{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 3 (30 points)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "\n", "def compute_Sg(S, angles=(0,0,0)):\n", " \n", " alpha, beta, gamma = np.radians(angles)\n", " \n", " Rg = np.array([[np.cos(alpha) * np.cos(beta), \n", " np.sin(alpha) * np.cos(beta), \n", " -np.sin(beta)],\n", " [np.cos(alpha) * np.sin(beta) * np.sin(gamma) - np.sin(alpha) * np.cos(gamma), \n", " np.sin(alpha) * np.sin(beta) * np.sin(gamma) + np.cos(alpha) * np.cos(gamma), \n", " np.cos(beta) * np.sin(gamma)],\n", " [np.cos(alpha) * np.sin(beta) * np.cos(gamma) + np.sin(alpha) * np.sin(gamma), \n", " np.sin(alpha) * np.sin(beta) * np.cos(gamma) - np.cos(alpha) * np.sin(gamma), \n", " np.cos(beta) * np.cos(gamma)]])\n", " \n", " return np.dot(Rg.T, np.dot(S,Rg))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 6.00000000e+01, -1.83697020e-15, -3.74939946e-32],\n", " [ -1.83697020e-15, 4.50000000e+01, -3.06161700e-16],\n", " [ -3.74939946e-32, -3.06161700e-16, 5.00000000e+01]])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "S = np.diag([60, 50, 45])\n", "\n", "S_G = compute_Sg(S, angles=(180,0,90)); S_G" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def compute_unit_vectors(strike, dip):\n", " \n", " strike = np.radians(strike)\n", " dip = np.radians(dip)\n", " \n", " n = np.array([-np.sin(strike) * np.sin(dip), np.cos(strike) * np.sin(dip), -np.cos(dip) ])\n", " \n", " ns = np.array([ np.cos(strike), np.sin(strike), 0 ])\n", " \n", " nd = np.array([ -np.sin(strike) * np.cos(dip), np.cos(strike) * np.cos(dip), np.sin(dip) ])\n", " \n", " return (n, ns, nd)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**i) $strike = 45^{\\circ}, dip = 65^{\\circ}$**" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[-0.64085638 0.64085638 -0.42261826]\n", "[ 0.70710678 0.70710678 0. ]\n", "[-0.29883624 0.29883624 0.90630779]\n" ] } ], "source": [ "n, ns, nd = compute_unit_vectors(45, 65); \n", "print(n)\n", "print(ns)\n", "print(nd)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we compute the normal and shear stresses on the plane" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "56.427876096865383" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "S_G = np.array([[47.5, -12.5, 0],[-12.5, 47.5, 0],[0,0,40]])\n", "\n", "S_n = np.dot(np.dot(S_G, n), n); S_n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-7.1054273576010019e-15" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tau_s = np.dot(np.dot(S_G, n), ns); tau_s" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "7.6604444311897772" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tau_d = np.dot(np.dot(S_G, n), nd); tau_d" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "7.6604444311897772" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tau_mag = np.sqrt(tau_d ** 2 + tau_s ** 2); tau_mag" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "43.660468711549093" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Pc = (0.6 * S_n - tau_mag) / 0.6; Pc" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }