# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); char ch_cap ( char c ); bool ch_eqi ( char c1, char c2 ); int ch_to_digit ( char c ); int file_column_count ( string input_filename ); bool file_exist ( string filename ); int file_row_count ( string input_filename ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); int *i4mat_data_read ( string input_filename, int m, int n ); void i4mat_header_read ( string input_filename, int *m, int *n ); void i4mat_transpose_print ( int m, int n, int a[], string title ); void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ); int *i4vec_histogram ( int n, int a[], int histo_num ); int i4vec_max ( int n, int a[] ); void i4vec_print ( int n, int a[], string title ); void i4vec_zero ( int n, int a[] ); double r8_huge ( ); double r8_max ( double x, double y ); double r8_min ( double x, double y ); void r8_swap ( double *x, double *y ); double *r8mat_data_read ( string input_filename, int m, int n ); double r8mat_det_4d ( double a[4*4] ); void r8mat_header_read ( string input_filename, int *m, int *n ); int r8mat_solve ( int n, int rhs_num, double a[] ); void r8mat_transpose_print ( int m, int n, double a[], string title ); void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ); double *r8vec_cross_3d ( double v1[3], double v2[3] ); double r8vec_length ( int dim_num, double x[] ); double r8vec_max ( int n, double x[] ); double r8vec_mean ( int n, double x[] ); double r8vec_min ( int n, double x[] ); double r8vec_variance ( int n, double x[] ); void r8vec_zero ( int n, double a[] ); int s_len_trim ( string s ); int s_to_i4 ( string s, int *last, bool *error ); bool s_to_i4vec ( string s, int n, int ivec[] ); double s_to_r8 ( string s, int *lchar, bool *error ); bool s_to_r8vec ( string s, int n, double rvec[] ); int s_word_count ( string s ); void tet_mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ); int *tet_mesh_node_order ( int tetra_order, int tetra_num, int tetra_node[], int node_num ); void tet_mesh_quality1 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ); void tet_mesh_quality2 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ); void tet_mesh_quality3 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ); void tet_mesh_quality4 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ); void tet_mesh_quality5 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ); void tetrahedron_circumsphere_3d ( double tetra[3*4], double *r, double pc[3] ); double *tetrahedron_edge_length_3d ( double tetra[3*4] ); void tetrahedron_insphere_3d ( double tetra[3*4], double *r, double pc[3] ); double tetrahedron_quality1_3d ( double tetra[3*4] ); double tetrahedron_quality2_3d ( double tetra[3*4] ); double tetrahedron_quality3_3d ( double tetra[3*4] ); double tetrahedron_quality4_3d ( double tetra[3*4] ); double tetrahedron_volume_3d ( double tetra[3*4] ); void timestamp ( ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for TET_MESH_QUALITY. // // Discussion: // // TET_MESH_QUALITY determines quality measures for a tet mesh. // // Usage: // // tet_mesh_quality prefix // // where prefix is the common file prefix: // // * prefix_nodes.txt contains the node coordinates; // * prefix_elements.txt contains the element definitions. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 September 2009 // // Author: // // John Burkardt // { int dim_num; string element_filename; int *element_node; int element_num; int element_order; int *histo_gram; int histo_num; int i; string node_filename; int node_num; int *node_order; double *node_xyz; string prefix; double value_max; double value_mean; double value_min; double value_var; cout << "\n"; timestamp ( ); cout << "\n"; cout << "TET_MESH_QUALITY\n"; cout << " C++ version\n"; cout << " Compute tet mesh quality measures.\n"; cout << "\n"; cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n"; // // Get the filename prefix. // if ( argc <= 1 ) { cout << "\n"; cout << "TET_MESH_QUALITY:\n"; cout << " Please enter the file prefix.\n"; cin >> prefix; } else { prefix = argv[1]; } // // Create the filenames. // node_filename = prefix + "_nodes.txt"; element_filename = prefix + "_elements.txt"; // // Read the node data. // r8mat_header_read ( node_filename, &dim_num, &node_num ); cout << "\n"; cout << " Read the header of \"" << node_filename << "\".\n"; cout << "\n"; cout << " Spatial dimension DIM_NUM = " << dim_num << "\n"; cout << " Number of points NODE_NUM = " << node_num << "\n"; if ( dim_num != 3 ) { cout << "\n"; cout << "TET_MESH_QUALITY - Fatal error!\n"; cout << " Dataset must have spatial dimension 3.\n"; return 1; } node_xyz = r8mat_data_read ( node_filename, dim_num, node_num ); cout << "\n"; cout << " Read the data in \"" << node_filename << "\".\n"; r8mat_transpose_print_some ( dim_num, node_num, node_xyz, 1, 1, 5, 5, " 5 by 5 portion of data read from file:" ); // // Read the tetra data. // i4mat_header_read ( element_filename, &element_order, &element_num ); if ( element_order != 4 ) { cout << "\n"; cout << "TET_MESH_QUALITY - Fatal error!\n"; cout << " Data is not for a 4 node tet mesh.\n"; return 1; } cout << "\n"; cout << " Read the header of \"" << element_filename << "\".\n"; cout << "\n"; cout << " Element order = " << element_order << "\n"; cout << " Number of elements = " << element_num << "\n"; element_node = i4mat_data_read ( element_filename, element_order, element_num ); cout << "\n"; cout << " Read the data in \"" << element_filename << "\".\n"; i4mat_transpose_print_some ( element_order, element_num, element_node, 1, 1, element_order, 10, " Portion of ELEMENT_NODE:" ); // // If the element information is 1-based, make it 0-based. // tet_mesh_base_zero ( node_num, element_order, element_num, element_node ); // // Compute and print the quality measures. // cout << "\n"; cout << " Minimum Mean Maximum Variance\n"; cout << "\n"; tet_mesh_quality1 ( node_num, node_xyz, element_order, element_num, element_node, &value_min, &value_mean, &value_max, &value_var ); cout << " Quality measure 1 = " << " " << setw(10) << value_min << " " << setw(10) << value_mean << " " << setw(10) << value_max << " " << setw(10) << value_var << "\n"; tet_mesh_quality2 ( node_num, node_xyz, element_order, element_num, element_node, &value_min, &value_mean, &value_max, &value_var ); cout << " Quality measure 2 = " << " " << setw(10) << value_min << " " << setw(10) << value_mean << " " << setw(10) << value_max << " " << setw(10) << value_var << "\n"; tet_mesh_quality3 ( node_num, node_xyz, element_order, element_num, element_node, &value_min, &value_mean, &value_max, &value_var ); cout << " Quality measure 3 = " << " " << setw(10) << value_min << " " << setw(10) << value_mean << " " << setw(10) << value_max << " " << setw(10) << value_var << "\n"; tet_mesh_quality4 ( node_num, node_xyz, element_order, element_num, element_node, &value_min, &value_mean, &value_max, &value_var ); cout << " Quality measure 4 = " << " " << setw(10) << value_min << " " << setw(10) << value_mean << " " << setw(10) << value_max << " " << setw(10) << value_var << "\n"; tet_mesh_quality5 ( node_num, node_xyz, element_order, element_num, element_node, &value_min, &value_mean, &value_max, &value_var ); cout << " Quality measure 5 = " << " " << setw(10) << value_min << " " << setw(10) << value_mean << " " << setw(10) << value_max << " " << setw(10) << value_var << "\n"; node_order = tet_mesh_node_order ( element_order, element_num, element_node, node_num ); histo_num = i4vec_max ( node_num, node_order ); histo_gram = i4vec_histogram ( node_num, node_order, histo_num ); cout << "\n"; cout << " Here is a numerical histogram of the order of\n"; cout << " each node in the mesh, that is, the number of\n"; cout << " tetrahedrons that include that node as a vertex.\n"; cout << "\n"; cout << " For a regular mesh, most nodes would have the\n"; cout << " same order.\n"; cout << "\n"; cout << " Order Number of Nodes\n"; cout << "\n"; for ( i = 0; i <= histo_num; i++ ) { if ( histo_gram[i] != 0 ) { cout << " " << setw(6) << i << " " << setw(6) << histo_gram[i] << "\n"; } } delete [] element_node; delete [] histo_gram; delete [] node_order; delete [] node_xyz; cout << "\n"; cout << "TET_MESH_QUALITY:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 char ch_cap ( char c ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char C, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= c && c <= 122 ) { c = c - 32; } return c; } //****************************************************************************80 bool ch_eqi ( char c1, char c2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char C1, C2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= c1 && c1 <= 122 ) { c1 = c1 - 32; } if ( 97 <= c2 && c2 <= 122 ) { c2 = c2 - 32; } return ( c1 == c2 ); } //****************************************************************************80 int ch_to_digit ( char c ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // C DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char C, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If C was // 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= c && c <= '9' ) { digit = c - '0'; } else if ( c == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, // separated by spaces. There may also be some blank lines, and some // comment lines, which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; string text; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { getline ( input, text ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) <= 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input >> text; if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 bool file_exist ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_EXIST reports whether a file exists. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, bool FILE_EXIST, is TRUE if the file exists. // { ifstream file; bool value; file.open ( filename.c_str ( ), ios::in ); if ( !file ) { value = false; } else { value = true; } return value; } //****************************************************************************80 int file_row_count ( string input_filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int bad_num; int comment_num; ifstream input; int i; string line; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; bad_num = 0; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return (-1); } for ( ; ; ) { getline ( input, line ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int *i4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_DATA_READ reads data from an I4MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; int *table; int *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new int[m*n]; x = new int[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void i4mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // I4MAT_HEADER_READ reads the header from an I4MAT file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 void i4mat_transpose_print ( int m, int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT prints an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Input, string TITLE, a title to be printed. // { i4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title for the matrix. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); cout << "\n"; // // For each row I in the current range... // // Write the header. // cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // cout << setw(5) << j << " "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int *i4vec_histogram ( int n, int a[], int histo_num ) //****************************************************************************80 // // Purpose: // // I4VEC_HISTOGRAM computes a histogram of the elements of an I4VEC. // // Discussion: // // It is assumed that the entries in the vector A are nonnegative. // Only values between 0 and HISTO_NUM will be histogrammed. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Input, int A[N], the array to examine. // // Input, int HISTO_NUM, the maximum value for which a // histogram entry will be computed. // // Output, int I4VEC_HISTOGRAM[HISTO_NUM+1], contains the number of // entries of A with the values of 0 through HISTO_NUM. // { int *histo_gram; int i; histo_gram = new int[histo_num+1]; for ( i = 0; i <= histo_num; i++ ) { histo_gram[i] = 0; } for ( i = 0; i < n; i++ ) { if ( 0 <= a[i] && a[i] <= histo_num ) { histo_gram[a[i]] = histo_gram[a[i]] + 1; } } return histo_gram; } //****************************************************************************80 int i4vec_max ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_MAX returns the value of the maximum element in an I4VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, int A[N], the array to be checked. // // Output, int I4VEC_MAX, the value of the maximum element. This // is set to 0 if N <= 0. // { int i; int value; if ( n <= 0 ) { return 0; } value = a[0]; for ( i = 1; i < n; i++ ) { if ( value < a[i] ) { value = a[i]; } } return value; } //****************************************************************************80 void i4vec_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title to be printed first. // TITLE may be blank. // { int i; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << " " << setw(8) << a[i] << "\n"; } return; } //****************************************************************************80 void i4vec_zero ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_ZERO zeroes an I4VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, int A[N], a vector of zeroes. // { int i; for ( i = 0; i < n; i++ ) { a[i] = 0; } return; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { if ( y < x ) { return x; } else { return y; } } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { if ( y < x ) { return y; } else { return x; } } //****************************************************************************80 void r8_swap ( double *x, double *y ) //****************************************************************************80 // // Purpose: // // R8_SWAP switches two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 January 2002 // // Author: // // John Burkardt // // Parameters: // // Input/output, double *X, *Y. On output, the values of X and // Y have been interchanged. // { double z; z = *x; *x = *y; *y = z; return; } //****************************************************************************80 double *r8mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_DATA_READ reads the data from an R8MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; double *table; double *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 double r8mat_det_4d ( double a[4*4] ) //****************************************************************************80 // // Purpose: // // R8MAT_DET_4D computes the determinant of a 4 by 4 R8MAT. // // Discussion: // // The two dimensional array is stored as a one dimensional vector, // by COLUMNS. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, double A[4*4], the matrix whose determinant is desired. // // Output, double R8MAT_DET_4D, the determinant of the matrix. // { double det; det = a[0+0*4] * ( a[1+1*4] * ( a[2+2*4] * a[3+3*4] - a[2+3*4] * a[3+2*4] ) - a[1+2*4] * ( a[2+1*4] * a[3+3*4] - a[2+3*4] * a[3+1*4] ) + a[1+3*4] * ( a[2+1*4] * a[3+2*4] - a[2+2*4] * a[3+1*4] ) ) - a[0+1*4] * ( a[1+0*4] * ( a[2+2*4] * a[3+3*4] - a[2+3*4] * a[3+2*4] ) - a[1+2*4] * ( a[2+0*4] * a[3+3*4] - a[2+3*4] * a[3+0*4] ) + a[1+3*4] * ( a[2+0*4] * a[3+2*4] - a[2+2*4] * a[3+0*4] ) ) + a[0+2*4] * ( a[1+0*4] * ( a[2+1*4] * a[3+3*4] - a[2+3*4] * a[3+1*4] ) - a[1+1*4] * ( a[2+0*4] * a[3+3*4] - a[2+3*4] * a[3+0*4] ) + a[1+3*4] * ( a[2+0*4] * a[3+1*4] - a[2+1*4] * a[3+0*4] ) ) - a[0+3*4] * ( a[1+0*4] * ( a[2+1*4] * a[3+2*4] - a[2+2*4] * a[3+1*4] ) - a[1+1*4] * ( a[2+0*4] * a[3+2*4] - a[2+2*4] * a[3+0*4] ) + a[1+2*4] * ( a[2+0*4] * a[3+1*4] - a[2+1*4] * a[3+0*4] ) ); return det; } //****************************************************************************80 void r8mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // R8MAT_HEADER_READ reads the header from an R8MAT file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points. // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 int r8mat_solve ( int n, int rhs_num, double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_SOLVE uses Gauss-Jordan elimination to solve an N by N linear system. // // Discussion: // // The doubly dimensioned array A is treated as a one dimensional vector, // stored by COLUMNS. Entry A(I,J) is stored as A[I+J*N] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int RHS_NUM, the number of right hand sides. RHS_NUM // must be at least 0. // // Input/output, double A[N*(N+RHS_NUM)], contains in rows and columns 1 // to N the coefficient matrix, and in columns N+1 through // N+RHS_NUM, the right hand sides. On output, the coefficient matrix // area has been destroyed, while the right hand sides have // been overwritten with the corresponding solutions. // // Output, int R8MAT_SOLVE, singularity flag. // 0, the matrix was not singular, the solutions were computed; // J, factorization failed on step J, and the solutions could not // be computed. // { double apivot; double factor; int i; int ipivot; int j; int k; double temp; for ( j = 0; j < n; j++ ) { // // Choose a pivot row. // ipivot = j; apivot = a[j+j*n]; for ( i = j; i < n; i++ ) { if ( fabs ( apivot ) < fabs ( a[i+j*n] ) ) { apivot = a[i+j*n]; ipivot = i; } } if ( apivot == 0.0 ) { return j; } // // Interchange. // for ( i = 0; i < n + rhs_num; i++ ) { temp = a[ipivot+i*n]; a[ipivot+i*n] = a[j+i*n]; a[j+i*n] = temp; } // // A(J,J) becomes 1. // a[j+j*n] = 1.0; for ( k = j; k < n + rhs_num; k++ ) { a[j+k*n] = a[j+k*n] / apivot; } // // A(I,J) becomes 0. // for ( i = 0; i < n; i++ ) { if ( i != j ) { factor = a[i+j*n]; a[i+j*n] = 0.0; for ( k = j; k < n + rhs_num; k++ ) { a[i+k*n] = a[i+k*n] - factor * a[j+k*n]; } } } } return 0; } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, string TITLE, an optional title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, an optional title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << " "; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8vec_cross_3d ( double v1[3], double v2[3] ) //****************************************************************************80 // // Purpose: // // R8VEC_CROSS_3D computes the cross product of two R8VEC's in 3D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double V1[3], V2[3], the coordinates of the vectors. // // Output, double R8VEC_CROSS_3D[3], the cross product vector. // { double *v3; v3 = new double[3]; v3[0] = v1[1] * v2[2] - v1[2] * v2[1]; v3[1] = v1[2] * v2[0] - v1[0] * v2[2]; v3[2] = v1[0] * v2[1] - v1[1] * v2[0]; return v3; } //****************************************************************************80 double r8vec_length ( int dim_num, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_LENGTH returns the Euclidean length of a vector. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, double X[DIM_NUM], the vector. // // Output, double R8VEC_LENGTH, the Euclidean length of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < dim_num; i++ ) { value = value + pow ( x[i], 2 ); } value = sqrt ( value ); return value; } //****************************************************************************80 double r8vec_max ( int n, double dvec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MAX returns the maximum element in an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double DVEC[N], a pointer to the first entry of the array. // // Output, double R8VEC_MAX, the value of the maximum element. This // is set to 0.0 if N <= 0. // { int i; double *r8vec_pointer; double value; value = - r8_huge ( ); if ( n <= 0 ) { return value; } for ( i = 0; i < n; i++ ) { if ( value < dvec[i] ) { value = dvec[i]; } } return value; } //****************************************************************************80 double r8vec_mean ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MEAN returns the mean of an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 December 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double X[N], the vector whose mean is desired. // // Output, double R8VEC_MEAN, the mean, or average, of the vector entries. // { int i; double mean; mean = 0.0; for ( i = 0; i < n; i++ ) { mean = mean + x[i]; } mean = mean / ( double ) n; return mean; } //****************************************************************************80 double r8vec_min ( int n, double dvec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MIN returns the minimum element in an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double DVEC[N], the array to be checked. // // Output, double R8VEC_MIN, the value of the minimum element. // { int i; double *r8vec_pointer; double value; value = r8_huge ( ); if ( n <= 0 ) { return value; } for ( i = 0; i < n; i++ ) { if ( dvec[i] < value ) { value = dvec[i]; } } return value; } //****************************************************************************80 double r8vec_variance ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_VARIANCE returns the variance of an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double X[N], the vector whose variance is desired. // // Output, double R8VEC_VARIANCE, the variance of the vector entries. // { int i; double mean; double variance; mean = r8vec_mean ( n, x ); variance = 0.0; for ( i = 0; i < n; i++ ) { variance = variance + ( x[i] - mean ) * ( x[i] - mean ); } if ( 1 < n ) { variance = variance / ( double ) ( n - 1 ); } else { variance = 0.0; } return variance; } //****************************************************************************80 void r8vec_zero ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_ZERO zeroes an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double A[N], a vector of zeroes. // { int i; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_i4vec ( string s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 double s_to_r8 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( string s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void tet_mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_BASE_ZERO ensures that the element definition is zero-based. // // Discussion: // // The ELEMENT_NODE array contains nodes indices that form elements. // The convention for node indexing might start at 0 or at 1. // Since a C++ program will naturally assume a 0-based indexing, it is // necessary to check a given element definition and, if it is actually // 1-based, to convert it. // // This function attempts to detect 1-based node indexing and correct it. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int ELEMENT_ORDER, the order of the elements. // // Input, int ELEMENT_NUM, the number of elements. // // Input/output, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], the element // definitions. // { int element; int node; int node_max; int node_min; int order; // // If the element information is 1-based, make it 0-based. // node_min = node_num + 1; node_max = -1; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; node_min = i4_min ( node_min, node ); node_max = i4_max ( node_max, node ); } } if ( node_min == 1 && node_max == node_num ) { cout << "\n"; cout << "TET_MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 1-based!\n"; cout << " This will be converted to 0-based.\n"; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { element_node[order+element*element_order] = element_node[order+element*element_order] - 1; } } } else if ( node_min == 0 && node_max == node_num - 1 ) { cout << "\n"; cout << "TET_MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 0-based!\n"; cout << " No conversion is necessary.\n"; } else { cout << "\n"; cout << "TET_MESH_BASE_ZERO - Warning!\n"; cout << " The element indexing is not of a recognized type.\n"; } return; } //****************************************************************************80 int *tet_mesh_node_order ( int tetra_order, int tetra_num, int tetra_node[], int node_num ) //****************************************************************************80 // // Purpose: // // TET_MESH_NODE_ORDER: determines the order of nodes. // // Discussion: // // The order of a node is the number of tetrahedrons that use that node // as a vertex. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the nodes // that make up the tetrahedrons. // // Input, int NODE_NUM, the number of nodes. // // Output, int TET_MESH_NODE_ORDER[NODE_NUM], the order of each node. // { int i; int node; int *node_order; int tetra; node_order = new int[node_num]; i4vec_zero ( node_num, node_order ); for ( tetra = 0; tetra < tetra_num; tetra++ ) { for ( i = 0; i < tetra_order; i++ ) { node = tetra_node[i+tetra*tetra_order]; if ( node < 1 || node_num < node ) { cout << "\n"; cout << "TET_MESH_NODE_ORDER - Fatal error!\n"; cout << " Illegal entry in TETRA_NODE.\n"; exit ( 1 ); } else { node_order[node-1] = node_order[node-1] + 1; } } } return node_order; } //****************************************************************************80 void tet_mesh_quality1 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ) //****************************************************************************80 // // Purpose: // // TET_MESH_QUALITY1 returns a tet mesh quality factor. // // Discussion: // // The tet mesh quality measure is the minimum of the // corresponding tetrahedron quality measure, over all tetrahedrons in the // tet mesh. // // This routine is designed for a 4-node tet mesh. It can handle a 10-node // tet mesh, but it simply ignores the extra nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the nodes. // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the indices of the nodes // that make up the tetrahedrons. // // Output, double *VALUE_MIN, *VALUE_MEAN, *VALUE_MAX, *VALUE_VAR, // the minimum, mean, maximum and variance of the quality measure. // { # define DIM_NUM 3 int i; int j; int node; int tetra; double tetrahedron[DIM_NUM*4]; double *tetrahedron_quality; tetrahedron_quality = new double[tetra_num]; for ( tetra = 0; tetra < tetra_num; tetra++ ) { for ( j = 0; j < 4; j++ ) { node = tetra_node[j+tetra*tetra_order]; for ( i = 0; i < DIM_NUM; i++ ) { tetrahedron[i+j*DIM_NUM] = node_xyz[i+(node-1)*DIM_NUM]; } } tetrahedron_quality[tetra] = tetrahedron_quality1_3d ( tetrahedron ); } *value_max = r8vec_max ( tetra_num, tetrahedron_quality ); *value_min = r8vec_min ( tetra_num, tetrahedron_quality ); *value_mean = r8vec_mean ( tetra_num, tetrahedron_quality ); *value_var = r8vec_variance ( tetra_num, tetrahedron_quality ); delete [] tetrahedron_quality; return; # undef DIM_NUM } //****************************************************************************80 void tet_mesh_quality2 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ) //****************************************************************************80 // // Purpose: // // TET_MESH_QUALITY2 returns a tet mesh quality factor. // // Discussion: // // The tet mesh quality measure is the minimum of the // corresponding tetrahedron quality measure, over all tetrahedrons in the // tet mesh. // // This routine is designed for a 4-node tet mesh. It can handle a 10-node // tet mesh, but it simply ignores the extra nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the nodes. // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the indices of the nodes // that make up the tetrahedrons. // // Output, double *VALUE_MIN, *VALUE_MEAN, *VALUE_MAX, *VALUE_VAR, // the minimum, mean, maximum and variance of the quality measure. // { # define DIM_NUM 3 int i; int j; int node; int tetra; double tetrahedron[DIM_NUM*4]; double *tetrahedron_quality; tetrahedron_quality = new double[tetra_num]; for ( tetra = 0; tetra < tetra_num; tetra++ ) { for ( j = 0; j < 4; j++ ) { node = tetra_node[j+tetra*tetra_order]; for ( i = 0; i < DIM_NUM; i++ ) { tetrahedron[i+j*DIM_NUM] = node_xyz[i+(node-1)*DIM_NUM]; } } tetrahedron_quality[tetra] = tetrahedron_quality2_3d ( tetrahedron ); } *value_max = r8vec_max ( tetra_num, tetrahedron_quality ); *value_min = r8vec_min ( tetra_num, tetrahedron_quality ); *value_mean = r8vec_mean ( tetra_num, tetrahedron_quality ); *value_var = r8vec_variance ( tetra_num, tetrahedron_quality ); delete [] tetrahedron_quality; return; # undef DIM_NUM } //****************************************************************************80 void tet_mesh_quality3 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ) //****************************************************************************80 // // Purpose: // // TET_MESH_QUALITY3 returns a tet mesh quality factor. // // Discussion: // // The tet mesh quality measure is the minimum of the // corresponding tetrahedron quality measure, over all tetrahedrons in the // tet mesh. // // This routine is designed for a 4-node tet mesh. It can handle a 10-node // tet mesh, but it simply ignores the extra nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the nodes. // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the indices of the nodes // that make up the tetrahedrons. // // Output, double *VALUE_MIN, *VALUE_MEAN, *VALUE_MAX, *VALUE_VAR, // the minimum, mean, maximum and variance of the quality measure. // { # define DIM_NUM 3 int i; int j; int node; int tetra; double tetrahedron[DIM_NUM*4]; double *tetrahedron_quality; tetrahedron_quality = new double[tetra_num]; for ( tetra = 0; tetra < tetra_num; tetra++ ) { for ( j = 0; j < 4; j++ ) { node = tetra_node[j+tetra*tetra_order]; for ( i = 0; i < DIM_NUM; i++ ) { tetrahedron[i+j*DIM_NUM] = node_xyz[i+(node-1)*DIM_NUM]; } } tetrahedron_quality[tetra] = tetrahedron_quality3_3d ( tetrahedron ); } *value_max = r8vec_max ( tetra_num, tetrahedron_quality ); *value_min = r8vec_min ( tetra_num, tetrahedron_quality ); *value_mean = r8vec_mean ( tetra_num, tetrahedron_quality ); *value_var = r8vec_variance ( tetra_num, tetrahedron_quality ); delete [] tetrahedron_quality; return; # undef DIM_NUM } //****************************************************************************80 void tet_mesh_quality4 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ) //****************************************************************************80 // // Purpose: // // TET_MESH_QUALITY4 returns a tet mesh quality factor. // // Discussion: // // The tet mesh quality measure is the minimum of the // corresponding tetrahedron quality measure, over all tetrahedrons in the // tet mesh. // // This routine is designed for a 4-node tet mesh. It can handle a 10-node // tet mesh, but it simply ignores the extra nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the nodes. // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the indices of the nodes // that make up the tetrahedrons. // // Output, double *VALUE_MIN, *VALUE_MEAN, *VALUE_MAX, *VALUE_VAR, // the minimum, mean, maximum and variance of the quality measure. // { # define DIM_NUM 3 int i; int j; int node; int tetra; double tetrahedron[DIM_NUM*4]; double *tetrahedron_quality; tetrahedron_quality = new double[tetra_num]; for ( tetra = 0; tetra < tetra_num; tetra++ ) { for ( j = 0; j < 4; j++ ) { node = tetra_node[j+tetra*tetra_order]; for ( i = 0; i < DIM_NUM; i++ ) { tetrahedron[i+j*DIM_NUM] = node_xyz[i+(node-1)*DIM_NUM]; } } tetrahedron_quality[tetra] = tetrahedron_quality4_3d ( tetrahedron ); } *value_max = r8vec_max ( tetra_num, tetrahedron_quality ); *value_min = r8vec_min ( tetra_num, tetrahedron_quality ); *value_mean = r8vec_mean ( tetra_num, tetrahedron_quality ); *value_var = r8vec_variance ( tetra_num, tetrahedron_quality ); delete [] tetrahedron_quality; return; # undef DIM_NUM } //****************************************************************************80 void tet_mesh_quality5 ( int node_num, double node_xyz[], int tetra_order, int tetra_num, int tetra_node[], double *value_min, double *value_mean, double *value_max, double *value_var ) //****************************************************************************80 // // Purpose: // // TET_MESH_QUALITY5 returns a tet mesh quality factor. // // Discussion: // // The tet mesh quality measure is the ratio of the minimum // tetrahedron volume to the maximum tetrahedron volume. // // This routine is designed for a 4-node tet mesh. It can handle a 10-node // tet mesh, but it simply ignores the extra nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the nodes. // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the indices of the nodes // that make up the tetrahedrons. // // Output, double *VALUE_MIN, *VALUE_MEAN, *VALUE_MAX, *VALUE_VAR, // the minimum, mean, maximum and variance of the quality measure. // { # define DIM_NUM 3 int i; int j; int node; double quality; int tetra; double tetrahedron[DIM_NUM*4]; double *tetrahedron_quality; double volume_max; tetrahedron_quality = new double[tetra_num]; for ( tetra = 0; tetra < tetra_num; tetra++ ) { for ( j = 0; j < 4; j++ ) { node = tetra_node[j+tetra*tetra_order]; for ( i = 0; i < DIM_NUM; i++ ) { tetrahedron[i+j*DIM_NUM] = node_xyz[i+(node-1)*DIM_NUM]; } } tetrahedron_quality[tetra] = tetrahedron_volume_3d ( tetrahedron ); } volume_max = r8vec_max ( tetra_num, tetrahedron_quality ); for ( tetra = 0; tetra < tetra_num; tetra++ ) { tetrahedron_quality[tetra] = tetrahedron_quality[tetra] / volume_max; } *value_max = r8vec_max ( tetra_num, tetrahedron_quality ); *value_min = r8vec_min ( tetra_num, tetrahedron_quality ); *value_mean = r8vec_mean ( tetra_num, tetrahedron_quality ); *value_var = r8vec_variance ( tetra_num, tetrahedron_quality ); delete [] tetrahedron_quality; return; # undef DIM_NUM } //****************************************************************************80 void tetrahedron_circumsphere_3d ( double tetra[3*4], double *r, double pc[3] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_CIRCUMSPHERE_3D computes the circumsphere of a tetrahedron in 3D. // // Discussion: // // The circumsphere, or circumscribed sphere, of a tetrahedron is the sphere that // passes through the four vertices. The circumsphere is not necessarily // the smallest sphere that contains the tetrahedron. // // Surprisingly, the diameter of the sphere can be found by solving // a 3 by 3 linear system. This is because the vectors P2 - P1, // P3 - P1 and P4 - P1 are secants of the sphere, and each forms a // right triangle with the diameter through P1. Hence, the dot product of // P2 - P1 with that diameter is equal to the square of the length // of P2 - P1, and similarly for P3 - P1 and P4 - P1. This determines // the diameter vector originating at P1, and hence the radius and // center. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 August 2005 // // Author: // // John Burkardt // // Reference: // // Adrian Bowyer and John Woodwark, // A Programmer's Geometry, // Butterworths, 1983. // // Parameters: // // Input, double TETRA[3*4], the vertices of the tetrahedron. // // Output, double *R, PC[3], the coordinates of the center of the // circumscribed sphere, and its radius. If the linear system is // singular, then R = -1, PC[] = 0. // { # define DIM_NUM 3 # define RHS_NUM 1 double a[DIM_NUM*(DIM_NUM+RHS_NUM)]; int info; // // Set up the linear system. // a[0+0*3] = tetra[0+1*3] - tetra[0+0*3]; a[0+1*3] = tetra[1+1*3] - tetra[1+0*3]; a[0+2*3] = tetra[2+1*3] - tetra[2+0*3]; a[0+3*3] = pow ( tetra[0+1*3] - tetra[0+0*3], 2 ) + pow ( tetra[1+1*3] - tetra[1+0*3], 2 ) + pow ( tetra[2+1*3] - tetra[2+0*3], 2 ); a[1+0*3] = tetra[0+2*3] - tetra[0+0*3]; a[1+1*3] = tetra[1+2*3] - tetra[1+0*3]; a[1+2*3] = tetra[2+2*3] - tetra[2+0*3]; a[1+3*3] = pow ( tetra[0+2*3] - tetra[0+0*3], 2 ) + pow ( tetra[1+2*3] - tetra[1+0*3], 2 ) + pow ( tetra[2+2*3] - tetra[2+0*3], 2 ); a[2+0*3] = tetra[0+3*3] - tetra[0+0*3]; a[2+1*3] = tetra[1+3*3] - tetra[1+0*3]; a[2+2*3] = tetra[2+3*3] - tetra[2+0*3]; a[2+3*3] = pow ( tetra[0+3*3] - tetra[0+0*3], 2 ) + pow ( tetra[1+3*3] - tetra[1+0*3], 2 ) + pow ( tetra[2+3*3] - tetra[2+0*3], 2 ); // // Solve the linear system. // info = r8mat_solve ( DIM_NUM, RHS_NUM, a ); // // If the system was singular, return a consolation prize. // if ( info != 0 ) { *r = -1.0; r8vec_zero ( DIM_NUM, pc ); return; } // // Compute the radius and center. // *r = 0.5 * sqrt ( a[0+3*3] * a[0+3*3] + a[1+3*3] * a[1+3*3] + a[2+3*3] * a[2+3*3] ); pc[0] = tetra[0+0*3] + 0.5 * a[0+3*3]; pc[1] = tetra[1+0*3] + 0.5 * a[1+3*3]; pc[2] = tetra[2+0*3] + 0.5 * a[2+3*3]; return; # undef DIM_NUM # undef RHS_NUM } //****************************************************************************80 double *tetrahedron_edge_length_3d ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_EDGE_LENGTH_3D returns edge lengths of a tetrahedron in 3D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the tetrahedron vertices. // // Output, double EDGE_LENGTH[6], the length of the edges. // { # define DIM_NUM 3 double *edge_length; int i; int j1; int j2; int k; double v[DIM_NUM]; edge_length = new double[6]; k = 0; for ( j1 = 0; j1 < 3; j1++ ) { for ( j2 = j1 + 1; j2 < 4; j2++ ) { for ( i = 0; i < DIM_NUM; i++ ) { v[i] = tetra[i+j2*DIM_NUM] - tetra[i+j1*DIM_NUM]; } edge_length[k] = r8vec_length ( DIM_NUM, v ); k = k + 1; } } return edge_length; # undef DIM_NUM } //****************************************************************************80 void tetrahedron_insphere_3d ( double tetra[3*4], double *r, double pc[3] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_INSPHERE_3D finds the insphere of a tetrahedron in 3D. // // Discussion: // // The insphere of a tetrahedron is the inscribed sphere, which touches // each face of the tetrahedron at a single point. // // The points of contact are the centroids of the triangular faces // of the tetrahedron. Therefore, the point of contact for a face // can be computed as the average of the vertices of that face. // // The sphere can then be determined as the unique sphere through // the four given centroids. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 August 2005 // // Author: // // John Burkardt // // Reference: // // David Eberly, // Centers of a Simplex, // http://www.geometrictools.com // // Parameters: // // Input, double TETRA[3*4], the vertices of the tetrahedron. // // Output, double *R, PC[3], the radius and the center // of the sphere. // { # define DIM_NUM 3 double b[4*4]; double gamma; int i; int j; double l123; double l124; double l134; double l234; double *n123; double *n124; double *n134; double *n234; double v21[DIM_NUM]; double v31[DIM_NUM]; double v41[DIM_NUM]; double v32[DIM_NUM]; double v42[DIM_NUM]; double v43[DIM_NUM]; for ( i = 0; i < DIM_NUM; i++ ) { v21[i] = tetra[i+1*DIM_NUM] - tetra[i+0*DIM_NUM]; } for ( i = 0; i < DIM_NUM; i++ ) { v31[i] = tetra[i+2*DIM_NUM] - tetra[i+0*DIM_NUM]; } for ( i = 0; i < DIM_NUM; i++ ) { v41[i] = tetra[i+3*DIM_NUM] - tetra[i+0*DIM_NUM]; } for ( i = 0; i < DIM_NUM; i++ ) { v32[i] = tetra[i+2*DIM_NUM] - tetra[i+1*DIM_NUM]; } for ( i = 0; i < DIM_NUM; i++ ) { v42[i] = tetra[i+3*DIM_NUM] - tetra[i+1*DIM_NUM]; } for ( i = 0; i < DIM_NUM; i++ ) { v43[i] = tetra[i+3*DIM_NUM] - tetra[i+2*DIM_NUM]; } n123 = r8vec_cross_3d ( v21, v31 ); n124 = r8vec_cross_3d ( v41, v21 ); n134 = r8vec_cross_3d ( v31, v41 ); n234 = r8vec_cross_3d ( v42, v32 ); l123 = r8vec_length ( DIM_NUM, n123 ); l124 = r8vec_length ( DIM_NUM, n124 ); l134 = r8vec_length ( DIM_NUM, n134 ); l234 = r8vec_length ( DIM_NUM, n234 ); delete [] n123; delete [] n124; delete [] n134; delete [] n234; for ( i = 0; i < DIM_NUM; i++ ) { pc[i] = ( l234 * tetra[i+0*DIM_NUM] + l134 * tetra[i+1*DIM_NUM] + l124 * tetra[i+2*DIM_NUM] + l123 * tetra[i+3*DIM_NUM] ) / ( l234 + l134 + l124 + l123 ); } for ( j = 0; j < 4; j++ ) { for ( i = 0; i < DIM_NUM; i++ ) { b[i+j*4] = tetra[i+j*DIM_NUM]; } b[3+j*4] = 1.0; } gamma = fabs ( r8mat_det_4d ( b ) ); *r = gamma / ( l234 + l134 + l124 + l123 ); return; # undef DIM_NUM } //****************************************************************************80 double tetrahedron_quality1_3d ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_QUALITY1_3D: "quality" of a tetrahedron in 3D. // // Discussion: // // The quality of a tetrahedron is 3.0 times the ratio of the radius of // the inscribed sphere divided by that of the circumscribed sphere. // // An equilateral tetrahredron achieves the maximum possible quality of 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the tetrahedron vertices. // // Output, double TETRAHEDRON_QUALITY1_3D, the quality of the tetrahedron. // { # define DIM_NUM 3 double pc[DIM_NUM]; double quality; double r_in; double r_out; tetrahedron_circumsphere_3d ( tetra, &r_out, pc ); tetrahedron_insphere_3d ( tetra, &r_in, pc ); quality = 3.0 * r_in / r_out; return quality; # undef DIM_NUM } //****************************************************************************80 double tetrahedron_quality2_3d ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_QUALITY2_3D: "quality" of a tetrahedron in 3D. // // Discussion: // // The quality measure #2 of a tetrahedron is: // // QUALITY2 = 2 * sqrt ( 6 ) * RIN / LMAX // // where // // RIN = radius of the inscribed sphere; // LMAX = length of longest side of the tetrahedron. // // An equilateral tetrahredron achieves the maximum possible quality of 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2005 // // Author: // // John Burkardt // // Reference: // // Qiang Du, Desheng Wang, // The Optimal Centroidal Voronoi Tesselations and the Gersho's // Conjecture in the Three-Dimensional Space, // Computers and Mathematics with Applications, // Volume 49, 2005, pages 1355-1373. // // Parameters: // // Input, double TETRA[3*4], the tetrahedron vertices. // // Output, double TETRAHEDRON_QUALITY2_3D, the quality of the tetrahedron. // { # define DIM_NUM 3 double *edge_length; double l_max; double pc[DIM_NUM]; double quality2; double r_in; edge_length = tetrahedron_edge_length_3d ( tetra ); l_max = r8vec_max ( 6, edge_length ); tetrahedron_insphere_3d ( tetra, &r_in, pc ); quality2 = 2.0 * sqrt ( 6.0 ) * r_in / l_max; delete [] edge_length; return quality2; # undef DIM_NUM } //****************************************************************************80 double tetrahedron_quality3_3d ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_QUALITY3_3D computes the mean ratio of a tetrahedron. // // Discussion: // // This routine computes QUALITY3, the eigenvalue or mean ratio of // a tetrahedron. // // QUALITY3 = 12 * ( 3 * volume )**(2/3) / (sum of square of edge lengths). // // This value may be used as a shape quality measure for the tetrahedron. // // For an equilateral tetrahedron, the value of this quality measure // will be 1. For any other tetrahedron, the value will be between // 0 and 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2005 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double TETRA(3,4), the vertices of the tetrahedron. // // Output, double TETRAHEDRON_QUALITY3_3D, the mean ratio of the tetrahedron. // { # define DIM_NUM 3 double ab[DIM_NUM]; double ac[DIM_NUM]; double ad[DIM_NUM]; double bc[DIM_NUM]; double bd[DIM_NUM]; double cd[DIM_NUM]; double denom; int i; double lab; double lac; double lad; double lbc; double lbd; double lcd; double quality3; double volume; // // Compute the vectors representing the sides of the tetrahedron. // for ( i = 0; i < DIM_NUM; i++ ) { ab[i] = tetra[i+1*DIM_NUM] - tetra[i+0*DIM_NUM]; ac[i] = tetra[i+2*DIM_NUM] - tetra[i+0*DIM_NUM]; ad[i] = tetra[i+3*DIM_NUM] - tetra[i+0*DIM_NUM]; bc[i] = tetra[i+2*DIM_NUM] - tetra[i+1*DIM_NUM]; bd[i] = tetra[i+3*DIM_NUM] - tetra[i+1*DIM_NUM]; cd[i] = tetra[i+3*DIM_NUM] - tetra[i+2*DIM_NUM]; } // // Compute the squares of the lengths of the sides. // lab = pow ( ab[0], 2 ) + pow ( ab[1], 2 ) + pow ( ab[2], 2 ); lac = pow ( ac[0], 2 ) + pow ( ac[1], 2 ) + pow ( ac[2], 2 ); lad = pow ( ad[0], 2 ) + pow ( ad[1], 2 ) + pow ( ad[2], 2 ); lbc = pow ( bc[0], 2 ) + pow ( bc[1], 2 ) + pow ( bc[2], 2 ); lbd = pow ( bd[0], 2 ) + pow ( bd[1], 2 ) + pow ( bd[2], 2 ); lcd = pow ( cd[0], 2 ) + pow ( cd[1], 2 ) + pow ( cd[2], 2 ); // // Compute the volume. // volume = fabs ( ab[0] * ( ac[1] * ad[2] - ac[2] * ad[1] ) + ab[1] * ( ac[2] * ad[0] - ac[0] * ad[2] ) + ab[2] * ( ac[0] * ad[1] - ac[1] * ad[0] ) ) / 6.0; denom = lab + lac + lad + lbc + lbd + lcd; if ( denom == 0.0 ) { quality3 = 0.0; } else { quality3 = 12.0 * pow ( 3.0 * volume, 2.0 / 3.0 ) / denom; } return quality3; # undef DIM_NUM } //****************************************************************************80 double tetrahedron_quality4_3d ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_QUALITY4_3D computes the minimum solid angle of a tetrahedron. // // Discussion: // // This routine computes a quality measure for a tetrahedron, based // on the sine of half the minimum of the four solid angles. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2005 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double TETRA[3*4], the vertices of the tetrahedron. // // Output, double QUALITY4, the value of the quality measure. // { # define DIM_NUM 3 double a[DIM_NUM]; double ab[DIM_NUM]; double ac[DIM_NUM]; double ad[DIM_NUM]; double b[DIM_NUM]; double bc[DIM_NUM]; double bd[DIM_NUM]; double c[DIM_NUM]; double cd[DIM_NUM]; double d[DIM_NUM]; double denom; int i; double l1; double l2; double l3; double lab; double lac; double lad; double lbc; double lbd; double lcd; double quality4; double volume; // // Compute the vectors that represent the sides. // for ( i = 0; i < DIM_NUM; i++ ) { ab[i] = tetra[i+1*DIM_NUM] - tetra[i+0*DIM_NUM]; ac[i] = tetra[i+2*DIM_NUM] - tetra[i+0*DIM_NUM]; ad[i] = tetra[i+3*DIM_NUM] - tetra[i+0*DIM_NUM]; bc[i] = tetra[i+2*DIM_NUM] - tetra[i+1*DIM_NUM]; bd[i] = tetra[i+3*DIM_NUM] - tetra[i+1*DIM_NUM]; cd[i] = tetra[i+3*DIM_NUM] - tetra[i+2*DIM_NUM]; } // // Compute the lengths of the sides. // lab = r8vec_length ( DIM_NUM, ab ); lac = r8vec_length ( DIM_NUM, ac ); lad = r8vec_length ( DIM_NUM, ad ); lbc = r8vec_length ( DIM_NUM, bc ); lbd = r8vec_length ( DIM_NUM, bd ); lcd = r8vec_length ( DIM_NUM, cd ); // // Compute the volume. // volume = fabs ( ab[0] * ( ac[1] * ad[2] - ac[2] * ad[1] ) + ab[1] * ( ac[2] * ad[0] - ac[0] * ad[2] ) + ab[2] * ( ac[0] * ad[1] - ac[1] * ad[0] ) ) / 6.0; quality4 = 1.0; l1 = lab + lac; l2 = lab + lad; l3 = lac + lad; denom = ( l1 + lbc ) * ( l1 - lbc ) * ( l2 + lbd ) * ( l2 - lbd ) * ( l3 + lcd ) * ( l3 - lcd ); if ( denom <= 0.0 ) { quality4 = 0.0; } else { quality4 = r8_min ( quality4, 12.0 * volume / sqrt ( denom ) ); } l1 = lab + lbc; l2 = lab + lbd; l3 = lbc + lbd; denom = ( l1 + lac ) * ( l1 - lac ) * ( l2 + lad ) * ( l2 - lad ) * ( l3 + lcd ) * ( l3 - lcd ); if ( denom <= 0.0 ) { quality4 = 0.0; } else { quality4 = r8_min ( quality4, 12.0 * volume / sqrt ( denom ) ); } l1 = lac + lbc; l2 = lac + lcd; l3 = lbc + lcd; denom = ( l1 + lab ) * ( l1 - lab ) * ( l2 + lad ) * ( l2 - lad ) * ( l3 + lbd ) * ( l3 - lbd ); if ( denom <= 0.0 ) { quality4 = 0.0; } else { quality4 = r8_min ( quality4, 12.0 * volume / sqrt ( denom ) ); } l1 = lad + lbd; l2 = lad + lcd; l3 = lbd + lcd; denom = ( l1 + lab ) * ( l1 - lab ) * ( l2 + lac ) * ( l2 - lac ) * ( l3 + lbc ) * ( l3 - lbc ); if ( denom <= 0.0 ) { quality4 = 0.0; } else { quality4 = r8_min ( quality4, 12.0 * volume / sqrt ( denom ) ); } quality4 = quality4 * 1.5 * sqrt ( 6.0 ); return quality4; # undef DIM_NUM } //****************************************************************************80 double tetrahedron_volume_3d ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_VOLUME_3D computes the volume of a tetrahedron in 3D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the vertices of the tetrahedron. // // Output, double TETRAHEDRON_VOLUME_3D, the volume of the tetrahedron. // { double a[4*4]; int i; int j; double volume; for ( i = 0; i < 3; i++ ) { for ( j = 0; j < 4; j++ ) { a[i+j*4] = tetra[i+j*3]; } } i = 3; for ( j = 0; j < 4; j++ ) { a[i+j*4] = 1.0; } volume = fabs ( r8mat_det_4d ( a ) ) / 6.0; return volume; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }