# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); char ch_cap ( char ch ); bool ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); int file_column_count ( string filename ); int file_row_count ( string filename ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); int i4_modp ( int i, int j ); int i4_wrap ( int ival, int ilo, int ihi ); int *i4mat_data_read ( string input_filename, int m, int n ); void i4mat_header_read ( string input_filename, int &m, int &n ); void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ); void mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ); double r8_huge ( ); void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ); int r8_nint ( double x ); double *r8mat_data_read ( string input_filename, int m, int n ); void r8mat_header_read ( string input_filename, int &m, int &n ); int s_len_trim ( string s ); int s_to_i4 ( string s, int *last, bool *error ); bool s_to_i4vec ( string s, int n, int ivec[] ); double s_to_r8 ( string s, int *lchar, bool *error ); bool s_to_r8vec ( string s, int n, double rvec[] ); int s_word_count ( string s ); void timestamp ( ); void triangulation_order3_plot ( string plot_filename, int node_num, double node_xy[], int element_num, int element_node[], int node_show, int element_show ); void triangulation_order4_plot ( string plot_filename, int node_num, double node_xy[], int element_num, int element_node[], int node_show, int element_show ); void triangulation_order6_plot ( string plot_filename, int node_num, double node_xy[], int element_num, int element_node[], int node_show, int element_show ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for TRIANGULATION_PLOT. // // Discussion: // // TRIANGULATION_PLOT plots a triangulated set of nodes. // // Usage: // // triangulation_plot prefix node_vis element_vis // // where: // // 'prefix' is the common prefix for the node and element files: // // * prefix_nodes.txt, the node coordinates. // * prefix_elements.txt, the nodes that make up each element. // * prefix.eps, the plot of the triangulation (output). // // 'node_vis' indicates the node visibility: // // 0: do not show the nodes; // 1: show the nodes; // 2: show the nodes, and label them. // // 'element_vis' indicates the element visibility: // // 0: do not show the elements; // 1: show the elements; // 2: show the elements, and label them. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 October 2009 // // Author: // // John Burkardt // { int dim_num; string element_filename; int *element_node; int element_num; int element_order; int element_show; int i; string node_filename; int node_num; int node_show; double *node_xy; string plot_filename; string prefix; timestamp ( ); cout << "\n"; cout << "TRIANGULATION_PLOT\n"; cout << " C++ version:\n"; cout << " Read a node dataset of NODE_NUM points in 2 dimensions.\n"; cout << " Read an associated triangulation dataset of \n"; cout << " ELEMENT_NUM element in a triangulation of order\n"; cout << " ELEMENT_ORDER = 3, 4, or 6 .\n"; cout << "\n"; cout << " Make an EPS plot of the triangulated data.\n"; cout << "\n"; cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n"; // // Get the filename prefix. // if ( argc <= 1 ) { cout << "\n"; cout << "TRIANGULATION_PLOT:\n"; cout << " Please enter the filename prefix.\n"; cin >> prefix; } else { prefix = argv[1]; } // // Get the node visibility. // if ( argc <= 2 ) { cout << "\n"; cout << " Enter the option for showing the nodes:\n"; cout << " 0: do not show the nodes;\n"; cout << " 1: show the nodes;\n"; cout << " 2: show the nodes, and label them.\n"; cin >> node_show; } else { node_show = atoi ( argv[2] ); } // // Get the element visibility. // if ( argc <= 3 ) { cout << "\n"; cout << " Enter the option for showing the elements:\n"; cout << " 0: do not show the elements;\n"; cout << " 1: show the elements;\n"; cout << " 2: show the elements, and label them.\n"; cin >> element_show; } else { element_show = atoi ( argv[3] ); } // // Create the filenames. // node_filename = prefix + "_nodes.txt"; element_filename = prefix + "_elements.txt"; plot_filename = prefix + ".eps"; // // Read the node data. // r8mat_header_read ( node_filename, dim_num, node_num ); cout << "\n"; cout << " Read the header of \"" << node_filename << "\".\n"; cout << "\n"; cout << " Spatial dimension DIM_NUM = " << dim_num << "\n"; cout << " Number of nodes NODE_NUM = " << node_num << "\n"; node_xy = r8mat_data_read ( node_filename, dim_num, node_num ); cout << "\n"; cout << " Read the data in \"" << node_filename << "\".\n"; r8mat_transpose_print_some ( dim_num, node_num, node_xy, 1, 1, 5, 5, " 5 by 5 portion of data read from file:" ); // // Read the element data. // i4mat_header_read ( element_filename, element_order, element_num ); cout << "\n"; cout << " Read the header of \"" << element_filename << "\".\n"; cout << "\n"; cout << " Element order ELEMENT_ORDER = " << element_order << "\n"; cout << " Number of elements ELEMENT_NUM = " << element_num << "\n"; element_node = i4mat_data_read ( element_filename, element_order, element_num ); cout << "\n"; cout << " Read the data in \"" << element_filename << "\".\n"; i4mat_transpose_print_some ( element_order, element_num, element_node, 1, 1, 5, 5, " 5 by 5 portion of data read from file:" ); // // Detect and correct 1-based node indexing. // mesh_base_zero ( node_num, element_order, element_num, element_node ); // // Create the output file. // if ( element_order == 3 ) { triangulation_order3_plot ( plot_filename, node_num, node_xy, element_num, element_node, node_show, element_show ); } else if ( element_order == 4 ) { triangulation_order4_plot ( plot_filename, node_num, node_xy, element_num, element_node, node_show, element_show ); } else if ( element_order == 6 ) { triangulation_order6_plot ( plot_filename, node_num, node_xy, element_num, element_node, node_show, element_show ); } cout << "\n"; cout << " Created the EPS file \"" << plot_filename << "\".\n"; // // Free memory. // delete [] node_xy; delete [] element_node; // // Terminate. // cout << "\n"; cout << "TRIANGULATION_PLOT:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 char ch_cap ( char ch ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } //****************************************************************************80 bool ch_eqi ( char ch1, char ch2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH1, CH2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } return ( ch1 == ch2 ); } //****************************************************************************80 int ch_to_digit ( char ch ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // CH DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If the // character was 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, separated // by spaces. There may also be some blank lines, and some comment lines, // which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; char text[255]; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { input.getline ( text, sizeof ( text ) ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input.getline ( text, sizeof ( text ) ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 int file_row_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int bad_num; int comment_num; ifstream input; int i; int record_num; int row_num; char text[255]; row_num = 0; comment_num = 0; record_num = 0; bad_num = 0; input.open ( filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the file: \"" << filename << "\"\n"; exit ( 1 ); } for ( ; ; ) { input.getline ( text, sizeof ( text ) ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( text[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( text ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //**************************************************************************** int i4_max ( int i1, int i2 ) //**************************************************************************** // // Purpose: // // I4_MAX returns the maximum of two integers. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //**************************************************************************** int i4_min ( int i1, int i2 ) //**************************************************************************** // // Purpose: // // I4_MIN returns the smaller of two integers. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //********************************************************************* int i4_modp ( int i, int j ) //********************************************************************* // // Purpose: // // I4_MODP returns the nonnegative remainder of integer division. // // Discussion: // // If // NREM = I4_MODP ( I, J ) // NMULT = ( I - NREM ) / J // then // I = J * NMULT + NREM // where NREM is always nonnegative. // // The MOD function computes a result with the same sign as the // quantity being divided. Thus, suppose you had an angle A, // and you wanted to ensure that it was between 0 and 360. // Then mod(A,360) would do, if A was positive, but if A // was negative, your result would be between -360 and 0. // // On the other hand, I4_MODP(A,360) is between 0 and 360, always. // // Example: // // I J MOD I4_MODP I4_MODP Factorization // // 107 50 7 7 107 = 2 * 50 + 7 // 107 -50 7 7 107 = -2 * -50 + 7 // -107 50 -7 43 -107 = -3 * 50 + 43 // -107 -50 -7 43 -107 = 3 * -50 + 43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number to be divided. // // Input, int J, the number that divides I. // // Output, int I4_MODP, the nonnegative remainder when I is // divided by J. // { int value; if ( j == 0 ) { cout << "\n"; cout << "I4_MODP - Fatal error!\n"; cout << " I4_MODP ( I, J ) called with J = " << j << "\n"; exit ( 1 ); } value = i % j; if ( value < 0 ) { value = value + abs ( j ); } return value; } //****************************************************************************80* int i4_wrap ( int ival, int ilo, int ihi ) //****************************************************************************80* // // Purpose: // // I4_WRAP forces an integer to lie between given limits by wrapping. // // Example: // // ILO = 4, IHI = 8 // // I I4_WRAP // // -2 8 // -1 4 // 0 5 // 1 6 // 2 7 // 3 8 // 4 4 // 5 5 // 6 6 // 7 7 // 8 8 // 9 4 // 10 5 // 11 6 // 12 7 // 13 8 // 14 4 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int IVAL, an integer value. // // Input, int ILO, IHI, the desired bounds for the integer value. // // Output, int I4_WRAP, a "wrapped" version of IVAL. // { int jhi; int jlo; int value; int wide; jlo = i4_min ( ilo, ihi ); jhi = i4_max ( ilo, ihi ); wide = jhi + 1 - jlo; if ( wide == 1 ) { value = jlo; } else { value = jlo + i4_modp ( ival - jlo, wide ); } return value; } //****************************************************************************80 int *i4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_DATA_READ reads data from an I4MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; int *table; int *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new int[m*n]; x = new int[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void i4mat_header_read ( string input_filename, int &m, int &n ) //****************************************************************************80 // // Purpose: // // I4MAT_HEADER_READ reads the header from an I4MAT file. // // Discussion: // // An I4MAT is an array of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int &M, the number of spatial dimensions. // // Output, int &N, the number of points // { m = file_column_count ( input_filename ); if ( m <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; exit ( 1 ); } n = file_row_count ( input_filename ); if ( n <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; exit ( 1 ); } return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title for the matrix. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); cout << "\n"; // // For each row I in the current range... // // Write the header. // cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // cout << setw(5) << j << " "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // MESH_BASE_ZERO ensures that the element definition is zero-based. // // Discussion: // // The ELEMENT_NODE array contains nodes indices that form elements. // The convention for node indexing might start at 0 or at 1. // Since a C++ program will naturally assume a 0-based indexing, it is // necessary to check a given element definition and, if it is actually // 1-based, to convert it. // // This function attempts to detect 1-based node indexing and correct it. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int ELEMENT_ORDER, the order of the elements. // // Input, int ELEMENT_NUM, the number of elements. // // Input/output, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], the element // definitions. // { int element; int node; int node_max; int node_min; int order; node_min = node_num + 1; node_max = -1; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; node_min = i4_min ( node_min, node ); node_max = i4_max ( node_max, node ); } } if ( node_min == 1 && node_max == node_num ) { cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 1-based!\n"; cout << " This will be converted to 0-based.\n"; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { element_node[order+element*element_order] = element_node[order+element*element_order] - 1; } } } else if ( node_min == 0 && node_max == node_num - 1 ) { cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 0-based!\n"; cout << " No conversion is necessary.\n"; } else { cout << "\n"; cout << "MESH_BASE_ZERO - Warning!\n"; cout << " The element indexing is not of a recognized type.\n"; cout << " NODE_MIN = " << node_min << "\n"; cout << " NODE_MAX = " << node_max << "\n"; cout << " NODE_NUM = " << node_num << "\n"; } return; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 int r8_nint ( double x ) //****************************************************************************80 // // Purpose: // // R8_NINT returns the nearest integer to an R8. // // Example: // // X Value // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value. // // Output, int R8_NINT, the nearest integer to X. // { int s; int value; if ( x < 0.0 ) { s = -1; } else { s = 1; } value = s * ( int ) ( fabs ( x ) + 0.5 ); return value; } //****************************************************************************80 double *r8mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_DATA_READ reads the data from an R8MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; double *table; double *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void r8mat_header_read ( string input_filename, int &m, int &n ) //****************************************************************************80 // // Purpose: // // R8MAT_HEADER_READ reads the header from an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int &M, the number of spatial dimensions. // // Output, int &N, the number of points. // { m = file_column_count ( input_filename ); if ( m <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; exit ( 1 ); } n = file_row_count ( input_filename ); if ( n <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; exit ( 1 ); } return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, an optional title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << " "; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_i4vec ( string s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 double s_to_r8 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0^(-9.23) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( string s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 void triangulation_order3_plot ( string plot_filename, int node_num, double node_xy[], int element_num, int element_node[], int node_show, int element_show ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_PLOT plots a 3-node triangulation. // // Discussion: // // The triangulation is most usually a Delaunay triangulation, // but this is not necessary. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string PLOT_FILENAME, the name of the output file. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int ELEMENT_NODE[3*ELEMENT_NUM], lists, for each element, // the indices of the nodes that form the vertices of the element. // // Input, int NODE_SHOW: // 0, do not show nodes; // 1, show nodes; // 2, show nodes and label them. // // Input, int ELEMENT_SHOW: // 0, do not show elements; // 1, show elements; // 2, show elements and label them. // { double ave_x; double ave_y; int circle_size; int delta; int e; ofstream plot_unit; int i; int node; int element; double x_max; double x_min; int x_ps; int x_ps_max = 576; int x_ps_max_clip = 594; int x_ps_min = 36; int x_ps_min_clip = 18; double x_scale; double y_max; double y_min; int y_ps; int y_ps_max = 666; int y_ps_max_clip = 684; int y_ps_min = 126; int y_ps_min_clip = 108; double y_scale; // // We need to do some figuring here, so that we can determine // the range of the data, and hence the height and width // of the piece of paper. // x_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( x_max < node_xy[0+node*2] ) { x_max = node_xy[0+node*2]; } } x_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[0+node*2] < x_min ) { x_min = node_xy[0+node*2]; } } x_scale = x_max - x_min; x_max = x_max + 0.05 * x_scale; x_min = x_min - 0.05 * x_scale; x_scale = x_max - x_min; y_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( y_max < node_xy[1+node*2] ) { y_max = node_xy[1+node*2]; } } y_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[1+node*2] < y_min ) { y_min = node_xy[1+node*2]; } } y_scale = y_max - y_min; y_max = y_max + 0.05 * y_scale; y_min = y_min - 0.05 * y_scale; y_scale = y_max - y_min; if ( x_scale < y_scale ) { delta = r8_nint ( ( double ) ( x_ps_max - x_ps_min ) * ( y_scale - x_scale ) / ( 2.0 * y_scale ) ); x_ps_max = x_ps_max - delta; x_ps_min = x_ps_min + delta; x_ps_max_clip = x_ps_max_clip - delta; x_ps_min_clip = x_ps_min_clip + delta; x_scale = y_scale; } else if ( y_scale < x_scale ) { delta = r8_nint ( ( double ) ( y_ps_max - y_ps_min ) * ( x_scale - y_scale ) / ( 2.0 * x_scale ) ); y_ps_max = y_ps_max - delta; y_ps_min = y_ps_min + delta; y_ps_max_clip = y_ps_max_clip - delta; y_ps_min_clip = y_ps_min_clip + delta; y_scale = x_scale; } plot_unit.open ( plot_filename.c_str ( ) ); if ( !plot_unit ) { cout << "\n"; cout << "TRIANGULATION_ORDER3_PLOT - Fatal error!\n"; cout << " Could not open the output EPS file.\n"; exit ( 1 ); } plot_unit << "%!PS-Adobe-3.0 EPSF-3.0\n"; plot_unit << "%%Creator: triangulation_order3_plot.C\n"; plot_unit << "%%Title: " << plot_filename << "\n"; plot_unit << "%%Pages: 1\n"; plot_unit << "%%BoundingBox: " << x_ps_min << " " << y_ps_min << " " << x_ps_max << " " << y_ps_max << "\n"; plot_unit << "%%Document-Fonts: Times-Roman\n"; plot_unit << "%%LanguageLevel: 1\n"; plot_unit << "%%EndComments\n"; plot_unit << "%%BeginProlog\n"; plot_unit << "/inch {72 mul} def\n"; plot_unit << "%%EndProlog\n"; plot_unit << "%%Page: 1 1\n"; plot_unit << "save\n"; plot_unit << "%\n"; plot_unit << "% Increase line width from default 0.\n"; plot_unit << "%\n"; plot_unit << "2 setlinewidth\n"; plot_unit << "%\n"; plot_unit << "% Set the RGB line color to very light gray.\n"; plot_unit << "%\n"; plot_unit << " 0.9000 0.9000 0.9000 setrgbcolor\n"; plot_unit << "%\n"; plot_unit << "% Draw a gray border around the page.\n"; plot_unit << "%\n"; plot_unit << "newpath\n"; plot_unit << x_ps_min << " " << y_ps_min << " moveto\n"; plot_unit << x_ps_max << " " << y_ps_min << " lineto\n"; plot_unit << x_ps_max << " " << y_ps_max << " lineto\n"; plot_unit << x_ps_min << " " << y_ps_max << " lineto\n"; plot_unit << x_ps_min << " " << y_ps_min << " lineto\n"; plot_unit << "stroke\n"; plot_unit << "%\n"; plot_unit << "% Set RGB line color to black.\n"; plot_unit << "%\n"; plot_unit << " 0.0000 0.0000 0.0000 setrgbcolor\n"; plot_unit << "%\n"; plot_unit << "% Set the font and its size:\n"; plot_unit << "%\n"; plot_unit << "/Times-Roman findfont\n"; plot_unit << "0.50 inch scalefont\n"; plot_unit << "setfont\n"; plot_unit << "%\n"; plot_unit << "% Print a title:\n"; plot_unit << "%\n"; plot_unit << "% 210 702 moveto\n"; plot_unit << "%(Pointset) show\n"; plot_unit << "%\n"; plot_unit << "% Define a clipping polygon\n"; plot_unit << "%\n"; plot_unit << "newpath\n"; plot_unit << x_ps_min_clip << " " << y_ps_min_clip << " moveto\n"; plot_unit << x_ps_max_clip << " " << y_ps_min_clip << " lineto\n"; plot_unit << x_ps_max_clip << " " << y_ps_max_clip << " lineto\n"; plot_unit << x_ps_min_clip << " " << y_ps_max_clip << " lineto\n"; plot_unit << x_ps_min_clip << " " << y_ps_min_clip << " lineto\n"; plot_unit << "clip newpath\n"; // // Draw the nodes. // if ( node_num <= 200 ) { circle_size = 5; } else if ( node_num <= 500 ) { circle_size = 4; } else if ( node_num <= 1000 ) { circle_size = 3; } else if ( node_num <= 5000 ) { circle_size = 2; } else { circle_size = 1; } if ( 1 <= node_show ) { plot_unit << "%\n"; plot_unit << "% Draw filled dots at each node:\n"; plot_unit << "%\n"; plot_unit << "% Set the color to blue:\n"; plot_unit << "%\n"; plot_unit << "0.000 0.150 0.750 setrgbcolor\n"; plot_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << "newpath " << x_ps << " " << y_ps << " " << circle_size << " 0 360 arc closepath fill\n"; } } // // Label the nodes. // if ( 2 <= node_show ) { plot_unit << "%\n"; plot_unit << "% Label the nodes:\n"; plot_unit << "%\n"; plot_unit << "% Set the color to darker blue:\n"; plot_unit << "%\n"; plot_unit << "0.000 0.250 0.850 setrgbcolor\n"; plot_unit << "/Times-Roman findfont\n"; plot_unit << "0.20 inch scalefont\n"; plot_unit << "setfont\n"; plot_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << "newpath " << x_ps << " " << y_ps + 5 << " moveto (" << node+1 << ") show\n"; } } // // Draw the elements. // if ( 1 <= element_show ) { plot_unit << "%\n"; plot_unit << "% Set the RGB color to red.\n"; plot_unit << "%\n"; plot_unit << "0.900 0.200 0.100 setrgbcolor\n"; plot_unit << "%\n"; plot_unit << "% Draw the elements.\n"; plot_unit << "%\n"; for ( element = 0; element < element_num; element++ ) { plot_unit << "newpath\n"; for ( i = 0; i <= 3; i++ ) { e = i4_wrap ( i, 0, 2 ); node = element_node[e+element*3]; x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); if ( i == 0 ) { plot_unit << x_ps << " " << y_ps << " moveto\n"; } else { plot_unit << x_ps << " " << y_ps << " lineto\n"; } } plot_unit << "stroke\n"; } } // // Label the elements. // if ( 2 <= element_show ) { plot_unit << "%\n"; plot_unit << "% Label the elements.\n"; plot_unit << "%\n"; plot_unit << "% Set the RGB color to darker red.\n"; plot_unit << "%\n"; plot_unit << "0.950 0.250 0.150 setrgbcolor\n"; plot_unit << "/Times-Roman findfont\n"; plot_unit << "0.20 inch scalefont\n"; plot_unit << "setfont\n"; plot_unit << "%\n"; for ( element = 0; element < element_num; element++ ) { ave_x = 0.0; ave_y = 0.0; for ( i = 0; i < 3; i++ ) { node = element_node[i+element*3]; ave_x = ave_x + node_xy[0+node*2]; ave_y = ave_y + node_xy[1+node*2]; } ave_x = ave_x / 3.0; ave_y = ave_y / 3.0; x_ps = ( int ) ( ( ( x_max - ave_x ) * ( double ) ( x_ps_min ) + ( + ave_x - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - ave_y ) * ( double ) ( y_ps_min ) + ( ave_y - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << x_ps << " " << y_ps << " moveto (" << element << ") show\n"; } } plot_unit << "%\n"; plot_unit << "restore showpage\n"; plot_unit << "%\n"; plot_unit << "% End of page.\n"; plot_unit << "%\n"; plot_unit << "%%Trailer\n"; plot_unit << "%%EOF\n"; plot_unit.close ( ); return; } //****************************************************************************80 void triangulation_order4_plot ( string plot_filename, int node_num, double node_xy[], int element_num, int element_node[], int node_show, int element_show ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER4_PLOT plots a 4-node triangulation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string PLOT_FILENAME, the name of the output file. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int ELEMENT_NODE[4*ELEMENT_NUM], lists, for each element, // the indices of the nodes that form the vertices of the element, // and the centroid. // // Input, int NODE_SHOW: // 0, do not show nodes; // 1, show nodes; // 2, show nodes and label them. // // Input, int TRIANGLE_SHOW: // 0, do not show elements; // 1, show elements; // 2, show elements and label them. // { double ave_x; double ave_y; int circle_size; int delta; int e; ofstream plot_unit; int i; int node; int element; double x_max; double x_min; int x_ps; int x_ps_max = 576; int x_ps_max_clip = 594; int x_ps_min = 36; int x_ps_min_clip = 18; double x_scale; double y_max; double y_min; int y_ps; int y_ps_max = 666; int y_ps_max_clip = 684; int y_ps_min = 126; int y_ps_min_clip = 108; double y_scale; // // We need to do some figuring here, so that we can determine // the range of the data, and hence the height and width // of the piece of paper. // x_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( x_max < node_xy[0+node*2] ) { x_max = node_xy[0+node*2]; } } x_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[0+node*2] < x_min ) { x_min = node_xy[0+node*2]; } } x_scale = x_max - x_min; x_max = x_max + 0.05 * x_scale; x_min = x_min - 0.05 * x_scale; x_scale = x_max - x_min; y_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( y_max < node_xy[1+node*2] ) { y_max = node_xy[1+node*2]; } } y_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[1+node*2] < y_min ) { y_min = node_xy[1+node*2]; } } y_scale = y_max - y_min; y_max = y_max + 0.05 * y_scale; y_min = y_min - 0.05 * y_scale; y_scale = y_max - y_min; if ( x_scale < y_scale ) { delta = r8_nint ( ( double ) ( x_ps_max - x_ps_min ) * ( y_scale - x_scale ) / ( 2.0 * y_scale ) ); x_ps_max = x_ps_max - delta; x_ps_min = x_ps_min + delta; x_ps_max_clip = x_ps_max_clip - delta; x_ps_min_clip = x_ps_min_clip + delta; x_scale = y_scale; } else if ( y_scale < x_scale ) { delta = r8_nint ( ( double ) ( y_ps_max - y_ps_min ) * ( x_scale - y_scale ) / ( 2.0 * x_scale ) ); y_ps_max = y_ps_max - delta; y_ps_min = y_ps_min + delta; y_ps_max_clip = y_ps_max_clip - delta; y_ps_min_clip = y_ps_min_clip + delta; y_scale = x_scale; } plot_unit.open ( plot_filename.c_str ( ) ); if ( !plot_unit ) { cout << "\n"; cout << "TRIANGULATION_ORDER3_PLOT - Fatal error!\n"; cout << " Could not open the output EPS file.\n"; exit ( 1 ); } plot_unit << "%!PS-Adobe-3.0 EPSF-3.0\n"; plot_unit << "%%Creator: triangulation_order4_plot.C\n"; plot_unit << "%%Title: " << plot_filename << "\n"; plot_unit << "%%Pages: 1\n"; plot_unit << "%%BoundingBox: " << x_ps_min << " " << y_ps_min << " " << x_ps_max << " " << y_ps_max << "\n"; plot_unit << "%%Document-Fonts: Times-Roman\n"; plot_unit << "%%LanguageLevel: 1\n"; plot_unit << "%%EndComments\n"; plot_unit << "%%BeginProlog\n"; plot_unit << "/inch {72 mul} def\n"; plot_unit << "%%EndProlog\n"; plot_unit << "%%Page: 1 1\n"; plot_unit << "save\n"; plot_unit << "%\n"; plot_unit << "% Increase line width from default 0.\n"; plot_unit << "%\n"; plot_unit << "2 setlinewidth\n"; plot_unit << "%\n"; plot_unit << "% Set the RGB line color to very light gray.\n"; plot_unit << "%\n"; plot_unit << " 0.9000 0.9000 0.9000 setrgbcolor\n"; plot_unit << "%\n"; plot_unit << "% Draw a gray border around the page.\n"; plot_unit << "%\n"; plot_unit << "newpath\n"; plot_unit << x_ps_min << " " << y_ps_min << " moveto\n"; plot_unit << x_ps_max << " " << y_ps_min << " lineto\n"; plot_unit << x_ps_max << " " << y_ps_max << " lineto\n"; plot_unit << x_ps_min << " " << y_ps_max << " lineto\n"; plot_unit << x_ps_min << " " << y_ps_min << " lineto\n"; plot_unit << "stroke\n"; plot_unit << "%\n"; plot_unit << "% Set RGB line color to black.\n"; plot_unit << "%\n"; plot_unit << " 0.0000 0.0000 0.0000 setrgbcolor\n"; plot_unit << "%\n"; plot_unit << "% Set the font and its size:\n"; plot_unit << "%\n"; plot_unit << "/Times-Roman findfont\n"; plot_unit << "0.50 inch scalefont\n"; plot_unit << "setfont\n"; plot_unit << "%\n"; plot_unit << "% Print a title:\n"; plot_unit << "%\n"; plot_unit << "% 210 702 moveto\n"; plot_unit << "%(Pointset) show\n"; plot_unit << "%\n"; plot_unit << "% Define a clipping polygon\n"; plot_unit << "%\n"; plot_unit << "newpath\n"; plot_unit << x_ps_min_clip << " " << y_ps_min_clip << " moveto\n"; plot_unit << x_ps_max_clip << " " << y_ps_min_clip << " lineto\n"; plot_unit << x_ps_max_clip << " " << y_ps_max_clip << " lineto\n"; plot_unit << x_ps_min_clip << " " << y_ps_max_clip << " lineto\n"; plot_unit << x_ps_min_clip << " " << y_ps_min_clip << " lineto\n"; plot_unit << "clip newpath\n"; // // Draw the nodes. // if ( node_num <= 200 ) { circle_size = 5; } else if ( node_num <= 500 ) { circle_size = 4; } else if ( node_num <= 1000 ) { circle_size = 3; } else if ( node_num <= 5000 ) { circle_size = 2; } else { circle_size = 1; } if ( 1 <= node_show ) { plot_unit << "%\n"; plot_unit << "% Draw filled dots at each node:\n"; plot_unit << "%\n"; plot_unit << "% Set the color to blue:\n"; plot_unit << "%\n"; plot_unit << "0.000 0.150 0.750 setrgbcolor\n"; plot_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << "newpath " << x_ps << " " << y_ps << " " << circle_size << " 0 360 arc closepath fill\n"; } } // // Label the nodes. // if ( 2 <= node_show ) { plot_unit << "%\n"; plot_unit << "% Label the nodes:\n"; plot_unit << "%\n"; plot_unit << "% Set the color to darker blue:\n"; plot_unit << "%\n"; plot_unit << "0.000 0.250 0.850 setrgbcolor\n"; plot_unit << "/Times-Roman findfont\n"; plot_unit << "0.20 inch scalefont\n"; plot_unit << "setfont\n"; plot_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << "newpath " << x_ps << " " << y_ps + 5 << " moveto (" << node+1 << ") show\n"; } } // // Draw the elements. // if ( 1 <= element_show ) { plot_unit << "%\n"; plot_unit << "% Set the RGB color to red.\n"; plot_unit << "%\n"; plot_unit << "0.900 0.200 0.100 setrgbcolor\n"; plot_unit << "%\n"; plot_unit << "% Draw the elements.\n"; plot_unit << "%\n"; for ( element = 0; element < element_num; element++ ) { plot_unit << "newpath\n"; for ( i = 0; i <= 3; i++ ) { e = i4_wrap ( i, 0, 2 ); node = element_node[e+element*4]; x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); if ( i == 0 ) { plot_unit << x_ps << " " << y_ps << " moveto\n"; } else { plot_unit << x_ps << " " << y_ps << " lineto\n"; } } plot_unit << "stroke\n"; } } // // Label the elements. // if ( 2 <= element_show ) { plot_unit << "%\n"; plot_unit << "% Label the elements.\n"; plot_unit << "%\n"; plot_unit << "% Set the RGB color to darker red.\n"; plot_unit << "%\n"; plot_unit << "0.950 0.250 0.150 setrgbcolor\n"; plot_unit << "/Times-Roman findfont\n"; plot_unit << "0.20 inch scalefont\n"; plot_unit << "setfont\n"; plot_unit << "%\n"; for ( element = 0; element < element_num; element++ ) { ave_x = 0.0; ave_y = 0.0; for ( i = 0; i < 3; i++ ) { node = element_node[i+element*4]; ave_x = ave_x + node_xy[0+node*2]; ave_y = ave_y + node_xy[1+node*2]; } ave_x = ave_x / 3.0; ave_y = ave_y / 3.0; x_ps = ( int ) ( ( ( x_max - ave_x ) * ( double ) ( x_ps_min ) + ( + ave_x - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - ave_y ) * ( double ) ( y_ps_min ) + ( ave_y - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << x_ps << " " << y_ps << " moveto (" << element+1 << ") show\n"; } } plot_unit << "%\n"; plot_unit << "restore showpage\n"; plot_unit << "%\n"; plot_unit << "% End of page.\n"; plot_unit << "%\n"; plot_unit << "%%Trailer\n"; plot_unit << "%%EOF\n"; plot_unit.close ( ); return; } //****************************************************************************80 void triangulation_order6_plot ( string plot_filename, int node_num, double node_xy[], int element_num, int element_node[], int node_show, int element_show ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_PLOT plots a 6-node triangulation. // // Discussion: // // The triangulation is most usually a Delaunay triangulation, // but this is not necessary. // // This routine has been specialized to deal correctly ONLY with // a mesh of 6 node elements, with the property that starting // from local node 1 and traversing the edges of the element will // result in encountering local nodes 1, 4, 2, 5, 3, 6 in that order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, string PLOT_FILENAME, the name of the file to create. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int ELEMENT_NODE[6*ELEMENT_NUM], lists, for each element, // the indices of the nodes that form the vertices and midsides // of the element. // // Input, int NODE_SHOW: // 0, do not show nodes; // 1, show nodes; // 2, show nodes and label them. // // Input, int ELEMENT_SHOW: // 0, do not show element; // 1, show elements; // 2, show elements and label them. // { double ave_x; double ave_y; int circle_size; int delta; int e; ofstream plot_unit; int i; int ip1; int node; int order[6] = { 1, 4, 2, 5, 3, 6 }; int element; double x_max; double x_min; int x_ps; int x_ps_max = 576; int x_ps_max_clip = 594; int x_ps_min = 36; int x_ps_min_clip = 18; double x_scale; double y_max; double y_min; int y_ps; int y_ps_max = 666; int y_ps_max_clip = 684; int y_ps_min = 126; int y_ps_min_clip = 108; double y_scale; // // We need to do some figuring here, so that we can determine // the range of the data, and hence the height and width // of the piece of paper. // x_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( x_max < node_xy[0+node*2] ) { x_max = node_xy[0+node*2]; } } x_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[0+node*2] < x_min ) { x_min = node_xy[0+node*2]; } } x_scale = x_max - x_min; x_max = x_max + 0.05 * x_scale; x_min = x_min - 0.05 * x_scale; x_scale = x_max - x_min; y_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( y_max < node_xy[1+node*2] ) { y_max = node_xy[1+node*2]; } } y_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[1+node*2] < y_min ) { y_min = node_xy[1+node*2]; } } y_scale = y_max - y_min; y_max = y_max + 0.05 * y_scale; y_min = y_min - 0.05 * y_scale; y_scale = y_max - y_min; if ( x_scale < y_scale ) { delta = r8_nint ( ( double ) ( x_ps_max - x_ps_min ) * ( y_scale - x_scale ) / ( 2.0 * y_scale ) ); x_ps_max = x_ps_max - delta; x_ps_min = x_ps_min + delta; x_ps_max_clip = x_ps_max_clip - delta; x_ps_min_clip = x_ps_min_clip + delta; x_scale = y_scale; } else if ( y_scale < x_scale ) { delta = r8_nint ( ( double ) ( y_ps_max - y_ps_min ) * ( x_scale - y_scale ) / ( 2.0 * x_scale ) ); y_ps_max = y_ps_max - delta; y_ps_min = y_ps_min + delta; y_ps_max_clip = y_ps_max_clip - delta; y_ps_min_clip = y_ps_min_clip + delta; y_scale = x_scale; } plot_unit.open ( plot_filename.c_str ( ) ); if ( !plot_unit ) { cout << "\n"; cout << "TRIANGULATION_ORDER6_PLOT - Fatal error!\n"; cout << " Could not open the output EPS file.\n"; exit ( 1 ); } plot_unit << "%!PS-Adobe-3.0 EPSF-3.0\n"; plot_unit << "%%Creator: triangulation_order6_plot.C\n"; plot_unit << "%%Title: " << plot_filename << "\n"; plot_unit << "%%Pages: 1\n"; plot_unit << "%%BoundingBox: " << x_ps_min << " " << y_ps_min << " " << x_ps_max << " " << y_ps_max << "\n"; plot_unit << "%%Document-Fonts: Times-Roman\n"; plot_unit << "%%LanguageLevel: 1\n"; plot_unit << "%%EndComments\n"; plot_unit << "%%BeginProlog\n"; plot_unit << "/inch {72 mul} def\n"; plot_unit << "%%EndProlog\n"; plot_unit << "%%Page: 1 1\n"; plot_unit << "save\n"; plot_unit << "%\n"; plot_unit << "% Increase line width from default 0.\n"; plot_unit << "%\n"; plot_unit << "2 setlinewidth\n"; plot_unit << "%\n"; plot_unit << "% Set the RGB line color to very light gray.\n"; plot_unit << "%\n"; plot_unit << " 0.9000 0.9000 0.9000 setrgbcolor\n"; plot_unit << "%\n"; plot_unit << "% Draw a gray border around the page.\n"; plot_unit << "%\n"; plot_unit << "newpath\n"; plot_unit << x_ps_min << " " << y_ps_min << " moveto\n"; plot_unit << x_ps_max << " " << y_ps_min << " lineto\n"; plot_unit << x_ps_max << " " << y_ps_max << " lineto\n"; plot_unit << x_ps_min << " " << y_ps_max << " lineto\n"; plot_unit << x_ps_min << " " << y_ps_min << " lineto\n"; plot_unit << "stroke\n"; plot_unit << "%\n"; plot_unit << "% Set RGB line color to black.\n"; plot_unit << "%\n"; plot_unit << " 0.0000 0.0000 0.0000 setrgbcolor\n"; plot_unit << "%\n"; plot_unit << "% Set the font and its size:\n"; plot_unit << "%\n"; plot_unit << "/Times-Roman findfont\n"; plot_unit << "0.50 inch scalefont\n"; plot_unit << "setfont\n"; plot_unit << "%\n"; plot_unit << "% Print a title:\n"; plot_unit << "%\n"; plot_unit << "% 210 702 moveto\n"; plot_unit << "%(Pointset) show\n"; plot_unit << "%\n"; plot_unit << "% Define a clipping polygon\n"; plot_unit << "%\n"; plot_unit << "newpath\n"; plot_unit << x_ps_min_clip << " " << y_ps_min_clip << " moveto\n"; plot_unit << x_ps_max_clip << " " << y_ps_min_clip << " lineto\n"; plot_unit << x_ps_max_clip << " " << y_ps_max_clip << " lineto\n"; plot_unit << x_ps_min_clip << " " << y_ps_max_clip << " lineto\n"; plot_unit << x_ps_min_clip << " " << y_ps_min_clip << " lineto\n"; plot_unit << "clip newpath\n"; // // Draw the nodes. // if ( node_num <= 200 ) { circle_size = 5; } else if ( node_num <= 500 ) { circle_size = 4; } else if ( node_num <= 1000 ) { circle_size = 3; } else if ( node_num <= 5000 ) { circle_size = 2; } else { circle_size = 1; } if ( 1 <= node_show ) { plot_unit << "%\n"; plot_unit << "% Draw filled dots at each node:\n"; plot_unit << "%\n"; plot_unit << "% Set the color to blue:\n"; plot_unit << "%\n"; plot_unit << "0.000 0.150 0.750 setrgbcolor\n"; plot_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << "newpath " << x_ps << " " << y_ps << " " << circle_size << " 0 360 arc closepath fill\n"; } } // // Label the nodes. // if ( 2 <= node_show ) { plot_unit << "%\n"; plot_unit << "% Label the nodes:\n"; plot_unit << "%\n"; plot_unit << "% Set the color to darker blue:\n"; plot_unit << "%\n"; plot_unit << "0.000 0.250 0.850 setrgbcolor\n"; plot_unit << "/Times-Roman findfont\n"; plot_unit << "0.20 inch scalefont\n"; plot_unit << "setfont\n"; plot_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << "newpath " << x_ps << " " << y_ps + 5 << " moveto (" << node+1 << ") show\n"; } } // // Draw the elements. // if ( 1 <= element_show ) { plot_unit << "%\n"; plot_unit << "% Set the RGB color to red.\n"; plot_unit << "%\n"; plot_unit << "0.900 0.200 0.100 setrgbcolor\n"; plot_unit << "%\n"; plot_unit << "% Draw the elements.\n"; plot_unit << "%\n"; for ( element = 0; element < element_num; element++ ) { node = element_node[5+element*6]; x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << "newpath " << x_ps << " " << y_ps << " moveto\n"; for ( i = 0; i < 6; i++ ) { node = element_node[i+element*6]; x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << x_ps << " " << y_ps << " lineto\n"; } plot_unit << "stroke\n"; } } // // Label the elements. // if ( 2 <= element_show ) { plot_unit << "%\n"; plot_unit << "% Label the elements.\n"; plot_unit << "%\n"; plot_unit << "% Set the RGB color to darker red.\n"; plot_unit << "%\n"; plot_unit << "0.950 0.250 0.150 setrgbcolor\n"; plot_unit << "/Times-Roman findfont\n"; plot_unit << "0.20 inch scalefont\n"; plot_unit << "setfont\n"; plot_unit << "%\n"; for ( element = 0; element < element_num; element++ ) { ave_x = 0.0; ave_y = 0.0; for ( i = 0; i < 6; i++ ) { node = element_node[i+element*6]; ave_x = ave_x + node_xy[0+node*2]; ave_y = ave_y + node_xy[1+node*2]; } ave_x = ave_x / 6.0; ave_y = ave_y / 6.0; x_ps = ( int ) ( ( ( x_max - ave_x ) * ( double ) ( x_ps_min ) + ( + ave_x - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - ave_y ) * ( double ) ( y_ps_min ) + ( ave_y - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); plot_unit << setw(4) << x_ps << " " << setw(4) << y_ps << " " << "moveto (" << element << ") show\n"; } } plot_unit << "%\n"; plot_unit << "restore showpage\n"; plot_unit << "%\n"; plot_unit << "% End of page\n"; plot_unit << "%\n"; plot_unit << "%%Trailer\n"; plot_unit << "%%EOF\n"; plot_unit.close ( ); return; }