# include # include # include # include # include using namespace std; int main ( ); void test01 ( ); int i4_power ( int i, int j ); double r8_huge ( ); double r8_max ( double x, double y ); double r8_min ( double x, double y ); double r8_real_time ( ); void timestamp ( ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for TIMER_TIME. // // Discussion: // // TIMER_TIME uses TIME as the timer. // // TIME is a function which returns a time measurement in seconds. // // Unfortunately, the resolution of this timer is no finer than 1 second! // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 May 2009 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "TIMER_TIME\n"; cout << " C++ version\n"; cout << " Demonstrate the use of the TIME real time timer.\n"; cout << "\n"; cout << " TIME is a standard C++ library routine\n"; cout << " (defined in )\n"; cout << "\n"; cout << " It returns a reading of the number of seconds on a clock.\n"; cout << " Taking the difference between two such readings\n"; cout << " can give a real time measurement. However, this measurement\n"; cout << " is no finer than one second.\n"; test01 ( ); cout << "\n"; cout << "TIMER_TIME\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test01 ( ) //****************************************************************************80 // // Purpose: // // TEST01 times the RAND routine. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2006 // // Author: // // John Burkardt // { double cpu; double cpu_ave; double cpu_max; double cpu_min; int i; int n; int n_log; int n_log_min = 0; int n_log_max = 24; int n_max; int n_min; int rep; int rep_num = 5; int *x; n_min = i4_power ( 2, n_log_min ); n_max = i4_power ( 2, n_log_max ); cout << "\n"; cout << "TEST01\n"; cout << " Time the RAND function by computing N values.\n"; cout << " For a given N, repeat the computation 5 times.\n"; cout << "\n"; cout << " Data vectors will be of minimum size " << n_min << "\n"; cout << " Data vectors will be of maximum size " << n_max << "\n"; cout << "\n"; cout << " CPU times are in seconds.\n"; cout << "\n"; cout << " N Rep #1 Rep #2 Rep #2 Rep #4 Rep #5" << " Min Ave Max\n"; cout << "\n"; for ( n_log = n_log_min; n_log <= n_log_max; n_log++ ) { n = i4_power ( 2, n_log ); x = new int[n]; cout << " " << setw(8) << n; cpu_min = r8_huge ( ); cpu_max = 0.0; cpu_ave = 0.0; for ( rep = 1; rep <= rep_num; rep++ ) { cpu = r8_real_time ( ); for ( i = 0; i < n; i++ ) { x[i] = rand ( ); } cpu = r8_real_time ( ) - cpu; cpu_max = r8_max ( cpu_max, cpu ); cpu_min = r8_min ( cpu_min, cpu ); cpu_ave = cpu_ave + cpu; cout << " " << setw(10) << cpu; } cpu_ave = cpu_ave / ( double ) rep_num; cout << " " << setw(10) << cpu_min << " " << setw(10) << cpu_ave << " " << setw(10) << cpu_max << "\n"; delete [] x; } return; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cout << "\n"; cout << "I4_POWER - Fatal error!\n"; cout << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cout << "\n"; cout << "I4_POWER - Fatal error!\n"; cout << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 double r8_real_time ( ) //****************************************************************************80 // // Purpose: // // R8_REAL_TIME returns the current real time. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2006 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_REAL_TIME, the real time in seconds. // { time_t now; static time_t then = 0; double value; if ( then == 0 ) { then = time ( 0 ); } now = time ( 0 ); value = ( double ) ( now - then ); return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }