# include # include # include # include # include using namespace std; # include "toms743.hpp" //****************************************************************************80 double bisect ( double xx, int nb, int &ner, int l ) //****************************************************************************80 // // Purpose: // // BISECT approximates the W function using bisection. // // Discussion: // // The parameter TOL, which determines the accuracy of the bisection // method, is calculated using NBITS (assuming the final bit is lost // due to rounding error). // // N0 is the maximum number of iterations used in the bisection // method. // // For XX close to 0 for Wp, the exponential approximation is used. // The approximation is exact to O(XX^8) so, depending on the value // of NBITS, the range of application of this formula varies. Outside // this range, the usual bisection method is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 June 2014 // // Author: // // Original FORTRAN77 version by Andrew Barry, S. J. Barry, // Patricia Culligan-Hensley. // This C++ version by John Burkardt. // // Reference: // // Andrew Barry, S. J. Barry, Patricia Culligan-Hensley, // Algorithm 743: WAPR - A Fortran routine for calculating real // values of the W-function, // ACM Transactions on Mathematical Software, // Volume 21, Number 2, June 1995, pages 172-181. // // Parameters: // // Input, double XX, the argument. // // Input, int NB, indicates the branch of the W function. // 0, the upper branch; // nonzero, the lower branch. // // Output, int &NER, the error flag. // 0, success; // 1, the routine did not converge. Perhaps reduce NBITS and try again. // // Input, int L, the offset indicator. // 1, XX represents the offset of the argument from -exp(-1). // not 1, XX is the actual argument. // // Output, double BISECT, the value of W(X), as determined // { double d; double f; double fd; int i; const int n0 = 500; static int nbits = 0; double r; double test; double tol; double u; double value; double x; value = 0.0; ner = 0; if ( nbits == 0 ) { nbits = nbits_compute ( ); } if ( l == 1 ) { x = xx - exp ( -1.0 ); } else { x = xx; } if ( nb == 0 ) { test = 1.0 / pow ( pow ( 2.0, nbits ), ( 1.0 / 7.0 ) ); if ( fabs ( x ) < test ) { value = x * exp ( - x * exp ( - x * exp ( - x * exp ( - x * exp ( - x * exp ( - x )))))); return value; } else { u = crude ( x, nb ) + 1.0E-03; tol = fabs ( u ) / pow ( 2.0, nbits ); d = r8_max ( u - 2.0E-03, -1.0 ); for ( i = 1; i <= n0; i++ ) { r = 0.5 * ( u - d ); value = d + r; // // Find root using w*exp(w)-x to avoid ln(0) error. // if ( x < exp ( 1.0 ) ) { f = value * exp ( value ) - x; fd = d * exp ( d ) - x; } // // Find root using ln(w/x)+w to avoid overflow error. // else { f = log ( value / x ) + value; fd = log ( d / x ) + d; } if ( f == 0.0 ) { return value; } if ( fabs ( r ) <= tol ) { return value; } if ( 0.0 < fd * f ) { d = value; } else { u = value; } } } } else { d = crude ( x, nb ) - 1.0E-03; u = r8_min ( d + 2.0E-03, -1.0 ); tol = fabs ( u ) / pow ( 2.0, nbits ); for ( i = 1; i <= n0; i++ ) { r = 0.5 * ( u - d ); value = d + r; f = value * exp ( value ) - x; if ( f == 0.0 ) { return value; } if ( fabs ( r ) <= tol ) { return value; } fd = d * exp ( d ) - x; if ( 0.0 < fd * f ) { d = value; } else { u = value; } } } // // The iteration did not converge. // ner = 1; return value; } //****************************************************************************80 double crude ( double xx, int nb ) //****************************************************************************80 // // Purpose: // // CRUDE returns a crude approximation for the W function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 June 2014 // // Author: // // Original FORTRAN77 version by Andrew Barry, S. J. Barry, // Patricia Culligan-Hensley. // This C++ version by John Burkardt. // // Reference: // // Andrew Barry, S. J. Barry, Patricia Culligan-Hensley, // Algorithm 743: WAPR - A Fortran routine for calculating real // values of the W-function, // ACM Transactions on Mathematical Software, // Volume 21, Number 2, June 1995, pages 172-181. // // Parameters: // // Input, double XX, the argument. // // Input, int NB, indicates the desired branch. // * 0, the upper branch; // * nonzero, the lower branch. // // Output, double CRUDE, the crude approximation to W at XX. // { double an2; static double c13; double crude; static double em; static double em2; static double em9; double eta; static int init = 0; double reta; static double s2; static double s21; static double s22; static double s23; double t; double ts; double value; double zl; value = 0.0; // // Various mathematical constants. // if ( init == 0 ) { init = 1; em = - exp ( -1.0 ); em9 = - exp ( -9.0 ); c13 = 1.0 / 3.0; em2 = 2.0 / em; s2 = sqrt ( 2.0 ); s21 = 2.0 * s2 - 3.0; s22 = 4.0 - 3.0 * s2; s23 = s2 - 2.0; } // // Crude Wp. // if ( nb == 0 ) { if ( xx <= 20.0 ) { reta = s2 * sqrt ( 1.0 - xx / em ); an2 = 4.612634277343749 * sqrt ( sqrt ( reta + 1.09556884765625 ) ); value = reta / ( 1.0 + reta / ( 3.0 + ( s21 * an2 + s22 ) * reta / ( s23 * ( an2 + reta )))) - 1.0; } else { zl = log ( xx ); value = log ( xx / log ( xx / pow ( zl, exp ( -1.124491989777808 / ( 0.4225028202459761 + zl )) ) )); } } // // Crude Wm. // else { if ( xx <= em9 ) { zl = log ( -xx ); t = -1.0 - zl; ts = sqrt ( t ); value = zl - ( 2.0 * ts ) / ( s2 + ( c13 - t / ( 270.0 + ts * 127.0471381349219 ) ) * ts ); } else { zl = log ( -xx ); eta = 2.0 - em2 * xx; value = log ( xx / log ( - xx / ( ( 1.0 - 0.5043921323068457 * ( zl + 1.0 ) ) * ( sqrt ( eta ) + eta / 3.0 ) + 1.0 ) ) ); } } return value; } //****************************************************************************80 int nbits_compute ( ) //****************************************************************************80 // // Purpose: // // NBITS_COMPUTE computes the mantissa length minus one. // // Discussion: // // NBITS is the number of bits (less 1) in the mantissa of the // floating point number number representation of your machine. // It is used to determine the level of accuracy to which the W // function should be calculated. // // Most machines use a 24-bit matissa for single precision and // 53-56 bits for double. The IEEE standard is 53 // bits. The Fujitsu VP2200 uses 56 bits. Long word length // machines vary, e.g., the Cray X/MP has a 48-bit mantissa for // single precision. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 June 2014 // // Author: // // Original FORTRAN77 version by Andrew Barry, S. J. Barry, // Patricia Culligan-Hensley. // This C++ version by John Burkardt. // // Reference: // // Andrew Barry, S. J. Barry, Patricia Culligan-Hensley, // Algorithm 743: WAPR - A Fortran routine for calculating real // values of the W-function, // ACM Transactions on Mathematical Software, // Volume 21, Number 2, June 1995, pages 172-181. // // Parameters: // // Output, int NBITS_COMPUTE, the mantissa length, in bits, // minus one. // { double b; int i; int nbits; double v; nbits = 0; b = 1.0; for ( ; ; ) { b = b / 2.0; v = b + 1.0; if ( v == 1.0 ) { break; } nbits = nbits + 1; } return nbits; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 May 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 May 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double wapr ( double x, int nb, int &nerror, int l ) //****************************************************************************80 // // WAPR approximates the W function. // // Discussion: // // The call will fail if the input value X is out of range. // The range requirement for the upper branch is: // -exp(-1) <= X. // The range requirement for the lower branch is: // -exp(-1) < X < 0. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 June 2014 // // Author: // // Original FORTRAN77 version by Andrew Barry, S. J. Barry, // Patricia Culligan-Hensley. // This C++ version by John Burkardt. // // Reference: // // Andrew Barry, S. J. Barry, Patricia Culligan-Hensley, // Algorithm 743: WAPR - A Fortran routine for calculating real // values of the W-function, // ACM Transactions on Mathematical Software, // Volume 21, Number 2, June 1995, pages 172-181. // // Parameters: // // Input, double X, the argument. // // Input, int NB, indicates the desired branch. // * 0, the upper branch; // * nonzero, the lower branch. // // Output, int &NERROR, the error flag. // * 0, successful call. // * 1, failure, the input X is out of range. // // Input, int L, indicates the interpretation of X. // * 1, X is actually the offset from -(exp-1), so compute W(X-exp(-1)). // * not 1, X is the argument; compute W(X); // // Output, double WAPR, the approximate value of W(X). // { double an2; static double an3; static double an4; static double an5; static double an6; static double c13; static double c23; static double d12; double delx; static double em; static double em2; static double em9; double eta; int i; static int init = 0; int m; static int nbits; static int niter = 1; double reta; static double s2; static double s21; static double s22; static double s23; double t; static double tb; static double tb2; double temp; double temp2; double ts; double value; static double x0; static double x1; double xx; double zl; double zn; value = 0.0; nerror = 0; if ( init == 0 ) { init = 1; nbits = nbits_compute ( ); if ( 56 <= nbits ) { niter = 2; } // // Various mathematical constants. // em = -exp ( -1.0 ); em9 = -exp ( -9.0 ); c13 = 1.0 / 3.0; c23 = 2.0 * c13; em2 = 2.0 / em; d12 = -em2; tb = pow ( 0.5, nbits ); tb2 = sqrt ( tb ); x0 = pow ( tb, 1.0 / 6.0 ) * 0.5; x1 = ( 1.0 - 17.0 * pow ( tb, 2.0 / 7.0 ) ) * em; an3 = 8.0 / 3.0; an4 = 135.0 / 83.0; an5 = 166.0 / 39.0; an6 = 3167.0 / 3549.0; s2 = sqrt ( 2.0 ); s21 = 2.0 * s2 - 3.0; s22 = 4.0 - 3.0 * s2; s23 = s2 - 2.0; } if ( l == 1 ) { delx = x; if ( delx < 0.0 ) { nerror = 1; cerr << "\n"; cerr << "WAPR - Fatal error!\n"; cerr << " The offset X is negative.\n"; cerr << " It must be nonnegative.\n"; exit ( 1 ); } xx = x + em; } else { if ( x < em ) { nerror = 1; return value; } else if ( x == em ) { value = -1.0; return value; } xx = x; delx = xx - em; } // // Calculations for Wp. // if ( nb == 0 ) { if ( fabs ( xx ) <= x0 ) { value = xx / ( 1.0 + xx / ( 1.0 + xx / ( 2.0 + xx / ( 0.6 + 0.34 * xx )))); return value; } else if ( xx <= x1 ) { reta = sqrt ( d12 * delx ); value = reta / ( 1.0 + reta / ( 3.0 + reta / ( reta / ( an4 + reta / ( reta * an6 + an5 ) ) + an3 ) ) ) - 1.0; return value; } else if ( xx <= 20.0 ) { reta = s2 * sqrt ( 1.0 - xx / em ); an2 = 4.612634277343749 * sqrt ( sqrt ( reta + 1.09556884765625 )); value = reta / ( 1.0 + reta / ( 3.0 + ( s21 * an2 + s22 ) * reta / ( s23 * ( an2 + reta )))) - 1.0; } else { zl = log ( xx ); value = log ( xx / log ( xx / pow ( zl, exp ( -1.124491989777808 / ( 0.4225028202459761 + zl )) ) )); } } // // Calculations for Wm. // else { if ( 0.0 <= xx ) { nerror = 1; return value; } else if ( xx <= x1 ) { reta = sqrt ( d12 * delx ); value = reta / ( reta / ( 3.0 + reta / ( reta / ( an4 + reta / ( reta * an6 - an5 ) ) - an3 ) ) - 1.0 ) - 1.0; return value; } else if ( xx <= em9 ) { zl = log ( -xx ); t = -1.0 - zl; ts = sqrt ( t ); value = zl - ( 2.0 * ts ) / ( s2 + ( c13 - t / ( 270.0 + ts * 127.0471381349219 )) * ts ); } else { zl = log ( -xx ); eta = 2.0 - em2 * xx; value = log ( xx / log ( -xx / ( ( 1.0 - 0.5043921323068457 * ( zl + 1.0 ) ) * ( sqrt ( eta ) + eta / 3.0 ) + 1.0 ))); } } for ( i = 1; i <= niter; i++ ) { zn = log ( xx / value ) - value; temp = 1.0 + value; temp2 = temp + c23 * zn; temp2 = 2.0 * temp * temp2; value = value * ( 1.0 + ( zn / temp ) * ( temp2 - zn ) / ( temp2 - 2.0 * zn ) ); } return value; }