# include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); char ch_cap ( char ch ); bool ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); int file_column_count ( string input_filename ); bool file_exist ( string filename ); int file_row_count ( string input_filename ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); void i4_swap ( int *i, int *j ); int i4col_compare ( int m, int n, int a[], int i, int j ); void i4col_sort_a ( int m, int n, int a[] ); void i4col_sort2_a ( int m, int n, int a[] ); int i4col_sorted_unique_count ( int m, int n, int a[] ); void i4col_swap ( int m, int n, int a[], int icol1, int icol2 ); void i4i4_sort_a ( int i1, int i2, int *j1, int *j2 ); int *i4mat_data_read ( string input_filename, int m, int n ); void i4mat_header_read ( string input_filename, int *m, int *n ); void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ); void i4mat_write ( string output_filename, int m, int n, int table[] ); double *r8mat_data_read ( string input_filename, int m, int n ); void r8mat_header_read ( string input_filename, int *m, int *n ); void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ); void r8mat_write ( string output_filename, int m, int n, double table[] ); int s_len_trim ( string s ); int s_to_i4 ( string s, int *last, bool *error ); bool s_to_i4vec ( string s, int n, int ivec[] ); double s_to_r8 ( string s, int *lchar, bool *error ); bool s_to_r8vec ( string s, int n, double rvec[] ); int s_word_count ( string s ); void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ); void tet_mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ); void tet_mesh_order4_refine_compute ( int node_num1, int element_num1, double node_xyz1[], int element_node1[], int node_num2, int element_num2, int edge_data[], double node_xyz2[], int element_node2[] ); void tet_mesh_order4_refine_size ( int node_num1, int element_num1, int element_node1[], int *node_num2, int *element_num2, int edge_data[] ); void timestamp ( ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for TET_MESH_REFINE. // // Discussion: // // TET_MESH_REFINE refines a tetrahedral mesh of order 4 (linear). // // Usage: // // tet_mesh_refine prefix // // where prefix is the common file prefix: // // * prefix_nodes.txt, the node coordinates; // * prefix_elements.txt, the element definitions. // * prefix_ref_nodes.txt, the new node coordinates; // * prefix_ref_elements.txt, the new element definitions. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2009 // // Author: // // John Burkardt // { int dim_num; int *edge_data; int element; int *element_node1; int *element_node2; int element_num1; int element_num2; int element_order; string input_node_filename; string input_element_filename; int node; int node_max; int node_min; int node_num1; int node_num2; double *node_xyz1; double *node_xyz2; int order; string output_node_filename; string output_element_filename; string prefix; cout << "\n"; timestamp ( ); cout << "\n"; cout << "TET_MESH_REFINE\n"; cout << " C++ version\n"; cout << " READ a tet mesh, REFINE it, and WRITE the new data.\n"; cout << "\n"; cout << " READ:\n"; cout << " a node dataset of NODE_NUM1 points in 3 dimensions.\n"; cout << " a tet mesh of TETRA_NUM1 tets of order TET_ORDER.\n"; cout << "\n"; cout << " REFINE:\n"; cout << " compute a new set of nodes and tets, which is an\n"; cout << " eightfold refinement of the input mesh.\n"; cout << "\n"; cout << " WRITE:\n"; cout << " a node dataset of NODE_NUM2 points in 3 dimensions.\n"; cout << " a tet mesh of 8*TETRA_NUM1 tets of order TET_ORDER.\n"; cout << "\n"; cout << " At the moment, this program only works for a linear\n"; cout << " mesh (TET_ORDER=4).\n"; cout << "\n"; cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n"; // // Get the filename prefix. // if ( argc <= 1 ) { cout << "\n"; cout << "TET_MESH_REFINE:\n"; cout << " Please enter the filename prefix.\n"; cin >> prefix; } else { prefix = argv[1]; } // // Create the filenames. // input_node_filename = prefix + "_nodes.txt"; input_element_filename = prefix + "_elements.txt"; output_node_filename = prefix + "_ref_nodes.txt"; output_element_filename = prefix + "_ref_elements.txt"; // // Read the node data. // r8mat_header_read ( input_node_filename, &dim_num, &node_num1 ); if ( dim_num != 3 ) { cout << "\n"; cout << "TET_MESH_REFINE - Fatal error!\n"; cout << " The spatial dimension must be 3.\n"; exit ( 1 ); } cout << "\n"; cout << " Read the header of \"" << input_node_filename << "\".\n"; cout << "\n"; cout << " Spatial dimension = " << dim_num << "\n"; cout << " Number of nodes = " << node_num1 << "\n"; node_xyz1 = r8mat_data_read ( input_node_filename, dim_num, node_num1 ); cout << "\n"; cout << " Read the data in \"" << input_node_filename << "\".\n"; r8mat_transpose_print_some ( dim_num, node_num1, node_xyz1, 1, 1, dim_num, 5, " First 5 input nodes:" ); // // Read the tet mesh data. // i4mat_header_read ( input_element_filename, &element_order, &element_num1 ); if ( element_order == 4 ) { } else if ( element_order == 10 ) { cout << "\n"; cout << "TET_MESH_REFINE - Fatal error!\n"; cout << " The program cannot yet handel the 10-node case.\n"; cout << " Try using the sequence:\n"; cout << " TET_MESH_Q2L --> TET_MESH_REFINE --> TET_MESH_L2Q.\n"; return 1; } else { cout << "\n"; cout << "TET_MESH_REFINE - Fatal error!\n"; cout << " The tet mesh must have order 4 or order 10.\n"; return 1; } cout << "\n"; cout << " Read the header of \"" << input_element_filename << "\".\n"; cout << "\n"; cout << " Tetrahedron order = " << element_order << "\n"; cout << " Number of tetras = " << element_num1 << "\n"; element_node1 = i4mat_data_read ( input_element_filename, element_order, element_num1 ); cout << "\n"; cout << " Read the data in \"" << input_element_filename << "\".\n"; i4mat_transpose_print_some ( element_order, element_num1, element_node1, 1, 1, element_order, 5, " First 5 input tetrahedrons:" ); // // Check for 1-based node-indexing, and convert it to 0-based. // tet_mesh_base_zero ( node_num1, element_order, element_num1, element_node1 ); // // Compute the refined mesh. // if ( element_order == 4 ) { edge_data = new int[5*6*element_num1]; tet_mesh_order4_refine_size ( node_num1, element_num1, element_node1, &node_num2, &element_num2, edge_data ); cout << " Number of refined nodes = " << node_num2 << "\n"; cout << " Number of refined tetras = " << element_num2 << "\n"; node_xyz2 = new double[dim_num*node_num2]; element_node2 = new int[element_order*element_num2]; tet_mesh_order4_refine_compute ( node_num1, element_num1, node_xyz1, element_node1, node_num2, element_num2, edge_data, node_xyz2, element_node2 ); } else if ( element_order == 10 ) { } // // Print a small amount of the refined data. // r8mat_transpose_print_some ( dim_num, node_num2, node_xyz2, 1, 1, dim_num, 5, " First 5 output nodes:" ); i4mat_transpose_print_some ( element_order, element_num2, element_node2, 1, 1, element_order, 5, " First 5 output tetras" ); // // Write out the node and tetra data for the refined mesh // r8mat_write ( output_node_filename, dim_num, node_num2, node_xyz2 ); cout << "\n"; cout << " Wrote the file \"" << output_node_filename << "\".\n"; i4mat_write ( output_element_filename, element_order, element_num2, element_node2 ); cout << " Wrote the file \"" << output_element_filename << "\".\n"; // // Deallocate memory. // delete [] edge_data; delete [] node_xyz1; delete [] node_xyz2; delete [] element_node1; delete [] element_node2; cout << "\n"; cout << "TET_MESH_REFINE:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 char ch_cap ( char ch ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } //****************************************************************************80 bool ch_eqi ( char ch1, char ch2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH1, CH2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } return ( ch1 == ch2 ); } //****************************************************************************80 int ch_to_digit ( char ch ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // CH DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If the character was // 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, // separated by spaces. There may also be some blank lines, and some // comment lines, which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; string text; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { getline ( input, text ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) <= 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input >> text; if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 bool file_exist ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_EXIST reports whether a file exists. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, bool FILE_EXIST, is TRUE if the file exists. // { ifstream file; bool value; file.open ( filename.c_str ( ), ios::in ); if ( !file ) { value = false; } else { value = true; } return value; } //****************************************************************************80 int file_row_count ( string input_filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int bad_num; int comment_num; ifstream input; int i; string line; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; bad_num = 0; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return (-1); } for ( ; ; ) { getline ( input, line ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 void i4_swap ( int *i, int *j ) //****************************************************************************80 // // Purpose: // // I4_SWAP switches two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 January 2002 // // Author: // // John Burkardt // // Parameters: // // Input/output, int *I, *J. On output, the values of I and // J have been interchanged. // { int k; k = *i; *i = *j; *j = k; return; } //****************************************************************************80 int i4col_compare ( int m, int n, int a[], int i, int j ) //****************************************************************************80 // // Purpose: // // I4COL_COMPARE compares columns I and J of an I4COL. // // Discussion: // // An I4COL is an M by N array of integer values, regarded // as an array of N columns of length M. // // Example: // // Input: // // M = 3, N = 4, I = 2, J = 4 // // A = ( // 1 2 3 4 // 5 6 7 8 // 9 10 11 12 ) // // Output: // // I4COL_COMPARE = -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A[M*N], an array of N columns of vectors of length M. // // Input, int I, J, the columns to be compared. // I and J must be between 1 and N. // // Output, int I4COL_COMPARE, the results of the comparison: // -1, column I < column J, // 0, column I = column J, // +1, column J < column I. // { int k; // // Check. // if ( i < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index I = " << i << " is less than 1.\n"; exit ( 1 ); } if ( n < i ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index I = " << i << ".\n"; exit ( 1 ); } if ( j < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index J = " << j << " is less than 1.\n"; exit ( 1 ); } if ( n < j ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index J = " << j << ".\n"; exit ( 1 ); } if ( i == j ) { return 0; } k = 1; while ( k <= m ) { if ( a[k-1+(i-1)*m] < a[k-1+(j-1)*m] ) { return (-1); } else if ( a[k-1+(j-1)*m] < a[k-1+(i-1)*m] ) { return 1; } k = k + 1; } return 0; } //****************************************************************************80 void i4col_sort_a ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4COL_SORT_A ascending sorts the columns of an I4COL. // // Discussion: // // An I4COL is an M by N array of integer values, regarded // as an array of N columns of length M. // // In lexicographic order, the statement "X < Y", applied to two // vectors X and Y of length M, means that there is some index I, with // 1 <= I <= M, with the property that // // X(J) = Y(J) for J < I, // and // X(I) < Y(I). // // In other words, X is less than Y if, at the first index where they // differ, the X value is less than the Y value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of A. // // Input, int N, the number of columns of A. // // Input/output, int A[M*N]. // On input, the array of N columns of M vectors; // On output, the columns of A have been sorted in ascending // lexicographic order. // { int i; int indx; int isgn; int j; // // Initialize. // i = 0; indx = 0; isgn = 0; j = 0; // // Call the external heap sorter. // for ( ; ; ) { sort_heap_external ( n, &indx, &i, &j, isgn ); // // Interchange the I and J objects. // if ( 0 < indx ) { i4col_swap ( m, n, a, i, j ); } // // Compare the I and J objects. // else if ( indx < 0 ) { isgn = i4col_compare ( m, n, a, i, j ); } else if ( indx == 0 ) { break; } } return; } //****************************************************************************80 void i4col_sort2_a ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4COL_SORT2_A ascending sorts the elements of each column of an I4COL. // // Discussion: // // An I4COL is an M by N array of integer values, regarded // as an array of N columns of length M. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of A. // // Input, int N, the number of columns of A, and the length // of a vector of data. // // Input/output, int A[M*N]. // On input, the array of N columns of M vectors. // On output, the elements of each column of A have been sorted in ascending // order. // { int col; int i; int indx; int isgn; int j; int row; int temp; if ( m <= 1 ) { return; } if ( n <= 0 ) { return; } // // Initialize. // for ( col = 0; col < n; col++ ) { i = 0; indx = 0; isgn = 0; j = 0; // // Call the external heap sorter. // for ( ; ; ) { sort_heap_external ( m, &indx, &i, &j, isgn ); // // Interchange the I and J objects. // if ( 0 < indx ) { temp = a[i-1+col*m]; a[i-1+col*m] = a[j-1+col*m]; a[j-1+col*m] = temp; } // // Compare the I and J objects. // else if ( indx < 0 ) { if ( a[j-1+col*m] < a[i-1+col*m] ) { isgn = +1; } else { isgn = -1; } } else if ( indx == 0 ) { break; } } } return; } //****************************************************************************80 int i4col_sorted_unique_count ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4COL_SORTED_UNIQUE_COUNT counts unique elements in an I4COL. // // Discussion: // // An I4COL is an M by N array of integer values, regarded // as an array of N columns of length M. // // The columns of the array may be ascending or descending sorted. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A[M*N], a sorted array, containing // N columns of data. // // Output, int I4COL_SORTED_UNIQUE_COUNT, the number of unique columns. // { int i; int j1; int j2; int unique_num; if ( n <= 0 ) { unique_num = 0; return unique_num; } unique_num = 1; j1 = 0; for ( j2 = 1; j2 < n; j2++ ) { for ( i = 0; i < m; i++ ) { if ( a[i+j1*m] != a[i+j2*m] ) { unique_num = unique_num + 1; j1 = j2; break; } } } return unique_num; } //****************************************************************************80 void i4col_swap ( int m, int n, int a[], int icol1, int icol2 ) //****************************************************************************80 // // Purpose: // // I4COL_SWAP swaps two columns of an I4COL. // // Discussion: // // An I4COL is an M by N array of integer values, regarded // as an array of N columns of length M. // // The two dimensional information is stored as a one dimensional // array, by columns. // // The row indices are 1 based, NOT 0 based! However, a preprocessor // variable, called OFFSET, can be reset from 1 to 0 if you wish to // use 0-based indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int A[M*N], an array of data. // // Input, int ICOL1, ICOL2, the two columns to swap. // These indices should be between 1 and N. // { # define OFFSET 1 int i; int t; // // Check. // if ( icol1 - OFFSET < 0 || n-1 < icol1 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL1 is out of range.\n"; exit ( 1 ); } if ( icol2 - OFFSET < 0 || n-1 < icol2 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL2 is out of range.\n"; exit ( 1 ); } if ( icol1 == icol2 ) { return; } for ( i = 0; i < m; i++ ) { t = a[i+(icol1-OFFSET)*m]; a[i+(icol1-OFFSET)*m] = a[i+(icol2-OFFSET)*m]; a[i+(icol2-OFFSET)*m] = t; } return; # undef OFFSET } //****************************************************************************80 void i4i4_sort_a ( int i1, int i2, int *j1, int *j2 ) //****************************************************************************80 // // Purpose: // // I4I4_SORT_A ascending sorts a pair of I4's. // // Discussion: // // The program allows the reasonable call: // // i4i4_sort_a ( i1, i2, &i1, &i2 ); // // and this will return the reasonable result. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, the values to sort. // // Output, int J1, J2, the sorted values. // { int k1; int k2; // // Copy arguments, so that the user can make "reasonable" calls like: // // i4i4_sort_a ( i1, i2, &i1, &i2 ); // k1 = i1; k2 = i2; *j1 = i4_min ( k1, k2 ); *j2 = i4_max ( k1, k2 ); return; } //****************************************************************************80 int *i4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_DATA_READ reads data from an I4MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; int *table; int *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new int[m*n]; x = new int[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void i4mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // I4MAT_HEADER_READ reads the header from an I4MAT file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title for the matrix. { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); cout << "\n"; // // For each row I in the current range... // // Write the header. // cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // cout << setw(5) << j << " "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void i4mat_write ( string output_filename, int m, int n, int table[] ) //****************************************************************************80 // // Purpose: // // I4MAT_WRITE writes an I4MAT file with no header. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, int TABLE[M*N], the table data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "I4MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; return; } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(10) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 double *r8mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_DATA_READ reads the data from an R8MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; double *table; double *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void r8mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // R8MAT_HEADER_READ reads the header from an R8MAT file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points. // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, an optional title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << " "; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file with no header. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the table data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; return; } // // Write the data. // For greater precision, try // // output << " " << setw(24) << setprecision(16) << table[i+j*m]; // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(10) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_i4vec ( string s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 double s_to_r8 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( string s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ) //****************************************************************************80 // // Purpose: // // SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. // // Discussion: // // The actual list is not passed to the routine. Hence it may // consist of integers, reals, numbers, names, etc. The user, // after each return from the routine, will be asked to compare or // interchange two items. // // The current version of this code mimics the FORTRAN version, // so the values of I and J, in particular, are FORTRAN indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2004 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt. // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the length of the input list. // // Input/output, int *INDX. // The user must set INDX to 0 before the first call. // On return, // if INDX is greater than 0, the user must interchange // items I and J and recall the routine. // If INDX is less than 0, the user is to compare items I // and J and return in ISGN a negative value if I is to // precede J, and a positive value otherwise. // If INDX is 0, the sorting is done. // // Output, int *I, *J. On return with INDX positive, // elements I and J of the user's list should be // interchanged. On return with INDX negative, elements I // and J are to be compared by the user. // // Input, int ISGN. On return with INDX negative, the // user should compare elements I and J of the list. If // item I is to precede item J, set ISGN negative, // otherwise set ISGN positive. // { static int i_save = 0; static int j_save = 0; static int k = 0; static int k1 = 0; static int n1 = 0; // // INDX = 0: This is the first call. // if ( *indx == 0 ) { i_save = 0; j_save = 0; k = n / 2; k1 = k; n1 = n; } // // INDX < 0: The user is returning the results of a comparison. // else if ( *indx < 0 ) { if ( *indx == -2 ) { if ( isgn < 0 ) { i_save = i_save + 1; } j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } if ( 0 < isgn ) { *indx = 2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; } *i = i_save; *j = j_save; return; } k = k - 1; k1 = k; } // // 0 < INDX: the user was asked to make an interchange. // else if ( *indx == 1 ) { k1 = k; } for ( ; ; ) { i_save = 2 * k1; if ( i_save == n1 ) { j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } else if ( i_save <= n1 ) { j_save = i_save + 1; *indx = -2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { break; } k = k - 1; k1 = k; } if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; *i = i_save; *j = j_save; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; *i = i_save; *j = j_save; } return; } //****************************************************************************80 void tet_mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_BASE_ZERO ensures that the element definition is zero-based. // // Discussion: // // The ELEMENT_NODE array contains nodes indices that form elements. // The convention for node indexing might start at 0 or at 1. // Since a C++ program will naturally assume a 0-based indexing, it is // necessary to check a given element definition and, if it is actually // 1-based, to convert it. // // This function attempts to detect 1-based node indexing and correct it. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int ELEMENT_ORDER, the order of the elements. // // Input, int ELEMENT_NUM, the number of elements. // // Input/output, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], the element // definitions. // { int element; int node; int node_max; int node_min; int order; // // If the element information is 1-based, make it 0-based. // node_min = node_num + 1; node_max = -1; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; node_min = i4_min ( node_min, node ); node_max = i4_max ( node_max, node ); } } if ( node_min == 1 && node_max == node_num ) { cout << "\n"; cout << "TET_MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 1-based!\n"; cout << " This will be converted to 0-based.\n"; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { element_node[order+element*element_order] = element_node[order+element*element_order] - 1; } } } else if ( node_min == 0 && node_max == node_num - 1 ) { cout << "\n"; cout << "TET_MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 0-based!\n"; cout << " No conversion is necessary.\n"; } else { cout << "\n"; cout << "TET_MESH_BASE_ZERO - Warning!\n"; cout << " The element indexing is not of a recognized type.\n"; } return; } //****************************************************************************80 void tet_mesh_order4_refine_compute ( int node_num1, int element_num1, double node_xyz1[], int element_node1[], int node_num2, int element_num2, int edge_data[], double node_xyz2[], int element_node2[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER4_REFINE_COMPUTE computes a refined order 4 tet mesh // // Discussion: // // A refined 4-node tet mesh can be derived from a given // 4-node tet mesh by interpolating nodes at the midpoint of // every edge of the mesh. // // The mesh is described indirectly, as the sum of individual // tetrahedrons. A single physical edge may be a logical edge of // any number of tetrahedrons. It is important, however, that a // new node be created exactly once for each edge, assigned an index, // and associated with every tetrahedron that shares this edge. // // This routine handles that problem. // // The primary amount of work occurs in sorting a list of 6 * TETRA_NUM // data items, one item for every edge of every tetrahedron. Each // data item records, for a given tetrahedron edge, the global indices // of the two endpoints, the local indices of the two endpoints, // and the index of the tetrahedron. // // Through careful sorting, it is possible to arrange this data in // a way that allows the proper generation of the interpolated nodes. // // Let us add the new nodes and temporarily assign them local indices // 5 through X, based on the following ordering: // // 1, 2, 3, 4, (1+2), (1+3), (1+4), (2+3), (2+4), (3+4). // // Then let us assign these nodes to eight subtetrahedrons as follows: // // 1, 5, 6, 7 // 2, 5, 8, 9 // 3, 6, 8, 9 // 4, 7, 9, X // 5, 6, 7, 9 // 5, 6, 8, 9 // 6, 7, 9, X // 6, 8, 9, X // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 January 2007 // // Author: // // John Burkardt // // Reference: // // Anwei Liu, Barry Joe, // Quality Local Refinement of Tetrahedral Meshes Based // on 8-Subtetrahedron Subdivision, // Mathematics of Computation, // Volume 65, Number 215, July 1996, pages 1183-1200. // // Parameters: // // Input, int NODE_NUM1, the number of nodes in the input mesh. // // Input, int TETRA_NUM1, the number of tetrahedrons in the // input mesh. // // Input, double NODE_XYZ1[3*NODE_NUM1], the coordinates of // the nodes that make up the input mesh. // // Input, int TETRA_NODE1[4*TETRA_NUM], the indices of the nodes // in the input mesh. // // Input, int NODE_NUM2, the number of nodes in the refined mesh. // // Input, int TETRA_NUM2, the number of tetrahedrons in the // refined mesh. // // Input, int EDGE_DATA[5*(6*TETRA_NUM1)], edge data. // // Output, double NODE_XYZ2[3*NODE_NUM2], the coordinates of // the nodes that make up the refined mesh. // // Output, int TETRA_NODE2[4*TETRA_NUM2], the indices of the nodes // in the refined mesh. // { int dim_num = 3; int edge; int i; int j; int n1; int n1_old; int n2; int n2_old; int node; int element_order = 4; int tetra1; int tetra2; int v; int v1; int v2; // // Generate the index and coordinates of the new midside nodes, // and update the tetradehron-node data. // for ( j = 0; j < node_num1; j++ ) { for ( i = 0; i < dim_num; i++ ) { node_xyz2[i+j*dim_num] = node_xyz1[i+j*dim_num]; } } for ( j = 0; j < element_num2; j++ ) { for ( i = 0; i < element_order; i++ ) { element_node2[i+j*element_order] = -1; } } // // The vertices of the input tetrahedron can be assigned now. // for ( tetra1 = 0; tetra1 < element_num1; tetra1++ ) { element_node2[0+(tetra1*8+0)*element_order] = element_node1[0+tetra1*element_order]; element_node2[0+(tetra1*8+1)*element_order] = element_node1[1+tetra1*element_order]; element_node2[0+(tetra1*8+2)*element_order] = element_node1[2+tetra1*element_order]; element_node2[0+(tetra1*8+3)*element_order] = element_node1[3+tetra1*element_order]; } node = node_num1; n1_old = -1; n2_old = -1; for ( edge = 0; edge < 6 * element_num1; edge++ ) { // // Read the data defining the edge. // n1 = edge_data[0+edge*5]; n2 = edge_data[1+edge*5]; // // If this edge is new, create the coordinates and index. // if ( n1 != n1_old || n2 != n2_old ) { if ( node_num2 <= node ) { cout << "\n"; cout << "TET_MESH_ORDER4_REFINE_COMPUTE - Fatal error!\n"; cout << " Node index exceeds NODE_NUM2.\n"; exit ( 1 ); } for ( i = 0; i < dim_num; i++ ) { node_xyz2[i+node*dim_num] = ( node_xyz2[i+(n1-1)*dim_num] + node_xyz2[i+(n2-1)*dim_num] ) / 2.0; } node = node + 1; n1_old = n1; n2_old = n2; } // // Assign the node to the tetrahedron. // v1 = edge_data[2+edge*5]; v2 = edge_data[3+edge*5]; tetra1 = edge_data[4+edge*5]; // // We know the two vertices that bracket this new node. // This tells us whether it is new node number 5, 6, 7, 8, 9 or 10. // This tells us which of the new subtetrahedrons it belongs to, // and what position it occupies. // if ( v1 == 1 && v2 == 2 ) { element_node2[1+(tetra1*8+0)*element_order] = node; element_node2[1+(tetra1*8+1)*element_order] = node; element_node2[0+(tetra1*8+4)*element_order] = node; element_node2[0+(tetra1*8+5)*element_order] = node; } else if ( v1 == 1 && v2 == 3 ) { element_node2[2+(tetra1*8+0)*element_order] = node; element_node2[1+(tetra1*8+2)*element_order] = node; element_node2[1+(tetra1*8+4)*element_order] = node; element_node2[1+(tetra1*8+5)*element_order] = node; element_node2[0+(tetra1*8+6)*element_order] = node; element_node2[0+(tetra1*8+7)*element_order] = node; } else if ( v1 == 1 && v2 == 4 ) { element_node2[3+(tetra1*8+0)*element_order] = node; element_node2[1+(tetra1*8+3)*element_order] = node; element_node2[2+(tetra1*8+4)*element_order] = node; element_node2[1+(tetra1*8+6)*element_order] = node; } else if ( v1 == 2 && v2 == 3 ) { element_node2[2+(tetra1*8+1)*element_order] = node; element_node2[2+(tetra1*8+2)*element_order] = node; element_node2[2+(tetra1*8+5)*element_order] = node; element_node2[1+(tetra1*8+7)*element_order] = node; } else if ( v1 == 2 && v2 == 4 ) { element_node2[3+(tetra1*8+1)*element_order] = node; element_node2[3+(tetra1*8+2)*element_order] = node; element_node2[2+(tetra1*8+3)*element_order] = node; element_node2[3+(tetra1*8+4)*element_order] = node; element_node2[3+(tetra1*8+5)*element_order] = node; element_node2[2+(tetra1*8+6)*element_order] = node; element_node2[2+(tetra1*8+7)*element_order] = node; } else if ( v1 == 3 && v2 == 4 ) { element_node2[3+(tetra1*8+3)*element_order] = node; element_node2[3+(tetra1*8+6)*element_order] = node; element_node2[3+(tetra1*8+7)*element_order] = node; } } return; } //****************************************************************************80 void tet_mesh_order4_refine_size ( int node_num1, int element_num1, int element_node1[], int *node_num2, int *element_num2, int edge_data[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER4_REFINE_SIZE sizes a refined order 4 tet mesh. // // Discussion: // // A refined tet mesh can be derived from an existing one by interpolating // nodes at the midpoint of every edge of the mesh. // // The mesh is described indirectly, as the sum of individual // tetrahedrons. A single physical edge may be a logical edge of // any number of tetrahedrons. It is important, however, that a // new node be created exactly once for each edge, assigned an index, // and associated with every tetrahedron that shares this edge. // // This routine handles that problem. // // The primary amount of work occurs in sorting a list of 6 * TETRA_NUM // data items, one item for every edge of every tetrahedron. Each // data item records, for a given tetrahedron edge, the global indices // of the two endpoints, the local indices of the two endpoints, // and the index of the tetrahedron. // // Through careful sorting, it is possible to arrange this data in // a way that allows the proper generation of the interpolated nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM1, the number of nodes in the original mesh. // // Input, int TETRA_NUM1, the number of tetrahedrons in the // original mesh. // // Input, int TETRA_NODE1[4*TETRA_NUM1], the indices of the nodes // in the original mesh. // // Output, int *NODE_NUM2, the number of nodes in the refined mesh. // // Output, int *TETRA_NUM2, the number of tetrahedrons in the refined mesh. // // Output, int EDGE_DATA[5*(6*TETRA_NUM1)], edge data. // { int a; int b; int edge; int i; int j; int k; int l; int n1; int n1_old; int n2; int n2_old; int tetra; int element_order = 4; // // Step 1. // From the list of nodes for tetrahedron T, of the form: (I,J,K,L) // construct the six edge relations: // // (I,J,1,2,T) // (I,K,1,3,T) // (I,L,1,4,T) // (J,K,2,3,T) // (J,L,2,4,T) // (K,L,3,4,T) // // In order to make matching easier, we reorder each pair of nodes // into ascending order. // for ( tetra = 0; tetra < element_num1; tetra++ ) { i = element_node1[0+tetra*element_order]; j = element_node1[1+tetra*element_order]; k = element_node1[2+tetra*element_order]; l = element_node1[3+tetra*element_order]; i4i4_sort_a ( i, j, &a, &b ); edge_data[0+(6*tetra)*5] = a; edge_data[1+(6*tetra)*5] = b; edge_data[2+(6*tetra)*5] = 1; edge_data[3+(6*tetra)*5] = 2; edge_data[4+(6*tetra)*5] = tetra; i4i4_sort_a ( i, k, &a, &b ); edge_data[0+(6*tetra+1)*5] = a; edge_data[1+(6*tetra+1)*5] = b; edge_data[2+(6*tetra+1)*5] = 1; edge_data[3+(6*tetra+1)*5] = 3; edge_data[4+(6*tetra+1)*5] = tetra; i4i4_sort_a ( i, l, &a, &b ); edge_data[0+(6*tetra+2)*5] = a; edge_data[1+(6*tetra+2)*5] = b; edge_data[2+(6*tetra+2)*5] = 1; edge_data[3+(6*tetra+2)*5] = 4; edge_data[4+(6*tetra+2)*5] = tetra; i4i4_sort_a ( j, k, &a, &b ); edge_data[0+(6*tetra+3)*5] = a; edge_data[1+(6*tetra+3)*5] = b; edge_data[2+(6*tetra+3)*5] = 2; edge_data[3+(6*tetra+3)*5] = 3; edge_data[4+(6*tetra+3)*5] = tetra; i4i4_sort_a ( j, l, &a, &b ); edge_data[0+(6*tetra+4)*5] = a; edge_data[1+(6*tetra+4)*5] = b; edge_data[2+(6*tetra+4)*5] = 2; edge_data[3+(6*tetra+4)*5] = 4; edge_data[4+(6*tetra+4)*5] = tetra; i4i4_sort_a ( k, l, &a, &b ); edge_data[0+(6*tetra+5)*5] = a; edge_data[1+(6*tetra+5)*5] = b; edge_data[2+(6*tetra+5)*5] = 3; edge_data[3+(6*tetra+5)*5] = 4; edge_data[4+(6*tetra+5)*5] = tetra; } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // We only intend to sort on rows 1:2; the routine we call here // sorts on the full column but that won't hurt us. // // What we need is to find all cases where tetrahedrons share an edge. // By sorting the columns of the EDGE_DATA array, we will put shared edges // next to each other. // i4col_sort_a ( 5, 6*element_num1, edge_data ); // // Step 3. All the tetrahedrons which share an edge show up as consecutive // columns with identical first two entries. Figure out how many new // nodes there are, and allocate space for their coordinates. // *node_num2 = node_num1; n1_old = -1; n2_old = -1; for ( edge = 0; edge < 6 * element_num1; edge++ ) { n1 = edge_data[0+edge*5]; n2 = edge_data[1+edge*5]; if ( n1 != n1_old || n2 != n2_old ) { *node_num2 = *node_num2 + 1; n1_old = n1; n2_old = n2; } } *element_num2 = 8 * element_num1; return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }