMPLE samples points in the reference tetrahedron. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of points to sample. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double P[3*N], random points in the tetrahedron. // { double alpha; double beta; double gamma; int j; double r; for ( j = 0; j < n; j++ ) { r = r8_uniform_01 ( seed ); // // Interpret R as a percentage of the tetrahedron's volume. // // Imagine a plane, parallel to face 1, so that the volume between // vertex 1 and the plane is R percent of the full tetrahedron volume. // // The plane will intersect sides 12, 13, and 14 at a fraction // ALPHA = R^1/3 of the distance from vertex 1 to vertices 2, 3, and 4. // alpha = pow ( r, 1.0 / 3.0 ); // // Determine the coordinates of the points on sides 12, 13 and 14 intersected // by the plane, which form a triangle TR. // // Now choose, uniformly at random, a point in this triangle. // r = r8_uniform_01 ( seed ); // // Interpret R as a percentage of the triangle's area. // // Imagine a line L, parallel to side 1, so that the area between // vertex 1 and line L is R percent of the full triangle's area. // // The line L will intersect sides 2 and 3 at a fraction // ALPHA = SQRT ( R ) of the distance from vertex 1 to vertices 2 and 3. // beta = sqrt ( r ); // // Determine the coordinates of the points on sides 2 and 3 intersected // by line L. // // Now choose, uniformly at random, a point on the line L. // gamma = r8_uniform_01 ( seed ); p[0+j*3] = alpha * ( 1.0 - beta ) * gamma; p[1+j*3] = alpha * beta * ( 1.0 - gamma ); p[2+j*3] = alpha * beta * gamma; } return; } //****************************************************************************80 void tetrahedron_sample ( double tetra[3*4], int n, int *seed, double p[] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_SAMPLE returns random points in a tetrahedron. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the coordinates of the vertices. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double P[3*N], random points in the tetrahedron. // { # define DIM_NUM 3 double alpha; double beta; double gamma; int i; int j; int k; double *p12; double *p13; double r; double *t; p12 = new double[DIM_NUM]; p13 = new double[DIM_NUM]; t = new double[DIM_NUM*3]; for ( k = 0; k < n; k++ ) { r = r8_uniform_01 ( seed ); // // Interpret R as a percentage of the tetrahedron's volume. // // Imagine a plane, parallel to face 1, so that the volume between // vertex 1 and the plane is R percent of the full tetrahedron volume. // // The plane will intersect sides 12, 13, and 14 at a fraction // ALPHA = R^1/3 of the distance from vertex 1 to vertices 2, 3, and 4. // alpha = pow ( r, 1.0 / 3.0 ); // // Determine the coordinates of the points on sides 12, 13 and 14 intersected // by the plane, which form a triangle TR. // for ( i = 0; i < DIM_NUM; i++ ) { for ( j = 0; j < 3; j++ ) { t[i+j*3] = ( 1.0 - alpha ) * tetra[i+0*3] + alpha * tetra[i+(j+1)*3]; } } // // Now choose, uniformly at random, a point in this triangle. // r = r8_uniform_01 ( seed ); // // Interpret R as a percentage of the triangle's area. // // Imagine a line L, parallel to side 1, so that the area between // vertex 1 and line L is R percent of the full triangle's area. // // The line L will intersect sides 2 and 3 at a fraction // ALPHA = SQRT ( R ) of the distance from vertex 1 to vertices 2 and 3. // beta = sqrt ( r ); // // Determine the coordinates of the points on sides 2 and 3 intersected // by line L. // for ( i = 0; i < DIM_NUM; i++ ) { p12[i] = ( 1.0 - beta ) * t[i+0*3] + beta * t[i+1*3]; p13[i] = ( 1.0 - beta ) * t[i+0*3] + beta * t[i+2*3]; } // // Now choose, uniformly at random, a point on the line L. // gamma = r8_uniform_01 ( seed ); for ( i = 0; i < DIM_NUM; i++ ) { p[i+k*3] = gamma * p12[i] + ( 1.0 - gamma ) * p13[i]; } } delete [] p12; delete [] p13; delete [] t; return; # undef DIM_NUM } //****************************************************************************80 double tetrahedron_volume ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_VOLUME computes the volume of a tetrahedron in 3D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the coordinates of the vertices. // // Output, double TETRAHEDRON_VOLUME, the volume of the tetrahedron. // { double a[4*4]; int i; int j; double volume; for ( i = 0; i < 3; i++ ) { for ( j = 0; j < 4; j++ ) { a[i+j*4] = tetra[i+j*3]; } } i = 3; for ( j = 0; j < 4; j++ ) { a[i+j*4] = 1.0; } volume = fabs ( r8mat_det_4d ( a ) ) / 6.0; return volume; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }