# include # include # include # include # include # include # include using namespace std; # include "triangulation.hpp" //****************************************************************************80 void alpha_measure ( int n, double z[], int triangle_order, int triangle_num, int triangle_node[], double *alpha_min, double *alpha_ave, double *alpha_area ) //****************************************************************************80 // // Purpose: // // ALPHA_MEASURE determines the triangulated pointset quality measure ALPHA. // // Discusion: // // The ALPHA measure evaluates the uniformity of the shapes of the triangles // defined by a triangulated pointset. // // We compute the minimum angle among all the triangles in the triangulated // dataset and divide by the maximum possible value (which, in degrees, // is 60). The best possible value is 1, and the worst 0. A good // triangulation should have an ALPHA score close to 1. // // The code has been modified to 'allow' 6-node triangulations. // However, no effort is made to actually process the midside nodes. // Only information from the vertices is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of points. // // Input, real ( kind = 8 ) Z(2,N), the points. // // Input, int TRIANGLE_ORDER, the order of the triangles. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE(TRIANGLE_ORDER,TRIANGLE_NUM), // the triangulation. // // Output, double *ALPHA_MIN, the minimum value of ALPHA over all // triangles. // // Output, double *ALPHA_AVE, the value of ALPHA averaged over // all triangles. // // Output, double *ALPHA_AREA, the value of ALPHA averaged over // all triangles and weighted by area. // { double a_angle; int a_index; double a_x; double a_y; double ab_len; double alpha; double area; double area_total; double b_angle; int b_index; double b_x; double b_y; double bc_len; double c_angle; int c_index; double c_x; double c_y; double ca_len; double pi = 3.141592653589793; int triangle; double value; *alpha_min = r8_huge ( ); *alpha_ave = 0.0; *alpha_area = 0.0; area_total = 0.0; for ( triangle = 0; triangle < triangle_num; triangle++ ) { a_index = triangle_node[0+triangle*triangle_order]; b_index = triangle_node[1+triangle*triangle_order]; c_index = triangle_node[2+triangle*triangle_order]; a_x = z[0+(a_index-1)*2]; a_y = z[1+(a_index-1)*2]; b_x = z[0+(b_index-1)*2]; b_y = z[1+(b_index-1)*2]; c_x = z[0+(c_index-1)*2]; c_y = z[1+(c_index-1)*2]; area = 0.5 * r8_abs ( a_x * ( b_y - c_y ) + b_x * ( c_y - a_y ) + c_x * ( a_y - b_y ) ); ab_len = sqrt ( pow ( a_x - b_x, 2 ) + pow ( a_y - b_y, 2 ) ); bc_len = sqrt ( pow ( b_x - c_x, 2 ) + pow ( b_y - c_y, 2 ) ); ca_len = sqrt ( pow ( c_x - a_x, 2 ) + pow ( c_y - a_y, 2 ) ); // // Take care of a ridiculous special case. // if ( ab_len == 0.0 && bc_len == 0.0 && ca_len == 0.0 ) { a_angle = 2.0 * pi / 3.0; b_angle = 2.0 * pi / 3.0; c_angle = 2.0 * pi / 3.0; } else { if ( ca_len == 0.0 || ab_len == 0.0 ) { a_angle = pi; } else { a_angle = arc_cosine ( ( ca_len * ca_len + ab_len * ab_len - bc_len * bc_len ) / ( 2.0 * ca_len * ab_len ) ); } if ( ab_len == 0.0 || bc_len == 0.0 ) { b_angle = pi; } else { b_angle = arc_cosine ( ( ab_len * ab_len + bc_len * bc_len - ca_len * ca_len ) / ( 2.0 * ab_len * bc_len ) ); } if ( bc_len == 0.0 || ca_len == 0.0 ) { c_angle = pi; } else { c_angle = arc_cosine ( ( bc_len * bc_len + ca_len * ca_len - ab_len * ab_len ) / ( 2.0 * bc_len * ca_len ) ); } } *alpha_min = r8_min ( *alpha_min, a_angle ); *alpha_min = r8_min ( *alpha_min, b_angle ); *alpha_min = r8_min ( *alpha_min, c_angle ); *alpha_ave = *alpha_ave + *alpha_min; *alpha_area = *alpha_area + area * *alpha_min; area_total = area_total + area; } *alpha_ave = *alpha_ave / ( double ) ( triangle_num ); *alpha_area = *alpha_area / area_total; // // Normalize angles from [0,pi/3] radians into qualities in [0,1]. // *alpha_min = *alpha_min * 3.0 / pi; *alpha_ave = *alpha_ave * 3.0 / pi; *alpha_area = *alpha_area * 3.0 / pi; return; } //****************************************************************************80 double angle_rad_2d ( double p1[2], double p2[2], double p3[2] ) //****************************************************************************80 // // Purpose: // // ANGLE_RAD_2D returns the angle in radians swept out between two rays in 2D. // // Discussion: // // ANGLE_RAD_2D ( P1, P2, P3 ) + ANGLE_RAD_2D ( P3, P2, P1 ) = 2 * PI // // P1 // / // / // / // / // P2--------->P3 // // Modified: // // 24 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double P1[2], P2[2], P3[2], define the rays // P1 - P2 and P3 - P2 which define the angle. // // Output, double ANGLE_RAD_3D, the angle between the two rays, // in radians. This value will always be between 0 and 2*PI. If either ray has // zero length, then the angle is returned as zero. // { # define DIM_NUM 2 double p[DIM_NUM]; double pi = 3.141592653589793; double value; p[0] = ( p3[0] - p2[0] ) * ( p1[0] - p2[0] ) + ( p3[1] - p2[1] ) * ( p1[1] - p2[1] ); p[1] = ( p3[0] - p2[0] ) * ( p1[1] - p2[1] ) - ( p3[1] - p2[1] ) * ( p1[0] - p2[0] ); if ( p[0] == 0.0 && p[1] == 0.0 ) { value = 0.0; return value; } value = atan2 ( p[1], p[0] ); if ( value < 0.0 ) { value = value + 2.0 * pi; } return value; # undef DIM_NUM } //****************************************************************************80 double arc_cosine ( double c ) //****************************************************************************80 // // Purpose: // // ARC_COSINE computes the arc cosine function, with argument truncation. // // Discussion: // // If you call your system ACOS routine with an input argument that is // outside the range [-1.0, 1.0 ], you may get an unpleasant surprise. // This routine truncates arguments outside the range. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2002 // // Author: // // John Burkardt // // Parameters: // // Input, double C, the argument, the cosine of an angle. // // Output, double ARC_COSINE, an angle whose cosine is C. // { # define PI 3.141592653589793 double value; if ( c <= -1.0 ) { value = PI; } else if ( 1.0 <= c ) { value = 0.0; } else { value = acos ( c ); } return value; # undef PI } //****************************************************************************80 void area_measure ( int n, double z[], int triangle_order, int triangle_num, int triangle_node[], double *area_min, double *area_max, double *area_ratio, double *area_ave, double *area_std ) //****************************************************************************80 // // Purpose: // // AREA_MEASURE determines the area ratio quality measure. // // Discusion: // // This measure computes the area of every triangle, and returns // the ratio of the minimum to the maximum triangle. A value of // 1 is "perfect", indicating that all triangles have the same area. // A value of 0 is the worst possible result. // // The code has been modified to 'allow' 6-node triangulations. // However, no effort is made to actually process the midside nodes. // Only information from the vertices is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of points. // // Input, double Z[2*N], the points. // // Input, int TRIANGLE_ORDER, the order of the triangles. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[TRIANGLE_ORDER*TRIANGLE_NUM], // the triangulation. // // Output, double *AREA_MIN, *AREA_MAX, the minimum and maximum // areas. // // Output, double *AREA_RATIO, the ratio of the minimum to the // maximum area. // // Output, double *AREA_AVE, the average area. // // Output, double *AREA_STD, the standard deviation of the areas. // { double area; int triangle; double value; double x1; double x2; double x3; double y1; double y2; double y3; *area_max = 0.0; *area_min = r8_huge ( ); *area_ave = 0.0; for ( triangle = 0; triangle < triangle_num; triangle++ ) { x1 = z[0+(triangle_node[0+triangle*triangle_order]-1)*2]; y1 = z[1+(triangle_node[0+triangle*triangle_order]-1)*2]; x2 = z[0+(triangle_node[1+triangle*triangle_order]-1)*2]; y2 = z[1+(triangle_node[1+triangle*triangle_order]-1)*2]; x3 = z[0+(triangle_node[2+triangle*triangle_order]-1)*2]; y3 = z[1+(triangle_node[2+triangle*triangle_order]-1)*2]; area = 0.5 * r8_abs ( x1 * ( y2 - y3 ) + x2 * ( y3 - y1 ) + x3 * ( y1 - y2 ) ); *area_min = r8_min ( *area_min, area ); *area_max = r8_max ( *area_max, area ); *area_ave = *area_ave + area; } *area_ave = *area_ave / ( double ) ( triangle_num ); *area_std = 0.0; for ( triangle = 0; triangle < triangle_num; triangle++ ) { x1 = z[0+(triangle_node[0+triangle*triangle_order]-1)*2]; y1 = z[1+(triangle_node[0+triangle*triangle_order]-1)*2]; x2 = z[0+(triangle_node[1+triangle*triangle_order]-1)*2]; y2 = z[1+(triangle_node[1+triangle*triangle_order]-1)*2]; x3 = z[0+(triangle_node[2+triangle*triangle_order]-1)*2]; y3 = z[1+(triangle_node[2+triangle*triangle_order]-1)*2]; area = 0.5 * r8_abs ( x1 * ( y2 - y3 ) + x2 * ( y3 - y1 ) + x3 * ( y1 - y2 ) ); *area_std = *area_std + pow ( area - *area_ave, 2 ); } *area_std = sqrt ( *area_std / ( double ) ( triangle_num ) ); if ( 0.0 < *area_max ) { *area_ratio = *area_min / *area_max; } else { *area_ratio = 0.0; } return; } //****************************************************************************80 void bandwidth ( int element_order, int element_num, int element_node[], int *ml, int *mu, int *m ) //****************************************************************************80 // // Purpose: // // BANDWIDTH determines the bandwidth associated with the finite element mesh. // // Discussion: // // The quantity computed here is the "geometric" bandwidth determined // by the finite element mesh alone. // // If a single finite element variable is associated with each node // of the mesh, and if the nodes and variables are numbered in the // same way, then the geometric bandwidth is the same as the bandwidth // of a typical finite element matrix. // // The bandwidth M is defined in terms of the lower and upper bandwidths: // // M = ML + 1 + MU // // where // // ML = maximum distance from any diagonal entry to a nonzero // entry in the same row, but earlier column, // // MU = maximum distance from any diagonal entry to a nonzero // entry in the same row, but later column. // // Because the finite element node adjacency relationship is symmetric, // we are guaranteed that ML = MU. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int ELEMENT_ORDER, the order of the elements. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM]; // ELEMENT_NODE(I,J) is the global index of local node I in element J. // // Output, int *ML, *MU, the lower and upper bandwidths of the matrix. // // Output, int *M, the bandwidth of the matrix. // { int element; int global_i; int global_j; int local_i; int local_j; *ml = 0; *mu = 0; for ( element = 0; element < element_num; element++ ) { for ( local_i = 0; local_i < element_order; local_i++ ) { global_i = element_node[local_i+element*element_order]; for ( local_j = 0; local_j < element_order; local_j++ ) { global_j = element_node[local_j+element*element_order]; *mu = i4_max ( *mu, global_j - global_i ); *ml = i4_max ( *ml, global_i - global_j ); } } } *m = *ml + 1 + *mu; return; } //****************************************************************************80 bool delaunay_swap_test ( double xy[] ) //****************************************************************************80 // // Purpose: // // DELAUNAY_SWAP_TEST performs the Delaunay swap test. // // Discussion: // // The current triangles are formed by nodes [0+2,3) and [0+3,4). // if a swap is recommended, the new triangles will be [0+2,4) and [1+3,4). // // 4 ? 4 // / \ /|\ // 1---3 ==> 1 | 3 // \ / \|/ // 2 2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 June 2009 // // Author: // // John Burkardt // // Reference: // // Graham Carey, // Computational Grids: // Generation, Adaptation and Solution Strategies, // Taylor and Francis, 1997, // ISBN13: 978-1560326359, // LC: QA377.C32. // // Parameters: // // Input, double XY[2*4], the coordinates of four points. // // Output, bool SWAP, is TRUE if the triangles [0+2,4) and [1+3,4) // are to replace triangles [0+2,3) and [0+3,4). // { double a; double b; double c; double d; bool swap; double x13; double x14; double x23; double x24; double y13; double y14; double y23; double y24; x13 = xy[0+0*2] - xy[0+2*2]; x14 = xy[0+0*2] - xy[0+3*2]; x23 = xy[0+1*2] - xy[0+2*2]; x24 = xy[0+1*2] - xy[0+3*2]; y13 = xy[1+0*2] - xy[1+2*2]; y14 = xy[1+0*2] - xy[1+3*2]; y23 = xy[1+1*2] - xy[1+2*2]; y24 = xy[1+1*2] - xy[1+3*2]; a = x13 * x23 + y13 * y23; b = x24 * y14 - x14 * y24; c = x23 * y13 - x13 * y23; d = x24 * x14 + y14 * y24; // // The reference gives two initial tests before the // main one. However, there seems to be an error // in at least one of these tests. Since they are // intended to avoid error in borderline cases, but // instead cause real error in common cases, they are // omitted for now. // // if ( 0.0 <= a && 0.0 <= d ) // { // swap = true; // } // else if ( a < d && d < 0.0 ) // { // swap = true; // } // else if ... if ( a * b < c * d ) { swap = true; } else { swap = false; } return swap; } //****************************************************************************80 int diaedg ( double x0, double y0, double x1, double y1, double x2, double y2, double x3, double y3 ) //****************************************************************************80 // // Purpose: // // DIAEDG chooses a diagonal edge. // // Discussion: // // The routine determines whether 0--2 or 1--3 is the diagonal edge // that should be chosen, based on the circumcircle criterion, where // (X0,Y0), (X1,Y1), (X2,Y2), (X3,Y3) are the vertices of a simple // quadrilateral in counterclockwise order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 August 2003 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double X0, Y0, X1, Y1, X2, Y2, X3, Y3, the coordinates of the // vertices of a quadrilateral, given in counter clockwise order. // // Output, int DIAEDG, chooses a diagonal: // +1, if diagonal edge 02 is chosen; // -1, if diagonal edge 13 is chosen; // 0, if the four vertices are cocircular. // { double ca; double cb; double dx10; double dx12; double dx30; double dx32; double dy10; double dy12; double dy30; double dy32; double s; double tol; double tola; double tolb; int value; tol = 100.0 * r8_epsilon ( ); dx10 = x1 - x0; dy10 = y1 - y0; dx12 = x1 - x2; dy12 = y1 - y2; dx30 = x3 - x0; dy30 = y3 - y0; dx32 = x3 - x2; dy32 = y3 - y2; tola = tol * r8_max ( fabs ( dx10 ), r8_max ( fabs ( dy10 ), r8_max ( fabs ( dx30 ), fabs ( dy30 ) ) ) ); tolb = tol * r8_max ( fabs ( dx12 ), r8_max ( fabs ( dy12 ), r8_max ( fabs ( dx32 ), fabs ( dy32 ) ) ) ); ca = dx10 * dx30 + dy10 * dy30; cb = dx12 * dx32 + dy12 * dy32; if ( tola < ca && tolb < cb ) { value = -1; } else if ( ca < -tola && cb < -tolb ) { value = 1; } else { tola = r8_max ( tola, tolb ); s = ( dx10 * dy30 - dx30 * dy10 ) * cb + ( dx32 * dy12 - dx12 * dy32 ) * ca; if ( tola < s ) { value = -1; } else if ( s < -tola ) { value = 1; } else { value = 0; } } return value; } //****************************************************************************80 unsigned long get_seed ( ) //****************************************************************************80 // // Purpose: // // GET_SEED returns a random seed for the random number generator. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 September 2003 // // Author: // // John Burkardt // // Parameters: // // Output, unsigned long GET_SEED, a random seed value. // { # define UNSIGNED_LONG_MAX 4294967295UL time_t clock; int i; int hours; int minutes; int seconds; struct tm *lt; static unsigned long seed = 0; time_t tloc; // // If the internal seed is 0, generate a value based on the time. // if ( seed == 0 ) { clock = time ( &tloc ); lt = localtime ( &clock ); // // Extract HOURS. // hours = lt->tm_hour; // // In case of 24 hour clocks, shift so that HOURS is between 1 and 12. // if ( 12 < hours ) { hours = hours - 12; } // // Move HOURS to 0, 1, ..., 11 // hours = hours - 1; minutes = lt->tm_min; seconds = lt->tm_sec; seed = seconds + 60 * ( minutes + 60 * hours ); // // We want values in [1,43200], not [0,43199]. // seed = seed + 1; // // Remap SEED from [1,43200] to [1,UNSIGNED_LONG_MAX]. // seed = ( unsigned long ) ( ( ( double ) seed ) * ( ( double ) UNSIGNED_LONG_MAX ) / ( 60.0 * 60.0 * 12.0 ) ); } // // Never use a seed of 0. // if ( seed == 0 ) { seed = 1; } return seed; # undef UNSIGNED_LONG_MAX } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { if ( i2 < i1 ) { return i1; } else { return i2; } } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the smaller of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { if ( i1 < i2 ) { return i1; } else { return i2; } } //****************************************************************************80 int i4_modp ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_MODP returns the nonnegative remainder of I4 division. // // Formula: // // If // NREM = I4_MODP ( I, J ) // NMULT = ( I - NREM ) / J // then // I = J * NMULT + NREM // where NREM is always nonnegative. // // The MOD function computes a result with the same sign as the // quantity being divided. Thus, suppose you had an angle A, // and you wanted to ensure that it was between 0 and 360. // Then mod(A,360) would do, if A was positive, but if A // was negative, your result would be between -360 and 0. // // On the other hand, I4_MODP(A,360) is between 0 and 360, always. // // Example: // // I J MOD I4_MODP I4_MODP Factorization // // 107 50 7 7 107 = 2 * 50 + 7 // 107 -50 7 7 107 = -2 * -50 + 7 // -107 50 -7 43 -107 = -3 * 50 + 43 // -107 -50 -7 43 -107 = 3 * -50 + 43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number to be divided. // // Input, int J, the number that divides I. // // Output, int I4_MODP, the nonnegative remainder when I is // divided by J. // { int value; if ( j == 0 ) { cout << "\n"; cout << "I4_MODP - Fatal error!\n"; cout << " I4_MODP ( I, J ) called with J = " << j << "\n"; exit ( 1 ); } value = i % j; if ( value < 0 ) { value = value + abs ( j ); } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cout << "\n"; cout << "I4_POWER - Fatal error!\n"; cout << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cout << "\n"; cout << "I4_POWER - Fatal error!\n"; cout << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 int i4_sign ( int i ) //****************************************************************************80 // // Purpose: // // I4_SIGN returns the sign of an I4. // // Discussion: // // The sign of 0 and all positive integers is taken to be +1. // The sign of all negative integers is -1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the integer whose sign is desired. // // Output, int I4_SIGN, the sign of I. { if ( i < 0 ) { return (-1); } else { return 1; } } //****************************************************************************80 void i4_swap ( int *i, int *j ) //****************************************************************************80 // // Purpose: // // I4_SWAP switches two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 January 2002 // // Author: // // John Burkardt // // Parameters: // // Input/output, int *I, *J. On output, the values of I and // J have been interchanged. // { int k; k = *i; *i = *j; *j = k; return; } //****************************************************************************80 int i4_uniform ( int a, int b, int *seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM returns a scaled pseudorandom I4. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 November 2006 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley Interscience, page 95, 1998. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Peter Lewis, Allen Goodman, James Miller // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int *SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM, a number between A and B. // { int k; float r; int value; if ( *seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } r = ( float ) ( *seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) ( i4_min ( a, b ) ) - 0.5 ) + r * ( ( float ) ( i4_max ( a, b ) ) + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = r4_nint ( r ); value = i4_max ( value, i4_min ( a, b ) ); value = i4_min ( value, i4_max ( a, b ) ); return value; } //****************************************************************************80 int i4_wrap ( int ival, int ilo, int ihi ) //****************************************************************************80 // // Purpose: // // I4_WRAP forces an I4 to lie between given limits by wrapping. // // Example: // // ILO = 4, IHI = 8 // // I I4_WRAP // // -2 8 // -1 4 // 0 5 // 1 6 // 2 7 // 3 8 // 4 4 // 5 5 // 6 6 // 7 7 // 8 8 // 9 4 // 10 5 // 11 6 // 12 7 // 13 8 // 14 4 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int IVAL, an integer value. // // Input, int ILO, IHI, the desired bounds for the integer value. // // Output, int I4_WRAP, a "wrapped" version of IVAL. // { int jhi; int jlo; int value; int wide; jlo = i4_min ( ilo, ihi ); jhi = i4_max ( ilo, ihi ); wide = jhi + 1 - jlo; if ( wide == 1 ) { value = jlo; } else { value = jlo + i4_modp ( ival - jlo, wide ); } return value; } //****************************************************************************80 int i4col_compare ( int m, int n, int a[], int i, int j ) //****************************************************************************80 // // Purpose: // // I4COL_COMPARE compares columns I and J of an I4COL. // // Example: // // Input: // // M = 3, N = 4, I = 2, J = 4 // // A = ( // 1 2 3 4 // 5 6 7 8 // 9 10 11 12 ) // // Output: // // I4COL_COMPARE = -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A[M*N], an array of N columns of vectors of length M. // // Input, int I, J, the columns to be compared. // I and J must be between 1 and N. // // Output, int I4COL_COMPARE, the results of the comparison: // -1, column I < column J, // 0, column I = column J, // +1, column J < column I. // { int k; // // Check. // if ( i < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index I = " << i << " is less than 1.\n"; exit ( 1 ); } if ( n < i ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index I = " << i << ".\n"; exit ( 1 ); } if ( j < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index J = " << j << " is less than 1.\n"; exit ( 1 ); } if ( n < j ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index J = " << j << ".\n"; exit ( 1 ); } if ( i == j ) { return 0; } k = 1; while ( k <= m ) { if ( a[k-1+(i-1)*m] < a[k-1+(j-1)*m] ) { return (-1); } else if ( a[k-1+(j-1)*m] < a[k-1+(i-1)*m] ) { return 1; } k = k + 1; } return 0; } //****************************************************************************80 void i4col_sort_a ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4COL_SORT_A ascending sorts an I4COL. // // Discussion: // // In lexicographic order, the statement "X < Y", applied to two // vectors X and Y of length M, means that there is some index I, with // 1 <= I <= M, with the property that // // X(J) = Y(J) for J < I, // and // X(I) < Y(I). // // In other words, X is less than Y if, at the first index where they // differ, the X value is less than the Y value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of A. // // Input, int N, the number of columns of A. // // Input/output, int A[M*N]. // On input, the array of N columns of M vectors; // On output, the columns of A have been sorted in ascending // lexicographic order. // { int i; int indx; int isgn; int j; // // Initialize. // i = 0; indx = 0; isgn = 0; j = 0; // // Call the external heap sorter. // for ( ; ; ) { sort_heap_external ( n, &indx, &i, &j, isgn ); // // Interchange the I and J objects. // if ( 0 < indx ) { i4col_swap ( m, n, a, i, j ); } // // Compare the I and J objects. // else if ( indx < 0 ) { isgn = i4col_compare ( m, n, a, i, j ); } else if ( indx == 0 ) { break; } } return; } //****************************************************************************80 int i4col_sorted_unique_count ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4COL_SORTED_UNIQUE_COUNT counts unique elements in an I4COL. // // Discussion: // // The columns of the array may be ascending or descending sorted. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A[M*N], a sorted array, containing // N columns of data. // // Output, int I4COL_SORTED_UNIQUE_COUNT, the number of unique columns. // { int i; int j1; int j2; int unique_num; if ( n <= 0 ) { unique_num = 0; return unique_num; } unique_num = 1; j1 = 0; for ( j2 = 1; j2 < n; j2++ ) { for ( i = 0; i < m; i++ ) { if ( a[i+j1*m] != a[i+j2*m] ) { unique_num = unique_num + 1; j1 = j2; break; } } } return unique_num; } //****************************************************************************80 void i4col_swap ( int m, int n, int a[], int icol1, int icol2 ) //****************************************************************************80 // // Purpose: // // I4COL_SWAP swaps two columns of an I4COL. // // Discussion: // // The two dimensional information is stored as a one dimensional // array, by columns. // // The row indices are 1 based, NOT 0 based! However, a preprocessor // variable, called OFFSET, can be reset from 1 to 0 if you wish to // use 0-based indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int A[M*N], an array of data. // // Input, int ICOL1, ICOL2, the two columns to swap. // These indices should be between 1 and N. // { # define OFFSET 1 int i; int t; // // Check. // if ( icol1 - OFFSET < 0 || n-1 < icol1 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL1 is out of range.\n"; exit ( 1 ); } if ( icol2 - OFFSET < 0 || n-1 < icol2 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL2 is out of range.\n"; exit ( 1 ); } if ( icol1 == icol2 ) { return; } for ( i = 0; i < m; i++ ) { t = a[i+(icol1-OFFSET)*m]; a[i+(icol1-OFFSET)*m] = a[i+(icol2-OFFSET)*m]; a[i+(icol2-OFFSET)*m] = t; } return; # undef OFFSET } //****************************************************************************80 void i4mat_transpose_print ( int m, int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT prints an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { i4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); cout << "\n"; // // For each row I in the current range... // // Write the header. // cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // cout << setw(5) << j << " "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void i4vec_heap_d ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_HEAP_D reorders an I4VEC into a descending heap. // // Discussion: // // A heap is an array A with the property that, for every index J, // A[J] >= A[2*J+1] and A[J] >= A[2*J+2], (as long as the indices // 2*J+1 and 2*J+2 are legal). // // Diagram: // // A(0) // / \ // A(1) A(2) // / \ / \ // A(3) A(4) A(5) A(6) // / \ / \ // A(7) A(8) A(9) A(10) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 April 1999 // // Author: // // John Burkardt // // Reference: // // Albert Nijenhui, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the size of the input array. // // Input/output, int A[N]. // On input, an unsorted array. // On output, the array has been reordered into a heap. // { int i; int ifree; int key; int m; // // Only nodes (N/2)-1 down to 0 can be "parent" nodes. // for ( i = (n/2)-1; 0 <= i; i-- ) { // // Copy the value out of the parent node. // Position IFREE is now "open". // key = a[i]; ifree = i; for ( ;; ) { // // Positions 2*IFREE + 1 and 2*IFREE + 2 are the descendants of position // IFREE. (One or both may not exist because they equal or exceed N.) // m = 2 * ifree + 1; // // Does the first position exist? // if ( n <= m ) { break; } else { // // Does the second position exist? // if ( m + 1 < n ) { // // If both positions exist, take the larger of the two values, // and update M if necessary. // if ( a[m] < a[m+1] ) { m = m + 1; } } // // If the large descendant is larger than KEY, move it up, // and update IFREE, the location of the free position, and // consider the descendants of THIS position. // if ( key < a[m] ) { a[ifree] = a[m]; ifree = m; } else { break; } } } // // When you have stopped shifting items up, return the item you // pulled out back to the heap. // a[ifree] = key; } return; } //****************************************************************************80 int *i4vec_indicator_new ( int n ) //****************************************************************************80 // // Purpose: // // I4VEC_INDICATOR_NEW sets an I4VEC to the indicator vector. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, int I4VEC_INDICATOR_NEW[N], the array. // { int *a; int i; a = new int[n]; for ( i = 0; i < n; i++ ) { a[i] = i + 1; } return a; } //****************************************************************************80 int i4vec_min ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_MIN returns the value of the minimum element in an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, int A[N], the array to be checked. // // Output, int I4VEC_MIN, the value of the minimum element. This // is set to 0 if N <= 0. // { int i; int value; if ( n <= 0 ) { return 0; } value = a[0]; for ( i = 1; i < n; i++ ) { if ( a[i] < value ) { value = a[i]; } } return value; } //****************************************************************************80 void i4vec_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << " " << setw(8) << a[i] << "\n"; } return; } //****************************************************************************80 void i4vec_reverse ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_REVERSE reverses the elements of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // Input: // // N = 5, // A = ( 11, 12, 13, 14, 15 ). // // Output: // // A = ( 15, 14, 13, 12, 11 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input/output, int A(N), the array to be reversed. // { int i; int j; for ( i = 0; i < n / 2; i++ ) { j = a[i]; a[i] = a[n-1-i]; a[n-1-i] = j; } return; } //****************************************************************************80 void i4vec_sort_heap_a ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SORT_HEAP_A ascending sorts an I4VEC using heap sort. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 April 1999 // // Author: // // John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the number of entries in the array. // // Input/output, int A[N]. // On input, the array to be sorted; // On output, the array has been sorted. // { int n1; int temp; if ( n <= 1 ) { return; } // // 1: Put A into descending heap form. // i4vec_heap_d ( n, a ); // // 2: Sort A. // // The largest object in the heap is in A[0]. // Move it to position A[N-1]. // temp = a[0]; a[0] = a[n-1]; a[n-1] = temp; // // Consider the diminished heap of size N1. // for ( n1 = n-1; 2 <= n1; n1-- ) { // // Restore the heap structure of the initial N1 entries of A. // i4vec_heap_d ( n1, a ); // // Take the largest object from A[0] and move it to A[N1-1]. // temp = a[0]; a[0] = a[n1-1]; a[n1-1] = temp; } return; } //****************************************************************************80 int i4vec_sorted_unique ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SORTED_UNIQUE finds unique elements in a sorted I4VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements in A. // // Input/output, int A[N]. On input, the sorted // integer array. On output, the unique elements in A. // // Output, int I4VEC_SORTED_UNIQUE, the number of unique elements in A. // { int i; int unique_num; unique_num = 0; if ( n <= 0 ) { return unique_num; } unique_num = 1; for ( i = 1; i < n; i++ ) { if ( a[i] != a[unique_num-1] ) { unique_num = unique_num + 1; a[unique_num-1] = a[i]; } } return unique_num; } //****************************************************************************80 int i4vec2_compare ( int n, int a1[], int a2[], int i, int j ) //****************************************************************************80 // // Purpose: // // I4VEC2_COMPARE compares pairs of integers stored in two vectors. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of data items. // // Input, int A1[N], A2[N], contain the two components of each item. // // Input, int I, J, the items to be compared. These values will be // 1-based indices for the arrays A1 and A2. // // Output, int I4VEC2_COMPARE, the results of the comparison: // -1, item I < item J, // 0, item I = item J, // +1, item J < item I. // { int isgn; isgn = 0; if ( a1[i-1] < a1[j-1] ) { isgn = -1; } else if ( a1[i-1] == a1[j-1] ) { if ( a2[i-1] < a2[j-1] ) { isgn = -1; } else if ( a2[i-1] < a2[j-1] ) { isgn = 0; } else if ( a2[j-1] < a2[i-1] ) { isgn = +1; } } else if ( a1[j-1] < a1[i-1] ) { isgn = +1; } return isgn; } //****************************************************************************80 void i4vec2_sort_a ( int n, int a1[], int a2[] ) //****************************************************************************80 // // Purpose: // // I4VEC2_SORT_A ascending sorts a vector of pairs of integers. // // Discussion: // // Each item to be sorted is a pair of integers (I,J), with the I // and J values stored in separate vectors A1 and A2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of items of data. // // Input/output, int A1[N], A2[N], the data to be sorted.. // { int i; int indx; int isgn; int j; int temp; // // Initialize. // i = 0; indx = 0; isgn = 0; j = 0; // // Call the external heap sorter. // for ( ; ; ) { sort_heap_external ( n, &indx, &i, &j, isgn ); // // Interchange the I and J objects. // if ( 0 < indx ) { temp = a1[i-1]; a1[i-1] = a1[j-1]; a1[j-1] = temp; temp = a2[i-1]; a2[i-1] = a2[j-1]; a2[j-1] = temp; } // // Compare the I and J objects. // else if ( indx < 0 ) { isgn = i4vec2_compare ( n, a1, a2, i, j ); } else if ( indx == 0 ) { break; } } return; } //****************************************************************************80 int i4vec2_sorted_unique ( int n, int a1[], int a2[] ) //****************************************************************************80 // // Purpose: // // I4VEC2_SORTED_UNIQUE keeps the unique elements in a array of pairs of integers. // // Discussion: // // Item I is stored as the pair A1(I), A2(I). // // The items must have been sorted, or at least it must be the // case that equal items are stored in adjacent vector locations. // // If the items were not sorted, then this routine will only // replace a string of equal values by a single representative. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 July 2000 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of items. // // Input/output, int A1[N], A2[N]. // On input, the array of N items. // On output, an array of UNIQUE_NUM unique items. // // Output, int I4VEC2_SORTED_UNIQUE, the number of unique items. // { int itest; int unique_num; unique_num = 0; if ( n <= 0 ) { return unique_num; } unique_num = 1; for ( itest = 1; itest < n; itest++ ) { if ( a1[itest] != a1[unique_num-1] || a2[itest] != a2[unique_num-1] ) { a1[unique_num] = a1[itest]; a2[unique_num] = a2[itest]; unique_num = unique_num + 1; } } return unique_num; } //****************************************************************************80 int lrline ( double xu, double yu, double xv1, double yv1, double xv2, double yv2, double dv ) //****************************************************************************80 // // Purpose: // // LRLINE determines where a point lies in relation to a directed line. // // Discussion: // // LRLINE determines whether a point is to the left of, right of, // or on a directed line parallel to a line through given points. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 August 2003 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double XU, YU, XV1, YV1, XV2, YV2, are vertex coordinates; the // directed line is parallel to and at signed distance DV to the left of // the directed line from (XV1,YV1) to (XV2,YV2); (XU,YU) is the vertex for // which the position relative to the directed line is to be determined. // // Input, double DV, the signed distance, positive for left. // // Output, int LRLINE, is +1, 0, or -1 depending on whether (XU,YU) is // to the right of, on, or left of the directed line. LRLINE is 0 if // the line degenerates to a point. // { double dx; double dxu; double dy; double dyu; double t; double tol = 0.0000001; double tolabs; int value; dx = xv2 - xv1; dy = yv2 - yv1; dxu = xu - xv1; dyu = yu - yv1; tolabs = tol * r8_max ( fabs ( dx ), r8_max ( fabs ( dy ), r8_max ( fabs ( dxu ), r8_max ( fabs ( dyu ), fabs ( dv ) ) ) ) ); t = dy * dxu - dx * dyu + dv * sqrt ( dx * dx + dy * dy ); if ( tolabs < t ) { value = 1; } else if ( -tolabs <= t ) { value = 0; } else if ( t < -tolabs ) { value = -1; } return value; } //****************************************************************************80 void lvec_print ( int n, bool a[], string title ) //****************************************************************************80 // // Purpose: // // LVEC_PRINT prints a logical vector. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, bool A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << " " << setw(1) << a[i] << "\n"; } return; } //****************************************************************************80 void mesh_base_one ( int node_num, int element_order, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // MESH_BASE_ONE ensures that the element definition is 1-based. // // Discussion: // // The ELEMENT_NODE array contains nodes indices that form elements. // The convention for node indexing might start at 0 or at 1. // // If this function detects 0-based indexing, it converts to 1-based. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int ELEMENT_ORDER, the order of the elements. // // Input, int ELEMENT_NUM, the number of elements. // // Input/output, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], the element // definitions. // { int element; const int i4_huge = 2147483647; int node; int node_max; int node_min; int order; node_min = + i4_huge; node_max = - i4_huge; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; if ( node < node_min ) { node_min = node; } if ( node_max < node ) { node_max = node; } } } if ( node_min == 0 && node_max == node_num - 1 ) { cout << "\n"; cout << "MESH_BASE_ONE:\n"; cout << " The element indexing appears to be 0-based!\n"; cout << " This will be converted to 1-based.\n"; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { element_node[order+element*element_order] = element_node[order+element*element_order] + 1; } } } else if ( node_min == 1 && node_max == node_num ) { cout << "\n"; cout << "MESH_BASE_ONE:\n"; cout << " The element indexing appears to be 1-based!\n"; cout << " No conversion is necessary.\n"; } else { cout << "\n"; cout << "MESH_BASE_ONE - Warning!\n"; cout << " The element indexing is not of a recognized type.\n"; cout << " NODE_MIN = " << node_min << "\n"; cout << " NODE_MAX = " << node_max << "\n"; cout << " NODE_NUM = " << node_num << "\n"; } return; } //****************************************************************************80 void mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // MESH_BASE_ZERO ensures that the element definition is zero-based. // // Discussion: // // The ELEMENT_NODE array contains nodes indices that form elements. // The convention for node indexing might start at 0 or at 1. // Since a C++ program will naturally assume a 0-based indexing, it is // necessary to check a given element definition and, if it is actually // 1-based, to convert it. // // This function attempts to detect 1-based node indexing and correct it. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int ELEMENT_ORDER, the order of the elements. // // Input, int ELEMENT_NUM, the number of elements. // // Input/output, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], the element // definitions. // { int element; const int i4_huge = 2147483647; int node; int node_max; int node_min; int order; node_min = + i4_huge; node_max = - i4_huge; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; if ( node < node_min ) { node_min = node; } if ( node_max < node ) { node_max = node; } } } if ( node_min == 0 && node_max == node_num - 1 ) { cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 0-based!\n"; cout << " No conversion is necessary.\n"; } else if ( node_min == 1 && node_max == node_num ) { cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 1-based!\n"; cout << " This will be converted to 0-based.\n"; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { element_node[order+element*element_order] = element_node[order+element*element_order] - 1; } } } else { cout << "\n"; cout << "MESH_BASE_ZERO - Warning!\n"; cout << " The element indexing is not of a recognized type.\n"; cout << " NODE_MIN = " << node_min << "\n"; cout << " NODE_MAX = " << node_max << "\n"; cout << " NODE_NUM = " << node_num << "\n"; } return; } //****************************************************************************80 void node_merge ( int dim_num, int node_num, double node_xy[], double tolerance, int node_rep[] ) //****************************************************************************80 // // Purpose: // // NODE_MERGE detects nodes that should be merged. // // Discussion: // // Two nodes "should" be merged if they are within TOLERANCE distance // of each other. // // With a tolerance of 0, only exactly equal nodes are counted. // // With a positive tolerance, a pair of nodes inside a circle of // radius TOLERANCE result in a count of 1 duplicate. // // However, what do we do if nodes A, B and C are arranged in a line,! // with A and B just within TOLERANCE of each other, and B and C just // within tolerance of each other? What we do here is make a choice // that can be defended consistently. A and B define an equivalence // class because they are closer than TOLERANCE. C is then added to // this equivalence class, because it is within TOLERANCE of at least // on thing in that equivalence class. // // Thus, if 100 nodes are separated pairwise by slightly less // than TOLERANCE, a total of 99 duplicates will be counted. // // The program starts out by giving each node its own label. // If it finds that two nodes should be merged, then the index of // one node is used as the label for both. This process continues // until all nodes have been considered. The number of unique nodes // is the number of unique values in the output quantity NODE_REP. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[DIM_NUM*NODE_NUM], the nodes. // // Input, double TOLERANCE, the maximum distance between // two nodes regarded as duplicate. // // Output, int NODE_REP[NODE_NUM], the "representative" of each node. // NODE_REP(NODE) is the index of a node which is within TOLERANCE of node // NODE, or for which a chain of nodes can be found, all having the // same representative, and all of which are pairwise closer than TOLERANCE. // { double dist; int i; int j; int node1; int node2; int rep; double *rep_dist; rep_dist = new double[node_num]; for ( node1 = 0; node1 < node_num; node1++ ) { node_rep[node1] = node1; } for ( node1 = 0; node1 < node_num; node1++ ) { for ( j = 0; j < node_num; j++ ) { rep_dist[j] = r8_huge ( ); } for ( node2 = 0; node2 < node_num; node2++ ) { dist = 0.0; for ( i = 0; i < dim_num; i++ ) { dist = dist + pow ( node_xy[i+node1*dim_num] - node_xy[i+node2*dim_num], 2 ); } dist = sqrt ( dist ); rep = node_rep[node2]; if ( dist < rep_dist[rep] ) { rep_dist[rep] = dist; } } for ( node2 = 0; node2 < node_num; node2++ ) { rep = node_rep[node2]; if ( rep_dist[rep] <= tolerance ) { node_rep[node2] = node1; } } } delete [] rep_dist; return; } //****************************************************************************80 int ns_adj_col_set ( int node_num, int triangle_num, int variable_num, int triangle_node[], int triangle_neighbor[], int node_u_variable[], int node_v_variable[], int node_p_variable[], int adj_col[] ) //****************************************************************************80 // // Purpose: // // NS_ADJ_COL_SET sets the COL array in a Navier Stokes triangulation. // // Discussion: // // This routine also counts the the value and returns the value of // ADJ_NUM, the number of Navier-Stokes variable adjacencies, which // should be identical to the value that would have been computed // by calling NS_ADJ_COUNT. // // This routine is called to set up the ADJ_COL array, which indicates // the number of entries needed to store each column in the sparse // compressed column storage to be used for the adjancency matrix. // // The triangulation is assumed to involve 6-node triangles. // // Variables for the horizontal and vertical velocities are associated // with every node. Variables for the pressure are associated only with // the vertex nodes. // // We are interested in determining the number of nonzero entries in the // stiffness matrix of the Stokes equations, or the jacobian matrix of // the Navier Stokes equations. To this end, we will say, somewhat // too broadly, that two variables are "adjacent" if their associated // nodes both occur in some common element. This adjacency of variables // I and J is taken to be equivalent to the possible nonzeroness of // matrix entries A(I,J) and A(J,I). // // A sparse compressed column format is used to store the counts for // the nonzeroes. In other words, while the value ADJ_NUM reports the // number of adjacencies, the vector ADJ_COL is sufficient to allow us // to properly set up a sparse compressed matrix for the actual storage // of the sparse matrix, if we desire to proceed. // // Local Node Numbering: // // 3 // s |\ // i | \ // d | \ // e 6 5 side 2 // | \ // 3 | \ // | \ // 1---4---2 // // side 1 // // Variable Diagram: // // UVP // |\ // | \ // | \ // UV UV // | \ // | \ // | \ // UVP--UV--UVP // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 September 2006 // // Author: // // John Burkardt // // Parameters // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int VARIABLE_NUM, the number of variables. // // Input, int TRIANGLE_NODE[6*TRIANGLE_NUM], lists the nodes that // make up each triangle. The first three nodes are the vertices, // in counterclockwise order. The fourth value is the midside // node between nodes 1 and 2; the fifth and sixth values are // the other midside nodes in the logical order. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], for each side of // a triangle, lists the neighboring triangle, or -1 if there is // no neighbor. // // Input, int NODE_U_VARIABLE[NODE_NUM], NODE_V_VARIABLE[NODE_NUM], // NODE_P_VARIABLE[NODE_NUM], the index of the horizontal velocity, // vertical velocity and pressure variables associated with a node, // or -1 if no such variable is associated with the node. // // Output, int ADJ_COL[VARIABLE_NUM+1]. Information about variable J // is stored in entries ADJ_COL[J] through ADJ_COL[J+1]-1 of ADJ. // // Output, int NS_ADJ_COL_SET, the number of Navier Stokes variable // adjacencies. // { int adj_num; int n1; int n2; int n3; int n4; int n5; int n6; int node; int p1; int p2; int p3; int triangle; int triangle_order = 6; int triangle2; int u1; int u2; int u3; int u4; int u5; int u6; int v1; int v2; int v3; int v4; int v5; int v6; int variable; adj_num = 0; // // Set every variable to be adjacent to itself. // for ( variable = 0; variable < variable_num; variable++ ) { adj_col[variable] = 1; } // // Set every variable to be adjacent to the other variables associated with // that node. // // U <=> V // U <=> P (if there is a P variable) // V <=> P (if there is a P variable) // for ( node = 0; node < node_num; node++ ) { u1 = node_u_variable[node] - 1; v1 = node_v_variable[node] - 1; p1 = node_p_variable[node] - 1; adj_col[u1] = adj_col[u1] + 1; adj_col[v1] = adj_col[v1] + 1 ; if ( 0 <= p1 ) { adj_col[u1] = adj_col[u1] + 1; adj_col[v1] = adj_col[v1] + 1; adj_col[p1] = adj_col[p1] + 2; } } // // Examine each triangle. // for ( triangle = 0; triangle < triangle_num; triangle++ ) { n1 = triangle_node[0+triangle*triangle_order] - 1; n2 = triangle_node[1+triangle*triangle_order] - 1; n3 = triangle_node[2+triangle*triangle_order] - 1; n4 = triangle_node[3+triangle*triangle_order] - 1; n5 = triangle_node[4+triangle*triangle_order] - 1; n6 = triangle_node[5+triangle*triangle_order] - 1; u1 = node_u_variable[n1] - 1; v1 = node_v_variable[n1] - 1; p1 = node_p_variable[n1] - 1; u2 = node_u_variable[n2] - 1; v2 = node_v_variable[n2] - 1; p2 = node_p_variable[n2] - 1; u3 = node_u_variable[n3] - 1; v3 = node_v_variable[n3] - 1; p3 = node_p_variable[n3] - 1; u4 = node_u_variable[n4] - 1; v4 = node_v_variable[n4] - 1; u5 = node_u_variable[n5] - 1; v5 = node_v_variable[n5] - 1; u6 = node_u_variable[n6] - 1; v6 = node_v_variable[n6] - 1; // // For sure, we add the new adjacencies: // // U5 V5 <=> U1 V1 P1 // U6 V6 <=> U2 V2 P2 // U4 V4 <=> U3 V3 P3 // U5 V5 <=> U4 V4 // U6 V6 <=> U4 V4 // U6 V6 <=> U5 V5 // adj_col[u1] = adj_col[u1] + 2; adj_col[v1] = adj_col[v1] + 2; adj_col[p1] = adj_col[p1] + 2; adj_col[u2] = adj_col[u2] + 2; adj_col[v2] = adj_col[v2] + 2; adj_col[p2] = adj_col[p2] + 2; adj_col[u3] = adj_col[u3] + 2; adj_col[v3] = adj_col[v3] + 2; adj_col[p3] = adj_col[p3] + 2; adj_col[u4] = adj_col[u4] + 7; adj_col[v4] = adj_col[v4] + 7; adj_col[u5] = adj_col[u5] + 7; adj_col[v5] = adj_col[v5] + 7; adj_col[u6] = adj_col[u6] + 7; adj_col[v6] = adj_col[v6] + 7; // // Add edges (1,2), (1,4), (2,4) if this is the first occurrence, // that is, if the edge (1,4,2) is on a boundary (TRIANGLE2 <= 0) // or if this triangle is the first of the pair in which the edge // occurs (TRIANGLE < TRIANGLE2). // // Maybe add // // U1 V1 P1 <=> U2 V2 P2 // U1 V1 P1 <=> U4 V4 // U2 V2 P2 <=> U4 V4 // triangle2 = triangle_neighbor[0+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_col[u1] = adj_col[u1] + 5; adj_col[v1] = adj_col[v1] + 5; adj_col[p1] = adj_col[p1] + 5; adj_col[u2] = adj_col[u2] + 5; adj_col[v2] = adj_col[v2] + 5; adj_col[p2] = adj_col[p2] + 5; adj_col[u4] = adj_col[u4] + 6; adj_col[v4] = adj_col[v4] + 6; } // // Maybe add // // U2 V2 P2 <=> U3 V3 P3 // U2 V2 P2 <=> U5 V5 // U3 V3 P3 <=> U5 V5 // triangle2 = triangle_neighbor[1+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_col[u2] = adj_col[u2] + 5; adj_col[v2] = adj_col[v2] + 5; adj_col[p2] = adj_col[p2] + 5; adj_col[u3] = adj_col[u3] + 5; adj_col[v3] = adj_col[v3] + 5; adj_col[p3] = adj_col[p3] + 5; adj_col[u5] = adj_col[u5] + 6; adj_col[v5] = adj_col[v5] + 6; } // // Maybe add // // U1 V1 P1 <=> U3 V3 P3 // U1 V1 P1 <=> U6 V6 // U3 V3 P3 <=> U6 V6 // triangle2 = triangle_neighbor[2+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_col[u1] = adj_col[u1] + 5; adj_col[v1] = adj_col[v1] + 5; adj_col[p1] = adj_col[p1] + 5; adj_col[u3] = adj_col[u3] + 5; adj_col[v3] = adj_col[v3] + 5; adj_col[p3] = adj_col[p3] + 5; adj_col[u6] = adj_col[u6] + 6; adj_col[v6] = adj_col[v6] + 6; } } // // We used ADJ_COL to count the number of entries in each column. // Convert it to pointers into the ADJ array. // for ( variable = variable_num; 0 < variable; variable-- ) { adj_col[variable] = adj_col[variable-1]; } adj_col[0] = 1; for ( variable = 1; variable <= variable_num; variable++ ) { adj_col[variable] = adj_col[variable-1] + adj_col[variable]; } adj_num = adj_col[variable_num] - 1; return adj_num; } //****************************************************************************80 int ns_adj_count ( int node_num, int triangle_num, int variable_num, int triangle_node[], int triangle_neighbor[], int node_u_variable[], int node_v_variable[], int node_p_variable[] ) //****************************************************************************80 // // Purpose: // // NS_ADJ_COUNT counts adjacencies in a Navier Stokes triangulation. // // Discussion: // // This routine is called to count the adjacencies, so that the // appropriate amount of memory can be set aside for storage when // the adjacency structure is created. // // The value of ADJ_NUM computed and returned by this routine should // be identical to the value computed by NS_ADJ_COL_SET. // // The triangulation is assumed to involve 6-node triangles. // // Variables for the horizontal and vertical velocities are associated // with every node. Variables for the pressure are associated only with // the vertex nodes. // // We are interested in determining the number of nonzero entries in the // stiffness matrix of the Stokes equations, or the jacobian matrix of // the Navier Stokes equations. To this end, we will say, somewhat // too broadly, that two variables are "adjacent" if their associated // nodes both occur in some common element. This adjacency of variables // I and J is taken to be equivalent to the possible nonzeroness of // matrix entries A(I,J) and A(J,I). // // A sparse compressed column format is used to store the counts for // the nonzeroes. In other words, while the value ADJ_NUM reports the // number of adjacencies, the vector ADJ_COL is sufficient to allow us // to properly set up a sparse compressed matrix for the actual storage // of the sparse matrix, if we desire to proceed. // // Local Node Numbering: // // 3 // s |\ // i | \ // d | \ // e 6 5 side 2 // | \ // 3 | \ // | \ // 1---4---2 // // side 1 // // Variable Diagram: // // UVP // |\ // | \ // | \ // UV UV // | \ // | \ // | \ // UVP--UV--UVP // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 September 2006 // // Author: // // John Burkardt // // Parameters // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int VARIABLE_NUM, the number of variables. // // Input, int TRIANGLE_NODE[6*TRIANGLE_NUM], lists the nodes that // make up each triangle. The first three nodes are the vertices, // in counterclockwise order. The fourth value is the midside // node between nodes 1 and 2; the fifth and sixth values are // the other midside nodes in the logical order. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], for each side of // a triangle, lists the neighboring triangle, or -1 if there is // no neighbor. // // Input, int NODE_U_VARIABLE[NODE_NUM], NODE_V_VARIABLE[NODE_NUM], // NODE_P_VARIABLE[NODE_NUM], the index of the horizontal velocity, // vertical velocity and pressure variables associated with a node, // or -1 if no such variable is associated with the node. // // Output, int NS_ADJ_COUNT, the value of ADJ_NUM, the number of // Navier Stokes variable adjacencies. // { int adj_num; int node; int p1; int triangle; int triangle_order = 6; int triangle2; int variable; adj_num = 0; // // Set every variable to be adjacent to itself. // adj_num = variable_num; // // Set every variable to be adjacent to the other variables associated with // that node. // // U <=> V // U <=> P (if there is a P variable) // V <=> P (if there is a P variable) // for ( node = 0; node < node_num; node++ ) { adj_num = adj_num + 2; p1 = node_p_variable[node] - 1; if ( 0 <= p1 ) { adj_num = adj_num + 4; } } // // Examine each triangle. // for ( triangle = 0; triangle < triangle_num; triangle++ ) { // // For sure, we add the new adjacencies: // // U5 V5 <=> U1 V1 P1 // U6 V6 <=> U2 V2 P2 // U4 V4 <=> U3 V3 P3 // U5 V5 <=> U4 V4 // U6 V6 <=> U4 V4 // U6 V6 <=> U5 V5 // adj_num = adj_num + 60; // // Add edges (1,2), (1,4), (2,4) if this is the first occurrence, // that is, if the edge (1,4,2) is on a boundary (TRIANGLE2 <= 0) // or if this triangle is the first of the pair in which the edge // occurs (TRIANGLE < TRIANGLE2). // // Maybe add // // U1 V1 P1 <=> U2 V2 P2 // U1 V1 P1 <=> U4 V4 // U2 V2 P2 <=> U4 V4 // triangle2 = triangle_neighbor[0+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_num = adj_num + 42; } // // Maybe add // // U2 V2 P2 <=> U3 V3 P3 // U2 V2 P2 <=> U5 V5 // U3 V3 P3 <=> U5 V5 // triangle2 = triangle_neighbor[1+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_num = adj_num + 42; } // // Maybe add // // U1 V1 P1 <=> U3 V3 P3 // U1 V1 P1 <=> U6 V6 // U3 V3 P3 <=> U6 V6 // triangle2 = triangle_neighbor[2+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_num = adj_num + 42; } } return adj_num; } //****************************************************************************80 void ns_adj_insert ( int v1, int v2, int variable_num, int adj_num, int adj_col_free[], int adj_row[] ) //****************************************************************************80 // // Purpose: // // NS_ADJ_INSERT inserts an adjacency into a compressed column adjacency matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int V1, V2, the indices of two items which are adjacent. // // Input, int VARIABLE_NUM, the number of items. // // Input, int ADJ_NUM, the number of entries available in ADJ_ROW. // // Input/output, int ADJ_COL_FREE[VARIABLE_NUM], contains the next free // location in which an entry for a given column can be stored. On output, // two pointers have been updated. // // Input/output, int ADJ_ROW[ADJ_NUM], the row indices of the Navier Stokes // variable adjacency matrix. On output, two new entries have been added. // { adj_row[adj_col_free[v1-1]-1] = v2; adj_col_free[v1-1] = adj_col_free[v1-1] + 1; if ( v1 == v2 ) { return; } adj_row[adj_col_free[v2-1]-1] = v1; adj_col_free[v2-1] = adj_col_free[v2-1] + 1; return; } //****************************************************************************80 void ns_adj_row_set ( int node_num, int triangle_num, int variable_num, int triangle_node[], int triangle_neighbor[], int node_u_variable[], int node_v_variable[], int node_p_variable[], int adj_num, int adj_col[], int adj_row[] ) //****************************************************************************80 // // Purpose: // // NS_ADJ_ROW_SET sets the Navier Stokes sparse compressed column row indices. // // Discussion: // // After NS_ADJ_COUNT has been called to count ADJ_NUM, the number of // variable adjacencies and to set up ADJ_COL, the compressed column pointer, // this routine can be called to assign values to ADJ_ROW, the row // indices of the sparse compressed column adjacency matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2006 // // Author: // // John Burkardt // // Parameters // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int VARIABLE_NUM, the number of variables. // // Input, int TRIANGLE_NODE[6*TRIANGLE_NUM], lists the nodes that // make up each triangle. The first three nodes are the vertices, // in counterclockwise order. The fourth value is the midside // node between nodes 1 and 2; the fifth and sixth values are // the other midside nodes in the logical order. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], for each side of // a triangle, lists the neighboring triangle, or -1 if there is // no neighbor. // // Input, int NODE_U_VARIABLE[NODE_NUM], NODE_V_VARIABLE[NODE_NUM], // NODE_P_VARIABLE[NODE_NUM], the index of the horizontal velocity, // vertical velocity and pressure variables associated with a node, // or -1 if no such variable is associated with the node. // // Input, int ADJ_NUM, the number of Navier Stokes variable adjacencies. // // Input, int ADJ_COL[VARIABLE_NUM+1]. Information about variable J // is stored in entries ADJ_COL(J) through ADJ_COL(J+1)-1 of ADJ. // // Output, int ADJ_ROW[ADJ_NUM], the row indices of the Navier Stokes // variable adjacency matrix. // // Local Parameters: // // Local, int ADJ_COL_FREE[VARIABLE_NUM], for each column, // the location in ADJ_ROW which can store the next row index. // { int *adj_col_free; int k1; int k2; int n1; int n2; int n3; int n4; int n5; int n6; int node; int p1; int p2; int p3; int triangle; int triangle_order = 6; int triangle2; int u1; int u2; int u3; int u4; int u5; int u6; int v; int v1; int v2; int v3; int v4; int v5; int v6; for ( v = 0; v < adj_num; v++ ) { adj_row[v] = -1; } adj_col_free = new int[variable_num]; for ( v = 0; v < variable_num; v++ ) { adj_col_free[v] = adj_col[v]; } // // Set every variable to be adjacent to itself. // Here, we have to be careful to start at index 1. // for ( v = 1; v <= variable_num; v++ ) { ns_adj_insert ( v, v, variable_num, adj_num, adj_col_free, adj_row ); } // // Set every variable to be adjacent to the other variables associated with // that node. // // U <=> V // U <=> P (if there is a P variable) // V <=> P (if there is a P variable) // for ( node = 0; node < node_num; node++ ) { u1 = node_u_variable[node]; v1 = node_v_variable[node]; p1 = node_p_variable[node]; ns_adj_insert ( u1, v1, variable_num, adj_num, adj_col_free, adj_row ); if ( 0 < p1 ) { ns_adj_insert ( u1, p1, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v1, p1, variable_num, adj_num, adj_col_free, adj_row ); } } // // Examine each triangle. // for ( triangle = 0; triangle < triangle_num; triangle++ ) { n1 = triangle_node[0+triangle*6]; n2 = triangle_node[1+triangle*6]; n3 = triangle_node[2+triangle*6]; n4 = triangle_node[3+triangle*6]; n5 = triangle_node[4+triangle*6]; n6 = triangle_node[5+triangle*6]; u1 = node_u_variable[n1-1]; v1 = node_v_variable[n1-1]; p1 = node_p_variable[n1-1]; u2 = node_u_variable[n2-1]; v2 = node_v_variable[n2-1]; p2 = node_p_variable[n2-1]; u3 = node_u_variable[n3-1]; v3 = node_v_variable[n3-1]; p3 = node_p_variable[n3-1]; u4 = node_u_variable[n4-1]; v4 = node_v_variable[n4-1]; u5 = node_u_variable[n5-1]; v5 = node_v_variable[n5-1]; u6 = node_u_variable[n6-1]; v6 = node_v_variable[n6-1]; // // For sure, we add the new adjacencies: // // U5 V5 <=> U1 V1 P1 // U6 V6 <=> U2 V2 P2 // U4 V4 <=> U3 V3 P3 // U5 V5 <=> U4 V4 // U6 V6 <=> U4 V4 // U6 V6 <=> U5 V5 // ns_adj_insert ( u5, u1, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u5, v1, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u5, p1, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v5, u1, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v5, v1, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v5, p1, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u6, u2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u6, v2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u6, p2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v6, u2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v6, v2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v6, p2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u4, u3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u4, v3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u4, p3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v4, u3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v4, v3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v4, p3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u5, u4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u5, v4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v5, u4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v5, v4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u6, u4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u6, v4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v6, u4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v6, v4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u6, u5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u6, v5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v6, u5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v6, v5, variable_num, adj_num, adj_col_free, adj_row ); // // Add edges (1,2), (1,4), (2,4) if this is the first occurrence, // that is, if the edge (1,4,2) is on a boundary (TRIANGLE2 <= 0) // or if this triangle is the first of the pair in which the edge // occurs (TRIANGLE < TRIANGLE2). // // Maybe add // // U1 V1 P1 <=> U2 V2 P2 // U1 V1 P1 <=> U4 V4 // U2 V2 P2 <=> U4 V4 // triangle2 = triangle_neighbor[0+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { ns_adj_insert ( u1, u2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u1, v2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u1, p2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v1, u2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v1, v2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v1, p2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p1, u2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p1, v2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p1, p2, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u1, u4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u1, v4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v1, u4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v1, v4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p1, u4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p1, v4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u2, u4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u2, v4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v2, u4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v2, v4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p2, u4, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p2, v4, variable_num, adj_num, adj_col_free, adj_row ); } // // Maybe add // // U2 V2 P2 <=> U3 V3 P3 // U2 V2 P2 <=> U5 V5 // U3 V3 P3 <=> U5 V5 // triangle2 = triangle_neighbor[1+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { ns_adj_insert ( u2, u3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u2, v3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u2, p3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v2, u3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v2, v3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v2, p3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p2, u3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p2, v3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p2, p3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u2, u5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u2, v5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v2, u5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v2, v5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p2, u5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p2, v5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u3, u5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u3, v5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v3, u5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v3, v5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p3, u5, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p3, v5, variable_num, adj_num, adj_col_free, adj_row ); } // // Maybe add // // U1 V1 P1 <=> U3 V3 P3 // U1 V1 P1 <=> U6 V6 // U3 V3 P3 <=> U6 V6 // triangle2 = triangle_neighbor[2+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { ns_adj_insert ( u1, u3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u1, v3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u1, p3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v1, u3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v1, v3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v1, p3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p1, u3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p1, v3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p1, p3, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u1, u6, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u1, v6, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v1, u6, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v1, v6, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p1, u6, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p1, v6, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u3, u6, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( u3, v6, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v3, u6, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( v3, v6, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p3, u6, variable_num, adj_num, adj_col_free, adj_row ); ns_adj_insert ( p3, v6, variable_num, adj_num, adj_col_free, adj_row ); } } // // Ascending sort the entries for each variable. // for ( v = 0; v < variable_num; v++ ) { k1 = adj_col[v]; k2 = adj_col[v+1]-1; i4vec_sort_heap_a ( k2+1-k1, adj_row+k1-1 ); } return; } //****************************************************************************80 bool perm_check2 ( int n, int p[], int base ) //****************************************************************************80 // // Purpose: // // PERM_CHECK2 checks that a vector represents a permutation. // // Discussion: // // The routine verifies that each of the integers from BASE to // to BASE+N-1 occurs among the N entries of the permutation. // // Set the input quantity BASE to 0, if P is a 0-based permutation, // or to 1 if P is a 1-based permutation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries. // // Input, int P[N], the array to check. // // Input, int BASE, the index base. // // Output, bool PERM_CHECK2, is TRUE if the permutation is OK. // { bool found; int i; int seek; for ( seek = base; seek < base + n; seek++ ) { found = false; for ( i = 0; i < n; i++ ) { if ( p[i] == seek ) { found = true; break; } } if ( !found ) { return false; } } return true; } //****************************************************************************80 void perm_inverse ( int n, int p[] ) //****************************************************************************80 // // Purpose: // // PERM_INVERSE inverts a permutation "in place". // // Discussion: // // This algorithm assumes that the entries in the permutation vector are // strictly positive. In particular, the value 0 must not occur. // // When necessary, this function shifts the data temporarily so that // this requirement is satisfied. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of objects being permuted. // // Input/output, int P[N], the permutation, in standard index form. // On output, P describes the inverse permutation // { int base; int i; int i0; int i1; int i2; int is; int p_min; if ( n <= 0 ) { cout << "\n"; cout << "PERM_INVERSE - Fatal error!\n"; cout << " Input value of N = " << n << "\n"; exit ( 1 ); } // // Find the least value, and shift data so it begins at 1. // p_min = i4vec_min ( n, p ); base = 1; for ( i = 0; i < n; i++ ) { p[i] = p[i] - p_min + base; } // // Now we can safely check the permutation. // if ( !perm_check2 ( n, p, base ) ) { cerr << "\n"; cerr << "PERM_INVERSE - Fatal error!\n"; cerr << " PERM_CHECK rejects this permutation.\n"; exit ( 1 ); } // // Now we can invert the permutation. // is = 1; for ( i = 1; i <= n; i++ ) { i1 = p[i-1]; while ( i < i1 ) { i2 = p[i1-1]; p[i1-1] = -i2; i1 = i2; } is = - i4_sign ( p[i-1] ); p[i-1] = i4_sign ( is ) * abs ( p[i-1] ); } for ( i = 1; i <= n; i++ ) { i1 = - p[i-1]; if ( 0 <= i1 ) { i0 = i; for ( ; ; ) { i2 = p[i1-1]; p[i1-1] = i0; if ( i2 < 0 ) { break; } i0 = i1; i1 = i2; } } } // // Now we can restore the permutation. // for ( i = 0; i < n; i++ ) { p[i] = p[i] + p_min - base; } return; } //****************************************************************************80 int *points_delaunay_naive_2d ( int node_num, double node_xy[], int *triangle_num ) //****************************************************************************80 // // Purpose: // // POINTS_DELAUNAY_NAIVE_2D computes the Delaunay triangulation in 2D. // // Discussion: // // A naive and inefficient (but extremely simple) method is used. // // This routine is only suitable as a demonstration code for small // problems. Its running time is of order NODE_NUM^4. Much faster // algorithms are available. // // Given a set of nodes in the plane, a triangulation is a set of // triples of distinct nodes, forming triangles, so that every // point with the convex hull of the set of nodes is either one // of the nodes, or lies on an edge of one or more triangles, // or lies within exactly one triangle. // // The number of nodes must be at least 3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2005 // // Author: // // John Burkardt // // Reference: // // Joseph ORourke, // Computational Geometry, // Cambridge University Press, // Second Edition, 1998, page 187. // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Output, int *TRIANGLE_NUM, the number of triangles. // // Output, int POINTS_DELAUNAY_NAIVE_2D[3*TRIANGLE_NUM], the indices of the // nodes making each triangle. // { int count; int flag; int i; int j; int k; int m; int pass; int *tri; double xn; double yn; double zn; double *z; count = 0; z = new double [ node_num ]; for ( i = 0; i < node_num; i++ ) { z[i] = node_xy[0+i*2] * node_xy[0+i*2] + node_xy[1+i*2] * node_xy[1+i*2]; } // // First pass counts triangles, // Second pass allocates triangles and sets them. // for ( pass = 1; pass <= 2; pass++ ) { if ( pass == 2 ) { tri = new int[3*count]; } count = 0; // // For each triple (I,J,K): // for ( i = 0; i < node_num - 2; i++ ) { for ( j = i+1; j < node_num; j++ ) { for ( k = i+1; k < node_num; k++ ) { if ( j != k ) { xn = ( node_xy[1+j*2] - node_xy[1+i*2] ) * ( z[k] - z[i] ) - ( node_xy[1+k*2] - node_xy[1+i*2] ) * ( z[j] - z[i] ); yn = ( node_xy[0+k*2] - node_xy[0+i*2] ) * ( z[j] - z[i] ) - ( node_xy[0+j*2] - node_xy[0+i*2] ) * ( z[k] - z[i] ); zn = ( node_xy[0+j*2] - node_xy[0+i*2] ) * ( node_xy[1+k*2] - node_xy[1+i*2] ) - ( node_xy[0+k*2] - node_xy[0+i*2] ) * ( node_xy[1+j*2] - node_xy[1+i*2] ); flag = ( zn < 0 ); if ( flag ) { for ( m = 0; m < node_num; m++ ) { flag = flag && ( ( node_xy[0+m*2] - node_xy[0+i*2] ) * xn + ( node_xy[1+m*2] - node_xy[1+i*2] ) * yn + ( z[m] - z[i] ) * zn <= 0 ); } } if ( flag ) { if ( pass == 2 ) { tri[0+count*3] = i + 1; tri[1+count*3] = j + 1; tri[2+count*3] = k + 1; } count = count + 1; } } } } } } *triangle_num = count; delete [] z; return tri; } //****************************************************************************80 void points_hull_2d ( int node_num, double node_xy[], int *hull_num, int hull[] ) //****************************************************************************80 // // Purpose: // // POINTS_HULL_2D computes the convex hull of a set of nodes in 2D. // // Discussion: // // The work involved is N*log(H), where N is the number of points, and H is // the number of points that are on the hull. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Output, int *HULL_NUM, the number of nodes that lie on the convex hull. // // Output, int HULL[NODE_NUM]. The first HULL_NUM entries contain // the indices of the nodes that form the convex hull, in order. // These indices are 1-based, not 0-based! // { double angle; double angle_max; double di; double dr; int first; int i; double p_xy[2]; int q; double q_xy[2]; int r; double r_xy[2]; *hull_num = 0; if ( node_num < 1 ) { return; } // // If NODE_NUM = 1, the hull is the node. // if ( node_num == 1 ) { hull[*hull_num] = 1; *hull_num = *hull_num + 1; return; } // // If NODE_NUM = 2, then the convex hull is either the two distinct nodes, // or possibly a single (repeated) node. // if ( node_num == 2 ) { hull[*hull_num] = 1; *hull_num = *hull_num + 1; if ( node_xy[0+0*2] != node_xy[0+1*2] || node_xy[1+0*2] != node_xy[1+1*2] ) { hull[*hull_num] = 2; *hull_num = *hull_num + 1; } return; } // // Find the leftmost point, and take the bottom-most in a tie. // Call it "Q". // q = 1; for ( i = 2; i <= node_num; i++ ) { if ( node_xy[0+(i-1)*2] < node_xy[0+(q-1)*2] || ( node_xy[0+(i-1)*2] == node_xy[0+(q-1)*2] && node_xy[1+(i-1)*2] < node_xy[1+(q-1)*2] ) ) { q = i; } } q_xy[0] = node_xy[0+(q-1)*2]; q_xy[1] = node_xy[1+(q-1)*2]; // // Remember the starting point. // first = q; hull[*hull_num] = q; *hull_num = *hull_num + 1; // // For the first point, make a dummy previous point, 1 unit south, // and call it "P". // p_xy[0] = q_xy[0]; p_xy[1] = q_xy[1] - 1.0; // // Now, having old point P, and current point Q, find the new point R // so the angle PQR is maximal. // // Watch out for the possibility that the two nodes are identical. // for ( ; ; ) { r = 0; angle_max = 0.0; for ( i = 1; i <= node_num; i++ ) { if ( i != q && ( node_xy[0+(i-1)*2] != q_xy[0] || node_xy[1+(i-1)*2] != q_xy[1] ) ) { angle = angle_rad_2d ( p_xy, q_xy, node_xy+(i-1)*2 ); if ( r == 0 || angle_max < angle ) { r = i; r_xy[0] = node_xy[0+(r-1)*2]; r_xy[1] = node_xy[1+(r-1)*2]; angle_max = angle; } // // In case of ties, choose the nearer point. // else if ( r != 0 && angle == angle_max ) { di = sqrt ( pow ( node_xy[0+(i-1)*2] - q_xy[0], 2 ) + pow ( node_xy[1+(i-1)*2] - q_xy[1], 2 ) ); dr = sqrt ( pow ( r_xy[0] - q_xy[0], 2 ) + pow ( r_xy[1] - q_xy[1], 2 ) ); if ( di < dr ) { r = i; r_xy[0] = node_xy[0+(r-1)*2]; r_xy[1] = node_xy[1+(r-1)*2]; angle_max = angle; } } } } // // If we've returned to our starting node, exit. // if ( r == first ) { break; } if ( node_num < *hull_num + 1 ) { cout << "\n"; cout << "POINTS_HULL_2D - Fatal error!\n"; cout << " The algorithm failed.\n"; exit ( 1 ); } // // Add point R to the convex hull. // hull[*hull_num] = r; *hull_num = *hull_num + 1; // // Set Q := P, P := R, and repeat. // q = r; p_xy[0] = q_xy[0]; p_xy[1] = q_xy[1]; q_xy[0] = r_xy[0]; q_xy[1] = r_xy[1]; } return; } //****************************************************************************80 int points_point_near_naive_nd ( int dim_num, int nset, double pset[], double ptest[], double *d_min ) //****************************************************************************80 // // Purpose: // // POINTS_POINT_NEAR_NAIVE_ND finds the nearest point to a given point in ND. // // Discussion: // // A naive algorithm is used. The distance to every point is calculated, // in order to determine the smallest. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int NSET, the number of points in the set. // // Input, double PSET[DIM_NUM*NSET], the coordinates of the points // in the set. // // Input, double PTEST[DIM_NUM], the point whose nearest neighbor is sought. // // Output, double *D_MIN, the distance between P and PSET(*,I_MIN). // // Output, int POINTS_POINT_NEAR_NAIVE_ND, I_MIN, the index of the nearest // point in PSET to P. // { double d; int i; int j; int p_min; *d_min = r8_huge ( ); p_min = -1; for ( j = 0; j < nset; j++ ) { d = 0.0; for ( i = 0; i < dim_num; i++ ) { d = d + ( ptest[i] - pset[i+j*dim_num] ) * ( ptest[i] - pset[i+j*dim_num] ); } if ( d < *d_min ) { *d_min = d; p_min = j + 1; } } *d_min = sqrt ( *d_min ); return p_min; } //****************************************************************************80 void q_measure ( int n, double z[], int triangle_order, int triangle_num, int triangle_node[], double *q_min, double *q_max, double *q_ave, double *q_area ) //****************************************************************************80 // // Purpose: // // Q_MEASURE determines the triangulated pointset quality measure Q. // // Discussion: // // The Q measure evaluates the uniformity of the shapes of the triangles // defined by a triangulated pointset. // // For a single triangle T, the value of Q(T) is defined as follows: // // TAU_IN = radius of the inscribed circle, // TAU_OUT = radius of the circumscribed circle, // // Q(T) = 2 * TAU_IN / TAU_OUT // = ( B + C - A ) * ( C + A - B ) * ( A + B - C ) / ( A * B * C ) // // where A, B and C are the lengths of the sides of the triangle T. // // The Q measure computes the value of Q(T) for every triangle T in the // triangulation, and then computes the minimum of this // set of values: // // Q_MEASURE = min ( all T in triangulation ) Q(T) // // In an ideally regular mesh, all triangles would have the same // equilateral shape, for which Q = 1. A good mesh would have // 0.5 < Q. // // Given the 2D coordinates of a set of N nodes, stored as Z(1:2,1:N), // a triangulation is a list of TRIANGLE_NUM triples of node indices that form // triangles. Generally, a maximal triangulation is expected, namely, // a triangulation whose image is a planar graph, but for which the // addition of any new triangle would mean the graph was no longer planar. // A Delaunay triangulation is a maximal triangulation which maximizes // the minimum angle that occurs in any triangle. // // The code has been modified to 'allow' 6-node triangulations. // However, no effort is made to actually process the midside nodes. // Only information from the vertices is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 June 2009 // // Author: // // John Burkardt // // Reference: // // Max Gunzburger and John Burkardt, // Uniformity Measures for Point Samples in Hypercubes. // // Per-Olof Persson and Gilbert Strang, // A Simple Mesh Generator in MATLAB, // SIAM Review, // Volume 46, Number 2, pages 329-345, June 2004. // // Parameters: // // Input, int N, the number of points. // // Input, double Z[2*N], the points. // // Input, int TRIANGLE_ORDER, the order of the triangles. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[TRIANGLE_ORDER*TRIANGLE_NUM], // the triangulation. // // Output, double *Q_MIN, *Q_MAX, the minimum and maximum values // of Q over all triangles. // // Output, double *Q_AVE, the average value of Q. // // Output, double *Q_AREA, the average value of Q, weighted by // the area of each triangle. // { int a_index; double ab_length; double area; double area_total; int b_index; double bc_length; int c_index; double ca_length; double q; int triangle; double x1; double x2; double x3; double y1; double y2; double y3; *q_min = r8_huge ( ); *q_max = - r8_huge ( ); *q_ave = 0.0; *q_area = 0.0; area_total = 0.0; for ( triangle = 0; triangle < triangle_num; triangle++ ) { a_index = triangle_node[0+triangle*triangle_order]; b_index = triangle_node[1+triangle*triangle_order]; c_index = triangle_node[2+triangle*triangle_order]; ab_length = sqrt ( pow ( z[0+(a_index-1)*2] - z[0+(b_index-1)*2], 2 ) + pow ( z[1+(a_index-1)*2] - z[1+(b_index-1)*2], 2 ) ); bc_length = sqrt ( pow ( z[0+(b_index-1)*2] - z[0+(c_index-1)*2], 2 ) + pow ( z[1+(b_index-1)*2] - z[1+(c_index-1)*2], 2 ) ); ca_length = sqrt ( pow ( z[0+(c_index-1)*2] - z[0+(a_index-1)*2], 2 ) + pow ( z[1+(c_index-1)*2] - z[1+(a_index-1)*2], 2 ) ); q = ( bc_length + ca_length - ab_length ) * ( ca_length + ab_length - bc_length ) * ( ab_length + bc_length - ca_length ) / ( ab_length * bc_length * ca_length ); x1 = z[0+(triangle_node[0+triangle*triangle_order]-1)*2]; y1 = z[1+(triangle_node[0+triangle*triangle_order]-1)*2]; x2 = z[0+(triangle_node[1+triangle*triangle_order]-1)*2]; y2 = z[1+(triangle_node[1+triangle*triangle_order]-1)*2]; x3 = z[0+(triangle_node[2+triangle*triangle_order]-1)*2]; y3 = z[1+(triangle_node[2+triangle*triangle_order]-1)*2]; area = 0.5 * r8_abs ( x1 * ( y2 - y3 ) + x2 * ( y3 - y1 ) + x3 * ( y1 - y2 ) ); *q_min = r8_min ( *q_min, q ); *q_max = r8_max ( *q_max, q ); *q_ave = *q_ave + q; *q_area = *q_area + q * area; area_total = area_total + area; } *q_ave = *q_ave / ( double ) ( triangle_num ); if ( 0.0 < area_total ) { *q_area = *q_area / area_total; } else { *q_area = 0.0; } return; } //****************************************************************************80 void quad_convex_random ( int *seed, double xy[] ) //****************************************************************************80 // // Purpose: // // QUAD_CONVEX_RANDOM returns a random convex quadrilateral. // // Description: // // The quadrilateral is constrained in that the vertices must all lie // with the unit square. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input/output, int *SEED, a seed for the random number // generator. // // Output, double XY[2*NODE_NUM], the coordinates of the // nodes of the quadrilateral, given in counterclockwise order. // { int hull[4]; int hull_num; int i; int j; double xy_random[2*4]; for ( ; ; ) { // // Generate 4 random points. // r8mat_uniform_01 ( 2, 4, seed, xy_random ); // // Determine the convex hull. // points_hull_2d ( 4, xy_random, &hull_num, hull ); // // If HULL_NUM < 4, then our convex hull is a triangle. // Try again. // if ( hull_num == 4 ) { break; } } // // Make an ordered copy of the random points. // for ( j = 0; j < 4; j++ ) { for ( i = 0; i < 2; i++ ) { xy[i+j*2] = xy_random[i+(hull[j]-1)*2]; } } return; } //****************************************************************************80 float r4_abs ( float x ) //****************************************************************************80 // // Purpose: // // R4_ABS returns the absolute value of an R4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the quantity whose absolute value is desired. // // Output, float R4_ABS, the absolute value of X. // { float value; if ( 0.0 <= x ) { value = x; } else { value = -x; } return value; } //****************************************************************************80 int r4_nint ( float x ) //****************************************************************************80 // // Purpose: // // R4_NINT returns the nearest integer to an R4. // // Example: // // X R4_NINT // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the value. // // Output, int R4_NINT, the nearest integer to X. // { int value; if ( x < 0.0 ) { value = - ( int ) ( r4_abs ( x ) + 0.5 ); } else { value = ( int ) ( r4_abs ( x ) + 0.5 ); } return value; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = x; } else { value = - x; } return value; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 int r8_nint ( double x ) //****************************************************************************80 // // Purpose: // // R8_NINT returns the nearest integer to an R8. // // Example: // // X Value // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value. // // Output, int R8_NINT, the nearest integer to X. // { int value; if ( x < 0.0 ) { value = - ( int ) ( r8_abs ( x ) + 0.5 ); } else { value = ( int ) ( r8_abs ( x ) + 0.5 ); } return value; } //****************************************************************************80 double r8_uniform_01 ( int *seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = 16807 * seed mod ( 2**31 - 1 ) // r8_uniform_01 = seed / ( 2**31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation // edited by Jerry Banks, // Wiley Interscience, page 95, 1998. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input/output, int *SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { int k; double r; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } // // Although SEED can be represented exactly as a 32 bit integer, // it generally cannot be represented exactly as a 32 bit real number! // r = ( double ) ( *seed ) * 4.656612875E-10; return r; } //****************************************************************************80 void r82vec_permute ( int n, int p[], int base, double a[] ) //****************************************************************************80 // // Purpose: // // R82VEC_PERMUTE permutes an R82VEC in place. // // Discussion: // // An R82VEC is a vector whose entries are R82's. // An R82 is a vector of type double precision with two entries. // An R82VEC may be stored as a 2 by N array. // // This routine permutes an array of real "objects", but the same // logic can be used to permute an array of objects of any arithmetic // type, or an array of objects of any complexity. The only temporary // storage required is enough to store a single object. The number // of data movements made is N + the number of cycles of order 2 or more, // which is never more than N + N/2. // // Example: // // Input: // // N = 5 // P = ( 2, 4, 5, 1, 3 ) // A = ( 1.0, 2.0, 3.0, 4.0, 5.0 ) // (11.0, 22.0, 33.0, 44.0, 55.0 ) // // Output: // // A = ( 2.0, 4.0, 5.0, 1.0, 3.0 ) // ( 22.0, 44.0, 55.0, 11.0, 33.0 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of objects. // // Input, int P[N], the permutation. P(I) = J means // that the I-th element of the output array should be the J-th // element of the input array. // // Input, int BASE, is 0 for a 0-based permutation and 1 for a 1-based permutation. // // Input/output, double A[2*N], the array to be permuted. // { double a_temp[2]; int i; int iget; int iput; int istart; if ( !perm_check2 ( n, p, base ) ) { cerr << "\n"; cerr << "R82VEC_PERMUTE - Fatal error!\n"; cerr << " PERM_CHECK rejects this permutation.\n"; exit ( 1 ); } // // In order for the sign negation trick to work, we need to assume that the // entries of P are strictly positive. Presumably, the lowest number is BASE. // So temporarily add 1-BASE to each entry to force positivity. // for ( i = 0; i < n; i++ ) { p[i] = p[i] + 1 - base; } // // Search for the next element of the permutation that has not been used. // for ( istart = 1; istart <= n; istart++ ) { if ( p[istart-1] < 0 ) { continue; } else if ( p[istart-1] == istart ) { p[istart-1] = - p[istart-1]; continue; } else { a_temp[0] = a[0+(istart-1)*2]; a_temp[1] = a[1+(istart-1)*2]; iget = istart; // // Copy the new value into the vacated entry. // for ( ; ; ) { iput = iget; iget = p[iget-1]; p[iput-1] = - p[iput-1]; if ( iget < 1 || n < iget ) { cout << "\n"; cout << "R82VEC_PERMUTE - Fatal error!\n"; cout << " Entry IPUT = " << iput << " of the permutation has\n"; cout << " an illegal value IGET = " << iget << ".\n"; exit ( 1 ); } if ( iget == istart ) { a[0+(iput-1)*2] = a_temp[0]; a[1+(iput-1)*2] = a_temp[1]; break; } a[0+(iput-1)*2] = a[0+(iget-1)*2]; a[1+(iput-1)*2] = a[1+(iget-1)*2]; } } } // // Restore the signs of the entries. // for ( i = 0; i < n; i++ ) { p[i] = - p[i]; } // // Restore the base of the entries. // for ( i = 0; i < n; i++ ) { p[i] = p[i] - 1 + base; } return; } //****************************************************************************80 int *r82vec_sort_heap_index_a ( int n, int base, double a[] ) //****************************************************************************80 // // Purpose: // // R82VEC_SORT_HEAP_INDEX_A does an indexed heap ascending sort of an R82VEC. // // Discussion: // // An R82VEC is a vector whose entries are R82's. // An R82 is a vector of type double precision with two entries. // An R82VEC may be stored as a 2 by N array. // // The sorting is not actually carried out. Rather an index array is // created which defines the sorting. This array may be used to sort // or index the array, or to sort or index related arrays keyed on the // original array. // // Once the index array is computed, the sorting can be carried out // "implicitly: // // a(*,indx(*)) // // or explicitly, by the call // // r82vec_permute ( n, indx, base, a ) // // after which a(*,*) is sorted. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, int BASE, the desired indexing for the sort index: // 0 for 0-based indexing, // 1 for 1-based indexing. // // Input, double A[2*N], an array to be index-sorted. // // Output, int R82VEC_SORT_HEAP_INDEX_A[N], the sort index. The // I-th element of the sorted array is A(0:1,R8VEC_SORT_HEAP_INDEX_A(I)). // { double aval[2]; int i; int *indx; int indxt; int ir; int j; int l; if ( n < 1 ) { return NULL; } indx = new int[n]; for ( i = 0; i < n; i++ ) { indx[i] = i; } if ( n == 1 ) { indx[0] = indx[0] + base; return indx; } l = n / 2 + 1; ir = n; for ( ; ; ) { if ( 1 < l ) { l = l - 1; indxt = indx[l-1]; aval[0] = a[0+indxt*2]; aval[1] = a[1+indxt*2]; } else { indxt = indx[ir-1]; aval[0] = a[0+indxt*2]; aval[1] = a[1+indxt*2]; indx[ir-1] = indx[0]; ir = ir - 1; if ( ir == 1 ) { indx[0] = indxt; break; } } i = l; j = l + l; while ( j <= ir ) { if ( j < ir ) { if ( a[0+indx[j-1]*2] < a[0+indx[j]*2] || ( a[0+indx[j-1]*2] == a[0+indx[j]*2] && a[1+indx[j-1]*2] < a[1+indx[j]*2] ) ) { j = j + 1; } } if ( aval[0] < a[0+indx[j-1]*2] || ( aval[0] == a[0+indx[j-1]*2] && aval[1] < a[1+indx[j-1]*2] ) ) { indx[i-1] = indx[j-1]; i = j; j = j + j; } else { j = ir + 1; } } indx[i-1] = indxt; } // // Take care of the base. // for ( i = 0; i < n; i++ ) { indx[i] = indx[i] + base; } return indx; } //****************************************************************************80 void r8mat_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT prints an R8MAT, with an optional title. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*M] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT_SOME prints some of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, string TITLE, a title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << " "; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8mat_uniform_01 ( int m, int n, int *seed, double r[] ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_01 returns a unit pseudorandom R8MAT. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int *SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, double R[M*N], a matrix of pseudorandom values. // { int i; int i4_huge = 2147483647; int j; int k; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8MAT_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r[i+j*m] = ( double ) ( *seed ) * 4.656612875E-10; } } return; } //****************************************************************************80 int r8tris2 ( int node_num, double node_xy[], int *triangle_num, int triangle_node[], int triangle_neighbor[] ) //****************************************************************************80 // // Purpose: // // R8TRIS2 constructs a Delaunay triangulation of 2D vertices. // // Discussion: // // The routine constructs the Delaunay triangulation of a set of 2D vertices // using an incremental approach and diagonal edge swaps. Vertices are // first sorted in lexicographically increasing (X,Y) order, and // then are inserted one at a time from outside the convex hull. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 January 2004 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input/output, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // On output, the coordinates have been sorted into dictionary order. // // Output, int *TRIANGLE_NUM, the number of triangles in the triangulation; // TRIANGLE_NUM is equal to 2*node_num - NB - 2, where NB is the number // of boundary vertices. // // Output, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up each // triangle. The elements are indices of NODE_XY. The vertices of the // triangles are in counterclockwise order. // // Output, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbor list. // Positive elements are indices of TIL; negative elements are used for links // of a counter clockwise linked list of boundary edges; LINK = -(3*I + J-1) // where I, J = triangle, edge index; TRIANGLE_NEIGHBOR[I,J] refers to // the neighbor along edge from vertex J to J+1 (mod 3). // // Output, int R8TRIS2, is 0 for no error. { int base; double cmax; int e; int error; int i; int *indx; int j; int k; int l; int ledg; int lr; int ltri; int m; int m1; int m2; int n; int redg; int rtri; int *stack; int t; double tol; int top; stack = new int[node_num]; tol = 100.0 * r8_epsilon ( ); // // Sort the vertices by increasing (x,y). // base = 0; indx = r82vec_sort_heap_index_a ( node_num, base, node_xy ); r82vec_permute ( node_num, indx, base, node_xy ); // // Make sure that the nodes are "reasonably" distinct. // m1 = 1; for ( i = 2; i <= node_num; i++ ) { m = m1; m1 = i; k = -1; for ( j = 0; j <= 1; j++ ) { cmax = r8_max ( fabs ( node_xy[2*(m-1)+j] ), fabs ( node_xy[2*(m1-1)+j] ) ); if ( tol * ( cmax + 1.0 ) < fabs ( node_xy[2*(m-1)+j] - node_xy[2*(m1-1)+j] ) ) { k = j; break; } } if ( k == -1 ) { cout << "\n"; cout << "R8TRIS2 - Fatal error!\n"; cout << " Fails for point number I = " << i << "\n"; cout << " M = " << m << "\n"; cout << " M1 = " << m1 << "\n"; cout << " X,Y(M) = " << node_xy[2*(m-1)+0] << " " << node_xy[2*(m-1)+1] << "\n"; cout << " X,Y(M1) = " << node_xy[2*(m1-1)+0] << " " << node_xy[2*(m1-1)+1] << "\n"; exit ( 1 ); } } // // Starting from nodes M1 and M2, search for a third point M that // makes a "healthy" triangle (M1,M2,M) // m1 = 1; m2 = 2; j = 3; for ( ; ; ) { if ( node_num < j ) { cout << "\n"; cout << "R8TRIS2 - Fatal error!\n"; delete [] stack; return 225; } m = j; lr = lrline ( node_xy[2*(m-1)+0], node_xy[2*(m-1)+1], node_xy[2*(m1-1)+0], node_xy[2*(m1-1)+1], node_xy[2*(m2-1)+0], node_xy[2*(m2-1)+1], 0.0 ); if ( lr != 0 ) { break; } j = j + 1; } // // Set up the triangle information for (M1,M2,M), and for any other // triangles you created because nodes were collinear with M1, M2. // *triangle_num = j - 2; if ( lr == -1 ) { triangle_node[3*0+0] = m1; triangle_node[3*0+1] = m2; triangle_node[3*0+2] = m; triangle_neighbor[3*0+2] = -3; for ( i = 2; i <= *triangle_num; i++ ) { m1 = m2; m2 = i+1; triangle_node[3*(i-1)+0] = m1; triangle_node[3*(i-1)+1] = m2; triangle_node[3*(i-1)+2] = m; triangle_neighbor[3*(i-1)+0] = -3 * i; triangle_neighbor[3*(i-1)+1] = i; triangle_neighbor[3*(i-1)+2] = i - 1; } triangle_neighbor[3*(*triangle_num-1)+0] = -3 * (*triangle_num) - 1; triangle_neighbor[3*(*triangle_num-1)+1] = -5; ledg = 2; ltri = *triangle_num; } else { triangle_node[3*0+0] = m2; triangle_node[3*0+1] = m1; triangle_node[3*0+2] = m; triangle_neighbor[3*0+0] = -4; for ( i = 2; i <= *triangle_num; i++ ) { m1 = m2; m2 = i+1; triangle_node[3*(i-1)+0] = m2; triangle_node[3*(i-1)+1] = m1; triangle_node[3*(i-1)+2] = m; triangle_neighbor[3*(i-2)+2] = i; triangle_neighbor[3*(i-1)+0] = -3 * i - 3; triangle_neighbor[3*(i-1)+1] = i - 1; } triangle_neighbor[3*(*triangle_num-1)+2] = -3 * (*triangle_num); triangle_neighbor[3*0+1] = -3 * (*triangle_num) - 2; ledg = 2; ltri = 1; } // // Insert the vertices one at a time from outside the convex hull, // determine visible boundary edges, and apply diagonal edge swaps until // Delaunay triangulation of vertices (so far) is obtained. // top = 0; for ( i = j+1; i <= node_num; i++ ) { m = i; m1 = triangle_node[3*(ltri-1)+ledg-1]; if ( ledg <= 2 ) { m2 = triangle_node[3*(ltri-1)+ledg]; } else { m2 = triangle_node[3*(ltri-1)+0]; } lr = lrline ( node_xy[2*(m-1)+0], node_xy[2*(m-1)+1], node_xy[2*(m1-1)+0], node_xy[2*(m1-1)+1], node_xy[2*(m2-1)+0], node_xy[2*(m2-1)+1], 0.0 ); if ( 0 < lr ) { rtri = ltri; redg = ledg; ltri = 0; } else { l = -triangle_neighbor[3*(ltri-1)+ledg-1]; rtri = l / 3; redg = (l % 3) + 1; } vbedg ( node_xy[2*(m-1)+0], node_xy[2*(m-1)+1], node_num, node_xy, *triangle_num, triangle_node, triangle_neighbor, <ri, &ledg, &rtri, &redg ); n = *triangle_num + 1; l = -triangle_neighbor[3*(ltri-1)+ledg-1]; for ( ; ; ) { t = l / 3; e = ( l % 3 ) + 1; l = -triangle_neighbor[3*(t-1)+e-1]; m2 = triangle_node[3*(t-1)+e-1]; if ( e <= 2 ) { m1 = triangle_node[3*(t-1)+e]; } else { m1 = triangle_node[3*(t-1)+0]; } *triangle_num = *triangle_num + 1; triangle_neighbor[3*(t-1)+e-1] = *triangle_num; triangle_node[3*(*triangle_num-1)+0] = m1; triangle_node[3*(*triangle_num-1)+1] = m2; triangle_node[3*(*triangle_num-1)+2] = m; triangle_neighbor[3*(*triangle_num-1)+0] = t; triangle_neighbor[3*(*triangle_num-1)+1] = *triangle_num - 1; triangle_neighbor[3*(*triangle_num-1)+2] = *triangle_num + 1; top = top + 1; if ( node_num < top ) { cout << "\n"; cout << "R8TRIS2 - Fatal error!\n"; cout << " Stack overflow.\n"; delete [] stack; return 8; } stack[top-1] = *triangle_num; if ( t == rtri && e == redg ) { break; } } triangle_neighbor[3*(ltri-1)+ledg-1] = -3 * n - 1; triangle_neighbor[3*(n-1)+1] = -3 * (*triangle_num) - 2; triangle_neighbor[3*(*triangle_num-1)+2] = -l; ltri = n; ledg = 2; error = swapec ( m, &top, <ri, &ledg, node_num, node_xy, *triangle_num, triangle_node, triangle_neighbor, stack ); if ( error != 0 ) { cout << "\n"; cout << "R8TRIS2 - Fatal error!\n"; cout << " Error return from SWAPEC.\n"; delete [] stack; return error; } } // // Now account for the sorting that we did. // for ( i = 0; i < 3; i++ ) { for ( j = 0; j < *triangle_num; j++ ) { triangle_node[i+j*3] = indx [ triangle_node[i+j*3] - 1 ]; } } perm_inverse ( node_num, indx ); r82vec_permute ( node_num, indx, base, node_xy ); delete [] indx; delete [] stack; return 0; } //****************************************************************************80 void r8vec_bracket ( int n, double x[], double xval, int *left, int *right ) //****************************************************************************80 // // Purpose: // // R8VEC_BRACKET searches a sorted array for successive brackets of a value. // // Discussion: // // If the values in the vector are thought of as defining intervals // on the real line, then this routine searches for the interval // nearest to or containing the given value. // // It is always true that RIGHT = LEFT+1. // // If XVAL < X[0], then LEFT = 1, RIGHT = 2, and // XVAL < X[0] < X[1]; // If X(1) <= XVAL < X[N-1], then // X[LEFT-1] <= XVAL < X[RIGHT-1]; // If X[N-1] <= XVAL, then LEFT = N-1, RIGHT = N, and // X[LEFT-1] <= X[RIGHT-1] <= XVAL. // // For consistency, this routine computes indices RIGHT and LEFT // that are 1-based, although it would be more natural in C and // C++ to use 0-based values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 February 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, length of input array. // // Input, double X[N], an array that has been sorted into ascending order. // // Input, double XVAL, a value to be bracketed. // // Output, int *LEFT, *RIGHT, the results of the search. // { int i; for ( i = 2; i <= n - 1; i++ ) { if ( xval < x[i-1] ) { *left = i - 1; *right = i; return; } } *left = n - 1; *right = n; return; } //****************************************************************************80 double r8vec_max ( int n, double r8vec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MAX returns the value of the maximum element in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double R8VEC[N], a pointer to the first entry of the array. // // Output, double R8VEC_MAX, the value of the maximum element. This // is set to 0.0 if N <= 0. // { int i; double value; value = - r8_huge ( ); if ( n <= 0 ) { return value; } for ( i = 0; i < n; i++ ) { if ( value < r8vec[i] ) { value = r8vec[i]; } } return value; } //****************************************************************************80 double r8vec_min ( int n, double r8vec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MIN returns the value of the minimum element in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double R8VEC[N], the array to be checked. // // Output, double R8VEC_MIN, the value of the minimum element. // { int i; double value; value = r8_huge ( ); if ( n <= 0 ) { return value; } for ( i = 0; i < n; i++ ) { if ( r8vec[i] < value ) { value = r8vec[i]; } } return value; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ) //****************************************************************************80 // // Purpose: // // SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. // // Discussion: // // The actual list is not passed to the routine. Hence it may // consist of integers, reals, numbers, names, etc. The user, // after each return from the routine, will be asked to compare or // interchange two items. // // The current version of this code mimics the FORTRAN version, // so the values of I and J, in particular, are FORTRAN indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2004 // // Author: // // Original FORTRAN77 version by Nijenhuis and Wilf, // C++ version by John Burkardt. // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the length of the input list. // // Input/output, int *INDX. // The user must set INDX to 0 before the first call. // On return, // if INDX is greater than 0, the user must interchange // items I and J and recall the routine. // If INDX is less than 0, the user is to compare items I // and J and return in ISGN a negative value if I is to // precede J, and a positive value otherwise. // If INDX is 0, the sorting is done. // // Output, int *I, *J. On return with INDX positive, // elements I and J of the user's list should be // interchanged. On return with INDX negative, elements I // and J are to be compared by the user. // // Input, int ISGN. On return with INDX negative, the // user should compare elements I and J of the list. If // item I is to precede item J, set ISGN negative, // otherwise set ISGN positive. // { static int i_save = 0; static int j_save = 0; static int k = 0; static int k1 = 0; static int n1 = 0; // // INDX = 0: This is the first call. // if ( *indx == 0 ) { i_save = 0; j_save = 0; k = n / 2; k1 = k; n1 = n; } // // INDX < 0: The user is returning the results of a comparison. // else if ( *indx < 0 ) { if ( *indx == -2 ) { if ( isgn < 0 ) { i_save = i_save + 1; } j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } if ( 0 < isgn ) { *indx = 2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; } *i = i_save; *j = j_save; return; } k = k - 1; k1 = k; } // // 0 < INDX: the user was asked to make an interchange. // else if ( *indx == 1 ) { k1 = k; } for ( ;; ) { i_save = 2 * k1; if ( i_save == n1 ) { j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } else if ( i_save <= n1 ) { j_save = i_save + 1; *indx = -2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { break; } k = k - 1; k1 = k; } if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; *i = i_save; *j = j_save; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; *i = i_save; *j = j_save; } return; } //****************************************************************************80 int swapec ( int i, int *top, int *btri, int *bedg, int node_num, double node_xy[], int triangle_num, int triangle_node[], int triangle_neighbor[], int stack[] ) //****************************************************************************80 // // Purpose: // // SWAPEC swaps diagonal edges until all triangles are Delaunay. // // Discussion: // // The routine swaps diagonal edges in a 2D triangulation, based on // the empty circumcircle criterion, until all triangles are Delaunay, // given that I is the index of the new vertex added to the triangulation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 September 2003 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, int I, the index of the new vertex. // // Input/output, int *TOP, the index of the top of the stack. // On output, TOP is zero. // // Input/output, int *BTRI, *BEDG; on input, if positive, are the // triangle and edge indices of a boundary edge whose updated indices // must be recorded. On output, these may be updated because of swaps. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input/output, int TRIANGLE_NODE[3*TRIANGLE_NUM], the triangle incidence // list. May be updated on output because of swaps. // // Input/output, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbor // list; negative values are used for links of the counter-clockwise linked // list of boundary edges; May be updated on output because of swaps. // // LINK = -(3*I + J-1) where I, J = triangle, edge index. // // Workspace, int STACK[MAXST]; on input, entries 1 through TOP // contain the indices of initial triangles (involving vertex I) // put in stack; the edges opposite I should be in interior; entries // TOP+1 through MAXST are used as a stack. // // Output, int SWAPEC, is set to 8 for abnormal return. // { int a; int b; int c; int e; int ee; int em1; int ep1; int f; int fm1; int fp1; int l; int r; int s; int swap; int t; int tt; int u; double x; double y; // // Determine whether triangles in stack are Delaunay, and swap // diagonal edge of convex quadrilateral if not. // x = node_xy[2*(i-1)+0]; y = node_xy[2*(i-1)+1]; for ( ; ; ) { if ( *top <= 0 ) { break; } t = stack[(*top)-1]; *top = *top - 1; if ( triangle_node[3*(t-1)+0] == i ) { e = 2; b = triangle_node[3*(t-1)+2]; } else if ( triangle_node[3*(t-1)+1] == i ) { e = 3; b = triangle_node[3*(t-1)+0]; } else { e = 1; b = triangle_node[3*(t-1)+1]; } a = triangle_node[3*(t-1)+e-1]; u = triangle_neighbor[3*(t-1)+e-1]; if ( triangle_neighbor[3*(u-1)+0] == t ) { f = 1; c = triangle_node[3*(u-1)+2]; } else if ( triangle_neighbor[3*(u-1)+1] == t ) { f = 2; c = triangle_node[3*(u-1)+0]; } else { f = 3; c = triangle_node[3*(u-1)+1]; } swap = diaedg ( x, y, node_xy[2*(a-1)+0], node_xy[2*(a-1)+1], node_xy[2*(c-1)+0], node_xy[2*(c-1)+1], node_xy[2*(b-1)+0], node_xy[2*(b-1)+1] ); if ( swap == 1 ) { em1 = i4_wrap ( e - 1, 1, 3 ); ep1 = i4_wrap ( e + 1, 1, 3 ); fm1 = i4_wrap ( f - 1, 1, 3 ); fp1 = i4_wrap ( f + 1, 1, 3 ); triangle_node[3*(t-1)+ep1-1] = c; triangle_node[3*(u-1)+fp1-1] = i; r = triangle_neighbor[3*(t-1)+ep1-1]; s = triangle_neighbor[3*(u-1)+fp1-1]; triangle_neighbor[3*(t-1)+ep1-1] = u; triangle_neighbor[3*(u-1)+fp1-1] = t; triangle_neighbor[3*(t-1)+e-1] = s; triangle_neighbor[3*(u-1)+f-1] = r; if ( 0 < triangle_neighbor[3*(u-1)+fm1-1] ) { *top = *top + 1; stack[(*top)-1] = u; } if ( 0 < s ) { if ( triangle_neighbor[3*(s-1)+0] == u ) { triangle_neighbor[3*(s-1)+0] = t; } else if ( triangle_neighbor[3*(s-1)+1] == u ) { triangle_neighbor[3*(s-1)+1] = t; } else { triangle_neighbor[3*(s-1)+2] = t; } *top = *top + 1; if ( node_num < *top ) { return 8; } stack[(*top)-1] = t; } else { if ( u == *btri && fp1 == *bedg ) { *btri = t; *bedg = e; } l = - ( 3 * t + e - 1 ); tt = t; ee = em1; while ( 0 < triangle_neighbor[3*(tt-1)+ee-1] ) { tt = triangle_neighbor[3*(tt-1)+ee-1]; if ( triangle_node[3*(tt-1)+0] == a ) { ee = 3; } else if ( triangle_node[3*(tt-1)+1] == a ) { ee = 1; } else { ee = 2; } } triangle_neighbor[3*(tt-1)+ee-1] = l; } if ( 0 < r ) { if ( triangle_neighbor[3*(r-1)+0] == t ) { triangle_neighbor[3*(r-1)+0] = u; } else if ( triangle_neighbor[3*(r-1)+1] == t ) { triangle_neighbor[3*(r-1)+1] = u; } else { triangle_neighbor[3*(r-1)+2] = u; } } else { if ( t == *btri && ep1 == *bedg ) { *btri = u; *bedg = f; } l = - ( 3 * u + f - 1 ); tt = u; ee = fm1; while ( 0 < triangle_neighbor[3*(tt-1)+ee-1] ) { tt = triangle_neighbor[3*(tt-1)+ee-1]; if ( triangle_node[3*(tt-1)+0] == b ) { ee = 3; } else if ( triangle_node[3*(tt-1)+1] == b ) { ee = 1; } else { ee = 2; } } triangle_neighbor[3*(tt-1)+ee-1] = l; } } } return 0; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double *triangle_angles_2d_new ( double t[2*3] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_ANGLES_2D_NEW computes the angles of a triangle in 2D. // // Discussion: // // The law of cosines is used: // // C * C = A * A + B * B - 2 * A * B * COS ( GAMMA ) // // where GAMMA is the angle opposite side C. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the triangle vertices. // // Output, double ANGLE[3], the angles opposite // sides P1-P2, P2-P3 and P3-P1, in radians. // { double *angle; double a; double b; double c; double pi = 3.141592653589793; angle = new double[3]; a = sqrt ( pow ( t[0+1*2] - t[0+0*2], 2 ) + pow ( t[1+1*2] - t[1+0*2], 2 ) ); b = sqrt ( pow ( t[0+2*2] - t[0+1*2], 2 ) + pow ( t[1+2*2] - t[1+1*2], 2 ) ); c = sqrt ( pow ( t[0+0*2] - t[0+2*2], 2 ) + pow ( t[1+0*2] - t[1+2*2], 2 ) ); // // Take care of a ridiculous special case. // if ( a == 0.0 && b == 0.0 && c == 0.0 ) { angle[0] = 2.0 * pi / 3.0; angle[1] = 2.0 * pi / 3.0; angle[2] = 2.0 * pi / 3.0; return angle; } if ( c == 0.0 || a == 0.0 ) { angle[0] = pi; } else { angle[0] = arc_cosine ( ( c * c + a * a - b * b ) / ( 2.0 * c * a ) ); } if ( a == 0.0 || b == 0.0 ) { angle[1] = pi; } else { angle[1] = arc_cosine ( ( a * a + b * b - c * c ) / ( 2.0 * a * b ) ); } if ( b == 0.0 || c == 0.0 ) { angle[2] = pi; } else { angle[2] = arc_cosine ( ( b * b + c * c - a * a ) / ( 2.0 * b * c ) ); } return angle; } //****************************************************************************80 double triangle_area_2d ( double t[2*3] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_AREA_2D computes the area of a triangle in 2D. // // Discussion: // // If the triangle's vertices are given in counter clockwise order, // the area will be positive. If the triangle's vertices are given // in clockwise order, the area will be negative! // // An earlier version of this routine always returned the absolute // value of the computed area. I am convinced now that that is // a less useful result! For instance, by returning the signed // area of a triangle, it is possible to easily compute the area // of a nonconvex polygon as the sum of the (possibly negative) // areas of triangles formed by node 1 and successive pairs of vertices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the vertices of the triangle. // // Output, double TRIANGLE_AREA_2D, the area of the triangle. // { double area; area = 0.5 * ( t[0+0*2] * ( t[1+1*2] - t[1+2*2] ) + t[0+1*2] * ( t[1+2*2] - t[1+0*2] ) + t[0+2*2] * ( t[1+0*2] - t[1+1*2] ) ); return area; } //****************************************************************************80 double *triangle_circumcenter_2d ( double t[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_CIRCUMCENTER_2D computes the circumcenter of a triangle in 2D. // // Discussion: // // The circumcenter of a triangle is the center of the circumcircle, the // circle that passes through the three vertices of the triangle. // // The circumcircle contains the triangle, but it is not necessarily the // smallest triangle to do so. // // If all angles of the triangle are no greater than 90 degrees, then // the center of the circumscribed circle will lie inside the triangle. // Otherwise, the center will lie outside the triangle. // // The circumcenter is the intersection of the perpendicular bisectors // of the sides of the triangle. // // In geometry, the circumcenter of a triangle is often symbolized by "O". // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the triangle vertices. // // Output, double *TRIANGLE_CIRCUMCENTER_2D[2], the circumcenter of // the triangle. // { # define DIM_NUM 2 double asq; double bot; double *center; double csq; double top1; double top2; center = new double[DIM_NUM]; asq = ( t[0+1*2] - t[0+0*2] ) * ( t[0+1*2] - t[0+0*2] ) + ( t[1+1*2] - t[1+0*2] ) * ( t[1+1*2] - t[1+0*2] ); csq = ( t[0+2*2] - t[0+0*2] ) * ( t[0+2*2] - t[0+0*2] ) + ( t[1+2*2] - t[1+0*2] ) * ( t[1+2*2] - t[1+0*2] ); top1 = ( t[1+1*2] - t[1+0*2] ) * csq - ( t[1+2*2] - t[1+0*2] ) * asq; top2 = - ( t[0+1*2] - t[0+0*2] ) * csq + ( t[0+2*2] - t[0+0*2] ) * asq; bot = ( t[1+1*2] - t[1+0*2] ) * ( t[0+2*2] - t[0+0*2] ) - ( t[1+2*2] - t[1+0*2] ) * ( t[0+1*2] - t[0+0*2] ); center[0] = t[0+0*2] + 0.5 * top1 / bot; center[1] = t[1+0*2] + 0.5 * top2 / bot; return center; # undef DIM_NUM } //****************************************************************************80 void triangle_order3_physical_to_reference ( double t[], int n, double phy[], double ref[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_ORDER3_PHYSICAL_TO_REFERENCE maps physical points to reference points. // // Discussion: // // Given the vertices of an order 3 physical triangle and a point // (X,Y) in the physical triangle, the routine computes the value // of the corresponding image point (XSI,ETA) in reference space. // // Note that this routine may also be appropriate for an order 6 // triangle, if the mapping between reference and physical space // is linear. This implies, in particular, that the sides of the // image triangle are straight and that the "midside" nodes in the // physical triangle are halfway along the sides of // the physical triangle. // // Reference Element T3: // // | // 1 3 // | |\ // | | \ // S | \ // | | \ // | | \ // 0 1-----2 // | // +--0--R--1--> // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the X and Y coordinates // of the vertices. The vertices are assumed to be the images of // (0,0), (1,0) and (0,1) respectively. // // Input, int N, the number of points to transform. // // Input, double PHY[2*N], the coordinates of physical points // to be transformed. // // Output, double REF[2*N], the coordinates of the corresponding // points in the reference space. // { int j; for ( j = 0; j < n; j++ ) { ref[0+j*2] = ( ( t[1+2*2] - t[1+0*2] ) * ( phy[0+j*2] - t[0+0*2] ) - ( t[0+2*2] - t[0+0*2] ) * ( phy[1+j*2] - t[1+0*2] ) ) / ( ( t[1+2*2] - t[1+0*2] ) * ( t[0+1*2] - t[0+0*2] ) - ( t[0+2*2] - t[0+0*2] ) * ( t[1+1*2] - t[1+0*2] ) ); ref[1+j*2] = ( ( t[0+1*2] - t[0+0*2] ) * ( phy[1+j*2] - t[1+0*2] ) - ( t[1+1*2] - t[1+0*2] ) * ( phy[0+j*2] - t[0+0*2] ) ) / ( ( t[1+2*2] - t[1+0*2] ) * ( t[0+1*2] - t[0+0*2] ) - ( t[0+2*2] - t[0+0*2] ) * ( t[1+1*2] - t[1+0*2] ) ); } return; } //****************************************************************************80 void triangle_order3_reference_to_physical ( double t[], int n, double ref[], double phy[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_ORDER3_REFERENCE_TO_PHYSICAL maps reference points to physical points. // // Discussion: // // Given the vertices of an order 3 physical triangle and a point // (XSI,ETA) in the reference triangle, the routine computes the value // of the corresponding image point (X,Y) in physical space. // // Note that this routine may also be appropriate for an order 6 // triangle, if the mapping between reference and physical space // is linear. This implies, in particular, that the sides of the // image triangle are straight and that the "midside" nodes in the // physical triangle are halfway along the sides of // the physical triangle. // // Reference Element T3: // // | // 1 3 // | |\ // | | \ // S | \ // | | \ // | | \ // 0 1-----2 // | // +--0--R--1--> // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the coordinates of the vertices. // The vertices are assumed to be the images of (0,0), (1,0) and // (0,1) respectively. // // Input, int N, the number of points to transform. // // Input, double REF[2*N], points in the reference triangle. // // Output, double PHY[2*N], corresponding points in the // physical triangle. // { int i; int j; for ( i = 0; i < 2; i++ ) { for ( j = 0; j < n; j++ ) { phy[i+j*2] = t[i+0*2] * ( 1.0 - ref[0+j*2] - ref[1+j*2] ) + t[i+1*2] * + ref[0+j*2] + t[i+2*2] * + ref[1+j*2]; } } return; } //****************************************************************************80 void triangle_order6_physical_to_reference ( double t[2*6], int n, double phy[], double ref[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_ORDER6_PHYSICAL_TO_REFERENCE maps a physical point to a reference point. // // Discussion: // // Given the vertices of an order 6 physical triangle and a point // (X,Y) in the physical triangle, the routine computes the value // of the corresponding image point (R,S) in reference space. // // The mapping from (R,S) to (X,Y) has the form: // // X(R,S) = A1 * R * R + B1 * R * S + C1 * S * S // + D1 * R + E1 * S + F1 // // Y(R,S) = A2 * R * R + B2 * R * S + C2 * S * S // + D2 * R + E2 * S + F2 // // Reference Element T3: // // | // 1 3 // | |\ // | | \ // S 6 5 // | | \ // | | \ // 0 1--4--2 // | // +--0--R--1--> // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double T(2,6), the coordinates of the vertices. // The vertices are assumed to be the images of (0,0), (1,0), (0,1), // (1/2,0), (1/2,1/2) and (0,1/2), in that order. // // Input, int N, the number of points to transform. // // Input, double PHY(2,N), the coordinates of points in the // physical space. // // Output, double REF(2,N), the coordinates of the corresponding // points in the reference space. // { double a[2]; double b[2]; double c[2]; double d[2]; double det; double dx[2]; double e[2]; double f[2]; double fun[2]; double fun_norm; int i; int it; int j; double jac[2*2]; int it_max = 10; double it_tol = 0.000001; // // Set iteration parameters. // for ( i = 0; i < 2; i++ ) { a[i] = 2.0 * t[i+0*2] + 2.0 * t[i+1*2] - 4.0 * t[i+3*2]; b[i] = 4.0 * t[i+0*2] - 4.0 * t[i+3*2] + 4.0 * t[i+4*2] - 4.0 * t[i+5*2]; c[i] = 2.0 * t[i+0*2] + 2.0 * t[i+2*2] - 4.0 * t[i+5*2]; d[i] = - 3.0 * t[i+0*2] - t[i+1*2] + 4.0 * t[i+3*2]; e[i] = - 3.0 * t[i+0*2] - t[i+2*2] + 4.0 * t[i+5*2]; f[i] = t[i+0*2]; } // // Initialize the points by inverting the linear map. // triangle_order3_physical_to_reference ( t, n, phy, ref ); // // Carry out the Newton iteration. // for ( j = 0; j < n; j++ ) { for ( it = 0; it < it_max; it++ ) { for ( i = 0; i < 2; i++ ) { fun[i] = a[i] * ref[0+j*2] * ref[0+j*2] + b[i] * ref[0+j*2] * ref[1+j*2] + c[i] * ref[1+j*2] * ref[1+j*2] + d[i] * ref[0+j*2] + e[i] * ref[1+j*2] + f[i] - phy[i+j*2]; } fun_norm = sqrt ( pow ( fun[0], 2 ) + pow ( fun[1], 2 ) ); if ( fun_norm <= it_tol ) { break; } jac[0+0*2] = 2.0 * a[0] * ref[0+j*2] + b[0] * ref[1+j*2] + d[0]; jac[1+0*2] = 2.0 * a[1] * ref[0+j*2] + b[1] * ref[1+j*2] + d[1]; jac[0+1*2] = b[0] * ref[0+j*2] + 2.0 * c[0] * ref[1+j*2] + e[0]; jac[1+1*2] = b[1] * ref[0+j*2] + 2.0 * c[1] * ref[1+j*2] + e[1]; det = jac[0+0*2] * jac[1+1*2] - jac[0+1*2] * jac[1+0*2]; if ( det == 0.0 ) { cout << "\n"; cout << "TRIANGLE_ORDER6_PHYSICAL_TO_REFERENCE - Fatal error!\n"; cout << " The jacobian of the mapping is singular.\n"; } dx[0] = ( jac[1+1*2] * fun[0] - jac[0+1*2] * fun[1] ) / det; dx[1] = ( -jac[1+0*2] * fun[0] + jac[0+0*2] * fun[1] ) / det; ref[0+j*2] = ref[0+j*2] - dx[0]; ref[1+j*2] = ref[1+j*2] - dx[1]; } } return; } //****************************************************************************80 void triangle_order6_reference_to_physical ( double t[], int n, double ref[], double phy[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_ORDER6_REFERENCE_TO_PHYSICAL maps reference points to physical points. // // Discussion: // // Given the vertices of an order 6 physical triangle and a point // (XSI,ETA) in the reference triangle, the routine computes the value // of the corresponding image point (X,Y) in physical space. // // The mapping from (XSI,ETA) to (X,Y) has the form: // // X(ETA,XSI) = A1 * XSI**2 + B1 * XSI*ETA + C1 * ETA**2 // + D1 * XSI + E1 * ETA + F1 // // Y(ETA,XSI) = A2 * XSI**2 + B2 * XSI*ETA + C2 * ETA**2 // + D2 * XSI + E2 * ETA + F2 // // Reference Element T6: // // | // 1 3 // | |\ // | | \ // S 6 5 // | | \ // | | \ // 0 1--4--2 // | // +--0--R--1--> // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*6], the coordinates of the vertices. // The vertices are assumed to be the images of (0,0), (1,0), // (0,1),(1/2,0), (1/2,1/2) and (0,1/2) respectively. // // Input, integer N, the number of points to transform. // // Input, double REF[2*N], points in the reference triangle. // // Output, double PHY[2*N], corresponding points in the // physical triangle. // { double a[2]; double b[2]; double c[2]; double d[2]; double e[2]; double f[2]; int i; int j; for ( i = 0; i < 2; i++ ) { a[i] = 2.0 * t[i+0*2] + 2.0 * t[i+1*2] - 4.0 * t[i+3*2]; b[i] = 4.0 * t[i+0*2] - 4.0 * t[i+3*2] + 4.0 * t[i+4*2] - 4.0 * t[i+5*2]; c[i] = 2.0 * t[i+0*2] + 2.0 * t[i+2*2] - 4.0 * t[i+5*2]; d[i] = - 3.0 * t[i+0*2] - t[i+1*2] + 4.0 * t[i+3*2]; e[i] = - 3.0 * t[i+0*2] - t[i+2*2] + 4.0 * t[i+5*2]; f[i] = t[i+0*2]; } for ( i = 0; i < 2; i++ ) { for ( j = 0; j < n; j++ ) { phy[i+j*2] = a[i] * ref[0+j*2] * ref[0+j*2] + b[i] * ref[0+j*2] * ref[1+j*2] + c[i] * ref[1+j*2] * ref[1+j*2] + d[i] * ref[0+j*2] + e[i] * ref[1+j*2] + f[i]; } } return; } //****************************************************************************80 void triangle_reference_sample ( int n, int *seed, double p[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_REFERENCE_SAMPLE returns random points in the reference triangle. // // Diagram: // // 3 // s |\ // i | \ // d | \ // e | \ side 2 // | \ // 3 | \ // | \ // 1-------2 // // side 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, integer N, the number of points to sample. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double P[2*N], a random point in the triangle. // { # define DIM_NUM 2 double alpha; double beta; int j; double r; for ( j = 0; j < n; j++ ) { r = r8_uniform_01 ( seed ); // // Interpret R as a percentage of the triangle's area. // // Imagine a line L, parallel to side 1, so that the area between // vertex 1 and line L is R percent of the full triangle's area. // // The line L will intersect sides 2 and 3 at a fraction // ALPHA = SQRT ( R ) of the distance from vertex 1 to vertices 2 and 3. // alpha = sqrt ( r ); // // Now choose, uniformly at random, a point on the line L. // beta = r8_uniform_01 ( seed ); p[0+j*2] = ( 1.0 - beta ) * alpha; p[1+j*2] = beta * alpha; } return; # undef DIM_NUM } //****************************************************************************80 void triangle_sample ( double t[2*3], int n, int *seed, double p[] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_SAMPLE returns random points in a triangle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the triangle vertices. // // Input, integer N, the number of points to sample. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double P[2*N], a random point in the triangle. // { # define DIM_NUM 2 double alpha; double beta; int j; double r; double p12[DIM_NUM]; double p13[DIM_NUM]; for ( j = 0; j < n; j++ ) { r = r8_uniform_01 ( seed ); // // Interpret R as a percentage of the triangle's area. // // Imagine a line L, parallel to side 1, so that the area between // vertex 1 and line L is R percent of the full triangle's area. // // The line L will intersect sides 2 and 3 at a fraction // ALPHA = SQRT ( R ) of the distance from vertex 1 to vertices 2 and 3. // alpha = sqrt ( r ); // // Determine the coordinates of the points on sides 2 and 3 intersected // by line L. // p12[0] = ( 1.0 - alpha ) * t[0+0*2] + alpha * t[0+1*2]; p12[1] = ( 1.0 - alpha ) * t[1+0*2] + alpha * t[1+1*2]; p13[0] = ( 1.0 - alpha ) * t[0+0*2] + alpha * t[0+2*2];; p13[1] = ( 1.0 - alpha ) * t[1+0*2] + alpha * t[1+2*2];; // // Now choose, uniformly at random, a point on the line L. // beta = r8_uniform_01 ( seed ); p[0+j*2] = ( 1.0 - beta ) * p12[0] + beta * p13[0]; p[1+j*2] = ( 1.0 - beta ) * p12[1] + beta * p13[1]; } return; # undef DIM_NUM } //****************************************************************************80 double triangulation_area ( int node_num, double node_xy[], int element_order, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_AREA computes the area of a triangulation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 December 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int ELEMENT_ORDER, the order of the triangles. // // Input, int ELEMENT_NUM, the number of triangles. // // Input, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], // the nodes making up each triangle. // // Output, double TRIANGULATION_AREA, the area. // { int element; double element_area; double element_xy[2*3]; int j; int nj; double value; value = 0.0; for ( element = 0; element < element_num; element++ ) { for ( j = 0; j < 3; j++ ) { nj = element_node[j+element*element_order]; element_xy[0+j*2] = node_xy[0+nj*2]; element_xy[1+j*2] = node_xy[1+nj*2]; } element_area = 0.5 * ( element_xy[0+0*2] * ( element_xy[1+1*2] - element_xy[1+2*2] ) + element_xy[0+1*2] * ( element_xy[1+2*2] - element_xy[1+0*2] ) + element_xy[0+2*2] * ( element_xy[1+0*2] - element_xy[1+1*2] ) ); value = value + element_area; } return value; } //****************************************************************************80 double triangulation_areas ( int node_num, double node_xy[], int triangle_order, int triangle_num, int triangle_node[], double triangle_area[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_AREAS computes triangle and triangulation areas. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes in the // triangulation. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_ORDER, the order of triangles in // the triangulation. // // Input, int TRIANGLE_NUM, the number of triangles in // the triangulation. // // Input, int TRIANGLE_NODE[TRIANGLE_ORDER*TRIANGLE_NUM], // the nodes making up each triangle. // // Output, double TRIANGLE_AREA[TRIANGLE_NUM], the area of // the triangles. // // Output, double TRIANGULATION_AREAS, the area of the triangulation. // { int j; int nj; double t_xy[2*3]; int triangle; double triangulation_area; triangulation_area = 0.0; for ( triangle = 0; triangle < triangle_num; triangle++ ) { for ( j = 0; j < 3; j++ ) { nj = triangle_node[j+triangle*triangle_order]; t_xy[0+j*2] = node_xy[0+nj*2]; t_xy[1+j*2] = node_xy[1+nj*2]; } triangle_area[triangle] = 0.5 * ( t_xy[0+0*2] * ( t_xy[1+1*2] - t_xy[1+2*2] ) + t_xy[0+1*2] * ( t_xy[1+2*2] - t_xy[1+0*2] ) + t_xy[0+2*2] * ( t_xy[1+0*2] - t_xy[1+1*2] ) ); triangulation_area = triangulation_area + triangle_area[triangle]; } return triangulation_area; } //****************************************************************************80 double triangulation_delaunay_discrepancy_compute ( int node_num, double node_xy[], int triangle_order, int triangle_num, int triangle_node[], int triangle_neighbor[], double *angle_min, int *angle_min_triangle, double *angle_max, int *angle_max_triangle ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_DELAUNAY_DISCREPANCY_COMPUTE reports if a triangulation is Delaunay. // // Discussion: // // A (maximal) triangulation is Delaunay if and only if it is locally // Delaunay. // // A triangulation is Delaunay if the minimum angle over all triangles // in the triangulation is maximized. That is, there is no other // triangulation of the points which has a larger minimum angle. // // A triangulation is locally Delaunay if, for every pair of triangles // that share an edge, the minimum angle in the two triangles is larger // than the minimum angle in the two triangles formed by removing the // common edge and joining the two opposing vertices. // // This function examines the question of whether a given triangulation // is locally Delaunay. It does this by looking at every pair of // neighboring triangles and comparing the minimum angle attained // for the current triangle pair and the alternative triangle pair. // // Let A(i,j) be the minimum angle formed by triangles T(i) and T(j), // which are two triangles in the triangulation which share a common edge. // Let B(I,J) be the minimum angle formed by triangles S(i) and S(j), // where S(i) and S(j) are formed by removing the common edge of T(i) // and T(j), and joining the opposing vertices. // // Then the triangulation is Delaunay if B(i,j) <= A(i,j) for every // pair of neighbors T(i) and T(j). // // If A(i,j) < B(i,j) for at least one pair of neighbors, the triangulation // is not a Delaunay triangulation. // // This program returns VALUE = min ( A(i,j) - B(i,j) ) over all // triangle neighbors. VALUE is scaled to be in degrees, for // comprehensibility. If VALUE is negative, then at least one pair // of triangles violates the Delaunay condition, and so the entire // triangulation is not a Delaunay triangulation. If VALUE is nonnegative, // then the triangulation is a Delaunay triangulation. // // It is useful to return VALUE, rather than a simple True/False value, // because there can be cases where the Delaunay condition is only // "slightly" violated. A simple example is a triangulation formed // by starting with a mesh of squares and dividing each square into // two triangles by choosing one of the diagonals of the square. // The Delaunay discrepancy for this mesh, if computed exactly, is 0, // but roundoff could easily result in discrepancies that were very // slightly negative. // // If VALUE is positive, and not very small in magnitude, then every // pair of triangles in the triangulation satisfies the local Delaunay // condition, and so the triangulation is a Delaunay triangulation. // // If VALUE is negative, and not very small in magnitude, then at least // one pair of triangles violates the Delaunay condition, and to a // significant degree. The triangulation is not a Delaunay triangulation. // // If the magnitude of VALUE is very close to zero, then the triangulation // is numerically ambiguous. At least one pair of triangles violates // or almost violates the condition, but no triangle violates the // condition to a great extent. The user must judge whether the // violation is significant or not. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt. // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_ORDER, the order of the triangles. // // Input, int TRIANGLE_NUM, the number of triangles in // the triangulation. // // Input, int TRIANGLE_NODE[TRIANGLE_ORDER*TRIANGLE_NUM], // the nodes that make up each triangle. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the // triangle neighbor list. // // Output, double *ANGLE_MIN, the minimum angle that occurred in // the triangulation. // // Output, int *ANGLE_MIN_TRIANGLE, the triangle in which // the minimum angle occurred. // // Output, double *ANGLE_MAX, the maximum angle that occurred in // the triangulation. // // Output, int *ANGLE_MAX_TRIANGLE, the triangle in which // the maximum angle occurred. // // Output, double TRIANGULATION_DELAUNAY_DISCREPANCY, // the minimum value of ( A(i,j) - B(i,j) ). // POSITIVE indicates the triangulation is Delaunay. // VERY NEAR ZERO is a numerically ambiguous case. // NEGATIVE indicates the triangulation is not Delaunay. // { double angle_min1; double angle_min2; double *angles1; double *angles2; int i; int i1; int i2; int i3; int i4; int n1; int n2; int n3; int n4; int neighbor; double pi = 3.141592653589793; double t[2*3]; int triangle_index; int triangle1; int triangle2; double value; *angle_max = 0.0; *angle_max_triangle = - 1; *angle_min = pi; *angle_min_triangle = -1; value = 0.0; // // Consider triangle TRIANGLE1 // for ( triangle1 = 0; triangle1 < triangle_num; triangle1++ ) { // // Consider the side opposite vertex NEIGHBOR. // for ( neighbor = 0; neighbor < 3; neighbor++ ) { triangle2 = triangle_neighbor[neighbor+triangle1*3]; // // There might be no neighbor on side NEIGHBOR. // if ( triangle2 < 0 ) { continue; } // // We only need to check a pair of triangles once. // if ( triangle2 < triangle1 ) { continue; } // // List the vertices of the quadrilateral in such a way // that the nodes of triangle 1 come first. // // We rely on a property of the TRIANGLE_NEIGHBOR array, namely, that // neighbor #1 is on the side opposite to vertex #1, and so on. // i1 = i4_wrap ( neighbor + 2, 0, 2 ); i2 = i4_wrap ( neighbor, 0, 2 ); i3 = i4_wrap ( neighbor + 1, 0, 2 ); n1 = triangle_node[i1+triangle1*triangle_order]; n2 = triangle_node[i2+triangle1*triangle_order]; n3 = triangle_node[i3+triangle1*triangle_order]; // // The "odd" or "opposing" node of the neighboring triangle // is the one which follows common node I3. // n4 = -1; for ( i = 0; i < 3; i++ ) { if ( triangle_node[i+triangle2*triangle_order] == n3 ) { i4 = i + 1; i4 = i4_wrap ( i4, 0, 2 ); n4 = triangle_node[i4+triangle2*triangle_order]; break; } } if ( n4 == -1 ) { cout << "\n"; cout << "TRIANGULATION_DELAUNAY_DISCREPANCY_COMPUTE - Fatal error/!\n"; cout << " Could not identify the fourth node.\n"; cout << "\n"; cout << " Triangle1 = " << triangle1 << "\n"; cout << " Nodes = "; for ( i = 0; i < 3; i++ ) { cout << " " << triangle_node[i+triangle1*triangle_order]; } cout << "\n"; cout << " Neighbors = "; for ( i = 0; i < 3; i++ ) { cout << " " << triangle_neighbor[i+triangle1*3]; } cout << "\n"; cout << "\n"; cout << " Neighbor index = " << neighbor << "\n"; cout << "\n"; cout << " Triangle2 = " << triangle2 << "\n"; cout << " Nodes = "; for ( i = 0; i < 3; i++ ) { cout << " " << triangle_node[i+triangle2*triangle_order]; } cout << "\n"; cout << " Neighbors = "; for ( i = 0; i < 3; i++ ) { cout << " " << triangle_neighbor[i+triangle2*3]; } cout << "\n"; exit ( 1 ); } // // Compute the minimum angle for (I1,I2,I3) and (I1,I3,I4). // t[0+0*2] = node_xy[0+n1*2]; t[1+0*2] = node_xy[1+n1*2]; t[0+1*2] = node_xy[0+n2*2]; t[1+1*2] = node_xy[1+n2*2]; t[0+2*2] = node_xy[0+n3*2]; t[1+2*2] = node_xy[1+n3*2]; angles1 = triangle_angles_2d_new ( t ); t[0+0*2] = node_xy[0+n1*2]; t[1+0*2] = node_xy[1+n1*2]; t[0+1*2] = node_xy[0+n3*2]; t[1+1*2] = node_xy[1+n3*2]; t[0+2*2] = node_xy[0+n4*2]; t[1+2*2] = node_xy[1+n4*2]; angles2 = triangle_angles_2d_new ( t ); angle_min1 = r8_min ( r8vec_min ( 3, angles1 ), r8vec_min ( 3, angles2 ) ); if ( *angle_max < r8vec_max ( 3, angles1 ) ) { *angle_max = r8vec_max ( 3, angles1 ); *angle_max_triangle = triangle1; } if ( *angle_max < r8vec_max ( 3, angles2 ) ) { *angle_max = r8vec_max ( 3, angles2 ); *angle_max_triangle = triangle2; } if ( r8vec_min ( 3, angles1 ) < *angle_min ) { *angle_min = r8vec_min ( 3, angles1 ); *angle_min_triangle = triangle1; } if ( r8vec_min ( 3, angles2 ) < *angle_min ) { *angle_min = r8vec_min ( 3, angles2 ); *angle_min_triangle = triangle2; } delete [] angles1; delete [] angles2; // // Compute the minimum angle for (I1,I2,I4) and (I2,I3,I4). // t[0+0*2] = node_xy[0+n1*2]; t[1+0*2] = node_xy[1+n1*2]; t[0+1*2] = node_xy[0+n2*2]; t[1+1*2] = node_xy[1+n2*2]; t[0+2*2] = node_xy[0+n4*2]; t[1+2*2] = node_xy[1+n4*2]; angles1 = triangle_angles_2d_new ( t ); t[0+0*2] = node_xy[0+n3*2]; t[1+0*2] = node_xy[1+n3*2]; t[0+1*2] = node_xy[0+n3*2]; t[1+1*2] = node_xy[1+n3*2]; t[0+2*2] = node_xy[0+n4*2]; t[1+2*2] = node_xy[1+n4*2]; angles2 = triangle_angles_2d_new ( t ); angle_min2 = r8_min ( r8vec_min ( 3, angles1 ), r8vec_min ( 3, angles2 ) ); delete [] angles1; delete [] angles2; // // Compare this value to the current minimum. // value = r8_min ( value, angle_min1 - angle_min2 ); } } // // Scale the results to degrees. // value = value * 180.0 / pi; *angle_max = *angle_max * 180.0 / pi; *angle_min = *angle_min * 180.0 / pi; return value; } //****************************************************************************80 int *triangulation_neighbor_elements ( int triangle_order, int triangle_num, int triangle_node[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_NEIGHBOR_ELEMENTS determines element neighbors. // // Discussion: // // A triangulation of a set of nodes can be completely described by // the coordinates of the nodes, and the list of nodes that make up // each triangle. However, in some cases, it is necessary to know // triangle adjacency information, that is, which triangle, if any, // is adjacent to a given triangle on a particular side. // // This routine creates a data structure recording this information. // // The primary amount of work occurs in sorting a list of 3 * TRIANGLE_NUM // data items. // // This routine was modified to work with columns rather than rows. // // Example: // // The input information from TRIANGLE_NODE: // // Triangle Nodes // -------- --------------- // 1 3 4 1 // 2 3 1 2 // 3 3 2 8 // 4 2 1 5 // 5 8 2 13 // 6 8 13 9 // 7 3 8 9 // 8 13 2 5 // 9 9 13 7 // 10 7 13 5 // 11 6 7 5 // 12 9 7 6 // 13 10 9 6 // 14 6 5 12 // 15 11 6 12 // 16 10 6 11 // // The output information in TRIANGLE_NEIGHBOR: // // Triangle Neighboring Triangles // -------- --------------------- // // 1 -1 -1 2 // 2 1 4 3 // 3 2 5 7 // 4 2 -1 8 // 5 3 8 6 // 6 5 9 7 // 7 3 6 -1 // 8 5 4 10 // 9 6 10 12 // 10 9 8 11 // 11 12 10 14 // 12 9 11 13 // 13 -1 12 16 // 14 11 -1 15 // 15 16 14 -1 // 16 13 15 -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int TRIANGLE_ORDER, the order of the triangles. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[TRIANGLE_ORDER*TRIANGLE_NUM], the nodes that // make up each triangle. // // Output, int TRIANGLE_NEIGHBOR_TRIANGLES[3*TRIANGLE_NUM], // the three triangles // that are direct neighbors of a given triangle. TRIANGLE_NEIGHBOR(1,I) // is the index of the triangle which touches side 1, defined by nodes 2 // and 3, and so on. TRIANGLE_NEIGHBOR(1,I) is negative if there is no // neighbor on that side. In this case, that side of the triangle lies // on the boundary of the triangulation. // { int *col; int i; int icol; int j; int k; int side1; int side2; int tri; int tri1; int tri2; int *triangle_neighbor; triangle_neighbor = new int[3*triangle_num]; col = new int[4*(3*triangle_num)]; // // Step 1. // From the list of nodes for triangle T, of the form: (I,J,K) // construct the three neighbor relations: // // (I,J,3,T) or (J,I,3,T), // (J,K,1,T) or (K,J,1,T), // (K,I,2,T) or (I,K,2,T) // // where we choose (I,J,3,T) if I < J, or else (J,I,3,T) // for ( tri = 0; tri < triangle_num; tri++ ) { i = triangle_node[0+tri*triangle_order]; j = triangle_node[1+tri*triangle_order]; k = triangle_node[2+tri*triangle_order]; if ( i < j ) { col[0+(3*tri+0)*4] = i; col[1+(3*tri+0)*4] = j; col[2+(3*tri+0)*4] = 3; col[3+(3*tri+0)*4] = tri + 1; } else { col[0+(3*tri+0)*4] = j; col[1+(3*tri+0)*4] = i; col[2+(3*tri+0)*4] = 3; col[3+(3*tri+0)*4] = tri + 1; } if ( j < k ) { col[0+(3*tri+1)*4] = j; col[1+(3*tri+1)*4] = k; col[2+(3*tri+1)*4] = 1; col[3+(3*tri+1)*4] = tri + 1; } else { col[0+(3*tri+1)*4] = k; col[1+(3*tri+1)*4] = j; col[2+(3*tri+1)*4] = 1; col[3+(3*tri+1)*4] = tri + 1; } if ( k < i ) { col[0+(3*tri+2)*4] = k; col[1+(3*tri+2)*4] = i; col[2+(3*tri+2)*4] = 2; col[3+(3*tri+2)*4] = tri + 1; } else { col[0+(3*tri+2)*4] = i; col[1+(3*tri+2)*4] = k; col[2+(3*tri+2)*4] = 2; col[3+(3*tri+2)*4] = tri + 1; } } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // We only intend to sort on rows 1 and 2; the routine we call here // sorts on rows 1 through 4 but that won't hurt us. // // What we need is to find cases where two triangles share an edge. // Say they share an edge defined by the nodes I and J. Then there are // two columns of COL that start out ( I, J, ?, ? ). By sorting COL, // we make sure that these two columns occur consecutively. That will // make it easy to notice that the triangles are neighbors. // i4col_sort_a ( 4, 3*triangle_num, col ); // // Step 3. Neighboring triangles show up as consecutive columns with // identical first two entries. Whenever you spot this happening, // make the appropriate entries in TRIANGLE_NEIGHBOR. // for ( j = 0; j < triangle_num; j++ ) { for ( i = 0; i < 3; i++ ) { triangle_neighbor[i+j*3] = -1; } } icol = 1; for ( ; ; ) { if ( 3 * triangle_num <= icol ) { break; } if ( col[0+(icol-1)*4] != col[0+icol*4] || col[1+(icol-1)*4] != col[1+icol*4] ) { icol = icol + 1; continue; } side1 = col[2+(icol-1)*4]; tri1 = col[3+(icol-1)*4]; side2 = col[2+ icol *4]; tri2 = col[3+ icol *4]; triangle_neighbor[side1-1+(tri1-1)*3] = tri2; triangle_neighbor[side2-1+(tri2-1)*3] = tri1; icol = icol + 2; } delete [] col; return triangle_neighbor; } //****************************************************************************80 int *triangulation_node_order ( int triangle_order, int triangle_num, int triangle_node[], int node_num ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_NODE_ORDER determines the order of nodes in a triangulation. // // Discussion: // // The order of a node is the number of triangles that use that node // as a vertex. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, integer TRIANGLE_ORDER, the order of the triangulation. // // Input, integer TRIANGLE_NUM, the number of triangles. // // Input, integer TRIANGLE_NODE[TRIANGLE_ORDER*TRIANGLE_NUM], the nodes // that make up the triangles. // // Input, integer NODE_NUM, the number of nodes. // // Output, integer TRIANGULATION_NODE_ORDER[NODE_NUM], the order of // each node. // { int i; int node; int *node_order; int triangle; node_order = new int[node_num]; for ( node = 0; node < node_num; node++ ) { node_order[node] = 0; } for ( triangle = 0; triangle < triangle_num; triangle++ ) { for ( i = 0; i < triangle_order; i++ ) { node = triangle_node[i+triangle*triangle_order]; if ( node < 1 || node_num < node ) { cout << "\n"; cout << "TRIANGULATION_NODE_ORDER - Fatal error!\n"; cout << " Illegal entry in TRIANGLE_NODE.\n"; node_order = NULL; exit ( 1 ); } else { node_order[node-1] = node_order[node-1] + 1; } } } return node_order; } //****************************************************************************80 int triangulation_order3_adj_count ( int node_num, int triangle_num, int triangle_node[], int triangle_neighbor[], int adj_col[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_ADJ_COUNT counts adjacencies in a triangulation. // // Discussion: // // This routine is called to count the adjacencies, so that the // appropriate amount of memory can be set aside for storage when // the adjacency structure is created. // // The triangulation is assumed to involve 3-node triangles. // // Two nodes are "adjacent" if they are both nodes in some triangle. // Also, a node is considered to be adjacent to itself. // // Diagram: // // 3 // s |\ // i | \ // d | \ // e | \ side 2 // | \ // 3 | \ // | \ // 1-------2 // // side 1 // // The local node numbering // // // 21-22-23-24-25 // |\ |\ |\ |\ | // | \| \| \| \| // 16-17-18-19-20 // |\ |\ |\ |\ | // | \| \| \| \| // 11-12-13-14-15 // |\ |\ |\ |\ | // | \| \| \| \| // 6--7--8--9-10 // |\ |\ |\ |\ | // | \| \| \| \| // 1--2--3--4--5 // // A sample grid. // // // Below, we have a chart that summarizes the adjacency relationships // in the sample grid. On the left, we list the node, and its neighbors, // with an asterisk to indicate the adjacency of the node to itself // (in some cases, you want to count this self adjacency and in some // you don't). On the right, we list the number of adjancencies to // lower-indexed nodes, to the node itself, to higher-indexed nodes, // the total number of adjacencies for this node, and the location // of the first and last entries required to list this set of adjacencies // in a single list of all the adjacencies. // // N Adjacencies Below Self Above Total First Last // // -- -- -- -- -- -- -- -- -- -- -- -- --- 0 // 1: * 2 6 0 1 2 3 1 3 // 2: 1 * 3 6 7 1 1 3 5 4 8 // 3: 2 * 4 7 8 1 1 3 5 9 13 // 4: 3 * 5 8 9 1 1 3 5 14 18 // 5: 4 * 9 10 1 1 2 4 19 22 // 6: 1 2 * 7 11 2 1 2 5 23 27 // 7: 2 3 6 * 8 11 12 3 1 3 7 28 34 // 8: 3 4 7 * 9 12 13 3 1 3 7 35 41 // 9: 4 5 8 * 10 13 14 3 1 3 7 42 48 // 10: 5 9 * 14 15 2 1 2 5 49 53 // 11: 6 7 * 12 16 2 1 2 5 54 58 // 12: 7 8 11 * 13 16 17 3 1 3 7 59 65 // 13: 8 9 12 * 14 17 18 3 1 3 7 66 72 // 14: 9 10 13 * 15 18 19 3 1 3 7 73 79 // 15: 10 14 * 19 20 2 1 2 5 80 84 // 16: 11 12 * 17 21 2 1 2 5 85 89 // 17: 12 13 16 * 18 21 22 3 1 3 7 90 96 // 18: 13 14 17 * 19 22 23 3 1 3 7 97 103 // 19: 14 15 18 * 20 23 24 3 1 3 7 104 110 // 20: 15 19 * 24 25 2 1 2 5 111 115 // 21: 16 17 * 22 2 1 1 4 116 119 // 22: 17 18 21 * 23 3 1 1 5 120 124 // 23: 18 19 22 * 24 3 1 1 5 125 129 // 24: 19 20 23 * 25 3 1 1 5 130 134 // 25: 20 24 * 2 1 0 3 135 137 // -- -- -- -- -- -- -- -- -- -- -- -- 138 --- // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 August 2006 // // Author: // // John Burkardt // // Parameters // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], lists the nodes that // make up each triangle, in counterclockwise order. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], for each side of // a triangle, lists the neighboring triangle, or -1 if there is // no neighbor. // // Output, TRIANGULATION_ORDER3_ADJ_COUNT, the number of adjacencies. // // Output, int ADJ_COL[NODE_NUM+1]. Information about column J is stored // in entries ADJ_COL(J) through ADJ_COL(J+1)-1 of ADJ. // { int adj_num; int i; int n1; int n2; int n3; int node; int triangle; int triangle_order = 3; int triangle2; adj_num = 0; // // Set every node to be adjacent to itself. // for ( node = 0; node < node_num; node++ ) { adj_col[node] = 1; } // // Examine each triangle. // for ( triangle = 0; triangle < triangle_num; triangle++ ) { n1 = triangle_node[0+triangle*triangle_order]; n2 = triangle_node[1+triangle*triangle_order]; n3 = triangle_node[2+triangle*triangle_order]; // // Add edge (1,2) if this is the first occurrence, // that is, if the edge (1,2) is on a boundary (TRIANGLE2 <= 0) // or if this triangle is the first of the pair in which the edge // occurs (TRIANGLE < TRIANGLE2). // triangle2 = triangle_neighbor[0+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_col[n1-1] = adj_col[n1-1] + 1; adj_col[n2-1] = adj_col[n2-1] + 1; } // // Add edge (2,3). // triangle2 = triangle_neighbor[1+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_col[n2-1] = adj_col[n2-1] + 1; adj_col[n3-1] = adj_col[n3-1] + 1; } // // Add edge (3,1). // triangle2 = triangle_neighbor[2+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_col[n1-1] = adj_col[n1-1] + 1; adj_col[n3-1] = adj_col[n3-1] + 1; } } // // We used ADJ_COL to count the number of entries in each column. // Convert it to pointers into the ADJ array. // for ( node = node_num; 1 <= node; node-- ) { adj_col[node] = adj_col[node-1]; } adj_col[0] = 1; for ( i = 1; i <= node_num; i++ ) { adj_col[i]= adj_col[i-1] + adj_col[i]; } adj_num = adj_col[node_num] - 1; return adj_num; } //****************************************************************************80 int *triangulation_order3_adj_set ( int node_num, int triangle_num, int triangle_node[], int triangle_neighbor[], int adj_num, int adj_col[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_ADJ_SET sets adjacencies in a triangulation. // // Discussion: // // This routine is called to set the adjacencies, after the // appropriate amount of memory has been set aside for storage. // // The triangulation is assumed to involve 3-node triangles. // // Two nodes are "adjacent" if they are both nodes in some triangle. // Also, a node is considered to be adjacent to itself. // // This routine can be used to create the compressed column storage // for a linear triangle finite element discretization of // Poisson's equation in two dimensions. // // Diagram: // // 3 // s |\ // i | \ // d | \ // e | \ side 2 // | \ // 3 | \ // | \ // 1-------2 // // side 1 // // The local node numbering // // // 21-22-23-24-25 // |\ |\ |\ |\ | // | \| \| \| \| // 16-17-18-19-20 // |\ |\ |\ |\ | // | \| \| \| \| // 11-12-13-14-15 // |\ |\ |\ |\ | // | \| \| \| \| // 6--7--8--9-10 // |\ |\ |\ |\ | // | \| \| \| \| // 1--2--3--4--5 // // A sample grid // // // Below, we have a chart that summarizes the adjacency relationships // in the sample grid. On the left, we list the node, and its neighbors, // with an asterisk to indicate the adjacency of the node to itself // (in some cases, you want to count this self adjacency and in some // you don't). On the right, we list the number of adjancencies to // lower-indexed nodes, to the node itself, to higher-indexed nodes, // the total number of adjacencies for this node, and the location // of the first and last entries required to list this set of adjacencies // in a single list of all the adjacencies. // // N Adjacencies Below Self Above Total First Last // // -- -- -- -- -- -- -- -- -- -- -- -- --- 0 // 1: * 2 6 0 1 2 3 1 3 // 2: 1 * 3 6 7 1 1 3 5 4 8 // 3: 2 * 4 7 8 1 1 3 5 9 13 // 4: 3 * 5 8 9 1 1 3 5 14 18 // 5: 4 * 9 10 1 1 2 4 19 22 // 6: 1 2 * 7 11 2 1 2 5 23 27 // 7: 2 3 6 * 8 11 12 3 1 3 7 28 34 // 8: 3 4 7 * 9 12 13 3 1 3 7 35 41 // 9: 4 5 8 * 10 13 14 3 1 3 7 42 48 // 10: 5 9 * 14 15 2 1 2 5 49 53 // 11: 6 7 * 12 16 2 1 2 5 54 58 // 12: 7 8 11 * 13 16 17 3 1 3 7 59 65 // 13: 8 9 12 * 14 17 18 3 1 3 7 66 72 // 14: 9 10 13 * 15 18 19 3 1 3 7 73 79 // 15: 10 14 * 19 20 2 1 2 5 80 84 // 16: 11 12 * 17 21 2 1 2 5 85 89 // 17: 12 13 16 * 18 21 22 3 1 3 7 90 96 // 18: 13 14 17 * 19 22 23 3 1 3 7 97 103 // 19: 14 15 18 * 20 23 24 3 1 3 7 104 110 // 20: 15 19 * 24 25 2 1 2 5 111 115 // 21: 16 17 * 22 2 1 1 4 116 119 // 22: 17 18 21 * 23 3 1 1 5 120 124 // 23: 18 19 22 * 24 3 1 1 5 125 129 // 24: 19 20 23 * 25 3 1 1 5 130 134 // 25: 20 24 * 2 1 0 3 135 137 // -- -- -- -- -- -- -- -- -- -- -- -- 138 --- // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 August 2006 // // Author: // // John Burkardt // // Parameters // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], lists the nodes that // make up each triangle in counterclockwise order. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], for each side of // a triangle, lists the neighboring triangle, or -1 if there is // no neighbor. // // Input, int ADJ_NUM, the number of adjacencies. // // Input, int ADJ_COL[NODE_NUM+1]. Information about column J is stored // in entries ADJ_COL(J) through ADJ_COL(J+1)-1 of ADJ. // // Output, int TRIANGULATION_ORDER3_ADJ_SET[ADJ_NUM], the adjacency // information. // { int *adj; int *adj_copy; int k; int k1; int k2; int n1; int n2; int n3; int node; int triangle; int triangle2; int triangle_order = 3; adj = new int[adj_num]; for ( k = 0; k < adj_num; k++ ) { adj[k] = -1; } adj_copy = new int[node_num]; for ( node = 0; node < node_num; node++ ) { adj_copy[node] = adj_col[node]; } // // Set every node to be adjacent to itself. // for ( node = 1; node <= node_num; node++ ) { adj[adj_copy[node-1]-1] = node; adj_copy[node-1] = adj_copy[node-1] + 1; } // // Examine each triangle. // for ( triangle = 0; triangle < triangle_num; triangle++ ) { n1 = triangle_node[0+triangle*triangle_order]; n2 = triangle_node[1+triangle*triangle_order]; n3 = triangle_node[2+triangle*triangle_order]; // // Add edge (1,2) if this is the first occurrence, // that is, if the edge (1,2) is on a boundary (TRIANGLE2 <= 0) // or if this triangle is the first of the pair in which the edge // occurs (TRIANGLE < TRIANGLE2). // triangle2 = triangle_neighbor[0+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj[adj_copy[n1-1]-1] = n2; adj_copy[n1-1] = adj_copy[n1-1] + 1; adj[adj_copy[n2-1]-1] = n1; adj_copy[n2-1] = adj_copy[n2-1] + 1; } // // Add edge (2,3). // triangle2 = triangle_neighbor[1+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj[adj_copy[n2-1]-1] = n3; adj_copy[n2-1] = adj_copy[n2-1] + 1; adj[adj_copy[n3-1]-1] = n2; adj_copy[n3-1] = adj_copy[n3-1] + 1; } // // Add edge (3,1). // triangle2 = triangle_neighbor[2+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj[adj_copy[n1-1]-1] = n3; adj_copy[n1-1] = adj_copy[n1-1] + 1; adj[adj_copy[n3-1]-1] = n1; adj_copy[n3-1] = adj_copy[n3-1] + 1; } } // // Ascending sort the entries for each node. // for ( node = 1; node <= node_num; node++ ) { k1 = adj_col[node-1]; k2 = adj_col[node]-1; i4vec_sort_heap_a ( k2+1-k1, adj+k1-1 ); } delete [] adj_copy; return adj; } //****************************************************************************80 void triangulation_order3_adj_set2 ( int node_num, int triangle_num, int triangle_node[], int triangle_neighbor[], int adj_num, int adj_col[], int ia[], int ja[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_ADJ_SET2 sets adjacencies in a triangulation. // // Discussion: // // This routine is called to set up the arrays IA and JA that // record which nodes are adjacent in a triangulation. // // The triangulation is assumed to involve 3-node triangles. // // Two nodes are "adjacent" if they are both nodes in some triangle. // Also, a node is considered to be adjacent to itself. // // This routine can be used to create the compressed column storage // for a linear triangle finite element discretization of // Poisson's equation in two dimensions. // // Diagram: // // 3 // s |\ // i | \ // d | \ // e | \ side 2 // | \ // 3 | \ // | \ // 1-------2 // // side 1 // // The local node numbering // // // 21-22-23-24-25 // |\ |\ |\ |\ | // | \| \| \| \| // 16-17-18-19-20 // |\ |\ |\ |\ | // | \| \| \| \| // 11-12-13-14-15 // |\ |\ |\ |\ | // | \| \| \| \| // 6--7--8--9-10 // |\ |\ |\ |\ | // | \| \| \| \| // 1--2--3--4--5 // // A sample grid // // // Below, we have a chart that summarizes the adjacency relationships // in the sample grid. On the left, we list the node, and its neighbors, // with an asterisk to indicate the adjacency of the node to itself // (in some cases, you want to count this self adjacency and in some // you don't). On the right, we list the number of adjancencies to // lower-indexed nodes, to the node itself, to higher-indexed nodes, // the total number of adjacencies for this node, and the location // of the first and last entries required to list this set of adjacencies // in a single list of all the adjacencies. // // N Adjacencies Below Self Above Total First Last // // -- -- -- -- -- -- -- -- -- -- -- -- --- 0 // 1: * 2 6 0 1 2 3 1 3 // 2: 1 * 3 6 7 1 1 3 5 4 8 // 3: 2 * 4 7 8 1 1 3 5 9 13 // 4: 3 * 5 8 9 1 1 3 5 14 18 // 5: 4 * 9 10 1 1 2 4 19 22 // 6: 1 2 * 7 11 2 1 2 5 23 27 // 7: 2 3 6 * 8 11 12 3 1 3 7 28 34 // 8: 3 4 7 * 9 12 13 3 1 3 7 35 41 // 9: 4 5 8 * 10 13 14 3 1 3 7 42 48 // 10: 5 9 * 14 15 2 1 2 5 49 53 // 11: 6 7 * 12 16 2 1 2 5 54 58 // 12: 7 8 11 * 13 16 17 3 1 3 7 59 65 // 13: 8 9 12 * 14 17 18 3 1 3 7 66 72 // 14: 9 10 13 * 15 18 19 3 1 3 7 73 79 // 15: 10 14 * 19 20 2 1 2 5 80 84 // 16: 11 12 * 17 21 2 1 2 5 85 89 // 17: 12 13 16 * 18 21 22 3 1 3 7 90 96 // 18: 13 14 17 * 19 22 23 3 1 3 7 97 103 // 19: 14 15 18 * 20 23 24 3 1 3 7 104 110 // 20: 15 19 * 24 25 2 1 2 5 111 115 // 21: 16 17 * 22 2 1 1 4 116 119 // 22: 17 18 21 * 23 3 1 1 5 120 124 // 23: 18 19 22 * 24 3 1 1 5 125 129 // 24: 19 20 23 * 25 3 1 1 5 130 134 // 25: 20 24 * 2 1 0 3 135 137 // -- -- -- -- -- -- -- -- -- -- -- -- 138 --- // // For this example, the initial portion of the IA and JA arrays will be: // // (1,1), (1,2), (1,6), // (2,1), (2,2), (2,3), (2,6), (2,7), // (3,2), (3,3), (3,4), (3,7), (3,8), // ... // (25,20), (25,24), (25,25) // // for a total of 137 pairs of values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 July 2007 // // Author: // // John Burkardt // // Parameters // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], lists the nodes that // make up each triangle in counterclockwise order. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], for each side of // a triangle, lists the neighboring triangle, or -1 if there is // no neighbor. // // Input, int ADJ_NUM, the number of adjacencies. // // Input, int ADJ_COL[NODE_NUM+1]. Information about column J is stored // in entries ADJ_COL(J) through ADJ_COL(J+1)-1 of ADJ. // // Output, int IA[ADJ_NUM], JA[ADJ_NUM], the adjacency information. // { int adj; int *adj_copy; int k; int k1; int k2; int n1; int n2; int n3; int node; int triangle; int triangle2; int triangle_order = 3; for ( adj = 0; adj < adj_num; adj++ ) { ia[adj] = -1; } for ( adj = 0; adj < adj_num; adj++ ) { ja[adj] = -1; } adj_copy = new int[node_num]; for ( node = 0; node < node_num; node++ ) { adj_copy[node] = adj_col[node]; } // // Set every node to be adjacent to itself. // for ( node = 1; node <= node_num; node++ ) { ia[adj_copy[node-1]-1] = node; ja[adj_copy[node-1]-1] = node; adj_copy[node-1] = adj_copy[node-1] + 1; } // // Examine each triangle. // for ( triangle = 0; triangle < triangle_num; triangle++ ) { n1 = triangle_node[0+triangle*triangle_order]; n2 = triangle_node[1+triangle*triangle_order]; n3 = triangle_node[2+triangle*triangle_order]; // // Add edge (1,2) if this is the first occurrence, // that is, if the edge (1,2) is on a boundary (TRIANGLE2 <= 0) // or if this triangle is the first of the pair in which the edge // occurs (TRIANGLE < TRIANGLE2). // triangle2 = triangle_neighbor[0+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { ia[adj_copy[n1-1]-1] = n1; ja[adj_copy[n1-1]-1] = n2; adj_copy[n1-1] = adj_copy[n1-1] + 1; ia[adj_copy[n2-1]-1] = n2; ja[adj_copy[n2-1]-1] = n1; adj_copy[n2-1] = adj_copy[n2-1] + 1; } // // Add edge (2,3). // triangle2 = triangle_neighbor[1+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { ia[adj_copy[n2-1]-1] = n2; ja[adj_copy[n2-1]-1] = n3; adj_copy[n2-1] = adj_copy[n2-1] + 1; ia[adj_copy[n3-1]-1] = n3; ja[adj_copy[n3-1]-1] = n2; adj_copy[n3-1] = adj_copy[n3-1] + 1; } // // Add edge (3,1). // triangle2 = triangle_neighbor[2+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { ia[adj_copy[n1-1]-1] = n1; ja[adj_copy[n1-1]-1] = n3; adj_copy[n1-1] = adj_copy[n1-1] + 1; ia[adj_copy[n3-1]-1] = n3; ja[adj_copy[n3-1]-1] = n1; adj_copy[n3-1] = adj_copy[n3-1] + 1; } } // // Lexically sort the IA, JA values. // i4vec2_sort_a ( adj_num, ia, ja ); delete [] adj_copy; return; } //****************************************************************************80 int *triangulation_order3_adjacency ( int node_num, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_ADJACENCY computes the full adjacency matrix // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes in the // triangulation. // // Input, int ELEMENT_NUM, the number of triangles in // the triangulation. // // Input, int ELEMENT_NODE[3*ELEMENT_NUM], // the nodes making up each triangle. // // Output, int TRIANGULATION_ORDER3_ADJACENCY[NODE_NUM*NODE_NUM], the adjacency // matrix. ADJ(I,J) is 1 if nodes I and J are adjacent, that is, // they are immediate neighbors on an edge of the triangulation. // { int *adj; int element; int i; int j; int k; adj = new int[node_num*node_num]; for ( j = 0; j < node_num; j++ ) { for ( i = 0; i < node_num; i++ ) { adj[i+j*node_num] = 0; } } for ( element = 0; element < element_num; element++ ) { i = element_node[0+element*3]; j = element_node[1+element*3]; k = element_node[2+element*3]; adj[i+j*node_num] = 1; adj[i+k*node_num] = 1; adj[j+i*node_num] = 1; adj[j+k*node_num] = 1; adj[k+i*node_num] = 1; adj[k+j*node_num] = 1; } return adj; } //****************************************************************************80 int triangulation_order3_boundary_edge_count ( int triangle_num, int triangle_node[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_BOUNDARY_EDGE_COUNT counts the boundary edges. // // Discussion: // // This routine is given a triangulation, an abstract list of triples // of nodes. It is assumed that the nodes in each triangle are listed // in a counterclockwise order, although the routine should work // if the nodes are consistently listed in a clockwise order as well. // // It is assumed that each edge of the triangulation is either // * an INTERIOR edge, which is listed twice, once with positive // orientation and once with negative orientation, or; // * a BOUNDARY edge, which will occur only once. // // This routine should work even if the region has holes - as long // as the boundary of the hole comprises more than 3 edges! // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up the // triangles. These should be listed in counterclockwise order. // // Output, integer TRIANGULATION_ORDER3_BOUNDARY_EDGE_COUNT, the number // of boundary edges. // { int boundary_edge_num; int e1; int e2; int *edge; int i; int interior_edge_num; int j; int m; int n; int unique_num; m = 2; n = 3 * triangle_num; // // Set up the edge array. // edge = new int[m*n]; for ( j = 0; j < triangle_num; j++ ) { edge[0+(j )*m] = triangle_node[0+j*3]; edge[1+(j )*m] = triangle_node[1+j*3]; edge[0+(j+ triangle_num)*m] = triangle_node[1+j*3]; edge[1+(j+ triangle_num)*m] = triangle_node[2+j*3]; edge[0+(j+2*triangle_num)*m] = triangle_node[2+j*3]; edge[1+(j+2*triangle_num)*m] = triangle_node[0+j*3]; } // // In each column, force the smaller entry to appear first. // for ( j = 0; j < n; j++ ) { e1 = i4_min ( edge[0+j*m], edge[1+j*m] ); e2 = i4_max ( edge[0+j*m], edge[1+j*m] ); edge[0+j*m] = e1; edge[1+j*m] = e2; } // // Ascending sort the column array. // i4col_sort_a ( m, n, edge ); // // Get the number of unique columns in EDGE. // unique_num = i4col_sorted_unique_count ( m, n, edge ); interior_edge_num = 3 * triangle_num - unique_num; boundary_edge_num = 3 * triangle_num - 2 * interior_edge_num; delete [] edge; return boundary_edge_num; } //****************************************************************************80 int triangulation_order3_boundary_edge_count_euler ( int node_num, int triangle_num, int hole_num ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_BOUNDARY_EDGE_COUNT_EULER counts boundary edges. // // Discussion: // // We assume we are given information about a triangulation // of a set of nodes in the plane. // // Given the number of nodes and triangles, we are going to apply // Euler's formula to determine the number of edges that lie on the // boundary of the set of nodes. // // The number of faces, including the infinite face and internal holes, // is TRIANGLE_NUM + HOLE_NUM + 1. // // Let BOUNDARY_NUM denote the number of edges on the boundary. // Each of the TRIANGLE_NUM triangles uses three edges. Every edge // occurs in two different faces, so the number of edges must be // ( 3 * TRIANGLE_NUM + BOUNDARY_NUM ) / 2. // // The number of nodes used in the triangulation is NODE_NUM. // // Euler's formula asserts that, for a simple connected figure in the // plane with no edge crossings, NODE_NUM nodes, EDGE_NUM edges and // FACE_NUM faces: // // NODE_NUM - EDGE_NUM + FACE_NUM = 2 // // In our context, this becomes // // NODE_NUM - ( 3 * TRIANGLE_NUM + BOUNDARY_NUM ) / 2 // + TRIANGLE_NUM + HOLE_NUM + 1 = 2 // // or // // BOUNDARY_NUM = 2 * NODE_NUM + 2 * HOLE_NUM - TRIANGLE_NUM - 2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 June 2005 // // Author: // // John Burkardt // // Reference: // // Marc deBerg, Marc Krevald, Mark Overmars, Otfried Schwarzkopf, // Computational Geometry, // Springer, 2000, // ISBN: 3-540-65620-0. // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int HOLE_NUM, the number of holes. // // Output, int TRIANGULATION_BOUNDARY_COUNT, the number of edges that // lie on the convex hull of the triangulation. // { return ( 2 * node_num + 2 * hole_num - triangle_num - 2 ); } //****************************************************************************80 bool *triangulation_order3_boundary_node ( int node_num, int triangle_num, int triangle_node[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_BOUNDARY_NODE indicates nodes on the boundary. // // Discussion: // // This routine is given a triangulation, an abstract list of triples // of nodes. It is assumed that the nodes in each triangle are listed // in a counterclockwise order, although the routine should work // if the nodes are consistently listed in a clockwise order as well. // // It is assumed that each edge of the triangulation is either // * an INTERIOR edge, which is listed twice, once with positive // orientation and once with negative orientation, or; // * a BOUNDARY edge, which will occur only once. // // This routine should work even if the region has holes - as long // as the boundary of the hole comprises more than 3 edges! // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 January 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up the // triangles. These should be listed in counterclockwise order. // // Output, bool TRIANGULATION_ORDER3_BOUNDARY_NODE[NODE_NUM], // is TRUE if the node is on a boundary edge. // { int e1; int e2; int *edge; bool equal; int i; int j; int m; int n; bool *node_boundary; m = 2; n = 3 * triangle_num; // // Set up the edge array. // edge = new int[m*n]; for ( j = 0; j < triangle_num; j++ ) { edge[0+(j )*m] = triangle_node[0+j*3]; edge[1+(j )*m] = triangle_node[1+j*3]; edge[0+(j+ triangle_num)*m] = triangle_node[1+j*3]; edge[1+(j+ triangle_num)*m] = triangle_node[2+j*3]; edge[0+(j+2*triangle_num)*m] = triangle_node[2+j*3]; edge[1+(j+2*triangle_num)*m] = triangle_node[0+j*3]; } // // In each column, force the smaller entry to appear first. // for ( j = 0; j < n; j++ ) { e1 = i4_min ( edge[0+j*m], edge[1+j*m] ); e2 = i4_max ( edge[0+j*m], edge[1+j*m] ); edge[0+j*m] = e1; edge[1+j*m] = e2; } // // Ascending sort the column array. // i4col_sort_a ( m, n, edge ); // // Records which appear twice are internal edges and can be ignored. // node_boundary = new bool[node_num]; for ( i = 0; i < node_num; i++ ) { node_boundary[i] = false; } j = 0; while ( j < 3 * triangle_num ) { j = j + 1; if ( j == 3 * triangle_num ) { for ( i = 0; i < m; i++ ) { node_boundary[edge[i+(j-1)*m]-1] = true; } break; } equal = true; for ( i = 0; i < m; i++ ) { if ( edge[i+(j-1)*m] != edge[i+j*m] ) { equal = false; } } if ( equal ) { j = j + 1; } else { for ( i = 0; i < m; i++ ) { node_boundary[edge[i+(j-1)*m]-1] = true; } } } delete [] edge; return node_boundary; } //****************************************************************************80 int triangulation_order3_check ( int node_num, int triangle_num, int triangle_node[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_CHECK makes some simple checks on a triangulation. // // Discussion: // // Because this routine does not receive the physical coordinates of // the nodes, it cannot ensure that the triangulation is maximal, // that is, that no more triangles can be created. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up the // triangles. These should be listed in counterclockwise order. // // Output, int TRIANGULATION_CHECK, error flag. // 0, no error occurred. // nonzero, an error occurred, the triangulation is not valid. // { int boundary_num; int error; int euler; int i; int j; int *used; // // Checks 1 and 2: // node_num must be at least 3. // TRIANGLE_NUM must be at least 1. // if ( node_num < 3 ) { cout << "\n"; cout << "TRIANGULATION_ORDER3_CHECK - Fatal error!\n"; cout << " The number of nodes is less than 3!\n"; return 1; } if ( triangle_num < 1 ) { cout << "\n"; cout << "TRIANGULATION_ORDER3_CHECK - Fatal error!\n"; cout << " The number of triangles is less than 1!\n"; return 2; } // // Checks 3 and 4: // Verify that all node values are greater than or equal to 1 // and less than or equal to node_num. // for ( j = 0; j < triangle_num; j++ ) { for ( i = 0; i < 3; i++ ) { if ( triangle_node[i+j*3] < 1 ) { cout << "\n"; cout << "TRIANGULATION_ORDER3_CHECK - Fatal error!\n"; cout << " Some vertices are less than 1!\n"; return 3; } } } for ( j = 0; j < triangle_num; j++ ) { for ( i = 0; i < 3; i++ ) { if ( node_num < triangle_node[i+j*3] ) { cout << "\n"; cout << "TRIANGULATION_ORDER3_CHECK - Fatal error!\n"; cout << " Some vertices are greater than node_num!\n"; return 4; } } } // // Check 5: // Verify that every node is used at least once. // used = new int[node_num]; for ( i = 0; i < node_num; i++ ) { used[i] = 0; } for ( j = 0; j < triangle_num; j++ ) { for ( i = 0; i < 3; i++ ) { used[triangle_node[i+j*3]-1] = used[triangle_node[i+j*3]-1] + 1; } } for ( i = 0; i < node_num; i++ ) { if ( used[i] == 0 ) { cout << "\n"; cout << "TRIANGULATION_ORDER3_CHECK - Fatal error!\n"; cout << " Some nodes are never used as triangle vertices!\n"; cout << " First example is node " << i+1 << "\n"; delete [] used; return 5; } } delete [] used; // // Check 6: // Verify that no node is repeated in a triangle. // for ( j = 0; j < triangle_num; j++ ) { if ( triangle_node[0+j*3] == triangle_node[1+j*3] || triangle_node[1+j*3] == triangle_node[2+j*3] || triangle_node[2+j*3] == triangle_node[0+j*3] ) { cout << "\n"; cout << "TRIANGULATION_ORDER3_CHECK - Fatal error!\n"; cout << " A triangle contains a null edge!\n"; return 6; } } // // Check 7: // Verify that no edge is repeated, and that repeated edges occur in // negated pairs. // boundary_num = triangulation_order3_edge_check ( triangle_num, triangle_node ); if ( boundary_num < 0 ) { cout << "\n"; cout << "TRIANGULATION_ORDER3_CHECK - Fatal error!\n"; cout << " Some edges are repeated or given in the wrong direction!\n"; return 7; } // // Check 8: // Does the triangulation satisfy Euler's criterion? // If not, then the triangulation is not proper. (For instance, there // might be a hole in the interior.) // euler = boundary_num + triangle_num + 2 - 2 * node_num; if ( euler != 0 ) { cout << "\n"; cout << "TRIANGULATION_ORDER3_CHECK - Fatal error!\n"; cout << " The triangulation does not satisfy Euler's criterion!\n"; return 8; } return 0; } //****************************************************************************80 int triangulation_order3_edge_check ( int triangle_num, int triangle_node[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_EDGE_CHECK checks the edges of a triangulation. // // Discussion: // // Converted from a row-based to a column-based calculation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 February 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up // each triangle. // // Output, int TRIANGULATION_EDGE_CHECK is negative if an error was // detected; otherwise, it is the number of edges that lie on the boundary. // { int boundary_num; int i; int j; int k; int *col; int tri; int triangle_order = 3; // // Step 1. // From the list of nodes for triangle T, of the form: (I,J,K) // construct the three neighbor relations: // // (I,J,+1) or (J,I,-1), // (J,K,+1) or (K,J,-1), // (K,I,+1) or (I,K,-1) // // where we choose (I,J,+1) if I < J, or else (J,I,-1) and so on. // col = new int[3*(3*triangle_num)]; for ( tri = 0; tri < triangle_num; tri++ ) { i = triangle_node[0+tri*triangle_order]; j = triangle_node[1+tri*triangle_order]; k = triangle_node[2+tri*triangle_order]; if ( i < j ) { col[0+(3*tri+0)*3] = i; col[1+(3*tri+0)*3] = j; col[2+(3*tri+0)*3] = +1; } else { col[0+(3*tri+0)*3] = j; col[1+(3*tri+0)*3] = i; col[2+(3*tri+0)*3] = -1; } if ( j < k ) { col[0+(3*tri+1)*3] = j; col[1+(3*tri+1)*3] = k; col[2+(3*tri+1)*3] = +1; } else { col[0+(3*tri+1)*3] = k; col[1+(3*tri+1)*3] = j; col[2+(3*tri+1)*3] = -1; } if ( k < i ) { col[0+(3*tri+2)*3] = k; col[1+(3*tri+2)*3] = i; col[2+(3*tri+2)*3] = +1; } else { col[0+(3*tri+2)*3] = i; col[1+(3*tri+2)*3] = k; col[2+(3*tri+2)*3] = -1; } } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // i4col_sort_a ( 3, 3*triangle_num, col ); // // Step 3. // // If any record occurs twice, we have an error. // Unpaired records lie on the convex hull. // i = 0; boundary_num = 0; while ( i < 3 * triangle_num ) { i = i + 1; if ( i == 3 * triangle_num ) { boundary_num = boundary_num + 1; } else { if ( col[0+(i-1)*3] == col[0+i*3] && col[1+(i-1)*3] == col[1+i*3] ) { if ( col[2+(i-1)*3] == col[2+i*3] ) { cout << "\n"; cout << "TRIANGULATION_ORDER3_EDGE_CHECK - Warning!\n"; cout << " An edge occurs twice.\n"; delete [] col; boundary_num = -1; return boundary_num; } else { i = i + 1; } } else { boundary_num = boundary_num + 1; } } } delete [] col; return boundary_num; } //****************************************************************************80 void triangulation_order3_example1 ( int node_num, int triangle_num, double node_xy[], int triangle_node[], int triangle_neighbor[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_EXAMPLE1 sets up a sample triangulation. // // Discussion: // // This triangulation is actually a Delaunay triangulation. // // The appropriate input values of NODE_NUM and TRIANGLE_NUM can be // determined by calling TRIANGULATION_ORDER3_EXAMPLE1_SIZE first. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Output, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Output, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up // the triangles. // // Output, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbors // on each side. Negative values indicate edges that lie on the exterior. // { # define DIM_NUM 2 # define NODE_NUM 13 # define TRIANGLE_NUM 16 # define TRIANGLE_ORDER 3 int i; static int triangle_neighbor_save[3*TRIANGLE_NUM] = { -4, -13, 2, 1, 4, 3, 2, 5, 7, 2, -43, 8, 3, 8, 6, 5, 9, 7, 3, 6, -3, 5, 4, 10, 6, 10, 12, 9, 8, 11, 12, 10, 14, 9, 11, 13, -23, 12, 16, 11, -47, 15, 16, 14, -50, 13, 15, -39 }; static int triangle_node_save[TRIANGLE_ORDER*TRIANGLE_NUM] = { 3, 4, 1, 3, 1, 2, 3, 2, 8, 2, 1, 5, 8, 2, 13, 8, 13, 9, 3, 8, 9, 13, 2, 5, 9, 13, 7, 7, 13, 5, 6, 7, 5, 9, 7, 6, 10, 9, 6, 6, 5, 12, 11, 6, 12, 10, 6, 11 }; static double node_xy_save[DIM_NUM*NODE_NUM] = { 0.0, 0.0, 2.0, 2.0, -1.0, 3.0, -2.0, 2.0, 8.0, 2.0, 9.0, 5.0, 7.0, 4.0, 5.0, 6.0, 6.0, 7.0, 8.0, 8.0, 11.0, 7.0, 10.0, 4.0, 6.0, 4.0 }; for ( i = 0; i < 3 * TRIANGLE_NUM; i++ ) { triangle_neighbor[i] = triangle_neighbor_save[i]; } for ( i = 0; i < TRIANGLE_ORDER * TRIANGLE_NUM; i++ ) { triangle_node[i] = triangle_node_save[i]; } for ( i = 0; i < DIM_NUM * NODE_NUM; i++ ) { node_xy[i] = node_xy_save[i]; } return; # undef DIM_NUM # undef NODE_NUM # undef TRIANGLE_NUM # undef TRIANGLE_ORDER } //****************************************************************************80 void triangulation_order3_example1_size ( int *node_num, int *triangle_num, int *hole_num ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_EXAMPLE1_SIZE sets sizes for a sample triangulation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2005 // // Author: // // John Burkardt // // Parameters: // // Output, int *NODE_NUM, the number of nodes. // // Output, int *TRIANGLE_NUM, the number of triangles. // // Output, int *HOLE_NUM, the number of holes. // { *node_num = 13; *triangle_num = 16; *hole_num = 0; return; } //****************************************************************************80 void triangulation_order3_example2 ( int node_num, int triangle_num, double node_xy[], int triangle_node[], int triangle_neighbor[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_EXAMPLE2 sets up a sample triangulation. // // Discussion: // // This triangulation is actually a Delaunay triangulation. // // The appropriate input values of NODE_NUM and TRIANGLE_NUM can be // determined by calling TRIANGULATION_ORDER3_EXAMPLE2_SIZE first. // // Diagram: // // 21-22-23-24-25 // |\ |\ |\ |\ | // | \| \| \| \| // 16-17-18-19-20 // |\ |\ |\ |\ | // | \| \| \| \| // 11-12-13-14-15 // |\ |\ |\ |\ | // | \| \| \| \| // 6--7--8--9-10 // |\ |\ |\ |\ | // | \| \| \| \| // 1--2--3--4--5 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Output, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Output, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up the // triangles. // // Output, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbors // on each side. Negative values indicate edges that lie on the exterior. // { # define DIM_NUM 2 # define NODE_NUM 25 # define TRIANGLE_NUM 32 # define TRIANGLE_ORDER 3 int i; static int triangle_neighbor_save[3*TRIANGLE_NUM] = { -1, 2, -1, 9, 1, 3, -1, 4, 2, 11, 3, 5, -1, 6, 4, 13, 5, 7, -1, 8, 6, 15, 7, -1, 2, 10, -1, 17, 9, 11, 4, 12, 10, 19, 11, 13, 6, 14, 12, 21, 13, 15, 8, 16, 14, 23, 15, -1, 10, 18, -1, 25, 17, 19, 12, 20, 18, 27, 19, 21, 14, 22, 20, 29, 21, 23, 16, 24, 22, 31, 23, -1, 18, 26, -1, -1, 25, 27, 20, 28, 26, -1, 27, 29, 22, 30, 28, -1, 29, 31, 24, 32, 30, -1, 31, -1 }; static int triangle_node_save[TRIANGLE_ORDER*TRIANGLE_NUM] = { 1, 2, 6, 7, 6, 2, 2, 3, 7, 8, 7, 3, 3, 4, 8, 9, 8, 4, 4, 5, 9, 10, 9, 5, 6, 7, 11, 12, 11, 7, 7, 8, 12, 13, 12, 8, 8, 9, 13, 14, 13, 9, 9, 10, 14, 15, 14, 10, 11, 12, 16, 17, 16, 12, 12, 13, 17, 18, 17, 13, 13, 14, 18, 19, 18, 14, 14, 15, 19, 20, 19, 15, 16, 17, 21, 22, 21, 17, 17, 18, 22, 23, 22, 18, 18, 19, 23, 24, 23, 19, 19, 20, 24, 25, 24, 20 }; static double node_xy_save[DIM_NUM*NODE_NUM] = { 0.0, 0.0, 1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 4.0, 0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 1.0, 3.0, 1.0, 4.0, 1.0, 0.0, 2.0, 1.0, 2.0, 2.0, 2.0, 3.0, 2.0, 4.0, 2.0, 0.0, 3.0, 1.0, 3.0, 2.0, 3.0, 3.0, 3.0, 4.0, 3.0, 0.0, 4.0, 1.0, 4.0, 2.0, 4.0, 3.0, 4.0, 4.0, 4.0 }; for ( i = 0; i < 3 * TRIANGLE_NUM; i++ ) { triangle_neighbor[i] = triangle_neighbor_save[i]; } for ( i = 0; i < TRIANGLE_ORDER * TRIANGLE_NUM; i++ ) { triangle_node[i] = triangle_node_save[i]; } for ( i = 0; i < DIM_NUM * NODE_NUM; i++ ) { node_xy[i] = node_xy_save[i]; } return; # undef DIM_NUM # undef NODE_NUM # undef TRIANGLE_NUM # undef TRIANGLE_ORDER } //****************************************************************************80 void triangulation_order3_example2_size ( int *node_num, int *triangle_num, int *hole_num ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_EXAMPLE2_SIZE sets sizes for a sample triangulation. // // Diagram: // // 21-22-23-24-25 // |\ |\ |\ |\ | // | \| \| \| \| // 16-17-18-19-20 // |\ |\ |\ |\ | // | \| \| \| \| // 11-12-13-14-15 // |\ |\ |\ |\ | // | \| \| \| \| // 6--7--8--9-10 // |\ |\ |\ |\ | // | \| \| \| \| // 1--2--3--4--5 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 January 2007 // // Author: // // John Burkardt // // Parameters: // // Output, int *NODE_NUM, the number of nodes. // // Output, int *TRIANGLE_NUM, the number of triangles. // // Output, int *HOLE_NUM, the number of holes. // { *node_num = 25; *triangle_num = 32; *hole_num = 0; return; } //****************************************************************************80 void triangulation_order3_neighbor ( int triangle_num, int triangle_node[], int t1, int s1, int *t2, int *s2 ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_NEIGHBOR determines a neighbor of a given triangle. // // Discussion: // // A set of nodes is given. A triangulation of the nodes has been // defined and recorded in TRIANGLE_NODE. The TRIANGLE_NODE data structure // records triangles as sets of three nodes, N1, N2, N3, that implicitly // define three sides, being the line segments N1-N2, N2-N3, and N3-N1. // // The nodes of the triangle are listed in counterclockwise order. // This means that if two triangles share a side, then the nodes // defining that side occur in the order (N1,N2) for one triangle, // and (N2,N1) for the other. // // The routine is given a triangle and a side, and asked to find // another triangle (if any) that shares that side. The routine // simply searches the TRIANGLE_NODE structure for an occurrence of the // nodes in the opposite order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int TRIANGLE_NUM, the number of triangles. // // Input/output, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that define // each triangle. // // Input, int T1, the index of the triangle. // // Input, int S1, the index of the triangle side. // // Output, int *T2, the index of the triangle which is the neighbor // to T1 on side S1, or -1 if there is no such neighbor. // // Output, int *S2, the index of the side of triangle T2 which // is shared with triangle T1, or -1 if there is no such neighbor. // { int n1; int n2; int s; int ss; int t; n1 = triangle_node[s1-1+(t1-1)*3]; ss = i4_wrap ( s1+1, 1, 3 ); n2 = triangle_node[ss-1+(t1-1)*3]; for ( t = 0; t < triangle_num; t++ ) { for ( s = 0; s < 3; s++ ) { if ( triangle_node[s+t*3] == n1 ) { ss = i4_wrap ( s-1, 0, 2 ); if ( triangle_node[ss+t*3] == n2 ) { *t2 = t + 1; *s2 = ss + 1; return; } } } } *t2 = -1; *s2 = -1; return; } //****************************************************************************80 void triangulation_order3_neighbor_nodes ( int node_num, int triangle_num, int triangle_node[], int nabes_first[], int nabes_num[], int nabes_max, int *nabes_dim, int nabes[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_NEIGHBOR_NODES determines node neighbors. // // Example: // // On input, the triangle data structure is: // // Triangle Nodes // -------- ---------- // 1 3, 4, 1 // 2 3, 1, 2 // 3 3, 2, 6 // 4 2, 1, 5 // 5 6, 2, 5 // // On output, the auxilliary neighbor arrays are: // // Node Num First // ---- --- ----- // 1 4 1 // 2 4 5 // 3 4 9 // 4 2 13 // 5 3 15 // 6 3 18 // // and the neighbor array is: // // Position Node // -------- ---- // // 1 2 // 2 3 // 3 4 // 4 5 // ----------- // 5 1 // 6 3 // 7 5 // 8 6 // ----------- // 9 1 // 10 2 // 11 4 // 12 6 // ----------- // 13 1 // 14 3 // ----------- // 15 1 // 16 2 // 17 6 // ----------- // 18 2 // 19 3 // 20 5 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up // each triangle. // // Output, int NABES_FIRST[NODE_NUM], the index in NABES of the first // neighbor in the list for each node. // // Output, int NABES_NUM[NODE_NUM], the number of neighbors of each node. // // Input, int NABES_MAX, the maximum dimension of NABES. // // Output, int *NABES_DIM, the dimension of NABES. // // Output, int NABES[*NABES_DIM], a list of the neighbors of all the nodes. // Neighbors of node 1 are listed first, and so on. // { int i; int i_current; int j; int k; int n; int nabe; int *nabes1; int tri; nabes = new int[nabes_max]; // // Step 1. From the triangle list (I,J,K) // construct the neighbor relations: (I,J), (J,K), (K,I), (J,I), (K,J), (I,K). // n = 0; for ( tri = 0; tri < triangle_num; tri++ ) { i = triangle_node[0+tri*3]; j = triangle_node[1+tri*3]; k = triangle_node[2+tri*3]; nabes1[n] = i; nabes1[n+1] = i; nabes1[n+2] = j; nabes1[n+3] = j; nabes1[n+4] = k; nabes1[n+5] = k; nabes[n] = j; nabes[n+1] = k; nabes[n+2] = i; nabes[n+3] = k; nabes[n+4] = i; nabes[n+5] = j; n = n + 6; } // // Step 2. Dictionary sort the neighbor relations. // i4vec2_sort_a ( n, nabes1, nabes ); // // Step 3. Remove duplicate entries. // n = i4vec2_sorted_unique ( n, nabes1, nabes ); // // Step 4. Construct the NABES_NUM and NABES_FIRST data. // for ( i = 0; i < node_num; i++ ) { nabes_num[i] = 0; } for ( i = 0; i < node_num; i++ ) { nabes_first[i] = 0; } i_current = 0; for ( nabe = 1; nabe <= n; nabe++ ) { i = nabes1[nabe-1]; if ( i == i_current ) { nabes_num[i-1] = nabes_num[i-1] + 1; } else { i_current = i; nabes_first[i-1] = nabe; nabes_num[i-1] = 1; } } *nabes_dim = n; delete [] nabes1; return; } //****************************************************************************80 void triangulation_order3_neighbor_nodes_print ( int node_num, int nabes_first[], int nabes_num[], int nabes_dim, int nabes[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_NEIGHBOR_NODES_PRINT prints a node neighbor array. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 July 2001 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int NABES_FIRST[NODE_NUM], the index in NABES of the first // neighbor in the list for each node. // // Input, int NABES_NUM[NODE_NUM], the number of neighbors of each node. // // Input, int NABES_DIM, the dimension of NABES. // // Input, int NABES[NABES_DIM], a list of the neighbors of all the nodes. // Neighbors of node 1 are listed first, and so on. // { int i; int j; int k; cout << "\n"; cout << " Node Nabes Index List\n"; cout << "\n"; for ( i = 0; i < node_num; i++ ) { cout << setw(4) << i << " " << setw(4) << nabes_num[i] << " " << setw(4) << nabes_first[i] << " "; k = 0; for ( j = nabes_first[i] - 1; j < nabes_first[i] + nabes_num[i]; j++ ) { if ( k == 10 ) { cout << "\n"; cout << " "; k = 0; } cout << setw(4) << nabes[j] << " "; k = k + 1; } } cout << "\n"; return; } //****************************************************************************80 void triangulation_order3_plot ( string file_name, int node_num, double node_xy[], int triangle_num, int triangle_node[], int node_show, int triangle_show ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_PLOT plots a triangulation of a set of nodes. // // Discussion: // // The triangulation is most usually a Delaunay triangulation, // but this is not necessary. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILE_NAME, the name of the output file. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], lists, for each triangle, // the indices of the nodes that form the vertices of the triangle. // // Input, int NODE_SHOW: // 0, do not show nodes; // 1, show nodes; // 2, show nodes and label them. // // Input, int TRIANGLE_SHOW: // 0, do not show triangles; // 1, show triangles; // 2, show triangles and label them. // { double ave_x; double ave_y; int circle_size; int delta; int e; ofstream file_unit; int i; int node; int triangle; double x_max; double x_min; int x_ps; int x_ps_max = 576; int x_ps_max_clip = 594; int x_ps_min = 36; int x_ps_min_clip = 18; double x_scale; double y_max; double y_min; int y_ps; int y_ps_max = 666; int y_ps_max_clip = 684; int y_ps_min = 126; int y_ps_min_clip = 108; double y_scale; // // We need to do some figuring here, so that we can determine // the range of the data, and hence the height and width // of the piece of paper. // x_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( x_max < node_xy[0+node*2] ) { x_max = node_xy[0+node*2]; } } x_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[0+node*2] < x_min ) { x_min = node_xy[0+node*2]; } } x_scale = x_max - x_min; x_max = x_max + 0.05 * x_scale; x_min = x_min - 0.05 * x_scale; x_scale = x_max - x_min; y_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( y_max < node_xy[1+node*2] ) { y_max = node_xy[1+node*2]; } } y_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[1+node*2] < y_min ) { y_min = node_xy[1+node*2]; } } y_scale = y_max - y_min; y_max = y_max + 0.05 * y_scale; y_min = y_min - 0.05 * y_scale; y_scale = y_max - y_min; if ( x_scale < y_scale ) { delta = r8_nint ( ( double ) ( x_ps_max - x_ps_min ) * ( y_scale - x_scale ) / ( 2.0 * y_scale ) ); x_ps_max = x_ps_max - delta; x_ps_min = x_ps_min + delta; x_ps_max_clip = x_ps_max_clip - delta; x_ps_min_clip = x_ps_min_clip + delta; x_scale = y_scale; } else if ( y_scale < x_scale ) { delta = r8_nint ( ( double ) ( y_ps_max - y_ps_min ) * ( x_scale - y_scale ) / ( 2.0 * x_scale ) ); y_ps_max = y_ps_max - delta; y_ps_min = y_ps_min + delta; y_ps_max_clip = y_ps_max_clip - delta; y_ps_min_clip = y_ps_min_clip + delta; y_scale = x_scale; } file_unit.open ( file_name.c_str ( ) ); if ( !file_unit ) { cout << "\n"; cout << "TRIANGULATION_ORDER3_PLOT - Fatal error!\n"; cout << " Could not open the output EPS file.\n"; exit ( 1 ); } file_unit << "%!PS-Adobe-3.0 EPSF-3.0\n"; file_unit << "%%Creator: triangulation_order3_plot.C\n"; file_unit << "%%Title: " << file_name << "\n"; file_unit << "%%Pages: 1\n"; file_unit << "%%BoundingBox: " << x_ps_min << " " << y_ps_min << " " << x_ps_max << " " << y_ps_max << "\n"; file_unit << "%%Document-Fonts: Times-Roman\n"; file_unit << "%%LanguageLevel: 1\n"; file_unit << "%%EndComments\n"; file_unit << "%%BeginProlog\n"; file_unit << "/inch {72 mul} def\n"; file_unit << "%%EndProlog\n"; file_unit << "%%Page: 1 1\n"; file_unit << "save\n"; file_unit << "%\n"; file_unit << "% Increase line width from default 0.\n"; file_unit << "%\n"; file_unit << "2 setlinewidth\n"; file_unit << "%\n"; file_unit << "% Set the RGB line color to very light gray.\n"; file_unit << "%\n"; file_unit << " 0.9000 0.9000 0.9000 setrgbcolor\n"; file_unit << "%\n"; file_unit << "% Draw a gray border around the page.\n"; file_unit << "%\n"; file_unit << "newpath\n"; file_unit << x_ps_min << " " << y_ps_min << " moveto\n"; file_unit << x_ps_max << " " << y_ps_min << " lineto\n"; file_unit << x_ps_max << " " << y_ps_max << " lineto\n"; file_unit << x_ps_min << " " << y_ps_max << " lineto\n"; file_unit << x_ps_min << " " << y_ps_min << " lineto\n"; file_unit << "stroke\n"; file_unit << "%\n"; file_unit << "% Set RGB line color to black.\n"; file_unit << "%\n"; file_unit << " 0.0000 0.0000 0.0000 setrgbcolor\n"; file_unit << "%\n"; file_unit << "% Set the font and its size:\n"; file_unit << "%\n"; file_unit << "/Times-Roman findfont\n"; file_unit << "0.50 inch scalefont\n"; file_unit << "setfont\n"; file_unit << "%\n"; file_unit << "% Print a title:\n"; file_unit << "%\n"; file_unit << "% 210 702 moveto\n"; file_unit << "%(Pointset) show\n"; file_unit << "%\n"; file_unit << "% Define a clipping polygon\n"; file_unit << "%\n"; file_unit << "newpath\n"; file_unit << x_ps_min_clip << " " << y_ps_min_clip << " moveto\n"; file_unit << x_ps_max_clip << " " << y_ps_min_clip << " lineto\n"; file_unit << x_ps_max_clip << " " << y_ps_max_clip << " lineto\n"; file_unit << x_ps_min_clip << " " << y_ps_max_clip << " lineto\n"; file_unit << x_ps_min_clip << " " << y_ps_min_clip << " lineto\n"; file_unit << "clip newpath\n"; // // Draw the nodes. // if ( node_num <= 200 ) { circle_size = 5; } else if ( node_num <= 500 ) { circle_size = 4; } else if ( node_num <= 1000 ) { circle_size = 3; } else if ( node_num <= 5000 ) { circle_size = 2; } else { circle_size = 1; } if ( 1 <= node_show ) { file_unit << "%\n"; file_unit << "% Draw filled dots at each node:\n"; file_unit << "%\n"; file_unit << "% Set the color to blue:\n"; file_unit << "%\n"; file_unit << "0.000 0.150 0.750 setrgbcolor\n"; file_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << "newpath " << x_ps << " " << y_ps << " " << circle_size << " 0 360 arc closepath fill\n"; } } // // Label the nodes. // if ( 2 <= node_show ) { file_unit << "%\n"; file_unit << "% Label the nodes:\n"; file_unit << "%\n"; file_unit << "% Set the color to darker blue:\n"; file_unit << "%\n"; file_unit << "0.000 0.250 0.850 setrgbcolor\n"; file_unit << "/Times-Roman findfont\n"; file_unit << "0.20 inch scalefont\n"; file_unit << "setfont\n"; file_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << "newpath " << x_ps << " " << y_ps + 5 << " moveto (" << node+1 << ") show\n"; } } // // Draw the triangles. // if ( 1 <= triangle_show ) { file_unit << "%\n"; file_unit << "% Set the RGB color to red.\n"; file_unit << "%\n"; file_unit << "0.900 0.200 0.100 setrgbcolor\n"; file_unit << "%\n"; file_unit << "% Draw the triangles.\n"; file_unit << "%\n"; for ( triangle = 0; triangle < triangle_num; triangle++ ) { file_unit << "newpath\n"; for ( i = 1; i <= 4; i++ ) { e = i4_wrap ( i, 1, 3 ); node = triangle_node[e-1+triangle*3] - 1; x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); if ( i == 1 ) { file_unit << x_ps << " " << y_ps << " moveto\n"; } else { file_unit << x_ps << " " << y_ps << " lineto\n"; } } file_unit << "stroke\n"; } } // // Label the triangles. // if ( 2 <= triangle_show ) { file_unit << "%\n"; file_unit << "% Label the triangles.\n"; file_unit << "%\n"; file_unit << "% Set the RGB color to darker red.\n"; file_unit << "%\n"; file_unit << "0.950 0.250 0.150 setrgbcolor\n"; file_unit << "/Times-Roman findfont\n"; file_unit << "0.20 inch scalefont\n"; file_unit << "setfont\n"; file_unit << "%\n"; for ( triangle = 0; triangle < triangle_num; triangle++ ) { ave_x = 0.0; ave_y = 0.0; for ( i = 1; i <= 3; i++ ) { node = triangle_node[i-1+triangle*3] - 1; ave_x = ave_x + node_xy[0+node*2]; ave_y = ave_y + node_xy[1+node*2]; } ave_x = ave_x / 3.0; ave_y = ave_y / 3.0; x_ps = ( int ) ( ( ( x_max - ave_x ) * ( double ) ( x_ps_min ) + ( + ave_x - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - ave_y ) * ( double ) ( y_ps_min ) + ( ave_y - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << x_ps << " " << y_ps << " moveto (" << triangle+1 << ") show\n"; } } file_unit << "%\n"; file_unit << "restore showpage\n"; file_unit << "%\n"; file_unit << "% End of page.\n"; file_unit << "%\n"; file_unit << "%%Trailer\n"; file_unit << "%%EOF\n"; file_unit.close ( ); return; } //****************************************************************************80 void triangulation_order3_print ( int node_num, int triangle_num, double node_xy[], int triangle_node[], int triangle_neighbor[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_PRINT prints information defining a triangulation. // // Discussion: // // Triangulations created by R8TRIS2 include extra information encoded // in the negative values of TRIANGLE_NEIGHBOR. // // Because some of the nodes counted in NODE_NUM may not actually be // used in the triangulation, I needed to compute the true number // of vertices. I added this calculation on 13 October 2001. // // Ernest Fasse pointed out an error in the indexing of VERTEX_LIST, // which was corrected on 19 February 2004. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up // the triangles. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbors // on each side. If there is no triangle neighbor on a particular side, // the value of TRIANGLE_NEIGHBOR should be negative. If the // triangulation data was created by R8TRIS2, then there is more // information encoded in the negative values. // { # define DIM_NUM 2 int boundary_num; int i; int j; int k; int n1; int n2; int s; int s1; int s2; bool skip; int t; int *vertex_list; int vertex_num; cout << "\n"; cout << "TRIANGULATION_ORDER3_PRINT\n"; cout << " Information defining a triangulation.\n"; cout << "\n"; cout << " The number of nodes is " << node_num << "\n"; r8mat_transpose_print ( DIM_NUM, node_num, node_xy, " Node coordinates" ); cout << "\n"; cout << " The number of triangles is " << triangle_num << "\n"; cout << "\n"; cout << " Sets of three nodes are used as vertices of\n"; cout << " the triangles. For each triangle, the nodes\n"; cout << " are listed in counterclockwise order.\n"; i4mat_transpose_print ( 3, triangle_num, triangle_node, " Triangle nodes" ); cout << "\n"; cout << " On each side of a given triangle, there is either\n"; cout << " another triangle, or a piece of the convex hull.\n"; cout << " For each triangle, we list the indices of the three\n"; cout << " neighbors, or (if negative) the codes of the\n"; cout << " segments of the convex hull.\n"; i4mat_transpose_print ( 3, triangle_num, triangle_neighbor, " Triangle neighbors" ); // // Determine VERTEX_NUM, the number of vertices. // vertex_list = new int[3*triangle_num]; k = 0; for ( t = 0; t < triangle_num; t++ ) { for ( s = 0; s < 3; s++ ) { vertex_list[k] = triangle_node[s+t*3]; k = k + 1; } } i4vec_sort_heap_a ( 3*triangle_num, vertex_list ); vertex_num = i4vec_sorted_unique ( 3*triangle_num, vertex_list ); delete [] vertex_list; // // Determine the number of boundary points. // boundary_num = 2 * vertex_num - triangle_num - 2; cout << "\n"; cout << " The number of boundary points is " << boundary_num << "\n"; cout << "\n"; cout << " The segments that make up the convex hull can be\n"; cout << " determined from the negative entries of the triangle\n"; cout << " neighbor list.\n"; cout << "\n"; cout << " # Tri Side N1 N2\n"; cout << "\n"; skip = false; k = 0; for ( i = 0; i < triangle_num; i++ ) { for ( j = 0; j < 3; j++ ) { if ( triangle_neighbor[j+i*3] < 0 ) { s = -triangle_neighbor[j+i*3]; t = s / 3; if ( t < 1 || triangle_num < t ) { cout << "\n"; cout << " Sorry, this data does not use the R8TRIS2\n"; cout << " convention for convex hull segments.\n"; skip = true; break; } s1 = ( s % 3 ) + 1; s2 = i4_wrap ( s1+1, 1, 3 ); k = k + 1; n1 = triangle_node[s1-1+(t-1)*3]; n2 = triangle_node[s2-1+(t-1)*3]; cout << " " << setw(4) << k << " " << setw(4) << t << " " << setw(4) << s1 << " " << setw(4) << n1 << " " << setw(4) << n2 << "\n"; } } if ( skip ) { break; } } return; # undef DIM_NUM } //****************************************************************************80 void triangulation_order3_quad ( int node_num, double node_xy[], int triangle_order, int triangle_num, int triangle_node[], void quad_fun ( int n, double xy_vec[], double f_vec[] ), int quad_num, double quad_xy[], double quad_w[], double *quad_value, double *region_area ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_QUAD approximates an integral over a triangulation. // // Discussion: // // The routine will accept triangulations of order higher than 3. // However, only the first three nodes (the vertices) of each // triangle will be used. This will still produce correct results // for higher order triangulations, as long as the sides of the // triangle are straight. // // We assume that the vertices of each triangle are listed first // in the description of higher order triangles, and we assume that // the vertices are listed in counterclockwise order. // // The approximation of the integral is made using a quadrature rule // defined on the unit triangle, and supplied by the user. // // The user also supplies the name of a subroutine, here called "QUAD_FUN", // which evaluates the integrand at a set of points. The form is: // // void quad_fun ( int n, double xy_vec[], double f_vec[] ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes in the triangulation. // // Input, double NODE_XY(2,NODE_NUM), the coordinates of the nodes. // // Input, int TRIANGLE_ORDER, the order of triangles in the triangulation. // // Input, int TRIANGLE_NUM, the number of triangles in the triangulation. // // Input, int TRIANGLE_NODE[TRIANGLE_ORDER*TRIANGLE_NUM], // the nodes making up each triangle. // // Input, void QUAD_FUN ( int N, double XY_VEC[], double F_VEC[] ), // the name of the function that evaluates the integrand. // // Input, int QUAD_NUM, the order of the quadrature rule. // // Input, double QUAD_XY(2,QUAD_NUM), the abscissas of the // quadrature rule, in the unit triangle. // // Input, double QUAD_W(QUAD_NUM), the weights of the // quadrature rule. // // Output, double *QUAD_VALUE, the estimate of the integral // of F(X,Y) over the region covered by the triangulation. // // Output, double *REGION_AREA, the area of the region. // { int i; int j; int quad; double *quad_f; double *quad2_xy; double temp; int triangle; double triangle_area; double triangle_xy[2*3]; quad_f = new double[quad_num]; quad2_xy = new double[2*quad_num]; *quad_value = 0.0; *region_area = 0.0; for ( triangle = 0; triangle < triangle_num; triangle++ ) { for ( j = 0; j < 3; j++ ) { for ( i = 0; i < 2; i++ ) { triangle_xy[i+j*2] = node_xy[i+(triangle_node[j+triangle*3]-1)*2]; } } triangle_area = triangle_area_2d ( triangle_xy ); triangle_order3_reference_to_physical ( triangle_xy, quad_num, quad_xy, quad2_xy ); quad_fun ( quad_num, quad2_xy, quad_f ); temp = 0.0; for ( quad = 0; quad < quad_num; quad++ ) { temp = temp + quad_w[quad] * quad_f[quad]; } *quad_value = *quad_value + triangle_area * temp; *region_area = *region_area + triangle_area; } delete [] quad_f; delete [] quad2_xy; return; } //****************************************************************************80 void triangulation_order3_refine_compute ( int node_num1, int triangle_num1, double node_xy1[], int triangle_node1[], int node_num2, int triangle_num2, int edge_data[], double node_xy2[], int triangle_node2[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_REFINE_COMPUTE computes a refined order 3 triangulation. // // Discussion: // // Given a triangle defined by nodes 1, 2, 3, we need to generate // nodes 12, 23, and 13, and create 4 new subtriangles, T1, T2, T3 // and T4. // // The task is more complicated by the fact that we are working with // a mesh of triangles, so that we want to create a node only once, // even though it may be shared by other triangles. // // 3 // / \ // /T3 \ // 13----23 // / \T4 / \ // /T1 \ /T2 \ // 1----12-----2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM1, the number of nodes. // // Input, int TRIANGLE_NUM1, the number of triangles. // // Input, double NODE_XY1[2*NODE_NUM1], the nodes. // // Input, int TRIANGLE_NODE1[3*TRIANGLE_NUM1], the nodes that make up the // triangles. These should be listed in counterclockwise order. // // Input, int NODE_NUM2, the number of nodes in the refined mesh. // // Input, int TRIANGLE_NUM2, the number of triangles in the refined mesh. // // Input, int EDGE_DATA[5*(3*TRIANGLE_NUM1)], edge information computed // by TRIANGULATION_ORDER3_REFINE_SIZE. // // Output, double NODE_XY2[2*NODE_NUM2], the refined nodes. // // Output, int TRIANGLE_NODE2[3*TRIANGLE_NUM2], the nodes that make up the // triangles in the refined mesh. // { int edge; int i; int j; int n1; int n1_old; int n2; int n2_old; int node; int triangle1; int v1; int v2; // // Copy the old nodes. // for ( j = 0; j < node_num1; j++ ) { for ( i = 0; i < 2; i++ ) { node_xy2[i+j*2] = node_xy1[i+j*2]; } } for ( j = 0; j < triangle_num2; j++ ) { for ( i = 0; i < 3; i++ ) { triangle_node2[i+j*3] = -1; } } // // We can assign the existing nodes to the new triangles. // for ( triangle1 = 0; triangle1 < triangle_num1; triangle1++ ) { triangle_node2[0+(triangle1*4+0)*3] = triangle_node1[0+triangle1*3]; triangle_node2[1+(triangle1*4+1)*3] = triangle_node1[1+triangle1*3]; triangle_node2[2+(triangle1*4+2)*3] = triangle_node1[2+triangle1*3]; } node = node_num1; n1_old = -1; n2_old = -1; for ( edge = 0; edge < 3 * triangle_num1; edge++ ) { n1 = edge_data[0+edge*5] - 1; n2 = edge_data[1+edge*5] - 1; // // If this edge is new, create the coordinates and index for this node. // if ( n1 != n1_old || n2 != n2_old ) { if ( node_num2 < node ) { cout << "\n"; cout << "TRIANGLE_MESH_ORDER3_REFINE - Fatal error!\n"; cout << " Node index exceeds NODE_NUM2.\n"; exit ( 1 ); } for ( i = 0; i < 2; i++ ) { node_xy2[i+node*2] = ( node_xy2[i+n1*2] + node_xy2[i+n2*2] ) / 2.0; } node = node + 1; n1_old = n1; n2_old = n2; } // // Assign the node to triangles. // v1 = edge_data[2+edge*5]; v2 = edge_data[3+edge*5]; triangle1 = edge_data[4+edge*5]; if ( v1 == 1 && v2 == 2 ) { triangle_node2[0+(triangle1*4+1)*3] = node; triangle_node2[1+(triangle1*4+0)*3] = node; triangle_node2[2+(triangle1*4+3)*3] = node; } else if ( v1 == 1 && v2 == 3 ) { triangle_node2[0+(triangle1*4+2)*3] = node; triangle_node2[1+(triangle1*4+3)*3] = node; triangle_node2[2+(triangle1*4+0)*3] = node; } else if ( v1 == 2 && v2 == 3 ) { triangle_node2[0+(triangle1*4+3)*3] = node; triangle_node2[1+(triangle1*4+2)*3] = node; triangle_node2[2+(triangle1*4+1)*3] = node; } } return; } //****************************************************************************80 void triangulation_order3_refine_size ( int node_num1, int triangle_num1, int triangle_node1[], int *node_num2, int *triangle_num2, int edge_data[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_REFINE_SIZE sizes a refined order 3 triangulation. // // Discussion: // // Given a triangle defined by nodes 1, 2, 3, we need to generate // nodes 12, 23, and 13, and create 4 new subtriangles, T1, T2, T3 // and T4. // // The task is more complicated by the fact that we are working with // a mesh of triangles, so that we want to create a node only once, // even though it may be shared by other triangles. // // 3 // / \ // /T3 \ // 13----23 // / \T4 / \ // /T1 \ /T2 \ // 1----12-----2 // // This routine simply determines the sizes of the resulting node // and triangle arrays. // // The primary amount of work occurs in sorting a list of 3 * TRIANGLE_NUM // data items, one item for every edge of every triangle. Each // data item records, for a given edge, the global indices // of the two endpoints, the local indices of the two endpoints, // and the index of the triangle. // // Through careful sorting, it is possible to arrange this data in // a way that allows the proper generation of the interpolated nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM1, the number of nodes in the original mesh. // // Input, int TRIANGLE_NUM1, the number of triangles in the // original mesh. // // Input, int TRIANGLE_NODE1[3*TRIANGLE_NUM1], the indices of the nodes // that form the triangles in the input mesh. // // Output, int *NODE_NUM2, the number of nodes in the refined mesh. // // Output, int *TRIANGLE_NUM2, the number of triangles in the // refined mesh. // // Output, int EDGE_DATA[5*(3*TRIANGLE_NUM1)], edge data that will // be needed by TRIANGULATION_ORDER3_REFINE_COMPUTE. // { int a; int b; int edge; int i; int j; int k; int n1; int n1_old; int n2; int n2_old; int triangle; // // Step 1. // From the list of nodes for triangle T, of the form: (I,J,K) // construct the edge relations: // // (I,J,1,2,T) // (I,K,1,3,T) // (J,K,2,3,T) // // In order to make matching easier, we reorder each pair of nodes // into ascending order. // for ( triangle = 0; triangle < triangle_num1; triangle++ ) { i = triangle_node1[0+triangle*3]; j = triangle_node1[1+triangle*3]; k = triangle_node1[2+triangle*3]; a = i4_min ( i, j ); b = i4_max ( i, j ); edge_data[0+5*(3*triangle+0)] = a; edge_data[1+5*(3*triangle+0)] = b; edge_data[2+5*(3*triangle+0)] = 1; edge_data[3+5*(3*triangle+0)] = 2; edge_data[4+5*(3*triangle+0)] = triangle; a = i4_min ( i, k ); b = i4_max ( i, k ); edge_data[0+5*(3*triangle+1)] = a; edge_data[1+5*(3*triangle+1)] = b; edge_data[2+5*(3*triangle+1)] = 1; edge_data[3+5*(3*triangle+1)] = 3; edge_data[4+5*(3*triangle+1)] = triangle; a = i4_min ( j, k ); b = i4_max ( j, k ); edge_data[0+5*(3*triangle+2)] = a; edge_data[1+5*(3*triangle+2)] = b; edge_data[2+5*(3*triangle+2)] = 2; edge_data[3+5*(3*triangle+2)] = 3; edge_data[4+5*(3*triangle+2)] = triangle; } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // We only intend to sort on rows 1:2; the routine we call here // sorts on the full column but that won't hurt us. // // What we need is to find all cases where triangles share an edge. // By sorting the columns of the EDGE_DATA array, we will put shared edges // next to each other. // i4col_sort_a ( 5, 3*triangle_num1, edge_data ); // // Step 3. All the triangles which share an edge show up as consecutive // columns with identical first two entries. Figure out how many new // nodes there are, and allocate space for their coordinates. // *node_num2 = node_num1; n1_old = -1; n2_old = -1; for ( edge = 0; edge < 3 * triangle_num1; edge++ ) { n1 = edge_data[0+edge*5]; n2 = edge_data[1+edge*5]; if ( n1 != n1_old || n2 != n2_old ) { *node_num2 = *node_num2 + 1; n1_old = n1; n2_old = n2; } } *triangle_num2 = 4 * triangle_num1; return; } //****************************************************************************80 void triangulation_order3_sample ( int node_num, double node_xy[], int triangle_num, int triangle_node[], int num_ran, int *seed, double xd[], int td[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_SAMPLE returns random points in a triangulation. // // Discussion: // // It is assumed that the triangulation consists of a set of non-overlapping // triangles. // // The point is chosen uniformly in the area covered by the triangulation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up the // triangles. // // Input, int NUM_RAN, the number of points to sample. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double XD[2*NUM_RAN], the sample points. // // Output, int TD[NUM_RAN], the triangle to which each sample point // belongs. // { double area; double *area_cum; double area_total; int i; int i1; int i2; int i3; int left; double r; int right; double t[2*3]; // // Compute the areas of the triangles. // Build a cumulative area vector. // Convert it to a relative cumulative area vector. // area_cum = new double[triangle_num+1]; area_cum[0] = 0.0; for ( i = 0; i < triangle_num; i++ ) { i1 = triangle_node[0+i*3]; t[0+0*2] = node_xy[0+i1*2]; t[1+0*2] = node_xy[1+i1*2]; i2 = triangle_node[1+i*3]; t[0+1*2] = node_xy[0+i2*2]; t[1+1*2] = node_xy[1+i2*2]; i3 = triangle_node[2+i*3]; t[0+2*2] = node_xy[0+i3*2]; t[1+2*2] = node_xy[1+i3*2]; area_cum[i+1] = area_cum[i] + triangle_area_2d ( t ); } area_total = area_cum[triangle_num]; for ( i = 0; i <= triangle_num; i++ ) { area_cum[i] = area_cum[i] / area_total; } // // Pick random values. A random value R indicates the corresponding triangle // whose cumulative relative area contains R. // // Bracket the random value in the cumulative relative areas, // indicating a triangle. // // Pick a random point in the triangle. // for ( i = 0; i < num_ran; i++ ) { r = r8_uniform_01 ( seed ); r8vec_bracket ( triangle_num+1, area_cum, r, &left, &right ); td[i] = right - 1; i1 = triangle_node[0+(td[i]-1)*3]; t[0+0*2] = node_xy[0+i1*2]; t[1+0*2] = node_xy[1+i1*2]; i2 = triangle_node[1+(td[i]-1)*3]; t[0+1*2] = node_xy[0+i2*2]; t[1+1*2] = node_xy[1+i2*2]; i3 = triangle_node[2+(td[i]-1)*3]; t[0+2*2] = node_xy[0+i3*2]; t[1+2*2] = node_xy[1+i3*2]; triangle_sample ( t, 1, seed, xd+i*2 ); } delete [] area_cum; return; } //****************************************************************************80 void triangulation_order4_plot ( string plot_filename, int node_num, double node_xy[], int triangle_num, int triangle_node[], int node_show, int triangle_show ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER4_PLOT plots a 4-node triangulation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string PLOT_FILENAME, the name of the output file. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[4*TRIANGLE_NUM], lists, for each triangle, // the indices of the nodes that form the vertices of the triangle, // and the centroid. // // Input, int NODE_SHOW: // 0, do not show nodes; // 1, show nodes; // 2, show nodes and label them. // // Input, int TRIANGLE_SHOW: // 0, do not show triangles; // 1, show triangles; // 2, show triangles and label them. // { double ave_x; double ave_y; int circle_size; int delta; int e; ofstream plot_unit; int i; int node; int triangle; double x_max; double x_min; int x_ps; int x_ps_max = 576; int x_ps_max_clip = 594; int x_ps_min = 36; int x_ps_min_clip = 18; double x_scale; double y_max; double y_min; int y_ps; int y_ps_max = 666; int y_ps_max_clip = 684; int y_ps_min = 126; int y_ps_min_clip = 108; double y_scale; // // We need to do some figuring here, so that we can determine // the range of the data, and hence the height and width // of the piece of paper. // x_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( x_max < node_xy[0+node*2] ) { x_max = node_xy[0+node*2]; } } x_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[0+node*2] < x_min ) { x_min = node_xy[0+node*2]; } } x_scale = x_max - x_min; x_max = x_max + 0.05 * x_scale; x_min = x_min - 0.05 * x_scale; x_scale = x_max - x_min; y_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( y_max < node_xy[1+node*2] ) { y_max = node_xy[1+node*2]; } } y_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[1+node*2] < y_min ) { y_min = node_xy[1+node*2]; } } y_scale = y_max - y_min; y_max = y_max + 0.05 * y_scale; y_min = y_min - 0.05 * y_scale; y_scale = y_max - y_min; if ( x_scale < y_scale ) { delta = r8_nint ( ( double ) ( x_ps_max - x_ps_min ) * ( y_scale - x_scale ) / ( 2.0 * y_scale ) ); x_ps_max = x_ps_max - delta; x_ps_min = x_ps_min + delta; x_ps_max_clip = x_ps_max_clip - delta; x_ps_min_clip = x_ps_min_clip + delta; x_scale = y_scale; } else if ( y_scale < x_scale ) { delta = r8_nint ( ( double ) ( y_ps_max - y_ps_min ) * ( x_scale - y_scale ) / ( 2.0 * x_scale ) ); y_ps_max = y_ps_max - delta; y_ps_min = y_ps_min + delta; y_ps_max_clip = y_ps_max_clip - delta; y_ps_min_clip = y_ps_min_clip + delta; y_scale = x_scale; } plot_unit.open ( plot_filename.c_str ( ) ); if ( !plot_unit ) { cout << "\n"; cout << "TRIANGULATION_ORDER4_PLOT - Fatal error!\n"; cout << " Could not open the output EPS file.\n"; exit ( 1 ); } plot_unit << "%!PS-Adobe-3.0 EPSF-3.0\n"; plot_unit << "%%Creator: triangulation_order4_plot.C\n"; plot_unit << "%%Title: " << plot_filename << "\n"; plot_unit << "%%Pages: 1\n"; plot_unit << "%%BoundingBox: " << x_ps_min << " " << y_ps_min << " " << x_ps_max << " " << y_ps_max << "\n"; plot_unit << "%%Document-Fonts: Times-Roman\n"; plot_unit << "%%LanguageLevel: 1\n"; plot_unit << "%%EndComments\n"; plot_unit << "%%BeginProlog\n"; plot_unit << "/inch {72 mul} def\n"; plot_unit << "%%EndProlog\n"; plot_unit << "%%Page: 1 1\n"; plot_unit << "save\n"; plot_unit << "%\n"; plot_unit << "% Increase line width from default 0.\n"; plot_unit << "%\n"; plot_unit << "2 setlinewidth\n"; plot_unit << "%\n"; plot_unit << "% Set the RGB line color to very light gray.\n"; plot_unit << "%\n"; plot_unit << " 0.9000 0.9000 0.9000 setrgbcolor\n"; plot_unit << "%\n"; plot_unit << "% Draw a gray border around the page.\n"; plot_unit << "%\n"; plot_unit << "newpath\n"; plot_unit << x_ps_min << " " << y_ps_min << " moveto\n"; plot_unit << x_ps_max << " " << y_ps_min << " lineto\n"; plot_unit << x_ps_max << " " << y_ps_max << " lineto\n"; plot_unit << x_ps_min << " " << y_ps_max << " lineto\n"; plot_unit << x_ps_min << " " << y_ps_min << " lineto\n"; plot_unit << "stroke\n"; plot_unit << "%\n"; plot_unit << "% Set RGB line color to black.\n"; plot_unit << "%\n"; plot_unit << " 0.0000 0.0000 0.0000 setrgbcolor\n"; plot_unit << "%\n"; plot_unit << "% Set the font and its size:\n"; plot_unit << "%\n"; plot_unit << "/Times-Roman findfont\n"; plot_unit << "0.50 inch scalefont\n"; plot_unit << "setfont\n"; plot_unit << "%\n"; plot_unit << "% Print a title:\n"; plot_unit << "%\n"; plot_unit << "% 210 702 moveto\n"; plot_unit << "%(Pointset) show\n"; plot_unit << "%\n"; plot_unit << "% Define a clipping polygon\n"; plot_unit << "%\n"; plot_unit << "newpath\n"; plot_unit << x_ps_min_clip << " " << y_ps_min_clip << " moveto\n"; plot_unit << x_ps_max_clip << " " << y_ps_min_clip << " lineto\n"; plot_unit << x_ps_max_clip << " " << y_ps_max_clip << " lineto\n"; plot_unit << x_ps_min_clip << " " << y_ps_max_clip << " lineto\n"; plot_unit << x_ps_min_clip << " " << y_ps_min_clip << " lineto\n"; plot_unit << "clip newpath\n"; // // Draw the nodes. // if ( node_num <= 200 ) { circle_size = 5; } else if ( node_num <= 500 ) { circle_size = 4; } else if ( node_num <= 1000 ) { circle_size = 3; } else if ( node_num <= 5000 ) { circle_size = 2; } else { circle_size = 1; } if ( 1 <= node_show ) { plot_unit << "%\n"; plot_unit << "% Draw filled dots at each node:\n"; plot_unit << "%\n"; plot_unit << "% Set the color to blue:\n"; plot_unit << "%\n"; plot_unit << "0.000 0.150 0.750 setrgbcolor\n"; plot_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << "newpath " << x_ps << " " << y_ps << " " << circle_size << " 0 360 arc closepath fill\n"; } } // // Label the nodes. // if ( 2 <= node_show ) { plot_unit << "%\n"; plot_unit << "% Label the nodes:\n"; plot_unit << "%\n"; plot_unit << "% Set the color to darker blue:\n"; plot_unit << "%\n"; plot_unit << "0.000 0.250 0.850 setrgbcolor\n"; plot_unit << "/Times-Roman findfont\n"; plot_unit << "0.20 inch scalefont\n"; plot_unit << "setfont\n"; plot_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << "newpath " << x_ps << " " << y_ps + 5 << " moveto (" << node+1 << ") show\n"; } } // // Draw the triangles. // if ( 1 <= triangle_show ) { plot_unit << "%\n"; plot_unit << "% Set the RGB color to red.\n"; plot_unit << "%\n"; plot_unit << "0.900 0.200 0.100 setrgbcolor\n"; plot_unit << "%\n"; plot_unit << "% Draw the triangles.\n"; plot_unit << "%\n"; for ( triangle = 0; triangle < triangle_num; triangle++ ) { plot_unit << "newpath\n"; for ( i = 1; i <= 4; i++ ) { e = i4_wrap ( i, 1, 3 ); node = triangle_node[e-1+triangle*4] - 1; x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); if ( i == 1 ) { plot_unit << x_ps << " " << y_ps << " moveto\n"; } else { plot_unit << x_ps << " " << y_ps << " lineto\n"; } } plot_unit << "stroke\n"; } } // // Label the triangles. // if ( 2 <= triangle_show ) { plot_unit << "%\n"; plot_unit << "% Label the triangles.\n"; plot_unit << "%\n"; plot_unit << "% Set the RGB color to darker red.\n"; plot_unit << "%\n"; plot_unit << "0.950 0.250 0.150 setrgbcolor\n"; plot_unit << "/Times-Roman findfont\n"; plot_unit << "0.20 inch scalefont\n"; plot_unit << "setfont\n"; plot_unit << "%\n"; for ( triangle = 0; triangle < triangle_num; triangle++ ) { ave_x = 0.0; ave_y = 0.0; for ( i = 1; i <= 3; i++ ) { node = triangle_node[i-1+triangle*4] - 1; ave_x = ave_x + node_xy[0+node*2]; ave_y = ave_y + node_xy[1+node*2]; } ave_x = ave_x / 3.0; ave_y = ave_y / 3.0; x_ps = ( int ) ( ( ( x_max - ave_x ) * ( double ) ( x_ps_min ) + ( + ave_x - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - ave_y ) * ( double ) ( y_ps_min ) + ( ave_y - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << x_ps << " " << y_ps << " moveto (" << triangle+1 << ") show\n"; } } plot_unit << "%\n"; plot_unit << "restore showpage\n"; plot_unit << "%\n"; plot_unit << "% End of page.\n"; plot_unit << "%\n"; plot_unit << "%%Trailer\n"; plot_unit << "%%EOF\n"; plot_unit.close ( ); return; } //****************************************************************************80 int triangulation_order6_adj_count ( int node_num, int triangle_num, int triangle_node[], int triangle_neighbor[], int adj_col[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_ADJ_COUNT counts adjacencies in a triangulation. // // Discussion: // // This routine is called to count the adjacencies, so that the // appropriate amount of memory can be set aside for storage when // the adjacency structure is created. // // The triangulation is assumed to involve 6-node triangles. // // Two nodes are "adjacent" if they are both nodes in some triangle. // Also, a node is considered to be adjacent to itself. // // Diagram: // // 3 // s |\ // i | \ // d | \ // e 6 5 side 2 // | \ // 3 | \ // | \ // 1---4---2 // // side 1 // // The local node numbering // // // 21-22-23-24-25 // |\ |\ | // | \ | \ | // 16 17 18 19 20 // | \ | \ | // | \| \| // 11-12-13-14-15 // |\ |\ | // | \ | \ | // 6 7 8 9 10 // | \ | \ | // | \| \| // 1--2--3--4--5 // // A sample grid. // // // Below, we have a chart that lists the nodes adjacent to each node, with // an asterisk to indicate the adjacency of the node to itself // (in some cases, you want to count this self adjacency and in some // you don't). // // N Adjacencies // // 1: * 2 3 6 7 11 // 2: 1 * 3 6 7 11 // 3: 1 2 * 4 5 6 7 8 9 11 12 13 // 4: 3 * 5 8 9 13 // 5: 3 4 * 8 9 10 13 14 15 // 6: 1 2 3 * 7 11 // 7: 1 2 3 6 * 8 11 12 13 // 8: 3 4 5 7 * 9 11 12 13 // 9: 3 4 5 8 * 10 13 14 15 // 10: 5 9 * 13 14 15 // 11: 1 2 3 6 7 8 * 12 13 16 17 21 // 12: 3 7 8 11 * 13 16 17 21 // 13: 3 4 5 7 8 9 10 11 12 * 14 15 16 17 18 19 21 22 23 // 14: 5 9 10 13 * 15 18 19 23 // 15: 5 9 10 13 14 * 18 19 20 23 24 25 // 16: 11 12 13 * 17 21 // 17: 11 12 13 16 * 18 21 22 23 // 18: 13 14 15 17 * 19 21 22 23 // 19: 13 14 15 18 * 20 23 24 25 // 20: 15 19 * 23 24 25 // 21: 11 12 13 16 17 18 * 22 23 // 22: 13 17 18 21 * 23 // 23: 13 14 15 17 18 19 20 21 22 * 24 25 // 24: 15 19 20 23 * 25 // 25: 15 19 20 23 24 * // // Below, we list the number of adjancencies to lower-indexed nodes, to // the node itself, to higher-indexed nodes, the total number of // adjacencies for this node, and the location of the first and last // entries required to list this set of adjacencies in a single list // of all the adjacencies. // // N Below Self Above Total First Last // // -- -- -- -- -- --- 0 // 1: 0 1 5 6 1 6 // 2: 1 1 4 6 7 12 // 3: 2 1 9 12 13 24 // 4: 1 1 4 6 25 30 // 5: 2 1 6 9 31 39 // 6: 3 1 2 6 40 45 // 7: 4 1 4 9 46 54 // 8: 4 1 4 9 55 63 // 9: 4 1 4 9 62 72 // 10: 2 1 3 6 73 78 // 11: 6 1 5 12 79 90 // 12: 4 1 4 9 91 99 // 13: 9 1 9 19 100 118 // 14: 4 1 4 9 119 127 // 15: 5 1 6 12 128 139 // 16: 3 1 2 6 140 145 // 17: 4 1 4 9 146 154 // 18: 4 1 4 9 155 163 // 19: 4 1 4 9 164 172 // 20: 2 1 3 6 173 178 // 21: 6 1 2 9 179 187 // 22: 4 1 1 6 188 193 // 23: 9 1 2 12 194 205 // 24: 4 1 1 6 206 211 // 25: 5 1 0 6 212 217 // -- -- -- -- -- 218 --- // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 August 2006 // // Author: // // John Burkardt // // Parameters // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[6*TRIANGLE_NUM], lists the nodes that // make up each triangle. The first three nodes are the vertices, // in counterclockwise order. The fourth value is the midside // node between nodes 1 and 2; the fifth and sixth values are // the other midside nodes in the logical order. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], for each side of // a triangle, lists the neighboring triangle, or -1 if there is // no neighbor. // // Output, int TRIANGULATION_ORDER6_ADJ_COUNT, the number of adjacencies. // // Output, int ADJ_COL[NODE_NUM+1]. Information about column J is stored // in entries ADJ_COL(J) through ADJ_COL(J+1)-1 of ADJ. // { int adj_num; int i; int n1; int n2; int n3; int n4; int n5; int n6; int node; int triangle; int triangle_order = 6; int triangle2; adj_num = 0; // // Set every node to be adjacent to itself. // for ( node = 0; node < node_num; node++ ) { adj_col[node] = 1; } // // Examine each triangle. // for ( triangle = 0; triangle < triangle_num; triangle++ ) { n1 = triangle_node[0+triangle*triangle_order]; n2 = triangle_node[1+triangle*triangle_order]; n3 = triangle_node[2+triangle*triangle_order]; n4 = triangle_node[3+triangle*triangle_order]; n5 = triangle_node[4+triangle*triangle_order]; n6 = triangle_node[5+triangle*triangle_order]; // // For sure, we add the adjacencies: // 43 / (34) // 51 / (15) // 54 / (45) // 62 / (26) // 64 / (46) // 65 / (56) // adj_col[n3-1] = adj_col[n3-1] + 1; adj_col[n4-1] = adj_col[n4-1] + 1; adj_col[n1-1] = adj_col[n1-1] + 1; adj_col[n5-1] = adj_col[n5-1] + 1; adj_col[n4-1] = adj_col[n4-1] + 1; adj_col[n5-1] = adj_col[n5-1] + 1; adj_col[n2-1] = adj_col[n2-1] + 1; adj_col[n6-1] = adj_col[n6-1] + 1; adj_col[n4-1] = adj_col[n4-1] + 1; adj_col[n6-1] = adj_col[n6-1] + 1; adj_col[n5-1] = adj_col[n5-1] + 1; adj_col[n6-1] = adj_col[n6-1] + 1; // // Add edges (1,2), (1,4), (2,4) if this is the first occurrence, // that is, if the edge (1,4,2) is on a boundary (TRIANGLE2 <= 0) // or if this triangle is the first of the pair in which the edge // occurs (TRIANGLE < TRIANGLE2). // // Maybe add // 21 / 12 // 41 / 14 // 42 / 24 // triangle2 = triangle_neighbor[0+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_col[n1-1] = adj_col[n1-1] + 1; adj_col[n2-1] = adj_col[n2-1] + 1; adj_col[n1-1] = adj_col[n1-1] + 1; adj_col[n4-1] = adj_col[n4-1] + 1; adj_col[n2-1] = adj_col[n2-1] + 1; adj_col[n4-1] = adj_col[n4-1] + 1; } // // Maybe add // 32 / 23 // 52 / 25 // 53 / 35 // triangle2 = triangle_neighbor[1+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_col[n2-1] = adj_col[n2-1] + 1; adj_col[n3-1] = adj_col[n3-1] + 1; adj_col[n2-1] = adj_col[n2-1] + 1; adj_col[n5-1] = adj_col[n5-1] + 1; adj_col[n3-1] = adj_col[n3-1] + 1; adj_col[n5-1] = adj_col[n5-1] + 1; } // // Maybe add // 31 / 13 // 61 / 16 // 63 / 36 // triangle2 = triangle_neighbor[2+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_col[n1-1] = adj_col[n1-1] + 1; adj_col[n3-1] = adj_col[n3-1] + 1; adj_col[n1-1] = adj_col[n1-1] + 1; adj_col[n6-1] = adj_col[n6-1] + 1; adj_col[n3-1] = adj_col[n3-1] + 1; adj_col[n6-1] = adj_col[n6-1] + 1; } } // // We used ADJ_COL to count the number of entries in each column. // Convert it to pointers into the ADJ array. // for ( node = node_num; 1 <= node; node-- ) { adj_col[node] = adj_col[node-1]; } adj_col[0] = 1; for ( i = 1; i <= node_num; i++ ) { adj_col[i]= adj_col[i-1] + adj_col[i]; } adj_num = adj_col[node_num] - 1; return adj_num; } //****************************************************************************80 int *triangulation_order6_adj_set ( int node_num, int triangle_num, int triangle_node[], int triangle_neighbor[], int adj_num, int adj_col[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_ADJ_SET sets adjacencies in a triangulation. // // Discussion: // // This routine is called to count the adjacencies, so that the // appropriate amount of memory can be set aside for storage when // the adjacency structure is created. // // The triangulation is assumed to involve 6-node triangles. // // Two nodes are "adjacent" if they are both nodes in some triangle. // Also, a node is considered to be adjacent to itself. // // This routine can be used to create the compressed column storage // for a quadratic triangle finite element discretization of // Poisson's equation in two dimensions. // // Diagram: // // 3 // s |\ // i | \ // d | \ // e 6 5 side 2 // | \ // 3 | \ // | \ // 1---4---2 // // side 1 // // The local node numbering // // // 21-22-23-24-25 // |\ |\ | // | \ | \ | // 16 17 18 19 20 // | \ | \ | // | \| \| // 11-12-13-14-15 // |\ |\ | // | \ | \ | // 6 7 8 9 10 // | \ | \ | // | \| \| // 1--2--3--4--5 // // A sample grid. // // // Below, we have a chart that lists the nodes adjacent to each node, with // an asterisk to indicate the adjacency of the node to itself // (in some cases, you want to count this self adjacency and in some // you don't). // // N Adjacencies // // 1: * 2 3 6 7 11 // 2: 1 * 3 6 7 11 // 3: 1 2 * 4 5 6 7 8 9 11 12 13 // 4: 3 * 5 8 9 13 // 5: 3 4 * 8 9 10 13 14 15 // 6: 1 2 3 * 7 11 // 7: 1 2 3 6 * 8 11 12 13 // 8: 3 4 5 7 * 9 11 12 13 // 9: 3 4 5 8 * 10 13 14 15 // 10: 5 9 * 13 14 15 // 11: 1 2 3 6 7 8 * 12 13 16 17 21 // 12: 3 7 8 11 * 13 16 17 21 // 13: 3 4 5 7 8 9 10 11 12 * 14 15 16 17 18 19 21 22 23 // 14: 5 9 10 13 * 15 18 19 23 // 15: 5 9 10 13 14 * 18 19 20 23 24 25 // 16: 11 12 13 * 17 21 // 17: 11 12 13 16 * 18 21 22 23 // 18: 13 14 15 17 * 19 21 22 23 // 19: 13 14 15 18 * 20 23 24 25 // 20: 15 19 * 23 24 25 // 21: 11 12 13 16 17 18 * 22 23 // 22: 13 17 18 21 * 23 // 23: 13 14 15 17 18 19 20 21 22 * 24 25 // 24: 15 19 20 23 * 25 // 25: 15 19 20 23 24 * // // Below, we list the number of adjancencies to lower-indexed nodes, to // the node itself, to higher-indexed nodes, the total number of // adjacencies for this node, and the location of the first and last // entries required to list this set of adjacencies in a single list // of all the adjacencies. // // N Below Self Above Total First Last // // -- -- -- -- -- --- 0 // 1: 0 1 5 6 1 6 // 2: 1 1 4 6 7 12 // 3: 2 1 9 12 13 24 // 4: 1 1 4 6 25 30 // 5: 2 1 6 9 31 39 // 6: 3 1 2 6 40 45 // 7: 4 1 4 9 46 54 // 8: 4 1 4 9 55 63 // 9: 4 1 4 9 62 72 // 10: 2 1 3 6 73 78 // 11: 6 1 5 12 79 90 // 12: 4 1 4 9 91 99 // 13: 9 1 9 19 100 118 // 14: 4 1 4 9 119 127 // 15: 5 1 6 12 128 139 // 16: 3 1 2 6 140 145 // 17: 4 1 4 9 146 154 // 18: 4 1 4 9 155 163 // 19: 4 1 4 9 164 172 // 20: 2 1 3 6 173 178 // 21: 6 1 2 9 179 187 // 22: 4 1 1 6 188 193 // 23: 9 1 2 12 194 205 // 24: 4 1 1 6 206 211 // 25: 5 1 0 6 212 217 // -- -- -- -- -- 218 --- // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 August 2006 // // Author: // // John Burkardt // // Parameters // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[6*TRIANGLE_NUM], lists the nodes that // make up each triangle. The first three nodes are the vertices, // in counterclockwise order. The fourth value is the midside // node between nodes 1 and 2; the fifth and sixth values are // the other midside nodes in the logical order. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], for each side of // a triangle, lists the neighboring triangle, or -1 if there is // no neighbor. // // Input, int ADJ_NUM, the number of adjacencies. // // Input, int ADJ_COL[NODE_NUM+1]. Information about column J is stored // in entries ADJ_COL(J) through ADJ_COL(J+1)-1 of ADJ. // // Output, int TRIANGULATION_ORDER6_ADJ_SET[ADJ_NUM], the adjacency // information. // { int *adj; int *adj_copy; int k; int k1; int k2; int n1; int n2; int n3; int n4; int n5; int n6; int node; int triangle; int triangle2; int triangle_order = 6; adj = new int[adj_num]; for ( k = 0; k < adj_num; k++ ) { adj[k] = -1; } adj_copy = new int[node_num]; for ( node = 0; node < node_num; node++ ) { adj_copy[node] = adj_col[node]; } // // Set every node to be adjacent to itself. // for ( node = 1; node <= node_num; node++ ) { adj[adj_copy[node-1]-1] = node; adj_copy[node-1] = adj_copy[node-1] + 1; } // // Examine each triangle. // for ( triangle = 0; triangle < triangle_num; triangle++ ) { n1 = triangle_node[0+triangle*triangle_order]; n2 = triangle_node[1+triangle*triangle_order]; n3 = triangle_node[2+triangle*triangle_order]; n4 = triangle_node[3+triangle*triangle_order]; n5 = triangle_node[4+triangle*triangle_order]; n6 = triangle_node[5+triangle*triangle_order]; // // For sure, we add the adjacencies: // 43 / (34) // 51 / (15) // 54 / (45) // 62 / (26) // 64 / (46) // 65 / (56) // adj[adj_copy[n3-1]-1] = n4; adj_copy[n3-1] = adj_copy[n3-1] + 1; adj[adj_copy[n4-1]-1] = n3; adj_copy[n4-1] = adj_copy[n4-1] + 1; adj[adj_copy[n1-1]-1] = n5; adj_copy[n1-1] = adj_copy[n1-1] + 1; adj[adj_copy[n5-1]-1] = n1; adj_copy[n5-1] = adj_copy[n5-1] + 1; adj[adj_copy[n4-1]-1] = n5; adj_copy[n4-1] = adj_copy[n4-1] + 1; adj[adj_copy[n5-1]-1] = n4; adj_copy[n5-1] = adj_copy[n5-1] + 1; adj[adj_copy[n2-1]-1] = n6; adj_copy[n2-1] = adj_copy[n2-1] + 1; adj[adj_copy[n6-1]-1] = n2; adj_copy[n6-1] = adj_copy[n6-1] + 1; adj[adj_copy[n4-1]-1] = n6; adj_copy[n4-1] = adj_copy[n4-1] + 1; adj[adj_copy[n6-1]-1] = n4; adj_copy[n6-1] = adj_copy[n6-1] + 1; adj[adj_copy[n5-1]-1] = n6; adj_copy[n5-1] = adj_copy[n5-1] + 1; adj[adj_copy[n6-1]-1] = n5; adj_copy[n6-1] = adj_copy[n6-1] + 1; // // Add edges (1,2), (1,4), (2,4) if this is the first occurrence, // that is, if the edge (1,4,2) is on a boundary (TRIANGLE2 <= 0) // or if this triangle is the first of the pair in which the edge // occurs (TRIANGLE < TRIANGLE2). // // Maybe add // 21 / 12 // 41 / 14 // 42 / 24 // triangle2 = triangle_neighbor[0+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj[adj_copy[n1-1]-1] = n2; adj_copy[n1-1] = adj_copy[n1-1] + 1; adj[adj_copy[n2-1]-1] = n1; adj_copy[n2-1] = adj_copy[n2-1] + 1; adj[adj_copy[n1-1]-1] = n4; adj_copy[n1-1] = adj_copy[n1-1] + 1; adj[adj_copy[n4-1]-1] = n1; adj_copy[n4-1] = adj_copy[n4-1] + 1; adj[adj_copy[n2-1]-1] = n4; adj_copy[n2-1] = adj_copy[n2-1] + 1; adj[adj_copy[n4-1]-1] = n2; adj_copy[n4-1] = adj_copy[n4-1] + 1; } // // Maybe add // 32 / 23 // 52 / 25 // 53 / 35 // triangle2 = triangle_neighbor[1+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj[adj_copy[n2-1]-1] = n3; adj_copy[n2-1] = adj_copy[n2-1] + 1; adj[adj_copy[n3-1]-1] = n2; adj_copy[n3-1] = adj_copy[n3-1] + 1; adj[adj_copy[n2-1]-1] = n5; adj_copy[n2-1] = adj_copy[n2-1] + 1; adj[adj_copy[n5-1]-1] = n2; adj_copy[n5-1] = adj_copy[n5-1] + 1; adj[adj_copy[n3-1]-1] = n5; adj_copy[n3-1] = adj_copy[n3-1] + 1; adj[adj_copy[n5-1]-1] = n3; adj_copy[n5-1] = adj_copy[n5-1] + 1; } // // Maybe add // 31 / 13 // 61 / 16 // 63 / 36 // triangle2 = triangle_neighbor[2+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj[adj_copy[n1-1]-1] = n3; adj_copy[n1-1] = adj_copy[n1-1] + 1; adj[adj_copy[n3-1]-1] = n1; adj_copy[n3-1] = adj_copy[n3-1] + 1; adj[adj_copy[n1-1]-1] = n6; adj_copy[n1-1] = adj_copy[n1-1] + 1; adj[adj_copy[n6-1]-1] = n1; adj_copy[n6-1] = adj_copy[n6-1] + 1; adj[adj_copy[n3-1]-1] = n6; adj_copy[n3-1] = adj_copy[n3-1] + 1; adj[adj_copy[n6-1]-1] = n3; adj_copy[n6-1] = adj_copy[n6-1] + 1; } } // // Ascending sort the entries for each node. // for ( node = 1; node <= node_num; node++ ) { k1 = adj_col[node-1]; k2 = adj_col[node]-1; i4vec_sort_heap_a ( k2+1-k1, adj+k1-1 ); } delete [] adj_copy; return adj; } //****************************************************************************80 int triangulation_order6_boundary_edge_count ( int triangle_num, int triangle_node[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_BOUNDARY_EDGE_COUNT counts the boundary edges. // // Discussion: // // This routine is given a triangulation, a set of 6-node triangles. // It is assumed that, in each list of 6 nodes, the vertices are listed // first, in counterclockwise order, followed by the three midside nodes, // in counterclockwise order, starting with the node between vertices // 1 and 2. // // It is assumed that each edge of the triangulation is either // * an INTERIOR edge, which is listed twice, once with positive // orientation and once with negative orientation, or; // * a BOUNDARY edge, which will occur only once. // // This routine should work even if the region has holes - as long // as the boundary of the hole comprises more than 3 edges! // // Except for the dimension of TRIANGLE, this routine is identical // to the routine for the order 3 case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[6*TRIANGLE_NUM], the nodes that make up the // triangles. These should be listed in counterclockwise order. // // Output, integer TRIANGULATION_ORDER6_BOUNDARY_EDGE_COUNT, the number // of boundary edges. // { int boundary_edge_num; int e1; int e2; int *edge; int i; int interior_edge_num; int j; int m; int n; int unique_num; m = 2; n = 3 * triangle_num; // // Set up the edge array. // edge = new int[m*n]; for ( j = 0; j < triangle_num; j++ ) { edge[0+(j )*m] = triangle_node[0+j*6]; edge[1+(j )*m] = triangle_node[1+j*6]; edge[0+(j+ triangle_num)*m] = triangle_node[1+j*6]; edge[1+(j+ triangle_num)*m] = triangle_node[2+j*6]; edge[0+(j+2*triangle_num)*m] = triangle_node[2+j*6]; edge[1+(j+2*triangle_num)*m] = triangle_node[0+j*6]; } // // In each column, force the smaller entry to appear first. // for ( j = 0; j < n; j++ ) { e1 = i4_min ( edge[0+j*m], edge[1+j*m] ); e2 = i4_max ( edge[0+j*m], edge[1+j*m] ); edge[0+j*m] = e1; edge[1+j*m] = e2; } // // Ascending sort the column array. // i4col_sort_a ( m, n, edge ); // // Get the number of unique columns in EDGE. // unique_num = i4col_sorted_unique_count ( m, n, edge ); interior_edge_num = 3 * triangle_num - unique_num; boundary_edge_num = 3 * triangle_num - 2 * interior_edge_num; delete [] edge; return boundary_edge_num; } //****************************************************************************80 int triangulation_order6_boundary_edge_count_euler ( int node_num, int triangle_num, int hole_num ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_BOUNDARY_EDGE_COUNT_EULER counts boundary edges. // // Discussion: // // We assume we are given information about an order 6 triangulation // of a set of nodes in the plane. // // By ignoring the midside nodes, we can determine the corresponding // information for an order 3 triangulation, and apply // Euler's formula to determine the number of edges that lie on the // boundary of the set of nodes. // // Thus, if we have TRIANGLE_NUM triangles, and NODE_NUM nodes, we // imagine that each triangle is replaced by 4 triangles, created // by adding the edges created by joining the midside nodes. // // Thus, for 4 * TRIANGLE_NUM triangles, we can apply Euler's formula // to compute the number of boundary edges. // // Now, to adjust the data to our order 6 triangles, we divide the // number of boundary edges by 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 June 2005 // // Author: // // John Burkardt // // Reference: // // Marc deBerg, Marc Krevald, Mark Overmars, Otfried Schwarzkopf, // Computational Geometry, // Springer, 2000, // ISBN: 3-540-65620-0. // // Parameters: // // Input, integer NODE_NUM, the number of nodes. // // Input, integer TRIANGLE_NUM, the number of triangles. // // Input, integer HOLE_NUM, the number of internal nodes. // // Output, int TRIANGULATION_ORDER6_BOUNDARY_EDGE_COUNT, the number of // edges that lie on the boundary of the triangulation. // { int boundary_num; boundary_num = ( 2 * node_num + 2 * hole_num - 4 * triangle_num - 2 ) / 2; return boundary_num; } //****************************************************************************80 bool *triangulation_order6_boundary_node ( int node_num, int triangle_num, int triangle_node[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_BOUNDARY_NODE indicates nodes on the boundary. // // Discussion: // // This routine is given an order 6 triangulation, an abstract list of // sets of six nodes. The vertices are listed clockwise, then the // midside nodes. // // It is assumed that each edge of the triangulation is either // * an INTERIOR edge, which is listed twice, once with positive // orientation and once with negative orientation, or; // * a BOUNDARY edge, which will occur only once. // // This routine should work even if the region has holes - as long // as the boundary of the hole comprises more than 3 edges! // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 January 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[6*TRIANGLE_NUM], the nodes that make up the // triangles. // // Output, bool TRIANGULATION_ORDER6_BOUNDARY_NODE[NODE_NUM], // is TRUE if the node is on a boundary edge. // { int e1; int e2; int *edge; bool equal; int i; int j; int m; int n; bool *node_boundary; m = 3; n = 3 * triangle_num; // // Set up the edge array. // edge = new int[m*n]; for ( j = 0; j < triangle_num; j++ ) { edge[0+(j )*m] = triangle_node[0+j*6]; edge[1+(j )*m] = triangle_node[3+j*6]; edge[2+(j )*m] = triangle_node[1+j*6]; edge[0+(j+ triangle_num)*m] = triangle_node[1+j*6]; edge[1+(j+ triangle_num)*m] = triangle_node[4+j*6]; edge[2+(j+ triangle_num)*m] = triangle_node[2+j*6]; edge[0+(j+2*triangle_num)*m] = triangle_node[2+j*6]; edge[1+(j+2*triangle_num)*m] = triangle_node[5+j*6]; edge[2+(j+2*triangle_num)*m] = triangle_node[0+j*6]; } // // In each column, force the smaller entry to appear first. // for ( j = 0; j < n; j++ ) { e1 = i4_min ( edge[0+j*m], edge[2+j*m] ); e2 = i4_max ( edge[0+j*m], edge[2+j*m] ); edge[0+j*m] = e1; edge[2+j*m] = e2; } // // Ascending sort the column array. // i4col_sort_a ( m, n, edge ); // // Records which appear twice are internal edges and can be ignored. // node_boundary = new bool[node_num]; for ( i = 0; i < node_num; i++ ) { node_boundary[i] = false; } j = 0; while ( j < 3 * triangle_num ) { j = j + 1; if ( j == 3 * triangle_num ) { for ( i = 0; i < m; i++ ) { node_boundary[edge[i+(j-1)*m]-1] = true; } break; } equal = true; for ( i = 0; i < m; i++ ) { if ( edge[i+(j-1)*m] != edge[i+j*m] ) { equal = false; } } if ( equal ) { j = j + 1; } else { for ( i = 0; i < m; i++ ) { node_boundary[edge[i+(j-1)*m]-1] = true; } } } delete [] edge; return node_boundary; } //****************************************************************************80 void triangulation_order6_example1 ( int node_num, int triangle_num, double node_xy[], int triangle_node[], int triangle_neighbor[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_EXAMPLE1 sets up a sample triangulation. // // Discussion: // // This triangulation is actually a Delaunay triangulation. // // The appropriate input values of NODE_NUM and TRIANGLE_NUM can be // determined by calling TRIANGULATION_ORDER6_EXAMPLE1_SIZE first. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Output, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Output, int TRIANGLE_ORDER[6*TRIANGLE_NUM], the nodes that make up // the triangles. // // Output, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbors // on each side. Negative values indicate edges that lie on the exterior. // { # define DIM_NUM 2 # define NODE_NUM 48 # define TRIANGLE_NUM 16 # define TRIANGLE_ORDER 6 int i; int j; static double node_xy_save[DIM_NUM*NODE_NUM] = { 0.0, 0.0, 1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0, 6.0, 0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 1.0, 3.0, 1.0, 4.0, 1.0, 5.0, 1.0, 6.0, 1.0, 0.0, 2.0, 1.0, 2.0, 2.0, 2.0, 3.0, 2.0, 4.0, 2.0, 5.0, 2.0, 6.0, 2.0, 0.0, 3.0, 1.0, 3.0, 2.0, 3.0, 3.0, 3.0, 5.0, 3.0, 6.0, 3.0, 0.0, 4.0, 1.0, 4.0, 2.0, 4.0, 3.0, 4.0, 4.0, 4.0, 5.0, 4.0, 6.0, 4.0, 0.0, 5.0, 1.0, 5.0, 2.0, 5.0, 3.0, 5.0, 4.0, 5.0, 5.0, 5.0, 6.0, 5.0, 0.0, 6.0, 1.0, 6.0, 2.0, 6.0, 3.0, 6.0, 4.0, 6.0, 5.0, 6.0, 6.0, 6.0 }; static int triangle_node_save[TRIANGLE_ORDER*TRIANGLE_NUM] = { 1, 3, 15, 2, 9, 8, 17, 15, 3, 16, 9, 10, 5, 19, 3, 12, 11, 4, 17, 3, 19, 10, 11, 18, 7, 21, 5, 14, 13, 6, 19, 5, 21, 12, 13, 20, 17, 30, 15, 24, 23, 16, 28, 15, 30, 22, 23, 29, 30, 17, 32, 24, 25, 31, 21, 34, 19, 27, 26, 20, 30, 44, 28, 37, 36, 29, 42, 28, 44, 35, 36, 43, 32, 46, 30, 39, 38, 31, 44, 30, 46, 37, 38, 45, 32, 34, 46, 33, 40, 39, 48, 46, 34, 47, 40, 41 }; static int triangle_neighbor_save[3*TRIANGLE_NUM] = { -3, 2, -5, 7, 1, 4, 6, 4, -11, 2, 3, -14, -15, 6, -17, 3, 5, 10, 9, 8, 2, -24, 7, 11, 7, -28, 13, 27, -31, 6, 8, 14, 12, -36, 11, -38, 15, 14, 9, 11, 13, -44, -45, 16, 13, -48, 15, -50 }; for ( j = 0; j < NODE_NUM; j++ ) { for ( i = 0; i < DIM_NUM; i++ ) { node_xy[i+j*DIM_NUM] = node_xy_save[i+j*DIM_NUM]; } } for ( j = 0; j < TRIANGLE_NUM; j++ ) { for ( i = 0; i < TRIANGLE_ORDER; i++ ) { triangle_node[i+j*TRIANGLE_ORDER] = triangle_node_save[i+j*TRIANGLE_ORDER]; } } for ( j = 0; j < TRIANGLE_NUM; j++ ) { for ( i = 0; i < 3; i++ ) { triangle_neighbor[i+j*3] = triangle_neighbor_save[i+j*3]; } } return; # undef DIM_NUM # undef NODE_NUM # undef TRIANGLE_NUM # undef TRIANGLE_ORDER } //****************************************************************************80 void triangulation_order6_example1_size ( int *node_num, int *triangle_num, int *hole_num ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_EXAMPLE1_SIZE sets sizes for a sample triangulation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2004 // // Author: // // John Burkardt // // Parameters: // // Output, int *NODE_NUM, the number of nodes. // // Output, int *TRIANGLE_NUM, the number of triangles. // // Output, int *HOLE_NUM, the number of holes. // { *node_num = 48; *triangle_num = 16; *hole_num = 1; return; } //****************************************************************************80 void triangulation_order6_example2 ( int node_num, int triangle_num, double node_xy[], int triangle_node[], int triangle_neighbor[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_EXAMPLE2 sets up a sample triangulation. // // Discussion: // // This triangulation is actually a Delaunay triangulation. // // The appropriate input values of NODE_NUM and TRIANGLE_NUM can be // determined by calling TRIANGULATION_ORDER6_EXAMPLE2_SIZE first. // // Diagram: // // 21-22-23-24-25 // |\ 6 |\ 8 | // | \ | \ | // 16 17 18 19 20 // | \ | \ | // | 5 \| 7 \| // 11-12-13-14-15 // |\ 2 |\ 4 | // | \ | \ | // 6 7 8 9 10 // | 1 \ | 3 \ | // | \| \| // 1--2--3--4--5 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Output, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Output, int TRIANGLE_ORDER[6*TRIANGLE_NUM], the nodes that make up // the triangles. // // Output, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbors // on each side. Negative values indicate edges that lie on the exterior. // { # define DIM_NUM 2 # define NODE_NUM 48 # define TRIANGLE_NUM 16 # define TRIANGLE_ORDER 6 int i; int j; static double node_xy_save[DIM_NUM*NODE_NUM] = { 0.0, 0.0, 1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 4.0, 0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 1.0, 3.0, 1.0, 4.0, 1.0, 0.0, 2.0, 1.0, 2.0, 2.0, 2.0, 3.0, 2.0, 4.0, 2.0, 0.0, 3.0, 1.0, 3.0, 2.0, 3.0, 3.0, 3.0, 4.0, 3.0, 0.0, 4.0, 1.0, 4.0, 2.0, 4.0, 3.0, 4.0, 4.0, 4.0 }; static int triangle_node_save[TRIANGLE_ORDER*TRIANGLE_NUM] = { 1, 3, 11, 2, 7, 6, 13, 11, 3, 12, 7, 8, 3, 5, 13, 4, 9, 8, 15, 13, 5, 14, 9, 10, 11, 13, 21, 12, 17, 16, 23, 21, 13, 22, 17, 18, 13, 15, 23, 14, 19, 18, 25, 23, 15, 24, 19, 20 }; static int triangle_neighbor_save[3*TRIANGLE_NUM] = { -1, 2, -1, 5, 1, 3, -1, 4, 2, 7, 3, -1, 2, 6, -1, -1, 5, 7, 4, 8, 6, -1, 7, -1 }; for ( j = 0; j < NODE_NUM; j++ ) { for ( i = 0; i < DIM_NUM; i++ ) { node_xy[i+j*DIM_NUM] = node_xy_save[i+j*DIM_NUM]; } } for ( j = 0; j < TRIANGLE_NUM; j++ ) { for ( i = 0; i < TRIANGLE_ORDER; i++ ) { triangle_node[i+j*TRIANGLE_ORDER] = triangle_node_save[i+j*TRIANGLE_ORDER]; } } for ( j = 0; j < TRIANGLE_NUM; j++ ) { for ( i = 0; i < 3; i++ ) { triangle_neighbor[i+j*3] = triangle_neighbor_save[i+j*3]; } } return; # undef DIM_NUM # undef NODE_NUM # undef TRIANGLE_NUM # undef TRIANGLE_ORDER } //****************************************************************************80 void triangulation_order6_example2_size ( int *node_num, int *triangle_num, int *hole_num ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_EXAMPLE2_SIZE sets sizes for a sample triangulation. // // Diagram: // // 21-22-23-24-25 // |\ 6 |\ 8 | // | \ | \ | // 16 17 18 19 20 // | \ | \ | // | 5 \| 7 \| // 11-12-13-14-15 // |\ 2 |\ 4 | // | \ | \ | // 6 7 8 9 10 // | 1 \ | 3 \ | // | \| \| // 1--2--3--4--5 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 January 2007 // // Author: // // John Burkardt // // Parameters: // // Output, int *NODE_NUM, the number of nodes. // // Output, int *TRIANGLE_NUM, the number of triangles. // // Output, int *HOLE_NUM, the number of holes. // { *node_num = 25; *triangle_num = 8; *hole_num = 0; return; } //****************************************************************************80 void triangulation_order6_neighbor ( int triangle_num, int triangle_node[], int t1, int s1, int *t2, int *s2 ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_NEIGHBOR determines a neighbor of a given triangle. // // Discussion: // // A set of nodes is given. A triangulation of the nodes has been // defined and recorded in TRIANGLE_NODE. The TRIANGLE_NODE data // structure records triangles as sets of six nodes, with the first three // being the vertices, in counterclockwise order. The fourth node is the // midside node between nodes 1 and 2, and the other two are listed // logically. // // The nodes of the triangle are listed in counterclockwise order. // This means that if two triangles share a side, then the nodes // defining that side occur in the order (N1,N2,N3) for one triangle, // and (N3,N2,N1) for the other. // // The routine is given a triangle and a side, and asked to find // another triangle (if any) that shares that side. The routine // simply searches the TRIANGLE_NODE structure for an occurrence of the // nodes in the opposite order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int TRIANGLE_NUM, the number of triangles. // // Input/output, int TRIANGLE_NODE[6*TRIANGLE_NUM], the nodes that define // each triangle. // // Input, int T1, the index of the triangle. // // Input, int S1, the index of the triangle side. // // Output, int *T2, the index of the triangle which is the neighbor // to T1 on side S1, or -1 if there is no such neighbor. // // Output, int *S2, the index of the side of triangle T2 which // is shared with triangle T1, or -1 if there is no such neighbor. // { int n1; int n2; int s; int ss; int t; n1 = triangle_node[s1-1+(t1-1)*6]; ss = i4_wrap ( s1+1, 1, 3 ); n2 = triangle_node[ss-1+(t1-1)*6]; for ( t = 0; t < triangle_num; t++ ) { for ( s = 0; s < 3; s++ ) { if ( triangle_node[s+t*6] == n1 ) { ss = i4_wrap ( s-1, 0, 2 ); if ( triangle_node[ss+t*6] == n2 ) { *t2 = t + 1; *s2 = ss + 1; return; } } } } *t2 = -1; *s2 = -1; return; } //****************************************************************************80 void triangulation_order6_plot ( string file_name, int node_num, double node_xy[], int triangle_num, int triangle_node[], int node_show, int triangle_show ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_PLOT plots a 6-node triangulation of a set of nodes. // // Discussion: // // The triangulation is most usually a Delaunay triangulation, // but this is not necessary. // // This routine has been specialized to deal correctly ONLY with // a mesh of 6 node elements, with the property that starting // from local node 1 and traversing the edges of the element will // result in encountering local nodes 1, 4, 2, 5, 3, 6 in that order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILE_NAME, the name of the file to create. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[6*TRIANGLE_NUM], lists, for each triangle, // the indices of the nodes that form the vertices and midsides // of the triangle. // // Input, int NODE_SHOW: // 0, do not show nodes; // 1, show nodes; // 2, show nodes and label them. // // Input, int TRIANGLE_SHOW: // 0, do not show triangles; // 1, show triangles; // 2, show triangles and label them. // { double ave_x; double ave_y; int circle_size; int delta; int e; ofstream file_unit; int i; int ip1; int node; int order[6] = { 1, 4, 2, 5, 3, 6 }; int triangle; double x_max; double x_min; int x_ps; int x_ps_max = 576; int x_ps_max_clip = 594; int x_ps_min = 36; int x_ps_min_clip = 18; double x_scale; double y_max; double y_min; int y_ps; int y_ps_max = 666; int y_ps_max_clip = 684; int y_ps_min = 126; int y_ps_min_clip = 108; double y_scale; // // We need to do some figuring here, so that we can determine // the range of the data, and hence the height and width // of the piece of paper. // x_max = - r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( x_max < node_xy[0+node*2] ) { x_max = node_xy[0+node*2]; } } x_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[0+node*2] < x_min ) { x_min = node_xy[0+node*2]; } } x_scale = x_max - x_min; x_max = x_max + 0.05 * x_scale; x_min = x_min - 0.05 * x_scale; x_scale = x_max - x_min; y_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( y_max < node_xy[1+node*2] ) { y_max = node_xy[1+node*2]; } } y_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[1+node*2] < y_min ) { y_min = node_xy[1+node*2]; } } y_scale = y_max - y_min; y_max = y_max + 0.05 * y_scale; y_min = y_min - 0.05 * y_scale; y_scale = y_max - y_min; if ( x_scale < y_scale ) { delta = r8_nint ( ( double ) ( x_ps_max - x_ps_min ) * ( y_scale - x_scale ) / ( 2.0 * y_scale ) ); x_ps_max = x_ps_max - delta; x_ps_min = x_ps_min + delta; x_ps_max_clip = x_ps_max_clip - delta; x_ps_min_clip = x_ps_min_clip + delta; x_scale = y_scale; } else if ( y_scale < x_scale ) { delta = r8_nint ( ( double ) ( y_ps_max - y_ps_min ) * ( x_scale - y_scale ) / ( 2.0 * x_scale ) ); y_ps_max = y_ps_max - delta; y_ps_min = y_ps_min + delta; y_ps_max_clip = y_ps_max_clip - delta; y_ps_min_clip = y_ps_min_clip + delta; y_scale = x_scale; } file_unit.open ( file_name.c_str ( ) ); if ( !file_unit ) { cout << "\n"; cout << "TRIANGULATION_ORDER6_PLOT - Fatal error!\n"; cout << " Could not open the output EPS file.\n"; exit ( 1 ); } file_unit << "%!PS-Adobe-3.0 EPSF-3.0\n"; file_unit << "%%Creator: triangulation_order6_plot.C\n"; file_unit << "%%Title: " << file_name << "\n"; file_unit << "%%Pages: 1\n"; file_unit << "%%BoundingBox: " << x_ps_min << " " << y_ps_min << " " << x_ps_max << " " << y_ps_max << "\n"; file_unit << "%%Document-Fonts: Times-Roman\n"; file_unit << "%%LanguageLevel: 1\n"; file_unit << "%%EndComments\n"; file_unit << "%%BeginProlog\n"; file_unit << "/inch {72 mul} def\n"; file_unit << "%%EndProlog\n"; file_unit << "%%Page: 1 1\n"; file_unit << "save\n"; file_unit << "%\n"; file_unit << "% Increase line width from default 0.\n"; file_unit << "%\n"; file_unit << "2 setlinewidth\n"; file_unit << "%\n"; file_unit << "% Set the RGB line color to very light gray.\n"; file_unit << "%\n"; file_unit << " 0.9000 0.9000 0.9000 setrgbcolor\n"; file_unit << "%\n"; file_unit << "% Draw a gray border around the page.\n"; file_unit << "%\n"; file_unit << "newpath\n"; file_unit << x_ps_min << " " << y_ps_min << " moveto\n"; file_unit << x_ps_max << " " << y_ps_min << " lineto\n"; file_unit << x_ps_max << " " << y_ps_max << " lineto\n"; file_unit << x_ps_min << " " << y_ps_max << " lineto\n"; file_unit << x_ps_min << " " << y_ps_min << " lineto\n"; file_unit << "stroke\n"; file_unit << "%\n"; file_unit << "% Set RGB line color to black.\n"; file_unit << "%\n"; file_unit << " 0.0000 0.0000 0.0000 setrgbcolor\n"; file_unit << "%\n"; file_unit << "% Set the font and its size:\n"; file_unit << "%\n"; file_unit << "/Times-Roman findfont\n"; file_unit << "0.50 inch scalefont\n"; file_unit << "setfont\n"; file_unit << "%\n"; file_unit << "% Print a title:\n"; file_unit << "%\n"; file_unit << "% 210 702 moveto\n"; file_unit << "%(Pointset) show\n"; file_unit << "%\n"; file_unit << "% Define a clipping polygon\n"; file_unit << "%\n"; file_unit << "newpath\n"; file_unit << x_ps_min_clip << " " << y_ps_min_clip << " moveto\n"; file_unit << x_ps_max_clip << " " << y_ps_min_clip << " lineto\n"; file_unit << x_ps_max_clip << " " << y_ps_max_clip << " lineto\n"; file_unit << x_ps_min_clip << " " << y_ps_max_clip << " lineto\n"; file_unit << x_ps_min_clip << " " << y_ps_min_clip << " lineto\n"; file_unit << "clip newpath\n"; // // Draw the nodes. // if ( node_num <= 200 ) { circle_size = 5; } else if ( node_num <= 500 ) { circle_size = 4; } else if ( node_num <= 1000 ) { circle_size = 3; } else if ( node_num <= 5000 ) { circle_size = 2; } else { circle_size = 1; } if ( 1 <= node_show ) { file_unit << "%\n"; file_unit << "% Draw filled dots at each node:\n"; file_unit << "%\n"; file_unit << "% Set the color to blue:\n"; file_unit << "%\n"; file_unit << "0.000 0.150 0.750 setrgbcolor\n"; file_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << "newpath " << x_ps << " " << y_ps << " " << circle_size << " 0 360 arc closepath fill\n"; } } // // Label the nodes. // if ( 2 <= node_show ) { file_unit << "%\n"; file_unit << "% Label the nodes:\n"; file_unit << "%\n"; file_unit << "% Set the color to darker blue:\n"; file_unit << "%\n"; file_unit << "0.000 0.250 0.850 setrgbcolor\n"; file_unit << "/Times-Roman findfont\n"; file_unit << "0.20 inch scalefont\n"; file_unit << "setfont\n"; file_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << "newpath " << x_ps << " " << y_ps + 5 << " moveto (" << node+1 << ") show\n"; } } // // Draw the triangles. // if ( 1 <= triangle_show ) { file_unit << "%\n"; file_unit << "% Set the RGB color to red.\n"; file_unit << "%\n"; file_unit << "0.900 0.200 0.100 setrgbcolor\n"; file_unit << "%\n"; file_unit << "% Draw the triangles.\n"; file_unit << "%\n"; for ( triangle = 0; triangle < triangle_num; triangle++ ) { node = triangle_node[order[0]-1+triangle*6] - 1; x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << "newpath " << x_ps << " " << y_ps << " moveto\n"; for ( i = 1; i <= 6; i++ ) { ip1 = ( i % 6 ) + 1; node = triangle_node[order[ip1-1]-1+triangle*6] - 1; x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << x_ps << " " << y_ps << " lineto\n"; } file_unit << "stroke\n"; } } // // Label the triangles. // if ( 2 <= triangle_show ) { file_unit << "%\n"; file_unit << "% Label the triangles.\n"; file_unit << "%\n"; file_unit << "% Set the RGB color to darker red.\n"; file_unit << "%\n"; file_unit << "0.950 0.250 0.150 setrgbcolor\n"; file_unit << "/Times-Roman findfont\n"; file_unit << "0.20 inch scalefont\n"; file_unit << "setfont\n"; file_unit << "%\n"; for ( triangle = 0; triangle < triangle_num; triangle++ ) { ave_x = 0.0; ave_y = 0.0; for ( i = 0; i < 6; i++ ) { node = triangle_node[i+triangle*6] - 1; ave_x = ave_x + node_xy[0+node*2]; ave_y = ave_y + node_xy[1+node*2]; } ave_x = ave_x / 6.0; ave_y = ave_y / 6.0; x_ps = ( int ) ( ( ( x_max - ave_x ) * ( double ) ( x_ps_min ) + ( + ave_x - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - ave_y ) * ( double ) ( y_ps_min ) + ( ave_y - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << setw(4) << x_ps << " " << setw(4) << y_ps << " " << "moveto (" << triangle+1 << ") show\n"; } } file_unit << "%\n"; file_unit << "restore showpage\n"; file_unit << "%\n"; file_unit << "% End of page\n"; file_unit << "%\n"; file_unit << "%%Trailer\n"; file_unit << "%%EOF\n"; file_unit.close ( ); return; } //****************************************************************************80 void triangulation_order6_print ( int node_num, int triangle_num, double node_xy[], int triangle_node[], int triangle_neighbor[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_PRINT prints information defining a triangulation. // // Discussion: // // Triangulations created by R8TRIS2 include extra information encoded // in the negative values of TRIANGLE_NEIGHBOR. // // Because some of the nodes counted in node_num may not actually be // used in the triangulation, I needed to compute the true number // of vertices. I added this calculation on 13 October 2001. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_NODE[6*TRIANGLE_NUM], the nodes that make up the // triangles. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbors on each side. // If there is no triangle neighbor on a particular side, the value of // TRIANGLE_NEIGHBOR should be negative. If the triangulation data was created by // R8TRIS2, then there is more information encoded in the negative values. // { # define DIM_NUM 2 int boundary_num; int i; int j; int k; int n1; int n2; int n3; int s; int s1; int s2; bool skip; int t; int *vertex_list; int vertex_num; cout << "\n"; cout << "TRIANGULATION_ORDER6_PRINT\n"; cout << " Information defining a triangulation.\n"; cout << "\n"; cout << " The number of nodes is " << node_num << "\n"; r8mat_transpose_print ( DIM_NUM, node_num, node_xy, " Node coordinates" ); cout << "\n"; cout << " The number of triangles is " << triangle_num << "\n"; cout << "\n"; cout << " Sets of six nodes are used as vertices of\n"; cout << " the triangles. For each triangle, the vertices are listed\n"; cout << " in counterclockwise order, followed by the midside nodes.\n"; i4mat_transpose_print ( 6, triangle_num, triangle_node, " Triangle nodes" ); cout << "\n"; cout << " On each side of a given triangle, there is either\n"; cout << " another triangle, or a piece of the convex hull.\n"; cout << " For each triangle, we list the indices of the three\n"; cout << " neighbors, or (if negative) the codes of the\n"; cout << " segments of the convex hull.\n"; i4mat_transpose_print ( 3, triangle_num, triangle_neighbor, " Triangle neighbors" ); // // Determine VERTEX_NUM, the number of vertices. // vertex_list = new int[3*triangle_num]; k = 0; for ( t = 0; t < triangle_num; t++ ) { for ( s = 0; s < 3; s++ ) { vertex_list[k] = triangle_node[s+t*6]; k = k + 1; } } i4vec_sort_heap_a ( 3*triangle_num, vertex_list ); vertex_num = i4vec_sorted_unique ( 3*triangle_num, vertex_list ); delete [] vertex_list; // // Determine the number of boundary points. // boundary_num = 2 * vertex_num - triangle_num - 2; cout << "\n"; cout << " The number of boundary points is " << boundary_num << "\n"; cout << "\n"; cout << " The segments that make up the convex hull can be\n"; cout << " determined from the negative entries of the triangle\n"; cout << " neighbor list.\n"; cout << "\n"; cout << " # Tri Side N1 N2 N3\n"; cout << "\n"; skip = false; k = 0; for ( i = 0; i < triangle_num; i++ ) { for ( j = 0; j < 3; j++ ) { if ( triangle_neighbor[j+i*3] < 0 ) { s = -triangle_neighbor[j+i*3]; t = s / 3; if ( t < 1 || triangle_num < t ) { cout << "\n"; cout << " Sorry, this data does not use the R8TRIS2\n"; cout << " convention for convex hull segments.\n"; skip = true; break; } s1 = ( s % 3 ) + 1; s2 = i4_wrap ( s1+1, 1, 3 ); k = k + 1; n1 = triangle_node[s1-1+(t-1)*6]; n2 = triangle_node[s1+3-1+(t-1)*6]; n3 = triangle_node[s2-1+(t-1)*6]; cout << " " << setw(4) << k << " " << setw(4) << t << " " << setw(4) << s1 << " " << setw(4) << n1 << " " << setw(4) << n2 << " " << setw(4) << n3 << "\n"; } } if ( skip ) { break; } } return; # undef DIM_NUM } //****************************************************************************80 void triangulation_order6_refine_compute ( int node_num1, int triangle_num1, double node_xy1[], int triangle_node1[], int node_num2, int triangle_num2, int edge_data[], double node_xy2[], int triangle_node2[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_REFINE_COMPUTE computes a refined order 6 triangulation. // // Discussion: // // Given a quadratic triangle defined by nodes 1, 2, 3, 4, 5, 6, we // need to generate nodes 14, 16, 24, 25, 35, 36, 45, 46, 56, and 4 new // quadratic subtriangles T1, T2, T3 and T4. // // The task is more complicated by the fact that we are working with // a mesh of triangles, so that we want to create a node only once, // even though it may be shared by other triangles. (In fact, only // the new nodes on the edges can be shared, and then only by at most // one other triangle.) // // 3 // / \ // 36 35 // / T3 \ // 6--56---5 // / \ T4 / \ // 16 46 45 25 // / T1 \ / T2 \ // 1--14---4--24---2 // // This routine is given sorted information defining the edges, and uses // it to build the new node and triangle arrays. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM1, the number of nodes. // // Input, int TRIANGLE_NUM1, the number of triangles. // // Input, double NODE_XY1[2*NODE_NUM1], the nodes. // // Input, int TRIANGLE_NODE1[6*TRIANGLE_NUM1], the nodes that make up the // triangles. // // Input, int NODE_NUM2, the number of nodes in the refined mesh. // // Input, int TRIANGLE_NUM2, the number of triangles in the refined mesh. // // Input, int EDGE_DATA[5*(3*TRIANGLE_NUM1)], edge information computed // by TRIANGULATION_ORDER6_REFINE_SIZE. // // Output, double NODE_XY2[2*NODE_NUM2], the refined nodes. // // Output, int TRIANGLE_NODE2[6*TRIANGLE_NUM2], the nodes that make up the // triangles in the refined mesh. // { int edge; int i; int j; int l1; int l2; int l3; int n1; int n1_old; int n2; int n2_old; int node; int t1; int t2; int t3; int t4; int triangle1; int v1; int v2; int v3; int v4; int v5; int v6; // // Step 1: // Copy the old nodes. // for ( j = 0; j < node_num1; j++ ) { for ( i = 0; i < 2; i++ ) { node_xy2[i+j*2] = node_xy1[i+j*2]; } } for ( j = 0; j < triangle_num2; j++ ) { for ( i = 0; i < 6; i++ ) { triangle_node2[i+j*6] = -1; } } // // We can assign the existing nodes to the new triangles. // for ( triangle1 = 0; triangle1 < triangle_num1; triangle1++ ) { t1 = triangle1 * 4 + 0; t2 = triangle1 * 4 + 1; t3 = triangle1 * 4 + 2; t4 = triangle1 * 4 + 3; triangle_node2[0+t1*6] = triangle_node1[0+triangle1*6]; triangle_node2[1+t1*6] = triangle_node1[3+triangle1*6]; triangle_node2[2+t1*6] = triangle_node1[5+triangle1*6]; triangle_node2[0+t2*6] = triangle_node1[3+triangle1*6]; triangle_node2[1+t2*6] = triangle_node1[1+triangle1*6]; triangle_node2[2+t2*6] = triangle_node1[4+triangle1*6]; triangle_node2[0+t3*6] = triangle_node1[5+triangle1*6]; triangle_node2[1+t3*6] = triangle_node1[4+triangle1*6]; triangle_node2[2+t3*6] = triangle_node1[2+triangle1*6]; triangle_node2[0+t4*6] = triangle_node1[4+triangle1*6]; triangle_node2[1+t4*6] = triangle_node1[5+triangle1*6]; triangle_node2[2+t4*6] = triangle_node1[3+triangle1*6]; } // // Step 2. // Examine sorted edge information. The first time an edge is encountered, // generate two new nodes, then assign them (usually) to the four subtriangles // of the two triangles that share that edge. // node = node_num1; n1_old = -1; n2_old = -1; for ( edge = 0; edge < 3 * triangle_num1; edge++ ) { n1 = edge_data[0+edge*5] - 1; n2 = edge_data[1+edge*5] - 1; l1 = edge_data[2+edge*5]; l3 = edge_data[3+edge*5]; if ( l1 == 1 && l3 == 2 ) { l2 = 4; } else if ( l1 == 1 && l3 == 3 ) { l2 = 6; } else if ( l1 == 2 && l3 == 3 ) { l2 = 5; } triangle1 = edge_data[4+edge*5]; // // If this is the first time we've encountered this edge, // create the new nodes. // if ( n1 != n1_old || n2 != n2_old ) { n1_old = n1; n2_old = n2; v1 = triangle_node1[l1-1+triangle1*6]; v2 = triangle_node1[l2-1+triangle1*6]; v3 = triangle_node1[l3-1+triangle1*6]; for ( i = 0; i < 2; i++ ) { node_xy2[i+node*2] = ( node_xy2[i+(v1-1)*2] + node_xy2[i+(v2-1)*2] ) / 2.0; } node = node + 1; v4 = node; for ( i = 0; i < 2; i++ ) { node_xy2[i+node*2] = ( node_xy2[i+(v2-1)*2] + node_xy2[i+(v3-1)*2] ) / 2.0; } node = node + 1; v5 = node; } t1 = triangle1 * 4 + 0; t2 = triangle1 * 4 + 1; t3 = triangle1 * 4 + 2; if ( l1 == 1 && l3 == 2 ) { if ( triangle_node1[0+triangle1*6] == v1 + 1 ) { triangle_node2[3+t1*6] = v4; triangle_node2[3+t2*6] = v5; } else { triangle_node2[3+t1*6] = v5; triangle_node2[3+t2*6] = v4; } } else if ( l1 == 1 && l3 == 3 ) { if ( triangle_node1[0+triangle1*6] == v1 + 1 ) { triangle_node2[5+t1*6] = v4; triangle_node2[5+t3*6] = v5; } else { triangle_node2[5+t1*6] = v5; triangle_node2[5+t3*6] = v4; } } else if ( l1 == 2 && l3 == 3 ) { if ( triangle_node1[1+triangle1*6] == v1 + 1 ) { triangle_node2[4+t3*6] = v4; triangle_node2[4+t2*6] = v5; } else { triangle_node2[4+t3*6] = v5; triangle_node2[4+t2*6] = v4; } } } // // Step 3. // Each old triangle has a single central subtriangle, for which we now // need to generate three new "interior" nodes. // for ( triangle1 = 0; triangle1 < triangle_num1; triangle1++ ) { v4 = triangle_node1[3+triangle1*6]; v5 = triangle_node1[4+triangle1*6]; v6 = triangle_node1[5+triangle1*6]; t1 = triangle1 * 4 + 0; t2 = triangle1 * 4 + 1; t3 = triangle1 * 4 + 2; t4 = triangle1 * 4 + 3; node_xy2[0+node*2] = 0.5 * ( node_xy1[0+(v5-1)*2] + node_xy1[0+(v6-1)*2] ); node_xy2[1+node*2] = 0.5 * ( node_xy1[1+(v5-1)*2] + node_xy1[1+(v6-1)*2] ); node = node + 1; triangle_node2[3+t4*6] = node; triangle_node2[3+t3*6] = node; node_xy2[0+node*2] = 0.5 * ( node_xy1[0+(v6-1)*2] + node_xy1[0+(v4-1)*2] ); node_xy2[1+node*2] = 0.5 * ( node_xy1[1+(v6-1)*2] + node_xy1[1+(v4-1)*2] ); node = node + 1; triangle_node2[4+t4*6] = node; triangle_node2[4+t1*6] = node; node_xy2[0+node*2] = 0.5 * ( node_xy1[0+(v4-1)*2] + node_xy1[0+(v5-1)*2] ); node_xy2[1+node*2] = 0.5 * ( node_xy1[1+(v4-1)*2] + node_xy1[1+(v5-1)*2] ); node = node + 1; triangle_node2[5+t4*6] = node; triangle_node2[5+t2*6] = node; } return; } //****************************************************************************80 void triangulation_order6_refine_size ( int node_num1, int triangle_num1, int triangle_node1[], int *node_num2, int *triangle_num2, int edge_data[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_REFINE_SIZE sizes a refined order 6 triangulation. // // Discussion: // // Given a quadratic triangle defined by nodes 1, 2, 3, 4, 5, 6, we // need to generate nodes 14, 16, 24, 25, 35, 36, 45, 46, 56, and 4 new // quadratic subtriangles T1, T2, T3 and T4. // // The task is more complicated by the fact that we are working with // a mesh of triangles, so that we want to create a node only once, // even though it may be shared by other triangles. (In fact, only // the new nodes on the edges can be shared, and then only by at most // one other triangle.) // // 3 // / \ // 36 35 // / T3 \ // 6--56---5 // / \ T4 / \ // 16 46 45 25 // / T1 \ / T2 \ // 1--14---4--24---2 // // This routine determines the sizes of the resulting node and // triangles, and constructs an edge array that can be used to // properly number the new nodes. // // The primary work occurs in sorting a list related to the edges. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 February 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM1, the number of nodes in the original mesh. // // Input, int TRIANGLE_NUM1, the number of triangles in the // original mesh. // // Input, int TRIANGLE_NODE1[6*TRIANGLE_NUM1], the indices of the nodes // that form the triangles in the input mesh. // // Output, int *NODE_NUM2, the number of nodes in the refined mesh. // // Output, int *TRIANGLE_NUM2, the number of triangles in the // refined mesh. // // Output, int EDGE_DATA[5*(3*TRIANGLE_NUM1)], edge data that will // be needed by TRIANGULATION_ORDER6_REFINE_COMPUTE. // { int a; int b; int edge; int i; int j; int k; int n1; int n1_old; int n2; int n2_old; int triangle1; // // Step 1. // From the list of nodes for triangle T, of the form: (I,J,K) // construct the edge relations: // // (I,J,1,2,T) // (I,K,1,3,T) // (J,K,2,3,T) // // In order to make matching easier, we reorder each pair of nodes // into ascending order. // for ( triangle1 = 0; triangle1 < triangle_num1; triangle1++ ) { i = triangle_node1[0+triangle1*6]; j = triangle_node1[1+triangle1*6]; k = triangle_node1[2+triangle1*6]; a = i4_min ( i, j ); b = i4_max ( i, j ); edge_data[0+5*(3*triangle1+0)] = a; edge_data[1+5*(3*triangle1+0)] = b; edge_data[2+5*(3*triangle1+0)] = 1; edge_data[3+5*(3*triangle1+0)] = 2; edge_data[4+5*(3*triangle1+0)] = triangle1; a = i4_min ( i, k ); b = i4_max ( i, k ); edge_data[0+5*(3*triangle1+1)] = a; edge_data[1+5*(3*triangle1+1)] = b; edge_data[2+5*(3*triangle1+1)] = 1; edge_data[3+5*(3*triangle1+1)] = 3; edge_data[4+5*(3*triangle1+1)] = triangle1; a = i4_min ( j, k ); b = i4_max ( j, k ); edge_data[0+5*(3*triangle1+2)] = a; edge_data[1+5*(3*triangle1+2)] = b; edge_data[2+5*(3*triangle1+2)] = 2; edge_data[3+5*(3*triangle1+2)] = 3; edge_data[4+5*(3*triangle1+2)] = triangle1; } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // We only intend to sort on rows 1:2; the routine we call here // sorts on the full column but that won't hurt us. // // What we need is to find all cases where triangles share an edge. // By sorting the columns of the EDGE_DATA array, we will put shared edges // next to each other. // i4col_sort_a ( 5, 3*triangle_num1, edge_data ); // // Step 3. All the triangles which share an edge show up as consecutive // columns with identical first two entries. Figure out how many new // nodes there are, and allocate space for their coordinates. // *node_num2 = node_num1; n1_old = -1; n2_old = -1; for ( edge = 0; edge < 3 * triangle_num1; edge++ ) { n1 = edge_data[0+edge*5]; n2 = edge_data[1+edge*5]; if ( n1 != n1_old || n2 != n2_old ) { *node_num2 = *node_num2 + 2; n1_old = n1; n2_old = n2; } } *node_num2 = *node_num2 + 3 * triangle_num1; *triangle_num2 = 4 * triangle_num1; return; } //****************************************************************************80 int *triangulation_order6_to_order3 ( int triangle_num1, int triangle_node1[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_TO_ORDER3 linearizes a quadratic triangulation. // // Discussion: // // A quadratic triangulation is assumed to consist of 6-node triangles, // as in the following: // // 11-12-13-14-15 // |\ |\ | // | \ | \ | // 6 7 8 9 10 // | \ | \ | // | \| \| // 1--2--3--4--5 // // This routine rearranges information so as to define the 3-node // triangulation: // // 11-12-13-14-15 // |\ |\ |\ |\ | // | \| \| \| \| // 6--7--8--9-10 // |\ |\ |\ |\ | // | \| \| \| \| // 1--2--3--4--5 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 March 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int TRIANGLE_NUM1, the number of triangles in the quadratic // triangulation. // // Input, int TRIANGLE_NODE1[6*TRIANGLE_NUM1], the quadratic triangulation. // // Output, int TRIANGULATION_ORDER6_TO_ORDER3[3*TRIANGLE_NUM2], the linear // triangulation. Here, TRIANGLE_NUM2 = 4 * TRIANGLE_NUM1. // { int n1; int n2; int n3; int n4; int n5; int n6; int triangle_num2; int tri1; int tri2; int *triangle_node2; triangle_num2 = 4 * triangle_num1; triangle_node2 = new int[3*triangle_num2]; tri2 = 0; for ( tri1 = 0; tri1 < triangle_num1; tri1++ ) { n1 = triangle_node1[0+tri1*6]; n2 = triangle_node1[1+tri1*6]; n3 = triangle_node1[2+tri1*6]; n4 = triangle_node1[3+tri1*6]; n5 = triangle_node1[4+tri1*6]; n6 = triangle_node1[5+tri1*6]; triangle_node2[0+tri2*3] = n1; triangle_node2[1+tri2*3] = n4; triangle_node2[2+tri2*3] = n6; tri2 = tri2 + 1; triangle_node2[0+tri2*3] = n2; triangle_node2[1+tri2*3] = n5; triangle_node2[2+tri2*3] = n4; tri2 = tri2 + 1; triangle_node2[0+tri2*3] = n3; triangle_node2[1+tri2*3] = n6; triangle_node2[2+tri2*3] = n5; tri2 = tri2 + 1; triangle_node2[0+tri2*3] = n4; triangle_node2[1+tri2*3] = n5; triangle_node2[2+tri2*3] = n6; tri2 = tri2 + 1; } return triangle_node2; } //****************************************************************************80 int triangulation_order6_vertex_count ( int tri_num, int triangle_node[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_VERTEX_COUNT counts vertex nodes in a triangulation. // // Discussion: // // In a triangulation of order 6, some nodes are midside nodes and some // nodes are vertex nodes. // // Especially when an order 6 triangulation is used to handle the // Navier Stokes equations, it is useful to know the number of // vertex and midside nodes. // // Note that the number of midside nodes is simple NODE_NUM - VERTEX_NUM. // // Diagram: // // 3 // s |\ // i | \ // d | \ // e 6 5 side 2 // | \ // 3 | \ // | \ // 1---4---2 // // side 1 // // The local node numbering. Local nodes 1, 2 and 3 are "vertex nodes", // while nodes 4, 5 and 6 are "midside nodes". // // // 21-22-23-24-25 // |\ |\ | // | \ | \ | // 16 17 18 19 20 // | \ | \ | // | \| \| // 11-12-13-14-15 // |\ |\ | // | \ | \ | // 6 7 8 9 10 // | \ | \ | // | \| \| // 1--2--3--4--5 // // A sample grid, which contains 9 vertex nodes and 16 midside nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 August 2006 // // Author: // // John Burkardt // // Parameters // // Input, int TRI_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[6*TRI_NUM], lists the nodes that // make up each triangle. The first three nodes are the vertices, // in counterclockwise order. The fourth value is the midside // node between nodes 1 and 2; the fifth and sixth values are // the other midside nodes in the logical order. // // Output, int TRIANGULATION_ORDER6_VERTEX_COUNT, the number of nodes // which are vertices. // { int j; int vertex_num; int *vertices; vertices = new int[3*tri_num]; for ( j = 0; j < tri_num; j++ ) { vertices[j] = triangle_node[0+j*6]; } for ( j = 0; j < tri_num; j++ ) { vertices[tri_num+j] = triangle_node[1+j*6]; } for ( j = 0; j < tri_num; j++ ) { vertices[2*tri_num+j] = triangle_node[2+j*6]; } i4vec_sort_heap_a ( 3*tri_num, vertices ); vertex_num = i4vec_sorted_unique ( 3*tri_num, vertices ); delete [] vertices; return vertex_num; } //****************************************************************************80 void triangulation_search_delaunay ( int node_num, double node_xy[], int triangle_order, int triangle_num, int triangle_node[], int triangle_neighbor[], double p[2], int *triangle_index, double *alpha, double *beta, double *gamma, int *edge, int *step_num ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_SEARCH_DELAUNAY searches a triangulation for a point. // // Discussion: // // The algorithm "walks" from one triangle to its neighboring triangle, // and so on, until a triangle is found containing point P, or P is found // to be outside the convex hull. // // The algorithm computes the barycentric coordinates of the point with // respect to the current triangle. If all three quantities are positive, // the point is contained in the triangle. If the I-th coordinate is // negative, then (X,Y) lies on the far side of edge I, which is opposite // from vertex I. This gives a hint as to where to search next. // // For a Delaunay triangulation, the search is guaranteed to terminate. // For other triangulations, a cycle may occur. // // Note the surprising fact that, even for a Delaunay triangulation of // a set of nodes, the nearest point to (X,Y) need not be one of the // vertices of the triangle containing (X,Y). // // The code can be called for triangulations of any order, but only // the first three nodes in each triangle are considered. Thus, if // higher order triangles are used, and the extra nodes are intended // to give the triangle a polygonal shape, these will have no effect, // and the results obtained here might be misleading. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 October 2012 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_ORDER, the order of the triangles. // // Input, int TRIANGLE_NUM, the number of triangles in the triangulation. // // Input, int TRIANGLE_NODE[TRIANGLE_ORDER*TRIANGLE_NUM], // the nodes of each triangle. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbor list. // // Input, double P[2], the coordinates of a point. // // Output, int *TRIANGLE_INDEX, the index of the triangle where the search ended. // If a cycle occurred, then TRIANGLE_INDEX = -1. // // Output, double *ALPHA, *BETA, *GAMMA, the barycentric coordinates // of the point with respect to triangle *TRIANGLE_INDEX. // // Output, int *EDGE, indicates the position of the point (X,Y) in // triangle TRIANGLE: // 0, the interior or boundary of the triangle; // -1, outside the convex hull of the triangulation, past edge 1; // -2, outside the convex hull of the triangulation, past edge 2; // -3, outside the convex hull of the triangulation, past edge 3. // // Output, int *STEP_NUM, the number of steps. { int a; int b; int c; double det; double dxp; double dxa; double dxb; double dyp; double dya; double dyb; static int triangle_index_save = -1; *step_num = - 1; *edge = 0; if ( triangle_index_save < 0 || triangle_num <= triangle_index_save ) { *triangle_index = ( triangle_num + 1 ) / 2; } else { *triangle_index = triangle_index_save; } for ( ; ; ) { *step_num = *step_num + 1; if ( triangle_num < *step_num ) { cout << "\n"; cout << "TRIANGULATION_SEARCH_DELAUNAY - Fatal error!\n"; cout << " The algorithm seems to be cycling.\n"; cout << " Current triangle is " << *triangle_index << "\n"; *triangle_index = -1; *alpha = -1.0; *beta = -1.0; *gamma = -1.0; *edge = -1; return; } // // Get the vertices of triangle TRIANGLE. // a = triangle_node[0+(*triangle_index-1)*triangle_order]; b = triangle_node[1+(*triangle_index-1)*triangle_order]; c = triangle_node[2+(*triangle_index-1)*triangle_order]; // // Using vertex C as a base, compute the distances to vertices A and B, // and the point (X,Y). // dxa = node_xy[0+a*2] - node_xy[0+c*2]; dya = node_xy[1+a*2] - node_xy[1+c*2]; dxb = node_xy[0+b*2] - node_xy[0+c*2]; dyb = node_xy[1+b*2] - node_xy[1+c*2]; dxp = p[0] - node_xy[0+c*2]; dyp = p[1] - node_xy[1+c*2]; det = dxa * dyb - dya * dxb; // // Compute the barycentric coordinates of the point (X,Y) with respect // to this triangle. // *alpha = ( dxp * dyb - dyp * dxb ) / det; *beta = ( dxa * dyp - dya * dxp ) / det; *gamma = 1.0 - *alpha - *beta; // // If the barycentric coordinates are all positive, then the point // is inside the triangle and we're done. // if ( 0.0 <= *alpha && 0.0 <= *beta && 0.0 <= *gamma ) { break; } // // At least one barycentric coordinate is negative. // // If there is a negative barycentric coordinate for which there exists // an opposing triangle neighbor closer to the point, move to that triangle. // // (Two coordinates could be negative, in which case we could go for the // most negative one, or the most negative one normalized by the actual // distance it represents). // if ( *alpha < 0.0 && 0 <= triangle_neighbor[1+(*triangle_index-1)*3] ) { *triangle_index = triangle_neighbor[1+(*triangle_index-1)*3]; continue; } else if ( *beta < 0.0 && 0 <= triangle_neighbor[2+(*triangle_index-1)*3] ) { *triangle_index = triangle_neighbor[2+(*triangle_index-1)*3]; continue; } else if ( *gamma < 0.0 && 0 <= triangle_neighbor[0+(*triangle_index-1)*3] ) { *triangle_index = triangle_neighbor[0+(*triangle_index-1)*3]; continue; } // // All negative barycentric coordinates correspond to vertices opposite // sides on the convex hull. // // Note the edge and exit. // if ( *alpha < 0.0 ) { *edge = -2; break; } else if ( *beta < 0.0 ) { *edge = -3; break; } else if ( *gamma < 0.0 ) { *edge = -1; break; } else { cout << "\n"; cout << "TRIANGULATION_ORDER3_SEARCH - Fatal error!\n"; cout << " The algorithm seems to have reached a dead end\n"; cout << " after " << *step_num << " steps.\n"; *triangle_index = -1; *edge = -1; return; } } triangle_index_save = *triangle_index; return; } //****************************************************************************80 int triangulation_search_naive ( int node_num, double node_xy[], int triangle_order, int triangle_num, int triangle_node[], double p[2] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_SEARCH_NAIVE naively searches a triangulation for a point. // // Discussion: // // The algorithm simply checks each triangle to see if point P is // contained in it. Surprisingly, this is not the fastest way to // do the check, at least if the triangulation is Delaunay. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_ORDER, the order of the triangles. // // Input, int TRIANGLE_NUM, the number of triangles in the triangulation. // // Input, int TRIANGLE_NODE[TRIANGLE_ORDER*TRIANGLE_NUM], // the nodes of each triangle. // // Input, double P[2], the coordinates of a point. // // Output, int TRIANGULATION_SEARCH_NAIVE, the index of the triangle // containing the point, or -1 if no triangle was found containing // the point. // { int a; double alpha; int b; double beta; int c; double det; double dxp; double dxa; double dxb; double dyp; double dya; double dyb; double gamma; int triangle; int triangle_index; triangle_index = -1; for ( triangle = 0; triangle < triangle_num; triangle++ ) { // // Get the vertices of triangle TRIANGLE. // a = triangle_node[0+triangle*triangle_order]; b = triangle_node[1+triangle*triangle_order]; c = triangle_node[2+triangle*triangle_order]; // // Using vertex C as a base, compute the distances to vertices A and B, // and the point (X,Y). // dxa = node_xy[0+a*2] - node_xy[0+c*2]; dya = node_xy[1+a*2] - node_xy[1+c*2]; dxb = node_xy[0+b*2] - node_xy[0+c*2]; dyb = node_xy[1+b*2] - node_xy[1+c*2]; dxp = p[0] - node_xy[0+c*2]; dyp = p[1] - node_xy[1+c*2]; det = dxa * dyb - dya * dxb; // // Compute the barycentric coordinates of the point (X,Y) with respect // to this triangle. // alpha = ( dxp * dyb - dyp * dxb ) / det; beta = ( dxa * dyp - dya * dxp ) / det; gamma = 1.0 - alpha - beta; // // If the barycentric coordinates are all positive, then the point // is inside the triangle and we're done. // if ( 0.0 <= alpha && 0.0 <= beta && 0.0 <= gamma ) { triangle_index = triangle + 1; break; } } return triangle_index; } //****************************************************************************80 void vbedg ( double x, double y, int node_num, double node_xy[], int triangle_num, int triangle_node[], int triangle_neighbor[], int *ltri, int *ledg, int *rtri, int *redg ) //****************************************************************************80 // // Purpose: // // VBEDG determines which boundary edges are visible to a point. // // Discussion: // // The point (X,Y) is assumed to be outside the convex hull of the // region covered by the 2D triangulation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 September 2008 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double X, Y, the coordinates of a point outside the convex hull // of the current triangulation. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], the triangle incidence list. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbor list; // negative values are used for links of a counter clockwise linked list // of boundary edges; // LINK = -(3*I + J-1) where I, J = triangle, edge index. // // Input/output, int *LTRI, *LEDG. If LTRI != 0 then these values are // assumed to be already computed and are not changed, else they are updated. // On output, LTRI is the index of boundary triangle to the left of the // leftmost boundary triangle visible from (X,Y), and LEDG is the boundary // edge of triangle LTRI to the left of the leftmost boundary edge visible // from (X,Y). 1 <= LEDG <= 3. // // Input/output, int *RTRI. On input, the index of the boundary triangle // to begin the search at. On output, the index of the rightmost boundary // triangle visible from (X,Y). // // Input/output, int *REDG, the edge of triangle RTRI that is visible // from (X,Y). 1 <= REDG <= 3. // { int a; double ax; double ay; int b; double bx; double by; bool done; int e; int l; int lr; int t; // // Find the rightmost visible boundary edge using links, then possibly // leftmost visible boundary edge using triangle neighbor information. // if ( *ltri == 0 ) { done = false; *ltri = *rtri; *ledg = *redg; } else { done = true; } for ( ; ; ) { l = -triangle_neighbor[3*((*rtri)-1)+(*redg)-1]; t = l / 3; e = 1 + l % 3; a = triangle_node[3*(t-1)+e-1]; if ( e <= 2 ) { b = triangle_node[3*(t-1)+e]; } else { b = triangle_node[3*(t-1)+0]; } ax = node_xy[2*(a-1)+0]; ay = node_xy[2*(a-1)+1]; bx = node_xy[2*(b-1)+0]; by = node_xy[2*(b-1)+1]; lr = lrline ( x, y, ax, ay, bx, by, 0.0 ); if ( lr <= 0 ) { break; } *rtri = t; *redg = e; } if ( done ) { return; } t = *ltri; e = *ledg; for ( ; ; ) { b = triangle_node[3*(t-1)+e-1]; e = i4_wrap ( e-1, 1, 3 ); while ( 0 < triangle_neighbor[3*(t-1)+e-1] ) { t = triangle_neighbor[3*(t-1)+e-1]; if ( triangle_node[3*(t-1)+0] == b ) { e = 3; } else if ( triangle_node[3*(t-1)+1] == b ) { e = 1; } else { e = 2; } } a = triangle_node[3*(t-1)+e-1]; ax = node_xy[2*(a-1)+0]; ay = node_xy[2*(a-1)+1]; bx = node_xy[2*(b-1)+0]; by = node_xy[2*(b-1)+1]; lr = lrline ( x, y, ax, ay, bx, by, 0.0 ); if ( lr <= 0 ) { break; } } *ltri = t; *ledg = e; return; } //****************************************************************************80 double voronoi_polygon_area ( int node, int neighbor_num, int neighbor_index[], int node_num, double node_xy[] ) //****************************************************************************80 // // Purpose: // // VORONOI_POLYGON_AREA computes the area of a Voronoi polygon. // // Formula: // // It is assumed that the Voronoi polygon is finite! Every Voronoi // diagram includes some regions which are infinite, and for those, // this formula is not appropriate. // // The routine is given the indices of the nodes that are // Voronoi "neighbors" of a given node. These are also the nodes // that are paired to form edges of Delaunay triangles. // // The assumption that the polygon is a Voronoi polygon is // used to determine the location of the boundaries of the polygon, // which are the perpendicular bisectors of the lines connecting // the center point to each of its neighbors. // // The finiteness assumption is employed in part in the // assumption that the polygon is bounded by the finite // line segments from point 1 to 2, 2 to 3, ..., // M-1 to M, and M to 1, where M is the number of neighbors. // // It is assumed that this routine is being called by a // process which has computed the Voronoi diagram of a large // set of nodes, so the arrays X and Y are dimensioned by // NODE_NUM, which may be much greater than the number of neighbor // nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 February 2005 // // Author: // // John Burkardt // // Reference: // // Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, Sung Nok Chiu, // Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, // Second Edition, // Wiley, 2000, page 485. // // Parameters: // // Input, int NODE, the index of the node whose Voronoi // polygon is to be measured. 0 <= NODE < NODE_NUM. // // Input, int NEIGHBOR_NUM, the number of neighbor nodes of // the given node. // // Input, int NEIGHBOR_INDEX[NEIGHBOR_NUM], the indices // of the neighbor nodes (used to access X and Y). The neighbor // nodes should be listed in the (counter-clockwise) order in // which they occur as one circles the center node. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Output, double VORONOI_POLYGON_AREA, the area of the Voronoi polygon. // { double a; double area; double b; double c; int i; int ip1; double ui; double uip1; double vi; double vip1; double xc; double xi; double xip1; double yc; double yi; double yip1; area = 0.0; if ( node < 0 || node_num <= node ) { cout << "\n"; cout << " VORONOI_POLYGON_AREA - Fatal error!\n"; cout << " Illegal value of input parameter NODE.\n"; exit ( 1 ); } xc = node_xy[0+node*2]; yc = node_xy[1+node*2]; i = neighbor_num - 1; i = neighbor_index[i]; xi = node_xy[0+i*2]; yi = node_xy[1+i*2]; ip1 = 0; ip1 = neighbor_index[ip1]; xip1 = node_xy[0+ip1*2]; yip1 = node_xy[1+ip1*2]; a = ( xi * xi + yi * yi - xc * xc - yc * yc ); b = ( xip1 * xip1 + yip1 * yip1 - xc * xc - yc * yc ); c = 2.0 * ( ( xi - xc ) * ( yip1 - yc ) - ( xip1 - xc ) * ( yi - yc ) ); uip1 = ( a * ( yip1 - yc ) - b * ( yi - yc ) ) / c; vip1 = ( a * ( xip1 - xc ) - b * ( xi - xc ) ) / c; for ( i = 0; i < neighbor_num; i++ ) { xi = xip1; yi = yip1; ui = uip1; vi = vip1; ip1 = i4_wrap ( i+1, 0, neighbor_num-1 ); ip1 = neighbor_index[ip1]; xip1 = node_xy[0+ip1*2]; yip1 = node_xy[1+ip1*2]; a = ( xi * xi + yi * yi - xc * xc - yc * yc ); b = ( xip1 * xip1 + yip1 * yip1 - xc * xc - yc * yc ); c = 2.0 * ( ( xi - xc ) * ( yip1 - yc ) - ( xip1 - xc ) * ( yi - yc ) ); uip1 = ( a * ( yip1 - yc ) - b * ( yi - yc ) ) / c; vip1 = ( a * ( xip1 - xc ) - b * ( xi - xc ) ) / c; area = area + uip1 * vi - ui * vip1; } area = 0.5 * area; return area; } //****************************************************************************80 double *voronoi_polygon_centroid ( int node, int neighbor_num, int neighbor_index[], int node_num, double node_xy[] ) //****************************************************************************80 // // Purpose: // // VORONOI_POLYGON_CENTROID_2D computes the centroid of a Voronoi polygon. // // Formula: // // It is assumed that the Voronoi polygon is finite! Every Voronoi // diagram includes some regions which are infinite, and for those, // this formula is not appropriate. // // The routine is given the indices of the nodes that are // Voronoi "neighbors" of a given node. These are also the nodes // that are paired to form edges of Delaunay triangles. // // The assumption that the polygon is a Voronoi polygon is // used to determine the location of the boundaries of the polygon, // which are the perpendicular bisectors of the lines connecting // the center point to each of its neighbors. // // The finiteness assumption is employed in part in the // assumption that the polygon is bounded by the finite // line segments from point 1 to 2, 2 to 3, ..., // M-1 to M, and M to 1, where M is the number of neighbors. // // It is assumed that this routine is being called by a // process which has computed the Voronoi diagram of a large // set of nodes, so the arrays X and Y are dimensioned by // NODE_NUM, which may be much greater than the number of neighbor // nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 February 2005 // // Author: // // John Burkardt // // Reference: // // Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, Sung Nok Chiu, // Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, // Second Edition, // Wiley, 2000, page 490. // // Parameters: // // Input, int NODE, the index of the node whose Voronoi // polygon is to be analyzed. 1 <= NODE <= NODE_NUM. // // Input, int NEIGHBOR_NUM, the number of neighbor nodes of // the given node. // // Input, int NEIGHBOR_INDEX[NEIGHBOR_NUM], the indices // of the neighbor nodes. These indices are used to access the // X and Y arrays. The neighbor nodes should be listed in the // (counter-clockwise) order in which they occur as one circles // the center node. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Output, double *VORONOI_POLYGON_CENTROID_2D, a pointer to a 2D array // containing the coordinates of the centroid of the Voronoi polygon // of node NODE. // { double a; double area; double b; double c; double *centroid; int i; int ip1; double ui; double uip1; double vi; double vip1; double xc; double xi; double xip1; double yc; double yi; double yip1; centroid = new double[2]; centroid[0] = 0.0; centroid[1] = 0.0; if ( node < 0 || node_num <= node ) { cout << "\n"; cout << "VORONOI_POLYGON_CENTROID - Fatal error!\n"; cout << " Illegal value of input parameter NODE.\n"; exit ( 1 ); } xc = node_xy[0+node*2]; yc = node_xy[1+node*2]; i = neighbor_num - 1; i = neighbor_index[i]; xi = node_xy[0+i*2]; yi = node_xy[1+i*2]; ip1 = 0; ip1 = neighbor_index[ip1]; xip1 = node_xy[0+ip1*2]; yip1 = node_xy[1+ip1*2]; a = ( xi * xi + yi * yi - xc * xc - yc * yc ); b = ( xip1 * xip1 + yip1 * yip1 - xc * xc - yc * yc ); c = 2.0 * ( ( xi - xc ) * ( yip1 - yc ) - ( xip1 - xc ) * ( yi - yc ) ); uip1 = ( a * ( yip1 - yc ) - b * ( yi - yc ) ) / c; vip1 = ( a * ( xip1 - xc ) - b * ( xi - xc ) ) / c; for ( i = 0; i < neighbor_num; i++ ) { xi = xip1; yi = yip1; ui = uip1; vi = vip1; ip1 = i4_wrap ( i+1, 0, neighbor_num-1 ); ip1 = neighbor_index[ip1]; xip1 = node_xy[0+ip1*2]; yip1 = node_xy[1+ip1*2]; a = ( xi * xi + yi * yi - xc * xc - yc * yc ); b = ( xip1 * xip1 + yip1 * yip1 - xc * xc - yc * yc ); c = 2.0 * ( ( xi - xc ) * ( yip1 - yc ) - ( xip1 - xc ) * ( yi - yc ) ); uip1 = ( a * ( yip1 - yc ) - b * ( yi - yc ) ) / c; vip1 = ( a * ( xip1 - xc ) - b * ( xi - xc ) ) / c; centroid[0] = centroid[0] + ( vi - vip1 ) * ( ( uip1 + ui ) * ( uip1 + ui ) - uip1 * ui ); centroid[1] = centroid[1] + ( ui - uip1 ) * ( ( vip1 + vi ) * ( vip1 + vi ) - vip1 * vi ); } area = voronoi_polygon_area ( node, neighbor_num, neighbor_index, node_num, node_xy ); centroid[0] = centroid[0] / ( 6.0 * area ); centroid[1] = centroid[1] / ( 6.0 * area ); return centroid; } //****************************************************************************80 void voronoi_polygon_vertices ( int node, int neighbor_num, int neighbor_index[], int node_num, double node_xy[], double v[] ) //****************************************************************************80 // // Purpose: // // VORONOI_POLYGON_VERTICES_2D computes the vertices of a Voronoi polygon. // // Formula: // // This routine is only appropriate for Voronoi polygons that are finite. // // The routine is given the indices of the nodes that are neighbors of a // given "center" node. A node is a neighbor of the center node if the // Voronoi polygons of the two nodes share an edge. The triangles of the // Delaunay triangulation are formed from successive pairs of these neighbor // nodes along with the center node. // // Given only the neighbor node information, it is possible to determine // the location of the vertices of the polygonal Voronoi region by computing // the circumcenters of the Delaunay triangles. // // It is assumed that this routine is being called by a process which has // computed the Voronoi diagram of a large set of nodes, so the arrays X and // Y are dimensioned by NODE_NUM, which may be much greater than the number // of neighbor nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 February 2005 // // Author: // // John Burkardt // // Reference: // // Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, Sung Nok Chiu, // Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, // Second Edition, // Wiley, 2000. // // Parameters: // // Input, int NODE, the index of the node whose Voronoi // polygon is to be analyzed. 1 <= NODE <= NODE_NUM. // // Input, int NEIGHBOR_NUM, the number of neighbor nodes of // the given node. // // Input, int NEIGHBOR_INDEX(NEIGHBOR_NUM), the indices // of the neighbor nodes. These indices are used to access the // X and Y arrays. The neighbor nodes should be listed in the // (counter-clockwise) order in which they occur as one circles // the center node. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Output, double V[2*NEIGHBOR_NUM], the vertices of the Voronoi polygon // around node NODE. // { # define DIM_NUM 2 double *center; int i; int ip1; double t[DIM_NUM*3]; if ( node < 0 || node_num <= node ) { cout << "\n"; cout << "VORONOI_POLYGON_VERTICES - Fatal error!\n"; cout << " Illegal value of input parameter NODE.\n"; exit ( 1 ); } t[0+0*2] = node_xy[0+node*2]; t[1+0*2] = node_xy[1+node*2]; ip1 = neighbor_index[0]; t[0+2*2] = node_xy[0+ip1*2]; t[1+2*2] = node_xy[1+ip1*2]; for ( i = 0; i < neighbor_num; i++ ) { t[0+1*2] = t[0+2*2]; t[1+1*2] = t[1+2*2]; ip1 = i4_wrap ( i+1, 0, neighbor_num-1 ); ip1 = neighbor_index[ip1]; t[0+2*2] = node_xy[0+ip1*2]; t[1+2*2] = node_xy[1+ip1*2]; center = triangle_circumcenter_2d ( t ); v[0+i*2] = center[0]; v[1+i*2] = center[1]; delete [] center; } return; # undef DIM_NUM }