# include # include # include # include # include using namespace std; # include "toms179.hpp" //****************************************************************************80 double alogam ( double x, int *ifault ) //****************************************************************************80 // // Purpose: // // ALOGAM computes the logarithm of the Gamma function. // // Modified: // // 22 January 2008 // // Author: // // Malcolm Pike, David Hill // FORTRAN90 version by John Burkardt // // Reference: // // Malcolm Pike, David Hill, // Algorithm 291: // Logarithm of Gamma Function, // Communications of the ACM, // Volume 9, Number 9, September 1966, page 684. // // Parameters: // // Input, double X, the argument of the Gamma function. // X should be greater than 0. // // Output, int *IFAULT, error flag. // 0, no error. // 1, X <= 0. // // Output, double ALOGAM, the logarithm of the Gamma // function of X. // { double f; double value; double y; double z; if ( x <= 0.0 ) { *ifault = 1; value = 0.0; return value; } *ifault = 0; y = x; if ( x < 7.0 ) { f = 1.0; z = y; while ( z < 7.0 ) { f = f * z; z = z + 1.0; } y = z; f = - log ( f ); } else { f = 0.0; } z = 1.0 / y / y; value = f + ( y - 0.5 ) * log ( y ) - y + 0.918938533204673 + ((( - 0.000595238095238 * z + 0.000793650793651 ) * z - 0.002777777777778 ) * z + 0.083333333333333 ) / y; return value; } //****************************************************************************80 void beta_cdf_values ( int *n_data, double *a, double *b, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // BETA_CDF_VALUES returns some values of the Beta CDF. // // Discussion: // // The incomplete Beta function may be written // // BETA_INC(A,B,X) = Integral (0 to X) T**(A-1) * (1-T)**(B-1) dT // / Integral (0 to 1) T**(A-1) * (1-T)**(B-1) dT // // Thus, // // BETA_INC(A,B,0.0) = 0.0; // BETA_INC(A,B,1.0) = 1.0 // // The incomplete Beta function is also sometimes called the // "modified" Beta function, or the "normalized" Beta function // or the Beta CDF (cumulative density function. // // In Mathematica, the function can be evaluated by: // // BETA[X,A,B] / BETA[A,B] // // The function can also be evaluated by using the Statistics package: // // Needs["Statistics`ContinuousDistributions`"] // dist = BetaDistribution [ a, b ] // CDF [ dist, x ] // // Modified: // // 04 January 2005 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Karl Pearson, // Tables of the Incomplete Beta Function, // Cambridge University Press, 1968. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *A, B, the parameters of the function. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 42 double a_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.5E+00, 10.0E+00, 10.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 30.0E+00, 30.0E+00, 40.0E+00, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01 }; double b_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.0E+00, 0.5E+00, 5.0E+00, 5.0E+00, 10.0E+00, 5.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.2E+01 }; double fx_vec[N_MAX] = { 0.6376856085851985E-01, 0.2048327646991335E+00, 0.1000000000000000E+01, 0.0000000000000000E+00, 0.5012562893380045E-02, 0.5131670194948620E-01, 0.2928932188134525E+00, 0.5000000000000000E+00, 0.2800000000000000E-01, 0.1040000000000000E+00, 0.2160000000000000E+00, 0.3520000000000000E+00, 0.5000000000000000E+00, 0.6480000000000000E+00, 0.7840000000000000E+00, 0.8960000000000000E+00, 0.9720000000000000E+00, 0.4361908850559777E+00, 0.1516409096347099E+00, 0.8978271484375000E-01, 0.1000000000000000E+01, 0.5000000000000000E+00, 0.4598773297575791E+00, 0.2146816102371739E+00, 0.9507364826957875E+00, 0.5000000000000000E+00, 0.8979413687105918E+00, 0.2241297491808366E+00, 0.7586405487192086E+00, 0.7001783247477069E+00, 0.5131670194948620E-01, 0.1055728090000841E+00, 0.1633399734659245E+00, 0.2254033307585166E+00, 0.3600000000000000E+00, 0.4880000000000000E+00, 0.5904000000000000E+00, 0.6723200000000000E+00, 0.2160000000000000E+00, 0.8370000000000000E-01, 0.3078000000000000E-01, 0.1093500000000000E-01 }; double x_vec[N_MAX] = { 0.01E+00, 0.10E+00, 1.00E+00, 0.00E+00, 0.01E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00, 0.50E+00, 0.90E+00, 0.50E+00, 1.00E+00, 0.50E+00, 0.80E+00, 0.60E+00, 0.80E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.70E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.30E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0.0; *b = 0.0; *x = 0.0; *fx = 0.0; } else { *a = a_vec[*n_data-1]; *b = b_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gamma_log_values ( int *n_data, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // GAMMA_LOG_VALUES returns some values of