# include # include # include # include # include # include # include using namespace std; int main ( ); void test01 ( ); void test02 ( ); void test03 ( ); void test04 ( ); float r4_exp ( uint32_t &jsr, uint32_t ke[256], float fe[256], float we[256] ); void r4_exp_setup ( uint32_t ke[256], float fe[256], float we[256] ); float r4_nor ( uint32_t &jsr, uint32_t kn[128], float fn[128], float wn[128] ); void r4_nor_setup ( uint32_t kn[128], float fn[128], float wn[128] ); float r4_uni ( uint32_t &jsr ); uint32_t shr3_seeded ( uint32_t &jsr ); void timestamp ( ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for ZIGGURAT_OPENMP. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 October 2013 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "ZIGGURAT_OPENMP:\n"; cout << " C++ version\n"; cout << "\n"; cout << " Number of processors = " << omp_get_num_procs ( ) << "\n"; cout << " Number of threads = " << omp_get_max_threads ( ) << "\n"; test01 ( ); test02 ( ); test03 ( ); test04 ( ); // // Terminate. // cout << "\n"; cout << "ZIGGURAT_OPENMP:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test01 ( ) //****************************************************************************80 // // Purpose: // // TEST01 tests SHR3_SEEDED. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 October 2013 // // Author: // // John Burkardt // { uint32_t jsr; uint32_t jsr_value; double mega_rate_par; double mega_rate_seq; int r; int r_num = 1000; int *result_par; int *result_seq; int s; int s_num = 10000; uint32_t *seed; int thread; int thread_num; double wtime_par; double wtime_seq; cout << "\n"; cout << "TEST01\n"; cout << " SHR3_SEEDED computes random integers.\n"; cout << " Since the output is completely determined\n"; cout << " by the input value of SEED, we can run in\n"; cout << " parallel as long as we make an array of seeds.\n"; # pragma omp parallel { # pragma omp master { thread_num = omp_get_num_threads ( ); cout << "\n"; cout << " The number of threads is " << thread_num << "\n"; } } // // Set up the SEED array, which will be used for both sequential and // parallel computations. // seed = new uint32_t[thread_num]; result_seq = new int[thread_num]; result_par = new int[thread_num]; // // Sequential execution. // The sequential execution will only match the parallel execution if we can // guarantee that the parallel threads are scheduled to execute the R loop // consecutively. // jsr = 123456789; for ( thread = 0; thread < thread_num; thread++ ) { seed[thread] = shr3_seeded ( jsr ); } wtime_seq = omp_get_wtime ( ); for ( r = 0; r < r_num; r++ ) { thread = ( r % thread_num ); jsr = seed[thread]; for ( s = 0; s < s_num; s++ ) { jsr_value = shr3_seeded ( jsr ); } result_seq[thread] = jsr_value; seed[thread] = jsr; } wtime_seq = omp_get_wtime ( ) - wtime_seq; mega_rate_seq = ( double ) ( r_num ) * ( double ) ( s_num ) / wtime_seq / 1000000.0; // // Parallel. // jsr = 123456789; for ( thread = 0; thread < thread_num; thread++ ) { seed[thread] = shr3_seeded ( jsr ); } wtime_par = omp_get_wtime ( ); # pragma omp parallel \ shared ( result_par, seed ) \ private ( jsr, jsr_value, r, s, thread ) { # pragma omp for schedule ( static, 1 ) for ( r = 0; r < r_num; r++ ) { thread = omp_get_thread_num ( ); jsr = seed[thread]; for ( s = 0; s < s_num; s++ ) { jsr_value = shr3_seeded ( jsr ); } result_par[thread] = jsr_value; seed[thread] = jsr; } } wtime_par = omp_get_wtime ( ) - wtime_par; mega_rate_par = ( double ) ( r_num ) * double ( s_num ) / wtime_par / 1000000.0; // // Report. // cout << "\n"; cout << " Correctness check:\n"; cout << "\n"; cout << " Computing values sequentially should reach the\n"; cout << " same result as doing it in parallel:\n"; cout << "\n"; cout << " THREAD Sequential Parallel Difference\n"; cout << "\n"; for ( thread = 0; thread < thread_num; thread++ ) { cout << " " << setw(8) << thread << " " << setw(12) << result_seq[thread] << " " << setw(12) << result_par[thread] << " " << setw(12) << result_seq[thread] - result_par[thread] << "\n"; } cout << "\n"; cout << " Efficiency check:\n"; cout << "\n"; cout << " Computing values in parallel should be faster:\n"; cout << "\n"; cout << " Sequential Parallel\n"; cout << "\n"; cout << " TIME:" << setw(14) << wtime_seq << " " << setw(14) << wtime_par << "\n"; cout << " RATE:" << setw(14) << mega_rate_seq << " " << setw(14) << mega_rate_par << "\n"; // // Free memory. // delete [] result_par; delete [] result_seq; delete [] seed; return; } //****************************************************************************80 void test02 ( ) //****************************************************************************80 // // Purpose: // // TEST02 tests R4_UNI. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 October 2013 // // Author: // // John Burkardt // { uint32_t jsr; uint32_t jsr_value; double mega_rate_par; double mega_rate_seq; int r; int r_num = 1000; float r4_value; float *result_par; float *result_seq; int s; int s_num = 10000; uint32_t *seed; int thread; int thread_num; double wtime_par; double wtime_seq; cout << "\n"; cout << "TEST02\n"; cout << " R4_UNI computes uniformly random single precision real values.\n"; cout << " Since the output is completely determined\n"; cout << " by the input value of SEED, we can run in\n"; cout << " parallel as long as we make an array of seeds.\n"; # pragma omp parallel { # pragma omp master { thread_num = omp_get_num_threads ( ); cout << "\n"; cout << " The number of threads is " << thread_num << "\n"; } } // // Set up the SEED array, which will be used for both sequential and // parallel computations. // seed = new uint32_t[thread_num]; result_seq = new float[thread_num]; result_par = new float[thread_num]; // // Sequential execution. // The sequential execution will only match the parallel execution if we can // guarantee that the parallel threads are scheduled to execute the R loop // consecutively. // jsr = 123456789; for ( thread = 0; thread < thread_num; thread++ ) { seed[thread] = shr3_seeded ( jsr ); } wtime_seq = omp_get_wtime ( ); for ( r = 0; r < r_num; r++ ) { thread = ( r % thread_num ); jsr = seed[thread]; for ( s = 0; s < s_num; s++ ) { r4_value = r4_uni ( jsr ); } result_seq[thread] = r4_value; seed[thread] = jsr; } wtime_seq = omp_get_wtime ( ) - wtime_seq; mega_rate_seq = ( double ) ( r_num ) * ( double ) ( s_num ) / wtime_seq / 1000000.0; // // Parallel. // jsr = 123456789; for ( thread = 0; thread < thread_num; thread++ ) { seed[thread] = shr3_seeded ( jsr ); } wtime_par = omp_get_wtime ( ); # pragma omp parallel \ shared ( result_par, seed ) \ private ( jsr, r, r4_value, s, thread ) { # pragma omp for schedule ( static, 1 ) for ( r = 0; r < r_num; r++ ) { thread = omp_get_thread_num ( ); jsr = seed[thread]; for ( s = 0; s < s_num; s++ ) { r4_value = r4_uni ( jsr ); } result_par[thread] = r4_value; seed[thread] = jsr; } } wtime_par = omp_get_wtime ( ) - wtime_par; mega_rate_par = ( double ) ( r_num ) * double ( s_num ) / wtime_par / 1000000.0; // // Report. // cout << "\n"; cout << " Correctness check:\n"; cout << "\n"; cout << " Computing values sequentially should reach the\n"; cout << " same result as doing it in parallel:\n"; cout << "\n"; cout << " THREAD Sequential Parallel Difference\n"; cout << "\n"; for ( thread = 0; thread < thread_num; thread++ ) { cout << " " << setw(8) << thread << " " << setw(14) << result_seq[thread] << " " << setw(14) << result_par[thread] << " " << setw(14) << result_seq[thread] - result_par[thread] << "\n"; } cout << "\n"; cout << " Efficiency check:\n"; cout << "\n"; cout << " Computing values in parallel should be faster:'\n"; cout << "\n"; cout << " Sequential Parallel\n"; cout << "\n"; cout << " TIME:" << setw(14) << wtime_seq << " " << setw(14) << wtime_par << "\n"; cout << " RATE:" << setw(14) << mega_rate_seq << " " << setw(14) << mega_rate_par << "\n"; // // Free memory. // delete [] result_par; delete [] result_seq; delete [] seed; return; } //****************************************************************************80 void test03 ( ) //****************************************************************************80 // // Purpose: // // TEST03 tests R4_NOR. // // Discussion: // // The arrays FN, KN and WN, once set up by R4_NOR_SETUP, are "read only" // when accessed by R4_NOR. So we only need to have one copy of these // arrays and they can be shared. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 October 2013 // // Author: // // John Burkardt // { float fn[128]; uint32_t jsr; uint32_t jsr_value; uint32_t kn[128]; double mega_rate_par; double mega_rate_seq; int r; int r_num = 1000; float r4_value; float *result_par; float *result_seq; int s; int s_num = 10000; uint32_t *seed; int thread; int thread_num; float wn[128]; double wtime_par; double wtime_seq; cout << "\n"; cout << "TEST03\n"; cout << " R4_NOR computes normal random single precision real values.\n"; cout << " Since the output is completely determined\n"; cout << " by the input value of SEED and the tables, we can run in\n"; cout << " parallel as long as we make an array of seeds and share the tables.\n"; # pragma omp parallel { # pragma omp master { thread_num = omp_get_num_threads ( ); cout << "\n"; cout << " The number of threads is " << thread_num << "\n"; } } // // Set up the SEED array and the tables, which will be used for both // sequential and parallel computations. // seed = new uint32_t[thread_num]; result_seq = new float[thread_num]; result_par = new float[thread_num]; r4_nor_setup ( kn, fn, wn ); // // Sequential execution. // The sequential execution will only match the parallel execution if we can // guarantee that the parallel threads are scheduled to execute the R loop // consecutively. // jsr = 123456789; for ( thread = 0; thread < thread_num; thread++ ) { seed[thread] = shr3_seeded ( jsr ); } wtime_seq = omp_get_wtime ( ); for ( r = 0; r < r_num; r++ ) { thread = ( r % thread_num ); jsr = seed[thread]; for ( s = 0; s < s_num; s++ ) { r4_value = r4_nor ( jsr, kn, fn, wn ); } result_seq[thread] = r4_value; seed[thread] = jsr; } wtime_seq = omp_get_wtime ( ) - wtime_seq; mega_rate_seq = ( double ) ( r_num ) * ( double ) ( s_num ) / wtime_seq / 1000000.0; // // Parallel. // jsr = 123456789; for ( thread = 0; thread < thread_num; thread++ ) { seed[thread] = shr3_seeded ( jsr ); } wtime_par = omp_get_wtime ( ); # pragma omp parallel \ shared ( result_par, seed ) \ private ( jsr, r, r4_value, s, thread ) { # pragma omp for schedule ( static, 1 ) for ( r = 0; r < r_num; r++ ) { thread = omp_get_thread_num ( ); jsr = seed[thread]; for ( s = 0; s < s_num; s++ ) { r4_value = r4_nor ( jsr, kn, fn, wn ); } result_par[thread] = r4_value; seed[thread] = jsr; } } wtime_par = omp_get_wtime ( ) - wtime_par; mega_rate_par = ( double ) ( r_num ) * double ( s_num ) / wtime_par / 1000000.0; // // Report. // cout << "\n"; cout << " Correctness check:\n"; cout << "\n"; cout << " Computing values sequentially should reach the\n"; cout << " same result as doing it in parallel:\n"; cout << "\n"; cout << " THREAD Sequential Parallel Difference\n"; cout << "\n"; for ( thread = 0; thread < thread_num; thread++ ) { cout << " " << setw(8) << thread << " " << setw(14) << result_seq[thread] << " " << setw(14) << result_par[thread] << " " << setw(14) << result_seq[thread] - result_par[thread] << "\n"; } cout << "\n"; cout << " Efficiency check:\n"; cout << "\n"; cout << " Computing values in parallel should be faster:\n"; wcout << "\n"; cout << " Sequential Parallel\n"; cout << "\n"; cout << " TIME:" << setw(14) << wtime_seq << " " << setw(14) << wtime_par << "\n"; cout << " RATE:" << setw(14) << mega_rate_seq << " " << setw(14) << mega_rate_par << "\n"; // // Free memory. // delete [] result_par; delete [] result_seq; delete [] seed; return; } //****************************************************************************80 void test04 ( ) //****************************************************************************80 // // Purpose: // // TEST04 tests R4_EXP. // // Discussion: // // The arrays FE, KE and WE, once set up by R4_EXP_SETUP, are "read only" // when accessed by R4_EXP. So we only need to have one copy of these // arrays, and they can be shared. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 October 2013 // // Author: // // John Burkardt // { float fe[256]; uint32_t jsr; uint32_t jsr_value; uint32_t ke[256]; double mega_rate_par; double mega_rate_seq; int r; int r_num = 1000; float r4_value; float *result_par; float *result_seq; int s; int s_num = 10000; uint32_t *seed; int thread; int thread_num; float we[256]; double wtime_par; double wtime_seq; cout << "\n"; cout << "TEST04\n"; cout << " R4_EXP computes exponential random single precision real values.\n"; cout << " Since the output is completely determined\n"; cout << " by the input value of SEED and the tables, we can run in\n"; cout << " parallel as long as we make an array of seeds and share the tables.\n"; # pragma omp parallel { # pragma omp master { thread_num = omp_get_num_threads ( ); cout << "\n"; cout << " The number of threads is " << thread_num << "\n"; } } // // Set up the SEED array and the tables, which will be used for both // sequential and parallel computations. // seed = new uint32_t[thread_num]; result_seq = new float[thread_num]; result_par = new float[thread_num]; r4_exp_setup ( ke, fe, we ); // // Sequential execution. // The sequential execution will only match the parallel execution if we can // guarantee that the parallel threads are scheduled to execute the R loop // consecutively. // jsr = 123456789; for ( thread = 0; thread < thread_num; thread++ ) { seed[thread] = shr3_seeded ( jsr ); } wtime_seq = omp_get_wtime ( ); for ( r = 0; r < r_num; r++ ) { thread = ( r % thread_num ); jsr = seed[thread]; for ( s = 0; s < s_num; s++ ) { r4_value = r4_exp ( jsr, ke, fe, we ); } result_seq[thread] = r4_value; seed[thread] = jsr; } wtime_seq = omp_get_wtime ( ) - wtime_seq; mega_rate_seq = ( double ) ( r_num ) * ( double ) ( s_num ) / wtime_seq / 1000000.0; // // Parallel. // jsr = 123456789; for ( thread = 0; thread < thread_num; thread++ ) { seed[thread] = shr3_seeded ( jsr ); } wtime_par = omp_get_wtime ( ); # pragma omp parallel \ shared ( result_par, seed ) \ private ( jsr, r, r4_value, s, thread ) { # pragma omp for schedule ( static, 1 ) for ( r = 0; r < r_num; r++ ) { thread = omp_get_thread_num ( ); jsr = seed[thread]; for ( s = 0; s < s_num; s++ ) { r4_value = r4_exp ( jsr, ke, fe, we ); } result_par[thread] = r4_value; seed[thread] = jsr; } } wtime_par = omp_get_wtime ( ) - wtime_par; mega_rate_par = ( double ) ( r_num ) * double ( s_num ) / wtime_par / 1000000.0; // // Report. // cout << "\n"; cout << " Correctness check:\n"; cout << "\n"; cout << " Computing values sequentially should reach the\n"; cout << " same result as doing it in parallel:\n"; cout << "\n"; cout << " THREAD Sequential Parallel Difference\n"; cout << "\n"; for ( thread = 0; thread < thread_num; thread++ ) { cout << " " << setw(8) << thread << " " << setw(14) << result_seq[thread] << " " << setw(14) << result_par[thread] << " " << setw(14) << result_seq[thread] - result_par[thread] << "\n"; } cout << "\n"; cout << " Efficiency check:\n"; cout << "\n"; cout << " Computing values in parallel should be faster:\n"; cout << "\n"; cout << " Sequential Parallel\n"; cout << "\n"; cout << " TIME:" << setw(14) << wtime_seq << " " << setw(14) << wtime_par << "\n"; cout << " RATE:" << setw(14) << mega_rate_seq << " " << setw(14) << mega_rate_par << "\n"; // // Free memory. // delete [] result_par; delete [] result_seq; delete [] seed; return; } //****************************************************************************80 float r4_exp ( uint32_t &jsr, uint32_t ke[256], float fe[256], float we[256] ) //****************************************************************************80 // // Purpose: // // R4_EXP returns an exponentially distributed single precision real value. // // Discussion: // // The underlying algorithm is the ziggurat method. // // Before the first call to this function, the user must call R4_EXP_SETUP // to determine the values of KE, FE and WE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2013 // // Author: // // John Burkardt // // Reference: // // George Marsaglia, Wai Wan Tsang, // The Ziggurat Method for Generating Random Variables, // Journal of Statistical Software, // Volume 5, Number 8, October 2000, seven pages. // // Parameters: // // Input/output, uint32_t &JSR, the seed. // // Input, uint32_t KE[256], data computed by R4_EXP_SETUP. // // Input, float FE[256], WE[256], data computed by R4_EXP_SETUP. // // Output, float R4_EXP, an exponentially distributed random value. // { uint32_t iz; uint32_t jz; float value; float x; jz = shr3_seeded ( jsr ); iz = ( jz & 255 ); if ( jz < ke[iz] ) { value = ( float ) ( jz ) * we[iz]; } else { for ( ; ; ) { if ( iz == 0 ) { value = 7.69711 - log ( r4_uni ( jsr ) ); break; } x = ( float ) ( jz ) * we[iz]; if ( fe[iz] + r4_uni ( jsr ) * ( fe[iz-1] - fe[iz] ) < exp ( - x ) ) { value = x; break; } jz = shr3_seeded ( jsr ); iz = ( jz & 255 ); if ( jz < ke[iz] ) { value = ( float ) ( jz ) * we[iz]; break; } } } return value; } //****************************************************************************80 void r4_exp_setup ( uint32_t ke[256], float fe[256], float we[256] ) //****************************************************************************80 // // Purpose: // // R4_EXP_SETUP sets data needed by R4_EXP. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2013 // // Author: // // John Burkardt // // Reference: // // George Marsaglia, Wai Wan Tsang, // The Ziggurat Method for Generating Random Variables, // Journal of Statistical Software, // Volume 5, Number 8, October 2000, seven pages. // // Parameters: // // Output, uint32_t KE[256], data needed by R4_EXP. // // Output, float FE[256], WE[256], data needed by R4_EXP. // { double de = 7.697117470131487; int i; const double m2 = 2147483648.0; double q; double te = 7.697117470131487; const double ve = 3.949659822581572E-03; q = ve / exp ( - de ); ke[0] = ( uint32_t ) ( ( de / q ) * m2 ); ke[1] = 0; we[0] = ( float ) ( q / m2 ); we[255] = ( float ) ( de / m2 ); fe[0] = 1.0; fe[255] = ( float ) ( exp ( - de ) ); for ( i = 254; 1 <= i; i-- ) { de = - log ( ve / de + exp ( - de ) ); ke[i+1] = ( uint32_t ) ( ( de / te ) * m2 ); te = de; fe[i] = ( float ) ( exp ( - de ) ); we[i] = ( float ) ( de / m2 ); } return; } //****************************************************************************80 float r4_nor ( uint32_t &jsr, uint32_t kn[128], float fn[128], float wn[128] ) //****************************************************************************80 // // Purpose: // // R4_NOR returns a normally distributed single precision real value. // // Discussion: // // The value returned is generated from a distribution with mean 0 and // variance 1. // // The underlying algorithm is the ziggurat method. // // Before the first call to this function, the user must call R4_NOR_SETUP // to determine the values of KN, FN and WN. // // Thanks to Chad Wagner, 21 July 2014, for noticing a bug of the form // if ( x * x <= y * y ); <-- Stray semicolon! // { // break; // } // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 July 2014 // // Author: // // John Burkardt // // Reference: // // George Marsaglia, Wai Wan Tsang, // The Ziggurat Method for Generating Random Variables, // Journal of Statistical Software, // Volume 5, Number 8, October 2000, seven pages. // // Parameters: // // Input/output, uint32_t &JSR, the seed. // // Input, uint32_t KN[128], data computed by R4_NOR_SETUP. // // Input, float FN[128], WN[128], data computed by R4_NOR_SETUP. // // Output, float R4_NOR, a normally distributed random value. // { int hz; uint32_t iz; const float r = 3.442620; float value; float x; float y; hz = ( int ) shr3_seeded ( jsr ); iz = ( hz & 127 ); if ( fabs ( hz ) < kn[iz] ) { value = ( float ) ( hz ) * wn[iz]; } else { for ( ; ; ) { if ( iz == 0 ) { for ( ; ; ) { x = - 0.2904764 * log ( r4_uni ( jsr ) ); y = - log ( r4_uni ( jsr ) ); if ( x * x <= y + y ) { break; } } if ( hz <= 0 ) { value = - r - x; } else { value = + r + x; } break; } x = ( float ) ( hz ) * wn[iz]; if ( fn[iz] + r4_uni ( jsr ) * ( fn[iz-1] - fn[iz] ) < exp ( - 0.5 * x * x ) ) { value = x; break; } hz = ( int ) shr3_seeded ( jsr ); iz = ( hz & 127 ); if ( fabs ( hz ) < kn[iz] ) { value = ( float ) ( hz ) * wn[iz]; break; } } } return value; } //****************************************************************************80 void r4_nor_setup ( uint32_t kn[128], float fn[128], float wn[128] ) //****************************************************************************80 // // Purpose: // // R4_NOR_SETUP sets data needed by R4_NOR. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2013 // // Author: // // John Burkardt // // Reference: // // George Marsaglia, Wai Wan Tsang, // The Ziggurat Method for Generating Random Variables, // Journal of Statistical Software, // Volume 5, Number 8, October 2000, seven pages. // // Parameters: // // Output, uint32_t KN[128], data needed by R4_NOR. // // Output, float FN[128], WN[128], data needed by R4_NOR. // { double dn = 3.442619855899; int i; const double m1 = 2147483648.0; double q; double tn = 3.442619855899; const double vn = 9.91256303526217E-03; q = vn / exp ( - 0.5 * dn * dn ); kn[0] = ( uint32_t ) ( ( dn / q ) * m1 ); kn[1] = 0; wn[0] = ( float ) ( q / m1 ); wn[127] = ( float ) ( dn / m1 ); fn[0] = 1.0; fn[127] = ( float ) ( exp ( - 0.5 * dn * dn ) ); for ( i = 126; 1 <= i; i-- ) { dn = sqrt ( - 2.0 * log ( vn / dn + exp ( - 0.5 * dn * dn ) ) ); kn[i+1] = ( uint32_t ) ( ( dn / tn ) * m1 ); tn = dn; fn[i] = ( float ) ( exp ( - 0.5 * dn * dn ) ); wn[i] = ( float ) ( dn / m1 ); } return; } //****************************************************************************80 float r4_uni ( uint32_t &jsr ) //****************************************************************************80 // // Purpose: // // R4_UNI returns a uniformly distributed real value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 October 2013 // // Author: // // John Burkardt // // Reference: // // George Marsaglia, Wai Wan Tsang, // The Ziggurat Method for Generating Random Variables, // Journal of Statistical Software, // Volume 5, Number 8, October 2000, seven pages. // // Parameters: // // Input/output, uint32_t &JSR, the seed. // // Output, float R4_UNI, a uniformly distributed random value in // the range [0,1]. // { uint32_t jsr_input; float value; jsr_input = jsr; jsr = ( jsr ^ ( jsr << 13 ) ); jsr = ( jsr ^ ( jsr >> 17 ) ); jsr = ( jsr ^ ( jsr << 5 ) ); value = fmod ( 0.5 + ( float ) ( jsr_input + jsr ) / 65536.0 / 65536.0, 1.0 ); return value; } //****************************************************************************80 uint32_t shr3_seeded ( uint32_t &jsr ) //****************************************************************************80 // // Purpose: // // SHR3_SEEDED evaluates the SHR3 generator for integers. // // Discussion: // // Thanks to Dirk Eddelbuettel for pointing out that this code needed to // use the uint32_t data type in order to execute properly in 64 bit mode, // 03 October 2013. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2013 // // Author: // // John Burkardt // // Reference: // // George Marsaglia, Wai Wan Tsang, // The Ziggurat Method for Generating Random Variables, // Journal of Statistical Software, // Volume 5, Number 8, October 2000, seven pages. // // Parameters: // // Input/output, uint32_t &JSR, the seed, which is updated // on each call. // // Output, uint32_t SHR3_SEEDED, the new value. // { uint32_t value; value = jsr; jsr = ( jsr ^ ( jsr << 13 ) ); jsr = ( jsr ^ ( jsr >> 17 ) ); jsr = ( jsr ^ ( jsr << 5 ) ); value = value + jsr; return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }