# include # include # include # include using namespace std; # include "tetrahedron_integrals.hpp" int main ( ); void test01 ( ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for TETRAHEDRON_INTEGRALS_PRB. // // Discussion: // // TETRAHEDRON_INTEGRALS_PRB tests the TETRAHEDRON_INTEGRALS library. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 January 2014 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "TETRAHEDRON_INTEGRALS_PRB\n"; cout << " C++ version\n"; cout << " Test the TETRAHEDRON_INTEGRALS library.\n"; test01 ( ); // // Terminate. // cout << "\n"; cout << "TETRAHEDRON_INTEGRALS_PRB\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test01 ( ) //****************************************************************************80 // // Purpose: // // TEST01 uses TETRAHEDRON_SAMPLE_01 to compare exact and estimated integrals. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 January 2014 // // Author: // // John Burkardt // { int e[3]; double error; double exact; int i; int j; int k; int m = 3; int n = 4192; double result; int seed; int test; int test_num = 20; double *value; double *x; cout << "\n"; cout << "TEST01\n"; cout << " Estimate monomial integrals using Monte Carlo\n"; cout << " over the interior of the unit tetrahedron in 3D.\n"; // // Get sample points. // seed = 123456789; x = tetrahedron01_sample ( n, seed ); cout << "\n"; cout << " Number of sample points used is " << n << "\n"; // // Run through the exponents. // cout << "\n"; cout << " Ex Ey Ez MC-Estimate Exact Error\n"; cout << "\n"; for ( i = 0; i <= 3; i++ ) { e[0] = i; for ( j = 0; j <= 3; j++ ) { e[1] = j; for ( k = 0; k <= 3; k++ ) { e[2] = k; value = monomial_value ( m, n, e, x ); result = tetrahedron01_volume ( ) * r8vec_sum ( n, value ) / ( double ) ( n ); exact = tetrahedron01_monomial_integral ( e ); error = fabs ( result - exact ); cout << " " << setw(2) << e[0] << " " << setw(2) << e[1] << " " << setw(2) << e[2] << " " << setw(14) << result << " " << setw(14) << exact << " " << setw(10) << error << "\n"; delete [] value; } } } delete [] x; return; }