05 July 2007 05:07:16 AM NINT_EXACTNESS_TET C++ version Investigate the polynomial exactness of a quadrature rule for the tetrahedron by integrating all monomials of a given degree. The rule will be adjusted to the unit tetrahedron. NINT_EXACTNESS_TET: User input: Quadrature rule X file = "keast5_x.txt". Quadrature rule W file = "keast5_w.txt". Quadrature rule R file = "keast5_r.txt". Maximum total degree to check = 5 Spatial dimension = 3 Number of points = 14 Error Degree Exponents 3.33067e-16 0 0 0 0 5.55112e-16 1 1 0 0 3.33067e-16 1 0 1 0 3.33067e-16 1 0 0 1 6.66134e-16 2 2 0 0 2.22045e-16 2 1 1 0 4.44089e-16 2 0 2 0 2.22045e-16 2 1 0 1 2.22045e-16 2 0 1 1 4.44089e-16 2 0 0 2 4.44089e-16 3 3 0 0 3.33067e-16 3 2 1 0 4.44089e-16 3 1 2 0 4.44089e-16 3 0 3 0 3.33067e-16 3 2 0 1 1.11022e-16 3 1 1 1 4.44089e-16 3 0 2 1 3.33067e-16 3 1 0 2 4.44089e-16 3 0 1 2 4.44089e-16 3 0 0 3 3.33067e-16 4 4 0 0 2.22045e-16 4 3 1 0 5.55112e-16 4 2 2 0 2.22045e-16 4 1 3 0 2.22045e-16 4 0 4 0 2.22045e-16 4 3 0 1 1.11022e-16 4 2 1 1 0 4 1 2 1 2.22045e-16 4 0 3 1 5.55112e-16 4 2 0 2 1.11022e-16 4 1 1 2 5.55112e-16 4 0 2 2 2.22045e-16 4 1 0 3 2.22045e-16 4 0 1 3 2.22045e-16 4 0 0 4 0.0068852 5 5 0 0 0.0114753 5 4 1 0 0.00459013 5 3 2 0 0.00459013 5 2 3 0 0.0114753 5 1 4 0 0.0068852 5 0 5 0 0.0114753 5 4 0 1 0.0183605 5 3 1 1 0.0137704 5 2 2 1 0.0183605 5 1 3 1 0.0114753 5 0 4 1 0.00459013 5 3 0 2 0.0137704 5 2 1 2 0.0137704 5 1 2 2 0.00459013 5 0 3 2 0.00459013 5 2 0 3 0.0183605 5 1 1 3 0.00459013 5 0 2 3 0.0114753 5 1 0 4 0.0114753 5 0 1 4 0.0068852 5 0 0 5 'NINT_EXACTNESS_TET: Normal end of execution. 05 July 2007 05:07:16 AM