# include # include # include # include # include # include using namespace std; # include "truncated_normal.hpp" //****************************************************************************80 int i4_uniform_ab ( int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM_AB returns a scaled pseudorandom I4 between A and B. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM_AB, a number between A and B. // { int c; const int i4_huge = 2147483647; int k; float r; int value; if ( seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } return value; } //****************************************************************************80 double normal_01_cdf ( double x ) //****************************************************************************80 // // Purpose: // // NORMAL_01_CDF evaluates the Normal 01 CDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 February 1999 // // Author: // // John Burkardt // // Reference: // // A G Adams, // Areas Under the Normal Curve, // Algorithm 39, // Computer j., // Volume 12, pages 197-198, 1969. // // Parameters: // // Input, double X, the argument of the CDF. // // Output, double CDF, the value of the CDF. // { double a1 = 0.398942280444; double a2 = 0.399903438504; double a3 = 5.75885480458; double a4 = 29.8213557808; double a5 = 2.62433121679; double a6 = 48.6959930692; double a7 = 5.92885724438; double b0 = 0.398942280385; double b1 = 3.8052E-08; double b2 = 1.00000615302; double b3 = 3.98064794E-04; double b4 = 1.98615381364; double b5 = 0.151679116635; double b6 = 5.29330324926; double b7 = 4.8385912808; double b8 = 15.1508972451; double b9 = 0.742380924027; double b10 = 30.789933034; double b11 = 3.99019417011; double cdf; double q; double y; // // |X| <= 1.28. // if ( fabs ( x ) <= 1.28 ) { y = 0.5 * x * x; q = 0.5 - fabs ( x ) * ( a1 - a2 * y / ( y + a3 - a4 / ( y + a5 + a6 / ( y + a7 ) ) ) ); // // 1.28 < |X| <= 12.7 // } else if ( fabs ( x ) <= 12.7 ) { y = 0.5 * x * x; q = exp ( - y ) * b0 / ( fabs ( x ) - b1 + b2 / ( fabs ( x ) + b3 + b4 / ( fabs ( x ) - b5 + b6 / ( fabs ( x ) + b7 - b8 / ( fabs ( x ) + b9 + b10 / ( fabs ( x ) + b11 ) ) ) ) ) ); // // 12.7 < |X| // } else { q = 0.0; } // // Take account of negative X. // if ( x < 0.0 ) { cdf = q; } else { cdf = 1.0 - q; } return cdf; } //****************************************************************************80 double normal_01_cdf_inv ( double p ) //****************************************************************************80 // // Purpose: // // NORMAL_01_CDF_INV inverts the standard normal CDF. // // Discussion: // // The result is accurate to about 1 part in 10**16. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 December 2004 // // Author: // // Original FORTRAN77 version by Michael Wichura. // C++ version by John Burkardt. // // Reference: // // Michael Wichura, // The Percentage Points of the Normal Distribution, // Algorithm AS 241, // Applied Statistics, // Volume 37, Number 3, pages 477-484, 1988. // // Parameters: // // Input, double P, the value of the cumulative probability // densitity function. 0 < P < 1. If P is outside this range, an // "infinite" value is returned. // // Output, double NORMAL_01_CDF_INV, the normal deviate value // with the property that the probability of a standard normal deviate being // less than or equal to this value is P. // { double a[8] = { 3.3871328727963666080, 1.3314166789178437745E+2, 1.9715909503065514427E+3, 1.3731693765509461125E+4, 4.5921953931549871457E+4, 6.7265770927008700853E+4, 3.3430575583588128105E+4, 2.5090809287301226727E+3 }; double b[8] = { 1.0, 4.2313330701600911252E+1, 6.8718700749205790830E+2, 5.3941960214247511077E+3, 2.1213794301586595867E+4, 3.9307895800092710610E+4, 2.8729085735721942674E+4, 5.2264952788528545610E+3 }; double c[8] = { 1.42343711074968357734, 4.63033784615654529590, 5.76949722146069140550, 3.64784832476320460504, 1.27045825245236838258, 2.41780725177450611770E-1, 2.27238449892691845833E-2, 7.74545014278341407640E-4 }; double const1 = 0.180625; double const2 = 1.6; double d[8] = { 1.0, 2.05319162663775882187, 1.67638483018380384940, 6.89767334985100004550E-1, 1.48103976427480074590E-1, 1.51986665636164571966E-2, 5.47593808499534494600E-4, 1.05075007164441684324E-9 }; double e[8] = { 6.65790464350110377720, 5.46378491116411436990, 1.78482653991729133580, 2.96560571828504891230E-1, 2.65321895265761230930E-2, 1.24266094738807843860E-3, 2.71155556874348757815E-5, 2.01033439929228813265E-7 }; double f[8] = { 1.0, 5.99832206555887937690E-1, 1.36929880922735805310E-1, 1.48753612908506148525E-2, 7.86869131145613259100E-4, 1.84631831751005468180E-5, 1.42151175831644588870E-7, 2.04426310338993978564E-15 }; double q; double r; double split1 = 0.425; double split2 = 5.0; double value; if ( p <= 0.0 ) { value = -r8_huge ( ); return value; } if ( 1.0 <= p ) { value = r8_huge ( ); return value; } q = p - 0.5; if ( fabs ( q ) <= split1 ) { r = const1 - q * q; value = q * r8poly_value_horner ( 7, a, r ) / r8poly_value_horner ( 7, b, r ); } else { if ( q < 0.0 ) { r = p; } else { r = 1.0 - p; } if ( r <= 0.0 ) { value = r8_huge ( ); } else { r = sqrt ( - log ( r ) ); if ( r <= split2 ) { r = r - const2; value = r8poly_value_horner ( 7, c, r ) / r8poly_value_horner ( 7, d, r ); } else { r = r - split2; value = r8poly_value_horner ( 7, e, r ) / r8poly_value_horner ( 7, f, r ); } } if ( q < 0.0 ) { value = - value; } } return value; } //****************************************************************************80 void normal_01_cdf_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // NORMAL_01_CDF_VALUES returns some values of the Normal 01 CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = NormalDistribution [ 0, 1 ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 17 static double fx_vec[N_MAX] = { 0.5000000000000000E+00, 0.5398278372770290E+00, 0.5792597094391030E+00, 0.6179114221889526E+00, 0.6554217416103242E+00, 0.6914624612740131E+00, 0.7257468822499270E+00, 0.7580363477769270E+00, 0.7881446014166033E+00, 0.8159398746532405E+00, 0.8413447460685429E+00, 0.9331927987311419E+00, 0.9772498680518208E+00, 0.9937903346742239E+00, 0.9986501019683699E+00, 0.9997673709209645E+00, 0.9999683287581669E+00 }; static double x_vec[N_MAX] = { 0.0000000000000000E+00, 0.1000000000000000E+00, 0.2000000000000000E+00, 0.3000000000000000E+00, 0.4000000000000000E+00, 0.5000000000000000E+00, 0.6000000000000000E+00, 0.7000000000000000E+00, 0.8000000000000000E+00, 0.9000000000000000E+00, 0.1000000000000000E+01, 0.1500000000000000E+01, 0.2000000000000000E+01, 0.2500000000000000E+01, 0.3000000000000000E+01, 0.3500000000000000E+01, 0.4000000000000000E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double normal_01_mean ( ) //****************************************************************************80 // // Purpose: // // NORMAL_01_MEAN returns the mean of the Normal 01 PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 September 2004 // // Author: // // John Burkardt // // Parameters: // // Output, double MEAN, the mean of the PDF. // { double mean; mean = 0.0; return mean; } //****************************************************************************80 double normal_01_moment ( int order ) //****************************************************************************80 // // Purpose: // // NORMAL_01_MOMENT evaluates moments of the Normal 01 PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order of the moment. // 0 <= ORDER. // // Output, double NORMAL_01_MOMENT, the value of the moment. // { double value; if ( ( order % 2 ) == 0 ) { value = r8_factorial2 ( order - 1 ); } else { value = 0.0; } return value; } //****************************************************************************80 double normal_01_pdf ( double x ) //****************************************************************************80 // // Purpose: // // NORMAL_01_PDF evaluates the Normal 01 PDF. // // Discussion: // // The Normal 01 PDF is also called the "Standard Normal" PDF, or // the Normal PDF with 0 mean and standard deviation 1. // // PDF(X) = exp ( - 0.5 * X^2 ) / sqrt ( 2 * PI ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the argument of the PDF. // // Output, double PDF, the value of the PDF. // { double pdf; const double r8_pi = 3.14159265358979323; pdf = exp ( -0.5 * x * x ) / sqrt ( 2.0 * r8_pi ); return pdf; } //****************************************************************************80 double normal_01_sample ( int &seed ) //****************************************************************************80 // // Purpose: // // NORMAL_01_SAMPLE samples the standard normal probability distribution. // // Discussion: // // The standard normal probability distribution function (PDF) has // mean 0 and standard deviation 1. // // The Box-Muller method is used, which is efficient, but // generates two values at a time. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &SEED, a seed for the random number generator. // // Output, double NORMAL_01_SAMPLE, a normally distributed random value. // { double r1; double r2; const double r8_pi = 3.14159265358979323; double x; r1 = r8_uniform_01 ( seed ); r2 = r8_uniform_01 ( seed ); x = sqrt ( -2.0 * log ( r1 ) ) * cos ( 2.0 * r8_pi * r2 ); return x; } //****************************************************************************80 double normal_01_variance ( ) //****************************************************************************80 // // Purpose: // // NORMAL_01_VARIANCE returns the variance of the Normal 01 PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 September 2004 // // Author: // // John Burkardt // // Parameters: // // Output, double VARIANCE, the variance of the PDF. // { double variance; variance = 1.0; return variance; } //****************************************************************************80 double normal_ms_cdf ( double x, double mu, double sigma ) //****************************************************************************80 // // Purpose: // // NORMAL_MS_CDF evaluates the Normal CDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the argument of the CDF. // // Input, double MU, SIGMA, the parameters of the PDF. // 0.0 < SIGMA. // // Output, double NORMAL_MS_CDF, the value of the CDF. // { double cdf; double y; y = ( x - mu ) / sigma; cdf = normal_01_cdf ( y ); return cdf; } //****************************************************************************80 double normal_ms_cdf_inv ( double cdf, double mu, double sigma ) //****************************************************************************80 // // Purpose: // // NORMAL_MS_CDF_INV inverts the Normal CDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 September 2004 // // Author: // // John Burkardt // // Reference: // // Algorithm AS 111, // Applied Statistics, // Volume 26, pages 118-121, 1977. // // Parameters: // // Input, double CDF, the value of the CDF. // 0.0 <= CDF <= 1.0. // // Input, double MU, SIGMA, the parameters of the PDF. // 0.0 < SIGMA. // // Output, double NORMAL_MS_CDF_INV, the corresponding argument. // { double x; double x2; if ( cdf < 0.0 || 1.0 < cdf ) { cout << "\n"; cout << "NORMAL_MS_CDF_INV - Fatal error!\n"; cout << " CDF < 0 or 1 < CDF.\n"; exit ( 1 ); } x2 = normal_01_cdf_inv ( cdf ); x = mu + sigma * x2; return x; } //****************************************************************************80 double normal_ms_mean ( double mu, double sigma ) //****************************************************************************80 // // Purpose: // // NORMAL_MS_MEAN returns the mean of the Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double MU, SIGMA, the parameters of the PDF. // 0.0 < SIGMA. // // Output, double NORMAL_MS_MEAN, the mean of the PDF. // { double mean; mean = mu; return mean; } //****************************************************************************80 double normal_ms_moment ( int order, double mu, double sigma ) //****************************************************************************80 // // Purpose: // // NORMAL_MS_MOMENT evaluates moments of the Normal PDF. // // Discussion: // // The formula was posted by John D Cook. // // Order Moment // ----- ------ // 0 1 // 1 mu // 2 mu^2 + sigma^2 // 3 mu^3 + 3 mu sigma^2 // 4 mu^4 + 6 mu^2 sigma^2 + 3 sigma^4 // 5 mu^5 + 10 mu^3 sigma^2 + 15 mu sigma^4 // 6 mu^6 + 15 mu^4 sigma^2 + 45 mu^2 sigma^4 + 15 sigma^6 // 7 mu^7 + 21 mu^5 sigma^2 + 105 mu^3 sigma^4 + 105 mu sigma^6 // 8 mu^8 + 28 mu^6 sigma^2 + 210 mu^4 sigma^4 + 420 mu^2 sigma^6 // + 105 sigma^8 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order of the moment. // 0 <= ORDER. // // Input, double MU, the mean of the distribution. // // Input, double SIGMA, the standard deviation of the distribution. // // Output, double NORMAL_MS_MOMENT, the value of the central moment. // { int j; int j_hi; double value; j_hi = ( order / 2 ); value = 0.0; for ( j = 0; j <= j_hi; j++ ) { value = value + r8_choose ( order, 2 * j ) * r8_factorial2 ( 2 * j - 1 ) * pow ( mu, order - 2 * j ) * pow ( sigma, 2 * j ); } return value; } //****************************************************************************80 double normal_ms_moment_central ( int order, double mu, double sigma ) //****************************************************************************80 // // Purpose: // // NORMAL_MS_MOMENT_CENTRAL evaluates central moments of the Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order of the moment. // 0 <= ORDER. // // Input, double MU, the mean of the distribution. // // Input, double SIGMA, the standard deviation of the distribution. // // Output, double NORMAL_MS_MOMENT_CENTRAL, the value of the central moment. // { double value; if ( ( order % 2 ) == 0 ) { value = r8_factorial2 ( order - 1 ) * pow ( sigma, order ); } else { value = 0.0; } return value; } //****************************************************************************80 double normal_ms_moment_central_values ( int order, double mu, double sigma ) //****************************************************************************80 // // Purpose: // // NORMAL_MS_MOMENT_CENTRAL_VALUES: moments 0 through 10 of the Normal PDF. // // Discussion: // // The formula was posted by John D Cook. // // Order Moment // ----- ------ // 0 1 // 1 0 // 2 sigma^2 // 3 0 // 4 3 sigma^4 // 5 0 // 6 15 sigma^6 // 7 0 // 8 105 sigma^8 // 9 0 // 10 945 sigma^10 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order of the moment. // 0 <= ORDER <= 10. // // Input, double MU, the mean of the distribution. // // Input, double SIGMA, the standard deviation of the distribution. // // Output, double NORMAL_MS_MOMENT_CENTRAL_VALUES, the value of the // central moment. // { double value; if ( order == 0 ) { value = 1.0; } else if ( order == 1 ) { value = 0.0; } else if ( order == 2 ) { value = pow ( sigma, 2 ); } else if ( order == 3 ) { value = 0.0; } else if ( order == 4 ) { value = 3.0 * pow ( sigma, 4 ); } else if ( order == 5 ) { value = 0.0; } else if ( order == 6 ) { value = 15.0 * pow ( sigma, 6 ); } else if ( order == 7 ) { value = 0.0; } else if ( order == 8 ) { value = 105.0 * pow ( sigma, 8 ); } else if ( order == 9 ) { value = 0.0; } else if ( order == 10 ) { value = 945.0 * pow ( sigma, 10 ); } else { cerr << "\n"; cerr << "NORMAL_MS_MOMENT_CENTRAL_VALUES - Fatal error!\n"; cerr << " Only ORDERS 0 through 10 are available.\n"; exit ( 1 ); } return value; } //****************************************************************************80 double normal_ms_moment_values ( int order, double mu, double sigma ) //****************************************************************************80 // // Purpose: // // NORMAL_MS_MOMENT_VALUES evaluates moments 0 through 8 of the Normal PDF. // // Discussion: // // The formula was posted by John D Cook. // // Order Moment // ----- ------ // 0 1 // 1 mu // 2 mu^2 + sigma^2 // 3 mu^3 + 3 mu sigma^2 // 4 mu^4 + 6 mu^2 sigma^2 + 3 sigma^4 // 5 mu^5 + 10 mu^3 sigma^2 + 15 mu sigma^4 // 6 mu^6 + 15 mu^4 sigma^2 + 45 mu^2 sigma^4 + 15 sigma^6 // 7 mu^7 + 21 mu^5 sigma^2 + 105 mu^3 sigma^4 + 105 mu sigma^6 // 8 mu^8 + 28 mu^6 sigma^2 + 210 mu^4 sigma^4 + 420 mu^2 sigma^6 // + 105 sigma^8 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order of the moment. // 0 <= ORDER <= 8. // // Input, double MU, the mean of the distribution. // // Input, double SIGMA, the standard deviation of the distribution. // // Output, double NORMAL_MS_MOMENT_VALUES, the value of the central moment. // { double value; if ( order == 0 ) { value = 1.0; } else if ( order == 1 ) { value = mu; } else if ( order == 2 ) { value = pow ( mu, 2 ) + pow ( sigma, 2 ); } else if ( order == 3 ) { value = pow ( mu, 3 ) + 3.0 * mu * pow ( sigma, 2 ); } else if ( order == 4 ) { value = pow ( mu, 4 ) + 6.0 * pow ( mu, 2 ) * pow ( sigma, 2 ) + 3.0 * pow ( sigma, 4 ); } else if ( order == 5 ) { value = pow ( mu, 5 ) + 10.0 * pow ( mu, 3 ) * pow ( sigma, 2 ) + 15.0 * mu * pow ( sigma, 4 ); } else if ( order == 6 ) { value = pow ( mu, 6 ) + 15.0 * pow ( mu, 4 ) * pow ( sigma, 2 ) + 45.0 * pow ( mu, 2 ) * pow ( sigma, 4 ) + 15.0 * pow ( sigma, 6 ); } else if ( order == 7 ) { value = pow ( mu, 7 ) + 21.0 * pow ( mu, 5 ) * pow ( sigma, 2 ) + 105.0 * pow ( mu, 3 ) * pow ( sigma, 4 ) + 105.0 * mu * pow ( sigma, 6 ); } else if ( order == 8 ) { value = pow ( mu, 8 ) + 28.0 * pow ( mu, 6 ) * pow ( sigma, 2 ) + 210.0 * pow ( mu, 4 ) * pow ( sigma, 4 ) + 420.0 * pow ( mu, 2 ) * pow ( sigma, 6 ) + 105.0 * pow ( sigma, 8 ); } else { cerr << "\n"; cerr << "NORMAL_MS_MOMENT_VALUES - Fatal error!\n"; cerr << " Only ORDERS 0 through 8 are available.\n"; exit ( 1 ); } return value; } //****************************************************************************80 double normal_ms_pdf ( double x, double mu, double sigma ) //****************************************************************************80 // // Purpose: // // NORMAL_MS_PDF evaluates the Normal PDF. // // Discussion: // // PDF(MU,SIGMA;X) // = exp ( - 0.5 * ( ( X - MU ) / SIGMA )^2 ) // / ( SIGMA * SQRT ( 2 * PI ) ) // // The normal PDF is also known as the Gaussian PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the argument of the PDF. // // Input, double MU, SIGMA, the parameters of the PDF. // 0.0 < SIGMA. // // Output, double NORMAL_MS_PDF, the value of the PDF. // { double pdf; const double r8_pi = 3.14159265358979323; double y; y = ( x - mu ) / sigma; pdf = exp ( - 0.5 * y * y ) / ( sigma * sqrt ( 2.0 * r8_pi ) ); return pdf; } //****************************************************************************80 double normal_ms_sample ( double mu, double sigma, int &seed ) //****************************************************************************80 // // Purpose: // // NORMAL_MS_SAMPLE samples the Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 November 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double MU, SIGMA, the parameters of the PDF. // 0.0 < SIGMA. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double NORMAL_MS_SAMPLE, a sample of the PDF. // { double x; x = normal_01_sample ( seed ); x = mu + sigma * x; return x; } //****************************************************************************80 double normal_ms_variance ( double mu, double sigma ) //****************************************************************************80 // // Purpose: // // NORMAL_MS_VARIANCE returns the variance of the Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double MU, SIGMA, the parameters of the PDF. // 0.0 < SIGMA. // // Output, double NORMAL_MS_VARIANCE, the variance of the PDF. // { double variance; variance = sigma * sigma; return variance; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = x; } else { value = -x; } return value; } //****************************************************************************80 double r8_choose ( int n, int k ) //****************************************************************************80 // // Purpose: // // R8_CHOOSE computes the binomial coefficient C(N,K) as an R8. // // Discussion: // // The value is calculated in such a way as to avoid overflow and // roundoff. The calculation is done in R8 arithmetic. // // The formula used is: // // C(N,K) = N! / ( K! * (N-K)! ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 June 2013 // // Author: // // John Burkardt // // Reference: // // ML Wolfson, HV Wright, // Algorithm 160: // Combinatorial of M Things Taken N at a Time, // Communications of the ACM, // Volume 6, Number 4, April 1963, page 161. // // Parameters: // // Input, int N, K, the values of N and K. // // Output, double R8_CHOOSE, the number of combinations of N // things taken K at a time. // { int i; int mn; int mx; double value; if ( k < n - k ) { mn = k; mx = n - k; } else { mn = n - k; mx = k; } if ( mn < 0 ) { value = 0.0; } else if ( mn == 0 ) { value = 1.0; } else { value = ( double ) ( mx + 1 ); for ( i = 2; i <= mn; i++ ) { value = ( value * ( double ) ( mx + i ) ) / ( double ) i; } } return value; } //****************************************************************************80 double r8_factorial2 ( int n ) //****************************************************************************80 // // Purpose: // // R8_FACTORIAL2 computes the double factorial function. // // Discussion: // // FACTORIAL2( N ) = Product ( N * (N-2) * (N-4) * ... * 2 ) (N even) // = Product ( N * (N-2) * (N-4) * ... * 1 ) (N odd) // // Example: // // N Value // // 0 1 // 1 1 // 2 2 // 3 3 // 4 8 // 5 15 // 6 48 // 7 105 // 8 384 // 9 945 // 10 3840 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 January 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the double factorial // function. If N is less than 1, R8_FACTORIAL2 is returned as 1.0. // // Output, double R8_FACTORIAL2, the value of Factorial2(N). // { int n_copy; double value; value = 1.0; if ( n < 1 ) { return value; } n_copy = n; while ( 1 < n_copy ) { value = value * ( double ) n_copy; n_copy = n_copy - 2; } return value; } //****************************************************************************80 void r8_factorial2_values ( int &n_data, int &n, double &f ) //****************************************************************************80 // // Purpose: // // R8_FACTORIAL2_VALUES returns values of the double factorial function. // // Formula: // // FACTORIAL2( N ) = Product ( N * (N-2) * (N-4) * ... * 2 ) (N even) // = Product ( N * (N-2) * (N-4) * ... * 1 ) (N odd) // // In Mathematica, the function can be evaluated by: // // n!! // // Example: // // N N!! // // 0 1 // 1 1 // 2 2 // 3 3 // 4 8 // 5 15 // 6 48 // 7 105 // 8 384 // 9 945 // 10 3840 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 February 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, page 16. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the argument of the function. // // Output, double &F, the value of the function. // { # define N_MAX 16 static double f_vec[N_MAX] = { 1.0, 1.0, 2.0, 3.0, 8.0, 15.0, 48.0, 105.0, 384.0, 945.0, 3840.0, 10395.0, 46080.0, 135135.0, 645120.0, 2027025.0 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; f = 0.0; } else { n = n_vec[n_data-1]; f = f_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // HUGE_VAL is the largest representable legal real number, and is usually // defined in math.h, or sometimes in stdlib.h. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 May 2003 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" real value. // { return HUGE_VAL; } //****************************************************************************80 double r8_log_2 ( double x ) //****************************************************************************80 // // Purpose: // // R8_LOG_2 returns the logarithm base 2 of the absolute value of an R8. // // Discussion: // // value = Log ( |X| ) / Log ( 2.0 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number whose base 2 logarithm is desired. // X should not be 0. // // Output, double R8_LOG_2, the logarithm base 2 of the absolute // value of X. It should be true that |X| = 2^R_LOG_2. // { double value; if ( x == 0.0 ) { value = - r8_huge ( ); } else { value = log ( fabs ( x ) ) / log ( 2.0 ); } return value; } //****************************************************************************80 double r8_mop ( int i ) //****************************************************************************80 // // Purpose: // // R8_MOP returns the I-th power of -1 as an R8 value. // // Discussion: // // An R8 is an double value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the power of -1. // // Output, double R8_MOP, the I-th power of -1. // { double value; if ( ( i % 2 ) == 0 ) { value = 1.0; } else { value = -1.0; } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = 16807 * seed mod ( 2^31 - 1 ) // unif = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, strictly between // 0 and 1. // { int k; double r; k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 void r8poly_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8POLY_PRINT prints out a polynomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 February 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of A. // // Input, double A[N+1], the polynomial coefficients. // A(0) is the constant term and // A(N) is the coefficient of X^N. // // Input, string TITLE, a title. // { int i; double mag; int n2; char plus_minus; cout << "\n"; cout << title << "\n"; cout << "\n"; if ( n <= 0 ) { cout << " p(x) = 0\n"; return; } if ( a[n] < 0.0 ) { plus_minus = '-'; } else { plus_minus = ' '; } mag = fabs ( a[n] ); if ( 2 <= n ) { cout << " p(x) = " << plus_minus << setw(14) << mag << " * x ^ " << n << "\n"; } else if ( n == 1 ) { cout << " p(x) = " << plus_minus << setw(14) << mag << " * x\n"; } else if ( n == 0 ) { cout << " p(x) = " << plus_minus << setw(14) << mag << "\n"; } for ( i = n - 1; 0 <= i; i-- ) { if ( a[i] < 0.0 ) { plus_minus = '-'; } else { plus_minus = '+'; } mag = fabs ( a[i] ); if ( mag != 0.0 ) { if ( 2 <= i ) { cout << " " << plus_minus << setw(14) << mag << " * x ^ " << i << "\n"; } else if ( i == 1 ) { cout << " " << plus_minus << setw(14) << mag << " * x\n"; } else if ( i == 0 ) { cout << " " << plus_minus << setw(14) << mag << "\n"; } } } return; } //****************************************************************************80 double r8poly_value_horner ( int m, double c[], double x ) //****************************************************************************80 // // Purpose: // // R8POLY_VALUE_HORNER evaluates a polynomial using Horner's method. // // Discussion: // // The polynomial // // p(x) = c0 + c1 * x + c2 * x^2 + ... + cm * x^m // // is to be evaluated at the value X. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 January 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the degree of the polynomial. // // Input, double C[M+1], the coefficients of the polynomial. // A[0] is the constant term. // // Input, double X, the point at which the polynomial is to be evaluated. // // Output, double R8POLY_VALUE_HORNER, the value of the polynomial at X. // { int i; double value; value = c[m]; for ( i = m - 1; 0 <= i; i-- ) { value = value * x + c[i]; } return value; } //****************************************************************************80 double *r8vec_linspace_new ( int n, double a_first, double a_last ) //****************************************************************************80 // // Purpose: // // R8VEC_LINSPACE_NEW creates a vector of linearly spaced values. // // Discussion: // // An R8VEC is a vector of R8's. // // 4 points evenly spaced between 0 and 12 will yield 0, 4, 8, 12. // // In other words, the interval is divided into N-1 even subintervals, // and the endpoints of intervals are used as the points. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A_FIRST, A_LAST, the first and last entries. // // Output, double R8VEC_LINSPACE_NEW[N], a vector of linearly spaced data. // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = ( a_first + a_last ) / 2.0; } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - 1 - i ) * a_first + ( double ) ( i ) * a_last ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 double r8vec_max ( int n, double *dvec ) //****************************************************************************80 // // Purpose: // // R8VEC_MAX returns the value of the maximum element in an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double *RVEC, a pointer to the first entry of the array. // // Output, double R8VEC_MAX, the value of the maximum element. This // is set to 0.0 if N <= 0. // { int i; double rmax; double *r8vec_pointer; if ( n <= 0 ) { return 0.0; } for ( i = 0; i < n; i++ ) { if ( i == 0 ) { rmax = *dvec; r8vec_pointer = dvec; } else { r8vec_pointer++; if ( rmax < *r8vec_pointer ) { rmax = *r8vec_pointer; } } } return rmax; } //****************************************************************************80 double r8vec_mean ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MEAN returns the mean of an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double X[N], the vector whose mean is desired. // // Output, double R8VEC_MEAN, the mean, or average, of the vector entries. // { int i; double mean; mean = 0.0; for ( i = 0; i < n; i++ ) { mean = mean + x[i]; } mean = mean / ( double ) n; return mean; } //****************************************************************************80 double r8vec_min ( int n, double *dvec ) //****************************************************************************80 // // Purpose: // // R8VEC_MIN returns the value of the minimum element in an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double *RVEC, a pointer to the first entry of the array. // // Output, double R8VEC_MIN, the value of the minimum element. This // is set to 0.0 if N <= 0. // { int i; double rmin; double *r8vec_pointer; if ( n <= 0 ) { return 0.0; } for ( i = 0; i < n; i++ ) { if ( i == 0 ) { rmin = *dvec; r8vec_pointer = dvec; } else { r8vec_pointer++; if ( *r8vec_pointer < rmin ) { rmin = *r8vec_pointer; } } } return rmin; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double r8vec_variance ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_VARIANCE returns the variance of an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double X[N], the vector whose variance is desired. // // Output, double R8VEC_VARIANCE, the variance of the vector entries. // { int i; double mean; double variance; mean = r8vec_mean ( n, x ); variance = 0.0; for ( i = 0; i < n; i++ ) { variance = variance + ( x[i] - mean ) * ( x[i] - mean ); } if ( 1 < n ) { variance = variance / ( double ) ( n - 1 ); } else { variance = 0.0; } return variance; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double truncated_normal_ab_cdf ( double x, double mu, double sigma, double a, double b ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_AB_CDF evaluates the truncated Normal CDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the argument of the CDF. // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double A, B, the lower and upper truncation limits. // // Output, double TRUNCATED_NORMAL_AB_CDF, the value of the CDF. // { double alpha; double alpha_cdf; double beta; double beta_cdf; double cdf; double xi; double xi_cdf; alpha = ( a - mu ) / sigma; beta = ( b - mu ) / sigma; xi = ( x - mu ) / sigma; alpha_cdf = normal_01_cdf ( alpha ); beta_cdf = normal_01_cdf ( beta ); xi_cdf = normal_01_cdf ( xi ); cdf = ( xi_cdf - alpha_cdf ) / ( beta_cdf - alpha_cdf ); return cdf; } //****************************************************************************80 void truncated_normal_ab_cdf_values ( int &n_data, double &mu, double &sigma, double &a, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_AB_CDF_VALUES: values of the Truncated Normal CDF. // // Discussion: // // The Normal distribution, with mean Mu and standard deviation Sigma, // is truncated to the interval [A,B]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 September 2013 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &A, &B, the lower and upper truncation limits. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double a_vec[N_MAX] = { 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0 }; static double b_vec[N_MAX] = { 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0 }; static double fx_vec[N_MAX] = { 0.3371694242213513, 0.3685009225506048, 0.4006444233448185, 0.4334107066903040, 0.4665988676496338, 0.5000000000000000, 0.5334011323503662, 0.5665892933096960, 0.5993555766551815, 0.6314990774493952, 0.6628305757786487 }; static double mu_vec[N_MAX] = { 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 }; static double sigma_vec[N_MAX] = { 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 }; static double x_vec[N_MAX] = { 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double truncated_normal_ab_cdf_inv ( double cdf, double mu, double sigma, double a, double b ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_AB_CDF_INV inverts the truncated Normal CDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double CDF, the value of the CDF. // 0.0 <= CDF <= 1.0. // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double A, B, the lower and upper truncation limits. // // Output, double TRUNCATED_NORMAL_AB_CDF_INV, the corresponding argument. // { double alpha; double alpha_cdf; double beta; double beta_cdf; double x; double xi; double xi_cdf; if ( cdf < 0.0 || 1.0 < cdf ) { cerr << "\n"; cerr << "TRUNCATED_NORMAL_AB_CDF_INV - Fatal error!\n"; cerr << " CDF < 0 or 1 < CDF.\n"; exit ( 1 ); } alpha = ( a - mu ) / sigma; beta = ( b - mu ) / sigma; alpha_cdf = normal_01_cdf ( alpha ); beta_cdf = normal_01_cdf ( beta ); xi_cdf = ( beta_cdf - alpha_cdf ) * cdf + alpha_cdf; xi = normal_01_cdf_inv ( xi_cdf ); x = mu + sigma * xi; return x; } //****************************************************************************80 double truncated_normal_ab_mean ( double mu, double sigma, double a, double b ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_AB_MEAN returns the mean of the truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double A, B, the lower and upper truncation limits. // // Output, double TRUNCATED_NORMAL_AB_MEAN, the mean of the PDF. // { double alpha; double alpha_cdf; double alpha_pdf; double beta; double beta_cdf; double beta_pdf; double mean; alpha = ( a - mu ) / sigma; beta = ( b - mu ) / sigma; alpha_cdf = normal_01_cdf ( alpha ); beta_cdf = normal_01_cdf ( beta ); alpha_pdf = normal_01_pdf ( alpha ); beta_pdf = normal_01_pdf ( beta ); mean = mu + sigma * ( alpha_pdf - beta_pdf ) / ( beta_cdf - alpha_cdf ); return mean; } //****************************************************************************80 double truncated_normal_ab_moment ( int order, double mu, double sigma, double a, double b ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_AB_MOMENT: moments of the truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2013 // // Author: // // John Burkardt // // Reference: // // Phoebus Dhrymes, // Moments of Truncated Normal Distributions, // May 2005. // // Parameters: // // Input, int ORDER, the order of the moment. // 0 <= ORDER. // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // 0.0 < S. // // Input, double A, B, the lower and upper truncation limits. // A < B. // // Output, double TRUNCATED_NORMAL_AB_MOMENT, the moment of the PDF. // { double a_cdf; double a_h; double a_pdf; double b_cdf; double b_h; double b_pdf; double ir; double irm1; double irm2; double moment; int r; if ( order < 0 ) { cerr << "\n"; cerr << "TRUNCATED_NORMAL_AB_MOMENT - Fatal error!\n"; cerr << " ORDER < 0.\n"; exit ( 1 ); } if ( sigma <= 0.0 ) { cerr << "\n"; cerr << "TRUNCATED_NORMAL_AB_MOMENT - Fatal error!\n"; cerr << " SIGMA <= 0.0.\n"; exit ( 1 ); } if ( b <= a ) { cerr << "\n"; cerr << "TRUNCATED_NORMAL_AB_MOMENT - Fatal error!\n"; cerr << " B <= A.\n"; exit ( 1 ); } a_h = ( a - mu ) / sigma; a_pdf = normal_01_pdf ( a_h ); a_cdf = normal_01_cdf ( a_h ); if ( a_cdf == 0.0 ) { cerr << "\n"; cerr << "TRUNCATED_NORMAL_AB_MOMENT - Fatal error!\n"; cerr << " PDF/CDF ratio fails, because A_CDF too small.\n"; cerr << " A_PDF = " << a_pdf << "\n"; cerr << " A_CDF = " << a_cdf << "\n"; exit ( 1 ); } b_h = ( b - mu ) / sigma; b_pdf = normal_01_pdf ( b_h ); b_cdf = normal_01_cdf ( b_h ); if ( b_cdf == 0.0 ) { cerr << "\n"; cerr << "TRUNCATED_NORMAL_AB_MOMENT - Fatal error!\n"; cerr << " PDF/CDF ratio fails, because B_CDF too small.\n"; cerr << " B_PDF = " << b_pdf << "\n"; cerr << " B_CDF = " << b_cdf << "\n"; exit ( 1 ); } moment = 0.0; irm2 = 0.0; irm1 = 0.0; for ( r = 0; r <= order; r++ ) { if ( r == 0 ) { ir = 1.0; } else if ( r == 1 ) { ir = - ( b_pdf - a_pdf ) / ( b_cdf - a_cdf ); } else { ir = ( double ) ( r - 1 ) * irm2 - ( pow ( b_h, r - 1 ) * b_pdf - pow ( a_h, r - 1 ) * a_pdf ) / ( b_cdf - a_cdf ); } moment = moment + r8_choose ( order, r ) * pow ( mu, order - r ) * pow ( sigma, r ) * ir; irm2 = irm1; irm1 = ir; } return moment; } //****************************************************************************80 double truncated_normal_ab_pdf ( double x, double mu, double sigma, double a, double b ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_AB_PDF evaluates the truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the argument of the PDF. // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double A, B, the lower and upper truncation limits. // // Output, double TRUNCATED_NORMAL_AB_PDF, the value of the PDF. // { double alpha; double alpha_cdf; double beta; double beta_cdf; double pdf; double xi; double xi_pdf; alpha = ( a - mu ) / sigma; beta = ( b - mu ) / sigma; xi = ( x - mu ) / sigma; alpha_cdf = normal_01_cdf ( alpha ); beta_cdf = normal_01_cdf ( beta ); xi_pdf = normal_01_pdf ( xi ); pdf = xi_pdf / ( beta_cdf - alpha_cdf ) / sigma; return pdf; } //****************************************************************************80 void truncated_normal_ab_pdf_values ( int &n_data, double &mu, double &sigma, double &a, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_AB_PDF_VALUES: values of the Truncated Normal PDF. // // Discussion: // // The Normal distribution, with mean Mu and standard deviation Sigma, // is truncated to the interval [A,B]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 September 2013 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &A, &B, the lower and upper truncation limits. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double a_vec[N_MAX] = { 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0 }; static double b_vec[N_MAX] = { 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0 }; static double fx_vec[N_MAX] = { 0.01543301171801836, 0.01588394472270638, 0.01624375997031919, 0.01650575046469259, 0.01666496869385951, 0.01671838200940538, 0.01666496869385951, 0.01650575046469259, 0.01624375997031919, 0.01588394472270638, 0.01543301171801836 }; static double mu_vec[N_MAX] = { 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 }; static double sigma_vec[N_MAX] = { 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 }; static double x_vec[N_MAX] = { 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double truncated_normal_ab_sample ( double mu, double sigma, double a, double b, int &seed ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_AB_SAMPLE samples the truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double A, B, the lower and upper truncation limits. // // Input/output, int &SEED, a seed for the random number // generator. // // Output, double TRUNCATED_NORMAL_AB_SAMPLE, a sample of the PDF. // { double alpha; double alpha_cdf; double beta; double beta_cdf; double u; double x; double xi; double xi_cdf; alpha = ( a - mu ) / sigma; beta = ( b - mu ) / sigma; alpha_cdf = normal_01_cdf ( alpha ); beta_cdf = normal_01_cdf ( beta ); u = r8_uniform_01 ( seed ); xi_cdf = alpha_cdf + u * ( beta_cdf - alpha_cdf ); xi = normal_01_cdf_inv ( xi_cdf ); x = mu + sigma * xi; return x; } //****************************************************************************80 double truncated_normal_ab_variance ( double mu, double sigma, double a, double b ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_AB_VARIANCE returns the variance of the truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double A, B, the lower and upper truncation limits. // // Output, double TRUNCATED_NORMAL_AB_VARIANCE, the variance of the PDF. // { double alpha; double alpha_cdf; double alpha_pdf; double beta; double beta_cdf; double beta_pdf; double variance; alpha = ( a - mu ) / sigma; beta = ( b - mu ) / sigma; alpha_pdf = normal_01_pdf ( alpha ); beta_pdf = normal_01_pdf ( beta ); alpha_cdf = normal_01_cdf ( alpha ); beta_cdf = normal_01_cdf ( beta ); variance = sigma * sigma * ( 1.0 + ( alpha * alpha_pdf - beta * beta_pdf ) / ( beta_cdf - alpha_cdf ) - pow ( ( alpha_pdf - beta_pdf ) / ( beta_cdf - alpha_cdf ), 2 ) ); return variance; } //****************************************************************************80 double truncated_normal_a_cdf ( double x, double mu, double sigma, double a ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_A_CDF evaluates the lower truncated Normal CDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the argument of the CDF. // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double A, the lower truncation limit. // // Output, double TRUNCATED_NORMAL_A_CDF, the value of the CDF. // { double alpha; double alpha_cdf; double cdf; double xi; double xi_cdf; alpha = ( a - mu ) / sigma; xi = ( x - mu ) / sigma; alpha_cdf = normal_01_cdf ( alpha ); xi_cdf = normal_01_cdf ( xi ); cdf = ( xi_cdf - alpha_cdf ) / ( 1.0 - alpha_cdf ); return cdf; } //****************************************************************************80 void truncated_normal_a_cdf_values ( int &n_data, double &mu, double &sigma, double &a, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_A_CDF_VALUES: values of the Lower Truncated Normal CDF. // // Discussion: // // The Normal distribution, with mean Mu and standard deviation Sigma, // is truncated to the interval [A,+oo). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 September 2013 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &A, the lower truncation limit. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double a_vec[N_MAX] = { 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0 }; static double fx_vec[N_MAX] = { 0.3293202045481688, 0.3599223134505957, 0.3913175216041539, 0.4233210140873113, 0.4557365629792204, 0.4883601253415709, 0.5209836877039214, 0.5533992365958304, 0.5854027290789878, 0.6167979372325460, 0.6474000461349729 }; static double mu_vec[N_MAX] = { 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 }; static double sigma_vec[N_MAX] = { 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 }; static double x_vec[N_MAX] = { 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double truncated_normal_a_cdf_inv ( double cdf, double mu, double sigma, double a ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_A_CDF_INV inverts the lower truncated Normal CDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double CDF, the value of the CDF. // 0.0 <= CDF <= 1.0. // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double A, the lower truncation limit. // // Output, double TRUNCATED_NORMAL_A_CDF_INV, the corresponding argument. // { double alpha; double alpha_cdf; double x; double xi; double xi_cdf; if ( cdf < 0.0 || 1.0 < cdf ) { cerr << "\n"; cerr << "TRUNCATED_NORMAL_A_CDF_INV - Fatal error!\n"; cerr << " CDF < 0 or 1 < CDF.\n"; exit ( 1 ); } alpha = ( a - mu ) / sigma; alpha_cdf = normal_01_cdf ( alpha ); xi_cdf = ( 1.0 - alpha_cdf ) * cdf + alpha_cdf; xi = normal_01_cdf_inv ( xi_cdf ); x = mu + sigma * xi; return x; } //****************************************************************************80 double truncated_normal_a_mean ( double mu, double sigma, double a ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_A_MEAN returns the mean of the lower truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double A, the lower truncation limit. // // Output, double TRUNCATED_NORMAL_A_MEAN, the mean of the PDF. // { double alpha; double alpha_cdf; double alpha_pdf; double mean; alpha = ( a - mu ) / sigma; alpha_cdf = normal_01_cdf ( alpha ); alpha_pdf = normal_01_pdf ( alpha ); mean = mu + sigma * alpha_pdf / ( 1.0 - alpha_cdf ); return mean; } //****************************************************************************80 double truncated_normal_a_moment ( int order, double mu, double sigma, double a ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_A_MOMENT: moments of the lower truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2013 // // Author: // // John Burkardt // // Reference: // // Phoebus Dhrymes, // Moments of Truncated Normal Distributions, // May 2005. // // Parameters: // // Input, int ORDER, the order of the moment. // 0 <= ORDER. // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double A, the lower truncation limit. // // Output, double TRUNCATED_NORMAL_A_MOMENT, the moment of the PDF. // { double moment; moment = r8_mop ( order ) * truncated_normal_b_moment ( order, - mu, sigma, - a ); return moment; } //****************************************************************************80 double truncated_normal_a_pdf ( double x, double mu, double sigma, double a ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_A_PDF evaluates the lower truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the argument of the PDF. // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double A, the lower truncation limit. // // Output, double TRUNCATED_NORMAL_A_PDF, the value of the PDF. // { double alpha; double alpha_cdf; double pdf; double xi; double xi_pdf; alpha = ( a - mu ) / sigma; xi = ( x - mu ) / sigma; alpha_cdf = normal_01_cdf ( alpha ); xi_pdf = normal_01_pdf ( xi ); pdf = xi_pdf / ( 1.0 - alpha_cdf ) / sigma; return pdf; } //****************************************************************************80 void truncated_normal_a_pdf_values ( int &n_data, double &mu, double &sigma, double &a, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_A_PDF_VALUES: values of the Lower Truncated Normal PDF. // // Discussion: // // The Normal distribution, with mean Mu and standard deviation Sigma, // is truncated to the interval [A,+oo). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 September 2013 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &A, the lower truncation limit. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double a_vec[N_MAX] = { 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0 }; static double fx_vec[N_MAX] = { 0.01507373507401876, 0.01551417047139894, 0.01586560931024694, 0.01612150073158793, 0.01627701240029317, 0.01632918226724295, 0.01627701240029317, 0.01612150073158793, 0.01586560931024694, 0.01551417047139894, 0.01507373507401876 }; static double mu_vec[N_MAX] = { 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 }; static double sigma_vec[N_MAX] = { 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 }; static double x_vec[N_MAX] = { 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double truncated_normal_a_sample ( double mu, double sigma, double a, int &seed ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_A_SAMPLE samples the lower truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double A, the lower truncation limit. // // Input/output, int &SEED, a seed for the random number // generator. // // Output, double TRUNCATED_NORMAL_A_SAMPLE, a sample of the PDF. // { double alpha; double alpha_cdf; double u; double x; double xi; double xi_cdf; alpha = ( a - mu ) / sigma; alpha_cdf = normal_01_cdf ( alpha ); u = r8_uniform_01 ( seed ); xi_cdf = alpha_cdf + u * ( 1.0 - alpha_cdf ); xi = normal_01_cdf_inv ( xi_cdf ); x = mu + sigma * xi; return x; } //****************************************************************************80 double truncated_normal_a_variance ( double mu, double sigma, double a ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_A_VARIANCE: variance of the lower truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double A, the lower truncation limit. // // Output, double TRUNCATED_NORMAL_A_VARIANCE, the variance of the PDF. // { double alpha; double alpha_cdf; double alpha_pdf; double variance; alpha = ( a - mu ) / sigma; alpha_pdf = normal_01_pdf ( alpha ); alpha_cdf = normal_01_cdf ( alpha ); variance = sigma * sigma * ( 1.0 + alpha * alpha_pdf / ( 1.0 - alpha_cdf ) - pow ( alpha_pdf / ( 1.0 - alpha_cdf ), 2 ) ); return variance; } //****************************************************************************80 double truncated_normal_b_cdf ( double x, double mu, double sigma, double b ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_B_CDF evaluates the upper truncated Normal CDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the argument of the CDF. // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double B, the upper truncation limit. // // Output, double TRUNCATED_NORMAL_B_CDF, the value of the CDF. // { double beta; double beta_cdf; double cdf; double xi; double xi_cdf; beta = ( b - mu ) / sigma; xi = ( x - mu ) / sigma; beta_cdf = normal_01_cdf ( beta ); xi_cdf = normal_01_cdf ( xi ); cdf = xi_cdf / beta_cdf; return cdf; } //****************************************************************************80 void truncated_normal_b_cdf_values ( int &n_data, double &mu, double &sigma, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_B_CDF_VALUES: values of the upper Truncated Normal CDF. // // Discussion: // // The Normal distribution, with mean Mu and standard deviation Sigma, // is truncated to the interval (-oo,B]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 September 2013 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &B, the upper truncation limit. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double b_vec[N_MAX] = { 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0 }; static double fx_vec[N_MAX] = { 0.3525999538650271, 0.3832020627674540, 0.4145972709210122, 0.4466007634041696, 0.4790163122960786, 0.5116398746584291, 0.5442634370207796, 0.5766789859126887, 0.6086824783958461, 0.6400776865494043, 0.6706797954518312 }; static double mu_vec[N_MAX] = { 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 }; static double sigma_vec[N_MAX] = { 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 }; static double x_vec[N_MAX] = { 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; b = 0.0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { b = b_vec[n_data-1]; mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double truncated_normal_b_cdf_inv ( double cdf, double mu, double sigma, double b ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_B_CDF_INV inverts the upper truncated Normal CDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double CDF, the value of the CDF. // 0.0 <= CDF <= 1.0. // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double B, the upper truncation limit. // // Output, double TRUNCATED_NORMAL_B_CDF_INV, the corresponding argument. // { double beta; double beta_cdf; double x; double xi; double xi_cdf; if ( cdf < 0.0 || 1.0 < cdf ) { cerr << "\n"; cerr << "TRUNCATED_NORMAL_B_CDF_INV - Fatal error!\n"; cerr << " CDF < 0 or 1 < CDF.\n"; exit ( 1 ); } beta = ( b - mu ) / sigma; beta_cdf = normal_01_cdf ( beta ); xi_cdf = beta_cdf * cdf; xi = normal_01_cdf_inv ( xi_cdf ); x = mu + sigma * xi; return x; } //****************************************************************************80 double truncated_normal_b_mean ( double mu, double sigma, double b ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_B_MEAN returns the mean of the upper truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double B, the upper truncation limit. // // Output, double TRUNCATED_NORMAL_B_MEAN, the mean of the PDF. // { double beta; double beta_cdf; double beta_pdf; double mean; beta = ( b - mu ) / sigma; beta_cdf = normal_01_cdf ( beta ); beta_pdf = normal_01_pdf ( beta ); mean = mu - sigma * beta_pdf / beta_cdf; return mean; } //****************************************************************************80 double truncated_normal_b_moment ( int order, double mu, double sigma, double b ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_B_MOMENT: moments of the upper truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2013 // // Author: // // John Burkardt // // Reference: // // Phoebus Dhrymes, // Moments of Truncated Normal Distributions, // May 2005. // // Parameters: // // Input, int ORDER, the order of the moment. // 0 <= ORDER. // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double B, the upper truncation limit. // // Output, double TRUNCATED_NORMAL_B_MOMENT, the moment of the PDF. // { double f; double h; double h_cdf; double h_pdf; double ir; double irm1; double irm2; double moment; int r; if ( order < 0 ) { cerr << "\n"; cerr << "TRUNCATED_NORMAL_B_MOMENT - Fatal error!\n"; cerr << " ORDER < 0.\n"; exit ( 1 ); } h = ( b - mu ) / sigma; h_pdf = normal_01_pdf ( h ); h_cdf = normal_01_cdf ( h ); if ( h_cdf == 0.0 ) { cerr << "\n"; cerr << "TRUNCATED_NORMAL_B_MOMENT - Fatal error!\n"; cerr << " CDF((B-MU)/SIGMA) = 0.\n"; exit ( 1 ); } f = h_pdf / h_cdf; moment = 0.0; irm2 = 0.0; irm1 = 0.0; for ( r = 0; r <= order; r++ ) { if ( r == 0 ) { ir = 1.0; } else if ( r == 1 ) { ir = - f; } else { ir = - pow ( h, r - 1 ) * f + ( double ) ( r - 1 ) * irm2; } moment = moment + r8_choose ( order, r ) * pow ( mu, order - r ) * pow ( sigma, r ) * ir; irm2 = irm1; irm1 = ir; } return moment; } //****************************************************************************80 double truncated_normal_b_pdf ( double x, double mu, double sigma, double b ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_B_PDF evaluates the upper truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the argument of the PDF. // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double B, the upper truncation limit. // // Output, double TRUNCATED_NORMAL_B_PDF, the value of the PDF. // { double beta; double beta_cdf; double pdf; double xi; double xi_pdf; beta = ( b - mu ) / sigma; xi = ( x - mu ) / sigma; beta_cdf = normal_01_cdf ( beta ); xi_pdf = normal_01_pdf ( xi ); pdf = xi_pdf / beta_cdf / sigma; return pdf; } //****************************************************************************80 void truncated_normal_b_pdf_values ( int &n_data, double &mu, double &sigma, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_B_PDF_VALUES: values of the Upper Truncated Normal PDF. // // Discussion: // // The Normal distribution, with mean Mu and standard deviation Sigma, // is truncated to the interval (-oo,B]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 September 2013 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &B, the upper truncation limit. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double b_vec[N_MAX] = { 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0 }; static double fx_vec[N_MAX] = { 0.01507373507401876, 0.01551417047139894, 0.01586560931024694, 0.01612150073158793, 0.01627701240029317, 0.01632918226724295, 0.01627701240029317, 0.01612150073158793, 0.01586560931024694, 0.01551417047139894, 0.01507373507401876 }; static double mu_vec[N_MAX] = { 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 }; static double sigma_vec[N_MAX] = { 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 }; static double x_vec[N_MAX] = { 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; b = 0.0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { b = b_vec[n_data-1]; mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double truncated_normal_b_sample ( double mu, double sigma, double b, int &seed ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_B_SAMPLE samples the upper truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double B, the upper truncation limit. // // Input/output, int &SEED, a seed for the random number // generator. // // Output, double TRUNCATED_NORMAL_B_SAMPLE, a sample of the PDF. // { double beta; double beta_cdf; double u; double x; double xi; double xi_cdf; beta = ( b - mu ) / sigma; beta_cdf = normal_01_cdf ( beta ); u = r8_uniform_01 ( seed ); xi_cdf = u * beta_cdf; xi = normal_01_cdf_inv ( xi_cdf ); x = mu + sigma * xi; return x; } //****************************************************************************80 double truncated_normal_b_variance ( double mu, double sigma, double b ) //****************************************************************************80 // // Purpose: // // TRUNCATED_NORMAL_B_VARIANCE: variance of the upper truncated Normal PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double MU, SIGMA, the mean and standard deviation of the // parent Normal distribution. // // Input, double B, the upper truncation limit. // // Output, double TRUNCATED_NORMAL_B_VARIANCE, the variance of the PDF. // { double beta; double beta_cdf; double beta_pdf; double variance; beta = ( b - mu ) / sigma; beta_pdf = normal_01_pdf ( beta ); beta_cdf = normal_01_cdf ( beta ); variance = sigma * sigma * ( 1.0 - beta * beta_pdf / beta_cdf - pow ( beta_pdf / beta_cdf, 2 ) ); return variance; }