# include # include # include # include using namespace std; # include "triangle_grid.hpp" //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double *triangle_grid ( int n, double t[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_GRID computes points on a triangular grid. // // Discussion: // // The grid is defined by specifying the coordinates of an enclosing // triangle T, and the number of subintervals each side of the triangle // should be divided into. // // Choosing N = 10, for instance, breaks each side into 10 subintervals, // and produces a grid of ((10+1)*(10+2))/2 = 66 points. // // X // 9 X // 8 9 X // 7 8 9 X // 6 7 8 9 X // 5 6 7 8 9 X // 4 5 6 7 8 9 X // 3 4 5 6 7 8 9 X // 2 3 4 5 6 7 8 9 X // 1 2 3 4 5 6 7 8 9 X // 0 1 2 3 4 5 6 7 8 9 X // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 September 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of subintervals. // // Input, double T[2*3], the coordinates of the points // defining the triangle. // // Output, double *TRIANGLE_GRID[2*((N+1)*(N+2))/2], the coordinates // of the points in the triangle. // { int i; double ir; int j; double jr; int k; double kr; int l; int ng; double nr; int p; double *tg; ng = ( ( n + 1 ) * ( n + 2 ) ) / 2; tg = new double[2*ng]; p = 0; nr = ( double ) ( n ); for ( i = 0; i <= n; i++ ) { ir = ( double ) ( i ); for ( j = 0; j <= n - i; j++ ) { jr = ( double ) ( j ); k = n - i - j; kr = ( double ) ( k ); for ( l = 0; l < 2; l++ ) { tg[l+p*2] = ( ir * t[l+0*2] + jr * t[l+1*2] + kr * t[l+2*2] ) / nr; } p = p + 1; } } return tg; }