# include # include # include # include # include # include # include using namespace std; # include "uniform.hpp" //****************************************************************************80 void bvec_print ( int n, int bvec[], string title ) //****************************************************************************80 // // Purpose: // // BVEC_PRINT prints a binary integer vector, with an optional title. // // Discussion: // // A BVEC is a vector of binary digits representing an integer. // // BVEC[0] is 0 for positive values and 1 for negative values, which // are stored in 2's complement form. // // For positive values, BVEC[N-1] contains the units digit, BVEC[N-2] // the coefficient of 2, BVEC[N-3] the coefficient of 4 and so on, // so that printing the digits in order gives the binary form of the number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 March 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int BVEC[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; int ihi; int ilo; if ( 0 < title.length ( ) ) { cout << "\n"; cout << title << "\n"; } for ( ilo = 0; ilo < n; ilo = ilo + 70 ) { ihi = i4_min ( ilo + 70 - 1, n - 1 ); cout << " "; for ( i = ilo; i <= ihi; i++ ) { cout << bvec[i]; } cout << "\n"; } return; } //****************************************************************************80 int *bvec_uniform_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // BVEC_UNIFORM_NEW returns a pseudorandom BVEC. // // Discussion: // // An BVEC is a vector of binary (0/1) values representing an integer. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 December 2014 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre LEcuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the order of the vector. // // Input/output, int &SEED, the "seed" value, which should // NOT be 0. On output, SEED has been updated. // // Output, int BVEC_UNIFORM_NEW[N], a pseudorandom binary vector. // { int *bvec; int i; const int i4_huge = 2147483647; const int i4_huge_half = 1073741823; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "BVEC_UNIFORM_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } bvec = new int[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } if ( i4_huge_half < seed ) { bvec[i] = 0; } else { bvec[i] = 1; } } return bvec; } //****************************************************************************80 complex c4_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // C4_UNIFORM_01 returns a unit pseudorandom C4. // // Discussion: // // The angle should be uniformly distributed between 0 and 2 * PI, // the square root of the radius uniformly distributed between 0 and 1. // // This results in a uniform distribution of values in the unit circle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, complex C4_UNIFORM_01, a pseudorandom complex value. // { const int i4_huge = 2147483647; int k; const float r4_pi = 3.1415926E+00; float r; float theta; complex value; if ( seed == 0 ) { cerr << "\n"; cerr << "C4_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = sqrt ( ( float ) ( seed ) * 4.656612875E-10 ); k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } theta = 2.0 * r4_pi * ( ( float ) ( seed ) * 4.656612875E-10 ); value = complex ( r * cos ( theta ), r * sin ( theta ) ); return value; } //****************************************************************************80 void c4mat_print ( int m, int n, complex a[], string title ) //****************************************************************************80 // // Purpose: // // C4MAT_PRINT prints a C4MAT. // // Discussion: // // A C4MAT is an array of complex values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 June 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in the matrix. // // Input, complex A[M*N], the matrix. // // Input, string TITLE, a title. // { c4mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void c4mat_print_some ( int m, int n, complex a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // C4MAT_PRINT_SOME prints some of a C4MAT. // // Discussion: // // A C4MAT is an array of complex values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 April 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in the matrix. // // Input, complex A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { complex c; int i; int i2hi; int i2lo; int inc; int incx = 4; int j; int j2; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of INCX. // for ( j2lo = jlo; j2lo <= i4_min ( jhi, n ); j2lo = j2lo + incx ) { j2hi = j2lo + incx - 1; if ( n < j2hi ) { j2hi = n; } if ( jhi < j2hi ) { j2hi = jhi; } inc = j2hi + 1 - j2lo; cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { j2 = j + 1 - j2lo; cout << " " << setw(10) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = ilo; if ( i2lo < 1 ) { i2lo = 1; } i2hi = ihi; if ( m < i2hi ) { i2hi = m; } for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(5) << i << ":"; // // Print out (up to) INCX entries in row I, that lie in the current strip. // for ( j2 = 1; j2 <= inc; j2++ ) { j = j2lo - 1 + j2; c = a[i-1+(j-1)*m]; cout << " " << setw(8) << real ( c ) << " " << setw(8) << imag ( c ); } cout << "\n"; } } return; } //****************************************************************************80 void c4mat_uniform_01 ( int m, int n, int seed, complex c[] ) //****************************************************************************80 // // Purpose: // // C4MAT_UNIFORM_01 returns a unit pseudorandom C4MAT. // // Discussion: // // The angles should be uniformly distributed between 0 and 2 * PI, // the square roots of the radius uniformly distributed between 0 and 1. // // This results in a uniform distribution of values in the unit circle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns in the matrix. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, complex C[M*N], the pseudorandom complex matrix. // { int i; const int i4_huge = 2147483647; int j; float r; int k; const float r4_pi = 3.1415926; float theta; if ( seed == 0 ) { cerr << "\n"; cerr << "C4MAT_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = sqrt ( ( float ) ( seed ) * 4.656612875E-10 ); k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } theta = 2.0 * r4_pi * ( ( float ) ( seed ) * 4.656612875E-10 ); c[i+j*m] = r * complex ( cos ( theta ), sin ( theta ) ); } } return; } //****************************************************************************80 complex *c4mat_uniform_01_new ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // C4MAT_UNIFORM_01_NEW returns a new unit pseudorandom C4MAT. // // Discussion: // // The angles should be uniformly distributed between 0 and 2 * PI, // the square roots of the radius uniformly distributed between 0 and 1. // // This results in a uniform distribution of values in the unit circle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns in the matrix. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, complex C4MAT_UNIFORM_01[M*N], the pseudorandom complex matrix. // { complex *c; int i; const int i4_huge = 2147483647; int j; float r; int k; const float r4_pi = 3.1415926; float theta; if ( seed == 0 ) { cerr << "\n"; cerr << "C4MAT_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } c = new complex [m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = sqrt ( ( float ) ( seed ) * 4.656612875E-10 ); k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } theta = 2.0 * r4_pi * ( ( float ) ( seed ) * 4.656612875E-10 ); c[i+j*m] = r * complex ( cos ( theta ), sin ( theta ) ); } } return c; } //****************************************************************************80 void c4vec_print ( int n, complex a[], string title ) //****************************************************************************80 // // Purpose: // // C4VEC_PRINT prints a C4VEC. // // Discussion: // // A C4VEC is a vector of complex values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, complex A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << real ( a[i] ) << " " << imag ( a[i] ) << "\n"; } return; } //****************************************************************************80 void c4vec_uniform_01 ( int n, int &seed, complex c[] ) //****************************************************************************80 // // Purpose: // // C4VEC_UNIFORM_01 returns a unit pseudorandom C4VEC. // // Discussion: // // The angles should be uniformly distributed between 0 and 2 * PI, // the square roots of the radius uniformly distributed between 0 and 1. // // This results in a uniform distribution of values in the unit circle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of values to compute. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, complex C[N], the pseudorandom // complex vector. // { int i; const int i4_huge = 2147483647; int k; const float r4_pi = 3.1415926; float r; float theta; if ( seed == 0 ) { cerr << "\n"; cerr << "C4VEC_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = sqrt ( ( float ) ( seed ) * 4.656612875E-10 ); k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } theta = 2.0 * r4_pi * ( ( float ) ( seed ) * 4.656612875E-10 ); c[i] = r * complex ( cos ( theta ), sin ( theta ) ); } return; } //****************************************************************************80 complex *c4vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // C4VEC_UNIFORM_01_NEW returns a unit pseudorandom C4VEC. // // Discussion: // // The angles should be uniformly distributed between 0 and 2 * PI, // the square roots of the radius uniformly distributed between 0 and 1. // // This results in a uniform distribution of values in the unit circle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of values to compute. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, complex C4VEC_UNIFORM_01_NEW[N], the pseudorandom // complex vector. // { complex *c; int i; const int i4_huge = 2147483647; int k; const float r4_pi = 3.1415926; float r; float theta; if ( seed == 0 ) { cerr << "\n"; cerr << "C4VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } c = new complex [n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = sqrt ( ( float ) ( seed ) * 4.656612875E-10 ); k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } theta = 2.0 * r4_pi * ( ( float ) ( seed ) * 4.656612875E-10 ); c[i] = r * complex ( cos ( theta ), sin ( theta ) ); } return c; } //****************************************************************************80 complex c8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // C8_UNIFORM_01 returns a unit pseudorandom C8. // // Discussion: // // The angle should be uniformly distributed between 0 and 2 * PI, // the square root of the radius uniformly distributed between 0 and 1. // // This results in a uniform distribution of values in the unit circle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, complex C8_UNIFORM_01, a pseudorandom complex value. // { const int i4_huge = 2147483647; int k; const double r8_pi = 3.141592653589793; double r; double theta; complex value; if ( seed == 0 ) { cerr << "\n"; cerr << "C8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = sqrt ( ( ( double ) ( seed ) * 4.656612875E-10 ) ); k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } theta = 2.0 * r8_pi * ( ( double ) ( seed ) * 4.656612875E-10 ); value = complex ( r * cos ( theta ), r * sin ( theta ) ); return value; } //****************************************************************************80 void c8mat_print ( int m, int n, complex a[], string title ) //****************************************************************************80 // // Purpose: // // C8MAT_PRINT prints a C8MAT. // // Discussion: // // A C8MAT is an array of complex values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in the matrix. // // Input, complex A[M*N], the matrix. // // Input, string TITLE, a title. // { c8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void c8mat_print_some ( int m, int n, complex a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // C8MAT_PRINT_SOME prints some of a C8MAT. // // Discussion: // // A C8MAT is an array of complex values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in the matrix. // // Input, complex A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { complex c; int i; int i2hi; int i2lo; int inc; int incx = 4; int j; int j2; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of INCX. // for ( j2lo = jlo; j2lo <= i4_min ( jhi, n ); j2lo = j2lo + incx ) { j2hi = j2lo + incx - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); inc = j2hi + 1 - j2lo; cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { j2 = j + 1 - j2lo; cout << " " << setw(10) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(5) << i << ":"; // // Print out (up to) INCX entries in row I, that lie in the current strip. // for ( j2 = 1; j2 <= inc; j2++ ) { j = j2lo - 1 + j2; c = a[i-1+(j-1)*m]; cout << " " << setw(8) << real ( c ) << " " << setw(8) << imag ( c ); } cout << "\n"; } } return; } //****************************************************************************80 void c8mat_uniform_01 ( int m, int n, int &seed, complex c[] ) //****************************************************************************80 // // Purpose: // // C8MAT_UNIFORM_01 returns a unit pseudorandom C8MAT. // // Discussion: // // A C8MAT is an array of complex values. // // The angles should be uniformly distributed between 0 and 2 * PI, // the square roots of the radius uniformly distributed between 0 and 1. // // This results in a uniform distribution of values in the unit circle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in the matrix. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, complex C[M*N], the pseudorandom complex matrix. // { int i; const int i4_huge = 2147483647; int j; double r; int k; const double r8_pi = 3.141592653589793; double theta; if ( seed == 0 ) { cerr << "\n"; cerr << "C8MAT_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = sqrt ( ( double ) ( seed ) * 4.656612875E-10 ); k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } theta = 2.0 * r8_pi * ( ( double ) ( seed ) * 4.656612875E-10 ); c[i+j*m] = r * complex ( cos ( theta ), sin ( theta ) ); } } return; } //****************************************************************************80 complex *c8mat_uniform_01_new ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // C8MAT_UNIFORM_01_NEW returns a new unit pseudorandom C8MAT. // // Discussion: // // A C8MAT is an array of complex values. // // The angles should be uniformly distributed between 0 and 2 * PI, // the square roots of the radius uniformly distributed between 0 and 1. // // This results in a uniform distribution of values in the unit circle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in the matrix. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, complex C8MAT_UNIFORM_01[M*N], the pseudorandom complex matrix. // { complex *c; int i; const int i4_huge = 2147483647; int j; double r; int k; const double r8_pi = 3.141592653589793; double theta; if ( seed == 0 ) { cerr << "\n"; cerr << "C8MAT_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } c = new complex [m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = sqrt ( ( double ) ( seed ) * 4.656612875E-10 ); k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } theta = 2.0 * r8_pi * ( ( double ) ( seed ) * 4.656612875E-10 ); c[i+j*m] = r * complex ( cos ( theta ), sin ( theta ) ); } } return c; } //****************************************************************************80 void c8vec_print ( int n, complex a[], string title ) //****************************************************************************80 // // Purpose: // // C8VEC_PRINT prints a C8VEC. // // Discussion: // // A C8VEC is a vector of complex values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, complex A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << real ( a[i] ) << " " << imag ( a[i] ) << "\n"; } return; } //****************************************************************************80 void c8vec_uniform_01 ( int n, int &seed, complex c[] ) //****************************************************************************80 // // Purpose: // // C8VEC_UNIFORM_01 returns a unit pseudorandom C8VEC. // // Discussion: // // A C8VEC is a vector of C8's. // // The angles should be uniformly distributed between 0 and 2 * PI, // the square roots of the radius uniformly distributed between 0 and 1. // // This results in a uniform distribution of values in the unit circle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of values to compute. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, complex C[N], the pseudorandom // complex vector. // { int i; const int i4_huge = 2147483647; int k; const double r8_pi = 3.141592653589793; double r; double theta; if ( seed == 0 ) { cerr << "\n"; cerr << "C8VEC_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = sqrt ( ( double ) ( seed ) * 4.656612875E-10 ); k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } theta = 2.0 * r8_pi * ( ( double ) ( seed ) * 4.656612875E-10 ); c[i] = r * complex ( cos ( theta ), sin ( theta ) ); } return; } //****************************************************************************80 complex *c8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // C8VEC_UNIFORM_01_NEW returns a unit pseudorandom C8VEC. // // Discussion: // // A C8VEC is a vector of C8's. // // The angles should be uniformly distributed between 0 and 2 * PI, // the square roots of the radius uniformly distributed between 0 and 1. // // This results in a uniform distribution of values in the unit circle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of values to compute. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, complex C8VEC_UNIFORM_01_NEW[N], the pseudorandom // complex vector. // { complex *c; int i; const int i4_huge = 2147483647; int k; const double r8_pi = 3.141592653589793; double r; double theta; if ( seed == 0 ) { cerr << "\n"; cerr << "C8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } c = new complex [n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = sqrt ( ( double ) ( seed ) * 4.656612875E-10 ); k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } theta = 2.0 * r8_pi * ( ( double ) ( seed ) * 4.656612875E-10 ); c[i] = r * complex ( cos ( theta ), sin ( theta ) ); } return c; } //****************************************************************************80 char ch_uniform_ab ( char a, char b, int &seed ) //****************************************************************************80 // // Purpose: // // CH_UNIFORM_AB returns a scaled pseudorandom CH. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Parameters: // // Input, char A, B, the minimum and maximum acceptable characters. // // Input/output, int &SEED, a seed for the random number generator. // // Output, char CH_UNIFORM, the randomly chosen value. // { char c; float d; if ( seed == 0 ) { cerr << "\n"; cerr << "CH_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } d = r4_uniform_01 ( seed ); c = a + ( char ) ( d * ( float ) ( b + 1 - a ) ); return c; } //****************************************************************************80 int congruence ( int a, int b, int c, bool *error ) //****************************************************************************80 // // Purpose: // // CONGRUENCE solves a congruence of the form ( A * X = C ) mod B. // // Discussion: // // A, B and C are given integers. The equation is solvable if and only // if the greatest common divisor of A and B also divides C. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 May 2008 // // Author: // // John Burkardt // // Reference: // // Eric Weisstein, editor, // CRC Concise Encylopedia of Mathematics, // CRC Press, 2002, // Second edition, // ISBN: 1584883472, // LC: QA5.W45. // // Parameters: // // Input, int A, B, C, the coefficients of the Diophantine equation. // // Output, bool *ERROR, error flag, is TRUE if an error occurred.. // // Output, int CONGRUENCE, the solution of the Diophantine equation. // X will be between 0 and B-1. // { # define N_MAX 100 int a_copy; int a_mag; int a_sign; int b_copy; int b_mag; int b_sign; int c_copy; int g; int k; int n; int q[N_MAX]; bool swap; int x; int y; int z; // // Defaults for output parameters. // *error = false; x = 0; y = 0; // // Special cases. // if ( a == 0 && b == 0 && c == 0 ) { x = 0; return x; } else if ( a == 0 && b == 0 && c != 0 ) { *error = true; x = 0; return x; } else if ( a == 0 && b != 0 && c == 0 ) { x = 0; return x; } else if ( a == 0 && b != 0 && c != 0 ) { x = 0; if ( ( c % b ) != 0 ) { *error = true; } return x; } else if ( a != 0 && b == 0 && c == 0 ) { x = 0; return x; } else if ( a != 0 && b == 0 && c != 0 ) { x = c / a; if ( ( c % a ) != 0 ) { *error = true; } return x; } else if ( a != 0 && b != 0 && c == 0 ) { // g = i4_gcd ( a, b ); // x = b / g; x = 0; return x; } // // Now handle the "general" case: A, B and C are nonzero. // // Step 1: Compute the GCD of A and B, which must also divide C. // g = i4_gcd ( a, b ); if ( ( c % g ) != 0 ) { *error = true; return x; } a_copy = a / g; b_copy = b / g; c_copy = c / g; // // Step 2: Split A and B into sign and magnitude. // a_mag = abs ( a_copy ); a_sign = i4_sign ( a_copy ); b_mag = abs ( b_copy ); b_sign = i4_sign ( b_copy ); // // Another special case, A_MAG = 1 or B_MAG = 1. // if ( a_mag == 1 ) { x = a_sign * c_copy; return x; } else if ( b_mag == 1 ) { x = 0; return x; } // // Step 3: Produce the Euclidean remainder sequence. // if ( b_mag <= a_mag ) { swap = false; q[0] = a_mag; q[1] = b_mag; } else { swap = true; q[0] = b_mag; q[1] = a_mag; } n = 3; for ( ; ; ) { q[n-1] = ( q[n-3] % q[n-2] ); if ( q[n-1] == 1 ) { break; } n = n + 1; if ( N_MAX < n ) { *error = true; cerr << "\n"; cerr << "CONGRUENCE - Fatal error!\n"; cerr << " Exceeded number of iterations.\n"; exit ( 1 ); } } // // Step 4: Now go backwards to solve X * A_MAG + Y * B_MAG = 1. // y = 0; for ( k = n; 2 <= k; k-- ) { x = y; y = ( 1 - x * q[k-2] ) / q[k-1]; } // // Step 5: Undo the swapping. // if ( swap ) { z = x; x = y; y = z; } // // Step 6: Now apply signs to X and Y so that X * A + Y * B = 1. // x = x * a_sign; // // Step 7: Multiply by C, so that X * A + Y * B = C. // x = x * c_copy; // // Step 8: Now force 0 <= X < B. // x = x % b; // // Step 9: Force positivity. // if ( x < 0 ) { x = x + b; } return x; # undef N_MAX } //****************************************************************************80 char digit_to_ch ( int i ) //****************************************************************************80 // // Purpose: // // DIGIT_TO_CH returns the base 10 digit character corresponding to a digit. // // Example: // // I C // ----- --- // 0 '0' // 1 '1' // ... ... // 9 '9' // 10 '*' // -83 '*' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the digit, which should be between 0 and 9. // // Output, char DIGIT_TO_CH, the appropriate character '0' through '9' or '*'. // { char c; if ( 0 <= i && i <= 9 ) { c = '0' + i; } else { c = '*'; } return c; } //****************************************************************************80 int get_seed ( ) //****************************************************************************80 // // Purpose: // // GET_SEED returns a random seed for the random number generator. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 November 2004 // // Author: // // John Burkardt // // Parameters: // // Output, int GET_SEED, a random seed value. // { time_t clock; const int i4_huge = 2147483647; int ihour; int imin; int isec; int seed; struct tm *lt; time_t tloc; // // If the internal seed is 0, generate a value based on the time. // clock = time ( &tloc ); lt = localtime ( &clock ); // // Hours is 1, 2, ..., 12. // ihour = lt->tm_hour; if ( 12 < ihour ) { ihour = ihour - 12; } // // Move Hours to 0, 1, ..., 11 // ihour = ihour - 1; imin = lt->tm_min; isec = lt->tm_sec; seed = isec + 60 * ( imin + 60 * ihour ); // // We want values in [1,43200], not [0,43199]. // seed = seed + 1; // // Remap SEED from [1,43200] to [1,Huge]. // seed = ( int ) ( ( ( double ) seed ) * ( ( double ) i4_huge ) / ( 60.0 * 60.0 * 12.0 ) ); // // Never use a seed of 0. // if ( seed == 0 ) { seed = 1; } return seed; } //****************************************************************************80 int i4_gcd ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_GCD finds the greatest common divisor of I and J. // // Discussion: // // Only the absolute values of I and J are considered, so that the // result is always nonnegative. // // If I or J is 0, I4_GCD is returned as max ( 1, abs ( I ), abs ( J ) ). // // If I and J have no common factor, I4_GCD is returned as 1. // // Otherwise, using the Euclidean algorithm, I4_GCD is the // largest common factor of I and J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, two numbers whose greatest common divisor // is desired. // // Output, int I4_GCD, the greatest common divisor of I and J. // { int ip; int iq; int ir; // // Return immediately if either I or J is zero. // if ( i == 0 ) { return i4_max ( 1, abs ( j ) ); } else if ( j == 0 ) { return i4_max ( 1, abs ( i ) ); } // // Set IP to the larger of I and J, IQ to the smaller. // This way, we can alter IP and IQ as we go. // ip = i4_max ( abs ( i ), abs ( j ) ); iq = i4_min ( abs ( i ), abs ( j ) ); // // Carry out the Euclidean algorithm. // for ( ; ; ) { ir = ip % iq; if ( ir == 0 ) { break; } ip = iq; iq = ir; } return iq; } //****************************************************************************80 int i4_huge ( ) //****************************************************************************80 // // Purpose: // // I4_HUGE returns a "huge" I4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 May 2003 // // Author: // // John Burkardt // // Parameters: // // Output, int I4_HUGE, a "huge" I4. // { return 2147483647; } //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the whole part of the logarithm base 10 of an I4. // // Discussion: // // It should be the case that 10^I4_LOG_10(I) <= |I| < 10^(I4_LOG_10(I)+1). // (except for I = 0). // // The number of decimal digits in I is I4_LOG_10(I) + 1. // // Example: // // I I4_LOG_10(I) // // 0 0 // 1 0 // 2 0 // // 9 0 // 10 1 // 11 1 // // 99 1 // 100 2 // 101 2 // // 999 2 // 1000 3 // 1001 3 // // 9999 3 // 10000 4 // 10001 4 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the integer. // // Output, int I4_LOG_10, the whole part of the logarithm of abs ( I ). // { int ten_pow; int value; i = abs ( i ); ten_pow = 10; value = 0; while ( ten_pow <= i ) { ten_pow = ten_pow * 10; value = value + 1; } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the smaller of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_seed_advance ( int seed ) //****************************************************************************80 // // Purpose: // // I4_SEED_ADVANCE "advances" the seed. // // Discussion: // // This routine implements one step of the recursion // // SEED = ( 16807 * SEED ) mod ( 2^31 - 1 ) // // This version of the routine does not check whether the input value of // SEED is zero. If the input value is zero, the output value will be zero. // // If we repeatedly use the output of SEED_ADVANCE as the next input, // and we start with SEED = 12345, then the first few iterates are: // // Input Output // SEED SEED // // 12345 207482415 // 207482415 1790989824 // 1790989824 2035175616 // 2035175616 77048696 // 77048696 24794531 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 April 2013 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int SEED, the seed value. // // Output, int I4_SEED_ADVANCE, the "next" seed. // { const int i4_huge = 2147483647; int k; int seed_new; seed_new = seed; if ( seed_new < 0 ) { seed_new = seed_new + i4_huge; } k = seed_new / 127773; seed_new = 16807 * ( seed_new - k * 127773 ) - k * 2836; if ( seed_new < 0 ) { seed_new = seed_new + i4_huge; } return seed_new; } //****************************************************************************80 int i4_sign ( int i ) //****************************************************************************80 // // Purpose: // // I4_SIGN returns the sign of an I4. // // Discussion: // // The sign of 0 and all positive integers is taken to be +1. // The sign of all negative integers is -1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the integer whose sign is desired. // // Output, int I4_SIGN, the sign of I. { int value; if ( i < 0 ) { value = -1; } else { value = 1; } return value; } //****************************************************************************80 void i4_swap ( int *i, int *j ) //****************************************************************************80 // // Purpose: // // I4_SWAP switches two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 January 2002 // // Author: // // John Burkardt // // Parameters: // // Input/output, int *I, *J. On output, the values of I and // J have been interchanged. // { int k; k = *i; *i = *j; *j = k; return; } //****************************************************************************80 char *i4_to_s ( int i ) //****************************************************************************80 // // Purpose: // // I4_TO_S converts an I4 to a string. // // Example: // // INTVAL S // // 1 1 // -1 -1 // 0 0 // 1952 1952 // 123456 123456 // 1234567 1234567 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, an integer to be converted. // // Output, char *I4_TO_S, the representation of the integer. // { int digit; int j; int length; int ten_power; char *s; length = i4_log_10 ( i ); ten_power = ( int ) pow ( ( double ) 10, ( double ) length ); if ( i < 0 ) { length = length + 1; } // // Add one position for the trailing null. // length = length + 1; s = new char[length]; if ( i == 0 ) { s[0] = '0'; s[1] = '\0'; return s; } // // Now take care of the sign. // j = 0; if ( i < 0 ) { s[j] = '-'; j = j + 1; i = abs ( i ); } // // Find the leading digit of I, strip it off, and stick it into the string. // while ( 0 < ten_power ) { digit = i / ten_power; s[j] = digit_to_ch ( digit ); j = j + 1; i = i - digit * ten_power; ten_power = ten_power / 10; } // // Tack on the trailing NULL. // s[j] = '\0'; j = j + 1; return s; } //****************************************************************************80 int i4_uniform_0i ( int &seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM_0I is a portable random integer generator. // // Discussion: // // SEED = ( SEED * 7^5 ) mod (2^31 - 1) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Parameters: // // Input, int &SEED, the integer "seed" used to generate // the output value. SEED should not be 0. On output, SEED // has been updated. // // Output, int I4_UNIFORM_0I, a uniform random value between // 1 and 2^31-1. // // Local parameters: // // IA = 7^5 // IB = 2^15 // IB16 = 2^16 // IP = 2^31-1 // { const int ia = 16807; const int ib15 = 32768; const int ib16 = 65536; const int ip = 2147483647; int iprhi; int ixhi; int k; int leftlo; int loxa; int value; // // Don't let SEED be 0. // if ( seed == 0 ) { seed = ip; } // // Get the 15 high order bits of SEED2. // ixhi = seed / ib16; // // Get the 16 low bits of SEED and form the low product. // loxa = ( seed - ixhi * ib16 ) * ia; // // Get the 15 high order bits of the low product. // leftlo = loxa / ib16; // // Form the 31 highest bits of the full product. // iprhi = ixhi * ia + leftlo; // // Get overflow past the 31st bit of full product. // k = iprhi / ib15; // // Assemble all the parts and presubtract IP. The parentheses are // essential. // value = ( ( ( loxa - leftlo * ib16 ) - ip ) + ( iprhi - k * ib15 ) * ib16 ) + k; // // Add IP back in if necessary. // if ( value < 0 ) { value = value + ip; } seed = value; return value; } //****************************************************************************80 int i4_uniform_ab ( int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM_AB returns a scaled pseudorandom I4 between A and B. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM, a number between A and B. // { int c; const int i4_huge = 2147483647; int k; float r; int value; if ( seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } return value; } //****************************************************************************80 void i4mat_print ( int m, int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4MAT_PRINT prints an I4MAT. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { i4mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void i4mat_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_PRINT_SOME prints some of an I4MAT. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of INCX. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; if ( n < j2hi ) { j2hi = n; } if ( jhi < j2hi ) { j2hi = jhi; } cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col:"; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(6) << j - 1; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // if ( 1 < ilo ) { i2lo = ilo; } else { i2lo = 1; } if ( ihi < m ) { i2hi = ihi; } else { i2hi = m; } for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to INCX) entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ":"; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(6) << a[i-1+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void i4mat_uniform_ab ( int m, int n, int a, int b, int &seed, int x[] ) //****************************************************************************80 // // Purpose: // // I4MAT_UNIFORM_AB returns a scaled pseudorandom I4MAT. // // Discussion: // // An I4MAT is an array of I4's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 May 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A, B, the limits of the pseudorandom values. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, int X[M*N], a matrix of pseudorandom values. // { int c; int i; const int i4_huge = 2147483647; int j; int k; float r; int value; if ( seed == 0 ) { cerr << "\n"; cerr << "I4MAT_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } x[i+j*m] = value; } } return; } //****************************************************************************80 int *i4mat_uniform_ab_new ( int m, int n, int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4MAT_UNIFORM_AB_NEW returns a new scaled pseudorandom I4MAT. // // Discussion: // // An I4MAT is an array of I4's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 May 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A, B, the limits of the pseudorandom values. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, int I4MAT_UNIFORM_AB_NEW[M*N], a matrix of pseudorandom values. // { int c; int i; const int i4_huge = 2147483647; int j; int k; float r; int value; int *x; if ( seed == 0 ) { cerr << "\n"; cerr << "I4MAT_UNIFORM_AB_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } x = new int[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } x[i+j*m] = value; } } return x; } //****************************************************************************80 int i4vec_max ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_MAX returns the maximum element in an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, int A[N], the array to be checked. // // Output, int I4VEC_MAX, the value of the maximum element. This // is set to 0 if N <= 0. // { int i; int value; if ( n <= 0 ) { return 0; } value = a[0]; for ( i = 1; i < n; i++ ) { if ( value < a[i] ) { value = a[i]; } } return value; } //****************************************************************************80 float i4vec_mean ( int n, int x[] ) //****************************************************************************80 // // Purpose: // // I4VEC_MEAN returns the mean of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int X[N], the vector whose mean is desired. // // Output, float I4VEC_MEAN, the mean, or average, of the vector entries. // { int i; float mean; mean = 0.0; for ( i = 0; i < n; i++ ) { mean = mean + ( float ) x[i]; } mean = mean / ( float ) n; return mean; } //****************************************************************************80 int i4vec_min ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_MIN returns the minimum element in an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, int A[N], the array to be checked. // // Output, int I4VEC_MIN, the value of the minimum element. This // is set to 0 if N <= 0. // { int i; int value; if ( n <= 0 ) { return 0; } value = a[0]; for ( i = 1; i < n; i++ ) { if ( a[i] < value ) { value = a[i]; } } return value; } //****************************************************************************80 void i4vec_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(8) << a[i] << "\n"; } return; } //****************************************************************************80 void i4vec_uniform_ab ( int n, int a, int b, int &seed, int x[] ) //****************************************************************************80 // // Purpose: // // I4VEC_UNIFORM_AB returns a scaled pseudorandom I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // The pseudorandom numbers should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 May 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, integer N, the dimension of the vector. // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int X[N], a vector of random values between A and B. // { int c; int i; const int i4_huge = 2147483647; int k; float r; int value; if ( seed == 0 ) { cerr << "\n"; cerr << "I4VEC_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } x[i] = value; } return; } //****************************************************************************80 int *i4vec_uniform_ab_new ( int n, int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4VEC_UNIFORM_NEW returns a scaled pseudorandom I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // The pseudorandom numbers should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 May 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, integer N, the dimension of the vector. // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int IVEC_UNIFORM_AB_NEW[N], a vector of random values between A and B. // { int c; int i; const int i4_huge = 2147483647; int k; float r; int value; int *x; if ( seed == 0 ) { cerr << "\n"; cerr << "I4VEC_UNIFORM_AB_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } x = new int[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } x[i] = value; } return x; } //****************************************************************************80 float i4vec_variance ( int n, int x[] ) //****************************************************************************80 // // Purpose: // // I4VEC_VARIANCE returns the variance of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int X[N], the vector whose variance is desired. // // Output, float I4VEC_VARIANCE, the variance of the vector entries. // { int i; float mean; float variance; mean = i4vec_mean ( n, x ); variance = 0.0; for ( i = 0; i < n; i++ ) { variance = variance + ( ( float ) x[i] - mean ) * ( ( float ) x[i] - mean ); } if ( 1 < n ) { variance = variance / ( float ) ( n - 1 ); } else { variance = 0.0; } return variance; } //****************************************************************************80 bool l4_uniform ( int &seed ) //****************************************************************************80 // // Purpose: // // L4_UNIFORM returns a pseudorandom L. // // Discussion: // // An L4 is a LOGICAL value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value, which should // NOT be 0. On output, SEED has been updated. // // Output, bool L4_UNIFORM, a pseudorandom logical value. // { const int i4_huge = 2147483647; const int i4_huge_half = 1073741823; int k; bool value; if ( seed == 0 ) { cerr << "\n"; cerr << "L4_UNIFORM - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } value = ( i4_huge_half < seed ); return value; } //****************************************************************************80 void l4mat_print ( int m, int n, bool a[], string title ) //****************************************************************************80 // // Purpose: // // L4MAT_PRINT prints an L4MAT. // // Discussion: // // An L4MAT is an array of L4 values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 November 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, bool A[M*N], the matrix. // // Input, string TITLE, a title. // { l4mat_print_some ( m, n, a, 0, 0, m - 1, n - 1, title ); return; } //****************************************************************************80 void l4mat_print_some ( int m, int n, bool a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // L4MAT_PRINT_SOME prints some of an L4MAT. // // Discussion: // // An L4MAT is an array of L4 values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 November 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, bool A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { int i; int i2hi; int i2lo; int inc; int incx = 35; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + incx ) { j2hi = j2lo + incx - 1; if ( n - 1 < j2hi ) { j2hi = n - 1; } if ( jhi < j2hi ) { j2hi = jhi; } inc = j2hi + 1 - j2lo; cout << "\n"; if ( 100 <= j2hi ) { cout << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(1) << j / 100; } cout << "\n"; } if ( 10 <= j2hi ) { cout << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(1) << ( j / 10 ) % 10; } cout << "\n"; } cout << " Col "; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(1) << j % 10; } cout << "\n"; cout << " Row\n"; cout << "\n"; i2lo = 0; if ( i2lo < ilo ) { i2lo = ilo; } i2hi = m - 1; if ( ihi < i2hi ) { i2hi = ihi; } for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(5) << i << ":"; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(1) << a[i+j*m]; } cout << "\n"; } } return; } //****************************************************************************80 void l4mat_uniform ( int m, int n, int &seed, bool l4mat[] ) //****************************************************************************80 // // Purpose: // // L4MAT_UNIFORM returns a pseudorandom L4MAT. // // Discussion: // // An L4MAT is a two dimensional array of LOGICAL values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the order of the matrix. // // Input/output, int &SEED, the "seed" value, which should // NOT be 0. On output, SEED has been updated. // // Output, bool L4MAT[M*N], a pseudorandom logical matrix. // { const int i4_huge = 2147483647; const int i4_huge_half = 1073741823; int i; int j; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "L4MAT_UNIFORM - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } l4mat[i+j*m] = ( i4_huge_half < seed ); } } return; } //****************************************************************************80 bool *l4mat_uniform_new ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // L4MAT_UNIFORM_NEW returns a new pseudorandom L4MAT. // // Discussion: // // An L4MAT is a two dimensional array of LOGICAL values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the order of the matrix. // // Input/output, int &SEED, the "seed" value, which should // NOT be 0. On output, SEED has been updated. // // Output, bool L4MAT_UNIFORM_NEW[M*N], a pseudorandom logical matrix. // { const int i4_huge = 2147483647; const int i4_huge_half = 1073741823; int i; int j; int k; bool *l4mat; if ( seed == 0 ) { cerr << "\n"; cerr << "L4MAT_UNIFORM_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } l4mat = new bool[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } l4mat[i+j*m] = ( i4_huge_half < seed ); } } return l4mat; } //****************************************************************************80 void l4vec_print ( int n, bool a[], string title ) //****************************************************************************80 // // Purpose: // // L4VEC_PRINT prints an L4VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, bool A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(1) << a[i] << "\n"; } return; } //****************************************************************************80 bool *l4vec_uniform_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // L4VEC_UNIFORM_NEW returns a pseudorandom L4VEC. // // Discussion: // // An L4VEC is a vector of LOGICAL values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre LEcuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the order of the vector. // // Input/output, int &SEED, the "seed" value, which should // NOT be 0. On output, SEED has been updated. // // Output, bool L4VEC_UNIFORM_NEW[N], a pseudorandom logical vector. // { const int i4_huge = 2147483647; const int i4_huge_half = 1073741823; int i; int k; bool *l4vec; if ( seed == 0 ) { cerr << "\n"; cerr << "L4VEC_UNIFORM_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } l4vec = new bool[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } l4vec[i] = ( i4_huge_half < seed ); } return l4vec; } //****************************************************************************80 void lcrg_anbn ( int a, int b, int c, int n, int *an, int *bn ) //****************************************************************************80 // // Purpose: // // LCRG_ANBN computes the "N-th power" of a linear congruential generator. // // Discussion: // // We are considering a linear congruential random number generator. // The LCRG takes as input an integer value called SEED, and returns // an updated value of SEED, // // SEED(out) = ( a * SEED(in) + b ) mod c. // // and an associated pseudorandom real value // // U = SEED(out) / c. // // In most cases, a user is content to call the LCRG repeatedly, with // the updating of SEED being taken care of automatically. // // The purpose of this routine is to determine the values of AN and BN // that describe the LCRG that is equivalent to N applications of the // original LCRG. // // One use for such a facility would be to do random number computations // in parallel. If each of N processors is to compute many random values, // you can guarantee that they work with distinct random values // by starting with a single value of SEED, using the original LCRG to generate // the first N-1 "iterates" of SEED, so that you now have N "seed" values, // and from now on, applying the N-th power of the LCRG to the seeds. // // If the K-th processor starts from the K-th seed, it will essentially // be computing every N-th entry of the original random number sequence, // offset by K. Thus the individual processors will be using a random // number stream as good as the original one, and without repeating, and // without having to communicate. // // To evaluate the N-th value of SEED directly, we start by ignoring // the modular arithmetic, and working out the sequence of calculations // as follows: // // SEED(0) = SEED. // SEED(1) = a * SEED + b // SEED(2) = a * SEED(1) + b = a^2 * SEED + a * b + b // SEED(3) = a * SEED(2) + b = a^3 * SEED + a^2 * b + a * b + b // ... // SEED(N-1) = a * SEED(N-2) + b // // SEED(N) = a * SEED(N-1) + b = a^N * SEED // + ( a^(n-1) + a^(n-2) + ... + a + 1 ) * b // // or, using the geometric series, // // SEED(N) = a^N * SEED + ( a^N - 1) / ( a - 1 ) * b // = AN * SEED + BN // // Thus, from any SEED, we can determine the result of N applications of the // original LCRG directly if we can solve // // ( a - 1 ) * BN = ( a^N - 1 ) * b in modular arithmetic, // // and evaluate: // // AN = a^N // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 April 2008 // // Author: // // John Burkardt // // Reference: // // Barry Wilkinson, Michael Allen, // Parallel Programming: // Techniques and Applications Using Networked Workstations and Parallel Computers, // Prentice Hall, // ISBN: 0-13-140563-2, // LC: QA76.642.W54. // // Parameters: // // Input, int A, the multiplier for the LCRG. // // Input, int B, the added value for the LCRG. // // Input, int C, the base for the modular arithmetic. // For 32 bit arithmetic, this is often 2^31 - 1, or 2147483647. It is // required that 0 < C. // // Input, int N, the "index", or number of times that the // LCRG is to be applied. It is required that 0 <= N. // // Output, int *AN, *BN, the multiplier and added value for // the LCRG that represent N applications of the original LCRG. // { int am1; int anm1tb; bool ierror; if ( n < 0 ) { cerr << "\n"; cerr << "LCRG_ANBN - Fatal error!\n"; cerr << " Illegal input value of N = " << n << "\n"; exit ( 1 ); } if ( c <= 0 ) { cerr << "\n"; cerr << "LCRG_ANBN - Fatal error!\n"; cerr << " Illegal input value of C = " << c << "\n"; exit ( 1 ); } if ( n == 0 ) { *an = 1; *bn = 0; } else if ( n == 1 ) { *an = a; *bn = b; } else { // // Compute A^N. // *an = power_mod ( a, n, c ); // // Solve // ( a - 1 ) * BN = ( a^N - 1 ) mod B // for BN. // am1 = a - 1; anm1tb = ( *an - 1 ) * b; *bn = congruence ( am1, c, anm1tb, &ierror ); if ( ierror ) { cerr << "\n"; cerr << "LCRG_ANBN - Fatal error!\n"; cerr << " An error occurred in the CONGRUENCE routine.\n"; exit ( 1 ); } } return; } //****************************************************************************80 int lcrg_evaluate ( int a, int b, int c, int x ) //****************************************************************************80 // // Purpose: // // LCRG_EVALUATE evaluates an LCRG, y = ( A * x + B ) mod C. // // Discussion: // // This routine cannot be recommended for production use. Because we want // to do modular arithmetic, but the base is not a power of 2, we need to // use "double precision" integers to keep accuracy. // // If we knew the base C, we could try to avoid overflow while not changing // precision. // // If the base C was a power of 2, we could rely on the usual properties of // integer arithmetic on computers, in which overflow bits, which are always // ignored, don ot actually matter. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 April 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int A, the multiplier for the LCRG. // // Input, int B, the added value for the LCRG. // // Input, int C, the base for the modular arithmetic. // For 32 bit arithmetic, this is often 2^31 - 1, or 2147483647. It is // required that 0 < C. // // Input, int X, the value to be processed. // // Output, int LCRG_EVALUATE, the processed value. // { long long int a8; long long int b8; long long int c8; long long int x8; int y; long long int y8; // // To avoid roundoff issues, we need to go to "double precision" integers. // (Not available on all planets.) // a8 = ( long long int ) a; b8 = ( long long int ) b; c8 = ( long long int ) c; x8 = ( long long int ) x; y8 = ( a8 * x8 + b8 ) % c8; y = ( int ) ( y8 ); if ( y < 0 ) { y = y + c; } return y; } //****************************************************************************80 int lcrg_seed ( int a, int b, int c, int n, int seed ) //****************************************************************************80 // // Purpose: // // LCRG_SEED computes the N-th seed of a linear congruential generator. // // Discussion: // // We are considering a linear congruential random number generator. // The LCRG takes as input an integer value called SEED, and returns // an updated value of SEED, // // SEED(out) = ( a * SEED(in) + b ) mod c. // // and an associated pseudorandom real value // // U = SEED(out) / c. // // In most cases, a user is content to call the LCRG repeatedly, with // the updating of SEED being taken care of automatically. // // The purpose of this routine is to determine the value of SEED that // would be output after N successive applications of the LCRG. This // allows the user to know, in advance, what the 1000-th value of // SEED would be, for instance. Obviously, one way to do this is to // apply the LCRG formula 1,000 times. However, it is possible to // do this in a more direct and efficient way. // // One use for such a facility would be to do random number computations // in parallel. If each processor is to compute 1,000 values, you can // guarantee that they work with distinct random values by starting the // first processor with SEED, the second with the value of SEED after // 1,000 applications of the LCRG, and so on. // // To evaluate the N-th value of SEED directly, we start by ignoring // the modular arithmetic, and working out the sequence of calculations // as follows: // // SEED(0) = SEED. // SEED(1) = a * SEED + b // SEED(2) = a * SEED(1) + b = a^2 * SEED + a * b + b // SEED(3) = a * SEED(2) + b = a^3 * SEED + a^2 * b + a * b + b // ... // SEED(N) = a * SEED(N-1) + b = a^N * SEED // + ( a^(n-1) + a^(n-2) + ... + a + 1 ) * b // // or, using the geometric series, // // SEED(N) = a^N * SEED + ( a^N - 1) / ( a - 1 ) * b // // Therefore, we can determine SEED(N) directly if we can solve // // ( a - 1 ) * BN = ( a^N - 1 ) * b in modular arithmetic, // // and evaluated: // // AN = a^N // // Using the formula: // // SEED(N) = ( AN * SEED + BN ) mod c // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 May 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int A, the multiplier for the LCRG. // // Input, int B, the added value for the LCRG. // // Input, int C, the base for the modular arithmetic. For 32 bit // arithmetic, this is often 2^31 - 1, or 2147483647. It is required // that 0 < C. // // Input, int N, the "index", or number of times that the LCRG // is to be applied. It is required that 0 <= N. // // Input, int SEED, the starting value of SEED. It is customary // that 0 < SEED. // // Output, int LCRG_SEED, the value of SEED that would be output // if the LCRG were applied to the starting value N times. // { int an; int bn; bool ierror; int value; long long int value2; if ( n < 0 ) { cerr << "\n"; cerr << "LCRG_SEED - Fatal error!\n"; cerr << " Illegal input value of N = " << n << "\n"; exit ( 1 ); } if ( c <= 0 ) { cerr << "\n"; cerr << "LCRG_SEED - Fatal error!\n"; cerr << " Illegal input value of C = " << c << "\n"; exit ( 1 ); } if ( n == 0 ) { value = seed % c; if ( value < 0 ) { value = value + c; } return value; } // // Get A^N. // an = power_mod ( a, n, c ); // // Solve ( a - 1 ) * BN = ( a^N - 1 ) for BN. // // The LCRG I have been investigating uses B = 0, so this code // has not been properly tested yet. // bn = congruence ( a-1, c, ( an - 1 ) * b, &ierror ); if ( ierror ) { cerr << "\n"; cerr << "LCRG_SEED - Fatal error!\n"; cerr << " An error occurred in the CONGRUENCE routine.\n"; exit ( 1 ); } // // Set the new SEED. // value2 = ( long long int ) ( an ) * ( long long int ) ( seed ) + ( long long int ) ( bn ); value2 = value2 % ( long long int ) ( c ); // // Guarantee that the value is positive. // if ( value2 < 0 ) { value2 = value2 + ( long long int ) ( c ); } value = ( int ) ( value2 ); return value; } //****************************************************************************80 int power_mod ( int a, int n, int m ) //****************************************************************************80 // // Purpose: // // POWER_MOD computes ( A^N ) mod M. // // Discussion: // // Some programming tricks are used to speed up the computation, and to // allow computations in which A^N is much too large to store in a // real word. // // First, for efficiency, the power A**N is computed by determining // the binary expansion of N, then computing A, A^2, A^4, and so on // by repeated squaring, and multiplying only those factors that // contribute to A^N. // // Secondly, the intermediate products are immediately "mod'ed", which // keeps them small. // // For instance, to compute mod ( A**13, 11 ), we essentially compute // // 13 = 1 + 4 + 8 // // A^13 = A * A^4 * A^8 // // A^13 mod ( 11 ) = A mod ( 11 ) * A^4 mod ( 11 ) * A^8 mod ( 11 ). // // Fermat's little theorem says that if P is prime, and A is not divisible // by P, then ( A^(P-1) - 1 ) is divisible by P. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 May 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int A, the base of the expression to be tested. // A should be nonnegative. // // Input, int N, the power to which the base is raised. // N should be nonnegative. // // Input, int M, the divisor against which the expression is tested. // M should be positive. // // Output, int POWER_MOD, the remainder when A^N is divided by M. // { long long int a_square2; int d; long long int m2; int x; long long int x2; if ( a < 0 ) { return -1; } if ( m <= 0 ) { return -1; } if ( n < 0 ) { return -1; } // // A_SQUARE contains the successive squares of A. // a_square2 = ( long long int ) a; m2 = ( long long int ) m; x2 = ( long long int ) 1; while ( 0 < n ) { d = n % 2; if ( d == 1 ) { x2 = ( x2 * a_square2 ) % m2; } a_square2 = ( a_square2 * a_square2 ) % m2; n = ( n - d ) / 2; } // // Ensure that 0 <= X. // while ( x2 < 0 ) { x2 = x2 + m2; } x = ( int ) x2; return x; } //****************************************************************************80 float r4_abs ( float x ) //****************************************************************************80 // // Purpose: // // R4_ABS returns the absolute value of an R4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the quantity whose absolute value is desired. // // Output, float R4_ABS, the absolute value of X. // { float value; if ( 0.0 <= x ) { value = x; } else { value = -x; } return value; } //****************************************************************************80 int r4_nint ( float x ) //****************************************************************************80 // // Purpose: // // R4_NINT returns the nearest integer to an R4. // // Example: // // X R4_NINT // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the value. // // Output, int R4_NINT, the nearest integer to X. // { int value; if ( x < 0.0 ) { value = - ( int ) ( r4_abs ( x ) + 0.5 ); } else { value = ( int ) ( r4_abs ( x ) + 0.5 ); } return value; } //****************************************************************************80 float r4_uniform_ab ( float a, float b, int &seed ) //****************************************************************************80 // // Purpose: // // R4_UNIFORM_AB returns a scaled pseudorandom R4. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 November 2004 // // Author: // // John Burkardt // // Parameters: // // Input, float A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, float R4_UNIFORM_AB, a number strictly between A and B. // { const int i4_huge = 2147483647; int k; float value; if ( seed == 0 ) { cerr << "\n"; cerr << "R4_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } value = ( double ) ( seed ) * 4.656612875E-10; value = a + ( b - a ) * value; return value; } //****************************************************************************80 float r4_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R4_UNIFORM_01 returns a unit pseudorandom R4. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^1 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R4_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, float R4_UNIFORM_01, a new pseudorandom variate, strictly between // 0 and 1. // { const int i4_huge = 2147483647; int k; float r; if ( seed == 0 ) { cerr << "\n"; cerr << "R4_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 void r4mat_print ( int m, int n, float a[], string title ) //****************************************************************************80 // // Purpose: // // R4MAT_PRINT prints an R4MAT. // // Discussion: // // An R4MAT is a doubly dimensioned array of R4 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*M] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, float A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { r4mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r4mat_print_some ( int m, int n, float a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R4MAT_PRINT_SOME prints some of an R4MAT. // // Discussion: // // An R4MAT is a doubly dimensioned array of R4 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, float A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; if ( n < j2hi ) { j2hi = n; } if ( jhi < j2hi ) { j2hi = jhi; } cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j - 1 << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // if ( 1 < ilo ) { i2lo = ilo; } else { i2lo = 1; } if ( ihi < m ) { i2hi = ihi; } else { i2hi = m; } for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ": "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r4mat_uniform_01 ( int m, int n, int &seed, float r[] ) //****************************************************************************80 // // Purpose: // // R4MAT_UNIFORM_01 returns a unit pseudorandom R4MAT. // // Discussion: // // An R4MAT is an array of R4's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0, otherwise the output value of SEED // will still be 0. On output, SEED has been updated. // // Output, float R[M*N], a matrix of pseudorandom values. // { int i; const int i4_huge = 2147483647; int j; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "R4MAT_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i+j*m] = ( float ) ( seed ) * 4.656612875E-10; } } return; } //****************************************************************************80 float *r4mat_uniform_01_new ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // R4MAT_UNIFORM_01_NEW returns a new unit pseudorandom R4MAT. // // Discussion: // // An R4MAT is an array of R4's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0, otherwise the output value of SEED // will still be 0. On output, SEED has been updated. // // Output, float R4MAT_UNIFORM_01[M*N], a matrix of pseudorandom values. // { int i; const int i4_huge = 2147483647; int j; int k; float *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R4MAT_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new float[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i+j*m] = ( float ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 void r4mat_uniform_ab ( int m, int n, float b, float c, int &seed, float r[] ) //****************************************************************************80 // // Purpose: // // R4MAT_UNIFORM_AB returns a scaled pseudorandom R4MAT. // // Discussion: // // An R4MAT is an array of R4's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, float B, C, the limits of the pseudorandom values. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, float R[M*N], a matrix of pseudorandom values. // { int i; const int i4_huge = 2147483647; int j; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "R4MAT_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i+j*m] = b + ( c - b ) * ( float ) ( seed ) * 4.656612875E-10; } } return; } //****************************************************************************80 float *r4mat_uniform_ab_new ( int m, int n, float b, float c, int &seed ) //****************************************************************************80 // // Purpose: // // R4MAT_UNIFORM_AB_NEW returns a new scaled pseudorandom R4MAT. // // Discussion: // // An R4MAT is an array of R4's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, float B, C, the limits of the pseudorandom values. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, float R4MAT_UNIFORM_AB_NEW[M*N], a matrix of pseudorandom values. // { int i; const int i4_huge = 2147483647; int j; int k; float *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R4MAT_UNIFORM_AB_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new float[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i+j*m] = b + ( c - b ) * ( float ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 void r4vec_print ( int n, float a[], string title ) //****************************************************************************80 // // Purpose: // // R4VEC_PRINT prints an R4VEC. // // Discussion: // // An R4VEC is a vector of R4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, float A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 void r4vec_uniform_ab ( int n, float b, float c, int &seed, float r[] ) //****************************************************************************80 // // Purpose: // // R4VEC_UNIFORM_AB returns a scaled pseudorandom R4VEC. // // Discussion: // // An R4VEC is a vector of R4's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, float B, C, the lower and upper limits of the pseudorandom values. // // Input/output, int &SEED, a seed for the random number generator. // // Output, float R[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "R4VEC_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = b + ( c - b ) * ( float ) ( seed ) * 4.656612875E-10; } return; } //****************************************************************************80 float *r4vec_uniform_ab_new ( int n, float b, float c, int &seed ) //****************************************************************************80 // // Purpose: // // R4VEC_UNIFORM_AB_NEW returns a scaled pseudorandom R4VEC. // // Discussion: // // An R4VEC is a vector of R4's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, float B, C, the lower and upper limits of the pseudorandom values. // // Input/output, int &SEED, a seed for the random number generator. // // Output, float R4VEC_UNIFORM_AB_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; float *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R4VEC_UNIFORM_AB_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new float[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = b + ( c - b ) * ( float ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void r4vec_uniform_01 ( int n, int &seed, float r[] ) //****************************************************************************80 // // Purpose: // // R4VEC_UNIFORM_01 returns a unit unit pseudorandom R4VEC. // // Discussion: // // An R4VEC is a vector of R4's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, float R[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "R4VEC_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( float ) ( seed ) * 4.656612875E-10; } return; } //****************************************************************************80 float *r4vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R4VEC_UNIFORM_01_NEW returns a unit unit pseudorandom R4VEC. // // Discussion: // // An R4VEC is a vector of R4's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, float R4VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; float *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R4VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new float[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( float ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = x; } else { value = -x; } return value; } //****************************************************************************80 int r8_nint ( double x ) //****************************************************************************80 // // Purpose: // // R8_NINT returns the nearest integer to an R8. // // Example: // // X Value // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value. // // Output, int R8_NINT, the nearest integer to X. // { int value; if ( x < 0.0 ) { value = - ( int ) ( fabs ( x ) + 0.5 ); } else { value = ( int ) ( fabs ( x ) + 0.5 ); } return value; } //****************************************************************************80 double r8_uniform_ab ( double a, double b, int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_AB returns a scaled pseudorandom R8. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, double R8_UNIFORM_AB, a number strictly between A and B. // { const int i4_huge = 2147483647; int k; double value; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } value = ( double ) ( seed ) * 4.656612875E-10; value = a + ( b - a ) * value; return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double *r8col_uniform_abvec_new ( int m, int n, double a[], double b[], int &seed ) //****************************************************************************80 // // Purpose: // // R8COL_UNIFORM_ABVEC_NEW fills an R8COL with scaled pseudorandom numbers. // // Discussion: // // An R8COL is an array of R8 values, regarded as a set of column vectors. // // The user specifies a minimum and maximum value for each row. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Philip Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M], B[M], the upper and lower limits. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8COL_UNIFORM_ABVEC_NEW[M*N], a matrix of pseudorandom values. // { int i; int j; int k; double *r; r = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } r[i+j*m] = a[i] + ( b[i] - a[i] ) * ( double ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 void r8mat_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT prints an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*M] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT_SOME prints some of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; if ( n < j2hi ) { j2hi = n; } if ( jhi < j2hi ) { j2hi = jhi; } cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j - 1 << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // if ( 1 < ilo ) { i2lo = ilo; } else { i2lo = 1; } if ( ihi < m ) { i2hi = ihi; } else { i2hi = m; } for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ": "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8mat_uniform_01 ( int m, int n, int &seed, double r[] ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_01 returns a unit pseudorandom R8MAT. // // Discussion: // // An R8MAT is an array of R8's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, double R[M*N], a matrix of pseudorandom values. // { int i; const int i4_huge = 2147483647; int j; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "R8MAT_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i+j*m] = ( double ) ( seed ) * 4.656612875E-10; } } return; } //****************************************************************************80 double *r8mat_uniform_01_new ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_01_NEW returns a new unit pseudorandom R8MAT. // // Discussion: // // An R8MAT is an array of R8's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, double R8MAT_UNIFORM_01[M*N], a matrix of pseudorandom values. // { int i; const int i4_huge = 2147483647; int j; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8MAT_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i+j*m] = ( double ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 void r8mat_uniform_ab ( int m, int n, double a, double b, int &seed, double r[] ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_AB returns a scaled pseudorandom R8MAT. // // Discussion: // // An R8MAT is an array of R8's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A, B, the limits of the pseudorandom values. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, double R[M*N], a matrix of pseudorandom values. // { int i; const int i4_huge = 2147483647; int j; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "R8MAT_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i+j*m] = a + ( b - a ) * ( double ) ( seed ) * 4.656612875E-10; } } return; } //****************************************************************************80 double *r8mat_uniform_ab_new ( int m, int n, double a, double b, int &seed ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_AB_NEW returns a new scaled pseudorandom R8MAT. // // Discussion: // // An R8MAT is an array of R8's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A, B, the limits of the pseudorandom values. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, double R8MAT_UNIFORM_AB_NEW[M*N], a matrix of pseudorandom values. // { int i; const int i4_huge = 2147483647; int j; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8MAT_UNIFORM_AB_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i+j*m] = a + ( b - a ) * ( double ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 double *r8row_uniform_abvec_new ( int m, int n, double a[], double b[], int &seed ) //****************************************************************************80 // // Purpose: // // R8ROW_UNIFORM_ABVEC_NEW fills an R8ROW with scaled pseudorandom numbers. // // Discussion: // // An R8ROW is an array of R8 values, regarded as a set of row vectors. // // The user specifies a minimum and maximum value for each column. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Philip Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[N], B[N], the upper and lower limits. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8COL_UNIFORM_ABVEC_NEW[M*N], a matrix of pseudorandom values. // { int i; int j; int k; double *r; r = new double[m*n]; for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } r[i+j*m] = a[j] + ( b[j] - a[j] ) * ( double ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 void r8vec_copy ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_COPY copies an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], the vector to be copied. // // Input, double A2[N], the copy of A1. // { int i; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return; } //****************************************************************************80 double *r8vec_normal_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_NORMAL_01_NEW returns a unit pseudonormal R8VEC. // // Discussion: // // The standard normal probability distribution function (PDF) has // mean 0 and standard deviation 1. // // This routine can generate a vector of values on one call. It // has the feature that it should provide the same results // in the same order no matter how we break up the task. // // Before calling this routine, the user may call RANDOM_SEED // in order to set the seed of the random number generator. // // The Box-Muller method is used, which is efficient, but // generates an even number of values each time. On any call // to this routine, an even number of new values are generated. // Depending on the situation, one value may be left over. // In that case, it is saved for the next call. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of values desired. If N is negative, // then the code will flush its internal memory; in particular, // if there is a saved value to be used on the next call, it is // instead discarded. This is useful if the user has reset the // random number seed, for instance. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_NORMAL_01_NEW[N], a sample of the standard normal PDF. // // Local parameters: // // Local, int MADE, records the number of values that have // been computed. On input with negative N, this value overwrites // the return value of N, so the user can get an accounting of // how much work has been done. // // Local, double R(N+1), is used to store some uniform random values. // Its dimension is N+1, but really it is only needed to be the // smallest even number greater than or equal to N. // // Local, int SAVED, is 0 or 1 depending on whether there is a // single saved value left over from the previous call. // // Local, int X_LO, X_HI, records the range of entries of // X that we need to compute. This starts off as 1:N, but is adjusted // if we have a saved value that can be immediately stored in X(1), // and so on. // // Local, double Y, the value saved from the previous call, if // SAVED is 1. // { int i; int m; static int made = 0; double *r; const double r8_pi = 3.141592653589793; static int saved = 0; double *x; int x_hi; int x_lo; static double y = 0.0; x = new double[n]; // // I'd like to allow the user to reset the internal data. // But this won't work properly if we have a saved value Y. // I'm making a crock option that allows the user to signal // explicitly that any internal memory should be flushed, // by passing in a negative value for N. // if ( n < 0 ) { made = 0; saved = 0; y = 0.0; return NULL; } else if ( n == 0 ) { return NULL; } // // Record the range of X we need to fill in. // x_lo = 1; x_hi = n; // // Use up the old value, if we have it. // if ( saved == 1 ) { x[0] = y; saved = 0; x_lo = 2; } // // Maybe we don't need any more values. // if ( x_hi - x_lo + 1 == 0 ) { } // // If we need just one new value, do that here to avoid null arrays. // else if ( x_hi - x_lo + 1 == 1 ) { r = r8vec_uniform_01_new ( 2, seed ); x[x_hi-1] = sqrt ( - 2.0 * log ( r[0] ) ) * cos ( 2.0 * r8_pi * r[1] ); y = sqrt ( - 2.0 * log ( r[0] ) ) * sin ( 2.0 * r8_pi * r[1] ); saved = 1; made = made + 2; delete [] r; } // // If we require an even number of values, that's easy. // else if ( ( x_hi - x_lo + 1 ) % 2 == 0 ) { m = ( x_hi - x_lo + 1 ) / 2; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2 * m - 2; i = i + 2 ) { x[x_lo+i-1] = sqrt ( - 2.0 * log ( r[i] ) ) * cos ( 2.0 * r8_pi * r[i+1] ); x[x_lo+i ] = sqrt ( - 2.0 * log ( r[i] ) ) * sin ( 2.0 * r8_pi * r[i+1] ); } made = made + x_hi - x_lo + 1; delete [] r; } // // If we require an odd number of values, we generate an even number, // and handle the last pair specially, storing one in X(N), and // saving the other for later. // else { x_hi = x_hi - 1; m = ( x_hi - x_lo + 1 ) / 2 + 1; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2 * m - 4; i = i + 2 ) { x[x_lo+i-1] = sqrt ( - 2.0 * log ( r[i] ) ) * cos ( 2.0 * r8_pi * r[i+1] ); x[x_lo+i ] = sqrt ( - 2.0 * log ( r[i] ) ) * sin ( 2.0 * r8_pi * r[i+1] ); } i = 2*m - 2; x[x_lo+i-1] = sqrt ( - 2.0 * log ( r[i] ) ) * cos ( 2.0 * r8_pi * r[i+1] ); y = sqrt ( - 2.0 * log ( r[i] ) ) * sin ( 2.0 * r8_pi * r[i+1] ); saved = 1; made = made + x_hi - x_lo + 2; delete [] r; } return x; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 void r8vec_uniform_01 ( int n, int &seed, double r[] ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01 returns a unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void r8vec_uniform_ab ( int n, double a, double b, int &seed, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_AB returns a scaled pseudorandom R8VEC. // // Discussion: // // Each dimension ranges from A to B. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A, B, the lower and upper limits of the pseudorandom values. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double X[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } x[i] = a + ( b - a ) * ( double ) ( seed ) * 4.656612875E-10; } return; } //****************************************************************************80 double *r8vec_uniform_ab_new ( int n, double a, double b, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_AB_NEW returns a scaled pseudorandom R8VEC. // // Discussion: // // Each dimension ranges from A to B. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A, B, the lower and upper limits of the pseudorandom values. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_AB_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_AB_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = a + ( b - a ) * ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void r8vec_uniform_abvec ( int n, double a[], double b[], int &seed, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_ABVEC returns a scaled pseudorandom R8VEC. // // Discussion: // // Dimension I ranges from A[I] to B[I]. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], B[N], the lower and upper limits of the pseudorandom values. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double X[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_ABVEC - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } x[i] = a[i] + ( b[i] - a[i] ) * ( double ) ( seed ) * 4.656612875E-10; } return; } //****************************************************************************80 double *r8vec_uniform_abvec_new ( int n, double a[], double b[], int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_ABVEC_NEW returns a scaled pseudorandom R8VEC. // // Discussion: // // Dimension I ranges from A[I] to B[I]. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], B[N], the lower and upper limits of the pseudorandom values. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_ABVEC_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_ABVEC_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = a[i] + ( b[i] - a[i] ) * ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double *r8vec_uniform_unit_new ( int m, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_UNIT_NEW generates a random unit vector. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 October 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the dimension of the space. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_UNIT_NEW[M], a random direction vector, with unit norm. // { double *a; int i; double norm; // // Take M random samples from the normal distribution. // a = r8vec_normal_01_new ( m, seed ); // // Compute the norm. // norm = 0.0; for ( i = 0; i < m; i++ ) { norm = norm + a[i] * a[i]; } norm = sqrt ( norm ); // // Normalize. // for ( i = 0; i < m; i++ ) { a[i] = a[i] / norm; } return a; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }