# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); char ch_cap ( char ch ); bool ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); int file_column_count ( string filename ); int file_row_count ( string input_filename ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); double r8_acos ( double c ); double r8_huge ( ); double r8_max ( double x, double y ); double r8_min ( double x, double y ); void r8_swap ( double *x, double *y ); double *r8mat_data_read ( string input_filename, int m, int n ); double r8mat_det_4d ( double a[] ); void r8mat_header_read ( string input_filename, int &m, int &n ); int r8mat_solve ( int n, int rhs_num, double a[] ); void r8mat_transpose_print ( int m, int n, double a[], string title ); void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ); double r8vec_angle_3d ( double u[], double v[] ); double *r8vec_cross_3d ( double v1[3], double v2[3] ); double r8vec_dot ( int n, double a1[], double a2[] ); double r8vec_length ( int dim_num, double x[] ); double r8vec_max ( int n, double r8vec[] ); void r8vec_print ( int n, double a[], string title ); void r8vec_transpose_print ( int n, double a[], string title ); void r8vec_zero ( int n, double a[] ); int s_len_trim ( string s ); double s_to_r8 ( string s, int *lchar, bool *error ); bool s_to_r8vec ( string s, int n, double rvec[] ); int s_word_count ( string s ); double *tetrahedron_centroid ( double tetra[3*4] ); void tetrahedron_circumsphere ( double tetra[3*4], double &r, double pc[3] ); double *tetrahedron_dihedral_angles ( double tetra[] ); double *tetrahedron_edge_length ( double tetra[3*4] ); void tetrahedron_edges ( double tetra[3*4], double ab[], double ac[], double ad[], double bc[], double bd[], double cd[] ); void tetrahedron_face_angles ( double tetra[], double angles[] ); void tetrahedron_face_areas ( double tetra[], double areas[] ); void tetrahedron_insphere ( double tetra[3*4], double &r, double pc[3] ); double tetrahedron_quality1 ( double tetra[3*4] ); double tetrahedron_quality2 ( double tetra[3*4] ); double tetrahedron_quality3 ( double tetra[3*4] ); double tetrahedron_quality4 ( double tetra[3*4] ); double *tetrahedron_solid_angles ( double tetra[] ); double tetrahedron_volume ( double tetra[3*4] ); void timestamp ( ); void triangle_angles_3d ( double t[3*3], double angle[3] ); double triangle_area_3d ( double t[3*3] ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for TETRAHEDRON_PROPERTIES. // // // Discussion: // // TETRAHEDRON_PROPERTIES reports properties of a tetrahedron. // // Usage: // // tetrahedron_properties filename // // where "filename" is a file containing the coordinates of the vertices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 May 2014 // // Author: // // John Burkardt // { double ab[3]; double ac[3]; double ad[3]; double bc[3]; double bd[3]; double cd[3]; double *centroid; double circum_center[3]; double circum_radius; double *dihedral_angles; int dim_num; double *edge_length; double face_angles[3*4]; double face_areas[4]; int i; int j; double in_center[3]; double in_radius; string node_filename; int node_num; double *node_xyz; double quality1; double quality2; double quality3; double quality4; const double r8_pi = 3.141592653589793; double *solid_angles; double volume; cout << "\n"; timestamp ( ); if ( 1 < argc ) { node_filename = argv[1]; } else { cout << "\n"; cout << " Please enter the name of the node coordinate file.\n"; cin >> node_filename; } // // Read the node data. // r8mat_header_read ( node_filename, dim_num, node_num ); cout << "\n"; cout << " Read the header of \"" << node_filename << "\".\n"; cout << "\n"; cout << " Spatial dimension DIM_NUM = " << dim_num << "\n"; cout << " Number of points NODE_NUM = " << node_num << "\n"; cout << "\n"; cout << "TETRAHEDRON_PROPERTIES:\n"; cout << " C++ version:\n"; cout << " Determine properties of a tetrahedron.\n"; if ( dim_num != 3 ) { cout << "\n"; cout << "TETRAHEDRON_PROPERTIES - Fatal error!\n"; cout << " Dataset must have spatial dimension 3.\n"; exit ( 1 ); } if ( node_num != 4 ) { cout << "\n"; cout << "TETRAHEDRON_PROPERTIES - Fatal error!\n"; cout << " Dataset must have 4 nodes.\n"; exit ( 1 ); } node_xyz = r8mat_data_read ( node_filename, dim_num, node_num ); cout << "\n"; cout << " Read the data in \"" << node_filename << "\".\n"; r8mat_transpose_print ( dim_num, node_num, node_xyz, " Node coordinates:" ); // // CIRCUMSPHERE // tetrahedron_circumsphere ( node_xyz, circum_radius, circum_center ); cout << "\n"; cout << " CIRCUM_RADIUS = " << circum_radius << "\n"; cout << " CIRCUM_CENTER: " << " " << setw(14) << circum_center[0] << " " << setw(14) << circum_center[1] << " " << setw(14) << circum_center[2] << "\n"; // // CENTROID // centroid = tetrahedron_centroid ( node_xyz ); cout << "\n"; cout << " CENTROID: " << " " << setw(14) << centroid[0] << " " << setw(14) << centroid[1] << " " << setw(14) << centroid[2] << "\n"; // // DIHEDRAL ANGLES // dihedral_angles = tetrahedron_dihedral_angles ( node_xyz ); r8vec_print ( 6, dihedral_angles, " DIHEDRAL_ANGLES (radians)" ); for ( i = 0; i < 6; i++ ) { dihedral_angles[i] = dihedral_angles[i] * 180.0 / r8_pi; } r8vec_print ( 6, dihedral_angles, " DIHEDRAL_ANGLES (degrees)" ); // // EDGES // tetrahedron_edges ( node_xyz, ab, ac, ad, bc, bd, cd ); cout << "\n"; r8vec_transpose_print ( 3, ab, " EDGE AB:" ); r8vec_transpose_print ( 3, ac, " EDGE AC:" ); r8vec_transpose_print ( 3, ad, " EDGE AD:" ); r8vec_transpose_print ( 3, bc, " EDGE BC:" ); r8vec_transpose_print ( 3, bd, " EDGE BD:" ); r8vec_transpose_print ( 3, cd, " EDGE CD:" ); // // EDGE LENGTHS // edge_length = tetrahedron_edge_length ( node_xyz ); r8vec_print ( 6, edge_length, " EDGE_LENGTHS" ); // // FACE ANGLES // tetrahedron_face_angles ( node_xyz, face_angles ); r8mat_transpose_print ( 3, 4, face_angles, " FACE_ANGLES (radians)" ); for ( j = 0; j < 4; j++ ) { for ( i = 0; i < 3; i++ ) { face_angles[i+j*3] = face_angles[i+j*3] * 180.0 / r8_pi; } } r8mat_transpose_print ( 3, 4, face_angles, " FACE_ANGLES (degrees)" ); // // FACE AREAS // tetrahedron_face_areas ( node_xyz, face_areas ); r8vec_print ( 4, face_areas, " FACE_AREAS" ); // // INSPHERE // tetrahedron_insphere ( node_xyz, in_radius, in_center ); cout << "\n"; cout << " IN_RADIUS = " << in_radius << "\n"; cout << " IN_CENTER: " << " " << setw(14) << in_center[0] << " " << setw(14) << in_center[1] << " " << setw(14) << in_center[2] << "\n"; // // QUALITY1 // quality1 = tetrahedron_quality1 ( node_xyz ); cout << "\n"; cout << " QUALITY1 = " << quality1 << "\n"; // // QUALITY2 // quality2 = tetrahedron_quality2 ( node_xyz ); cout << "\n"; cout << " QUALITY2 = " << quality2 << "\n"; // // QUALITY3 // quality3 = tetrahedron_quality3 ( node_xyz ); cout << "\n"; cout << " QUALITY3 = " << quality3 << "\n"; // // QUALITY4 // quality4 = tetrahedron_quality4 ( node_xyz ); cout << "\n"; cout << " QUALITY4 = " << quality4 << "\n"; // // SOLID ANGLES // solid_angles = tetrahedron_solid_angles ( node_xyz ); r8vec_print ( 4, solid_angles, " SOLID_ANGLES (steradians)" ); // // VOLUME // volume = tetrahedron_volume ( node_xyz ); cout << "\n"; cout << " VOLUME = " << volume << "\n"; // // Free memory. // delete [] centroid; delete [] dihedral_angles; delete [] edge_length; delete [] node_xyz; delete [] solid_angles; // // Terminate. // cout << "\n"; cout << "TETRAHEDRON_PROPERTIES:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 char ch_cap ( char ch ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } //****************************************************************************80 bool ch_eqi ( char ch1, char ch2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH1, CH2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } return ( ch1 == ch2 ); } //****************************************************************************80 int ch_to_digit ( char ch ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // CH DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If the // character was 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, // separated by spaces. There may also be some blank lines, and some // comment lines, which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; string text; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { getline ( input, text ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) <= 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input >> text; if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 int file_row_count ( string input_filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int bad_num; int comment_num; ifstream input; int i; string line; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; bad_num = 0; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return (-1); } for ( ; ; ) { getline ( input, line ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 double r8_acos ( double c ) //****************************************************************************80 // // Purpose: // // R8_ACOS computes the arc cosine function, with argument truncation. // // Discussion: // // If you call your system ACOS routine with an input argument that is // outside the range [-1.0, 1.0 ], you may get an unpleasant surprise. // This routine truncates arguments outside the range. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2002 // // Author: // // John Burkardt // // Parameters: // // Input, double C, the argument, the cosine of an angle. // // Output, double R8_ACOS, an angle whose cosine is C. // { const double r8_pi = 3.141592653589793; double value; if ( c <= -1.0 ) { value = r8_pi; } else if ( 1.0 <= c ) { value = 0.0; } else { value = acos ( c ); } return value; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 void r8_swap ( double *x, double *y ) //****************************************************************************80 // // Purpose: // // R8_SWAP switches two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input/output, double *X, *Y. On output, the values of X and // Y have been interchanged. // { double z; z = *x; *x = *y; *y = z; return; } //****************************************************************************80 double *r8mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_DATA_READ reads the data from an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_DATA_READ[M*N], the data. // { bool error; ifstream input; int i; int j; string line; double *table; double *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 double r8mat_det_4d ( double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_DET_4D computes the determinant of a 4 by 4 R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, double A[4*4], the matrix whose determinant is desired. // // Output, double R8MAT_DET_4D, the determinant of the matrix. // { double det; det = a[0+0*4] * ( a[1+1*4] * ( a[2+2*4] * a[3+3*4] - a[2+3*4] * a[3+2*4] ) - a[1+2*4] * ( a[2+1*4] * a[3+3*4] - a[2+3*4] * a[3+1*4] ) + a[1+3*4] * ( a[2+1*4] * a[3+2*4] - a[2+2*4] * a[3+1*4] ) ) - a[0+1*4] * ( a[1+0*4] * ( a[2+2*4] * a[3+3*4] - a[2+3*4] * a[3+2*4] ) - a[1+2*4] * ( a[2+0*4] * a[3+3*4] - a[2+3*4] * a[3+0*4] ) + a[1+3*4] * ( a[2+0*4] * a[3+2*4] - a[2+2*4] * a[3+0*4] ) ) + a[0+2*4] * ( a[1+0*4] * ( a[2+1*4] * a[3+3*4] - a[2+3*4] * a[3+1*4] ) - a[1+1*4] * ( a[2+0*4] * a[3+3*4] - a[2+3*4] * a[3+0*4] ) + a[1+3*4] * ( a[2+0*4] * a[3+1*4] - a[2+1*4] * a[3+0*4] ) ) - a[0+3*4] * ( a[1+0*4] * ( a[2+1*4] * a[3+2*4] - a[2+2*4] * a[3+1*4] ) - a[1+1*4] * ( a[2+0*4] * a[3+2*4] - a[2+2*4] * a[3+0*4] ) + a[1+2*4] * ( a[2+0*4] * a[3+1*4] - a[2+1*4] * a[3+0*4] ) ); return det; } //****************************************************************************80 void r8mat_header_read ( string input_filename, int &m, int &n ) //****************************************************************************80 // // Purpose: // // R8MAT_HEADER_READ reads the header from an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int &M, the number of spatial dimensions. // // Output, int &N, the number of points. // { m = file_column_count ( input_filename ); if ( m <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; exit ( 1 ); } n = file_row_count ( input_filename ); if ( n <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; exit ( 1 ); } return; } //****************************************************************************80 int r8mat_solve ( int n, int rhs_num, double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_SOLVE uses Gauss-Jordan elimination to solve an N by N linear system. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*N] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int RHS_NUM, the number of right hand sides. RHS_NUM // must be at least 0. // // Input/output, double A[N*(N+RHS_NUM)], contains in rows and columns 1 // to N the coefficient matrix, and in columns N+1 through // N+RHS_NUM, the right hand sides. On output, the coefficient matrix // area has been destroyed, while the right hand sides have // been overwritten with the corresponding solutions. // // Output, int R8MAT_SOLVE, singularity flag. // 0, the matrix was not singular, the solutions were computed; // J, factorization failed on step J, and the solutions could not // be computed. // { double apivot; double factor; int i; int ipivot; int j; int k; double temp; for ( j = 0; j < n; j++ ) { // // Choose a pivot row. // ipivot = j; apivot = a[j+j*n]; for ( i = j; i < n; i++ ) { if ( fabs ( apivot ) < fabs ( a[i+j*n] ) ) { apivot = a[i+j*n]; ipivot = i; } } if ( apivot == 0.0 ) { return j; } // // Interchange. // for ( i = 0; i < n + rhs_num; i++ ) { temp = a[ipivot+i*n]; a[ipivot+i*n] = a[j+i*n]; a[j+i*n] = temp; } // // A(J,J) becomes 1. // a[j+j*n] = 1.0; for ( k = j; k < n + rhs_num; k++ ) { a[j+k*n] = a[j+k*n] / apivot; } // // A(I,J) becomes 0. // for ( i = 0; i < n; i++ ) { if ( i != j ) { factor = a[i+j*n]; a[i+j*n] = 0.0; for ( k = j; k < n + rhs_num; k++ ) { a[i+k*n] = a[i+k*n] - factor * a[j+k*n]; } } } } return 0; } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, string TITLE, an optional title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, an optional title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << " "; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double r8vec_angle_3d ( double u[], double v[] ) //****************************************************************************80 // // Purpose: // // R8VEC_ANGLE_3D computes the angle between two vectors in 3D. // // Modified: // // 07 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double U[3], V[3], the vectors. // // Output, double ANGLE, the angle between the two vectors. // { double angle; double angle_cos; double u_norm; double uv_dot; double v_norm; uv_dot = r8vec_dot ( 3, u, v ); u_norm = sqrt ( r8vec_dot ( 3, u, u ) ); v_norm = sqrt ( r8vec_dot ( 3, v, v ) ); angle_cos = uv_dot / u_norm / v_norm; angle = r8_acos ( angle_cos ); return angle; } //****************************************************************************80 double *r8vec_cross_3d ( double v1[3], double v2[3] ) //****************************************************************************80 // // Purpose: // // R8VEC_CROSS_3D computes the cross product of two R8VEC's in 3D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double V1[3], V2[3], the coordinates of the vectors. // // Output, double R8VEC_CROSS_3D[3], the cross product vector. // { double *v3; v3 = new double[3]; v3[0] = v1[1] * v2[2] - v1[2] * v2[1]; v3[1] = v1[2] * v2[0] - v1[0] * v2[2]; v3[2] = v1[0] * v2[1] - v1[1] * v2[0]; return v3; } //****************************************************************************80 double r8vec_dot ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT computes the dot product of a pair of R8VEC's in ND. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double r8vec_length ( int dim_num, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_LENGTH returns the Euclidean length of an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, double X[DIM_NUM], the vector. // // Output, double R8VEC_LENGTH, the Euclidean length of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < dim_num; i++ ) { value = value + pow ( x[i], 2 ); } value = sqrt ( value ); return value; } //****************************************************************************80 double r8vec_max ( int n, double r8vec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MAX returns the value of the maximum element in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double R8VEC[N], a pointer to the first entry of the array. // // Output, double R8VEC_MAX, the value of the maximum element. This // is set to 0.0 if N <= 0. // { int i; double value; value = - r8_huge ( ); if ( n <= 0 ) { return value; } for ( i = 0; i < n; i++ ) { if ( value < r8vec[i] ) { value = r8vec[i]; } } return value; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title to be printed first. // TITLE may be blank. // { int i; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 void r8vec_transpose_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_TRANSPOSE_PRINT prints an R8VEC "transposed". // // Discussion: // // An R8VEC is a vector of R8's. // // Example: // // A = (/ 1.0, 2.1, 3.2, 4.3, 5.4, 6.5, 7.6, 8.7, 9.8, 10.9, 11.0 /) // TITLE = 'My vector: ' // // My vector: 1.0 2.1 3.2 4.3 5.4 // 6.5 7.6 8.7 9.8 10.9 // 11.0 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 May 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; int ihi; int ilo; int title_length; title_length = s_len_trim ( title ); for ( ilo = 0; ilo < n; ilo = ilo + 5 ) { if ( ilo == 0 ) { cout << title; } else { for ( i = 0; i < title_length; i++ ) { cout << " "; } } cout << " "; ihi = i4_min ( ilo + 5, n ); for ( i = ilo; i < ihi; i++ ) { cout << " " << setw(12) << a[i]; } cout << "\n"; } return; } //****************************************************************************80 void r8vec_zero ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_ZERO zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double A[N], a vector of zeroes. // { int i; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 double s_to_r8 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( string s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 double *tetrahedron_centroid ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_CENTROID computes the centroid of a tetrahedron. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the vertices of the tetrahedron. // // Output, double TETRAHEDRON_CENTROID[3], the coordinates of the centroid. // { double *centroid; int i; centroid = new double[3]; centroid[0] = ( tetra[0+0*3] + tetra[0+1*3] + tetra[0+2*3] + tetra[0+3*3] ); centroid[1] = ( tetra[1+0*3] + tetra[1+1*3] + tetra[1+2*3] + tetra[1+3*3] ); centroid[2] = ( tetra[2+0*3] + tetra[2+1*3] + tetra[2+2*3] + tetra[2+3*3] ); for ( i = 0; i < 3; i++ ) { centroid[i] = centroid[i] / 4.0; } return centroid; } //****************************************************************************80 void tetrahedron_circumsphere ( double tetra[3*4], double &r, double pc[3] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_CIRCUMSPHERE computes the circumsphere of a tetrahedron. // // Discussion: // // The circumsphere, or circumscribed sphere, of a tetrahedron is the // sphere that passes through the four vertices. The circumsphere is not // necessarily the smallest sphere that contains the tetrahedron. // // Surprisingly, the diameter of the sphere can be found by solving // a 3 by 3 linear system. This is because the vectors P2 - P1, // P3 - P1 and P4 - P1 are secants of the sphere, and each forms a // right triangle with the diameter through P1. Hence, the dot product of // P2 - P1 with that diameter is equal to the square of the length // of P2 - P1, and similarly for P3 - P1 and P4 - P1. This determines // the diameter vector originating at P1, and hence the radius and // center. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 August 2005 // // Author: // // John Burkardt // // Reference: // // Adrian Bowyer, John Woodwark, // A Programmer's Geometry, // Butterworths, 1983. // // Parameters: // // Input, double TETRA[3*4], the vertices of the tetrahedron. // // Output, double &R, PC[3], the coordinates of the center of the // circumscribed sphere, and its radius. If the linear system is // singular, then R = -1, PC[] = 0. // { double a[3*4]; int info; // // Set up the linear system. // a[0+0*3] = tetra[0+1*3] - tetra[0+0*3]; a[0+1*3] = tetra[1+1*3] - tetra[1+0*3]; a[0+2*3] = tetra[2+1*3] - tetra[2+0*3]; a[0+3*3] = pow ( tetra[0+1*3] - tetra[0+0*3], 2 ) + pow ( tetra[1+1*3] - tetra[1+0*3], 2 ) + pow ( tetra[2+1*3] - tetra[2+0*3], 2 ); a[1+0*3] = tetra[0+2*3] - tetra[0+0*3]; a[1+1*3] = tetra[1+2*3] - tetra[1+0*3]; a[1+2*3] = tetra[2+2*3] - tetra[2+0*3]; a[1+3*3] = pow ( tetra[0+2*3] - tetra[0+0*3], 2 ) + pow ( tetra[1+2*3] - tetra[1+0*3], 2 ) + pow ( tetra[2+2*3] - tetra[2+0*3], 2 ); a[2+0*3] = tetra[0+3*3] - tetra[0+0*3]; a[2+1*3] = tetra[1+3*3] - tetra[1+0*3]; a[2+2*3] = tetra[2+3*3] - tetra[2+0*3]; a[2+3*3] = pow ( tetra[0+3*3] - tetra[0+0*3], 2 ) + pow ( tetra[1+3*3] - tetra[1+0*3], 2 ) + pow ( tetra[2+3*3] - tetra[2+0*3], 2 ); // // Solve the linear system. // info = r8mat_solve ( 3, 1, a ); // // If the system was singular, return a consolation prize. // if ( info != 0 ) { r = -1.0; r8vec_zero ( 3, pc ); return; } // // Compute the radius and center. // r = 0.5 * sqrt ( a[0+3*3] * a[0+3*3] + a[1+3*3] * a[1+3*3] + a[2+3*3] * a[2+3*3] ); pc[0] = tetra[0+0*3] + 0.5 * a[0+3*3]; pc[1] = tetra[1+0*3] + 0.5 * a[1+3*3]; pc[2] = tetra[2+0*3] + 0.5 * a[2+3*3]; return; } //****************************************************************************80 double *tetrahedron_dihedral_angles ( double tetra[] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_DIHEDRAL_ANGLES computes dihedral angles of a tetrahedron. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, real ( kind = 8 ) TETRA(3,4), the vertices of the tetrahedron, // which can be labeled as A, B, C and D. // // Output, double TETRAHEDRON_DIHEDRAL_ANGLES[6], the dihedral angles // along the axes AB, AC, AD, BC, BD and CD, respectively. // { double ab[3]; double *abc_normal; double *abd_normal; double ac[3]; double *acd_normal; double ad[3]; double *angle; double bc[3]; double *bcd_normal; double bd[3]; double cd[3]; int i; const double r8_pi = 3.141592653589793; tetrahedron_edges ( tetra, ab, ac, ad, bc, bd, cd ); abc_normal = r8vec_cross_3d ( ac, ab ); abd_normal = r8vec_cross_3d ( ab, ad ); acd_normal = r8vec_cross_3d ( ad, ac ); bcd_normal = r8vec_cross_3d ( bc, bd ); angle = new double[6]; angle[0] = r8vec_angle_3d ( abc_normal, abd_normal ); angle[1] = r8vec_angle_3d ( abc_normal, acd_normal ); angle[2] = r8vec_angle_3d ( abd_normal, acd_normal ); angle[3] = r8vec_angle_3d ( abc_normal, bcd_normal ); angle[4] = r8vec_angle_3d ( abd_normal, bcd_normal ); angle[5] = r8vec_angle_3d ( acd_normal, bcd_normal ); for ( i = 0; i < 6; i++ ) { angle[i] = r8_pi - angle[i]; } delete [] abc_normal; delete [] abd_normal; delete [] acd_normal; delete [] bcd_normal; return angle; } //****************************************************************************80 double *tetrahedron_edge_length ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_EDGE_LENGTH returns edge lengths of a tetrahedron. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the tetrahedron vertices. // // Output, double EDGE_LENGTH[6], the length of the edges. // { double *edge_length; int i; int j1; int j2; int k; double v[3]; edge_length = new double[6]; k = 0; for ( j1 = 0; j1 < 3; j1++ ) { for ( j2 = j1 + 1; j2 < 4; j2++ ) { for ( i = 0; i < 3; i++ ) { v[i] = tetra[i+j2*3] - tetra[i+j1*3]; } edge_length[k] = r8vec_length ( 3, v ); k = k + 1; } } return edge_length; } //****************************************************************************80 void tetrahedron_edges ( double tetra[3*4], double ab[], double ac[], double ad[], double bc[], double bd[], double cd[] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_EDGES returns the edges of a tetrahedron. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 May 2014 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the tetrahedron vertices. // // Output, double AB[3], AC[3], AD[3], BC[3], BD[3], CD[3], the edges. // { int i; // // Compute the vectors that represent the sides. // for ( i = 0; i < 3; i++ ) { ab[i] = tetra[i+1*3] - tetra[i+0*3]; ac[i] = tetra[i+2*3] - tetra[i+0*3]; ad[i] = tetra[i+3*3] - tetra[i+0*3]; bc[i] = tetra[i+2*3] - tetra[i+1*3]; bd[i] = tetra[i+3*3] - tetra[i+1*3]; cd[i] = tetra[i+3*3] - tetra[i+2*3]; } return; } //****************************************************************************80 void tetrahedron_face_angles ( double tetra[], double angles[] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_FACE_ANGLES returns the 12 face angles of a tetrahedron. // // Discussion: // // The tetrahedron has 4 triangular faces. This routine computes the // 3 planar angles associated with each face. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4] the tetrahedron vertices. // // Output, double ANGLES[3*4], the face angles. // { double *tri; tri = new double[3*3]; // // Face 123 // tri[0+0*3] = tetra[0+0*3]; tri[1+0*3] = tetra[1+0*3]; tri[2+0*3] = tetra[2+0*3]; tri[0+1*3] = tetra[0+1*3]; tri[1+1*3] = tetra[1+1*3]; tri[2+1*3] = tetra[2+1*3]; tri[0+2*3] = tetra[0+2*3]; tri[1+2*3] = tetra[1+2*3]; tri[2+2*3] = tetra[2+2*3]; triangle_angles_3d ( tri, angles ); // // Face 124 // tri[0+0*3] = tetra[0+0*3]; tri[1+0*3] = tetra[1+0*3]; tri[2+0*3] = tetra[2+0*3]; tri[0+1*3] = tetra[0+1*3]; tri[1+1*3] = tetra[1+1*3]; tri[2+1*3] = tetra[2+1*3]; tri[0+2*3] = tetra[0+3*3]; tri[1+2*3] = tetra[1+3*3]; tri[2+2*3] = tetra[2+3*3]; triangle_angles_3d ( tri, angles+3 ); // // Face 134 // tri[0+0*3] = tetra[0+0*3]; tri[1+0*3] = tetra[1+0*3]; tri[2+0*3] = tetra[2+0*3]; tri[0+1*3] = tetra[0+2*3]; tri[1+1*3] = tetra[1+2*3]; tri[2+1*3] = tetra[2+2*3]; tri[0+2*3] = tetra[0+3*3]; tri[1+2*3] = tetra[1+3*3]; tri[2+2*3] = tetra[2+3*3]; triangle_angles_3d ( tri, angles+6 ); // // Face 234 // tri[0+0*3] = tetra[0+1*3]; tri[1+0*3] = tetra[1+1*3]; tri[2+0*3] = tetra[2+1*3]; tri[0+1*3] = tetra[0+2*3]; tri[1+1*3] = tetra[1+2*3]; tri[2+1*3] = tetra[2+2*3]; tri[0+2*3] = tetra[0+3*3]; tri[1+2*3] = tetra[1+3*3]; tri[2+2*3] = tetra[2+3*3]; triangle_angles_3d ( tri, angles+9 ); delete [] tri; return; } //****************************************************************************80 void tetrahedron_face_areas ( double tetra[], double areas[] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_FACE_AREAS returns the 4 face areas of a tetrahedron. // // Discussion: // // The tetrahedron has 4 triangular faces. This routine computes the // areas associated with each face. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4] the tetrahedron vertices. // // Output, double AREAS[4], the face areas. // { double *tri; tri = new double[3*3]; // // Face 123 // tri[0+0*3] = tetra[0+0*3]; tri[1+0*3] = tetra[1+0*3]; tri[2+0*3] = tetra[2+0*3]; tri[0+1*3] = tetra[0+1*3]; tri[1+1*3] = tetra[1+1*3]; tri[2+1*3] = tetra[2+1*3]; tri[0+2*3] = tetra[0+2*3]; tri[1+2*3] = tetra[1+2*3]; tri[2+2*3] = tetra[2+2*3]; areas[0] = triangle_area_3d ( tri ); // // Face 124 // tri[0+0*3] = tetra[0+0*3]; tri[1+0*3] = tetra[1+0*3]; tri[2+0*3] = tetra[2+0*3]; tri[0+1*3] = tetra[0+1*3]; tri[1+1*3] = tetra[1+1*3]; tri[2+1*3] = tetra[2+1*3]; tri[0+2*3] = tetra[0+3*3]; tri[1+2*3] = tetra[1+3*3]; tri[2+2*3] = tetra[2+3*3]; areas[1] = triangle_area_3d ( tri ); // // Face 134 // tri[0+0*3] = tetra[0+0*3]; tri[1+0*3] = tetra[1+0*3]; tri[2+0*3] = tetra[2+0*3]; tri[0+1*3] = tetra[0+2*3]; tri[1+1*3] = tetra[1+2*3]; tri[2+1*3] = tetra[2+2*3]; tri[0+2*3] = tetra[0+3*3]; tri[1+2*3] = tetra[1+3*3]; tri[2+2*3] = tetra[2+3*3]; areas[2] = triangle_area_3d ( tri ); // // Face 234 // tri[0+0*3] = tetra[0+1*3]; tri[1+0*3] = tetra[1+1*3]; tri[2+0*3] = tetra[2+1*3]; tri[0+1*3] = tetra[0+2*3]; tri[1+1*3] = tetra[1+2*3]; tri[2+1*3] = tetra[2+2*3]; tri[0+2*3] = tetra[0+3*3]; tri[1+2*3] = tetra[1+3*3]; tri[2+2*3] = tetra[2+3*3]; areas[3] = triangle_area_3d ( tri ); delete [] tri; return; } //****************************************************************************80 void tetrahedron_insphere ( double tetra[3*4], double &r, double pc[3] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_INSPHERE finds the insphere of a tetrahedron. // // Discussion: // // The insphere of a tetrahedron is the inscribed sphere, which touches // each face of the tetrahedron at a single point. // // The points of contact are the centroids of the triangular faces // of the tetrahedron. Therefore, the point of contact for a face // can be computed as the average of the vertices of that face. // // The sphere can then be determined as the unique sphere through // the four given centroids. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 August 2005 // // Author: // // John Burkardt // // Reference: // // Philip Schneider, David Eberly, // Geometric Tools for Computer Graphics, // Elsevier, 2002, // ISBN: 1558605940, // LC: T385.G6974. // // Parameters: // // Input, double TETRA[3*4], the vertices of the tetrahedron. // // Output, double &R, PC[3], the radius and the center // of the sphere. // { double b[4*4]; double gamma; int i; int j; double l123; double l124; double l134; double l234; double *n123; double *n124; double *n134; double *n234; double v21[3]; double v31[3]; double v41[3]; double v32[3]; double v42[3]; double v43[3]; tetrahedron_edges ( tetra, v21, v31, v41, v32, v42, v43 ); n123 = r8vec_cross_3d ( v21, v31 ); n124 = r8vec_cross_3d ( v41, v21 ); n134 = r8vec_cross_3d ( v31, v41 ); n234 = r8vec_cross_3d ( v42, v32 ); l123 = r8vec_length ( 3, n123 ); l124 = r8vec_length ( 3, n124 ); l134 = r8vec_length ( 3, n134 ); l234 = r8vec_length ( 3, n234 ); delete [] n123; delete [] n124; delete [] n134; delete [] n234; for ( i = 0; i < 3; i++ ) { pc[i] = ( l234 * tetra[i+0*3] + l134 * tetra[i+1*3] + l124 * tetra[i+2*3] + l123 * tetra[i+3*3] ) / ( l234 + l134 + l124 + l123 ); } for ( j = 0; j < 4; j++ ) { for ( i = 0; i < 3; i++ ) { b[i+j*4] = tetra[i+j*3]; } b[3+j*4] = 1.0; } gamma = fabs ( r8mat_det_4d ( b ) ); r = gamma / ( l234 + l134 + l124 + l123 ); return; } //****************************************************************************80 double tetrahedron_quality1 ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_QUALITY1: "quality" of a tetrahedron. // // Discussion: // // The quality of a tetrahedron is 3.0 times the ratio of the radius of // the inscribed sphere divided by that of the circumscribed sphere. // // An equilateral tetrahredron achieves the maximum possible quality of 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the tetrahedron vertices. // // Output, double TETRAHEDRON_QUALITY1, the quality of the tetrahedron. // { double pc[3]; double quality; double r_in; double r_out; tetrahedron_circumsphere ( tetra, r_out, pc ); tetrahedron_insphere ( tetra, r_in, pc ); quality = 3.0 * r_in / r_out; return quality; } //****************************************************************************80 double tetrahedron_quality2 ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_QUALITY2: "quality" of a tetrahedron. // // Discussion: // // The quality measure #2 of a tetrahedron is: // // QUALITY2 = 2 * sqrt ( 6 ) * RIN / LMAX // // where // // RIN = radius of the inscribed sphere; // LMAX = length of longest side of the tetrahedron. // // An equilateral tetrahredron achieves the maximum possible quality of 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2005 // // Author: // // John Burkardt // // Reference: // // Qiang Du, Desheng Wang, // The Optimal Centroidal Voronoi Tesselations and the Gersho's // Conjecture in the Three-Dimensional Space, // Computers and Mathematics with Applications, // Volume 49, 2005, pages 1355-1373. // // Parameters: // // Input, double TETRA[3*4], the tetrahedron vertices. // // Output, double TETRAHEDRON_QUALITY2, the quality of the tetrahedron. // { double *edge_length; double l_max; double pc[3]; double quality2; double r_in; edge_length = tetrahedron_edge_length ( tetra ); l_max = r8vec_max ( 6, edge_length ); tetrahedron_insphere ( tetra, r_in, pc ); quality2 = 2.0 * sqrt ( 6.0 ) * r_in / l_max; delete [] edge_length; return quality2; } //****************************************************************************80 double tetrahedron_quality3 ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_QUALITY3 computes the mean ratio of a tetrahedron. // // Discussion: // // This routine computes QUALITY3, the eigenvalue or mean ratio of // a tetrahedron. // // QUALITY3 = 12 * ( 3 * volume )^(2/3) / (sum of square of edge lengths). // // This value may be used as a shape quality measure for the tetrahedron. // // For an equilateral tetrahedron, the value of this quality measure // will be 1. For any other tetrahedron, the value will be between // 0 and 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2005 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double TETRA[3*4], the vertices of the tetrahedron. // // Output, double TETRAHEDRON_QUALITY3, the mean ratio of the tetrahedron. // { double ab[3]; double ac[3]; double ad[3]; double bc[3]; double bd[3]; double cd[3]; double denom; int i; double lab; double lac; double lad; double lbc; double lbd; double lcd; double quality3; double volume; // // Compute the vectors representing the sides of the tetrahedron. // tetrahedron_edges ( tetra, ab, ac, ad, bc, bd, cd ); // // Compute the squares of the lengths of the sides. // lab = pow ( ab[0], 2 ) + pow ( ab[1], 2 ) + pow ( ab[2], 2 ); lac = pow ( ac[0], 2 ) + pow ( ac[1], 2 ) + pow ( ac[2], 2 ); lad = pow ( ad[0], 2 ) + pow ( ad[1], 2 ) + pow ( ad[2], 2 ); lbc = pow ( bc[0], 2 ) + pow ( bc[1], 2 ) + pow ( bc[2], 2 ); lbd = pow ( bd[0], 2 ) + pow ( bd[1], 2 ) + pow ( bd[2], 2 ); lcd = pow ( cd[0], 2 ) + pow ( cd[1], 2 ) + pow ( cd[2], 2 ); // // Compute the volume. // volume = fabs ( ab[0] * ( ac[1] * ad[2] - ac[2] * ad[1] ) + ab[1] * ( ac[2] * ad[0] - ac[0] * ad[2] ) + ab[2] * ( ac[0] * ad[1] - ac[1] * ad[0] ) ) / 6.0; denom = lab + lac + lad + lbc + lbd + lcd; if ( denom == 0.0 ) { quality3 = 0.0; } else { quality3 = 12.0 * pow ( 3.0 * volume, 2.0 / 3.0 ) / denom; } return quality3; } //****************************************************************************80 double tetrahedron_quality4 ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_QUALITY4 computes the minimum solid angle of a tetrahedron. // // Discussion: // // This routine computes a quality measure for a tetrahedron, based // on the sine of half the minimum of the four solid angles. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2005 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double TETRA[3*4], the vertices of the tetrahedron. // // Output, double QUALITY4, the value of the quality measure. // { double ab[3]; double ac[3]; double ad[3]; double bc[3]; double bd[3]; double cd[3]; double denom; int i; double l1; double l2; double l3; double lab; double lac; double lad; double lbc; double lbd; double lcd; double quality4; double volume; // // Compute the edges. // tetrahedron_edges ( tetra, ab, ac, ad, bc, bd, cd ); // // Compute the lengths of the sides. // lab = r8vec_length ( 3, ab ); lac = r8vec_length ( 3, ac ); lad = r8vec_length ( 3, ad ); lbc = r8vec_length ( 3, bc ); lbd = r8vec_length ( 3, bd ); lcd = r8vec_length ( 3, cd ); // // Compute the volume. // volume = fabs ( ab[0] * ( ac[1] * ad[2] - ac[2] * ad[1] ) + ab[1] * ( ac[2] * ad[0] - ac[0] * ad[2] ) + ab[2] * ( ac[0] * ad[1] - ac[1] * ad[0] ) ) / 6.0; quality4 = 1.0; l1 = lab + lac; l2 = lab + lad; l3 = lac + lad; denom = ( l1 + lbc ) * ( l1 - lbc ) * ( l2 + lbd ) * ( l2 - lbd ) * ( l3 + lcd ) * ( l3 - lcd ); if ( denom <= 0.0 ) { quality4 = 0.0; } else { quality4 = r8_min ( quality4, 12.0 * volume / sqrt ( denom ) ); } l1 = lab + lbc; l2 = lab + lbd; l3 = lbc + lbd; denom = ( l1 + lac ) * ( l1 - lac ) * ( l2 + lad ) * ( l2 - lad ) * ( l3 + lcd ) * ( l3 - lcd ); if ( denom <= 0.0 ) { quality4 = 0.0; } else { quality4 = r8_min ( quality4, 12.0 * volume / sqrt ( denom ) ); } l1 = lac + lbc; l2 = lac + lcd; l3 = lbc + lcd; denom = ( l1 + lab ) * ( l1 - lab ) * ( l2 + lad ) * ( l2 - lad ) * ( l3 + lbd ) * ( l3 - lbd ); if ( denom <= 0.0 ) { quality4 = 0.0; } else { quality4 = r8_min ( quality4, 12.0 * volume / sqrt ( denom ) ); } l1 = lad + lbd; l2 = lad + lcd; l3 = lbd + lcd; denom = ( l1 + lab ) * ( l1 - lab ) * ( l2 + lac ) * ( l2 - lac ) * ( l3 + lbc ) * ( l3 - lbc ); if ( denom <= 0.0 ) { quality4 = 0.0; } else { quality4 = r8_min ( quality4, 12.0 * volume / sqrt ( denom ) ); } quality4 = quality4 * 1.5 * sqrt ( 6.0 ); return quality4; } //****************************************************************************80 double *tetrahedron_solid_angles ( double tetra[] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_SOLID_ANGLES computes solid angles of a tetrahedron. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the vertices of the tetrahedron. // // Output, double TETRAHEDRON_SOLID_ANGLES[4], the solid angles. // { double *angle; double *dihedral_angles; const double r8_pi = 3.141592653589793; dihedral_angles = tetrahedron_dihedral_angles ( tetra ); angle = new double[4]; angle[0] = dihedral_angles[0] + dihedral_angles[1] + dihedral_angles[2] - r8_pi; angle[1] = dihedral_angles[0] + dihedral_angles[3] + dihedral_angles[4] - r8_pi; angle[2] = dihedral_angles[1] + dihedral_angles[3] + dihedral_angles[5] - r8_pi; angle[3] = dihedral_angles[2] + dihedral_angles[4] + dihedral_angles[5] - r8_pi; delete [] dihedral_angles; return angle; } //****************************************************************************80 double tetrahedron_volume ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_VOLUME computes the volume of a tetrahedron. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the vertices of the tetrahedron. // // Output, double TETRAHEDRON_VOLUME, the volume of the tetrahedron. // { double a[4*4]; int i; int j; double volume; for ( i = 0; i < 3; i++ ) { for ( j = 0; j < 4; j++ ) { a[i+j*4] = tetra[i+j*3]; } } i = 3; for ( j = 0; j < 4; j++ ) { a[i+j*4] = 1.0; } volume = fabs ( r8mat_det_4d ( a ) ) / 6.0; return volume; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 void triangle_angles_3d ( double t[3*3], double angle[3] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_ANGLES_3D computes the angles of a triangle in 3D. // // Discussion: // // The law of cosines is used: // // C * C = A * A + B * B - 2 * A * B * COS ( GAMMA ) // // where GAMMA is the angle opposite side C. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double T[3*3], the triangle vertices. // // Output, double ANGLE[3], the angles opposite // sides P1-P2, P2-P3 and P3-P1, in radians. // { double a; double b; double c; const double r8_pi = 3.141592653589793; a = sqrt ( pow ( t[0+1*3] - t[0+0*3], 2 ) + pow ( t[1+1*3] - t[1+0*3], 2 ) + pow ( t[2+1*3] - t[2+0*3], 2 ) ); b = sqrt ( pow ( t[0+2*3] - t[0+1*3], 2 ) + pow ( t[1+2*3] - t[1+1*3], 2 ) + pow ( t[2+2*3] - t[2+1*3], 2 ) ); c = sqrt ( pow ( t[0+0*3] - t[0+2*3], 2 ) + pow ( t[1+0*3] - t[1+2*3], 2 ) + pow ( t[2+0*3] - t[2+2*3], 2 ) ); // // Take care of a ridiculous special case. // if ( a == 0.0 && b == 0.0 && c == 0.0 ) { angle[0] = 2.0 * r8_pi / 3.0; angle[1] = 2.0 * r8_pi / 3.0; angle[2] = 2.0 * r8_pi / 3.0; return; } if ( c == 0.0 || a == 0.0 ) { angle[0] = r8_pi; } else { angle[0] = r8_acos ( ( c * c + a * a - b * b ) / ( 2.0 * c * a ) ); } if ( a == 0.0 || b == 0.0 ) { angle[1] = r8_pi; } else { angle[1] = r8_acos ( ( a * a + b * b - c * c ) / ( 2.0 * a * b ) ); } if ( b == 0.0 || c == 0.0 ) { angle[2] = r8_pi; } else { angle[2] = r8_acos ( ( b * b + c * c - a * a ) / ( 2.0 * b * c ) ); } return; } //****************************************************************************80 double triangle_area_3d ( double t[3*3] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_AREA_3D computes the area of a triangle in 3D. // // Discussion: // // This routine uses the fact that the norm of the cross product vector // is the area of the parallelogram they form. The triangle they // form has half that area. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 October 2005 // // Author: // // John Burkardt // // Reference: // // Adrian Bowyer, John Woodwark, // A Programmer's Geometry, // Butterworths, 1983. // // Parameters: // // Input, double T[3*3], the vertices of the triangle. // // Output, double TRIANGLE_AREA_3D, the area of the triangle. // { double area; double *cross; int i; // // Compute the cross product vector. // cross = new double[3]; cross[0] = ( t[1+1*3] - t[1+0*3] ) * ( t[2+2*3] - t[2+0*3] ) - ( t[2+1*3] - t[2+0*3] ) * ( t[1+2*3] - t[1+0*3] ); cross[1] = ( t[2+1*3] - t[2+0*3] ) * ( t[0+2*3] - t[0+0*3] ) - ( t[0+1*3] - t[0+0*3] ) * ( t[2+2*3] - t[2+0*3] ); cross[2] = ( t[0+1*3] - t[0+0*3] ) * ( t[1+2*3] - t[1+0*3] ) - ( t[1+1*3] - t[1+0*3] ) * ( t[0+2*3] - t[0+0*3] ); area = 0.0; for ( i = 0; i < 3; i++ ) { area = area + pow ( cross[i], 2 ); } area = 0.5 * sqrt ( area ); delete [] cross; return area; }