# include # include # include # include # include using namespace std; # include "vandermonde.hpp" //****************************************************************************80 double *bivand1 ( int n, double alpha[], double beta[] ) //****************************************************************************80 // // Purpose: // // BIVAND1 returns a bidimensional Vandermonde1 matrix. // // Discussion: // // N = 3, ALPHA = ( 1, 2, 3 ), BETA = ( 10, 20, 30 ) // // (x,y) | (1,10) (2,10) (3,10) (1,20) (2,20) (1,30) // --------+----------------------------------------------- // 1 | 1 1 1 1 1 1 // x | 1 2 3 1 2 1 // y | 10 10 10 20 20 30 // x^2 | 1 4 9 1 4 1 // x y | 10 20 30 20 40 30 // x^2y^2 | 100 100 100 400 400 900 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the data vectors. // // Input, double ALPHA[N], BETA[N], the values that define A. // // Output, double BIVAND1[((N+1)*N)/2*((N+1)*N)/2], the matrix. // { double *a; int e; int e1; int e2; int i1; int i2; int ii; int j1; int j2; int jj; int n2; n2 = ( n * ( n + 1 ) ) / 2; a = new double[n2*n2]; e1 = 0; e2 = 0; e = 0; for ( ii = 0; ii < n2; ii++ ) { j1 = 0; j2 = 0; for ( jj = 0; jj < n2; jj++ ) { if ( ii == 0 ) { a[ii+jj*n2] = 1.0; } else { a[ii+jj*n2] = pow ( alpha[j1], e1 ) * pow ( beta[j2], e2 ); } if ( j1 + j2 < n - 1 ) { j1 = j1 + 1; } else { j1 = 0; j2 = j2 + 1; } } if ( e2 < e ) { e1 = e1 - 1; e2 = e2 + 1; } else { e = e + 1; e1 = e; e2 = 0; } } return a; } //****************************************************************************80 double *bivand2 ( int n, double alpha[], double beta[] ) //****************************************************************************80 // // Purpose: // // BIVAND2 returns a bidimensional Vandermonde1 matrix. // // Discussion: // // N = 3, ALPHA = ( 1, 2, 3 ), BETA = ( 10, 20, 30 ) // // (x,y) | (1,10) (2,10) (3,10) (1,20) (2,20) (3,20) (1,30) (2,30) (3,30) // --------+--------------------------------------------------------------- // 1 | 1 1 1 1 1 1 1 1 1 // x | 1 2 3 1 2 1 1 2 3 // x^2 | 1 4 9 1 4 1 1 4 9 // y | 10 10 10 20 20 20 30 30 30 // x y | 10 20 30 20 40 60 30 60 90 // x^2y | 10 40 90 20 80 180 30 120 270 // y^2 | 100 100 100 400 400 400 900 900 900 // x y^2 | 100 200 300 400 800 1200 900 1800 2700 // x^2y^2 | 100 400 900 400 1600 3600 900 3600 8100 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 May 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the data vectors. // // Input, double ALPHA[N], BETA[N], the values that define A. // // Output, double BIVAND1[(N*N)*(N*N)], the matrix. // { double *a; int i; int ix; int iy; int j; int jx; int jy; a = new double[n*n*n*n]; i = 0; for ( iy = 0; iy < n; iy++ ) { for ( ix = 0; ix < n; ix++ ) { j = 0; for ( jy = 0; jy < n; jy++ ) { for ( jx = 0; jx < n; jx++ ) { a[i+j*n*n] = pow ( alpha[jx], ix ) * pow ( beta[jy], iy ); j = j + 1; } } i = i + 1; } } return a; } //****************************************************************************80 double *dvand ( int n, double alpha[], double b[] ) //****************************************************************************80 // // Purpose: // // DVAND solves a Vandermonde system A' * x = b. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2014 // // Author: // // John Burkardt // // Reference: // // Ake Bjorck, Victor Pereyra, // Solution of Vandermonde Systems of Equations, // Mathematics of Computation, // Volume 24, Number 112, October 1970, pages 893-903. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA[N], the parameters that define the matrix. // The values should be distinct. // // Input, double B[N], the right hand side of the linear system. // // Output, double DVAND[N], the solution of the linear system. // { int j; int k; double *x; x = r8vec_copy_new ( n, b ); for ( k = 0; k < n - 1; k++ ) { for ( j = n - 1; k < j; j-- ) { x[j] = ( x[j] - x[j-1] ) / ( alpha[j] - alpha[j-k-1] ); } } for ( k = n - 2; 0 <= k; k-- ) { for ( j = k; j < n - 1; j++ ) { x[j] = x[j] - alpha[k] * x[j+1]; } } return x; } //****************************************************************************80 void dvandprg ( int n, double alpha[], double b[], double x[], double c[], double m[] ) //****************************************************************************80 // // Purpose: // // DVANDPRG solves a Vandermonde system A' * x = f progressively. // // Discussion: // // This function receives the solution to the system of equations A' * x = f // where A is a Vandermonde matrix for alpha(0) through alpha(n-1), // and new values alpha(n) and f(n). It updates the solution. // // To solve a system of Nbig equations, this function may be called // repeatedly, with N = 1, 2, ..., Nbig. Each time, a solution to the // current subsystem is returned. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 April 2014 // // Author: // // John Burkardt // // Reference: // // Ake Bjorck, Victor Pereyra, // Solution of Vandermonde Systems of Equations, // Mathematics of Computation, // Volume 24, Number 112, October 1970, pages 893-903. // // Parameters: // // Input, int N, the new order of the matrix, which is 1 // larger than on the previous call. For the first call, N must be 1. // // Input, double ALPHA[N], the parameters that define the matrix. // The values should be distinct. The value ALPHA(N) has just been // added to the system. // // Input, double B[N], the right hand side of the linear system. // // Input/output, double X[N]. On input, the first N-1 entries // contain the solution of the N-1xN-1 linear system. On output, the // solution to the NxN linear system. // // Input/output, double C[N], M[N]. On input, the first N-1 // entries contain factorization data for the N-1xN-1 linear system. On // output, factorization data for the NxN linear system. // { double cn; int j; c[n-1] = b[n-1]; for ( j = n - 1; 1 <= j; j-- ) { c[j-1] = ( c[j] - c[j-1] ) / ( alpha[n-1] - alpha[j-1] ); } if ( n == 1 ) { m[n-1] = 1.0; } else { m[n-1] = 0.0; } cn = c[0]; x[n-1] = c[0]; for ( j = n - 1; 1 <= j; j-- ) { m[j] = m[j] - alpha[n-2] * m[j-1]; x[n-j-1] = x[n-j-1] + m[j] * cn; } return; } //****************************************************************************80 double *pvand ( int n, double alpha[], double b[] ) //****************************************************************************80 // // Purpose: // // PVAND solves a Vandermonde system A * x = b. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2014 // // Author: // // John Burkardt // // Reference: // // Ake Bjorck, Victor Pereyra, // Solution of Vandermonde Systems of Equations, // Mathematics of Computation, // Volume 24, Number 112, October 1970, pages 893-903. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA[N], the parameters that define the matrix. // The values should be distinct. // // Input, double B[N], the right hand side of the linear system. // // Output, double PVAND[N], the solution of the linear system. // { int j; int k; double *x; x = r8vec_copy_new ( n, b ); for ( k = 0; k < n - 1; k++ ) { for ( j = n - 1; k < j; j-- ) { x[j] = x[j] - alpha[k] * x[j-1]; } } for ( k = n - 2; 0 <= k; k-- ) { for ( j = k + 1; j < n; j++ ) { x[j] = x[j] / ( alpha[j] - alpha[j-k-1] ); } for ( j = k; j < n - 1; j++ ) { x[j] = x[j] - x[j+1]; } } return x; } //****************************************************************************80 void pvandprg ( int n, double alpha[], double b[], double x[], double d[], double u[] ) //****************************************************************************80 // // Purpose: // // PVANDPRG solves a Vandermonde system A * x = f progressively. // // Discussion: // // This function receives the solution to the system of equations A * x = f // where A is a Vandermonde matrix for alpha(0) through alpha(n-1), // and new values alpha(n) and f(n). It updates the solution. // // To solve a system of Nbig equations, this function may be called // repeatedly, with N = 1, 2, ..., Nbig. Each time, a solution to the // current subsystem is returned. // // Note that the reference, which lists an Algol version of this algorithm, // omits a minus sign, writing // u[j] := u[j] x delta; // where // u[j] := - u[j] x delta; // is actually necessary. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 April 2014 // // Author: // // John Burkardt // // Reference: // // Ake Bjorck, Victor Pereyra, // Solution of Vandermonde Systems of Equations, // Mathematics of Computation, // Volume 24, Number 112, October 1970, pages 893-903. // // Parameters: // // Input, int N, the new order of the matrix, which is 1 // larger than on the previous call. For the first call, N must be 1. // // Input, double ALPHA[N], the parameters that define the matrix. // The values should be distinct. The value ALPHA(N) has just been // added to the system. // // Input, double B[N], the right hand side of the linear system. // // Input/output, double X[N]; on input, the solution of the // N-1xN-1 linear system. On output, the solution of the NxN linear system. // // Input/output, double D[N], U[N]; on input, factorization data // for the N-1xN-1 linear system. On output, factorization data for the // NxN linear system. // { double delta; double dn; int j; d[n-1] = b[n-1]; for ( j = n - 1; 1 <= j; j-- ) { d[j-1] = d[j] - alpha[n-j-1] * d[j-1]; } dn = d[0]; u[n-1] = 1.0; for ( j = 1; j <= n - 1; j++ ) { delta = alpha[n-1] - alpha[j-1]; u[j-1] = - u[j-1] * delta; u[n-1] = u[n-1] * delta; x[j-1] = x[j-1] + dn / u[j-1]; } x[n-1] = dn / u[n-1]; return; } //****************************************************************************80 double *r8mat_mtv_new ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8MAT_MTV_NEW multiplies a transposed matrix times a vector. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // For this routine, the result is returned as the function value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 April 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, double A[M,N], the M by N matrix. // // Input, double X[M], the vector to be multiplied by A. // // Output, double R8MAT_MTV_NEW[N], the product A'*X. // { int i; int j; double *y; y = new double[n]; for ( j = 0; j < n; j++ ) { y[j] = 0.0; for ( i = 0; i < m; i++ ) { y[j] = y[j] + a[i+j*m] * x[i]; } } return y; } //****************************************************************************80 double *r8mat_mv_new ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8MAT_MV_NEW multiplies a matrix times a vector. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // For this routine, the result is returned as the function value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 April 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, double A[M,N], the M by N matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8MAT_MV_NEW[M], the product A*X. // { int i; int j; double *y; y = new double[m]; for ( i = 0; i < m; i++ ) { y[i] = 0.0; for ( j = 0; j < n; j++ ) { y[i] = y[i] + a[i+j*m] * x[j]; } } return y; } //****************************************************************************80 void r8mat_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT prints an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*M] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT_SOME prints some of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; if ( n < j2hi ) { j2hi = n; } if ( jhi < j2hi ) { j2hi = jhi; } cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j - 1 << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // if ( 1 < ilo ) { i2lo = ilo; } else { i2lo = 1; } if ( ihi < m ) { i2hi = ihi; } else { i2hi = m; } for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ": "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8vec_copy_new ( int n, double a1[] ) //****************************************************************************80 // // Purpose: // // R8VEC_COPY_NEW copies an R8VEC to a new R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], the vector to be copied. // // Output, double R8VEC_COPY_NEW[N], the copy of A1. // { double *a2; int i; a2 = new double[n]; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return a2; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double *vand1 ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // VAND1 returns the Vandermonde1 matrix A with 1's on the first row. // // Formula: // // A(I,J) = X(J)^(I-1) // // Example: // // N = 5, X = ( 2, 3, 4, 5, 6 ) // // 1 1 1 1 1 // 2 3 4 5 6 // 4 9 16 25 36 // 8 27 64 125 216 // 16 81 256 625 1296 // // Properties: // // A is generally not symmetric: A' /= A. // // A is nonsingular if, and only if, the X values are distinct. // // det ( A ) = product ( 1 <= I <= N ) ( 1 <= J .lt. I ) ( X(I) - X(J) ). // = product ( 1 <= J <= N ) X(J) // * product ( 1 <= I .lt. J ) ( X(J) - X(I) ). // // A is generally ill-conditioned. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2014 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, page 27, // LC: QA263.G68. // // Nicholas Higham, // Stability analysis of algorithms for solving confluent // Vandermonde-like systems, // SIAM Journal on Matrix Analysis and Applications, // Volume 11, 1990, pages 23-41. // // Parameters: // // Input, int N, the order of the matrix desired. // // Input, double X[N], the values that define A. // // Output, double VAND1[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( i == 0 && x[j] == 0.0 ) { a[i+j*n] = 1.0; } else { a[i+j*n] = pow ( x[j], i ); } } } return a; }