# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); double arc_cosine ( double c ); char ch_cap ( char ch ); bool ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); int file_column_count ( string filename ); int file_row_count ( string filename ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); int i4_modp ( int i, int j ); int i4_wrap ( int ival, int ilo, int ihi ); int i4col_compare ( int m, int n, int a[], int i, int j ); void i4col_sort_a ( int m, int n, int a[] ); void i4col_swap ( int m, int n, int a[], int icol1, int icol2 ); int *i4mat_data_read ( string input_filename, int m, int n ); void i4mat_header_read ( string input_filename, int *m, int *n ); void i4mat_transpose_print ( int m, int n, int a[], string title ); void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ); void mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ); double r8_huge ( ); double r8_min ( double x, double y ); double *r8mat_data_read ( string input_filename, int m, int n ); void r8mat_header_read ( string input_filename, int *m, int *n ); void r8mat_transpose_print ( int m, int n, double a[], string title ); void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ); double r8vec_max ( int n, double r8vec[] ); double r8vec_min ( int n, double r8vec[] ); int s_len_trim ( string s ); int s_to_i4 ( string s, int *last, bool *error ); bool s_to_i4vec ( string s, int n, int ivec[] ); double s_to_r8 ( string s, int *lchar, bool *error ); bool s_to_r8vec ( string s, int n, double rvec[] ); int s_word_count ( string s ); void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ); void timestamp ( ); double *triangle_angles_2d_new ( double t[2*3] ); double triangulation_delaunay_discrepancy_compute ( int node_num, double node_xy[], int triangle_order, int triangle_num, int triangle_node[], int triangle_neighbor[], double *angle_min, int *angle_min_triangle, double *angle_max, int *angle_max_triangle ); int *triangulation_neighbor_triangles ( int triangle_order, int triangle_num, int triangle_node[] ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for TRIANGULATION_DELAUNAY_DISCREPANCY. // // Discussion: // // TRIANGULATION_DELAUNAY_DISCREPANCY measures the amount (possibly zero) // by which a triangulation fails the local Delaunay test. // // The local Delaunay considers pairs of neighboring triangles. // The two triangles form a quadrilateral, and their common edge is one // diagonal of that quadrilateral. The program considers the effect of // replacing that diagonal with the other one. If the minimum angle // of the original configuration is smaller than in the new configuration, // then the pair of triangles has failed the local Delaunay test. // The amount by which the minimum angle would have increased is the // local discrepancy. // // This program searches all pairs of triangles, and records the maximum // discrepancy found. If this discrepancy is essentially zero, then the // triangulation is a Delaunay triangulation. Otherwise, it is not a // Delaunay triangulation. // // The user supplies a node file and a triangle file, containing // the coordinates of the nodes, and the indices of the nodes that // make up each triangle. Either 3-node or 6-node triangles may // be used. // // The program reads the node and triangle data, computes the triangle // neighbor information, and writes it to a file. // // Usage: // // triangulation_delaunay_discrepancy prefix // // where 'prefix' is the common filename prefix: // // * prefix_nodes.txt contains the node coordinates, // * prefix_elements.txt contains the element definitions. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2009 // // Author: // // John Burkardt // { double angle_max; int angle_max_triangle; double angle_min; int angle_min_triangle; double discrepancy; int dim_num; int iarg; int iargc; string node_filename; int node_num; double *node_xy; string prefix; string element_filename; int *triangle_neighbor; int *triangle_node; int triangle_num; int triangle_order; cout << "\n"; timestamp ( ); cout << "\n"; cout << "TRIANGULATION_DELAUNAY_DISCREPANCY:\n"; cout << " C++ version:\n"; cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n"; cout << "\n"; cout << " Read a node dataset of NODE_NUM points in 2 dimensions.\n"; cout << " Read an associated triangulation dataset of \n"; cout << " TRIANGLE_NUM triangles using 3 or 6 nodes.\n"; cout << "\n"; cout << " Determine the Delaunay discrepancy, that is, the amount\n"; cout << " by which the minimum angle in the triangulation could be\n"; cout << " changed by a single adjustment of a pair of triangles.\n"; cout << "\n"; cout << " If this discrepancy is negative, \n"; cout << " then the triangulation is not a Delaunay triangulation.\n"; cout << "\n"; cout << " If this discrepancy is 0 or essentially so, \n"; cout << " then the triangulation is a Delaunay triangulation.\n"; // // Get the filename prefix. // if ( argc <= 1 ) { cout << "\n"; cout << "TRIANGULATION_DELAUNAY_DISCREPANCY:\n"; cout << " Please enter the filename prefix.\n"; cin >> prefix; } else { prefix = argv[1]; } // // Create the filenames. // node_filename = prefix + "_nodes.txt"; element_filename = prefix + "_elements.txt"; // // Read the node data. // r8mat_header_read ( node_filename, &dim_num, &node_num ); cout << "\n"; cout << " Read the header of \"" << node_filename << "\".\n"; cout << "\n"; cout << " Spatial dimension DIM_NUM = " << dim_num << "\n"; cout << " Number of nodes NODE_NUM = " << node_num << "\n"; node_xy = r8mat_data_read ( node_filename, dim_num, node_num ); cout << "\n"; cout << " Read the data in \"" << node_filename << "\".\n"; r8mat_transpose_print_some ( dim_num, node_num, node_xy, 1, 1, dim_num, 5, " First 5 nodes:" ); // // Read the triangulation data. // i4mat_header_read ( element_filename, &triangle_order, &triangle_num ); cout << "\n"; cout << " Read the header of \"" << element_filename << "\".\n"; cout << "\n"; cout << " Triangle order TRIANGLE_ORDER = " << triangle_order << "\n"; cout << " Number of triangles TRIANGLE_NUM = " << triangle_num << "\n"; triangle_node = i4mat_data_read ( element_filename, triangle_order, triangle_num ); cout << "\n"; cout << " Read the data in \"" << element_filename << "\".\n"; i4mat_transpose_print_some ( triangle_order, triangle_num, triangle_node, 1, 1, triangle_order, 10, " First 10 triangles:" ); // // Detect and correct 1-based node indexing. // mesh_base_zero ( node_num, triangle_order, triangle_num, triangle_node ); // // Create the triangle neighbors. // triangle_neighbor = triangulation_neighbor_triangles ( triangle_order, triangle_num, triangle_node ); i4mat_transpose_print_some ( 3, triangle_num, triangle_neighbor, 1, 1, 3, 10, " First 10 triangle neighbors:" ); // // Now we are ready to check. // discrepancy = triangulation_delaunay_discrepancy_compute ( node_num, node_xy, triangle_order, triangle_num, triangle_node, triangle_neighbor, &angle_min, &angle_min_triangle, &angle_max, &angle_max_triangle ); cout << "\n"; cout << " Discrepancy (degrees) = " << discrepancy << "\n"; cout << " Minimum angle (degrees) = " << angle_min << "\n"; cout << " occurred in triangle " << angle_min_triangle << "\n"; cout << " Maximum angle (degrees) = " << angle_max << "\n"; cout << " occurred in triangle " << angle_max_triangle << "\n"; // // Finish up. // delete [] node_xy; delete [] triangle_neighbor; delete [] triangle_node; cout << "\n"; cout << "TRIANGULATION_DELAUNAY_DISCREPANCY:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 double arc_cosine ( double c ) //****************************************************************************80 // // Purpose: // // ARC_COSINE computes the arc cosine function, with argument truncation. // // Discussion: // // If you call your system ACOS routine with an input argument that is // outside the range [-1.0, 1.0 ], you may get an unpleasant surprise. // This routine truncates arguments outside the range. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2002 // // Author: // // John Burkardt // // Parameters: // // Input, double C, the argument, the cosine of an angle. // // Output, double ARC_COSINE, an angle whose cosine is C. // { double angle; double pi = 3.141592653589793; if ( c <= -1.0 ) { angle = pi; } else if ( 1.0 <= c ) { angle = 0.0; } else { angle = acos ( c ); } return angle; } //****************************************************************************80 char ch_cap ( char ch ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } //****************************************************************************80 bool ch_eqi ( char ch1, char ch2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, char CH1, CH2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { bool value; if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } value = ( ch1 == ch2 ); return value; } //****************************************************************************80 int ch_to_digit ( char ch ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // CH DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If the // character was 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, // separated by spaces. There may also be some blank lines, and some // comment lines, which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; string text; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { input >> text; if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) <= 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input >> text; if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 int file_row_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int bad_num; int comment_num; ifstream input; int record_num; int row_num; string text; row_num = 0; comment_num = 0; record_num = 0; bad_num = 0; input.open ( filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the file: \"" << filename << "\"\n"; exit ( 1 ); } for ( ; ; ) { getline ( input, text ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( text[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( text ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_modp ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_MODP returns the nonnegative remainder of I4 division. // // Discussion: // // If // NREM = I4_MODP ( I, J ) // NMULT = ( I - NREM ) / J // then // I = J * NMULT + NREM // where NREM is always nonnegative. // // The MOD function computes a result with the same sign as the // quantity being divided. Thus, suppose you had an angle A, // and you wanted to ensure that it was between 0 and 360. // Then mod(A,360) would do, if A was positive, but if A // was negative, your result would be between -360 and 0. // // On the other hand, I4_MODP(A,360) is between 0 and 360, always. // // I J MOD I4_MODP I4_MODP Factorization // // 107 50 7 7 107 = 2 * 50 + 7 // 107 -50 7 7 107 = -2 * -50 + 7 // -107 50 -7 43 -107 = -3 * 50 + 43 // -107 -50 -7 43 -107 = 3 * -50 + 43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number to be divided. // // Input, int J, the number that divides I. // // Output, int I4_MODP, the nonnegative remainder when I is // divided by J. // { int value; if ( j == 0 ) { cout << "\n"; cout << "I4_MODP - Fatal error!\n"; cout << " I4_MODP ( I, J ) called with J = " << j << "\n"; exit ( 1 ); } value = i % j; if ( value < 0 ) { value = value + abs ( j ); } return value; } //****************************************************************************80 int i4_wrap ( int ival, int ilo, int ihi ) //****************************************************************************80 // // Purpose: // // I4_WRAP forces an I4 to lie between given limits by wrapping. // // Example: // // ILO = 4, IHI = 8 // // I Value // // -2 8 // -1 4 // 0 5 // 1 6 // 2 7 // 3 8 // 4 4 // 5 5 // 6 6 // 7 7 // 8 8 // 9 4 // 10 5 // 11 6 // 12 7 // 13 8 // 14 4 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int IVAL, an integer value. // // Input, int ILO, IHI, the desired bounds for the integer value. // // Output, int I4_WRAP, a "wrapped" version of IVAL. // { int jhi; int jlo; int value; int wide; jlo = i4_min ( ilo, ihi ); jhi = i4_max ( ilo, ihi ); wide = jhi + 1 - jlo; if ( wide == 1 ) { value = jlo; } else { value = jlo + i4_modp ( ival - jlo, wide ); } return value; } //****************************************************************************80 int i4col_compare ( int m, int n, int a[], int i, int j ) //****************************************************************************80 // // Purpose: // // I4COL_COMPARE compares columns I and J of an I4COL. // // Example: // // Input: // // M = 3, N = 4, I = 2, J = 4 // // A = ( // 1 2 3 4 // 5 6 7 8 // 9 10 11 12 ) // // Output: // // I4COL_COMPARE = -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A[M*N], an array of N columns of vectors of length M. // // Input, int I, J, the columns to be compared. // I and J must be between 1 and N. // // Output, int I4COL_COMPARE, the results of the comparison: // -1, column I < column J, // 0, column I = column J, // +1, column J < column I. // { int k; // // Check. // if ( i < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index I = " << i << " is less than 1.\n"; exit ( 1 ); } if ( n < i ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index I = " << i << ".\n"; exit ( 1 ); } if ( j < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index J = " << j << " is less than 1.\n"; exit ( 1 ); } if ( n < j ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index J = " << j << ".\n"; exit ( 1 ); } if ( i == j ) { return 0; } k = 1; while ( k <= m ) { if ( a[k-1+(i-1)*m] < a[k-1+(j-1)*m] ) { return (-1); } else if ( a[k-1+(j-1)*m] < a[k-1+(i-1)*m] ) { return 1; } k = k + 1; } return 0; } //****************************************************************************80 void i4col_sort_a ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4COL_SORT_A ascending sorts the columns of an I4COL. // // Discussion: // // In lexicographic order, the statement "X < Y", applied to two // vectors X and Y of length M, means that there is some index I, with // 1 <= I <= M, with the property that // // X(J) = Y(J) for J < I, // and // X(I) < Y(I). // // In other words, X is less than Y if, at the first index where they // differ, the X value is less than the Y value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of A. // // Input, int N, the number of columns of A. // // Input/output, int A[M*N]. // On input, the array of N columns of M vectors; // On output, the columns of A have been sorted in ascending // lexicographic order. // { int i; int indx; int isgn; int j; // // Initialize. // i = 0; indx = 0; isgn = 0; j = 0; // // Call the external heap sorter. // for ( ; ; ) { sort_heap_external ( n, &indx, &i, &j, isgn ); // // Interchange the I and J objects. // if ( 0 < indx ) { i4col_swap ( m, n, a, i, j ); } // // Compare the I and J objects. // else if ( indx < 0 ) { isgn = i4col_compare ( m, n, a, i, j ); } else if ( indx == 0 ) { break; } } return; } //****************************************************************************80 void i4col_swap ( int m, int n, int a[], int icol1, int icol2 ) //****************************************************************************80 // // Purpose: // // I4COL_SWAP swaps two columns of an I4COL. // // Discussion: // // The two dimensional information is stored as a one dimensional // array, by columns. // // The row indices are 1 based, NOT 0 based// However, a preprocessor // variable, called OFFSET, can be reset from 1 to 0 if you wish to // use 0-based indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int A[M*N], an array of data. // // Input, int ICOL1, ICOL2, the two columns to swap. // These indices should be between 1 and N. // { # define OFFSET 1 int i; int t; // // Check. // if ( icol1 - OFFSET < 0 || n-1 < icol1 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL1 is out of range.\n"; exit ( 1 ); } if ( icol2 - OFFSET < 0 || n-1 < icol2 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL2 is out of range.\n"; exit ( 1 ); } if ( icol1 == icol2 ) { return; } for ( i = 0; i < m; i++ ) { t = a[i+(icol1-OFFSET)*m]; a[i+(icol1-OFFSET)*m] = a[i+(icol2-OFFSET)*m]; a[i+(icol2-OFFSET)*m] = t; } return; # undef OFFSET } //****************************************************************************80 int *i4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_DATA_READ reads data from an I4MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; int *table; int *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new int[m*n]; x = new int[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void i4mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // I4MAT_HEADER_READ reads the header from an I4MAT file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 void i4mat_transpose_print ( int m, int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT prints an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { i4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); cout << "\n"; // // For each row I in the current range... // // Write the header. // cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // cout << setw(5) << j << " "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // MESH_BASE_ZERO ensures that the element definition is zero-based. // // Discussion: // // The ELEMENT_NODE array contains nodes indices that form elements. // The convention for node indexing might start at 0 or at 1. // Since a C++ program will naturally assume a 0-based indexing, it is // necessary to check a given element definition and, if it is actually // 1-based, to convert it. // // This function attempts to detect 1-based node indexing and correct it. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int ELEMENT_ORDER, the order of the elements. // // Input, int ELEMENT_NUM, the number of elements. // // Input/output, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], the element // definitions. // { int element; int node; int node_max; int node_min; int order; node_min = node_num + 1; node_max = -1; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; node_min = i4_min ( node_min, node ); node_max = i4_max ( node_max, node ); } } if ( node_min == 1 && node_max == node_num ) { cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 1-based!\n"; cout << " This will be converted to 0-based.\n"; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { element_node[order+element*element_order] = element_node[order+element*element_order] - 1; } } } else if ( node_min == 0 && node_max == node_num - 1 ) { cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 0-based!\n"; cout << " No conversion is necessary.\n"; } else { cout << "\n"; cout << "MESH_BASE_ZERO - Warning!\n"; cout << " The element indexing is not of a recognized type.\n"; cout << " NODE_MIN = " << node_min << "\n"; cout << " NODE_MAX = " << node_max << "\n"; cout << " NODE_NUM = " << node_num << "\n"; } return; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 double *r8mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_DATA_READ reads the data from an R8MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; double *table; double *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void r8mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // R8MAT_HEADER_READ reads the header from an R8MAT file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points. // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, string TITLE, a title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << " "; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double r8vec_max ( int n, double r8vec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MAX returns the value of the maximum element in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double R8VEC[N], a pointer to the first entry of the array. // // Output, double R8VEC_MAX, the value of the maximum element. This // is set to 0.0 if N <= 0. // { int i; double value; value = - r8_huge ( ); if ( n <= 0 ) { return value; } for ( i = 0; i < n; i++ ) { if ( value < r8vec[i] ) { value = r8vec[i]; } } return value; } //****************************************************************************80 double r8vec_min ( int n, double r8vec[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MIN returns the value of the minimum element in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double R8VEC[N], the array to be checked. // // Output, double R8VEC_MIN, the value of the minimum element. // { int i; double value; value = r8_huge ( ); if ( n <= 0 ) { return value; } for ( i = 0; i < n; i++ ) { if ( r8vec[i] < value ) { value = r8vec[i]; } } return value; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_i4vec ( string s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 double s_to_r8 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( string s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ) //****************************************************************************80 // // Purpose: // // SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. // // Discussion: // // The actual list is not passed to the routine. Hence it may // consist of integers, reals, numbers, names, etc. The user, // after each return from the routine, will be asked to compare or // interchange two items. // // The current version of this code mimics the FORTRAN version, // so the values of I and J, in particular, are FORTRAN indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2004 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the length of the input list. // // Input/output, int *INDX. // The user must set INDX to 0 before the first call. // On return, // if INDX is greater than 0, the user must interchange // items I and J and recall the routine. // If INDX is less than 0, the user is to compare items I // and J and return in ISGN a negative value if I is to // precede J, and a positive value otherwise. // If INDX is 0, the sorting is done. // // Output, int *I, *J. On return with INDX positive, // elements I and J of the user's list should be // interchanged. On return with INDX negative, elements I // and J are to be compared by the user. // // Input, int ISGN. On return with INDX negative, the // user should compare elements I and J of the list. If // item I is to precede item J, set ISGN negative, // otherwise set ISGN positive. // { static int i_save = 0; static int j_save = 0; static int k = 0; static int k1 = 0; static int n1 = 0; // // INDX = 0: This is the first call. // if ( *indx == 0 ) { i_save = 0; j_save = 0; k = n / 2; k1 = k; n1 = n; } // // INDX < 0: The user is returning the results of a comparison. // else if ( *indx < 0 ) { if ( *indx == -2 ) { if ( isgn < 0 ) { i_save = i_save + 1; } j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } if ( 0 < isgn ) { *indx = 2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; } *i = i_save; *j = j_save; return; } k = k - 1; k1 = k; } // // 0 < INDX: the user was asked to make an interchange. // else if ( *indx == 1 ) { k1 = k; } for ( ; ; ) { i_save = 2 * k1; if ( i_save == n1 ) { j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } else if ( i_save <= n1 ) { j_save = i_save + 1; *indx = -2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { break; } k = k - 1; k1 = k; } if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; *i = i_save; *j = j_save; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; *i = i_save; *j = j_save; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double *triangle_angles_2d_new ( double t[2*3] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_ANGLES_2D_NEW computes the angles of a triangle in 2D. // // Discussion: // // The law of cosines is used: // // C * C = A * A + B * B - 2 * A * B * COS ( GAMMA ) // // where GAMMA is the angle opposite side C. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the triangle vertices. // // Output, double TRIANGLE_ANGLES_2D_NEW[3], the angles opposite // sides P1-P2, P2-P3 and P3-P1, in radians. // { double a; double *angle; double b; double c; double pi = 3.141592653589793; angle = new double[3]; a = sqrt ( pow ( t[0+1*2] - t[0+0*2], 2 ) + pow ( t[1+1*2] - t[1+0*2], 2 ) ); b = sqrt ( pow ( t[0+2*2] - t[0+1*2], 2 ) + pow ( t[1+2*2] - t[1+1*2], 2 ) ); c = sqrt ( pow ( t[0+0*2] - t[0+2*2], 2 ) + pow ( t[1+0*2] - t[1+2*2], 2 ) ); // // Take care of a ridiculous special case. // if ( a == 0.0 && b == 0.0 && c == 0.0 ) { angle[0] = 2.0 * pi / 3.0; angle[1] = 2.0 * pi / 3.0; angle[2] = 2.0 * pi / 3.0; return angle; } if ( c == 0.0 || a == 0.0 ) { angle[0] = pi; } else { angle[0] = arc_cosine ( ( c * c + a * a - b * b ) / ( 2.0 * c * a ) ); } if ( a == 0.0 || b == 0.0 ) { angle[1] = pi; } else { angle[1] = arc_cosine ( ( a * a + b * b - c * c ) / ( 2.0 * a * b ) ); } if ( b == 0.0 || c == 0.0 ) { angle[2] = pi; } else { angle[2] = arc_cosine ( ( b * b + c * c - a * a ) / ( 2.0 * b * c ) ); } return angle; } //****************************************************************************80 double triangulation_delaunay_discrepancy_compute ( int node_num, double node_xy[], int triangle_order, int triangle_num, int triangle_node[], int triangle_neighbor[], double *angle_min, int *angle_min_triangle, double *angle_max, int *angle_max_triangle ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_DELAUNAY_DISCREPANCY_COMPUTE reports if a triangulation is Delaunay. // // Discussion: // // A (maximal) triangulation is Delaunay if and only if it is locally // Delaunay. // // A triangulation is Delaunay if the minimum angle over all triangles // in the triangulation is maximized. That is, there is no other // triangulation of the points which has a larger minimum angle. // // A triangulation is locally Delaunay if, for every pair of triangles // that share an edge, the minimum angle in the two triangles is larger // than the minimum angle in the two triangles formed by removing the // common edge and joining the two opposing vertices. // // This function examines the question of whether a given triangulation // is locally Delaunay. It does this by looking at every pair of // neighboring triangles and comparing the minimum angle attained // for the current triangle pair and the alternative triangle pair. // // Let A(i,j) be the minimum angle formed by triangles T(i) and T(j), // which are two triangles in the triangulation which share a common edge. // Let B(I,J) be the minimum angle formed by triangles S(i) and S(j), // where S(i) and S(j) are formed by removing the common edge of T(i) // and T(j), and joining the opposing vertices. // // Then the triangulation is Delaunay if B(i,j) <= A(i,j) for every // pair of neighbors T(i) and T(j). // // If A(i,j) < B(i,j) for at least one pair of neighbors, the triangulation // is not a Delaunay triangulation. // // This program returns VALUE = min ( A(i,j) - B(i,j) ) over all // triangle neighbors. VALUE is scaled to be in degrees, for // comprehensibility. If VALUE is negative, then at least one pair // of triangles violates the Delaunay condition, and so the entire // triangulation is not a Delaunay triangulation. If VALUE is nonnegative, // then the triangulation is a Delaunay triangulation. // // It is useful to return VALUE, rather than a simple True/False value, // because there can be cases where the Delaunay condition is only // "slightly" violated. A simple example is a triangulation formed // by starting with a mesh of squares and dividing each square into // two triangles by choosing one of the diagonals of the square. // The Delaunay discrepancy for this mesh, if computed exactly, is 0, // but roundoff could easily result in discrepancies that were very // slightly negative. // // If VALUE is positive, and not very small in magnitude, then every // pair of triangles in the triangulation satisfies the local Delaunay // condition, and so the triangulation is a Delaunay triangulation. // // If VALUE is negative, and not very small in magnitude, then at least // one pair of triangles violates the Delaunay condition, and to a // significant degree. The triangulation is not a Delaunay triangulation. // // If the magnitude of VALUE is very close to zero, then the triangulation // is numerically ambiguous. At least one pair of triangles violates // or almost violates the condition, but no triangle violates the // condition to a great extent. The user must judge whether the // violation is significant or not. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt. // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_ORDER, the order of the triangles. // // Input, int TRIANGLE_NUM, the number of triangles in // the triangulation. // // Input, int TRIANGLE_NODE[TRIANGLE_ORDER*TRIANGLE_NUM], // the nodes that make up each triangle. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the // triangle neighbor list. // // Output, double *ANGLE_MIN, the minimum angle that occurred in // the triangulation. // // Output, int *ANGLE_MIN_TRIANGLE, the triangle in which // the minimum angle occurred. // // Output, double *ANGLE_MAX, the maximum angle that occurred in // the triangulation. // // Output, int *ANGLE_MAX_TRIANGLE, the triangle in which // the maximum angle occurred. // // Output, double TRIANGULATION_DELAUNAY_DISCREPANCY, // the minimum value of ( A(i,j) - B(i,j) ). // POSITIVE indicates the triangulation is Delaunay. // VERY NEAR ZERO is a numerically ambiguous case. // NEGATIVE indicates the triangulation is not Delaunay. // { double angle_min1; double angle_min2; double *angles1; double *angles2; int i; int i1; int i2; int i3; int i4; int n1; int n2; int n3; int n4; int neighbor; double pi = 3.141592653589793; double t[2*3]; int triangle_index; int triangle1; int triangle2; double value; *angle_max = 0.0; *angle_max_triangle = - 1; *angle_min = pi; *angle_min_triangle = -1; value = 0.0; // // Consider triangle TRIANGLE1 // for ( triangle1 = 0; triangle1 < triangle_num; triangle1++ ) { // // Consider the side opposite vertex NEIGHBOR. // for ( neighbor = 0; neighbor < 3; neighbor++ ) { triangle2 = triangle_neighbor[neighbor+triangle1*3]; // // There might be no neighbor on side NEIGHBOR. // if ( triangle2 < 0 ) { continue; } // // We only need to check a pair of triangles once. // if ( triangle2 < triangle1 ) { continue; } // // List the vertices of the quadrilateral in such a way // that the nodes of triangle 1 come first. // // We rely on a property of the TRIANGLE_NEIGHBOR array, namely, that // neighbor #1 is on the side opposite to vertex #1, and so on. // i1 = i4_wrap ( neighbor + 2, 0, 2 ); i2 = i4_wrap ( neighbor, 0, 2 ); i3 = i4_wrap ( neighbor + 1, 0, 2 ); n1 = triangle_node[i1+triangle1*triangle_order]; n2 = triangle_node[i2+triangle1*triangle_order]; n3 = triangle_node[i3+triangle1*triangle_order]; // // The "odd" or "opposing" node of the neighboring triangle // is the one which follows common node I3. // n4 = -1; for ( i = 0; i < 3; i++ ) { if ( triangle_node[i+triangle2*triangle_order] == n3 ) { i4 = i + 1; i4 = i4_wrap ( i4, 0, 2 ); n4 = triangle_node[i4+triangle2*triangle_order]; break; } } if ( n4 == -1 ) { cout << "\n"; cout << "TRIANGULATION_DELAUNAY_DISCREPANCY_COMPUTE - Fatal error/!\n"; cout << " Could not identify the fourth node.\n"; cout << "\n"; cout << " Triangle1 = " << triangle1 << "\n"; cout << " Nodes = "; for ( i = 0; i < 3; i++ ) { cout << " " << triangle_node[i+triangle1*triangle_order]; } cout << "\n"; cout << " Neighbors = "; for ( i = 0; i < 3; i++ ) { cout << " " << triangle_neighbor[i+triangle1*3]; } cout << "\n"; cout << "\n"; cout << " Neighbor index = " << neighbor << "\n"; cout << "\n"; cout << " Triangle2 = " << triangle2 << "\n"; cout << " Nodes = "; for ( i = 0; i < 3; i++ ) { cout << " " << triangle_node[i+triangle2*triangle_order]; } cout << "\n"; cout << " Neighbors = "; for ( i = 0; i < 3; i++ ) { cout << " " << triangle_neighbor[i+triangle2*3]; } cout << "\n"; exit ( 1 ); } // // Compute the minimum angle for (I1,I2,I3) and (I1,I3,I4). // t[0+0*2] = node_xy[0+n1*2]; t[1+0*2] = node_xy[1+n1*2]; t[0+1*2] = node_xy[0+n2*2]; t[1+1*2] = node_xy[1+n2*2]; t[0+2*2] = node_xy[0+n3*2]; t[1+2*2] = node_xy[1+n3*2]; angles1 = triangle_angles_2d_new ( t ); t[0+0*2] = node_xy[0+n1*2]; t[1+0*2] = node_xy[1+n1*2]; t[0+1*2] = node_xy[0+n3*2]; t[1+1*2] = node_xy[1+n3*2]; t[0+2*2] = node_xy[0+n4*2]; t[1+2*2] = node_xy[1+n4*2]; angles2 = triangle_angles_2d_new ( t ); angle_min1 = r8_min ( r8vec_min ( 3, angles1 ), r8vec_min ( 3, angles2 ) ); if ( *angle_max < r8vec_max ( 3, angles1 ) ) { *angle_max = r8vec_max ( 3, angles1 ); *angle_max_triangle = triangle1; } if ( *angle_max < r8vec_max ( 3, angles2 ) ) { *angle_max = r8vec_max ( 3, angles2 ); *angle_max_triangle = triangle2; } if ( r8vec_min ( 3, angles1 ) < *angle_min ) { *angle_min = r8vec_min ( 3, angles1 ); *angle_min_triangle = triangle1; } if ( r8vec_min ( 3, angles2 ) < *angle_min ) { *angle_min = r8vec_min ( 3, angles2 ); *angle_min_triangle = triangle2; } delete [] angles1; delete [] angles2; // // Compute the minimum angle for (I1,I2,I4) and (I2,I3,I4). // t[0+0*2] = node_xy[0+n1*2]; t[1+0*2] = node_xy[1+n1*2]; t[0+1*2] = node_xy[0+n2*2]; t[1+1*2] = node_xy[1+n2*2]; t[0+2*2] = node_xy[0+n4*2]; t[1+2*2] = node_xy[1+n4*2]; angles1 = triangle_angles_2d_new ( t ); t[0+0*2] = node_xy[0+n3*2]; t[1+0*2] = node_xy[1+n3*2]; t[0+1*2] = node_xy[0+n3*2]; t[1+1*2] = node_xy[1+n3*2]; t[0+2*2] = node_xy[0+n4*2]; t[1+2*2] = node_xy[1+n4*2]; angles2 = triangle_angles_2d_new ( t ); angle_min2 = r8_min ( r8vec_min ( 3, angles1 ), r8vec_min ( 3, angles2 ) ); delete [] angles1; delete [] angles2; // // Compare this value to the current minimum. // value = r8_min ( value, angle_min1 - angle_min2 ); } } // // Scale the results to degrees. // value = value * 180.0 / pi; *angle_max = *angle_max * 180.0 / pi; *angle_min = *angle_min * 180.0 / pi; return value; } //****************************************************************************80 int *triangulation_neighbor_triangles ( int triangle_order, int triangle_num, int triangle_node[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_NEIGHBOR_TRIANGLES determines triangle neighbors. // // Discussion: // // A triangulation of a set of nodes can be completely described by // the coordinates of the nodes, and the list of nodes that make up // each triangle. However, in some cases, it is necessary to know // triangle adjacency information, that is, which triangle, if any, // is adjacent to a given triangle on a particular side. // // This routine creates a data structure recording this information. // // The primary amount of work occurs in sorting a list of 3 * TRIANGLE_NUM // data items. // // This routine was modified to work with columns rather than rows. // // Example: // // The input information from TRIANGLE_NODE: // // Triangle Nodes // -------- --------------- // 1 3 4 1 // 2 3 1 2 // 3 3 2 8 // 4 2 1 5 // 5 8 2 13 // 6 8 13 9 // 7 3 8 9 // 8 13 2 5 // 9 9 13 7 // 10 7 13 5 // 11 6 7 5 // 12 9 7 6 // 13 10 9 6 // 14 6 5 12 // 15 11 6 12 // 16 10 6 11 // // The output information in TRIANGLE_NEIGHBOR: // // Triangle Neighboring Triangles // -------- --------------------- // // 1 -1 -1 2 // 2 1 4 3 // 3 2 5 7 // 4 2 -1 8 // 5 3 8 6 // 6 5 9 7 // 7 3 6 -1 // 8 5 4 10 // 9 6 10 12 // 10 9 8 11 // 11 12 10 14 // 12 9 11 13 // 13 -1 12 16 // 14 11 -1 15 // 15 16 14 -1 // 16 13 15 -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int TRIANGLE_ORDER, the order of the triangles. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[TRIANGLE_ORDER*TRIANGLE_NUM], the nodes that // make up each triangle. // // Output, int TRIANGLE_ORDER3_NEIGHBOR_TRIANGLES[3*TRIANGLE_NUM], // the three triangles // that are direct neighbors of a given triangle. TRIANGLE_NEIGHBOR(1,I) // is the index of the triangle which touches side 1, defined by nodes 2 // and 3, and so on. TRIANGLE_NEIGHBOR(1,I) is negative if there is no // neighbor on that side. In this case, that side of the triangle lies // on the boundary of the triangulation. // { int *col; int i; int icol; int j; int k; int side1; int side2; int tri; int tri1; int tri2; int *triangle_neighbor; triangle_neighbor = new int[3*triangle_num]; col = new int[4*(3*triangle_num)]; // // Step 1. // From the list of nodes for triangle T, of the form: (I,J,K) // construct the three neighbor relations: // // (I,J,3,T) or (J,I,3,T), // (J,K,1,T) or (K,J,1,T), // (K,I,2,T) or (I,K,2,T) // // where we choose (I,J,3,T) if I < J, or else (J,I,3,T) // for ( tri = 0; tri < triangle_num; tri++ ) { i = triangle_node[0+tri*triangle_order]; j = triangle_node[1+tri*triangle_order]; k = triangle_node[2+tri*triangle_order]; if ( i < j ) { col[0+(3*tri+0)*4] = i; col[1+(3*tri+0)*4] = j; col[2+(3*tri+0)*4] = 3; col[3+(3*tri+0)*4] = tri + 1; } else { col[0+(3*tri+0)*4] = j; col[1+(3*tri+0)*4] = i; col[2+(3*tri+0)*4] = 3; col[3+(3*tri+0)*4] = tri + 1; } if ( j < k ) { col[0+(3*tri+1)*4] = j; col[1+(3*tri+1)*4] = k; col[2+(3*tri+1)*4] = 1; col[3+(3*tri+1)*4] = tri + 1; } else { col[0+(3*tri+1)*4] = k; col[1+(3*tri+1)*4] = j; col[2+(3*tri+1)*4] = 1; col[3+(3*tri+1)*4] = tri + 1; } if ( k < i ) { col[0+(3*tri+2)*4] = k; col[1+(3*tri+2)*4] = i; col[2+(3*tri+2)*4] = 2; col[3+(3*tri+2)*4] = tri + 1; } else { col[0+(3*tri+2)*4] = i; col[1+(3*tri+2)*4] = k; col[2+(3*tri+2)*4] = 2; col[3+(3*tri+2)*4] = tri + 1; } } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // We only intend to sort on rows 1 and 2; the routine we call here // sorts on rows 1 through 4 but that won't hurt us. // // What we need is to find cases where two triangles share an edge. // Say they share an edge defined by the nodes I and J. Then there are // two columns of COL that start out ( I, J, ?, ? ). By sorting COL, // we make sure that these two columns occur consecutively. That will // make it easy to notice that the triangles are neighbors. // i4col_sort_a ( 4, 3*triangle_num, col ); // // Step 3. Neighboring triangles show up as consecutive columns with // identical first two entries. Whenever you spot this happening, // make the appropriate entries in TRIANGLE_NEIGHBOR. // for ( j = 0; j < triangle_num; j++ ) { for ( i = 0; i < 3; i++ ) { triangle_neighbor[i+j*3] = -1; } } icol = 1; for ( ; ; ) { if ( 3 * triangle_num <= icol ) { break; } if ( col[0+(icol-1)*4] != col[0+icol*4] || col[1+(icol-1)*4] != col[1+icol*4] ) { icol = icol + 1; continue; } side1 = col[2+(icol-1)*4]; tri1 = col[3+(icol-1)*4]; side2 = col[2+ icol *4]; tri2 = col[3+ icol *4]; triangle_neighbor[side1-1+(tri1-1)*3] = tri2; triangle_neighbor[side2-1+(tri2-1)*3] = tri1; icol = icol + 2; } delete [] col; return triangle_neighbor; }