{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Using TensorFlow backend.\n" ] } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.stats import norm\n", "from copy import deepcopy\n", "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", "import matplotlib as mpl\n", "import json\n", "from keras.models import load_model\n", "import pandas as pd\n", "from scipy.stats import pearsonr\n", "from keras.utils.generic_utils import get_custom_objects\n", "from losses import neg_log_likelihood\n", "from util import partition_data, get_balaji_predictions, get_experimental_X_y, get_gfp_X_y_aa\n", "plt.rcParams['legend.fontsize'] = 'large'\n", "plt.rcParams[\"font.family\"] = \"serif\"\n", "cm = plt.get_cmap('viridis_r')\n", "plt.style.use('seaborn-paper')\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "\n", "ALL_COLORS = plt.rcParams['axes.prop_cycle'].by_key()['color'] + plt.rcParams['axes.prop_cycle'].by_key()['color']\n", "METHODS = [\n", " 'kl_den_log_sf_fitness_315_sim_095_p_margin_1_decoder_eps_00001_fitness_weight_005',\n", " 'kl_den_log_sf_fitness_315_sim_05_p_margin_1000_decoder_eps_00001_fitness_weight_005',\n", " 'cbas',\n", " 'fbvae',\n", " 'cem-pi'\n", "]\n", "METHOD_COLORS = {METHODS[i]: ALL_COLORS[i] for i in range(len(METHODS))}\n", "METHOD_COLORS['killoran'] = ALL_COLORS[len(METHODS)]\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def lighten_color(color, amount=0.5):\n", " \"\"\"\n", " Lightens the given color by multiplying (1-luminosity) by the given amount.\n", " Input can be matplotlib color string, hex string, or RGB tuple.\n", "\n", " Examples:\n", " >> lighten_color('g', 0.3)\n", " >> lighten_color('#F034A3', 0.6)\n", " >> lighten_color((.3,.55,.1), 0.5)\n", " \"\"\"\n", " import matplotlib.colors as mc\n", " import colorsys\n", " try:\n", " c = mc.cnames[color]\n", " except:\n", " c = color\n", " c = colorsys.rgb_to_hls(*mc.to_rgb(c))\n", " return colorsys.hls_to_rgb(c[0], 1 - amount * (1 - c[1]), c[2])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def plot_traj(quantile=0.8, traj_it=1, sort=True, mean=False, use_from=0, use_first=50, y_max=6.0, sub=True, methods_to_use=None, figsize=(8, 6)):\n", " for i in [traj_it]:\n", " for j in range(1):\n", " fig = plt.figure(figsize=figsize)\n", " suffix = '_5k_%i_%i_w_edit_distances' %(i, j)\n", " if use_first > 100:\n", " suffix += \"_long\"\n", " methods = methods_to_use if methods_to_use is not None else None\n", " if methods_to_use is None :\n", " if sub:\n", " methods = [ 'cbas', 'fbvae']\n", " else:\n", " methods = [ 'cbas', 'fbvae', 'rwr', 'dbas', 'cem-pi']\n", " for k in range(len(methods)):\n", " method = methods[k]\n", " oracle_samples = np.load(\"results/%s_oracle_samples%s.npy\" %(method, suffix))[use_from:use_first]\n", " gt_samples = np.load(\"results/%s_gt_samples%s.npy\" %(method, suffix))[use_from:use_first]\n", " \n", " if mean:\n", " oracle_vals= np.mean(oracle_samples, axis=1)\n", " gt_vals = np.mean(gt_samples, axis=1)\n", " else:\n", " per = np.percentile(oracle_samples, quantile*100, axis=-1)\n", " per = per.reshape(oracle_samples.shape[0], 1)\n", " oracle_idxs = np.where(oracle_samples > per)\n", " \n", " oracle_vals = np.zeros_like(oracle_samples)\n", " oracle_vals[oracle_idxs] = oracle_samples[oracle_idxs]\n", " oracle_vals = np.true_divide(oracle_vals.sum(1),(oracle_vals!=0).sum(1))\n", " \n", " gt_vals = np.zeros_like(gt_samples)\n", " gt_vals[oracle_idxs] = gt_samples[oracle_idxs]\n", " gt_vals = np.true_divide(gt_vals.sum(1),(gt_vals!=0).sum(1))\n", " \n", " x = range(oracle_samples.shape[0])\n", " if sort:\n", " sorted_idx = np.argsort(oracle_vals)\n", " else:\n", " sorted_idx = range(len(x))\n", " \n", " lbl = method.upper()\n", " if method == 'cbas':\n", " lbl = 'CbAS'\n", " elif method == 'dbas':\n", " lbl = 'DbAS'\n", " \n", " print(method, np.max(gt_vals[~np.isnan(gt_vals)]))\n", " plt.plot(x, gt_vals[sorted_idx], c=METHOD_COLORS[method], label=\"%s\" % lbl, zorder=len(methods)-j)\n", " plt.plot(x, oracle_vals[sorted_idx], c=METHOD_COLORS[method], ls='--', zorder=len(methods)-j)\n", "\n", " plt.xlim(0, use_first)\n", " plt.ylim(2.8, y_max)\n", " \n", " plt.ylabel(\"$%i^{th}$ percentile of $y$ samples\" % int(quantile*100))\n", " plt.xlabel(\"Iteration (sorted by oracle values)\")\n", " plt.legend(frameon=True, loc='lower left')\n", " plt.grid(True)\n", " plt.gca().set_axisbelow(True)\n", " plt.gca().grid(color='gray', alpha=0.2)\n", " plt.gca().spines['right'].set_visible(False)\n", " plt.gca().spines['top'].set_visible(False)\n", " plt.gca().yaxis.set_ticks_position('left')\n", " plt.gca().xaxis.set_ticks_position('bottom')\n", " if sub:\n", " plt_name = \"plots/traj_%.1f_%i_%i_sub.png\" % (quantile, i, j)\n", " else:\n", " plt_name = \"plots/traj_%.1f_%i_%i_all.png\" % (quantile, i, j)\n", " print(plt_name)\n", " plt.tight_layout()\n", " \n", " plt.savefig(\"plots/gfp_sf_kl_den_trajs_\" + str(use_from) + \"_\" + str(use_first) + \"_traj_\" + str(i) + \"_\" + str(y_max).replace(\".\", \"\") + \".png\", dpi=150, transparent=True)\n", " plt.savefig(\"plots/gfp_sf_kl_den_trajs_\" + str(use_from) + \"_\" + str(use_first) + \"_traj_\" + str(i) + \"_\" + str(y_max).replace(\".\", \"\") + \".eps\")\n", " plt.savefig(\"plots/gfp_sf_kl_den_trajs_\" + str(use_from) + \"_\" + str(use_first) + \"_traj_\" + str(i) + \"_\" + str(y_max).replace(\".\", \"\") + \".svg\")\n", "\n", " \n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "kl_den_log_sf_fitness_315_sim_095_p_margin_1_decoder_eps_00001_fitness_weight_005 3.3570636744974784\n", "kl_den_log_sf_fitness_315_sim_05_p_margin_1000_decoder_eps_00001_fitness_weight_005 2.8939955225762914\n", "cbas 3.3204623196472998\n", "fbvae 3.266563297573355\n", "cem-pi 3.3318376969454144\n", "plots/traj_0.8_2_0_all.png\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAFgCAYAAACL0mKXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XV8VfX/wPHXubXuHhsLFjC2MbpTEJVSQn6oKBiAGIR+7cbAAlQsjK/xpQRFGlE6R8PIFWPdnbfO7487BnMbbGNsxOf5kMfczj3nvO89997zPp94H0mWZQRBEARBEFqSoqUDEARBEARBEAmJIAiCIAgtTiQkgiAIgiC0OJGQCIIgCILQ4kRCIgiCIAhCixMJiSAIgiAILU4kJIIgCIIgtDiRkAiCIAiC0OJUzbkzSZLcgQlAHnAn8IEsy1GVy54DAisf+rcsy783Z2yCIAiCILScZk1IZFlOlyTpK2A6YACiL1usAw4A1sCJK21HkqQpwBSAwMDAznv27Lk+AQv1lp+fj729fUuHcVsTx+DGII5D07BdPwVV9llyH9wMKvMGry+Ow43BxcVFqu9jmzUhAZBluQKYL0nS28Bw4GJLyC+yLOdLkmQJbAF6XmEbi4BFABEREbKLi8t1jlqoD3EcWp44BjcGcRyuUfx2SNgKY37AxcO70ZsRx+Hm0qxjSCRJ6iNJknPlrynA5e+0AABZlksB2+aMSxAEQbiBFCSDX38IHdPSkQjNqLlbSDTAm5IkHcLUAvKWJElrZFkeCYyVJKkL4AR82sxxCYIgCDeKjg9BxIMg1bu1X7gFNPcYkq3A1spff678ObJy2UvNGYsgCIJwg6kohshvoPs0MLNu6WiEZiam/QqCIAg3hj0LYMdHUJrT0pEILUAkJIIgCELLK0iGvV9AjyfBwaeloxFagEhIBEEQhJa35R3QWEPf2S0didBCREIiCIIgtKziLIhaAQNfAXO7lo5GaCHNXodEEARBEAAw6EGhBGsXGLkQwse3dERCCxItJIIgCELzy0uA/94NBxaZfu/4ICjFNfLtTCQkgiAIQvM6sQK+7gNFaeAe3tLRCDcIkY4KgiAIzUNbAutmw4ll0H40DJ8PFuJ+M4KJSEgEQRCE5qHUQHE63Ps1dJggKrEK1YiERBAEQbh+jAbYPR8Ch4BHB5j4p0hEhFqJhEQQBEFoWsWZkHwQsmPg3EZIijTVGPHoIJIRoU4iIREEQRAarjgTMk9DTizkxJl+dp4EbYdB7Bb4cxqoLcElGB5eDf79Wzpi4QYnEhJBEAShfkpzwcLB1MqxYjJc2A2S0lTq3SkAFJWnlLb3wKzTYOMBCjGZU6gfkZAIgiAIddOWmLpdolaYWj4mbwDvbqYZMgAOvqDSVF/H3E5UXBUaTCQkgiAIQu02vgRHfgZdKbTqDEPeAUd/0zKXoJaNTbjliIREEARBMCnKgD0LoO9zYOUMtp7QZzaEjganNi0dnXCLEwmJIAjC7a40F/Z8ZirjrlBByL2mhKT3sy0dmXAbEQmJIAjC7ezo/2DTy2DUQ/ep0OtZsHRs6aiE25BISARBEG432lIozzd1ydi4Q8QDpq4ZG7eWjky4jYmERBAE4Xahr4DDP8OuT8AjAh78DQIGm/4JQgsTCYkgCMLt4Ox62PgiFCRD2DgY8FJLRyQI1YiERBAE4VZXlAErHwPf3vDAb+AW0tIRCUINIiERBEG4VRVngYW9aWzI4/+Aa4ionCrcsMQ7UxAE4VZ0YR980we2zzX97h4qkhHhhibenYIgCLcSWYZ9X8JPw0xl3bs+3tIRCUK9iC4bQRCEW4WuHFZNgdOrocdTMORtUKpbOipBqBeRkAiCINwqVGagsYFxP0P7e1s6GkFoEJGQCIIg3OyiVoK5PQQOhnu/bOloBKFRREIiCIJwMyrJgZMr4dhiSDsOXR4zJSSCcJMSCYkgCMLN5sI++HkEyEYIvBP6vQBth7V0VIJwTURCIgiCcKNLj4JjS8BogHs+As+OcOccCB0D1q4tHZ0gNAmRkAiCINyISrJNSciJ3yAjCiydoONE0zK1OfR4smXjE4QmJhISQRCEliTLkHcekg9DyiGwbw09n4KKQtjyDgQNNd13JvBOUGlaOlpBuG5EQiIIgtDUZBkkyfT/RelQXgi6EtCVgbYUXILB3huOL4O/XoHSHNNj7X0gfLzp/x384OVkU2uIINwGREIiCILQFC7shR0f4Zy4H2QDvJ5l+vuyB00tH5cbPh+6PApOAaafrbpAq85g7XLpMZIkkhHhtiISEkEQhGuhLYUl90PCLnANoaTr01g7elxqJbn7Q9CXg9rS9E9jaRoPAuDVxfRPEIQbKyGRJMkCOA1MkGV5f0vHIwiCUCtZhqRI8O5uSjDcQqHbFGg7nLKcHKxdLmvpEAmHINRLsyYkkiS5AxOAPOBO4ANZlqMue8hTwLnmjEkQBKHeZBlit8CODyH5AExaD7594O65LR2ZINz0mjUhkWU5XZKkr4DpgAGIvrhMkqQ2QCmQfrXtSJI0BZgC4OnpSVZW1vUJWKi33Nzclg7htieOwfWlTtyFVeQC1JnH0bmGUzrsO7SWQfCv7x9xHG4M4jjcGFwuby28imbvspFluQKYL0nS28Bw4PfKRdOAV4Bu9djGImARQEREhNyQJyxcP+I4tDxxDK6jqNOgMYOHfkfd5g7sLs6iqYU4DjcGcRxuLorm3JkkSX0kSXKu/DUF8K78uyegBR4EAoBhkiT5NGdsgiAINRgNkFg5nK3/i/DYZggYfGlKryAITaZZExJAA7wpSdIjQE9glSRJa2RZTpVl+VXgLCABSiC/mWMTBEG4xKCHP5+En4ZDfiIo1SIREYTrqLnHkGwFtlb++nPlz5GXLd8P9G7OmARBEGow6GDVVDi1Cu5bZKqeKgjCdXVDTfsVBEFocXot/P4YnF0PY3+E9ve1dESCcFsQCYkgCMLlyvIg8wzc/zO0G9HS0QjCbUMkJIIgCAD6CtO9ZmzcYPo+05gRQRCaTXMPahUEQbjx6Mpg2QOwdIKp+JlIRgSh2YkWEkEQbm/aUlg2wTS99/+WiJk0gtBCREIiCMLtK/c8rHkGkg/BA8vBf0BLRyRcRq81UFGmx6Azotca0esMuHjbIClE0ngrEgmJIAi3H105qM0h6QByxhnkB1aAT28wGAFQKE292Qa98dI6MsiyjEKlQKGQ0OsMGPQyslGuWqZUmdYzGoyUFetq7NbSRoOkkCgv0Zm2LZt6iEBGY65CY6FCrzVQWqQFuXK3sowkSdg6WwCQl16CQW9ENpqWGY0y9q6WmFupKc4rpzC7HJBNywEzSxUu3jYYjTLJZ3MvbbcyJs8Ae9RmSrKTiynOK68Wr42TOU6e1lSU6UmL+VdpKAl8w0x1LuOPZVGcV2F6TXRGDDojfh1ccPOzJTU2n5M7UjDqjRgMMka9EWtHcwY+1BaAlR8eoqK0MunQGdDrjIx8NgJ3fzsOrDvP0c2J1Xb7xPx+aCzEqetWJI6qINxAZKPpNCEpJHQVBsqKtRj1ctVypVqBjaM5YDoxXa4wtxwHewMqtZKSggoqSvTIyFVnHjNLNdYOZuh1BvIzymrs26mVFZIkUZBVirbcUG2ZlZ0ZlrYaKkp1lSe8SySFhLOXNQAp5/LQaQ0Y9TIGgxGjQcYr2AErezOyEovISCisfKIysmw64fmGOWPQGTm1O8V0cr70dGnXywONhYqEqGzy0kqrPR9XX1u8gh0ozivnzN40ZKNpm7Iso1BIdBvhD8D+1XHkZ5SiK9ejy8tGm59N9+Bz+E17i1MFPdl+/jv4SAdsr9ruuJdMd+hdNHNHtdcfYOxLXXDztWX/n/Ec35JUbVlwD3c6DHOhKLeC/72+r8Zr/MSCfmjMVfz942kST+VUW9bzvjZ0GupD8rk81n95otoyawczHvnAVKJp7efHKcqtfgzueTIMvw4uRB/MYN8fcdWWebdzYOSMjhj1RtZ+frxGTA++3QN7N0tObE3izN60asvCB3rRd3wQhVllrP+qekxIMP2rgUiSxNHNiWQmFKJUK1BpFChVChw8rHDzs0WvNVCcV45SZfq7Uq1AY66s2oxHgD2yQUapllBplCjVCqzszUyvZ3d33P3tUGkUqNRK00+NGPp4qxIJiXDbkI0yBr0RfeUVnF5nwNLODLVGSWF2GYXZZVVXcEaDjKWdGR5t7NBpDZzbl4ZBb7oalWXTSTFsgBdqMyWxhzPJTS2uOhnKRvAKdsA7xJGc1GIObUhArzViqLz6U6oUjJrZEYA/PjlMblqJads6I0ajzJ2Ptyewixtn9qaya3lMtefgEWDH6Oc7A7Dkrcgaz3H8aw44e1lzeEMCUTtSqi0L6ePJwIfaUphdzvJ3D9RYd9qXA1AqJbb97xwp5/KqLes9NoCIwa1JOZfPxm+jqi2zdTZn4ru9ANj84ylKC7TVlg9/pgNW9mZcOJlD5Jp4Uy1mTD98wpzxDXNGrzOw5/fYyr9LVP6Hf0cXNBYq4o9lEXsos+rvSBLhA73wCnagtFBL1I4UJAkkSUKSQKVRViUkJXmlVKQnoi6Kw1yXjdrGFotg0y2zPAKd6P+AEoXiUlAW1pcGtA58sK3peFcGLSlMzxdMJ0s3P9uqfSJRmSxWYGmr4e5pYTVeY5XadDLtOsyX0P6tql4HJLB3swTA1ceW4c90qPq7JElV6wHcPS0Mg8GIJEmmuCWqWk/a9fLAN9QZqfLhkmQ6yYMpmZ34bs9LL37lcks7DQC9xgTQbYQflz9AbWbakKOnVVVCVJv7nu906TX8l9YhTrQOcapz3d5jAupc5tTKGqdW1nUuF24tkunDdvOKiIiQjx071tJh3PaysrIafCMro1GmokRHaZEWtUaJrbMFJfkVnNqVgk5rRF9hQKc1oNcaGfpEeyRJYusvZ0iPL0CnNSAbTO/d7qPa0K6XB/HHstix5Fy1fdi7WXLfc50A+H72TipK9dWWj5rVEa9gByLXxnNofUK1ZW06unDX1DBKC7X898XdKJUKJKWEQjK1CjzwVg8sbTVs+/UMCSdzqp2Ywgd40/HO1mQlFbFnRQzKi1d3agVmVmr6jQ8CIGp7MhVl+ktXjyoJr7YO2LlYUphdRl56KQqVhFQ50NLMQoVLaxvA1Bpx6cQC+fkFBIR5oTFXUZBVSslliYEEWNhqsHe1RKc1kJNcXON4uPnaIikkctNK0JbrTYlBJWtHM6zszCgv0VGQVb11RaVR4ORpOmkU5ZYjSaYuD4VSQqE0nRDrOlldV0YDKJSQHQNfdofgu6HXs9C6+3XdbWM+C0LTE8fhhlHvD79ISIQmcaUPf2mhloQT2QR0cUVjruLAuvOc3JFMebGOi2+/i1fv+RmlrPr0CCozJWqN6SSuNlMy4pkOKJQKjv6dSFFuOWqNEoXS9D73CXPC3c+OnJRi4o5kXtqxJGFupSJ8oDcA5/anIQMqtalZWKVW4NLaBnMrNWVFWipK9SiUEkqVAoVKQqVWojZTVvXh3+jEF3AlXTns/xJOr4EntoFCAUXpYOPeLLsXx+HGII7DDaPeX56iy0a4Lgqzy4g/lkX8sSzS4wqQMY0X8G7niEtrG0L7e2Fpo8bCRoOFrQZbJ1MzuL2bJZM/6lPndjsOqfueIldr3g3u4VHnMgsbDRY2mlqX3QzJiIBpdOi5jfDXy5CfBF0fB4MWFObNlowIgtB4IiERmoQsy+SmleDgbokkSfz13Umyk4vxautA/weC8evggqWt6YTvF+6MX7hzC0cs3HL+eAKiVoBff/i/peAW0tIRCYLQACIhEa5JeYmOY38ncu5gGsU5Wsa/1hVnLxvueCQEKwczzMT0POF6KqucimphD0F3QcgoaDtcFDe7ySTnlbLtbCYTe/q2dChCCxJnC6HRzkWms3tFDAadkVbtbek3vm3VTAFHT6sWjk64pRkNcPRX2DIHQkfDPR9D2NiWjkpopJWHk1nwTwx9Al3wcxbfHbcrkZAIjZaTUoxXsAO9xwZSpi/ExUV0wwjXmSxDwm7Y/CqkHYfQsdB7RktHJVyjmEzTrK8NUWk8NbDuacDCrU1UmBHq9PmWGPbEZlf9rqswsG9VbFUxqJ73tmHoE6FYO5i1VIjC7SbzDPw83JSYTN4EY38AO6+Wjkq4RnGVCcm6E2lXeaRwKxMJiVCrglIdC/6JZsayY+SXaok/lsWSt/dzbEtSVTltcT8J4boz6OHEClg1zZSEuIXA5I0wZQf49Gzp6G5bsizz/a54LuSUXP3BV6E3GInPKqGzjwNn0gqJz6pZI0e4PYiERKjVvvgcjDJoy3Qsej+Sjd9E4eBuxYTXu9NpqE9Lhyfc6nTlcOhHWNgZ/ngcitKgorLsvE8vU20RocXsjcvh3fVn+P1w8jVvKymvDK3ByBN9/bFQK9kQJVpJblfiUy3UYNAZOXgwFW8HC14cEUJKQTnew7wZ8UyHqkGrgnDdGI3wbV9YNxvcw0zFzR5eDeZ2LR2ZgKl1ZME/0QCcTS+65u3FZJi2Ee5lx6C2rqyPSr/mbQo3JzGoVUA2yqTG5JMSnUdqTD7p5wtx1BkZ0MOeCd1as/ZEKh+eSmLQnX5YmzXuLWM0ymQVV+Bma97E0Qu3hPICiFwE3aeYEo9Br4FLW3AJbunIhH/ZG5fDwYQ82rhYEZ1x7QlJbFYxVholHnbmDAv3YPriI8RlFdPGRdzD5nYjWkhuQ3qtgaQzuZzcUdncKsFf35/k+NZk1GZK2g3x5lfrcrp2cEOhkJg7Opyckgo+3nS2UfszGmWeX3mcvh9tI7Oo/OorCLeP8gLY/iEsCIOdH0PyQdPfQ0aJZOQGdLF1pL2nLY/18edCbimlWv3VV7yC2IxiAlytkSSJgcGupm4bMbj1tiRaSG4TslEmNTafc5HpxB3ORFtuwMJGTbvenihVCsa+2AVrR3MUCokVh5JIV8n0DjRN4/V1tuK5IcG8v/EMwzt40tXXsf77lWXeXX+GP46Y7jwbGZ/LiA6e1+U5CjeZo4tNZd51ZdB5EvSZBbbivXEju9g68t3DXXCy1iDLEJtZTLiXfaO3GZtlSkgALDRKBrVzZX1UGs/cEdhUYQs3CdFCcourKNUBpoqqqxccI+lMLuGDvBn/Wlcmf9gHpcr0FrB1tqi6I+veuBxCPGxxsr40nXdyb1/CW9nx4u8nKNcZ6r3/L7fF8uOe87w1IgQfJ0v2x+c04bMTbjrlhVBQ2TJn5Qxh98Ozx0yFzUQyckO7vHVkcDtXgtxMd52+lnEkRqNMbGYxga42VX8bFubB2fQi4sRsm9vOTZ+QeNu3a+kQbjjlJTpO7khm5YeHWPJWJEaDEQsbDeNf7crD7/ai+0h/nL1sap22K8syu2Oz6R3gVO3vKqWCj8Z2ICm3lM+3xNQrjl/3X+CTzdHMuCOQSb396OHnROT53CZ5jsJNprzQ1CWzIAw2vmj6W9BQGPYJ2LVq2diEetlX2Toyc3AQkiRhbabCy8GC6GtISNIKyynVGqpaSADRbXMbu+kTkrvaPsG+P+MwGowtHUqLK8otZ+M3Ufz3hd3sXBaNmaWK3uMCkCuXO7WyvmrtkJjMYrKKKugdULPqarC7DdMHBPDtznhOphRccTtrj6fyxuqTPNLTh5mDTU2vPdo4Elu5feHWcDq1EP2VPntFGbD5NVMisv1DCB0Dd3/YfAEKTcLUOhJT1TpyUbCbDeeuYWDrxRk2gZclJJd32wi3l5s+ITmYuIGjf11g9YJjlBTc3ic6SzsNajMlPe9rwyNzezPimQiCurqjVNb/MO+OyUatlOjmV/s4kacGBhDgYs0LK0+gq+NEtCM6i9m/HWNkB0/eHNEeqfJGZ939TK0ukedFt82tILOonOFf7GJxZGL1BbpyyDht+n+jDo4tgQ7/B88eheHzbqjKqqVaPS//ESUGW1/FvrgcDiTkMuOOwKrPM5guUs5dQwtJbGYxGpUCb8fq5QSGV3bbxGaKbpvbyU2fkBxL/YeRMzuSl1HK8vcOknIur6VDalYGg5E9v8eSeaEQpVLB4MkhRAxujZVd48q5743LplNrByw1tY931qgUfDg2nLPphSzaGV9j+eELuUz79TB9Apz5ZFyHqnEpAJ72FrR2tCQyXnTb3AoOns/DKHPpSjbzLGx6Gea1hSX3m+qJ2HnBc+dMrSL23i0bcC0OnM9l6YFEPv0ruqVDuWFdbB0J8bBlSIhbtWXB7jZkFlWQV6Jt1LZjM4vxd7ZC+a+W2wEXu21EK8lt5aZPSAC8gh0Y/2pXHNwsWb3gKIc2JiAb5auveJMrLdSyZsExjm9JIjv52q8kdAYj++Nza+2uuVyEtz2P9fHjsy0x1a5gzqYXMvm/B2nvactXD3ZGXUvLTA9/RzGw9RZxoLKlKyEhDt2iIfBVdzi+DCIehId+v1RNValuwSiv7FSqqfrrb4eTOJNW2MLR3Jguto7MHFy9dQSoGtja2G6b2MziauNHLrLQKLmjnatISG4zt0RCAmBlZ8aomRF0HOpD5Op41n15gvJiXUuHdVWy3LjEKT2+gN/eO0BeegmjZkYQ0vvaZyicSM6nuEJ/1YQEYPaQYDzszHnx9xMYjTLJ+eU8/MMBPO0t+GFSVyw0ylrX6+HvRExmMdnFt3f32k1NliExEo+zPzEg2IVc7EgxOsKYH2D2GRj63k1TQ+R0aiEdvOxo7WjJBxsbV2fnZpFeks7B9IPoDPX/XpRlmQVbam8dAWjjYo1KITWqQJosy8T8a4bN5YaFeXA2M5O/Yg6zOWEzP578kTn75vD1sa8bvC/h5nBL1SFRKBX0vLcNHm3s+Oe/p1n+3gGGPhGKu/+NWXK6qFzHHZ/uwNFKw8gIT0aEe9boS62NXmtgw9cnsHW24K4poVg7NE31090xOVibqejgdfXXy0Kj5IPRYTzwXSQL/onmjyNJWGiU/PJYN+ws6r4i7u5vGkdy4Hwu94R5NEncQjPJTzK1gBxfCrlxjJCdcW43hXKdgdcUs/lfWPeWjrDBTqUW0D/Ihe7+TkxffIQd0Vn0D3Jp6bCaVFJREj9E/cDquNXojXqs1db0bdWXQa0H0adVH6w1dVdE3Refw4HzuSya2LlG6wiYunD9nK3qnPqrM+hYE7eGIm0RkiShlJRVP0srjJSanSNPmcKfsafQGrSkFKeQXJRMcnEyyUXJ2AQX8vxe07YsVBZ42XjR3f3me58J9XNLJSQX+YY5c/+rXfnru1Os+vQIvUYHED7Iq9YPVEtaeiCR3BItnVo78Nk/MXy06RwdW9szsoMnw8I8cP1XmXW9zoBsBLWZkhHPRuDoboVS3XSNXHvisunh74SqnoNge7VxZkK31ny+NRZnKzWrpvTC1ebKyVErewu8HS3YH59z0yUkKfllHErIZWQHzxvuvXTdGI2mrpeyfPi8IyhU0G44R8NfY8wmNV875XNHiANzN8STV6LFwUrT0hHXW1G5joScUqZ72nF3qDudfRx4f/0Z+gQ41xjT0NROpxbiYWd+XV+vC4UX+O7Ed6yLX4etxpanI56mm3s3dqXsYmviVjbu3IhKoaK7R3cGeQ9ioPdAXCwvJWNXGjtyuWB3mzqn/v548kcWHluIpcoSo2ys+meQDcjImHvA74mmfxIS7lbueNl4EewQzCDvQfwTpSc715qVTwzH0dzx9vnc3aZuyYQEwNbJgtHPd2Lv77HsXhGDpZ2GwC51f6iam1Zv5Ifd5xkZ4cm8+yMoKtfx9+kM1hxP5b31Z5iz7jQ9/J0Y2cGTu0LdUZYb2fSt6Y67gyeH4OJdezNnY5VU6DmamMcr9zSsrsvL97RFlmVGhdjVq3UHoIef0003jkRnMDLll0OcSi0kIbuUGYNv8SqSqccg8ltI2g9PHQQLe3hgGXh1A3NbNm08g53rap7f+wpe1q2RNSP5+0wG93e58Qau1uXiVX2Ipy2SJPHqsHaM/movKw8nMb5r6+uyz/xSLR9sOMvyQ0n0auPE4se7N/lJNj4/nkVRi9h4fiMOZg7M6jyLcUHjsFSbPp9hLmFMj5hOclEy25K2sSVxC+9Fvsec/XMIdwlnkPcgRgWMIjrV1JL5bR2tIxcFu9mwIzoLWZarPS6xMJFFJxbxSMgjPN/1+Rrr/bL3PG+vO8WJt4agUoJCUqBWVG9d9VGmMe1/R8gr0uBkIZKRW90tm5AAKFUK+o4PIiuxiFM7U26ohOTPYylkFFYwtV8bAGzM1Yzu5MXoTl7klmjZeDKNtUdS+G75KbYsPkuoQY2ttYZ+E65P3/yBhFx0Bpk+9Rg/cjlbczVzx4STlZVV73V6+Dux4nAyOcUV1arB3si+3BbLmbRCRndqxfx/orEyU/J4X/+WDuv6yLsAPw0DS0fo8AAYKkCpgoDBVQ/ZdeEwBqflDPIeRFpJGla+X/HjyTTGdHodpaL28UM3mlMpBaiVUtXAzE6tHRgW7sGnm6MZHu6JVSNuJLnlwhaOphxlptNMVIpL68uyzLoTaby99hTlOiPju3iz/FASW89mcke7pvleis6LZtGJRWxO2IyLhQsvdH2BMYFjMFfV3mrpZePFxJCJTAyZSG55LjuSdrA1aStfH/+a1XGr0WTMJsTDljuv0DoCphaSonI9aQXleNpbVD3f9yLfw9HCkekR02tdLzarBB8na6w0dX8HDAh2xVKjZP2JdGYMbtqLMOHGc8sMar2SkL6epETnk59R2tKhAKZyyYt2xjOorSvB7pc+ZLIsk51cRNH5Ih7s7sN/J3ZhdKkZESozTiv1lPRzws3X9rrEtCcmG1cbs1pHvDe17v6mGicHaqnaui91H38l/HXVbeyMzmLpgUSiM4owXucZVSdTCli4NZYnB7Th03EdeKKvH++uP8PSA4lXX/lmYzTCn9PB3B6m7oKBL4PGqtpDkgrSSVR9jZuZHx/2+5DF9yyms/29JPMHkzY9SmpxagsF3zCnUgsJdLVBo7r0Nfji0LbklWr5blfNKe1XY5SNfHzoY36O+ZkZ22ZQqjN93yTnlfLoTwd5ZulROrZ24O/Z/Zg7Jozufo68t+FMnfV86iu5KJlZ22YxZs0Yjmcd59Xur7JhzAYebPdgncnIvzmaO3Jf4H18MegLlg0TQtjlAAAgAElEQVRbRnJRClFl/2NGLTNr/u3id9jlM23+SviLval7ebnby1UtM/8Wm1lMwFXu6GuuVnJHOzcx2+Y2cUu3kFzUppMru5bHcHpPKr1GB7R0OGw9m0lsZjHv3RtKRZmeCyezSTyVS9LpXEoLtdi5WuAT2hMLaw0T5/TExsmcV1ad5MfDSTw6OKDOGiHXYk9cDn0CnJulj9bLwRIvB9M4krsrx5GU68uZd3geS88uRa1Q09mtM84WtbfWlOsMPL3kCIXlpruM2pqr6OTjQBcfBzr5OBDhbd9kr1GF3sBzvx0nwNWaZyuLQr1yTztKtAZeWRWFpUbJqIhbqPR5bjxknYGxP5q6af6lwlDBU1ueRUbmzW4fV53w5vR7kQELnYjXrGLsmrG81uM17vG/p7mjb5BTqYW096ye4Ld2suSRnr58uyOeCd1a42Zb/wHjB9IPkFKcwsSAiaxMWMmkTZPobf0i32zNwsZcxTcPdeauUPeqx78+PIQRC3ezJDKRR3r5Njh+WZb5M/ZP5h6Yi43Ghjd7vsmoNqNQX+M06wCHAJwqxqBzWIrK+hTgfsXHeztYYqFWci69iIHBrhRpi/jw4IcM8B7AoNaD6lwvJrOY+7tcvUjesDB31h5PJTaziIA6ZuQIt4bbooVErVES3M2Ns/vSMOhbtsS8LMv8uimGfk62dPNzJD+9lL9/OE1WYhFB3dwY+WwE//d6t6rH2zpbIEkST/ZvQ36plqUHkpo8puziCs6kFdKrgd0116KHvxP7Kwuknc09y/h14/k9+nee7fgsCknByuiVda67+XQGheV6Vk3vxa+PdWNybz/0Bpmvt8fxwHeRhL21mRFf7OatNadYdyKVCn39bwb4b5/9E0NcVjGf3t8BM5WpK0KSJN4dFcqoDp7M/u04m0+lN3r7NxznAJhxAvwH1FgkyzLv7HuHxKJYFFmT6Ol7qcvK29GSdg4daat/i56ePXlx14u8vOtlirSNr+J5PWn1RmIyiwjxrNni+PSgADQqBfM2N6xY2h8xf+Br68ukwEm83mkh0dkpLIqdyZAImX+e618tGQEIbWXH6I5eLPgnmoKyhpUoyCnL4dltz/LG3jcY7DOYVaNWMTZo7DUnI2CqOxITG047ux68ue9NMkoyrvh4hUIiyM26amDrF0e/oERXwsvdXq5znYJSHVlFFfVqkb2820a4td0WCQmYum3KinQknMhu9n0bdEYST+ewc3k0P7y0h27RWgZoNUiShIuPDY980IsJb3Sn99hAvEMcUalr9sG3drJkZAdPvtsZf00n2NrsjTMNMP33DfWupx7+TpzLKODLI98zYf0ElAolS4cv5YnwJxjuP5zl55bXWS9hxaEkOrW2p2NrB/oGujBrSBD/e7w7J94ayvpn+/DWiBD8Xaz4+3QGTy85yuT/HqSkQt/gGI8m5vHNjjieGRRIe8/qU6EVColPxnVgcDtXnl5ylF0x9R9Dc0My6GDre1CWB2a1nyR+Of0La+LW4KF/iK4eHWvMRLk71IM9MaW803Mu7/Z+l62JWxm7ZixHMo40xzNokOiMInQGucZxBbC31PDMoIAGFUsrqChgy4UtDPMbxec7k5j5azaOBc/jZW/PoYo5nMs/Vut6/xkaTJnOwJfbYusd+9bErYxeM5pjmceYN2Ae7/V5DxtN07QcGI0yH/91lnYednw9dC5qhZpX97yKUb7yhVyQmw1n04s4lX2KZWeX8WSHJ/G0rrs2UmzWxXvYXD3ui90266Nujq5AofGaNSGRJMldkqRZkiRNkiRpiSRJYZctG17592mSJC1v6n07e9ng6mPD6d3N86YuL9ZRlGu6P0bskUzWfn6c+KNZpJjL7PGQePC5zoDpxFbfOiJPDgggvbCcVUdSmjTWPTHZtHGxwsPOokm3eyX+7josWn/PN1GfMaHtBJYOW0qQQxAAD7R7gOyybP66UHMsSXJeKbtjs2udzaFUSLT3tGNiT18++7+O7HlpEEse787xpHwe+iGSgtLaExydUcfWxK1UGC4VayvXGXhuxXHae9oxfWCbWtdTKRV8PqEjPdo4MeWXwxxMuIlL4u/8BHZ9AjlxtS7ek7KHeYfn8WDbiZxPaEdX35r3Oro71J1ynZEd0dmMChjFyhErcbZ0ZvJfk1l4dOFVT2rN6XRlhda27tacyTlTo0DhxJ4+eDvUv1ja+vj16I16fvnbmeVHM5h5RyCbnh7FilGLaefUjil/T2Ft3Noa67nbmTO1Xxt+2pPAhZySK+6jRFfCG3veYMa2GbR3as8fI/9giM+Qej7j+vntUBJHEvN5bVg7nCyceK/3e0SmRfLzqZ+vuF6wuw2xWYW8ve9tAhwCeCjkoSs+/mKFZ38Xqys+7qJhYR5EZxRX3YxPuDU16xgSWZbTJUn6CpgOGIDoy5atkyQpFJgC/HOl7UiSNKXycXh6etZ7hod3hC2H16SQEJ2ClcP1mf+fk1xKbGQOSScL8I2wp8soL2w8YciTAeRrZN76+SSvDPGlsCgPGvjZclTCgAAHFm6Npr+POaomqJUgyzI7ozPo62/foJky/5abW/+T8bbUbcw/OR+1uYIu6ueZ7HsPhbmXrkQdcKCjU0d+OvET3ay7VRvX8su+FDRKBd09NfWKN9AOFo4NZsYf5xj79W4Wjg3G0bJ6s/by+OV8e/ZbWlm24tn2z9LVpSvztyeSlFvKrw+1Jz/3ylOU37urNc/+Xs6kHw/w9f1taedWvy9Zrd6IWik12bidhhyDy6kyTmC/82NKOz9JqZkP/Ot1TSpO4vm9z9PJqROdzUbzje4cQQ5SjdffBmjjbMGfhxLo6q7CHHM+7fwpv8b+yqITi0jLT2NG+xk3RC2JQ3HpeNubsfL0/5h/cj4vhL/AXV53VXvM9N6evLQ2ljUHY+jpW3M8zUUZRVoWRP6PiuJgAq2ceKe/PR387CnIM71v5kTM4ZOoT3hl9yvEZsbyYJsHq70GY9rbsni/kndWH2fuiNqnk5/IPcGHxz8kT5vH7NDZDPMeBiWQVdJ0LXN5pTre33Cau9o5EWQnk5WVRaAmkHF+4/j8yOcEmQcRZBdU67ru5kZkmz2cyT3D5z0/Jz8n/4r7Op6QhaethpKCPK6chpm0d5SwVCtYsT+OJ3rVb8xWYz8PQtNycal/ocFmH9Qqy3IFMF+SpLeB4cDvly07KUnSLGCfJEm/VD62tm0sAhYBREREyPV9wnYDHTi+KZ2MsxV0H9m0AxHT4wvYtTyazAtFWDua0W24H217eGBlXzmlzRteWHkcFxszHu7XFvNaumXqY9ZQNaO+3MOBNF2TDKa8kFNCWqGWO8K8G/TGqc3V1i/WFvN+5PusjV/L4NaD0WeOISbNWOt6k8InMWPbDFJJJcIlAjA1J284E8WwcA/8vK480O5yA11cWO7ixMQfDvDkymj+91j3qumJBRUFLIlfwiDvQeRX5PPiwRfp6jKI7Sd68J8h3ejRzqde+/jlCSce/D6SGX9Es3xqz6qppBdlF1dwKrWQU6kFnEot5HRqIQk5JTx/ZzBPDWy6gdYNPoa6Mlj+Eri1x+qut7BSVU/Ui7RFvLn7TZwsnVgweAHL9mdjrlbQt71vtdkpFw3v4MX3u+KxsXeseo//x+0/+Lr48s6+d3CycWJW51ktnpScz48hyEtm0blFqBVqlp1fxoQOE6pN1R3v7Mxvx7P5ak8awzoH1Oii0huM/LzvAvO2b0HhncQjoW/yUv8+ZGdn1zgOn7p+ylfHv+Kb499QIBfwao9Xq9XcePFuHf9ZeYKEEmW11ietQcvCYwv56eRPhLuE832f72lte31qpMz97TgyEnNGd8TF5tJU3JccXyKqIIq5UXNZPnx5rbNm/OQyzFw2083pbgYGDbzqvlKLzxPkYdeg9+vgEHe2xxfwyqiIeq9zrd9pQvNq1oREkqQ+wFlZlrOBFMD7smX3yrL8pyzLBkmS9IAl0KQ3PNGYqwjq4sqZPal0HeaLop4VSetSmF1GSYEWjzZ2aCxUaCxU3D0tDN8wpxrbzigsZ9XRFGYNCWp0MgLQwduevoHOfLUtjhHhntXuptsYu2OzUUimMR3XU3xBPNP/mU5ueS7v9HqHewPuZcXhZNYePVFrhc/+Xv1pZd2KJWeWEOFq+gLaH59Dcl4Zn4xrePGtdh62/Da1Bw99H8m4b/ax+PHu+Dpb8X3U9+iNel7r8RrOFs6sOLeKd/d9hHWbvdi4zsRg9K1XXQ0bczU/T+7G/y3az4PfR/Ly3W2JzyqpSkAyi0xvZUuNknYetvQNdMbP2Ypvd8TxcE8fbMxb6AZ00X+Z6o5M2Q7/SkYMRgMv7nyR7LJsFg9bjJ2ZHQfOR9PR26HWZATg7jB3PtsSw+6YbAZfVr9iXNA4ynRlfHzoYyzVlkzrMO06PqkrMxplTqcW0Lr9EiwlS+YNmMfUv6ey8fxGRrQZUfU4U7G0EMZ8XbNY2rGkfF75I4oz6YWEhp2mUOHE8/1G1ZloSZLEUxFP4WnlyTv73iG9JJ3Hwh6jRFdCkbYInVUxXn4nmbV5K0NC7SjRFVOoK+RCwQXSS9J5puMzTA6dXC1hakr74nL4/Ugy794bWi0ZAdAoNXzY90PGrxvPRwc/4q1eb9VY/8fTnyGhIlA9vl77i8ko5p6w+l9UANwT5sGa46nEZBQR6CZm29yKmruFRAO8KUnSIaAn8JYkSWtkWR4J9JYkyRtQAptlWc67HgGE9G3F6T1pXDiVi194w2eVyEaZpDO5RO1IISEqGzdfW8a+2AVHDytGzexY53o/7jmPmUrJg93rd8V9JdMHBDDhu/1sOZt5xZLO9bEnNptwL/sr3n/mWhVpi5ixdQZqhZqVI1ZWXeH1rEyCIs/n1piBoFQoeaDtA8w/PJ+MkgzcrNz47VASPk6WdPerOX6hPvxdrFnxZC9TUvLtPuY/0JrFZxbzaOijVSWzT54LouL88wwbcJQPD85lbfwa3ujxBu2d2191+w5WGn59vBvjv93P7N+O42SlIcTTltGdvGjvaUt7T1t8nC7daj0lv4wBH2/jf/sTeXJA7eNUrrv294JXF7CrOf3y86OfsztlNwvvWIi/nT9Go8zBhFwm9farc3PBbjb4OVux8WR6tYQE4OH2D1OiL+HLY19iobLgkfaPNPnTqY8LuaVUWBwgufwYXwz6gl6evejTqg+LTiziHr97qiWgnX0cGBZ2qViavnLQ5+LIRNq627J0Smdm73uPsYFja1QZrc19gffhZuXG7O2zefSvR6v+rpSUmFtbUVSqYneSA152DlhrrOni3oUJbScQ4hRyXV4LMHUdvvZnFBHe9jzQrfbWF397f/7T9T/M2T+H3q16Vxu7sit5F5svbKaVcTIJmVffX6lWT0p+WYNrHg0IdsFKo2R9VBozRUJyS2ruMSRbga2Vv14cJTWyctl/miMGVx8bnLysOb07tcEJidEos/n7U8QdycTR04r+E4IJ6nb1hKCwXMeS/Yk80L11k5z4e/g70qm1PQu3xTK4nWujm7+NRpm9cTk81ARJUp37kI28svsVssqyWDpsabXmZi8HC1rZm+qR/DshAdOX98JjC1l+bjmPtHuSjSfTeWZQwDU197eyt2D51B48/MMBpm94HxsHKyaHTgZMydkv+y7w2rBOPN53LEczx/LOvneYsH4C44PH80ynZ7DVXLkwnauNOZtm9qWgVIeLjdkVY21lb8HojqYujkm9fOu8Q3J97I3L5sUVx5ElBWqlApVCQqmQTP+vlFArTD9VSgV9ApyY0s0Fzm2A8PG1JiPr49fz48kfmdlpJv28+gGmwleF5forJoSSJHFXqDtLIhPRGYyo/9VSOC18GmW6Mj459AmWakvGBY1r9HNurL0JcZi7rWOw990M8B4AwNTwqUzcOJG/L/zNXX7Vx5K8cFcwg+ftYObyYxxNzKdUq+fVe9oxqZcvmy5soEhXxH0B99V7/708e7Fx9EZyy3OxVltjo7HBQmWa3v/EL4c4GV/AV88NuKb3Q0N8tyuehJxS1j7d54otruOCxrE7ZTdv7X2LMOcw3K3cKdeX817ke3R174pX2RB2x179lhBxmaZRIw2tKXJxts2O6CxmDq59LItwc7ttpv1eJEkS7ft4ciEqm+K8hvUIacv0FOWUMeTREP7v9W6E9muFxvzqOd2SyETK9QYm9/ZtZNTVSZLE04MCOJ6UXzVltzFOpxWSX6qj13Wc7rvoxCK2J23n/T7v42dX/cpakiS6+zsSWUvFVgAbjQ2j2oxiRfQKVh07j9ZgZEznqxdSuhpXG3PeGWePbHWEgrSBnEwqp6hcxwsrT9DN15FHK1sAOrp25LcRvzG782xWx61m5KqRLD6zmK2JWzmYfpBzuedIK06jRFdSbZaGmUqJq615vRKnJwe0Ia9Uy7KDja/6qtUbeXXVSSw1SoaHe3JHW1d6BzjT2ceBEA9b/J2t8bA3x8FSQ1G5jo82naNs7X9g3WwoqlnbYVviNl7b8xrD/IfxaOilq/iDCbmoFBIdW9c9wBPgnlAPCsp07KvlvSlJErM6z2J88Hjm7JvDuvh1jX7ejSHLMr/GzENCxZu9Xqn6e4RrBD08evDtiW9rzAbycbLi4Z6+/H06gy4+Dvwzuz+P9/VHpVSwKmYVnVw71XhvX42DuQNt7NvgZuWGpdqy6r3y8t1tySqq4IfdDa8U2xgXckr4fEsMk3v51lqT5XKSJPF2r7cxV5rzyu5XMBgNLDqxiIzSDF7r8RrBHrYk5JRQrrtyWYKLU34bUxX69eEhLJ/Ss8HrCTeHBrWQSJI0F/gNCANmAb/LsjznegR2PQV1c2Pv77Gc3ZdKl3uu/kUiyzK6CgMaCxWFvZ34MSmTGcF29ZomW6E38OPu84yKaNWk02oHBrvS1t2GL7fF0ruRBc12x5oGKHZq7dBkcV1uZ/JOvjr2FVPCp9RZsbGHnxOrjqaQX6rF3rLmzKcH2j3AsnPL+PnEn/QLHNBkr+H3pxbibeuNjXYID/94gM4+DuSWaFnyRPdqV4lqhZpJoZMY6juUuQfmMvfA3Fq3p5SU2GhssNHYYKuxZbDPYB4Pe/yqcfg6WzGigyff7ojnge6tq4qvXU1BRQGx+bHE5sWy5swRMqzOEORqwbie79PGvu7un4IyHS+//yEWp5bB8AVgW/2Oy9uTtjN7x2z6e/VnTu851ZKqyPO5hLayu2oV3NBWtng5WLDxZDr9gmoOKpQkiVe6v0KZvozXdr+GhdKCO3zuqNfzvlbr4teRoj2Mv/Qk9ubVE6tpHaYxadMktiRuqTGd9sW72jK6U6tqdUuSCpM4kH6AOb2b7ivQ38WaiT19+Gp7HPd39b7q3bOvhSzLvLH6FI5WGmYOqV+Lg4O5A+/1fY8pm6cwZ/8cVset5tHQR/G38yfPPRejbJrSG9qqZn2Xi2IyinG1MWtUa/G/x7cIt5aGdtnkybJ8RJKkL4HuwKvXIabrzsxSTZvOrpzenUbnu3yRrjIw9PCmC5zcncpfrWBfYh425irWHE/l2TsCebS3X50D/ABWH00ls6iCqf2a9kZskiTx1MAAnll6lCOJeY1KKvbEZtPV1/GaBtnWJbEwkZd2vUTvVr2Z3qH2m2uBaTCtLJtOdkPb1+y28bPzo6NzTw4l/81zna9c26C+9qbsZV/aPuYNmEdfz15MX3yErWczmTOqPT5OtU/Z9bD24LNBn1FhqKBIW0RhRSGF2kv/Lv6tSFtEakkqnx35DHOl+VXrMQA8NTCA1cd28seRFCbU0od/Nvcsp7JPmRKQ/Fji8uPIKjNN91SgwKh1opWtLzo5g4kbJvLpgE/p6Vn7VaSdLpuPzL5nj6EjXTs8zOUp4I6kHczaPou+rfrycb+Pq42JkGWZg+dzua/j1Wd2SZLEXe3d+fNYCu/eG1pjdgqY7uz6dq+3KdOX8fzO51k4aCG9W/W+6ravRXZZNnMPzEVR2oE+/jUT5M5unenq3pVvjn/DHa3vQCFd+lxrVIoaRdRWxa7CSm3FnT53NmmcM+4I5I8jKczbHM3cMeFNuu3LbYhKZ0d0Ft881BnrBtxIsIdHDyaFTuK/J/+Ll7UXT4Q9AVA10PRsetEVE5LYzOJmuWeWcPNpaEISJEnSf4D9sixXSJJ0076rQvp4cm5/Oklncmndvu4ui6jtyUSujuegpYELBQoWP96dUE875v19jo82nWXFoSTeHhlKn8CarRRGo8w3O+MY3M71uowKvyfMg3l/R/PVtli+f6Rrg9Yt1xk4mJDLrOvQF1uqK2Xm9pnYm9kzt+/cK85S8Xa0wNPOnP3xObUmJAA2FQNQmu/DwTkRqLv6Y30YZSPzj8wn3CWcwa0HI0kS3zzUmSOJefUaLGumNMPMwqzO++xc9NHBj/jo4Ee4WbldtXhVkJsNQ9u78fX2OMZ19kJ12biLH6J+YMGRBUhItLJuRYBDAKMCRtHGvg2B9oH8d3sx649ns/Q/AygqTOWDkx8w/Z/pvBY2lTHWbSAn1lTsLGICtOoMxxZjoTQyq/hxXj2VXjV1fGfyTmZtn0WfVn34tP+nNUqQX8gpJbOootaCaLW5O8yd73ef52BCbp0zuFQKFR/2/ZBntz3LzG0z+Xrw13Rx71Kv7TeULMu8u/9dJBQUJo+gfZ/aT5jTwqfx2ObH2J60/Yr3YTEYDayOW81dvnfVefO4xrK31PDsHYG8u/40D/e8eldKYxSV63h77SnuaOvK0PYNHxj/TMQzlGhLGNFmRNX9jGzN1bSytyD6KsXLYjOL6VvL96UgNHQMyTxAC7wuSVJ/YF/Th9Q8PNrY4eBuecXKrQd3JLFjWTRHNHqce7iwaVY/egc4Y2ep5u1Roax9pg8Olhoe+iGS6YsPk5pfVm39f85kEJ9VwrT+12cGhVJhusfNP2cy613i+qIjiXmU64yN7u6piyzLvLn3TZKLklkwcAF2ZnVfKYHparqHvxOR8bWPI9Hqjew75YS1wpPfzi295vjWx6/nbO5Znuv8XFV3hEaloIe/U5PWxni+y/MM9hnMSztf4mjm0as+/umBgSTmlrL2xKX34zfHv2HBkQU8HvY4+x/Yz8YxG/li0BfM6DSD4V6DUKcXkn14Pd8GHcB57xysVVZ8OfhL7tUreevEl8zb8DjGv9+A8zuhuHL6Q9g4lFO34+/fhp/2JgCmWRIzt82kt2dv5vWfV+v9UA6cz0WSqHdC0tHbATdbMzZe5S6taqWa+QPmE+YSxtNbnyYqK6pe22+ovxL+YkviFu5t/RSywbrGTfUu6urelY6uHfn2xLc1qrdebk/qHjJLMxkdOPq6xDuxhw8+jpa8t+H0FeNorE83R1NUruftUe0b9b5XK9W83vP1qin5FwW5WXM2ve6EpEJv4EJuKQFiloxQi4YmJImYpu5OxVRpdX+TR9RMJEkipI8n549nU1qorbZMlmV+353AvqXRxFvKjJ8azif3R2D7r1oR7T3tWDGtJ5+O68CB87nc8ekOvtwWS7lOT2pxKl/tjKKzjwNd6vklXhtZltmbspd397/LhvgNVbc0v+jejq3wtDPnq+21l/yubXvRedH8fS4Ge0s1IR5Ne/X1y+lf2JSwibd7vV1VCv5quvs7cia9kPxSbY1lW89mklui5/6gCWxL2kZyUXKjY6swVPDF0S8Y6D2QTm6dGr2d+lBICj7o+wGhzqE8s/UZzhecv+Ljw7zs6B/kwpfb4jAYjHxx5Au+PPYl031HMkPhiuXuz+DYEtODc+LgfQ/8fxvM9+pP6Rn/OZzbBLpS1Ao1b/T5gOd9R/GTvR3P9XmQsmk7IPhu07oOPuDoz6RevhxNzOfX438xc9tMenr25NMBNVtGLjqQkEuwmw12lvXr91coJIa2d2fTqXSMxiufUM1V5nwx6Ava2LVh6j9TOZ1zul77qK/c8lzej3yfQd6DMCvvhI2ZCm+H2ls1JEliWvg0TuecZlfKrjq3uSpmFQH2AYQ5h9X5mGuhUSl4+Z527InNYfPpK9/crqGikgv4ZV8CMwYH4lXH69BYwe62VTfZq01CdikGo0yAy03buC5cRw1NSOYCqYAzcAZ4qckjakbBPdxBAWf3XbqKyymu4KklR3hu3SmSwqx55a3e3FlHVwKYvsBGdXTnq0fd6Bx2koUn36D7rwMY+vtQYs1fwNZ7Jcezjjf4Kkdn0LE2bi1j145l6j9T2ZK4hRd3vUj/5f2ZvX02mxM2U6YvQ6NSMKWfP+tPpHI+u/YizDqDjr2pe3k/8n2G/j6UMWvG8EfmTDr4l1xzYbXLHUg7wPzD83k45GHu9ru73utdHEdyoJbZNisOJRHaypapne7HWm3NsrPLGh3f0jNLySzNZGbnmY3eRkOYKc34fNDnOJg58OQ/T5Jd9q8bOxoNpqJk8dvh0I/MtV2BnHWGmX+/z6KoRczIzefJbQvhz2lw8HtIO2Faz86Lk13e5/6K19kxbAfSqxnwzCHQmMa/SEFDeKT/u8wfOJ89qXuZvGkyWaXVS4wPbueGq2sCnxx7me4e3Zk/YD4aZd23UzhwPpduDaz/cleoOxmFFRxNunIZcQArtRVfD/ma1jateWLzE02alLwf+T4G2cDrPV/ndFoR7Txtr/i+7+nZk3DncL49XnsrSU5ZDtuTtnNfwH3XteLsnSFu9A9y4fU/T9Z5H6aGMhhlXv0zigBXax7r07CZQfUR7G5NemF5nfFevIdNoJtISISaGpqQnJdleTGmwa05mKqt3rQsrDW0iXDh9J5UZFnm79MZTPhoJwXHc/ns/yL4aHo3nG1rjnIv1ZWyP20/Xx/7mic2P0Hvpb157O8HOVWxmHbeRuyN3ShLfgjrsrtIKT/JQxse4v5197MiekWNFo5/K9IW8dPJn7jrj7t4ZfcruFi4sGjIIraO28qG+zYwtcNUEgsTeW7Hc/Rf3p8XdryA2/+zd97xUei/+koAACAASURBVBRtAH72anrvnVACSehVkN6RIuoHgoAgRREUBBEbIoKionRRFERRmijSmxQVkN4JIQmEEEjv/fp8f1wSiKEkkEDUPPnt7y43O7Ozu3c777zzFs/LOFhJLP3jppYkS5vFtuhtTPljCu3WtePF38xCTTufdnzcZh56rSPhfEZkRvlSrN+JpIIkXv/jdZq6N+W1pq+Vq66fkxWe9hal3H+TsjXsj0hmQDNfrJRW9K/dnw1RG+55DW9HljaLr89/Tf/a/Qm0r1gD47thr7bnyy5fojFoGLd33M2+G3TwRUtY0ABW9oOtk/C4vhPHGn/ye9I6JgcNYVT3xfDiAXjrBrxxBXqaPXy0KBgXHoyy5uO0a9YQZLf/GXf268yKHitIzk9m8PbBJe71saQj6Fy+xZAXyLvNP76rMJKYpSE2Pb/MyzVFtAhwwtlaxc4Ld1+2KcJOZcfX3b7G19a3woSSPdf2sCtmF2+2eBMXSxfC4rPvuFxThCRJvNjwRc6lnuNwfOlV6a3RW0GiRFTXykCSJGY/VZ98nZGZ2ypGQPvxyDXO3cjio/71S8WIqQiKUiZE3MGOJCo5BwcrJc7WlZNLrJp/NuU1aq0tSdLrQLAkSS8BnveqUNUJftyLqPln+HXXFWbujeT5Aktc3a14IsSj1OwnKiOKL858we/Xf8cojNgqbWno1pBR9UfR2K0xoS6hWCgsEEKwKywJH0dL6nnacDDuIOsi1jHz8EzmnphL78DeDAwaSC3HmzlMEvMSWRW+ivWR69EatPQK7MWw4GEEOQUV7+Nr58uo+qMYVX8UV7OusjNmJ7uu7mJHzA5U/lZsjq+Lx/HWnE8/xsmkkxiFkXpO9RgaPJQOvh2o51QPSZLYFZZIfuwL1Gy6htG7R7Oi+woCHe5/kNYatbx/6n3UCjVz2s8pd3hrSZJoWcOJI9El41ZsOBWHQi6jb0OzIeuguoP4MfxHNl/ZzLN1ny3XMYpCxN/N46ey8LH14YsuXzBi5whe/+N1FnZaiEKhgp6fmHPJuAZhsvdh9sm5RESsRZPYB/+WI6Cu223b+/6vGK6n57N0aNN7ztBDnENY/cRqxu0dx7Adw5jTznx/Xt33Kk3cmnIwqje/nkpmXMc7D9LHCrMYl1dDopDL6Bbizo4Libzdq16ZtAlFQsmY3WMYvXs033T75r6jlGZqMpl5ZCbtfNrRO7A32Ro9sen5ZVqmbOvdlmDnYL469xWPeT1W3HchBBuiNtDRtyOOFpXjLn8rXg6WvN2rHm//ep7eDTzpEHT770RZSMrWMGdXBM82932gZeS7UdPVBrlMIiIpp/j7ok9KQuFmDuB4OTmX2m42jzyXUTVVk/IKJBOA0UAe5hDvr1d4jx4y3nUcsXOx4NSuWIYaLXF1tuSpiY1R3OIKG5MVw5KzS9h5dSce1h5MbjaZlp4tqeVQq4RrYBFF0SqLaO/bnva+7bmRc4OfI3/m18u/sjZiLU3cmtCvVj+OJx5n59WdWCgsGFBnAIPrDcbD+u55HmrY12Bsw7GMbTiWqIwoNl3ezvdnN/LtxbME2TfmCe+x+KibIjM6kpts4KdYA9mas+RqDEQk5eBj58J3PZcxctdIRu4eyYruKwiwDyj39TMJE7OOzCI6J5ofev6Ak8X9PehaBTqz6Ww8Wfl67K2UCCFYf+I63UM8iuOT+Nj60MGnA6vCVzEgaMBtr/3tiM+NZ3X4al6ofzNE/MMmxDmEz9p/xqv7XmHWxoFMf3I9Ui1z7A2TMDHzyEx+jvyZd1q+w5q9vizaF0WHINdSD+7UXC2L9l5mUAs/6nqUzf7Hw9qDlT1XMuWPKYzfNx6FpKCZRzMWdlrI29mXWHXkGi+2Cyzh3XMrx6+mE+BshftttIX3okeoJ2uOXScsPvuurqC3UhFCSb4+nw+OfIDeqOe9Vu8hSRIX482G3393370dkiTxYoMXmbB/AscTj9PCswUAZ1POEp0VzZTmDyWwNACDWviy9Vw8b204z+7X2t1X3iOtwciEtadRKWRM7VG3EnppxkIpJ8DZiohE87XOWLOGxBkfYNu1C+7TpnE5OfeegfWq+e9SLp2dEEIjhFgkhBgnhPgCKJ+vaSWgc793jpG7IckkNPZKPAoEDtYq+k5ohKWteQCMy41j2qFp9NvUjxOJJ3i75dts7b+VocFDqeNYp8wDYhE+tj5MbDqR3575jU/afgLA9L+mczzxePHnk5pNuqcw8ndqO9bm9eYTGO73FdnhH3D8yDOs+s2HT7YmsWjfZdafuMGhy6nEpOahMZgI9bZnao+6OFs6s6z7MmyUNozcPZLrOdfLddyI9AiG7RjGxssbmRgysUz5Xu5EsR1J4Wz85LUMolPzGNCsZGTWIcFDiMmOua0q/U4sPr0YG5UNw0OG33f/KoJ2DvWYViDnl5xIvjm1ADC7j7536D1+ifyFGa1n8GzdZxnfsRanYjM5HF060unnuyNBgkllDGRVhLXSmoWdFvJ88PN08uvEgo4LUMvVDG8dQHyWhj3hdzacPHY1vdzLNUU8FuiMnYWCHWVctinifpdvdEYdq8JX0XNDT/Zf3887rd7B3drs1hoWn41KLiuz/UJH344EOQbx1bmvij/79fKveFh78Jjnw4sWKkkSnzzdgMx8PbN3XCp3fZNJMGX9OU5dy2TJc01KJbKsaOp62BGZmEveX3+ROOtDbNq3J//ESaJ798H/xO/VBq3V3JEyaUgkSdoPCEAqfKXwvR/wiLKCmSmo9wS5WkO5AvsUkZ1WgMpOxdr8LPojo3FHH2ydLEjKS+Kb89/wS9Qv2CptmdR0EgODBhb72z8oKrmKXoG96BXYi6S8JJwsncqUmOteTOhcm74NvbBSK7Ap3G4XlOpWXCxdWNZtGSN2jWDUrlGs6LECL5u7x/rI1+fz5dkv+eHiD/ja+rK823JqKB7MQM7f2QoPOwuORqfRNdicSM/bwZLWNUu6JTdzb0Ydxzr8GP5jmQJpXUq/xNborbzd8m2slbcPevZQyE+Hlf14Oi+bhNChLAr7Flf7AI4mHmXH1R3MenwWfWv2BaBz3ZtReG89/4vx2aw7HsvbverhbFP+iJUKmYJJzSaV+Ky+jz2N/Rz47q8YeoSWXoHNzNcRkZTDqLb3d39VChldgt3ZcT6RQS38cLFRlzkQX3k0JUaTka3RW1lyZgkJeQn0DuzNy41exsf2pkAbFp9FHQ+bMttOFNmSTPp9EicSTxDsHMzOqzsZGjy0TBmgKxJfJyum9gji/S0X6V3fk9blcNf/dFcEm8/Gs3BQ40rP6g1mO5LLJ8O48e1irFu2wGfxIow5OVx57wMm7lmD1hSNvuZHKL0eLKZQNf8+yjqKfyuE+AFAkiQLzLYjCcDDz4z1N4TSigV7InnnibKrdHPSNRxYF8mNiAxEL09itDo8gj25cOgGvzmsY13EOtQKNS83fJnB9QZX6kBWNHurCBRy2X0FYHO3dmd5t+WM2DWCkbtGsqLHijtqafbF7mP2sdmkF6TzUsOXeCH0BVRyFSkpKbfdv6wU5bU5cjWNPK2BrecSGNU2sJRAJUkSz9V7jul/TedK5hVcLF3I1+eTp88jz5BHnq7wVW/etkdvx8/Oj6frPP1A/XsgNFnwQ3/ISYDh2xjnVo8EoeO9v95DLsn56PGPeCLwieLdZbLSUXiFEHywNaw4r0pFMrx1ABPWnuFSYnapZaDjMeak2+W1H7mVPg292HAqjsc/2Q+ArYUCVxs1LjZqXGxVt7xX09DHoUQgsHsJJUII9sXuY9HpRVzJukJH344s7ryY2o61S/XjYnw2DX3Kt1zQ2a8ztRxqsfTcUnrV6EW+IZ8naz15n1fiwRj2WADbzicwdcM5dk5oh3UZJmE/HLnGV39c4c2edYttsSqbejYQ/Oc34OSI97x5SEolCicnYl9+i+U5nrx/ZSvRffriNmUKDgP+h3QHo+xq/nuUSSC5RRgZBrwFpAHOwCeV17WyYRH9B98qVTzT1Jcgj7sPxkajiXP7bnBs61VUajmtBtRm2G8X+F9TH0y2N8jeYMHeMwcZ0XwEw0KG3TOz678JTxtPlnVbxvCdwxm9ezTfdv+2hL1FQm4Cs4/NZv/1/bT2as3ybstLZO6tCFoFOrP5bDxrj18nX2fkf3dIpNerRi/mnZzHk5vuPjAoJAX2ans+evyjCtFA3TcyJTjVgD4LwD0YCXi/9fvYqmxp4dHithFBe9X3ZN5vkXyx7zLLhzdnV1gSR6LTWTas2V1TFdwPPUM9mWkTzsrD1/iof8m4Gsdj0nG3U+PndP/xKjrUcWXnxLYkZGlIydGSmqslNUdHSq6W1BwtUUm5pORqyczXo5LL2PBy6xL2JncSSo4mHGXBqQWcTz1Pc4/mzGgzg4auDW/bB63ByOXkXAa3LN93VibJGNNgDG/8+QZXs67S0rNlCa3Lw0QmMy/d9FxwgDm7Ini/792XSH+7mMT0TRcY2sq/wlNX3Amh1+O/aBZZ2lyS35xHkP3N+xiVnMN5/4bUWvAiyXPmkPj++2Rv347nrJmo/Cr2WVLNP5PyrnN0FULUA5DM1nYrge8qulPlQX31AB6t+jJt4wXWvdjqrtbb+3+4RMTRROq386Zlv0C+OBhNvt6Ag/c+Zl9cyUjZJ7zn8yltGlee0VdVxsfWh+XdlzNi5whG7x7N8u7LsVPbseriKpacXYK10po57ebQPaB7pVjJF9mRzN0dwWOBzvjeYRC0UFiwuPNiojKisFHaYKW0wlppbd4U1lirzO9VMtWjtebX5Zu1Is414X/flShSypS82eLOYXzkMomxHWoy5edznI7N4KPt4bSt7ULnevfvZXEnVAoZg1v68c2f0UztXrdE8LOjhfYjD3IdJUmirofdPY1w83UGnvnyMONXn2Lrq21LLMPeKpSM2j2KYKdgjiYeJdg5mKVdlpbwhLkdkYm5GEzini6/t6ObfzeW2C0hJjuGSU0n3btCJRLoasPkbnWYveMSTzTwvKNtz5nrmbyy5hSd6rrzft/7i8Z6PyTNno3pzEnmtBlNV4UDbW8pK8pho3BwwOvDD7Hr2YuE96YR3bcfbq9NxHHIECS5eSnMpNFgzMw0bxkZN99nZiJ3dsZxwICHcj7VPFzKK5BEFb0RQghJks4BSJLUVghx57CGlYhkMjCjXyjPf3uMDafiSqWn1+uMaPMM2DiqadTFl/odfHAPsCM1V8uyQ5HUDtnGqohDjGs6Dq8cF1IjC6DXoziTqoG/nT/Lui9jxM4RjNo9yuyql3GZZ+s+yyuNX8FWVXkhn82eHGqSsrUMaH73WWhD14Z3nA1XCfQaWDsI0qNh/ElQlN+Q8MnG3szfE8WI746TXaDnm2HNKm1gea6lH0v2X2b9yeuMamueTedpDVyIy+KZJvdOqFcRWKkULBrcmD6LDvLOr+eZP7BRifMtEkrG7hlLUn4Sn7f/nK7+Xct0TcLis5AkyuyZdCtymZyJTSfy5ZkvH1pW4rsx8vFAtp1P5I2fz7FjQttSNjnX0vIY+d1xgjzsWDSo8T3tyCqK9FWryFi9Bo/3p6NJ8SEiMbdE+d+T6tk83obAzVtImfs5SbM/Ju3778EkMGZmIjSa0geQJOR2dli1alUtkPxLKa9AMlCSpOeB64AvkC1JUi8eoXGrUAva13GlZ6gHs3eE0yXYvTitdU66hu1fnkOukPH0G01x8bk5mM7dewqZ11ISDQl82u5TetboyZmUWA5vvIJea0SpfrhGa1WJQPtAlnVbxqjdo3C3cmf1E6sJdQmt9OMW5bXZF55Mj5B/cIgbgw5+GgqxR2DwT/cljAAo5TJe6lCTaRvNavd7LUk+CO52FvQI9eCHI9d4oU0NZDKJ07GZGE2C5g9gP1JearraMLNfKJPXn6VNLRcGNPMtUW6nsuOHnj8gIZVLOAuLz6aGi3WZ7C5uR2e/znT2u7cwkrJwIVnHj+M4dy4K18pxMZfLJOY804DeCw8y77dI3upVr7gsPU/H8BXHsVYrWP58MyxVD+c5lnvoEEkfzcZxyBAcn32WOj+dJSLpZn4tIQSXk3Pp+TfDabmNNR7vvYddz55k79iJzMYGuYMDckdH5A725vdFm51dsQalmn8n5f11fiaEWPH3DyVJGlpB/Sk3plEm5p6Yy7gu/2PAkhQ+3x3BB/1Cib+cyc6l55ErZPQa26DEw+tQ7AU2J7+JpZWBb7ovL04Q5RvsxKGfLxMXmUFA/f92NsrajrXZ+fRO1HJ1ud2bH4Qp3YMY9pj/Q3uQVjhCwK8vmsPBP7sGAts/UHMDmvmgN5hKaf4qg+GtA3jmq8P8HplMp7ruHLuahr2lkjpuDzcR2tNNfTh0JZXpm8Jo4udArb8d/36+j2HxWRWet+nvaKOjSV36NUgSV/83AN8lX2ARfH9B3QA0ERGkzJ2HZGmJOrAGqhqBqAJroA4IoI67La92rsXc3yLpEepBYz9HNHojo74/Tma+jg0vt8HlPjyx7gdtdDRxE1/DulUr3N+cCkBdD1u2novHaBLIZRLxWRrydcYSGpJbsWreHKvmjzyKRDWPmHIJJH8XRiRJshRCFBQZvT4KpLMS66zWsSp8FY0adWHViQa0lVtyeUcs7gF29HixPlZ2N2eoh+MPM37/RCTJllW9VlLH2b+4zMnTGhtHNbEX0//zAgmApcLyoR/Tx9GqwhN+PVSSL0LEdui/FGp3eeDm1Ao5L1RCzpHb0dTfkWBPO77/65pZIIkx249UZL6jsjKzXyhnrmcybtVpNo1vU2ZX4dthNAnCE3LoGly++D7lJXnOZyjc3bD97DPyZ80iZvBzeH08G7sePcrVjjCZSF+5kpTP56L08UHh7EzG8eMY027GpVF4etK7Rg1UORZsnnGCgBFdmXU2j7B4PavHPEYNl4fj4m7MzOT62LEoXFzwnjcXSWEeUup42KI1mLiWlkegq83NHDZ3EEiqqQbKKZBIkuQAdAJsMMch6c0jdv2VHZSx+/PdrA5fzY/hP2JVcyffXRjEgCad6P18Y+S3eCT8HPkzM4/MQp8XyLiQGSWEETAvGfgGO3H9Yukkb9VUUybcQ2DCWbCt3MGvMpAkieGtA3jjl3NEJOZwOjaTyd3KF4CtorBWK1g8qAlPLjnEB1svlvL+KQ9XU/Mo0Bvvy6C1rOQdOUru/v14zZmDzteXgB9/JP7td4ib+Bra8VdweXlsmdxb9UnJJLz1Fnl//YXjsKG4TZ6MTG3WdBgzM9FevYou+iq6q9Foo6/yeOxlTBd+J/HQWkYBL1hYYhVeg7jAQFQ1AlDXqIGqRg1UAQHILCt2giH0em5MfA1jZhY1flqH3O7m9a1buLwYmZRDoKsNUUk5qBSyOxqqV1MNlH/JZgOwEcgq/L9KJCSwV9szotYoWmX2YLNsOz8Zf+S8Yg0HD3VjVP1R1HKoxfxT8/ku7Dvc6UBeVh9Gtr69KtUv2JnwQwlkpxZg5/LwNQTV/ENJDoczq6Dz9H+kMFJE30ZefLQjnKm/nENrMNGiRuUH0roTwV52THuiHtM2hdGmpgtPNLg/u6KLCUUh4ytHIBEmE0mffoJF/frYPdGL1LQ0ZFZWeM+bS2rtWqQuWow2Kgqv2R8hs7rzgJz9228kvjsNVEp8v/kGm7aPlyiXOzhg1bgxVo0bl/h83vYLbNh2jMl11TxukV8osFwl98ABTFlZxfspPD1R+fggd3BAZm+H3N4eub1D4as98uLP7EEux5RfgNAUYCoowFSgwVSQj9Boij/PP3GS/BMn8Fu2DJV/ycmdm60ae0sllxJz6BHqyZWUXAJdrB+agW01/0zKK5BcFEIsLPpHkqSzFdyf+yItLpftX55DW2BgyvTRpMU35/f4rZy2OswzW57B386f2OxYBtcax9ItPnz6dL07qoB96joiSRB7MZ3Qdg/Hu6Cafzj56bBmECjU0H4qyB9hzJMHxEIpZ2BzX5b+EY2lUl6pWoWyMKSVP39dSePNX87RwMf+vmbYYfFZeNhZ3Fd027KQtWkz2ovh+K/6sYQWRJIkXMeNQ12zFvFvvknMkCH4fvEFSs+SgpUpL4+kjz8mc/3P2HTqhOesmSicym5I/GqPELo38isRUA7MhqTGjAx0V80CivbqVfTx8ZiystDHx2PMysKYlYUp5/aZee+GZGGBzNoazw8+wLpVy9LlkkSQhy2RhVl/o5Jy72g/Uk01RZRXIDkgSdJe4Bpm7Uh9oFmF96oc+DuG8MunJ7F1tqDvhMZY2al494kG7P88g0b0o03rWDZe3sikppP4drc1NV0LeOoubowW1krca9gRG5ZWLZBUc2+MBvh5BBRkwJj9oH64BqCVwZCW/nzzZzRN/R0rJUV9eZAkiY+fbkCvBQcYv+Y06198rNyB4S7GZ1eaYGUqKCBl/nxsu3bFqmnT2+5j16M7Kj9fro8bz9X/DcBn0cJiLUfBuXPETZmCISkZj/ffx2HggHK7dstlUilhBMzXTuHkhMLJ6Y59AxAGA8acHIyZmZiys81ut0Igs7BEZmWJzNISydL8KrO0RLKwKNPyU5C7LYeupCKEICo5l7a1H01iy2r+OZRXIHkJc8bfIj3gwIrtTvnpFjQSn7qOdBkRjMrCfDputha83i2I6ZvDGNSiPd/37M9fl1M5ePkoS55rcsespkX4BjtzZk8sRqMJ+SN+IFdTxdn9Llw9AEN+AaeHEw2zsvF1smJytyCC7iMNQWVgb6lk0eDGDPjqMJ/tjuDtW9xc74UQgrD4bIaUM0JrWUlbsQJDWhpur0++634WwcHU+GkdN155ldhhz+MxYwaG5CRSFi3GIigI3w1fog58NN8fSaFA4eiIwtGxQtut42HLqqPXiMssIKtAX60hqeaelHe03QtECCGuCSGuAacroU/l4q+YX+n5Yv1iYaSIIa38CfGy492NYeiNJj7ZFUF9b3t6ht57fd8vxAm9xkhSdNY9963mP4zJaI7E2v1DqNnxUfemQnmxkTMd/R7cU8OYk0P6Dz9yfdx40leuRJ+UfF/tNPFz5PXuQXz9ZzT7I8reRmK2hvQ8HcFe9qXKTDodWZs2cePVCWijom5T++4YUlJIW7Ycx8GDStlQ3A6Fqyt+K7/HrlcvEt5+m5QFC3F+4QUC1q55ZMJIZVLXwxaTgF1h5kzSZc2yXM1/l/JqSAYBz0qSlEwVyfYblngA6TaGUnKZxKwnQ3nqy7948YeTnL2eycoXWpRJHermb4faWkFsWDpetSt21lDNvwSTEWTyUiHh/w3obsQRM3AgptxcbDp1xL5vX2wefxxJWXbbGE1kJBmrV5O1eQtCq8UiJISkT+eQNPtjrJo1w+6JXth261YuW4kxbQP560oak386y/ZX2+Jhf+/s22FxpQ1aDWlpZKxdS8aatRhTU5Hb23Pt2DF8ly/DMuTu+WFuJWXhIiSFAteXXy5zHZlKhefHs7F6rBUqX9+7LqX80ymKX7PtXDxymUSA8yPMtl3NP4LyakjmCiFChRCdhBAdgXGV0amKorGfI88292XfpWQeC3Smbe2yxRaRySR86zkRW+3+W83tyI6HL1ubI7FKknn7l2DMyeHG2JeQWVjgMnYs2qgobox9mah27UmcOYuCs2cRQty2rtDryd6xg2tDhnK1bz9y9uzF6flh1Nq7hxo/raPOwQN4fDADSakg8YOZRLVtR+zIUWT+8gvGrDJoIzUFzGnjQu20a0z9bCPRifeuExafjZ2FAh9HSzTh4cS/9TaXO3Qk7etvsO3UicAtmwncuQOljw+xzw8n/1TZlL6ayEgyf/kFl7FjkTuUL4OwJEk4PPnkv1oYAbC3UuJpb8Gp2Ez8na0qPClkNf8+pDs9XO5YQZJCMGf6BRgohHikQkmjRo3EmTNn7liekafj9fVnmdStDiG3UdveifC/4tm38hIjPn28RGC1am5PSkoKrpUUKrtKodfAip7mpZoxv1cpF98HvQfCYOD62JcpOH2agDWrUdeujRACbXg4WZs2k7VtG8bUVFT+/tj17YN9376ofH3RJyWT+dNPZP70E4aUFCybNMFx8GDsunVFUt3+t2NITSV7926yt2+n4OQpUCiwadMGy6ZNMGVnY0hLx5iWhiH95uvf85voZXKEfw1cG4SgDgpCHVQHi6AgFC43Jx4vfncMz7BjjEg8Rv7x4yjc3XF87jkc/vdMCZsJY04O118aiyY8HN8lX2DdqtVdr1XsqNHorl0jcNtWZH87x//Mb6EMPP/tMf6ITKFbsDtfD3u4/g/V96HKUOYZW7kEEkmS5hW+DQGOAa2EEA8ejvIBuJdAcr/kZmj5/q1DdBkRTFDLqjPoVFX+Ez9+IeDXlyDsV3hhB3hXrRnug96DxJmzyFi7Ft+vvioVAwPMAkve4SNkbd5Mzp49iIIC1HXqoI2ORlIosO/TG8fBg7GoV3ajUwB9UhI5O3eStX072qjLKBwckDs7o3ByKnx1RO7kjMLZCbmTM3InR3LSMln/0+/oIyNpIdJxSr6O0GoBkDs7YxFUB1VAAFGbd+OSm4Zlw4Y4PT8M265d77j0ZMrP58b48eSfOIn3wgXYduhw2/1yDxzk+ujReM+fj12P7qXK/xO/hTIye3s4S/+MZlzHmkzp/nCzqFffhypDmQWS8tqQJAkhPpYkaaoQ4hNJkt4uZ/1/DDaOapy9rYm9mFYtkPzX0BdAxjXIuAoZMRD8JNh5wu8fw7m10P/rChFGhMFQHGr7UZP+4yoyVq3C/b1ptxVGwOyNYdP2cWzaPo4pL4+cPXvI+f137J/qj0P//uaAWveB0t0dp+efx+n558tcxxIY+3hrlv4ZzZBdl2jl78jnbZyxjruKJiICbUQk2QcOcd7Bj4A3ptNrQNd7timzssLnyy+Je20SN8a/gvdnc0qFfRdGI8mffopl48bYdu9W3lP9z1Gn0FOr2sOmmrJQ3qdhqCRJuQTarwAAIABJREFU/oCjJEmDgY7ARxXfraqBb7AzEUcSECZxW8PZav4lCHHTDuSLlpBy6WaZXAVuwWaBxL+12Yg1pP+DHU6nI331alKXfIl97964T3u33LEnKpLcAwdI+ugjHIcOxWnw4DLVkVlbY9+vH/b9+lVy7+7SB5nE2A41aehjzytrTvPklnyWPNeCpoVCxF9XUvn0m6Psanf35ZcSbarV+CyYT/zUqcRNmoypQIND/yeLyzN/+QVtVBQBa9c80nv2T6GxnwNqhYyGPuWzs6nmv0l5BZIPMRvCLgTeKPz/X4tfsBNnfosl9UYurn5VIyZDNRVMTiL8/AI88Tm41YNmI0FpCY4B4FQDbD3N3jTwwJl7hRDk/vEHyR9/gu7aNaxbtyZj9WqU3l44jxz54OdyH2giI82ZWh9vg/vUNx5JHx6U1rVc2PZqW15edZKBS4/wzhP1GN46gIvx2agVMmq6ls+7Q1Iq8ZozB8nCkoS33sJUkI/T4MGY8vJIWbgIu149sWzUqJLO5t9FoKsNF2Z0f+QB9qr5Z1DebL/ht/w7sYL7UuXwrGWPQiUj9mJatUDybyQnCb7vA5pskBXaFbQcUymH0l6+TNLHn5B38CBWzZvjPW8uFvXqkfz5XJLnfIbS27vcWWEfFENaGjdeGovSywvvuXOrzPLR/eBhb8HaMY8xe0c4M7Zc5OS1DPRGE3U9bO8ZCPF2SHI5nrNmIrO0JOmDmYiCAkx5eZiysnCdNKkSzuDfS7UwUk1ZKW+234+BnzCHjJ8IbBBCzKyMjlUFFEo53nUciQ1Lp2mPgEfdnSqL7kYc4p/20MlNLhRGsmD4NnCpVSmHMWZmkrL4CzLWrEHp4YH3ggXYdutarO53fW0i+rgbxL8xFYWbO1ZNGt+jxYrBpNVyY9x4TFot/j+sRG7zz1/jVylkTO8TQmM/R9785Rz5OiODWvjed3uSTIb7u+8gs7Iiec5nIJfjNPx5VD4+FdjraqqppojyTokyhBCnJEn6AmgFvFMJfapS+AY78dfPl9FpDKWiwVYDWZs2ET/1TSQbG/Tt22PbuRPW7dpV7QHOZIJVz5jzzwzfBi61K/wQwmAgY+06UhctQuj1uL76Kk7Dny9OJV+EJJPhOXs2+oQR3Bg3joC1a8oU9fNWTDodKZ9/TsaGX8mvVw+rZs2wat4My4YNb5tdVghBwtvvoLl4Ef+V36P0/nflbOrb0It6HrZM23SBHqH3lyG4CEmScJs8CZmtLdlbt+Ly4osV1MtqykN6no6opByupOQxqIVvtf3Ov5Tyuv0uBy4BXkKI1yRJmiuEeKT6y8py+y0iMymfVdOP0POl+gQ2qtouZAVnzpB/6jR23bs9lEEm99Ahrr/4EnbduqF3dcF0+AjayEhQKrFu0QLbLp2x6dQJpbt7pfel3FzeC3be4FaxrohCCPIOHiTpk0/QXYnGvn9/XCdOQOnmdtd6howMYp59FgkJ/7VrypxXRHftGnGvTUITFYVFnz4oMjLIP3kSU3Y2KBRYhoRg2aypWUhp0gS5vT0pi78gdfFivD7/DPsnnqiI067mFqrdTe+f1FwtUUm5RCXnoJTLGNTCj2yNngbv7wZAJsGxd7rgUobMzdX3ocpQaXFIQoCuwHKgCeAmhFhf7u5VIJUtkAgh+OHdw/iHONN+cFClHedBMKSmkvzZ52Rt3FjsLWLd9nEcBw7Epn37SrEN0ISHc23IUCwbN8b3yyWkZmbi6uqK7vp1cvftI2fPXvJPngSTCYvQUGw7d8KmY0fUdeqUKVNopZCXBqdXQpuJlRJdVXPxIsmffUbeX4exbNIE97ffxjK07KHIdTExxDw7CFXNmvh9u7yUNuXvZG3bRuJ705E7OeE9dy65Hu64uroiTCa0UVHkHz9B/skT5J84gTElFSQJda2aaKMu4/LKeFzHVelAy/9YqsJAmJGnI19vRKM3otWb0BiM1HC2xtFaRUxqHuEJ2ehNAoPRhN5owtVWTae67uiNJr45EI3RKDAKgdFk3ka1DcTJWsWmM3GciMkwlxkFJiFoU8uFJxt7cyMjn893RyKEQACmwqFl0SDzMuSH2y5yKTEHvdGE3mg+9ovta9Krvie7wxKZ+ss5MvL1gDn1R/s6rnw7vDkAOy8kEuBiRQ0Xa9QKeZmuQVW4D9UAlRWHRAgRBoQV/vtHeeoCSJLkgTkfTgbQDZgthDhfWPYpEA14ALFCiG/L235lIEkSfsFOxF5MQwhRpVSFwmAgY/VqUhYuArkcj+nvYffEE2Tv2EnmunXcGDcehZsbDs88jcMzz6D08qqQ4+puxBE7Zgwqf3+8588vEWhK5etbHFPCkJFB7h9/kLt3H6lff0PKgoXI7OywbNQQqyZNsGzcBMsG9ZFZWlZIv+5Kfjqs7GuOsFp/ANhXnAZJHxdH8vwFZG/ZgiogAJ/Fi7Dp3Lnc3xVVQAA+XywmdvgIEt56G6/P5txWeDMVFJD00Udkrv8Z25498PzgA+S2tuSmpADmZSCLoCAsgoJwGvIcQgj0166Rf+IE+cdPYNutOy5lyL9iMgkMJoHBZB5AjCaBo5USSZJIytaQozFgLCw3mcDdXo2brQXpeToiEnMwFQ1oQqCWy2hdyxxB9WBUKlqDkVvnQg19HXC1VROdkktkUi5CmOuZBLjZqmkV6IzOYGLjmTjzgHdL3d4NvbBRKzh8JY2YtLwS5xDkYUsTP0dSc7XsvJCIACgcMGWSxJBW5uWxTWfiSMrWYDSBSQhMJkHHum6Eettz/kYW284nFIfMF5j7NKqtOSHepzsvoTWYivuUX5DPuC7W+DpZsTsskQNRqQjMfRZAIx8HBjT3JS1Xy/TNYWj0JrQGs+CgNRhZPboV1moFk9adYX9EcvHADjCuY03GtKvJocupvPTjyeLPhTBnRT70ZicA+n5xkOvpBSWuxVdDmtAj1JM94UnM2hZeouyxQGc61TVrMr/6/QoKuQy5TEIuSchlEgOb++JkrSI6JY/jMenmMpmEJEnFsUb0RsH19PzCbAoSUuE1LkIhl2GtUqCQS6jkMhRyCQcr87PD29GS51sHUNPVhjrutgS4WJUQPHqUISlqNf98yh06/oEPKElq4GXMGpZRQght4ecBQogYSZIcga1CiDZ3aWMMMAbAy8uraWVqSADiLmZxaE0sPSfWwdb53qrCh4H+9Bly58/DeDUGde/eWI8ZjexvOTX0ly6h2bQZ7d69oNWibNkSi359UbVqhSQv2yzj75iys8l6+WWETofDl18iczZnEUhPT8fpLonShFaL/tw59OfOY7hwAX1YGBQUgFyOrFZtZKGhyEJCsWzUAKWrCwV6I1qDCQof4gJQK2RYq+QYjCYyCooGQ2GebZkEtV3N9hLhSXlkFRjQG00YTAKlPovuZ17BoiCJK11XcEpbUjCzVsppGWAO6rX7Uhoag7meoXCW2LGWIx52ak7EZnPienZxPWV+Lq2ObMN9/3awseFk+ye52rwjQq5AFA6mI1p6Ya2SszUshYjkfIQoHPAEPBZgT/tajsSkF7DyWAImACGoGXaUnpu+wnLoUKzHjGb+77Ek5egAcEqNo8/mr3DKSsFu4qucrd+OXy+YBRGtVodCqcLfyYLxbc3GnJM3RmI0mY8nMGv83uwSgI+DBSuPJbA9PBW9UaA3mtAZBd2CnJjU0Z+Y9AL+t+J8qft4cEIz1AoZL6+/xPHY7BJlE9r7MqSZJ79HZTBlc8nsuV52KjaNNrvKPrH0NMm5+hLl8/vXoU2gAyuOxrPk4I0SZW1q2DP/qSDydEY6LDrJ39k4qiHe9mre33GFbRfTSpQ919SDiR38CEvIZcTqi0Bh+iHMRrB/vmoOZz567UUikvORSRJyGUhITOroR69gF/ZGprPgj9jiQVaSoIaTJXP71zEfY+UFNAaTuW3AaDIyu08d6rpbs/pkIpsvpBTWM9dvXcOecW19ycjX89bWy6gVMlRyGWqFDLVCYnJHf6xUcnaFpxGXpeXWEEiNfWxp6G1LXJaWvRE3c21JEtiq5TzZwLw0eDQmC0OhIKhWyFApJLzt1dioFRTojWj0JpRyCYXMvBUJF/8m7vVMqubh4OrqWmlLNi5CiNT76lXptmYA54QQv/zt8wnAGSFEmTQwlb1kA6ArMLB88gHa/K82DTre3cLeZBJoCmc75oe8CYNREOBijoUQkZhDtkaP3mAu0xsF9Txt8XG0Ijwhmz0Xk8jTGSnQGcjTGXGzVfNGD7Odw9DlR1FlpNHtwE80iDjKDfca+M6YTt0OLfnhyDU2n4krnoWZhKBdbVde61qHxPhUls34ilZhf+Kdep0Ma0cOhnbkpQVvYudgy/ubwzgSXfJBPuyxAAa39ONETDrv/HoBAKVBx9ht8/HITCR0w3rUgTUYseIYNzIK0OoNIMkwmgSz+ofSMciNHw7H8PGOSxgK1b4Gk+CxQGfWjGmFTquj54TvCE6/SnBaDMHpMbgVZAJg2bAhq7qO5JvLuhJ9GtrKn5lPhhKekE3PBQdKXfurs3shSRL/++ovjsdkAGBHHqtUH1JbnYnFyK1sSXLmlTUlE6jVdLVm7+QOADT+YHcJtbFcJvH9iBY8VtOZr/+8wrIDV1GZ9HS+9Ce9z+9GLYx4jh6J7Nkh9F5+qkS7Mkli0/g2uNiombEljD8jU5BJEjJJQpJgUAs/nm8dwIW4LN7ZeKFwRmmu1/n0Tjr8uR7PWTOZTR1uZOTR8MIBeuxdRZadM8oPZtOqS0v2hiex4lCM+Xuq06FWq6jlZsP0PualolHfnwDMA5ZMMg+0b/asS4CLNVvPxXM0Oh2VQmbe5DLqe9vTJdidbI2erWcTUMilwoFLhkIm0TXYHYVcxoW4LHK1huLBTC6T8LS3xNVWTa7WQGKWpniGLZOBSi7Dzc6cnTc5R8PfHzv2lkoslHLydQbydUZzPUlCkoFSJsNSJTdreozCfB63DJ5F/5tMpZ9l0t/2fRhULxVUDarvQ5Wh0gSSPcAuYL4QQn+v/W9T/3HgkhAitVDLYSWEmF9YJgEvAieAdCFEdFnavJtAsu9SEuEJOUSn5JlVxMBL7WpS38eeXWGJbDh1wzxzFOaZY4i3PZO61kGjNzLy++PmmWWhCrfRZS31fO15emIT5uy6xI4LiWj1ZqFCZzAxuKUfU3vU5cz1TJ784lCJfqjkMiI/7AlAv8UHOXujZJbSj/rXZ3BLPzafjWf6pgtYqRRYq+VYqRQEudvyyTMNEDodP7z+CY32/4JBqeJol2eJaNSeCd3qUsPFms1n49kXngRQOOBJNPF34LmW/mTm6/h4xyUkwCXuCkFHd1Pj9J8o3d1xn/QaW5xDiUguqeruVM+NjkFuXE7O4YfD15BMRlqvmofnpVMcGf8Bo18yR69csCeK9DwtOq0GOxtr5DKJfo28CfKw5dyNTA5fSUMhlxUPXJ72FnSu547JJPjl1A3zAF04I1WmJdM0+xq5S75Al5FJ8tgpFLRsW2zu4etkRYiXPTkaPUei01HIJJRymXnAlMto4ueAJEnEZxYgclOQWTogjh/G8uRXKDqOxrpJJ/QKJXlaY4lzlUsS9oWq4wKdEXnhrFH2t+i8prw8cvbtI2XefPSJiTg88wwu48fd02D1fhBCkPjee2Ru+BXveXPJ2f0b2Vu3Yv/UU3gUuqL+neoHcNWg+j5UDarvQ5WhcgQSAEmShgGjgYXlNWiVJKkT0B+z0NEBeB9YJIToK0nSSsARiAPqCiE6lKXN+o91FPOWryUyOYeopFzS8nSsfKEFAJ0+/53kbC01Xa2xVMmRkHi9exBN/R3Zei6edcevF89WJaC+tz2TugWhNRh5bd0ZJOnmGqrjtQLcrmsZPbcdWy4kcO5GFmqleVapUsho7OtA61ouZOTp+D0yGZVcjlohQ6kwD5ita5rXz6+m5mEwmlAUDqQquQy7wtnhndBcukTcpMnoYmJwHDQI11dfue+8IUVoo6+S/Pnn5O7di0VICG5T38C6RYvb7iuEIGnWh2SsWYPPwgXYdimdT7Eif/zGrCzi336H3L17cRo+HLfJk+6YEK0EuSkQvhkubkRz+giJ11pQEF5SrpU7O6P08iq5eXuhcHHBmJmJISUVQ0oKhtRU85aSgiE1BUNKKiI/HwCbTp1wmzwJdc2aFXK+d0Lo9Vx/aSx5hw4hWVnh+f507Pv2veP+1Q/gqkH1fagaVN+HKkPlCSQAkiTZAt8BbsBrQogT5W6kggh4c5sAsFbJqeVuS5C7DbOfaoBcJpGZr8PeUlkhKtvka9msn32CfhMb4VP33uuS+oQEJKWyRCr0+yFnzx7i3piKytcXr49nlzuT6r3IO3aM5E8+RRMWZh5oX38ddWCNEvukLVtG8mef4zH9PRwHDbptOxX94xdCkL7iO5I//xzL+vXxnjcXpeddYkpsHAdnV2PUSaRcrU3G6RxU/n64vzsNlZ8v+rg49PHx6OPiza9FW2IiGAwlmpLZ26NwcTFvrq43X11dUNWsiWVI2T1nHhRjbi5pS7/G/qn+qGvUuOu+1Q/gqkH1fagaVN+HKkOlLdnMBxoDauAccARoDVwRQswuZycrhJAuA8Su9d/hZW9ZSsVekQiTYMXUg9Rt5Unrp+8e1bPgQhixL7wAQuD+ztvY9+tXbqFICEHa0q9JmT8fmy6d8f7kE2TW5cvJUeZjmUxkb9tG8tx5GJKTcRw4EJfx41A4OZG1ZSvxU6bgPGYMbpNeu2MblfXjzz91irjXJiG0Wrw+/hCbEG9IuwypkeZYIk9+CQ6+iBMryfrjNMk/H8Gk1eH68lichg1DUqnu2r4wGs1akLQ0c9p7F5d7uttWVaofwFWD6vtQNai+D1WGynH7BbYA04QQObd89q0kSRvL2U6FoUyNxMex9Hp6RSPJJHzrORF7MZ3WT995P014OLEjR6Ly80Pl70/Cm2+Rs2cPnjNmoCj0SLkXJo2GhHenkb11K84vvYjrq69WauwOSSbDvk8fbLt2JX3lD6QtXUrWpk3YP/UUGWvXYt+vL66vPaTURUJAdpxZ6Ei7jJUmixq/biB+yhtcf+llnINzcQ3NQVJbgW8L0GShCc8l8fOdFJw+jW3PHrhPnYrSo2xugpJcjtLDo8z7V1NNNdVUUzmUNw7J3jsUja2AvlR5/IKdiDyWRF6mFmuH0rNoTUQEsSNeQOnthd/yZcjt7bHt2oXE92cQ3bsPHjPex65bt7seQ5+czI3xr6C9dAmvOXOw79O7sk6nFDILC1zGjMbhmadJXfwFGatXY92yJZ4zZz4cT4XsePhlFFwrNAqWZOAShOLxSfh+vZTUma+Rum4PBZZt8Z63AMnCgpQFC8lYswZVQAB+3y7HunXryu9nNdVUU001Fc5Dj0NS0TwMt98i8rN1rHjjIJ2G1aNe65L2DJrISGKfH47C3R2/Fd+WCP1tSE0l4b3p5O7bh12fPni8+85tjVILwsK48fI4hMmI7+LFWDZsWOnndDf0yckoHBzuuewBFaQe1WTB6meh2Qvg2RAcA0BR8th5hw8T9/oUs6+n0YRJoynz8sy/nWoVddXgv3QfjCYjRmFEJVdRYCggMiOSXF0uufpc8vR55OvzGRI8BIBfo34lLjeuMEicedxp59OORm6NiEiPYNvVbZhMJozCiEDgqHbkxYbm3EGfHPuEXH0uJmHivcfeQy2vDh3/D6Jil2wKk+m9CtgLIdLvtf+/FSs7FS6+NsReTCshkGivXCF2xAsoXF1LCSMAChcXfL5YTNbGTSR9+CHRR4/i+eEsbNq2Ld4ne+dO4t98C3VgID5LvqgSSwiV4c5aiszrsOst6Pkp2HnBCzvuurv1Y49RY8MGEt59F7mdHW5TXq8S16qafzfmyLFGDCYDBpMBgcBWZY5QmpCbgM6kw2gyojfpSc9Ox9rBGiulFcn5yaQWmCO1Ujj3s1PZ4Wvni96oJywtDIHAaDIPwiZhoolbE5RyJRfTLpKSn4LWqEVr1FJgKKCeUz3qu9bnWvY11kesR2PUoDFo0Bl1WCotmdF6BgAfHf2IxLxEc4A+TJiEiRdCX6C5R3P2xe5jdfjq4s+FENR2rM27rd5FCMGgbYMwCRMGYT5Xo8nIos6LCLQPZN7JeWyI2lB8HTRGDQPqDGDaY9OIy4ljyPYhJa6bhdyCgXUHopQp+fPGn5xLOQeF8XAkScLX1pdGbo1Iyk9id8xuZJIMuSRHJsnwtrkZTflK5hVy9bnIJBlGkxHuL65jNVWcsi7ZXBdCGCVJGg98UPShJEnjhRCLK6drFYc+ORm5nR0yC4sHbqtmY1eObbnK+Vo3qN/BB230Va4NH47c0eG2wkgRkiTh0P9JrFu1JOGdd7g+egwOAwbg9sYU0r/7ntTFi7Ht0QOv2R89nFDqjxoh4PSPsPMtUNtAVpxZICkDSnc3/L75upI7eHvMEVhN5lle4QijlCkRQlBgMIfqvrXcRmmDTJKRr89Ha9QWzw4FAkuFJdZKa3RGHema9OJ6JmGO+ulra462ej3nOlqDtvh4AoG7lTv2ansyNZkk5CUAkJGVQaosFbVCTaC9Oaz5pfRLxe0VEWAXgJXSirjcOBLzEotnuSZhwsXShSCnIPL1+RyKP1Tc16IBtbN/Z5QyJccTj5OUn1RcbjQZCXYOJsgpiITcBA7EHcAkTMWbpcKSp+uYja/WXFpDpjYTkzBhNJmP2zuwN7Uca3E04Si/XfutuJ5RGAm0D2RE6Aj0Rj1TD0wtLivinZbv4G7tzqrwVRyOP3zzOglBB98ODAgaQExWDNMOTSsWKorO99d+vwIwYd8EzqeeLy43CROvN3udp+s8zfbo7Uw9MLXENazlUKu47tNbniZHl1Oi/Nvu39LcoznrItbx9bmS39Wu/l2Z22EuWboshu4YWuo7tn/AflwsXVh2fhm/XfutRNlLDV+ivmt9srRZ7L++H7VCjaXcEqVciZ3Rrng/nVGH3qRHQkImyVDIFMgksx2aWq7GwcIBGTIkyVzuamnWJEiSRJBTEHJJjlySo5ApkEtybJTm7N3N3JthrbQuLrNUWFLH0Ryx1tfOl5/7/Iy10hpblS1WSiuUspvu+vM6zit1rkW082lHO592dyz/utuj+b1X83Apq0AiSZK0FwiUJKkDN1UwfkCVFUhMOh0p8+aTvmIFyOWoa9fGIjQEy9BQLEJCUAcFISunmr9JjwDys/X8uTaSjOgkPL6bhNzWDv/vvis2WtWb9GgNWnQmXfEMw9PGrFGJs9KS+/FETL/WJePLVWRs2YRUoMVl3DiMw5/mYNrx4lmLCRPWSmtaebYCYG/sXgymki6qzT2a42ThRGRGJNGZ0cUPYwAPaw8auzVGY9CwN7ak+Y9A0NW/K2q5mqMJR4nPjS8eDAWCYKdgQlxCiM+NZ3fMbvQmPXqTHoPJgFKmZGwjs9nQglMLSMxLRKPRoLYwq1EH1R1EQ9eG/BX3FxuvbCyeGZowEWAXwPiaT2Pa/Apjcs+i9/PH4OCL4exnGE4bmNthLv52/iw5s4Rt0dtKDOC9avTi1SavEpMVw8jdIwvDyoviffb8bw8KmYIJ+yZwKvlU8bkgYEKTCQysO5B9sft488CbJQQLX1tfNj25CYDO6zuTkp9SfI0AvuryFW2827D07FIWnyn5dW/v057FnReTrcvm8bWPl/q+7H56N542nsw4PIPtV7eXKBsROoJJTSdxMe1iqYHJUmHJseeOATD598mEp5fMPTKzzUyerPUk+67vY/pf00uUBTsHs673OgCGbh+KxqgpUb6q1yoauDZgTfgavr/4fYmy3oG9md12NhnaDCb9XjqR9+FBh1GqlKy4sIIDcSWj5U5oMoEgpyAuZ15m1pFZyKTCAQ8ZblZuxQLJpsubSMhLKJ4JyyU5zT2aU8uxFol5iZxMOmkeEGXmQdFKUWi0LkG2Lhu5JC+2aZKQSnzni94XzcCLUMvV+Nr6IpfdHGQVMkVxfqq2Pm2p41SneCCWy+QEOwcDEOoSyrRW01DIFMV17dU3l1znd5iPQBS3mZ2VTT0ns3v+gDoD6OTb6eZFksBOaRYcHNQO/NznZ2SSrMTmoDangJjWahpvNH8DtVyNhcICtVxdLFQ0cG3Atqe2lbo/Rbzf+v07lrXxbkMb7ztm5ijWstyOtj5taevT9rZlarmaIKeqmYC0mn8G5XX77SeE2HTL/72FEFsrpWdl5E42JNroaOJefx1tZBQuL49F7uCA5kIYmgsX0F65AkYjKJVY1K6NRaGAYhEagrp2bYRCzsW0i2RoM8jQFG7aDEaEjMDBwoFvzi3j2vY4PK+2wS77PJs6badDs36MbzyesNQwnt32bIm+KCQFp4eZw5U/t+05zqWeA8AjXTDoDxNeff9HjxdmsOXKFt4++HaJurfOxFqvbk2OvuRMbEX3FTTzaMbCUwv55vw3Jcq6B3Tns/afkZKfQqf1nfg7fwz8AycLJybun1hKYHmp4UuMazSO44nHeWXfKyhkCpQyJUqZEkcLx+IBb8ofU0jKT8KgN6AsDF72cqOXaenZkr3X9vJj+I/FbUqSRJBjEFO9uyLWPsfkOo1R2PmY25YrUUgKRjcYjYe1B3uu7eFMsjk4nTkHiEQDlwZ09u9MWkEaq8JXFQ94RX9jGoxBLpOz5coWEvMSSwxarTxbEeISwrXsa/x+/Xdz3cJBy1b1f/buOzyqKn/8+PtMSSaTXkmAEAi9Ix1FkCIqIAgKKrqg/kBW1q9lXRdc3RXWAogFRdRFlLJUYVH6roUgoPTeE0hIKCGkTsokkynn98dNxsQETSANOK/nmWdm7szc+5k5d+793HPPPceXYU21Dse+jvsam9OGKMq5hRDc2eBOInwiOJF+guPpx91HlgJBuHc4ver3wu60899z/y0VjxCCvg37YjaaOZp6lMvWy+7XEBDlG0WzwGZYbBaOpB5x77yFEBh0BrqFayMzbyzcAAAgAElEQVSdnkw/Sb4j3z1v0GpPgr2CSc9P52LuRQSCrKwsAgMDMelNNAvULk0/nn6cX//Ho/2jMRvNpOWnYbFZ3EmBXqfH2+BNgCkAp8uJpdBS6ruAdrpBCEGBo8BdS1G8Iy2ex61OtV2oWtJux37xorvDQt97761QI3tVDnVGtfVDEg68DrQGTgDTpJQplQ6vCv06IZFSkrVqFSlvT4eQIFInP05SQw+yC7Ox2q0MbjKYlubG7PhxCYd+XE1IUjbh5/Ool2pHJwGDAY+m0XzrEce5MEFCuOBKfS9MAcF8NvAzGvs3Zv2OL4j46yekB7YnrvFjEGyj7WN+9GvZh6yCLGLOx+Ch98BD74FBaEdVxUcVZzLPYHPZMAhtJ2wU2g7ex8MHq91KdmG2u5pVCIFBGAgwaUdMFpulzPcvrhYtcBRQ6NLGfineaRVXqbqky306QZRYN7wMXgghsLu0UQBK7mgre1XN7/75s5Nh7+fQ71XQ6cFhA8ON2d9HXaU2wHWDKgdtRGpHejqyoADPZlpynP2/b5GFhUinA5wupMuJ7113YQgNxXrgIPkH9v/SU3JqKuZu3Qh97v+wxScQP3iwe94tdu1E/6uBRMujyqHOqLZ+SKYCq4FEoDHwBkWj7tYW2UiyKnYVF3MuknY5ge6L9tP8SDr+D47kpU4nOHbpfQzJBvw8/TAbzHQO60zr4NYY2rflgjmOLKMPyUZvfJ0eRF8RdM4OpODkSe465oRtSWC3A7kYGwZg2Poeqa1a0XrN12AOouP86XQsMLPpkyNc+LeezGfzCAwPYETzEVeNt/jItTxmoxmz8ep9qpSsJv41k8GEifLbyOiEDm/j1TtVK3met8oVWuHnOfDTbDCYoP1oCGulkhFFqUHS6QQhEDodztxcXLm5SIcDabeDw4HO1xdjeDguq5X8o8eQDju4XEiHA5xOfAYMQAhB3s8/Y79yBZxOpN2BMysL71498erYkdwffyRl+gwcaWm4cnMB8GzRguh1WqV68t/+hiuv9JhZnkuXYAgNJXf7NjIXLUYfWtwrciiGCK2xurFhAyK/mO+errvOYTOUuquyNSQvSylnlXj+Nynl29USWQW1X9ReCgS3X/bjyTXZmAoh8s23CRoylLNZZ/E2ehPqFXpNVcnSbscWn0DByRPYTp6i4ORJCk6dwhAURKMv5mNsoLUCt6Tms+Hjw+TnFDL4mfbUb15+w9abWblHI8e/0Rqt5qVC96eh78vgdev9NjVFHRFWHyklsrAQl9WKKy8PYTBoO/CCAnJ/3Oae7srLIzcrk0b/93/ozGYs6zdgi4sD6QKptXXy7tkLnzt7Y0tIIPPfS7RkweVEOl3oTCbC//F3AC6/9Tb25EvgdGnJgctF8ITxeHfvTs7335OxcJF2Os7pRLpceDZvRv233kK6XMT17YsstGs1EoWF4HTSZO03mFq25PI//0nmsuWlvl/A6NFE/HMatrNniR9Stu+jVkePIIxGEsc9gXX3bvd0nb8/YS/9mcDRoyk4eRLLN2sxhIagDwnBEByCMbwens2bA+DMzgadDqHXg16vdfao11e6Nrai1P+hzqi2GpImQojngXNAE6DBb7+9+hm/FGy8/w9kLVyAV5fONHjnHYz1tas1mgZc3+BnwmjE1LIFppYtQBvc1n0+vuSfyD/Uiwf/2oXNnx1l7YeHGDC2NS2638KXorpcoNNBzmVo0Bnu/icEV+9AdErdUrwDd+8QdToMgYFIKSk8e7bo6NyhHYk7HJjatkVnNlNwOhb7xYu4W0JLibFBA0ytWuHMySHv553ajt3p0Ha49kICR48GIGvN1xSeT9KWadOW6zd4MN49e5B/9Ki2E5ZFw3sj0YeEUO/llwG4+Ne/4kzPwGUrQOYX4CoooP7bb+HVsSOpn3xC2sdztfW6iO/dd9Nwzke48vK4+Pzz2kS9Hp23N9JgwPX00+jMZqz79pG7fRtC6EAI0Om0y+nv7I0rNxfr3r3aTrloJ6339XUvw5VvReYXgF6H0OkRHh7uHpuFlxeGevW0HXzRjr14rCOh0xE4+mGE0ah9xtMD4eGBoegy/oCHH8a7Tx+EwYgwGBBGg/s1Y2Qk0Zs2IYyGopgMCL0ODNquIvJfn2k1LcVJRYntoKl1698ca0vv53fV1xQFKl9DYkIb6bcVcBz4Qkppq6bYKmR96zaymU5H6LN/Ivjpp7U/Si1x2l1sWXKS2N0p9BgeTZd7o2qmh9M6IDU1lVBDHnz3OvhGwH0ztA3/LfL9a4osqkYXRTsxZ24ertwcpMNBenIy/noDOm8zppYtcebkkLFgIU6LRbtla/dRX36Jztuby2+9jXXXzlLzD3j0UYLGjMF68CDJr/291Gt6f38aL1sKQNLEidjPX9CSA7sdabcT/vrr+PbvR8a/l5Dy1lulPmvu1o2ofy9GOhycate+zPdqsm4tphYtSH59KlkrV5aO6ZGHiZg6lYLYWBKGDS/z2VbHjiIMBs4/+ywFR49pO+GiW8iE8fgNHkzezp1cmT27qEFxUWJQvz4N3tUqfC++9BdkoQ3haULnZUKYvAh89FE8o5uQf/gw+ceOoTN5ofP2Ruft7T7yly4XzqwsdN7e2jKFUEfmdYQqhzqjekf7rUu2tm4teyxfjlenTrUdCqAdGe5Zn8C+Tefo2D+S3qOb13ZI1a/AgvV/b2I+slA7JTNwGnQqf1TgG5nLZkMWFGhH4EU7YZ3ZjCE0FJfVSsGJE9r0wkJc+QW48vMJGKFVrWUsXYrtzBmtWj9Xq9oPfPwx/O6+233uXbpc4HAgnU6MkQ1pvES7Qimuf3+caena+fyio/RGCxfg3bMnqR99RNonn5aK0/fugTScMwdHZiYJw4ajD/BH5++P3s8fvb8/9V6Zgt7Pj8yvvsJ2Olb7UFHi6NPnTnz69MEWn0Dm8tLV+jqzmbCiMY3SPvsXjox07aNFR+J+992HqUULCk7Hkn/wYInEQBv12ty5s9Zfy/79CIMBDEbtSNxgwBgZic7DA6fFgquggKLes7RG1l5e6H18kA6HVu1fdITunn81jvN0LdSOsG5Q5VBn3DoJSa+OHeXOw4drO4wyjsScZ/vKOO58uDkd+kXWdjiVVtw/g7TbtR1E0TlsnE6wpmIw2KB+J+wJccjPB+IqLIQOjyHbP4xH8zbofbwpTEqiMDEJ6dB23jidGOqFY+58G678fLI3bUa6nO4W97gkAQ89iM5kImfLFgrPJRZVsWv9spg7d8bcpQuFFy6SvWE90uEsqp63ITw8CHtJ6zfj8ltvY79w4ZfEwekk9Nk/4d2rF9mbNpE+/wv3d5HShalNGxq88w7S5eJM37u00wlFDf6kw0GT//wHU8sWJE+dStaKXx29P/wwEdOmYouLI/7+YWV+x5ZHDqPz8ODiy3/Fdvo0Oh8f91F2wIMP4nNnbwpOnMCydh0Y9Ai9AfQ6DEHBBP1B6/UyY9kycDjAoO28hcGId+87MIaFYYuPpzAxEWH0INtqJSgqCkNIcIUHclSqntoR1g2qHOqMamtDUufk19FTAh36RWK5YmXHV3H4mCXRPRoBYEtIwGW1Fp3jtiFtNkxt2mAIDcUWF0f+kaPuo29pt2MMr4ff4MHIwkKufDC76Jy8TTsKLyyk3iuvYAwLI+3zz8n9YYu24y9qPOc/ZDDB48djO3uWiy+8CMVjSBTloE03al3IJD39NPmHDmtH4EU74fDX/0HgI49oXdq//NdS383T3070HwLh2b3Ej34MV44ZMMOGjcBGGi1ahHeP7mStWUP6Z/8q9Vnfe+/VEpLcXJJfffWXF4rOg/vddy86k4nsjZvIiYnR1mRRVM0+fjzmLl1wXE4mY+EibQftYUTn4Yk+KMg9K1e+Fel0oDN7IYx+oDe4e7/VBwVjatcOdAKh04NOh0cjrWyETkfA6NEIgx5hNBYlAEYMYdpGLeDBh/Du0UM7Ki+qFTDUqweAMSqK6A3rtelGI8Jk0pKPoo73Gsx656rriqlNG0xt2lz19aAxY676mmd0NJ7RWq+s+ampmNQGWFGUG1Rl25D4AhPRdmm7gUQp5flqiq1CampwPelwuBtx2c6epfD8eZwZmTgz0nFkZOLdqyc+d95J3p49XJoyBWdGJq4CG0faTSQrsAUPvd6bkIa+nLl7EPbzpX+yBnM+wu/uu0lfsJArM2dqE4t2bN49exL5yVyk3c7ZoUPReXggPDzd1dX1p7+NsX59MletIn/ffjAa3A3ovHv2wG/wYOzJyaR/Pv+XHXvR5X9hUyYjhCBrzdc40tKKjr61Rm7m2zrgGWqiMN9E/ncrEbvnQlBjRHATdA1b4z3oIQiMIm/XbpAuLDm5BISEIIwGPJpEo/fxxpmVhTM3T6uWNxrd1ew6Ly8tMXI4tEREp7tl2tpUJ3VEWDeocqgbVDnUGdXWMdpc4GegHfAu8E8p5Z8qHV4Vut6ExJmTgy0uDltsLDqzGf9hw3BaLFz407M4c3JwZmfjys7GlZdH8x3bMYSEcOH5F8j53/8A7by6PjiYoCfGEfTYYxQmJpK1+j/og4LQ+Xjj1Hvy7R4f7MKTh6Z0RXf+DEip7ZiLWr/rg4LQmUxa7QZoR+a1vYP+4Q3Y/S948Sh4+v+SzFyF+vPXPlUGdYMqh7pBlUOdUW2nbBKklEuFEH+VUqYLIS5W8vO1Rtrt2BISMISEYAgKwrJ+A1c+eB/HJW1gMnQ6/IcPx3/YMISnJ4awMDyaNdUaAvr5ovPzQ5i0av96UyZTb8pkLZHwLN3Bl0dUlLstQ7Fh/QpYNWMfG+ceYcRLnTF6ln8lkDBWYwdllZF8GHZ8AH1UvyGKoihKzahsQtJcCPEXoI0Q4o9ARDXEVCn9HU7SFyzEZc3T2mbk51Pv739HCMHlt9+m4MhRnDk5FCZpva6GT51K4CMPY6wfgd899+LZogWeLZrj2bSpezRgnclEg/ffu+oyjRGV+9o+gSaGTOrA1+8d4Lsvj3PfxPYIXR09ReG0wzd/gtCWcOdLtR2NoiiKcouobELyPFo/JHmAHvhLlUdUSRMcDlI/+gid2ey+4XCA0Yjezx+PqCh0Pj4EPvwwni1bYmqjddxj7tIFc5cuNRZnWJQfdz/Vls3/OsrOr89y+4NX70K+Vv00G64ch/E/gKFyIyEriqIoyrWqVEIipSwA5hQ/F0L0BnZUdVCVMcbTg4MHD5T7Wuiztdq8pYzoTqHcPrIZP//nDP5hXrS9s9Y7ui2rzQjwDtN6WFUURVGUGlKhhEQIEYN2ZU3xeYbix42AWu0TXNZ2489K6jQwkqwrVrYtj8UvxIvI1kG//6Ga4HSAywEhzbSboiiKotSginZx+KWUsr+Usl/Rrb+Ush8wrTqDuxkJIejzSAsatAzgv/OOkZGc9/sfqgm75sK8u8BeUNuRKIqiKLegiiYk9wEIIQ4KIbYU3WKA16svtJuXXq/jngnt8A7wZONcbZTgWpUWB1vegqb9wGiq3VgURVGUW1JFE5Kni+6nFtWOFNeQPF9Ncd30PM1Ghv6pAzarg11r42svEJcL1j4LfhHQ/7Xai0NRFEW5pVUoIZFS5hY93F88TQjRCLhSHUHdKvxCvOh8TxQnf04m64q1doLYMw/O74Jhc8DDu3ZiUBRFUW55lR0m86kSj9OAJ6swlltS+34N8fIxsndDQu0E4B0Cd7wATfrUzvIVRVEUhYpfZTMOeAJoLIS4q2iyBC5VT1i3DqOHni73NWb7V7F0vieK4AY+NRtA+4e0m6IoiqLUooqesllU1GZkSok2JAOklH+o5vhuCW1718cn0JM9NVlLsm8BrP0TuJw1t0xFURRFuYpKnbKRUq4s+VwI0b1qw7k16Y06ug1pQvzBVK4kZlf/ArPOw7d/1+q4dOWPq6MoiqIoNalSCYkQYqQQYn2Jy36XV1Nct5xWPcPxD/Ni97pqvuJGSlj/HHiY4Z43q3dZiqIoilJBlW3UOhEYV+Ky31eqIaZbkk6vo/v9TUg6nsGlM1nVt6B9X8DZLXD/R2okX0VRFKXOqGxCshXIL/E8s+pCUZp3qUdQfW92r41HSlk9C0mLg85joeW91TN/RVEURbkGlR3t93HgcSFEcf8jtT6Wzc1E6AQ9hkWz+bOjXDiZSWSbahjn5r6ZqiGroiiKUudUtobkfSll2+IxbYC6NZzuTaBJxxDConzZtfZs1daS7PoUDhe1SVYNWRVFUZQ6prIJySohxF+EEC8JIXoDx6sjqFuZEIIew6O5kphDwuG0qplp8mH49jVIOVY181MURVGUKlbZhGQ6kAyEACeBKVUViBAiVAjxiRDi06qa540qsnUQEc382bM+Hum6zloSewGsmQghLdRYNYqiKEqdVdmEJEFKuRTIlFKmAxcr82EhRLgQ4kUhxBNCiGVCiPYlXvYFvgFEJWO66Qgh6Dm8KekX8ziz/zqHC4p5E9LPwMh5YPCsmgAVRVEUpYpVtlFrcyHEX4A2Qog/AuGV+bCU8rIQ4hNgEuAEYku8Fl80YN/vEkI8TdEIxPXr1yc1NbUyYdwQjAEQ3syHnd/E4Rcp0OmvIU9z2Ag89T8Kuj9Pvj4cqvF3ysjIqLZ5KxWjyqBuUOVQN6hyqBtCQ0Mr/N7KJiTPAxOAPLTalZcr+XmklDbgAyHENGAo8J9rmMc8YB5Ap06dZGW+8I2k90OerJ6xj/SzDtrcUf/aZvLMNnz0HvjUQEPWm7UcbiSqDOoGVQ51gyqHG0tlT9m0BLZLKf8E7KGSCY0QorcQIqTo6UUgspLLv6XUa+xHk44h7N2YgNPuqtyHf/oQ0s6A0UtdVaMoiqLUeZVNSP4M5BY9zgbeqOTnPYDXi0YP7gV8LYRYByCEqA8MAVoVXcGjAD2GRZObaePET5UYWPn0ZvjuH5DwY/UFpiiKoihVqLKnbI5JKc8ASCljS3SQViFSyi3AlqKni4ruhxW9dolrOAV0swtu4EPzrvXYt+kckW2CCAgz//YH8tJg3f9Bs4HQ9amaCVJRFEVRrlNla0iihBDPCyGGCyFeQJ1yqRE9hjUBYNnU3fyw6ASWVGv5b5QSNrwATjsM+xjELX/BkqIoinKDqGxCsh7wBwYBhWincJRq5h9q5vE3e9FrRFMSj6Wz9PXd/LD4ZNnEJC0O4r6Doe+DX0TtBKsoiqIo16Cyp2zeAIZKKa+zcwylsoweem67uxHt+jTg2LaLHPw2kdO7LtOqZzhd7muMf6gXhLaA5w+Db6WuxlYURVGUWlfZhGQD2iW/AAghnpBSLqzSiJTfZPQskZj8eJGD32mJSctWBXQd1Qu/CJWMKIqiKDeeyiYkjwAPCyFS0HpUbQQsrOqglN9n9NRz26BGtOvbgKOrt3BwRwGn39hP276R9B7VHJ1OtR9RFEVRbhyVTUjek1J+UfxECHFvFcejVJJR5tE55XnadW/L0fBZ7FoXj9FDT68RTWs7NEVRFEWpsMomJKuKuo6XwG7UaL+174d/Qn4mHk/OoktgY4ROsPPrswQ39KZFN3X6RlEURbkx1JnRfpVrkHIc9s6Hfq9CYGMAbhvUiObd6rFl8SmuJGbXbnyKoiiKUkE1OtqvUsXC2sAjy6DnM+5JQgj6/6EVQRHebPr0KHkWWy0GqCiKoigVU9mE5LpG+1WqUOY5reOzVoPLjFVj8NAz+Jn2SJdk82dHcdidtROjoiiKolRQZROS5wEb2qW/elRX77Xj8jGY0wVOrL3qW3wCTdz3x/akns/hx2WnkVLWYICKoiiKUjmVatQqpSwQQswD6gOXpJTqfEBNczpg3bMQ2ASa3/Obbw2P9qffY634YdFJghv40GlgoxoKUlEURVEqp1I1JEWj9B4ClgCHhBBPVEdQym/Y/SlcOgjD5oDR9Ltvb9Urgo4DI/n5P2dIOp5eAwEqiqIoSuVV9pTNQCllaynlHUAbYGA1xKRcTUY8bHkLuo2HqF4V/tjtI5oS2TqI/80/TlbKVQbmUxRFUZRaVNmEJK74gdQaJRwGEELcWZVBKVfhFQTdx8OA1yv1MZ1ex6DxbTH7ebDxkyPY8h3VFKCiKIqiXJvKJiQPCyHOCiG2CiHOAmOEEDGo7uOrn8sJXgEw6E0w+VX6455mI4OfaY/VYuPb+cdxuVQjV0VRFKXuqGxC8q6UsqmU8q6i+9uklP2AqdUQm1Ls3E/aVTUJ269rNoHh3gwa346kE+ns+uZsFQWnKIqiKNevUgmJlHLBVab/u2rCUUpJPwsrHoOFg7XakbDW1z3LqHbB9HqgKQe/TSL+YGoVBKkoiqIo16+yY9koNeXoavh6IvjUgxH/gvajQVfZCq3y3TaoEZfjLfyw6ATBDbvhH2qukvkqiqIoyrWqmj2cUjUchXDlpPY46na4awo8uw86PlJlyQho3csPGNcak4+R/847hqNQ9eSqKIqi1K4K7eWEEAOEEM8LIe4VQjSs7qBuOVLCyfXwSQ9Y8iA47eBXH/q8DB7VU3vhaTZy79PtyUy2sn1lbLUsQ1EURVEqqqKH3WOBVYAdGFF94dyCzu+BhUNg5eMQ0AjGrAS9sUYWHdrIlz6PtODET8mc/Dm5RpapKIqiKOX53TYkQogZgBfQEdgipfyh2qO6WTkKIfkQXDoEPZ7Wpq1/Xrukd8wqaH63NmBeDWp9RwTJZ7L4cflpQhv5EtLQp0aXryiKoihQsUatrwATADMwRQhhllJOrt6wbiK2HPj5Y0j8CS7sA0c+GLyg3UjwDoHR/4bAxqCvnfbFQgj6jGlJ6vkc/vuvo4z6Wzc8vVRbZ0VRFKVm/eYpGyGED/AOcC+QBnyKNsqv8lvs+XByg/bYYIIDi8HDW2uk+v++hylJWjICENKs1pKRYkYPPfc+3R5rTiExi0+qkYEVRVGUGvebe0IpZa4Q4q/AHwB/4ElgT00EdsOy5cDyR7XakOcOaI1T/3yixk/FVFZAPTP9/9Ca/31+jCNbLtBxQGRth6QoiqLcQn730LxozJrFRU/XVW84NzhrBix9CFJPw+OrtWQE6nwyUqxZlzAun9VGBg5r7EdEU//aDklRFEW5RVT0st9oIcRXQoiDQohDQogDQoiVQojo6g7whpGTol0tkxEP49ZB4961HdE16TWyKWGNffnf58fIzyms7XAURVGUW0RFL/v9AphZNHZNJyllZ2Bm0XQFtEt1fcLgiU3QoEttR3PN9AYdg8a3w+lw8d2XahA+RVEUpWZUNCHxkFLu/9W0Q4BHFcdz40k7A9nJYA6CsWuhXpvajui6+QaZGPRUW86fyuSn1XGqkauiKIpS7Sp6ecdiIcQuYAuQBQQAfYFF1RXYDSH5CPx7BET1goeX1HY0VSqyTRB3jm7B9pWxCCG446FmiBukLYyiKIpy46lQQiKl/JcQ4iugBxAIHAbekVJmVWdwdVrSblg6CgKjYOjs2o6mWnTo1xCQbF8ZBxLuGKWSEkVRFKV6VCghEUIMAt4EUoG3gQ8BsxDin1LKFdUYX910NgZWjIHwDlpX714BtR1RtenQT7v8d/vKOEAlJYqiKEr1qOgpm38CQ9BO1WwDOgG5aKdwbp6ExFEIOr12y4jX2ocUWKAgC/KzILQFtBkOlvPQqBc8/G+tw7ObnEpKFEVRlOpW0YRESilThRAZQJ6UMgVACGGrvtBq2OnN8NVYeHIzNOwK+76En+dorwk9mPyhw2gtIek8Fjo9DrqKtgm+8WlJiWD7ylgkkt6jmqukRFEURakyFU1I9gkhvgfygP8JIZYBGcC56gqsRtlyYMOfIbKHNuIuwO3PQ/eJWiLi6Vu2c7NbKBkpprUpge0rYwFUUqIoiqJUmYo2av0/IUQzIEVKmSOEuBvtkuHvqjW6mhIzHfIzYNgmrS8RAJ/Q2o2pjlJJiaIoilIdKjyqm5TyTInH15SICCHCgUeBTGAQMF1KebTotduAUWgNZ9OllIuvOqOqlHwEdn8K/V6FoCY1ssgbXYd+DRECtq2IBQm9Rzev7ZAURVGUG1yNDjMrpbwshPgEmAQ4gdgSL78FjJVSpgkhdgkhlkopndUelF99uON5uP25al/UzaT9XVpNybYVWhG27HfzXmmkKIqiVL8aH/deSmkDPhBCTAOGAv8peqmRlDKt6HEeEAKklDcPIcTTwNMA9evXJzU19RqDcYHQQcc/Qabl2uZxCwtv68ltQ+tzcMMFMrMy6TkCdfqmFmVkZNR2CAqqHOoKVQ51Q2hoxZs/1GhCIoToDZwqSjwuAiXHuE8SQoQUveYNpJU3DwAp5TxgHkCnTp1kZb6wW24qLBgMw+ZA1O2V/7wCQOjQUHy8fdi+MpagYAt3PKguCa5N1/RfUKqcKoe6QZXDjaWma0g8gNeFEPuAXsBUIcQ6KeUw4FXgz0KIVODTaj9d893fIS8NglX7h+vVoV9DcnJyOLTpPDoh6DWyqUpKFEVRlEqp6TYkW9A6U4NfxsEZVvTaQeBgjQSSsB0OL4ehH6iraapIi14heJu9+Wn1GYRO0POBaJWUKIqiKBVW421Iap2jEDb+GRp0hc5P1HY0N5VOAxvhckl2rjmL0EGPYSopURRFUSrm1ktIsi9qDVmHvn9Ldm5W3ToPikK6JLu+iUenE3S/P7q2Q1Jqgd3mxJJqJSsln6wUK7Z8B+37NsAvxKu2Q6s0KSUXT2eSej6Xlj3CMft51HZIinJTuvUSkqAm8MxOlYxUoy73Nka6JLvXJSB0gm5DKt6/i8slkVKi16vyqcuklNisDqzZhWSn5pN1xUrWFS35sFyxkpv5y6gSHl4GhIBjWy/Q5b7G3HZ3I/TG6i1fKSXpF3Mx+3lecwLhdLiI25fCoe/Pk34hFyFg97p42tweQadBjfALvvGSq5rmdLrIy7Rh8jHiYbr1djdK5dw6a4iU8ONMaD8KgpvWdjQ3va6Dm+BywZ71WlLS9b7GV32vNbuQpBPpJB1LJ+lEBtIladunAR37R+Id4NhI+LkAACAASURBVFlzQdcxtnwH2Wn55GYU4HRoiRpoO1uktkojJbLocZ41F9nck4B65mve+Ltckpz0AjIv55GXZSM/x05+TiH5uUX3Rc8Lcu24XNL9Ob1Bh3+YFwH1zLToHk5APS8CwswE1DNj8jFiL3CyZ2MCezYkcGpXMn0ebkGjtsFV8TOVYs0u5NSuZE79nEzmZStCQHhTf6I7hRLdKbRCNTQFuXaObb/I0a0XsFoKadQmiNuf60hYIz+ObL3AkS3nOb79Ei161KPzPVEEht+YA2xKlyQnswBLaj6WK/lYrli1x6n5CJ0gKMKboAgzgeHeBEZ44x/m9ZsHCnabk/SLuaQm5ZB2PofU87lkXMrD6XABYPIx4htkwi/YhE+wdu8bZMI32AvfYBOeXrfO7kgpnyjeyN2oOnXqJA8dOvT7bzy5HlY+DqMWQdsHqj+wW0xqamq5l9jtXhfPvk3n6DWiKZ3viQK0nV5KQjZJx9NJPJZOalIOACGRPkS1DcbhcHFi+yWcDhcte4TT6e5GBEXcmBv93+K0u8jNKiA7tYDs9Hyy0/KxpBaQk56PJS0fW57jmuftE+RJUIS2Iwkq2qEEhpsxeRsBcBQ6ybpiJfOylczkPO3+spWsK1acdpd7Pp7eBsy+Hph8jNq9rwdevka8fIrufT3wCzHhG2hC6H6/vVD6xVy2rYjlUlwWTW8L5Y5RzfENMl3z9wRwOV0kHc/gxE+XSDyaDgKadAylVa9w8rJsxB9K48LpDFwOSXBDn6LkJITgBj6l2jhlpVg5/MN5Tu1MxiUlLbuH03FAJMENfEotr7DAwfFtlzj0fRLWnEKa3hZGl3ujCG3kC1z9v1BRTruLPIuN3CwbVkshQmgJn84g0Bt07lvJ5zq9wFHoxFHowm5zYi967Ch6bLc5cRQ6yc+1u5OP7LQCd7IgBPgGm/APM+Mf4oXT6SIz2Urm5TxsVm091OkE/mFe7vUqoJ6ZvCybO/nIumIFCUInCAw3ExLpQ2ikLwH1zBTk2clJLyA7vYCcdG0dz82wlUpqPUx6TD5GTN7GsvfFj32M+AR4VigJvN5yUKpMhRsS3hoJiS0X5naHsDbw2KqyA+Up1+1qf34pJbvXxrP/v4m0v6shBbmFJJ3IwGZ14OFlILJ1EFHtgmjUNhhv/19qQ2xWO8e2XeTIlgtYswtp3CGE2wY1IqKpf51qKOsodJJnKcRqsWn32TbysgqxWe3YbU4KC7SdwS83B/aiaS5nif+eAJ8AT/xCvPALMRXdazffIBMGow6EtuoKIYoeC21VLnp8+dIV9A4vMi/nkVG0M8lMziM7vQCKFmX288DgoSs1zeRjJDC86Ei4xL1PoCe6ajh1JqUkdk8KP/3nDPYCB10HN6bTwEboDZVbVtYVKyd/Tub0zmTyLIUE1femzR31adGjHl4+pU/TFOY7SDyeTvyhVBKPpWMvcOIXYqJJp1DqNfYjdk8K546mYfI20q5vA9r3bfi7p3ocdienfk7mwLdJ5KQXENUumC73RmHwtxMaGoqUEqfd9avyL0oQCpzk5xSSl2UjL8tGblbRY4uNglx7pX/T36PTC4yeejzNBi3pCNVqsPxDvfAP09az8n5/KSXW7EIyk0uvUxmXreRnF2Lw0BHcQEs8QiJ9CIn0Jbi+NwYP/e/G5HJJrBabO0nJzSygIM9BQZ6dgtyiW/Fjq929vtZvHsCIlzr/7vxVQlJnqISklP+9Cnvnw6RdaryaavJbf34ptUauB79NJLihVgvSqF0w4U38fneH57S7OL3nMge/TSIrxUp4tB+3DYqiSYeQUkfkdpuz6AhMO8WRk1G0kcuy4RPgSUikLyENtQ1mZdoUOJ0uLCn5ZCTnkXEpl6wr+ViztSPXPEshhfmlazF0OoHZ3wNPbyMeJj1GTz1GTwNG92N9iel6vP093UnH9baruFoZ2AudZF22kpGs7UwcDheB9czuWpNf77xrii3fwZ718RyNuYB/mJk+j7QgsnWQ+/XidirFO6bi00YFuXYSj6VzKS4LD5Oe5t3q0fr2+oQ19q1Qsuq0u7hwOpP4Q6kkHE4lP8dOYLiZjgMiadkjvEI701Lzc7o4szeF/f9NJPOyFU9vPS4nOGxOfnPzKsDL1wNvfw98Ajzx/vXN3xNvf61snA6J0+Fy31y/fu6UGD30GDz1GDx0GD209cvgocPgqa+WNlm2fAdGTz26CtSMXS/pktjytXVBSqlqSG4sKiFxy0uH91pC379qN6VaVOTP73S4Kn0UXEy6JAlH0jj4bRKX4y0E1DMTVN+7qPq3gIK8X44qhQDvQE98g0x4B3iSm1FA2sU8HDatrz0vPw9CG/poR3QNfQlu6IN/iBfZ6flkXMorSj60+6wUq7smw+RtJKCeGe8AD8xFOwuzX9F90XOTt7FCpy6qw426AU67kMO25bEkn7UQFuWLw+4iP9eO7VftVIoZTXpCI31pfUcETTuHYaxkAlGSyyXJTsvHP8TrustNuiQJh9NIPJ2Cf5CvlhSUSD5LPjd4aKcnVOPt6nOj/h9uQiohKSX7Enj6gafPb79PuWY1+edPPpPF4S3nKchz4FuycVyQCd9gE96BnmU29NIlsaTmk3Yhl7TzOdr9hVzysmxl5u9pNhBU31tr1Oe+98HL11inThf92o28AZYuyek9l0k6noHJbNDaqvj80m7Ay8eIydsDk48Bg/HaE5CacCOXw81ElUOdUeGN5s3frFlKbURf5aYR0SyAiGaVG11Y6AQB9bSrPpp1CXNPz88pJO1CLtlp+fgFexFU3xuzv0edTjxuRkInaNUzglY9I2o7FEVRasnNnZBkJMCi++GRpRDRsbajUeogL1+PUu0WFEVRlNpxc5/APP415KVCkOotVFEURVHqsps7ITm2BlrcA56+tR2JoiiKoii/4eZNSFJjIeUotHuwtiNRFEVRFOV33LwJyakN4OEDzQfVdiSKoiiKovyOm65Rq8vlwul0QvdJ0Pw+wAD2qu/5UCnN6XRiV79zrVJlUDeocqgbVDlcO71ej64WBqC9qWpIpJTk5eUhXS7Q6SG4WW2HdMvw8/Or7RBueaoM6gZVDnWDKodr496P1kIfZTdVDYnT6cTDwwMPWzo4bKqb+BpmNBprO4RbniqDukGVQ92gyuHaSClxOp0YDDWbItx0NSQ6ISA/E8RN9dUURVEUpUYIIWqlhuTm22vb88FZCF6BtR2JoiiKotxwaqun6psvISmwgM6g+h5RFEVRlBvIzZWQSAm2bDAFaEO+Ksp1Sk1NZdKkSTzzzDO1HYpSjkOHDjFw4EBWrFhR26HcshYuXEijRo1qOwzlJnBTNWpFCK2beIMBa6GDs1fyrnuWTcO8MXuU/Zl27NjBqFGjWLRoEe3atWPcuHH07t2bzz77jEWLFjFoUPn9n5w9e5axY8fSt29fGjduTFxcHE899RStW7dm8uTJ7N69m8cffxyAkydP8uKLLzJp0iRMJhMrVqxASsmUKVMAmDFjBnr9LyOfpqSkMGHCBCIiIvjoo4/w9PQEIDs7m3fffZfIyEhcLhcpKSlMmTIFDw8Ptm3bxk8//US9evWwWCzEx8czZ86cMnHHxMQQExNDVFQUe/fu5YknniA0NNT9XaKiosjPzwfghRdeKPXZTz/9lLlz57qnb9q0iVmzZjF27FgGDhyI0+kkJCSEPXv2kJOTw4ABA0hOTqZBgwa8/fbb7Nixg2bNmhETE8MHH3zAO++8Q0xMTKl57tmzh3nz5jFnzhyklJhMJr7//nsWLlyIxWJhxowZdOjQgQsXLhAaGsqkSZPKfMelS5ficrlIS0vjzJkzzJ07l5ycHB544AHWrFnjft/ChQvZtWsXAJ07d+bpp5+u1O81cOBAJkyYwKRJk3A6nWzcuBHQ2kD17NmTTp068d577+HjU3p06m+//ZY9e/bgcrno2bMngwYN4o033sDb2xuTyYSPjw9jx47lvffeIy4uDoC7776bBx8s2zlg8br22GOPsX//fsaMGUOfPn1KvWfdunWMHDmS7du306tXLwA2btzI+PHjWblypfv9o0aNok+fPvzf//1fmfKOj48nLCyMF154gcLCQt555x3q1auHEIIDBw4wZswYIiIiyvwuFVnfAUwmE7179y7z/YpZrVaeffZZLBYL9957L+fPn6d79+4MHTqUzZs389RTT/HGG28AsGXLFpYtW0ZGRgZz5swhMjKSgoICdu3axZw5czCbzcyYMYPQ0FAMBgNJSUm8+OKLFBYWuv93Xbt2JS4ujgceeIDbb7+9zLq/Z88eZs+eXSqmXbt2uf9HV4v9vvvuA+D8+fOMHTvW/f6GDRuye/duPv30U7744osy677ZbC41T7vdzuTJk+nQoQOHDh1i1qxZ7vXhWqfdeeedZZZT0qFDh3j44YeZOHEifn5+JCYm0qVLF3bu3Mnu3buZPXs2n3zyCW3atGH69Om88sor/PDDD/zjH/9g7NixPPPMMzz33HNcuHCBSZMmMX78eBo1alRqnsePH2fcuHEYjUYWLlxIq1atOH78OHfeeScjRoxg2rRphIVpg2ru2LGDpUuXlorRZrMxYcIEXC4XCxcuZNOmTSxbtowVK1bw/fffs2TJEp555hnGjh1bZpnJyck89dRTrFmzhl69erFgwQJycnLw9vYmMTGRiIgIxo0b5y7Lzz//nJycHMaNG0e3bt3w9PQsd/s3c+bMUjEmJiYyZ84cmjdvTk5ODn/5y1/KnVaR7VOdJaW8oW8dO3aUxQoLC2VhYaGUUsoj57Nk1OQN1307cj5LXk3Lli3lkSNH5AcffCDz8/Pd037PuHHj5M6dO6WUUlosFtm9e3cppZQxMTFy4sSJUkopp0+fLi9evCillPL111+Xs2bNks8++6z7fTExMeXO+/XXX5fLly8vNe3JJ5+UR44ccT9ft26dnDZtmrRYLLJ///6l3rtv375y5/viiy/K1atXSymlzMjIcMdW/F0KCwvlG2+8IZOTk8t8NiEhQd5zzz1SSimXL18ut2/fXuqzcXFxUkopFyxYIKdPny6llPLMmTMyISFBTp48Wfbo0UOmpKS4v9+v5/npp5/K48ePSymlvOOOO2RSUpKUUsrTp0/LwsJCuXbtWvncc89Jl8slpZTy2LFj5X5HKaX8+eef5ZNPPinXr1/vnlayXIrjnDdvnpw7d67cu3fvNf1exd9l/PjxctOmTe7fZuzYsWXKr1jPnj2lw+GQdrtd9ujRQ0opZZs2baTL5ZIul0s2a9ZMulwu+eGHH8ovvvhCfvjhhzI2NrbceZX8Tps2bZIvvvhiue/7wx/+IPv06SNdLpcsLCyUs2bNKrWOnzlzRs6aNUu2bdtWOp1OKWXpsrFYLLJnz55SSimnTp1a6nfNzMyUZ8+eLfd3qej6Xvz+q/1mUpZer6SUcsiQIfLMmTNSyl/+r5s3b5YbN26UUkr5xBNPuNcnKaXcunWrzMrKktOmTZPr1q1zTz9y5Ih88skny8RgtVrl7bffLrOzs6+6npaMae3atXLKlCm/G3vJbULJ32v06NHy8OHD5a77v7Zy5Uo5a9YsKaWUM2fOlF999dV1TSv2e9u9vn37urcNr732mszIyHCvgxaLxf3/Lp5Pcfm89tprcsSIEe5lFf//S84zPz9fTp06Vebl5ckPP/xQvvvuu1JKKXNyctzblo4dO8qMjAwppZRHjx4tN8YzZ87IkSNHSimlnDVrluzRo4e0Wq1y3bp17vW0vGWWjHvr1q3ypZdeKjXf4m3qr9fDiRMnypiYmKtu/37tmWeecW9vhg4dKpOTk8udVpHt0+8puS+tAhXen988NSQuJyx+AEYtAmMITcO8Wf/s1Y+cKqppmPdVX3M6nUyYMIHVq1djMpmuaf5+fn54eHiQnp4OwNGjR5k9ezZJSUnUr1/f/b6//OUvTJ48menTp7uPVitq3759tG3b1v28Xbt2zJs3j9jYWCIjI93T16xZw6ZNm3j33XcJCAgoNY+///3vvP/++6xYsYLQ0FD+8Y9/uF9buXIlP/30E15eXoSHh5cbQ2JiIrNnzyYhIYHJkyeXeq1Zs7L9xTRt2pRz587RqlUrHnzwQUaPHs2GDRvKnefp06d57LHHAJg3bx4zZszg8uXL3HbbbUyePJkhQ4Zw8eJFHn30UQwGA88///xVf6tevXrRrl07Bg0axNChQ8t9z8iRI/H11doo9ejRgx07duDh4VHh36ukt956i+HDh9OrVy/S0tJo0uTql6rn5OS4awhycnIA+Pjjj/nggw9o0KABOp2O3Nxcxo4dS0BAAFarlQEDBrBz585y53f69GkWLFhAcnJymTIpFh0dTYMGDVi2bBkFBQWMGzeO+fPnu19fvHgxr7zyCqdPn2bNmjU89NBDAFy8eJHPP/+cb775xv3+vXv3Mm7cOADi4+NZs2YNPj4+/PGPfyyz3OtZ33/PbbfdxqFDh2jatCmZmZnMnj2bixcvMn78eAD2799Pq1at3O8vrrnYs2cPY8eOdU9v27Yt+/fvLzN/g8FAdHQ0sbGxBAcHl7ueFi9n9uzZbNu2jQULFlw13p9++onZs2eTlZVVapuwceNGDh8+TP/+/enQoUO56/6vxcfH07BhQwAiIiKIj49HSnnN0yrj888/x9fXl0aNGhEY+MtFB35+fmX6DGnatCmgddC1bNkyhg8fTmhoaLnzNJvNNGvWDLPZzIQJE/joo48YPXo0ZrOZV199FYDPPvuMl19+mczMTPr160e7du3KzKtp06ZcvnyZzMxMTCYT9913H//97385f/48999//1WXWdLevXvd87ZarXz11Vfs27ePLl26AL+UJWjb+kceeeSq279fi4+Pd29fw8LCSExMLHdaRbZPddXNk5Cc2wFXToBeu+7c7GGgfUP/al2kXq9n0aJFjBkzhvfff5+uXbuWej0uLo7GjRv/5rXwFosFu91OcHAwAO3bt3dX7166dKnUBmjmzJmMHz+e2NhY94b9t7hcLmJjY+natSvHjx+nffv2ABw7doyePXvSokULEhMT3e8fOXIkH330EQUFBWXmdfr0aXfV9pIlS5gxY4b7j/Xwww/TpUuX3/yeUVFRZU7lVFS3bt147bXXGDNmDB06dCh3npcuXcLX15fs7Gzmzp0LwPjx49m4cSPt27fnoYce4plnnnFvXA4dOlRmOd988w0PPPAAvr6+WCyWq8ZT/JuC1s9Bfn5+mT/8b/1eJYWFhfHQQw8xevRo1qxZw7vvvnvV5fr6+uJ0OpFSujfgjRs3pl+/fjgcDt577z18fX3Zt28fXbt2xWw2k52dfdX5tWzZkieffPKqrxd79dVX6d+/P3/84x9L7RQyMjKIjY1lxYoVREVF8f7777sTkgYNGjBhwgSCgoJYsmQJ06dPp3v37hw+fJjGjRsTHR1N165df7PtR2XX94o6ePCg+3sHBgaWWocAunbtyqlTp2jTpg0AP/74I506daJ79+4cPXqUxo0bA3D8+HG6d+9eZv4Oh4P4+HhatGhBenp6uespQJcuXdyntXbu3Mm9995bbrx33HFHuduEIUOG0LNnT/f7ylv3H3jggVLzio6OJikpCYDk5GSio6ORUl7ztMqYMGHCVQ9YfovJZGLVqlUMHz6coKCgcueZm5tLdnY2Z8+e5YUXXsDT05OtW7fy8ssv88033wAwf/58pJTcc8899O7dm06dOpVZ1uDBg3nxxRd55ZVXcDgcTJs2jYEDB/7mMksmU926dXMvz2w288QTTzBjxgz36yXL8tSpU5X6HaKjo7l8+TINGzbkypUrREVFlTutItunuurmSUiO/Qf8GoDRq0YWt2PHDiwWC4mJiaxZs4ZHH32U3r17k5mZ6d6p7Nq1i/nz55eqbTh79ixxcXGsW7eOI0eOEBcX5z462rx5M4cPH3Z//syZM7z22mscOHCAtWvXMnz4cP71r38xatSocmNKSUnhwIEDnDlzhgsXLuBwODCZTMyePZt3332XnTt34nK5SE9PZ/LkyRgMBqZNm8abb75JREQEOTk5tGrVqtweDo8ePUpMTAyhoaHuc/8lv0vLli1LHfWUtHnzZi5cuMC2bdvc7Q6KP7t582Z69uxJbm4u27Ztw2KxkJaWRkhICOvWrePQoUMMHz6cgQMHkpWVxebNm93zPHfunPu32r9/P8uXL2f16tUcOHAAvV6Pw+Hg9ttvd59nbd++PefPn2fChAnlxrl+/XpSUlK4cuUKzz33HKDtADZu3MipU6fYsWMHvXv3ZuvWrezYsQOdTsfQoUPx9y+b+P7W77V582aaNGnCgQMH2Lx5M8899xzDhg0jLy+PAwcOkJyczPDhw/HyKr0uT506lenTp+NyuZg2bRoA7733Hs2aNSMnJ8d9znn16tXs27eP9PR0XnrppauWyalTpzh06FC5G+bi9xw4cIC8vDyWLl1K48aN2bx5MxaLhR9//JEvv/ySMWPGcP/993Pp0iUWLlzIxx9/jF6v58KFC+zdu5cHH3yQefPmsXjxYqZMmeI+gtfr9Zw4cYJ77rmn1O/SsGHDCq/vxeVe/Jt169atzJGl1Wp1r1eff/4558+f549//CPR0dFs3ryZjIwM9zoUExPDxo0bmT17NrNnz6Z+/fqkp6djt9vp27cvr7zyCjNnzuTixYvu7/jee++5/3fJycnk5OQQFxfHu+++i6+vL0uWLCmznn7xxRfumC5cuMDUqVMZOnQoZrO5VDue4thTUlLcHVRduXKFiRMnuv93HTp0cB+ll7fu/9qIESOYPHkyCxcu5NKlS/z5z39GSnnN0wCWL1+OxWLhyy+/5KmnniqzzEOHDpGcnMyyZcvcnym5Dp47d47GjRuzceNGLBYLO3fupFevXuzdu5cDBw6wZ88eunfvzsqVK7njjjtKzfPTTz/F19eXpKQkRo4cSW5uLqtXryY6Oprjx4+7a7Tmz5/PkSNHsNvtREZG0rJly3LXp1GjRvHQQw+5Xz9x4oQ7objaMvPz891x9+3bl7NnzzJ79mx8fHxISUlhzJgxpdbDjIwMcnJyOHXqFBs3buSuu+4qd/v3a5MnT2bOnDns27ePvn37Eh4eXu60JUuW/O72qa4SshY6P6lKnTp1kof274V3m2PvPB7umqx656sFdrtd/e61TJVB3aDKoW5Q5XDtiscAqqLfr8KXvN4cNSTntmu9s7YaUtuRlLFz5053+xDQ2igUn565XocPH+b8+fPu5506dXKf470e6enppdodBAcHV/g8/vV8tibFxsYSGxvrft6iRQtatGhxTfOqju9clfFduHCh1CmqyMhIOnbsWOo9+fn5/PDDD+7nZrOZ/v37X9PyqktF1veq/N1qWnXE/ut2V1drF1WVtmzZgtVqdT8fMGBAmdq+2lbX1/cbZTta1W6OGpKDB+HSAeyh7UEIlRXXAnU0UvtUGdQNqhzqBlUO1662akhujo7RhIAGXVRnaIqiKIpyg7rhE5K+4XmwYDDYcmo7FEVRFEVRrtENn5Dc1zAPrBlq7BpFURRFuYHd8AlJ33ArtCvbNbaiVAU1lk3dsXXrVrp16+buFlu5cdjtdj7++ONS/Qgpyq/pp06dWtsxXBfjtulTuX82mINwuVyA1mEZhXmQchxyLl/fzdMP9GU7ldmxYwc9evSgQ4cOeHl5MXLkSBISEnj00Ufp0KFDuT3tgdb/xv3338/Zs2c5e/YsK1asIDIyktDQUCZPnsxbb72Fw+HgwIEDLF26lLZt2/L444/z9ddf8+CDD+JyuZg8eTLfffcdAwYMQKf7JacsvuZ969atDBo0yN13QXZ2Nm+99RZnzpxh3759bNq0iV69eqHX69m2bRvLli0jLi6OrVu3smzZMgYPHlwm7piYGBYsWEB8fDzz5s0jJCQEm83m/i4JCQns2LGDXbt2leqsCbSxTZ588kk8PDw4cOAAb775Jl27duX+++8nKSmJH374gSNHjvDRRx+xcOFCrly5wtdff83JkycZPnw4DzzwAEFBQcTExPD8889z2223sWrVqlLz/Oyzz7j//vuZM2cOu3fv5vDhw8ycOZMhQ4aQlpbGa6+9xqVLl1i/fj0nTpygW7duZb7j0qVLOXz4MFu2bGHJkiUMGTKElJQUwsLCOHnypPsKhYULF/LZZ5+xYcMGLl265O6FsaK/V1JSEs2bN+fxxx9nyZIl7t47ZdFYNvv27aNfv35lOjP69ttvWb58OVu3bsVms9G0aVP+9re/sWrVKjZs2IC3t3eZzqqsVisTJ05k8eLFZGdnM2fOHFq1alWmn4OPPvqI/v3789hjj7n7zZk7dy5PPfUUPXv2JCIiAtA6foqIiHD301C8ztrtdhYtWkR2djbt2rUjMzOTmTNnEh8fz969e/nkk09o1aoVFy5coG/fvvj4+ODl5cUDDzzA8ePHueeee7BYLEyaNInExER69OhR5jctKChwd/pUfHXN4sWLiYmJYe3atQQHBxMREVHhaSWV/O9cvnyZ1atXYzabiYyMLLP+Fq9riYmJfPjhh8THx7N9+3bmzp3LiBEjyMrKYsaMGWX+b+fOnavUf79Tp07umJKTk3n//fdp06ZNmR5LS8aekpLCnj172LFjByaTib59+2K329mzZw8LFixg6NCh/POf/+TkyZPs27eP2bNnlzvWUVZWFn/729+4ePEiq1atYsCAAdc1LTs7m9atWzN//nyeffbZMsuDX7apAQEBHDhwgM8//5ygoCBef/11Fi9ejF6vZ/HixWzbto1JkybhcDiYM2cOQUFB9OrVi6ZNm9K6dWtOnTrFU089Rb169UhOTi41zw8++ID+/fuzc+fOMv/PBg0a8PLLL5OQkMDOnTtZvHgxQ4aUvnIzLS2NUaNGcfToUf5/e3ceH0WZLXz8dwiIEAmgCQiogKNcNaggME6uIHmDiijKiDJkeBXQl8VlwbpKHwAAGadJREFUrsPmgBeHZUSHOEbZQSASQFkuqOAYwkeRZQZHXqNBQIGRJcIEEllNJERMwrl/VHVPk3QkkJDqhPP9fPqT2vqpp+rp6jpdVXnOXXfdxZQpU3j33Xe5++67SUpKYunSpdSpUyfoOufNm8fjjz9Op06daNy4Ma+//jpffvklW7du5e233yYvL4/LL7/c35Zdu3Zl586dxMXFoaq89dZb/POf/2TcuHF89NFH7Nu3j48//rhEDqrNmzczdepUfz9Xt956a9BpiYmJLFiwgA8++IBTp075OwIEzjyXlt/4Mi95Lv3Mh+Lr699H+jvMP6P//QPpqmMjyv86kF5qB/2Wy8Zy2Xidy+bFF1/U+fPn66RJk/zbXVzgfp0xY4ZOnjy5xDIZGRk6YMAA7d27t6qqHj16VEeNGuXfx6qqa9eu1cmTJ2tsbGzQfbNlyxaNj49XVScfTGDOkH/961+anZ2tqmfmNRk7dqw+88wz/vwj8+bN04yMjKDbUXz/FRYWakxMjKqqfvfdd3rfffeVeVowgcdOQUHBWfPRdO3a1Z8fRVV1xYoV/joGO96K17+sx76vTpMnT9ZZs2adte4vv/yyf/8G7utf/epXevz48TLldUlISNBly5apqpND5bPPPivXNJ+zfT/65mdlZWliYqLm5eX5P7/Z2dkl2sOX82XEiBHauXNn/3fL2LFj/ecCX5k7duzQN954QwsLC4Men8eOHdOYmBh/fprS9s2aNWt02LBh/n3dvn17VVWdM2eOnjhxotR1BtY7OTlZp06d6i/zp59+8n9min+Hd+3aVTMyMvzfk4Hzg+W86datmx4+fFhVVW+//XYtLCwMOu3ncl5ZLpvzNCY9iuXBZkS2gkHry7+CyNL7AbBcNg7LZeNdLpvf/e53NGjQgMzMTAYOHOjvyba4L774gjfffJPvv//e3wttcXfccQcffvghGzdu9Gco3rx5s3/+6tWrSUhI4IMPPvB3Tw9ON/kzZswgJSWFOXPm+Nfn+8W1detWVqxYQevWrenZs2eJ9U6ZMoXHHnuMRYsWlbrtwRw+fNjfS6kvj0dZp51NWfLRZGZmntE7cY8ePfzbHux4K66sx/6GDRvYs2cPu3fvZtasWaXWOTU1lezsbFT1jONw6dKlhIWFMWTIEBo0aFCmvC579+719/Tqy1tTnmnBrkgGU1RUxKRJk8jPzyc6OvqMXDGNGzcGOKNfJ9+V6PDwcN555x169OhRYl/7yszJyeHOO+8kLCws6PHZsGFDxowZw1NPPcXJkyfp2bNn0H0TGxvLyJEjycrKonnz5rRu3ZrNmzdz8uRJwsPDS11noLS0NH+ahUOHDrF8+XKOHDniT+/ha0vA/3kta86b/fv3+6+AhoeHc+TIkaDTyprzqjJV+YBkd24pffRfEg5N217QdVsuG8tl43Uum927d9O+fXsiIyP57rvvSn1vu3btgnbrXVxCQgI9evRg/Pjx1K5d2z99x44dHDlyhOTkZKKjo0lMTGTx4sWAkxPn6aefJj8/n7/+9a8MHjyY9u3bs23bNm699VZuueUW0tPTz+j0K1CNGjVITk7m4YcfJiIigtjY2LPWEyAqKsrfAZcvj0dZp51NWfLRXH311Rw/ftwflKSkpNC1a1fatWsX9HgrrqzHfufOnYmPj6dnz57s2rUr6EkSoFu3bsTHx5d4f+/evUv8UDhbXhdfjhRw8tbce++97Nu377ynlZUvcDofV1xxBUuWLCE+Pp4bb7wxaJlHjx7l1KlTQY/PhIQEGjduzPz58ykoKKBNmzbce++9JVJihIWF0bZtW8aNG8df/vIX6tevz/Tp08/YzmDrDOTL6xQbG0ujRo247777zkgyGdiWq1evPqf9cM011/i7n8/LyyMyMjLotM2bN5cp51VlqtSARES6AR2BDOB24BlV/cmdNxhoBBwAwlV1amXW7VxZLhvLZRMKuWzmzJnDli1b2LNnD2PHji1Rj8AcGnv27Cn12abU1FTS0tL4zW9+w8KFC4mOjmbmzJlkZmayYcMGpkyZwvPPP+9PPNepUydWrFjBp59+ys6dO9m5cyfPPvsssbGxXHXVVSQmJvLaa6+RlpbG6dOn2bJlC/Hx8f58IKmpqcTExJCens7HH39Mly5dWLJkSYlEZoHWr1/v/7y1bNmSxo0b8+STTzJp0iSys7OZMGECYWFhZZpWXPF8NHv37v3ZfDSLFy9m7ty5TJ06lSZNmnDo0CEaNmxIzZo1SUxMZPLkySWOt3M99sePH++vU7du3Zg4cSKDBw8mMTGR2267rUTdfcc9wKlTp7j//vvJyspi8eLFDB061L98WfK6DBo0iPHjx5Obm0uDBg3o0KED119//XlPU1WSkpLIyclh2bJlQb/DfN+pS5cupXfv3iU+v77vhZSUFDIzM9m2bRs333wz69atIz09ne3bt3PTTTeRlJTEY4895i/z+++/9+/XL7/8kgkTJgQ9Pn1XNTp16kReXh6xsbGlfqf16tWLadOmERERwd13382gQYOYPHnyz67T9z24bds2+vbtS2JiItOmTePSSy9l7969PPTQQ2d8Dn0BaGZmJikpKTzzzDNkZWX55z/00ENn/Gjweemll3jttdeIioriqaeeIiwsLOi0suS8qmyV2lOriFwFZKtqoYisBEao6i533hdAR1XNF5FNwIOqeqiUcgYBgwCaNm3azvdrt6ioiIiICOudzwNFRUUV9QCUOU/WBqHB2iE0WDucv4KCAnJzcytk/0VFRYVmLhtVzQQQkVbADl8w4hoAPCsiGUAR0BgIGpCo6mxgNjhdx/ueOq/g7m4rxMWUy6ZWrVpVJgdDdc1lk5GRcdb3VYU2upDHDVy4Y8fnQn4HVXTdvcrrUhl5dsrbDqF+rJQlT9X5uuKKKyr9XFrpuWxEJAZoDSwB6viugohIS1XNcIc3APepat7Zyvtt5xt18WLnYbiCIoXLfxFSAcnForCokJphVf6RpCrN2iA0WDtUgpq1ocbP/3q3XDbnz6tcNpV9y6Yb8ArwCdAQWAnEq+qDIvLfOFdsTgJ7VfXdMhU6rr5/AwpqXw6PvkOtMMtpY4wx1Vbkf8AldX92EQtIzt9FEZBcCHaFJDTYr0LvWRuEBmuHSmBXSC4orwKSKn/U7Mip/e9/73V3Ih59CNesWcOECRNYv369J+v3khYUeLbfjcPaIDRYOxhzfqp8QOKlpKQk8vPzqVOnDlu2bOGee+4pddnp06ezdu1a3nnnHcD5//yJEydyyy23kJmZSVRUFE8//XRlVd0YY4wJKdU2IDlZcJKM3Ixyl9MyoiV1a5W8V7lhwwa++eYbEhISAMjLy2PTpk1kZ2czf/58Nm3aRK9evYiLi6OoqIhDhw5x4MABf18QaWlpADzxxBOICF9//XW562qMMcZUVdU2IMnIzSD+g/hyl7Ok+xKir4guMT0tLe2M3gDDw8Pp0qUL9erVo1+/fvTo0YMHH3yQuLg43nvvPbp3706rVq14/fXXmTZt2jl1Z26MMcZUd9U2IGkZ0ZIl3ZdUSDnBdOjQgVWrVvnHs7Oz2b9/v3888GHh999/n7i4OAoKCli5ciV/+tOfOH78eJm6MzfGGGMuBtU2IKlbq27QKxsVpXPnzv4uycHpCr1t27YcPXqU2bNnk56ezpgxY5g9ezaNGjWif//+qCorVqxg6NChPPHEE7z33ntn7c7cGGOMuRhU+X/7bdOmjfquLIRiT60XC/sXO+9ZG4QGa4fQYO1w/rz6t98aFbE2Y4wxxpjysIDEGGOMMZ6zgMQYY4wxnrOAxBhjjDGes4DEGGOMMZ6zgMQYY4wxnrOA5Dxt3LiRJk2aMHfuXObOncvjjz9OXFwcDz/8MG+88QZ9+vThyy+/ZNWqVURGRvq7hv/qq6/o2bMnBw8eBOC5555j+PDh/nJTU1PPKLdPnz6ebJ8xxhhTmaptx2inT57k1N7y57KpfW1LatQtmcumY8eO1K9fnwEDBpCdnU1ubi4dOnQgNzeXwYMHA7Bu3TqGDh1K9+7dyczMJDo6mszMTEaPHk3Tpk3Jzc2lYcOGLFy4kLFjxxIREUG3bt385a5evZpHH3203NtgjDHGhLpqG5Cc2pvBt488Uu5yWixfTp3WwXt8LSoqYtKkSeTn5xMdHc2xY8dYt24dc+bMISUlhZdffhmA4cOHM3z4cLp27crnn3/OCy+8AMC8efP8PbjOnj2bESNGAHD8+HEmTZrEgQMHGDBgQLm3wRhjjAl11TYgqX1tS1osX14h5ZQmLCyMIUOG+MeTk5Np164dAwcO5JFHHuGBBx5g48aN3HzzzdSoUYMFCxbQpk0bAAoLC/nHP/5B/fr1ueyyy5g+fTpDhgyhZs2aNGzY0F+u79aOMcYYU51V24CkRt26pV7ZqAgbN24kJyeHpUuX0rt3b06ePMnf/vY3cnJySEpKYt++fcTH/zvb8LBhwxg+fDhbt24FYMyYMXTq1In+/fuTm5vLokWLGDVqFF26dOHYsWO8+uqrgHPbJyUl5YJthzHGGBMKLJeNqRCWN8J71gahwdohNFg7nD/LZWOMMcaYi5YFJMYYY4zxnAUkxhhjjPGcBSTGGGOM8ZwFJMYYY4zxnAUkxhhjjPFcte2HpDIkJSWRn59PnTp12LJlC40aNWLhwoUMHjyYiIgIvv76a/r168f+/fvp2bMnf//734mJiQEgJSWFAQMGsHTpUu68805/mTNnzvR3krZ9+3ZiYmJo0qQJvXr1Yv78+dxzzz1eba4xxhhzwVTbgKTgVBHHs/PKXU7DK8OpVTusxPQNGzbwzTffkJCQAEBeXh6bNm1izZo19OnThwYNGpCQkECrVq1o06YNffr0YdSoUaxfv57CwkJ27NhB/fr1zwhGALp168bKlSsZMGAAO3bsYPTo0bz77rvUr1/fghFjjDHVVrUNSI5n57Hsz5+Xu5xez7enUfOIEtPT0tK48cYb/ePh4eF06dKFF198kTlz5lC3bl2uu+466rqJ+a699lqaNWvGokWL+PHHH+nXrx9z584FYMGCBXz22Wf069ePqKgoDhw4QHJyMllZWbzyyivl3gZjjDEm1FXbgKThleH0er59hZQTTIcOHVi1apV/PDs7m/379wMwcOBArrzySk6cOEFubi4REU5AM3r0aOLi4njyySeJioryv7dv37707dsXgG+//ZZmzZrRv3//ctfdGGOMqSqqbUBSq3ZY0CsbFaVz587s27ePqVOnArBnzx569epFVlYWM2fOpF69ev5nR/Lz80lPTycvL4+3336bFi1akJqaSk5ODp988gl33HGHv9zU1FQyMzPZuHEjHTt2BP6dN+fDDz+02zbGGGOqJctlYyqE5Y3wnrVBaLB2CA3WDufPctkYY4wx5qJlAYkxxhhj/Ly6c1KtAhIR4fTp015XwxhjjKmyVBWRMt9pqTDV6qHWsLAw8vPzERFPdubFzHfP0XjH2iA0WDuEBmuH86Oq/PTTT1x22WWVvu5qd4UkPDzcghEP5Obmel2Fi561QWiwdggN1g7nx8vzaLW6QgJQo0YNatSoVnFWlRAWFmZPtHvM2iA0WDuEBmuHqqdSAxIR6QZ0BDKA24FnVPUnd95IoA5wALhGVf9YmXUzxhhjjHcq+1LCNmCsqs4FGgHNA+Z9BlwDXAf0qeR6GWOMMcZDlXqFRFUzAUSkFbBDVXcFzB4JPA58hxOclEpEBgGD3NFTIvLVBaiuOTeRwBGvK3GRszYIDdYOocHaITR8paqty7JgpffUKiIxQGtgCVBHVQ+5078A/lNVT4nIJ8ADqnqsDOV9rqrlT1pjysXawXvWBqHB2iE0WDuEhnNph0q9ZeM+QzIbaAfMBe4Skffd2X8CxojIUOCbsgQjxhhjjKkeKvuWTSqQWmzyInfeSmBlZdbHGGOMMaGhOvx/7GyvK2AAa4dQYG0QGqwdQoO1Q2gocztU+Wy/xhhjjKn6qsMVEmOMMcZUcRaQGGOMMcZzFpAYY4wxxnMWkJjzIiL9RWS/1/UwxhgfEUkQkVle18OcnyqbXE9EagEJwFagDfCcqlq+6Urg7vu/AycDpr0E7AZuBcap6vceVe+iESw3FDAWa4dKJSJXAr8FjgP3AH8G4rF2qFQicgPQDDjhjtt3UiUTkRbAFOAgTjs8zzmcp6vyFZKHgIOqmoyz8b/2tjoXD1UtUNU9vnER+SVQX1XnAf8ABnpWuYtL8dxQbbF2qHSqmg3MABoCRUBdrB288P+AeWDfSR7bjbPPP+Mcz9NVOSC5Fsh2h7PcceMNawsPqGqmqhb6ckMBLbF28ISqnlLV14G9OAlCrR0qkYj0wulYs8idZN9J3jgA/FFVFwB3AzdwDu1QlQOSvcCV7nATd9x4w9rCI25uqM7AS1g7eEJEOopIpDt6AOe2gbVD5WqFEwjeC/wHTiZ5a4PKdz3g69zsMLCPc2iHqhyQvAc0FZH+QFN33FQSEfktUF9EnlDVz4AcEXkCuAOY423tLg5BckM1xdrBC5cAY0WkHxCDc9vA2qESqepLwPtAGCDAWqwNvNAEGOfu94Y4SXTLfJ62nlqNMcYY47mqfIXEGGOMMdWEBSTGGGOM8ZwFJMYYY4zxnAUkxhhjjPGcBSTGGGOM8ZwFJMYYPxGx74QQZu1jqjP7cBtzAYnIvSLyrYhMc8dj3XwP5S23jYi0CRhPqYAy78TJwVKeMvqXcbl6IvJO8eVFpIeIbC5PHcrrQtRBRPqKyPoKKKqxiIytgHKMCTkWkBhzAanqauBbwJeBNBZoUQFFt3FfPt3LU5iI1AZGquqictUK+pdlIVX9AfhrkOkrgZxy1qFcLkQd3K60K6KcLCDL7ZjQmGqlymb7NaaqcbPCxgItROQaYBkwGScZVUtgFPB/cIKXBJwgYyFO1/Df4HSN/WcgEzdJlYhE4GTSTHbLrQO8hpMB+Dqc7L+/cOcn4+aWUNURxap3F7DdLbMuMB3YiRP0PIYTRP0B2IPT4+JQ4AlgOE5vjA8Ay906jMPpKfMgTrbPXUA9VR0tIs1wEtGlA9fgZI0urpaIDMfphvpfwFJgBfAuMA5YBSxT1aSAfXs/TqbdH3CSec1w09BfB2wGHgW6AKOBr4HGqvp7972jgNrAFcAXqjo/oNwoty12AlcDQ1W10J13nVuvd4Dxbr2WA/k42ZfzgAxVnR24cSIyF6cNXwEWAStUNVlEuuN0ff4DsFVVF7v7oQFQD1ilqh8CH7ntszjIvjOm6lJVe9nLXhfwBawHWrvD44BYd/hZ4A/u8KMBw+txTsb1cAKVu9zpbYBEd7g/0D9wHQFlDnWH7wZmucPJQBd3eFOQOg4BRrjDbXESldV21xmGEwy0dee/BMS7wzvcel6Jk3F4fUCZ7wK/dIfnAr/ESU3eM2Bf9A9Sl+1AHXd4I05ekn7AKHfaxGLL18AJGGq64xuAq3CCqE/cabfgBGYt3fFJwM3ua0VAOb2K7c/XgN+4wy/4hgPW/TjOlSWAP7t/4/h3L9hrg7RRLDAusB3dde8CLnGnf47TJf0m9zNwKRDtzqsD7PL6c20ve1X0y66QGOOdG4DL3F/oDYEjvhmqussd/EFEfi0i/wmE4/yKP1uZH7nD+4CbAub5Elv9GOR9tYFT7ro3i8g6nMDoU2CEW+63Qcr9Tp3bLz8AiEjxutwnInHAaZxf+q1wU8QD+0vZhsOqmh+wzHU4Vx7Wi8jbQd4XCZxS98oFToK7Vu727nK3aat7deZZETkOtMbZl43c7UFVT+NctSq+DWEicq27bPF1LwPWichCnKse4Ozfie56WpSyjcVF4rTvMHcfZuB8Jn6PcxWtNvBf7rKFOAGKMdWKBSTGVK4iQEQkGudKwGl1bi9EcmbwAM6CbYH7VfUuEbke55aDr5yaIuI78fpsx/lFDc7JcHvAvJ9LXHUQNzW4iLQEVqrqJDcAuC2gXN9Jdmtp2yfOGfUm9z3/o6rbRaQdTsC1yy1nM84tkH1ByogSkUtV9UecqyO7VTVPRLbgnJwHFlv+CHCJiNR0g5KrcG5xFf9++wOQpqpviUg9d9oO4P+6210LeFhVlwS8ZzvOVY5VIvIL4LLAAlX1hIjsBF7FCR4AZuK0WaaIPBBk+04ElNMMJ4A64r5eUdXTItLDHY9W1QdF5G6cq1+/wwnsDgYp15gqzQISYy4g90TSHBiAc1vkE5xnL47jnCBfFZHROCfRie6VkOYiMkxVXwP+CRSISCJOEHKLiNwAfIHz3EIs8Kb7nsdwbo287pbZEvijiNyEc8uit4hscJftrapLA6rqey4BnF/jI0VkL85zEF8BI4HnReRbnJPp/7jZhpu7GZ/fdN+7FkjEuZoyEnhORA7inERH4Tw3McP9D6FW7va8p6o57v7qgXOL6DkRuRpYraq+oGUe8HtVPRq4j90T+DBgkoicAJa4wcDzbvldVPVjnOc9XhCR5jhZeS9X1adE5FMReRGoC8x369DcDSYmAhNE5DacTKajKWk+8IyqHnbHFwBTReQT4CoR6e3u0+bufzJ96u7L4TjP0dyGkwV1pNt2ucBRVS0SkV4iEoMTvL3lln8bkBqkHsZUaZbt1xgDgIi8AHykqv/f67oUJyKX4DyDUk9VL9qTsbsfZuE8J+TpfyMZU9EsIDHG+InIDaq60+t6FCciH+BcLXrOfdbjoiQijYGfVPW413UxpqJZQGKMMcYYz1nHaMYYY4zxnAUkxhhjjPGcBSTGGGOM8ZwFJMYYY4zxnAUkxhhjjPHc/wJwrYyib/vE5gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_traj(quantile=0.8, traj_it=2, sort=True, mean=False, use_from=10, use_first=50, y_max=3.5, sub=False, methods_to_use=METHODS, figsize=(8,5))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:tensorflow]", "language": "python", "name": "conda-env-tensorflow-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }