# include # include # include # include # include # include # include using namespace std; # include "rkf45.hpp" int main ( ); void r8mat_write ( string output_filename, int m, int n, double table[] ); void simple_rkf45_run ( ); void simple_f ( double t, double y[], double yp[] ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for SIMPLE_RKF45. // // Discussion: // // SIMPLE_RKF45 uses RKF45 as an integrator for the simple version // of the three-body problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 2012 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "SIMPLE_RKF45\n"; cout << " C++ version\n"; cout << " Simulate the behavior of three bodies which are\n"; cout << " constrained to lie in a plane, moving under the\n"; cout << " influence of gravity.\n"; cout << " \n"; cout << " Use RKF45 for the ODE integrator.\n"; simple_rkf45_run ( ); // // Terminate. // cout << "\n"; cout << "SIMPLE_RKF45\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(24) << setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 void simple_rkf45_run ( ) //****************************************************************************80 // // Purpose: // // SIMPLE_RKF45_RUN runs the simple three body ODE system. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 2012 // // Author: // // John Burkardt // { double abserr; int flag; int i; double m0; double m1; double m2; int neqn = 12; double relerr; int step; int step_num = 630; double t; string t_filename = "simple_rkf45_t.txt"; double t_out; double t_start; double t_stop; double *ts; double *y; string y_filename = "simple_rkf45_y.txt"; double *yp; double *ys; ts = new double[step_num+1]; y = new double[neqn]; yp = new double[neqn]; ys = new double[neqn*(step_num+1)]; cout << "\n"; cout << "SIMPLE_RKF45_RUN\n"; cout << " Simulate the planar three-body problem as an ODE system\n"; cout << " using RKF45 for the ODE integration.\n"; m0 = 5.0; m1 = 3.0; m2 = 4.0; abserr = 1.0E-10; relerr = 1.0E-10; flag = 1; t_start = 0.0; t_stop = 63.0; t = 0.0; t_out = 0.0; y[0] = 1.0; y[1] = -1.0; y[2] = 0.0; y[3] = 0.0; y[4] = 1.0; y[5] = 3.0; y[6] = 0.0; y[7] = 0.0; y[8] = -2.0; y[9] = -1.0; y[10] = 0.0; y[11] = 0.0; simple_f ( t, y, yp ); for ( i = 0; i < neqn; i++ ) { ys[i+0*neqn] = y[i]; } ts[0] = t; for ( step = 1; step <= step_num; step++ ) { t = ( ( double ) ( step_num - step + 1 ) * t_start + ( double ) ( step - 1 ) * t_stop ) / ( double ) ( step_num ); t_out = ( ( double ) ( step_num - step ) * t_start + ( double ) ( step ) * t_stop ) / ( double ) ( step_num ); flag = r8_rkf45 ( simple_f, neqn, y, yp, &t, t_out, &relerr, abserr, flag ); if ( abs ( flag ) != 2 ) { cout << "\n"; cout << "SIMPLE_RKF45_RUN - Warning\n"; cout << " Output value of FLAG = " << flag << " at output time T_OUT = " << t_out << "\n"; } if ( flag == 7 ) { flag = 2; } for ( i = 0; i < neqn; i++ ) { ys[i+step*neqn] = y[i]; } ts[step] = t_out; } r8mat_write ( t_filename, 1, step_num + 1, ts ); r8mat_write ( y_filename, neqn, step_num + 1, ys ); cout << "\n"; cout << "SIMPLE_RKF45_RUN:\n"; cout << " Time data written to \"" << t_filename << "\".\n"; cout << " Solution data written to \"" << y_filename << "\".\n"; delete [] ts; delete [] y; delete [] yp; delete [] ys; return; } //****************************************************************************80 void simple_f ( double t, double y[], double yp[] ) //****************************************************************************80 // // Purpose: // // SIMPLE_F returns the right hand side of the three body ODE system. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 2012 // // Author: // // John Burkardt // // Parameters: // // Input, double T, the value of the independent variable. // // Input, double Y[NEQN], the value of the dependent variable. // // Output, double YP[NEQN], the value of the derivatives. // { double m0; double m1; double m2; double n0; double n1; double n2; int neqn = 12; double x0; double x1; double x2; double y0; double y1; double y2; m0 = 5.0; m1 = 3.0; m2 = 4.0; x0 = y[0]; y0 = y[1]; x1 = y[4]; y1 = y[5]; x2 = y[8]; y2 = y[9]; n0 = sqrt ( pow ( pow ( x2 - x1, 2 ) + pow ( y2 - y1, 2 ), 3 ) ); n1 = sqrt ( pow ( pow ( x0 - x2, 2 ) + pow ( y0 - y2, 2 ), 3 ) ); n2 = sqrt ( pow ( pow ( x1 - x0, 2 ) + pow ( y1 - y0, 2 ), 3 ) ); yp[0] = y[2]; yp[1] = y[3]; yp[2] = - m1 * ( x0 - x1 ) / n2 - m2 * ( x0 - x2 ) / n1; yp[3] = - m1 * ( y0 - y1 ) / n2 - m2 * ( y0 - y2 ) / n1; yp[4] = y[6]; yp[5] = y[7]; yp[6] = - m2 * ( x1 - x0 ) / n0 - m0 * ( x1 - x2 ) / n2; yp[7] = - m2 * ( y1 - y0 ) / n0 - m0 * ( y1 - y2 ) / n2; yp[8] = y[10]; yp[9] = y[11]; yp[10] = - m0 * ( x2 - x0 ) / n1 - m1 * ( x2 - x1 ) / n0; yp[11] = - m0 * ( y2 - y0 ) / n1 - m1 * ( y2 - y1 ) / n0; return; }