the Log Gamma function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Log[Gamma[x]] // // Modified: // // 14 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 20 double fx_vec[N_MAX] = { 0.1524063822430784E+01, 0.7966778177017837E+00, 0.3982338580692348E+00, 0.1520596783998375E+00, 0.0000000000000000E+00, -0.4987244125983972E-01, -0.8537409000331584E-01, -0.1081748095078604E+00, -0.1196129141723712E+00, -0.1207822376352452E+00, -0.1125917656967557E+00, -0.9580769740706586E-01, -0.7108387291437216E-01, -0.3898427592308333E-01, 0.00000000000000000E+00, 0.69314718055994530E+00, 0.17917594692280550E+01, 0.12801827480081469E+02, 0.39339884187199494E+02, 0.71257038967168009E+02 }; double x_vec[N_MAX] = { 0.20E+00, 0.40E+00, 0.60E+00, 0.80E+00, 1.00E+00, 1.10E+00, 1.20E+00, 1.30E+00, 1.40E+00, 1.50E+00, 1.60E+00, 1.70E+00, 1.80E+00, 1.90E+00, 2.00E+00, 3.00E+00, 4.00E+00, 10.00E+00, 20.00E+00, 30.00E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0; *fx = 0.0; } else { *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double mdbeta ( double x, double p, double q, int *ier ) //****************************************************************************80 // // Purpose: // // MDBETA evaluates the incomplete beta function. // // Modified: // // 30 January 2008 // // Author: // // Oliver Ludwig // Modifications by John Burkardt // // Reference: // // Oliver Ludwig, // Algorithm 179: // Incomplete Beta Ratio, // Communications of the ACM, // Volume 6, Number 6, June 1963, page 314. // // Parameters: // // Input, double X, the value to which function is to be // integrated. X must be in the range [0,1] inclusive. // // Input, double P, the first parameter. P must be greater // than 0.0. // // Input, double Q, the second parameter. Q must be greater // than 0.0. // // Output, int *IER, error parameter. // 0, normal exit. // 1, X is not in the range [0,1] inclusive. // 2, P or Q is less than or equal to 0. // // Output, double MDBETA. The probability that a random variable // from a Beta distribution having parameters P and Q will be less than // or equal to X. // // Local parameters: // // Local, double ALEPS, the logarithm of EPS1. // // Local, double EPS, the machine precision. // // Local, double EPS1, the smallest representable number. // { double aleps = - 179.6016; double c; double cnt; double d4; double dp; double dq; double eps = 2.2E-16; double eps1 = 1.0E-78; double finsum; int ib; int ifault; double infsum; int interval; double p1; double pq; double prob; double ps; double px; double temp; double wh; double xb; double y; // // Check ranges of the arguments. // prob = 0.0; y = x; if ( x < 0.0 || 1.0 < x ) { *ier = 1; return prob; } if ( p <= 0.0 || q <= 0.0 ) { *ier = 2; return prob; } *ier = 0; if ( x <= 0.5 ) { interval = 0; } else { interval = 1; temp = p; p = q; q = temp; y = 1.0 - y; } if ( x == 0.0 || x == 1.0 ) { prob = 0.0; if ( interval != 0 ) { prob = 1.0 - prob; temp = p; p = q; q = temp; } return prob; } ib = q; temp = ib; ps = q - ( double ) ( ib ); if ( q == temp ) { ps = 1.0; } dp = p; dq = q; px = dp * log ( y ); pq = alogam ( dp + dq, &ifault ); p1 = alogam ( dp, &ifault ); c = alogam ( dq, &ifault ); d4 = log ( dp ); xb = px + alogam ( ps + dp, &ifault ) - alogam ( ps, &ifault ) - d4 - p1; // // Scaling // ib = ( int ) ( xb / aleps ); infsum = 0.0; // // First term of a decreasing series will underflow. // if ( ib == 0 ) { infsum = exp ( xb ); cnt = infsum * dp; // // CNT will equal dexp ( temp ) * ( 1.d0 - ps ) * i * p * y**i / factorial ( i ). // wh = 0.0; for ( ; ; ) { wh = wh + 1.0; cnt = cnt * ( wh - ps ) * y / wh; xb = cnt / ( dp + wh ); infsum = infsum + xb; if ( xb / eps < infsum ) { break; } } } finsum = 0.0; if ( dq <= 1.0 ) { prob = finsum + infsum; if ( interval != 0 ) { prob = 1.0 - prob; temp = p; p = q; q = temp; } return prob; } xb = px + dq * log ( 1.0 - y ) + pq - p1 - log ( dq ) - c; // // Scaling. // ib = ( int ) ( xb / aleps ); if ( ib < 0 ) { ib = 0; } c = 1.0 / ( 1.0 - y ); cnt = exp ( xb - ( double ) ( ib ) * aleps ); ps = dq; wh = dq; for ( ; ; ) { wh = wh - 1.0; if ( wh <= 0.0 ) { prob = finsum + infsum; if ( interval != 0 ) { prob = 1.0 - prob; temp = p; p = q; q = temp; } break; } px = ( ps * c ) / ( dp + wh ); if ( px <= 1.0 ) { if ( cnt / eps <= finsum || cnt <= eps1 / px ) { prob = finsum + infsum; if ( interval != 0 ) { prob = 1.0 - prob; temp = p; p = q; q = temp; } break; } } cnt = cnt * px; // // Rescale. // if ( 1.0 < cnt ) { ib = ib - 1; cnt = cnt * eps1; } ps = wh; if ( ib == 0 ) { finsum = finsum + cnt; } } return prob; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = x; } else { value = -x; } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }