
AIX XL Pascal/6000

Language Reference

SC09-1757–00

Version 2.1

Note to US Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.
IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

Before using this information, and the product it supports, be sure to read the general information
under “Notices” on page vii.

Note!

Second Edition (December 1993)

This edition applies to Version 2, Release 1, of IBM AIX XL Pascal Compiler/6000 (Program 5765–245), and to all
subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 Eglinton Avenue
North York, Ontario, Canada. M3C 1H7

You can also send your comments by facsimile to (attention: RCF Coordinator), or you can send your comments
electronically to IBM. Please see “Communicating Your Comments to IBM” for a description of the methods. This page
immediately precedes the Readers’ Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1990, 1993. All rights reserved.

iiiContents Copyright IBM Corp. 1990, 1993

Contents

Notices vii.

Chapter 1. Introduction 1.

How to Read Syntax Diagrams 2.

Pascal Industry Standards 5.

XL Pascal Extensions 5.

Related Publications 6.

Valid AIX XL Pascal Programs 6.

Typographical Conventions 7.

Chapter 2. The XL Pascal Program Elements 9.

The XL Pascal Character Set 9.

Identifiers 10.

Basic Symbols 11.

Comments 16.

Literals 17.

Chapter 3. Structure of XL Pascal Programs 21.

Program Unit 21.

Segment Unit 23.

Program Parameters 24.

Linking Units 25.

Standard Files 26.

Chapter 4. Declarations 27.

Lexical Scope of Identifiers 27.

Declarations in Standard Mode 29.

Declarations in VS Mode 33.

Chapter 5. Constants 41.

Predefined Constants 42.

Structured Constants 43.

iv XL Pascal Language Reference

Chapter 6. Data Types 47.

Basic Data Types 47.

Strings and Fixed Strings 48.

Packed Types 49.

Type Compatibility 50.

Creating Your Own Data Types 54.

Summary of Data Types 55.

ALFA (VS Mode) 56.

ALPHA (VS Mode) 57.

ARRAY 57.

BOOLEAN 59.

CHAR 60.

Enumerated Scalar 61.

FILE 62.

GCHAR (VS Mode) 63.

GSTRING (VS Mode) 64.

GSTRINGPTR (VS Mode) 67.

INTEGER 68.

Pointer Data Types 69.

POINTER (VS Mode) 70.

REAL 71.

RECORD 73.

SET 79.

SHORTREAL (VS Mode) 80.

SPACE (VS Mode) 81.

STRING (VS Mode) 82.

STRINGPTR (VS Mode) 85.

Subrange Scalar 86.

TEXT 88.

Chapter 7. Variables 89.

Variable References 89.

Predefined Variables 90.

Lifetime of Variables and Parameters 90.

Subscripted Variables 91.

Field References 93.

Pointer References 93.

File References 94.

SPACE References 95.

String References 96.

vContents

Chapter 8. Expressions 97.

Syntax 97.

Evaluating Expressions 99.

Operators 100.

Constant Expressions 105.

Boolean Expressions 106.

Set Expressions 107.

Logical Expressions 108.

Function Calls 108.

Ordinal Conversions 109.

Set Constructors 110.

Chapter 9. Statements 111.

Statement Labels 111.

Summary of XL Pascal Statements 111.

ASSERT 112.

Assignment 113.

CASE 114.

Compound 117.

CONTINUE 117.

Empty 119.

FOR 119.

GOTO 122.

IF 123.

LEAVE 125.

Procedure Call 126.

REPEAT 127.

RETURN 128.

WHILE 129.

WITH 130.

Chapter 10. Routines 133.

Routine Declarations 133.

Routine Parameters 136.

Routines That Can Be Passed as Parameters 139.

Function Results 139.

Routine Directives 141.

Predefined Routines 143.

Chapter 11. Compiler Directives 205.

%CHECK 205.

%INCLUDE 206.

%LIST 207.

%MARGINS 208.

%WRITE 208.

vi XL Pascal Language Reference

Appendix A. XL Pascal Language Modes 209.

Comparison of Standard Mode and VS Mode Pascal 209.

Appendix B. Predefined Identifiers in XL Pascal 219.

Index 225.

 Copyright IBM Corp. 1990, 1993 viiNotices

Notices

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM licensed program in this publication is not intended to state or imply that only IBM’s
licensed program may be used. Any functionally equivalent product, program or service that
does not infringe any of IBM’s intellectual property rights may be used instead of the IBM
product, program, or service. Evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Commercial Relations, IBM
Corporation, Purchase, NY 10577.

This publication contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

Trademarks and Service Marks
The following terms, denoted by an asterisk (*), used in this publication, are trademarks or
service marks of International Business Machines Corporation in the United States or other
countries:

AIX IBM IBMLink

PROFS RISC System/6000 RT

RT PC

The following terms, denoted by a double asterisk (**), used in this publication, are
trademarks of other companies as follows:

ANSI American National Standards Institute

viii XL Pascal Language Reference

1 Copyright IBM Corp. 1990, 1993 Chapter 1. Introduction

Chapter 1. Introduction

This book describes the IBM* AIX* XL Pascal Compiler/6000 language: it contains reference
material to complement the User’s Guide for IBM AIX XL Pascal Compiler/6000,
SC09–1756. It describes in detail the program structure, declarations, constants, data types,
variables, expressions, statements, and routines in XL Pascal.

The exceptional (XL) family of compilers provides consistency and high performance across
multiple programming languages by sharing the same code-optimization technology. The XL
Pascal Compiler/6000 is an optimizing compiler for the Pascal language for AIX Version 3
for the RISC System/6000* operating system. It allows invocation of routines written in other
programming languages, and the creation of routines that can be invoked by programs
written in other languages. It also provides detailed compile-time and runtime diagnostics, in
addition to error recovery and debugging facilities.

The XL Pascal language is a full implementation of the American National Standards
Institute (ANSI**) standard for Pascal ANSI/IEEE 770X3.97–1983 and incorporates IBM VS
Pascal Release 1 functions, selected features of VS Pascal Release 2, and RT PC* VS
Pascal. VS Pascal is an IBM licensed program.

Note: For brevity, both the IBM AIX XL Pascal language and the IBM AIX XL Pascal
Compiler/6000 are referred to throughout this manual as XL Pascal. The compiler
and the language are distinguished where necessary. The AIX Version 3 for the
RISC System/6000* operating system is referred to as AIX.

Who Should Use This Book
You should have previous experience writing or maintaining Pascal application programs. If
you have no prior Pascal knowledge or lack experience with a high-level programming
language, you can obtain any of the tutorial-style Pascal books commercially available.

How to Use This Book
This manual is organized so that you can read each part independently as a reference
source for a particular feature or function of XL Pascal. If you are unfamiliar with Pascal, you
may first want to read Chapter 2, “The XL Pascal Program Elements,” and Chapter 3,
“Structure of XL Pascal Programs.” After that, use the Table of Contents to find detailed
information about a specific topic.

How This Book Is Organized
Each of the following chapters contains a major concept or feature of the XL Pascal
language:

Chapter 1, “Introduction,” is the chapter you are reading now. It introduces the major
features of the language, the standards it conforms to, and shows where to get more
information.

Chapter 2, “The XL Pascal Program Elements,” introduces some basic elements of XL
Pascal programs.

Chapter 3, “Structure of XL Pascal Programs,” describes the two types of compilation
units (the program unit and the segment unit) and how XL Pascal programs are
structured.

Chapter 4, “Declarations,” describes in alphabetical order the different types of XL
Pascal declarations.

2 XL Pascal Language Reference

Chapter 5, “Constants,” describes XL Pascal constants.

Chapter 6, “Data Types,” provides a chart of XL Pascal data types in functional order.
Descriptions of each data type follow in alphabetical order.

Chapter 7, “Variables,” describes the XL Pascal classes of variables and explains how
they are referenced.

Chapter 8, “Expressions,” explains how to use XL Pascal expressions to combine data
according to specific computational rules.

Chapter 9, “Statements,” provides a chart of XL Pascal statements. Explanations of
each statement follow in alphabetical order.

Chapter 10, “Routines,” describes the two categories of XL Pascal routines
(procedures and functions) and provides tables of the XL Pascal predefined routines in
functional order. Explanations of each predefined routine follow in alphabetical order.

Chapter 11, “Compiler Directives,” describes the XL Pascal compiler directives that
control several compiler options and features.

Appendix A, “Summary of XL Pascal Language Modes,” summarizes the differences
between the two available language levels in XL Pascal.

Appendix B, “Predefined Identifiers in XL Pascal,” summarizes the XL Pascal
predefined identifiers for constants, data types, routines, and variables.

How to Read Syntax Diagrams
The following conventions are used in syntax diagrams:

• Keywords and reserved words are in bold uppercase letters (for example, VAR, BEGIN,
and END). They can be written in uppercase or lowercase, but they must be spelled
exactly as shown.

• Variables, expressions, or identifiers that you supply are in all lowercase italics (for
example, label_dcl).

• Enter punctuation marks, parentheses, arithmetic operators, and other nonalphabetic
symbols as they are shown in the syntax.

Read syntax diagrams from left to right, from top to bottom, following the path of the line. In
the diagrams, syntax is described using the following scheme:

• The following symbol indicates the beginning of a diagram:

• The following symbol indicates that the syntax continues on the next line:

• The following symbol indicates that the syntax is continued from the previous line:

• The following symbol indicates the end of the diagram:

• Syntactical units that are not complete statements start with the following symbol:

• Syntactical units that are not complete statements end with the following symbol:

3Chapter 1. Introduction

Required and Optional Items
• Required items appear on the horizontal line (the main path).

ASSERT expr

• Branching shows two paths through the syntax.

%INCLUDE

path_name

file_name

• If you must choose one of three or more items, they appear in a multiple choice box on
the main path.

unsigned_number

character_string

constant_identifier

NIL

• Optional items appear on the lower line of a branched path. The upper line is empty,
indicating that you need not write anything for this syntax item.

PACKED

FILE OF type

Repeatable Items
• An arrow returning to the left below a line shows that you can repeat items.

compound_statement;declaration ;

• Punctuation on a repeat arrow indicates that you must place it between the repeated
items.

ENDstatement

;

BEGIN
;

4 XL Pascal Language Reference

• A repeat arrow below a multiple choice box indicates that you can choose one or more
items in the box, but you must choose at least one.

letter

digit
underscore

letter

Default Items
• A heavy line is the default path.

ON

OFF

%LIST

Example

rangeCASE OF

END

expr statement

;

statementOTHERWISE

,
;

;

1 2 3

4

5 6

8

9

10

:
7

11

The diagram is interpreted as follows:

1. This is the start of the diagram.

2. Type the keyword CASE.

3. Type a valid expression followed by the word OF.

4. Type at least one range. For more than one range, separate each by a comma.

5. Type the colon symbol (:).

6. Type a valid statement.

7. Type the semicolon symbol (;).

8. This path is optional.

9. The diagram is continued at 10.

10.The diagram is continued from 9.

11.This is the end of the diagram.

5Chapter 1. Introduction

The following CASE statements conform to the syntax shown in the syntax diagram:

CASE a_card.r OF
 ace:
 points := 11;
 two..ten:
 points := ORD(a_card.r) + 1;
 OTHERWISE
 points := 10
END

CASE s OF
 triangle:
 area := 0.5 * side * base;
 rectangle:
 area := sidea * sideb;
 circle:
 area := 3.14159 * SQR(radius)
END

CASE s OF
 triangle:
 area := 0.5 * side * base
END

A Note about Examples
Examples in this book are written in a simple style. They do not attempt to conserve storage,
check for errors, achieve fast run time, or demonstrate all possible uses of a language
element.

Pascal Industry Standards
XL Pascal complies with the ANSI standard (commonly referred to as ANSI–83), defined in
the document American National Standard Pascal Computer Programming Language,
ANSI/IEEE 770X3.97–1983.

This standard is adopted by International Standards Organization (ISO) and Federal
Information Processing Standards (FIPS). It implies conformance to the following standards:

• International Standards (ISO) 7185–1983 (Level 0), Programming Languages, Pascal

• Federal Information Processing Standard, (FIPS) PUB 109, Pascal

In this book, standard Pascal or standard mode refers to the ANSI–83 standard.

XL Pascal Extensions
The XL Pascal language comprises:

• ANSI Pascal 1983. This is the full ANSI–83 Pascal language.

• XL Pascal extensions are primarily (though not exclusively):

– Extensions specified in the IBM VS Pascal Compiler Release 1

– Selected functions of Release 2 of IBM VS Pascal Compiler

– Selected features from RT PC* VS Pascal added to make the language more usable in
the AIX Version 3 Operating System.

6 XL Pascal Language Reference

VS Mode Extensions
The VS mode of the XL Pascal Compiler comprises the extensions derived from VS Pascal.

Those elements of VS Pascal that do not translate into the AIX environment have been left
out. It is possible to mix modes in a program, but each separate compilation unit must be in
a single mode.

Note: Standard mode XL Pascal is a subset of VS mode. All of the features of standard
mode XL Pascal described in this manual also function in VS mode.

A summary list of all the features of XL Pascal for both language modes is in Appendix A,
“XL Pascal Language Modes.”

Related Publications

IBM Publications
• User’s Guide for IBM AIX XL Pascal Compiler/6000, SC09–1756, describes the IBM AIX

XL Pascal Compiler/6000, and explains how to compile, link, and run programs written in
XL Pascal. It also describes how to use input and output (I/O) facilities and storage, and
how to do interlanguage calls.

• VS Pascal Language Reference, SC26–4320, provides definition of the VS Pascal
programming language and its syntax.

• VS Pascal Application Programming Guide, SC26–4319, shows how to use the VS
Pascal compiler and explains how to compile, link-edit, run, and debug VS Pascal
programs.

• AIX Version 3.2 Topic Index and Glossary, GC23–2201, provides a glossary of terms
used in AIX and RISC System/6000 publications. It also contains a list of some topics in
the AIX and RISC System/6000 library and the books in which those topics are
discussed.

Non-IBM Publications
• American National Pascal Computer Programming Language, ANSI/IEEE

770X3.97–1983

• International Standards Organization Programming Language Pascal, (ISO) 7185–1983
(Level 0)

• Federal Information Processing Standards Publication Pascal, (FIPS) PUB 109

• ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754–1985

Valid AIX XL Pascal Programs
The Language Reference for IBM AIX XL Pascal Compiler/6000 defines the syntax,
semantics, and restrictions for writing valid XL Pascal programs. The compiler finds most
violations of the XL Pascal language rules, but some may not be found. Programs
containing undiagnosed violations are not valid XL Pascal programs.

7Chapter 1. Introduction

Typographical Conventions
Type style highlights important terms and features of the compiler. The following kinds of
information are distinguished by different typographical conventions.

Keywords and Reserved Words
Predefined identifiers, which you must write exactly as presented, are in BOLD CAPITALS.
When used generically, these words are in lowercase. For example, the reserved word
TYPE is in capital letters, but general references to data type are in lowercase.

New Terms
When a term is used for the first time, it is in italics, often followed by a brief definition. All of
these terms and definitions are in the AIX Version 3.2 Topic Index and Glossary.

Multibyte Characters
VS mode XL Pascal permits the use of multibyte character set (MBCS) characters:

• A boldface capital D represents one multibyte character.

• A boldface capital B represents one MBCS blank.

8 XL Pascal Language Reference

9 Copyright IBM Corp. 1990, 1993 Chapter 2. The XL Pascal Program Elements

Chapter 2. The XL Pascal Program Elements

Pascal is a high-level general purpose programming language that relies on block
structures. A structured program is a hierarchy of routines, with each routine having a single
entry point and a single exit point.

XL Pascal provides the following basic elements in most Pascal programs. This chapter
explains the conventions governing the use of these elements:

• Characters
• Identifiers
• Basic symbols
• Comments
• Literals

The XL Pascal Character Set
The following characters have an order known as a collating sequence, which determines
the comparison status of the items in a character set for a system. XL Pascal uses ASCII
(American National Standard Code for Information Interchange) to determine the ordinal
sequence of characters. The special characters are the nonalphanumeric characters used in
Pascal code.

Letters Digits Special Characters

A N a n
B O b o
C P c p
D Q d q
E R e r
F S f s
G T g t
H U h u
I V i v
J W j w
K X k x
L Y l y
M Z m z

0
1
2
3
4
5
6
7
8
9

 Blank
$ Dollar sign
% Percent sign
’ Single quotation mark
() Parentheses
* Asterisk
+ Plus sign
, Comma
– Minus sign
. Decimal point/period
/ Slash
: Colon
; Semicolon
< Less than
= Equal sign
> Greater than
_ Underscore
@ At
^ Caret
| Vertical bar
& Ampersand
~ Tilde
[] Brackets
{} Braces
Number sign

Related Information
A table showing the full ASCII character set is in the User’s Guide for IBM AIX XL Pascal
Compiler/6000.

10 XL Pascal Language Reference

Identifiers
The identifiers are names for the following language constructs of Pascal. Identifiers can be
internal or external to a program.

• Constants
• Data types
• Files
• Functions
• Procedures
• Variables
• Program names
• Segment names
• Label names
• Enumerated values

Syntax

letter

digit
underscore

letter

Parameters
letter is A through Z, a through z, and in VS mode, $

digit is 0 through 9.

underscore is _ (VS mode only).

Description
XL Pascal permits identifiers of up to 256 characters, which is the maximum length of the
source line. The first character of an identifier must be a letter. Valid characters for identifiers
are the letters a through z and A through Z, and the digits 0 through 9.

The space character is not valid within an identifier.

XL Pascal makes no distinction between lowercase and uppercase letters within an identifier
name, because the compiler folds all identifiers in a source program to lowercase unless
they are in a quoted string. Specifying the –U compiler option prevents case folding.

You must declare every identifier before using it.

Note: Declaring a name that is already a predefined identifier overrides the predefined use
of the identifier. You cannot declare reserved words as identifiers.

11Chapter 2. The XL Pascal Program Elements

Identifiers in VS Mode
In VS mode, the dollar sign ($) and the underscore (_) are also valid characters, but
because most external names in the XL Pascal runtime environment begin with a dollar
sign, you should avoid using it as the first character in an identifier. Defining an identifier with
the same name as a runtime library routine may make the runtime library name
inaccessible.

Examples
I
K9
New_York
AMOUNT$

The following identifiers are incorrect:

WEATHER_#1/2 (* contains special characters *)
5K (* starts with a number *)
NEW JERSEY (* has a blank between the words *)

Related Information
Compiler options are described in the User’s Guide for IBM AIX XL Pascal Compiler/6000.

Basic Symbols
XL Pascal has a set of basic symbols that the compiler uses for specific purposes in the
language:

• Reserved words
• Keywords
• Special symbols
• Operators

Reserved Words
Identifiers that define the syntax of the XL Pascal language are reserved words. You cannot
declare these words for other uses. You must separate a reserved word from other reserved
words and identifiers by either a comment, at least one blank, or one of the special symbols.

XL Pascal makes no distinction between uppercase and lowercase for reserved words. The
–U compiler option has no effect on reserved words.

The identifiers in the following tables are the reserved words of XL Pascal.

Standard Mode XL Pascal Reserved Words

AND
ARRAY
BEGIN
CASE
CONST
DIV
DO
DOWNTO
ELSE

END
FILE
FOR
FUNCTION
GOTO
IF
IN
LABEL
MOD

NIL
NOT
OF
OR
PACKED
PROCEDURE
PROGRAM
RECORD
REPEAT

SET
THEN
TO
TYPE
UNTIL
VAR
WHILE
WITH

12 XL Pascal Language Reference

VS Mode XL Pascal Reserved Words

ASSERT
CONTINUE
DEF

LEAVE
OTHERWISE
RANGE

REF
RETURN
SPACE

STATIC
VALUE
XOR

Keywords
Like a reserved word, a keyword is a predefined identifier, but it represents a language
construct that you can redefine in a declaration.

You can write keywords in uppercase, lowercase, or mixed case, but the compiler folds
everything outside single quotation marks to lowercase by default. If you disable case
folding with the –U compiler option, you must enter a keyword in lowercase to keep its
predefined meaning.

The keywords of XL Pascal are listed in the following tables.

Standard Mode XL Pascal Keywords

ABS
ARCTAN
BOOLEAN
CHAR
CHR
COS
DISPOSE
EOF
EOLN
EXP

FALSE
GET
INPUT
INTEGER
LN
MAXINT
NEW
ODD
ORD
OUTPUT

PACK
PAGE
PRED
PUT
READ
READLN
REAL
RESET
REWRITE
ROUND

SIN
SQR
SQRT
SUCC
TEXT
TRUE
TRUNC
UNPACK
WRITE
WRITELN

VS Mode XL Pascal Keywords

ADDR
ALFA
ALFALEN
ALPHA
ALPHALEN
CLOCK
CLOSE
COLS
COMPRESS
DATETIME
DELETE
DISPOSEHEAP
EPSREAL
EPSSREAL
FLOAT
GCHAR
GSTR
GSTRING
GSTRINGPTR

GTOSTR
HALT
HBOUND
HIGHEST
INDEX
LBOUND
LENGTH
LOWEST
LPAD
LTOKEN
LTRIM
MARK
MAX
MAXCHAR
MAXLENGTH
MAXREAL
MAXSREAL
MCOMPRESS
MDELETE

MIN
MINDEX
MININT
MINREAL
MINSREAL
MLENGTH
MLTRIM
MRINDEX
MSUBSTR
MTRIM
NEWHEAP
PARMS
POINTER
QUERYHEAP
RANDOM
READSTR
RELEASE
RETCODE
RINDEX

RPAD
SEEK
SHORTREAL
SIZEOF
STDERR
STOGSTR
STR
STRING
STRINGPTR
SUBSTR
TERMIN
TERMOUT
TOKEN
TRACE
TRIM
UPDATE
USEHEAP
WRITESTR
XL__TRAP

13Chapter 2. The XL Pascal Program Elements

Special Symbols
The special symbols are nonalphabetic characters or groups of characters that represent
such syntax elements as operators and variable quantifiers. The –U compiler option has no
effect on special symbols.

Multiple-character special symbols such as <= cannot contain embedded spaces.

The following are the special symbols used by XL Pascal.

Standard Mode
+ Addition and set union operator

– Subtraction and set difference operator

* Multiplication and set intersection operator

/ Division operator, real result only

= Equal operator, constant definition, and type definition

< Less than operator

<= Less than or equal operator, a set subset operator

>= Greater than or equal operator, a set superset operator

> Greater than operator

<> Not equal operator

:= Assignment symbol

. Period to end a unit or a record field separator

, Comma, list separator

: Colon, specifies definition

; Semicolon, statement separator

.. Subrange notation

’ Single quotation mark, begins and ends string literals

@ or ^ Pointer reference symbol

(Left parenthesis

) Right parenthesis

[or (. Left square bracket

] or .) Right square bracket

{ or (* Comment start delimiter

} or *) Comment end delimiter

VS Mode
– Unary negation

/* Comment start delimiter

*/ Comment end delimiter

~= Not equal operator

–> Pointer reference symbol

14 XL Pascal Language Reference

~ Boolean NOT, INTEGER one’s complement, or set complement

| Boolean OR, logical OR on INTEGER

& Boolean AND, logical AND on INTEGER

&& Boolean XOR operator, logical XOR on INTEGER

>> Right logical shift on INTEGER

<< Left logical shift on INTEGER

|| String concatenation operator

You can also write the following VS mode symbols as reserved words:

Symbol Reserved Word

~ NOT

| OR

& AND

&& XOR

Operators
The operators represent the logical or algebraic processes, such as addition or
multiplication, that can be performed on a value or pair of values. The operands are the
values manipulated by the operators. The results are produced from this manipulation.

The operators used in XL Pascal are in four categories:

• The NOT operator
• Multiplication operators
• Addition operators
• Relational operators

The NOT Operator

Standard Mode:

Operator Operation

NOT Boolean NOT

VS Mode:

Operator Operation

~ Boolean NOT; logical one’s complement; set complement

NOT Boolean NOT; logical one’s complement; set complement

Multiplication Operators

Standard Mode:

Operator Operation

* Multiplication; Set intersection

/ Real division

DIV Integer division

MOD Modulus

AND Boolean AND

15Chapter 2. The XL Pascal Program Elements

VS Mode:

Operator Operation

AND Logical AND

& Boolean AND; logical AND

|| String concatenation

<< Left logical shift

>> Right logical shift

Addition Operators

Standard Mode:

Operator Operation

+ Addition; set union

– Subtraction; set difference

OR Boolean OR

VS Mode:

Operator Operation

+ String concatenation

OR Logical OR

| Boolean OR; logical OR

&& or XOR Logical XOR; set exclusive union; Boolean XOR

Relational Operators

Standard Mode:

Operator Operation

= Compare equal

<> Compare not equal

< Compare less than

> Compare greater than

<= Compare less than or equal to; subset (inclusion of left operand in right)

>= Compare greater than or equal; superset (inclusion of right operand in left)

IN Set membership (left operand is a member of right operand)

VS Mode:

Operator Operation

~= Compare not equal

16 XL Pascal Language Reference

Comments
The comment is an annotation in your source code that explains some aspect of the
program. It does not affect the operation of the program. You can place a comment
anywhere in a unit where a blank would be acceptable. Use comments frequently to
improve the understanding of your programs.

A comment can contain any printable character except the characters that act as the
delimiters. Note that a comment delimiter within a string literal is part of the string literal; it is
not interpreted as a comment delimiter. Comments can span multiple lines to form block
comments.

To add comments to your XL Pascal code, use one of the following pairs of opening and
closing comment delimiters:

{ }

(* *)

The compiler uses the symbols (* and *) and { and } interchangeably. For the symbol { or (*,
it bypasses all characters that follow it until it encounters the } or *) symbol. Comments can
begin with one symbol and end with another.

Note: The left brace { and right brace } are X’7B’ and X’7D’ in ASCII. On some
keyboards, these characters may not map to left brace and right brace. In this case,
use only (* and *) to delimit comments.

Comments in VS Mode
In VS mode, you can use these as comment delimiters:

/* ... */

Using /* ... */ to delimit comments is different from using { ... } or (* ... *). The compiler
bypasses all characters following / * until it encounters the */ symbol. A comment beginning
with /* must end with */ to be considered one comment.

Different comment delimiters can indicate different types of comments. For example, you
might want to use the delimiters (*...*) and {...} to indicate ordinary comments, and / *...*/ to
block out a piece of temporary code or a debugging statement:

/*
IF A = 10 THEN (* this statement is
 for program debugging *)
 WRITE(’A IS EQUAL TO TEN’);
*/

Multibyte characters can be included in comments. For example:

(* abcd D DD efg D D hijklm*)

Note: D represents one MBCS character.

17Chapter 2. The XL Pascal Program Elements

Examples
The following are examples of XL Pascal comments:

{ comment enclosed in braces }

(* other comment delimiters *)

{ mixed comment delimiters *)

/* To close this comment, } does not work.
The comment continues until it finds */

Literals
A literal is a quantity or other language object that takes only one specific value. Literals are
not assigned to represent other values.

Syntax
In these diagrams, the uppercase letters can be replaced by lowercase letters with no
change in meaning.

Unsigned Integer

digit

hex_digit

base

binary_digit ’B

’X

alt_digit#

’

’

Unsigned Real Number

digit

hex_digit

digit
+

–

E digit

’XR

.

’

Note: The first digit is optional in VS mode only.

String

hex_digit

character

’XC

’

’

’

18 XL Pascal Language Reference

GSTRING

MBCS_character

’

’

’G

’XGhex_digit

Parameters

Standard Mode:

digit is 0 through 9.

character is any ASCII character.

VS Mode:

binary_digit is 0 or 1.

hex_digit is 0 through 9, A through F, and a through f.

base is a decimal integer literal whose value is one of 2 through 16.

alt_digit is one or more digits that are members of the specified base number
system.

MBCS_character is any character that requires an MBCS representation.

Description
The symbol E or e indicates values in scientific or exponential form. The e precedes the
exponent. When used in a real number, it expresses times ten to the power of.

Sequences of characters enclosed in single quotation marks are strings, which conform to
the type STRING or PACKED ARRAY [1..n] OF CHAR. A string of one character conforms
to the type CHAR.

For a single quotation mark to be recognized in a string, you must write the character twice.
For example, you would have to type the string SQUARE’S_SIDES as:

’SQUARE’’S_SIDES’

XL Pascal is case-sensitive for the characters in string literals: uppercase and lowercase
letters are different. String literals written in XL Pascal cannot extend past the end of a line in
the code.

String Concatenation
In VS mode, if your string literal cannot fit on a line, you must concatenate shorter strings,
such as:

VAR
 s : STRING ;
BEGIN
 s := ’Since literals cannot be continued beyond the end of ’||
 ’a line, use concatenation to get the full string.’;

19Chapter 2. The XL Pascal Program Elements

Examples

Standard Mode
Literal Standard Type

0 INTEGER

1.0 REAL

314159E–5 REAL

0E0 REAL

1.0E10 REAL

TRUE BOOLEAN

’A’ CHAR

’ABC’ Fixed String

’abc’ Fixed String

’’’’ CHAR

’ ’ CHAR

’ ’ Fixed String

’That’’s all ’ Fixed String

VS Mode
Literal Standard Type

’FF’X INTEGER

’C1C2C2’XC STRING

’4E800000FFFFFFFF’XR REAL

’’ STRING

Hexadecimal and Binary Literals
VS mode XL Pascal permits the use of hexadecimal and binary literals of various types.

Integer Hexadecimal
These literals are enclosed in single quotation marks and suffixed with an X or x. For
example, ’FF’X is a valid integer hexadecimal literal. You can use one in any context where
an integer literal is appropriate. If you do not specify 8 hexadecimal digits (4 bytes), the
digits not supplied are zeros on the left. For example, ’F’X is the same as ’0000000F’X.

Integer Binary
These literals are enclosed in single quotation marks and suffixed with a B or b. A binary
digit is either a 0 or a 1. For example,’00000110’b is a valid binary literal. If you do not
specify 32 binary digits (4 bytes), the necessary number of zeros are added on the left.

Floating-Point Hexadecimal
These literals are enclosed in single quotation marks and suffixed with an XR or xr. You can
use one in any context where a real literal is appropriate. If you do not specify 16
hexadecimal digits (8 bytes), the digits not supplied are zeros on the right. For example,
’4110’xr is the same as ’4110000000000000’xr.

20 XL Pascal Language Reference

String Hexadecimal
These literals are enclosed in single quotation marks and suffixed with an XC or xc. You can
use one in any context where a string literal is appropriate. A string hexadecimal literal must
contain an even number of digits, and you must fully specify each character in the string. For
example, ’C1C2C2’XC is a valid string hexadecimal literal.

Multibyte Character Set Hexadecimal
You can use multibyte character set (MBCS) literals in character strings. An MBCS
hexadecimal literal consists of hexadecimal digits to specify an even number of bytes,
enclosed in single quotation marks and suffixed with an XG or xg. Data is specified in the
file code format. Each character in any particular string is represented by any number of
bytes, from 1 to 4.

An MBCS hexadecimal literal is compatible with type PACKED ARRAY [1..n] OF GCHAR
where n is the number of multibyte characters. For example, ’A0A1B2B3C4C5’xg is an
MBCS hexadecimal literal constant compatible with type PACKED ARRAY [1..3] OF
GCHAR. All hexadecimal digits in an MBCS literal must be specified.

MBCS Literals
These are enclosed in single quotation marks and suffixed with G or g. Only MBCS
characters are permitted between the quotation marks. MBCS literals are permitted only in
VS mode.

21Chapter 3. Structure of XL Pascal Programs Copyright IBM Corp. 1990, 1993

Chapter 3. Structure of XL Pascal Programs

All Pascal programs are composed of separate compilation units link-edited to form a
complete program. Each unit must be in a single language mode. There are two types of
units in XL Pascal: program units and segment units. Compiling a unit independently from
the rest of the program allows you to organize your code logically.

Each unit can consist of a series of declarations and statements. Declarations define
program objects, and statements determine the actions the program performs on those
objects. Together, they describe a computer program in Pascal.

Program Unit

Purpose
Gains initial control when you call a compiled program. It consists of all the statements
between a PROGRAM statement and an END statement. The PROGRAM statement
identifies the main program to the XL Pascal compiler.

Syntax

PROGRAM

()

cmpd_stmt

,

.
id ;

declparm

Parameters
PROGRAM is an XL Pascal reserved word.

id must be a unique external name.

parm is an optional list of program parameters that specify links to external
names.

decl can be LABEL, CONST, TYPE, VAR, or routine declaration. Programs in
VS mode can also include DEF, REF, STATIC, or VALUE declarations.

cmpd_stmt is a compound statement that constitutes the program body.

Note: The period at the end of the program unit is optional only in VS mode.

Description
In standard mode, the program unit is the only compilation unit, and its sections must
appear in the following order:

1. Label declarations

2. Constant definitions

3. Type definitions

4. Variable declarations

22 XL Pascal Language Reference

5. Procedure and function declarations

6. Compound statement (main program block)

Structure of an XL Pascal Program Unit

PROGRAM HEADER

LABEL DECLARATIONS

CONSTANT DEFINITIONS

TYPE DEFINITIONS

VARIABLE DECLARATIONS

PROCEDURE DECLARATIONS

FUNCTION DECLARATIONS

BEGIN
STATEMENTS;

END.

.

.

.

STATEMENTS;

Program Header

Label Declarations

Data Descriptions

Routine Declarations

Main Program Block

The only required items (for both standard and VS mode) are the program header followed
by the main program block.

Program Unit in VS Mode
Value declarations can be included in the data descriptions. The various declarations and
definitions in XL Pascal are optional in VS mode and can appear in any order. Pointer target
types are the only forward references permitted in a declaration.

You can have multiple declaration and definition sections in a single program unit.

Example
PROGRAM example;

VAR
 i : INTEGER;

BEGIN
 FOR i:=0 TO 1000 DO
 IF i MOD 7 = 0 THEN
 WRITELN(i : 5, ’ IS DIVISIBLE BY SEVEN’)
END.

23Chapter 3. Structure of XL Pascal Programs

Segment Unit

Purpose
Consists of routines linked with the program unit at compilation. You can compile a segment
unit independently of a program unit. Segment units are permitted in VS mode only.

Syntax

SEGMENT id ;
.decl

Parameters
SEGMENT is an XL Pascal reserved word.

id can be the same name as one of the EXTERNAL routines in the segment
or it can be a unique name. A function called SIN could be in a segment
called SIN. An external name is an identifier for a program, segment, DEF
or REF variable, or EXTERNAL routine.

decl can be CONST, TYPE, VAR, DEF, REF, STATIC, VALUE, or a routine
declaration.

Note: The declarations and the period at the end of the segment are optional.

Description
Segments are useful for sharing common code among different programs, or as a means of
breaking up large programs into smaller units. Using smaller units, you can see the effect of
small programming changes without having to compile the entire program with each
modification.

Data is passed to routines through parameters and external variables. A segment unit has
access to the global automatic variables of the program unit.

The various kinds of declarations in the segment unit are optional and can be in any order.
The only required item is the segment header.

Structure of an XL Pascal Segment Unit

SEGMENT HEADER

CONSTANT DEFINITIONS

TYPE DEFINITIONS

VARIABLE DECLARATIONS

PROCEDURE DECLARATIONS

FUNCTION DECLARATIONS

Segment Header

Data Descriptions

Routine Declarations

VALUE DECLARATIONS

24 XL Pascal Language Reference

Example
SEGMENT cosine;
FUNCTION cosine (x : REAL) : REAL ; EXTERNAL;
FUNCTION cosine ;
 VAR
 s : REAL ;
 BEGIN
 s := SIN(x) ;
 cosine := SQRT(1.0 – s * s)
 END;

Related Information
Global automatic variables are described in “VAR” on page 31.

Program Parameters
Specify external bindings with XL Pascal variables. They contain one or more identifiers
separated by commas. Program parameters are optional.

In Standard Mode
• To use the predefined files INPUT and OUTPUT in a program, you must specify them in

the program parameter list. The default for INPUT and OUTPUT is terminal I/O.

• If you specify INPUT as a program parameter the file for input (RESET) is opened.

• If you specify OUTPUT as a program parameter the file for output (REWRITE) is opened.

• If you specify INPUT and OUTPUT as program parameters, you cannot redefine them as
global variables.

• You cannot specify duplicate identifiers in the program parameter list. For example, the
following is incorrect because parameter f is specified twice:

PROGRAM USER(OUTPUT, f, f);

• You must declare any identifier (other than INPUT and OUTPUT) that appears in the
program parameter list as a variable identifier in the program block. For example, the
following is incorrect because parameter g is declared as a constant rather than a
variable, and parameter f is not declared at all:

 PROGRAM USER(OUTPUT, f, g);
 CONST
 g = 3;

25Chapter 3. Structure of XL Pascal Programs

In VS Mode
• The files INPUT and OUTPUT are predefined, so you need not specify them in the

program parameter list when they appear in a program.

• You can redefine INPUT and OUTPUT in your program.

• The declaration of the variable determines external binding. For example:

PROGRAM USER(OUTPUT,f,g);
 DEF
 f: INTEGER; (* bound to an external symbol *)
 VAR
 g: INTEGER; (* global automatic variable *)

If you define a program parameter as anything other than a variable identifier, XL Pascal
issues a warning diagnostic message.

• Program parameters can have defining points anywhere in the program block.

Linking Units
An XL Pascal program is formed by linking a program unit to:

• The XL Pascal runtime environment
• Segment units, if any
• Other libraries you might supply

The following figure illustrates the relationship between program and segment units, the XL
Pascal runtime environment, and additional user-supplied libraries.

Linking a Program Unit with a Segment Unit

Program Object

Runtime Environment

Segment Units

User Libraries

Program Unit

Related Information
For information about linking, libraries, and the IBM AIX XL Pascal runtime environment,
refer to the User’s Guide for IBM AIX XL Pascal Compiler/6000.

26 XL Pascal Language Reference

Standard Files
XL Pascal supplies the following three standard files. They are predefined as variables of
type TEXT:

INPUT is the standard file from which you do input by READ, READLN, and GET
routines. This default is associated with the standard input.

OUTPUT is the standard file to which you direct output by WRITE, WRITELN, and
PUT routines. This default is associated with the standard output.

STDERR is the standard error output file. It is defined for VS mode only. This default
is associated with the standard error file.

27 Copyright IBM Corp. 1990, 1993 Chapter 4. Declarations

Chapter 4. Declarations

Declarations associate identifiers with program objects, such as data types, variables, and
routines, so that they can be used in the program. You must predefine or declare each
identifier before you use it. There is one exception to this rule: a pointer definition can refer
to an identifier as the domain type of the pointer before it is declared. The domain type
identifier must be declared later, or XL Pascal generates a compile-time diagnostic
message.

This chapter describes: lexical scope of identifiers, declarations in standard mode, and
declarations in VS mode.

Lexical Scope of Identifiers
The lexical scope, or scope, of an identifier is the portion of a program where the identifier is
accessible. The scope of an identifier can be global or local.

Local identifier is associated with a variable defined in a function or procedure. A local
variable is not accessible to an outside function, procedure, or main
program.

Global identifier is associated with a variable defined in a main program. You can use,
refer to, or change a global variable anywhere in the program and include
functions or procedures.

For example, in the following figure, variable A2, defined in PROGRAM A, is global.
Because PROGRAM A contains PROCEDURE B and FUNCTION C, PROCEDURE B and
FUNCTION C can refer to A2, declared in PROGRAM A. Identifier B1, however, is declared
within PROCEDURE B, and is not accessible either from within the body of PROGRAM A, or
from within FUNCTION C.

Scope of Identifiers

PROGRAM A

TYPE A1

VAR A2

PROCEDURE B

VAR B1

FUNCTION C

VAR C1

scope of B1

scope of C1

scope of A1
 and A2

The scope of any particular identifier depends on the structure of the routine declarations
within the unit in which it appears. The scope of an identifier is the entire routine (or unit) in
which it was declared, including all routines nested within the routine. Record definitions also
define a lexical scope for the record fields. You can define each identifier only once within a
lexical scope.

28 XL Pascal Language Reference

Because routines can be nested within other routines, a lexical level is associated with each
routine. A program unit is at lexical level 0, and routines defined within the unit are at lexical
level 1. In general, identifiers defined in a routine defined in level i are accessible at level
(i+1).

Nesting Structure of a Program

PROGRAM M (level 0)

PROCEDURE A (level 1)

PROCEDURE B (level 2)

TYPE

R1 : ...

R2 : ...

END;

FUNCTION C (level 3)

PROCEDURE D (level 2)

FUNCTION X (level 1)

PROCEDURE Y (level 2)

PROCEDURE Z (level 2)

R = RECORD

Identifiers Declared in are Accessible in

PROGRAM M M, A, B, C, D, X, Y, Z

PROCEDURE A A, B, C, D

PROCEDURE B B, C

TYPE R B, C

FUNCTION C C

PROCEDURE D D

FUNCTION X X, Y, Z

PROCEDURE Y Y

PROCEDURE Z Z

Note: The scope of a field identifier defined within a record definition is limited to the record
or to the scope of any variable defined to be of that record type. A field of a record
can be accessed using either field referencing or the WITH statement.

29Chapter 4. Declarations

When an identifier is declared in a routine nested in the scope of another identifier with the
same name, the new identifier is the one recognized when its name appears in the routine.
The inner routine has no access to the first identifier. In other words, the only identifier that
can be used is the one declared at the innermost level.

For example, in the figure above, FUNCTION C is nested in PROCEDURE B, PROCEDURE
B is nested in PROCEDURE A, and PROCEDURE A is nested in PROGRAM M. If both
PROGRAM M and PROCEDURE B declared an identifier T, a conflict could arise. To resolve
the conflict, use the most recent declaration of T. The identifier T declared in PROGRAM M
would be used for PROGRAM M, PROCEDURE A and FUNCTION X. In PROCEDURE B
and FUNCTION C, the identifier T declared in PROCEDURE B would be used.

The XL Pascal compiler inserts a prime file of precompiled declarations at the beginning of
every unit it compiles. These declarations comprise predefined types, constants, routines,
and variables. The scope of the prime file encompasses the entire unit.

Related Information
Prime files are described in the User’s Guide for IBM AIX XL Pascal Compiler/6000.

Declarations in Standard Mode
The required order of declaration sections for standard mode XL Pascal is:

1. LABEL
2. CONST
3. TYPE
4. VAR
5. PROCEDURE
6. FUNCTION

The standard mode declarations are described in the following sections. Procedure and
function declarations are discussed in “Routine Declarations” on page 133.

LABEL

Purpose
Declares labels referred to by a GOTO statement within a routine.

Syntax

LABEL

unsigned_integer
 ;

,
id

Parameters
LABEL is the declaration reserved word.

unsigned–integer is a name assigned to a label. It must be in the range 0 to
9999.

id is an identifier name assigned to a label (VS mode only).

30 XL Pascal Language Reference

Description
To declare two or more labels in the declaration, use commas to separate the label names.
You must declare all labels defined within a routine in a LABEL declaration.

Example
LABEL
 10,
 1,
 2,
 label_a,
 error_exit;

CONST

Purpose
Defines identifiers to use as synonyms for constant expressions.

Syntax

CONST

constant
=

constant_expr
;id

Parameters
CONST is the declaration reserved word.

id is an identifier assigned to a constant or, in VS mode, a constant
expression.

constant is any constant.

constant_expr is any constant expression (VS mode only).

Description
All constant names and their associated values are local to a program, procedure, or
function definition. The type of the expression in the declaration determines the type of a
constant identifier.

CONST Declarations in VS Mode:

VS mode allows you to specify the value of a CONST identifier by using either a simple
constant or a constant expression.

31Chapter 4. Declarations

Example
CONST
 blank = ’ ’;
 blanks = ’ ’;
 fifty = 50;
 a = fifty;
 pi = 3.14159265358;
 letters = [’A’..’Z’,’a’..’z’];
 b = fifty * 10 / (3 + 2);
 c_squared = a * a + b * b;
 ord_of_a = ORD(’a’);
 mask = ’8000’X | ’0400’X;

TYPE

Purpose
Defines a data type and associates a name with that type. Once declared, such a name can
be used in the same way as a predefined type name.

Syntax

TYPE type= ;id

Parameters
TYPE is the declaration reserved word.

id is an identifier for a type.

type is the type.

Example
TYPE
 card_value = 1..13;
 card_suit = (spade, heart, club, diamond);
 card_type = RECORD
 rank : card_value;
 suit : card_suit;
 face_up : BOOLEAN;
 END;
 game_hand = ARRAY[card_value] OF card_type;

VAR

Purpose
Declares automatic variables, which are variables allocated when a routine is called and
deallocated when the corresponding return is made.

Syntax

VAR type : ;
,

id

32 XL Pascal Language Reference

Parameters
VAR is the declaration reserved word.

id is an identifier for a VAR variable.

type is the type of the VAR variable.

Description
If a routine is called recursively, each invocation of the routine allocates separate copies of
all automatic variables to be used by that invocation.

To declare two or more identifiers of the same type in the declaration, use commas to
separate the identifiers. This is a shorthand notation for two separate declarations.

Example:

VAR
 i : INTEGER;
 sysin : TEXT;
 x, y, z : REAL;
 card : RECORD
 rank : 1..13;
 suit : (spade, heart, diamond, club)
 END;

VAR Declarations Shared between Units

In VS mode, all variables declared with VAR in the outermost nesting level of a program or
segment unit are global automatic variables. They are accessible throughout that unit. When
a program and one or more segments are linked, the global automatic variables of all
compilation units occupy the same storage locations to give all units access to the same
global automatic variables.

The following example shows a VAR declaration shared between a program and a segment:

PROGRAM main;
 VAR
 i : INTEGER;
 x, y : REAL;
 j : INTEGER;
 ...(* remainder of program unit *)

SEGMENT seg;
 VAR
 i : INTEGER;
 x, y : REAL;
 j : INTEGER;
 ...(* remainder of segment unit *)

Global automatic variable declarations that are not identical to those in the program yield
unpredictable results. XL Pascal does not detect differences between the global automatic
declarations in different program and segment units. You should define the global area once
with an %INCLUDE statement to insert identical copies of variable declarations in all
separately compiled units.

33Chapter 4. Declarations

Preferred Method of Sharing VAR Declarations between Programs and Segments

PROGRAM root_program;

%INCLUDE global_auto

... (* remainder of program unit *)

SEGMENT sub_program;

%INCLUDE global_auto

... (* remainder of segment unit *)

(* file included in *)
(* root_program *)
(* and sub_program *)

VAR
 i : INTEGER;
 x,y : REAL;
 j : INTEGER;
 ...

global_auto

Declarations in VS Mode
Declaration sections can be in any order in VS mode XL Pascal, and multiple declaration
sections of the same type are permitted. This extension to Standard Pascal is provided
primarily to permit source included during compilation to be independent of any ordering
already established in the unit.

You can make forward references in declarations, but only to pointer target types.

In addition to those available in standard mode, you can use the following declarations in VS
mode:

• DEF
• REF
• STATIC
• VALUE

DEF

Purpose
Defines and declares external variables, which are allocated before run time and can be
accessed from more than one unit. External variables follow the same syntactic rules as
internal variables.

Syntax

DEF type
,

 ;:id

Parameters
DEF is the declaration reserved word to specify that the program loader is

responsible for generating the common storage for the variable.

id is an identifier for the DEF variable.

type is the type of the variable.

34 XL Pascal Language Reference

Description
External variables declared as DEF with the same name in several units are all allocated to
a single common storage location. Variables with the same name must have identical data
types in all units. You must assure that the types are the same. A bind-time diagnostic
message is generated if –qEXTCHECK is on and all DEF and REF declarations for a given
symbol do not have exactly the same type.

To declare two or more identifiers of the same type in the declaration, use commas to
separate the identifiers. This is a shorthand notation for two separate declarations.

You can declare a DEF variable local to a routine, and the same scope rules apply as for
any other declared identifier. If, however, you declare the name of the variable in another
scope (even in another unit) as a DEF or REF variable, both occurrences of the variable
refer to the same storage.

To initialize DEF variables at compile time, use a VALUE declaration.

REF

Purpose
Declares external variables that are defined elsewhere in the program. These are allocated
before run time and can be accessed from more than one unit. External variables follow the
same syntactic rules as internal variables.

Syntax

REF type

,

 : ;id

Parameters
REF is the declaration reserved word, which specifies that storage for the

variable is defined in another unit.

id is an identifier for the REF variable.

type is the type of the variable.

Description
A single common storage location is allocated to an external variable declared as REF with
the same name in several units. Variables with the same name must have identical data
types in all units. You must ensure that the types are the same.

To declare two or more identifiers of the same type in the declaration, use commas to
separate the identifiers.

Variables declared REF remain unresolved until the encompassing unit is combined with a
unit in which the variable is either declared as a DEF variable, or defined in a non-Pascal
program as external. For example, you can use REF variables to access external data
declared in a program written in assembler language. A bind-time diagnostic message is
generated for any REF variables that remain unresolved.

A bind-time diagnostic message is also generated if –qEXTCHECK is on and all REF
declarations for a given symbol do not have exactly the same type. A REF variable can be
declared local to a routine, and the same scope rules apply as for any other declared
identifier. If you declare the name of the variable as a REF or DEF variable in another scope
(even in another unit), both occurrences of the variable refer to the same storage.

35Chapter 4. Declarations

Example
In the following example, the external variable x in procedures a, b, and c refers to the
same storage. The variable x declared in segment p and in procedure d each refer to
storage separate from the external variable x.

SEGMENT m;

PROCEDURE a;
 DEF
 x : REAL; (* same as x in b and c *)
 BEGIN
 ...
 END;

PROCEDURE b;
 REF
 x : REAL; (* same as x in a and c *)
 BEGIN
 ...
 END;.

SEGMENT p;
STATIC
 x : REAL; (* local to p *)
PROCEDURE c;
 REF
 x : REAL; (* same as x in a,b *)
 BEGIN
 ...
 END;

PROCEDURE d;
 VAR
 x : REAL; (* local to d *)
 BEGIN
 ...
 END;.

STATIC

Purpose
Declares static variables, whose memory is allocated at the beginning of the program and
which are local to the program, segments, or routines in which they are defined. This
memory allocation occurs for the life of the program.

Syntax

STATIC type

,

 ;:id

Parameters
STATIC is the declaration reserved word.

id is an identifier for the STATIC variable.

type is the type of the STATIC variable.

36 XL Pascal Language Reference

Description
You refer to static variables in your program according to the normal lexical scope rules.
Even when they have the same name, XL Pascal treats static variables with different scopes
as different variables.

To declare two or more identifiers of the same type in the declaration, use commas to
separate the identifiers. This is a shorthand notation for two separate declarations.

Data in static variables local to a routine is preserved over separate calls to the routine.
When such a routine is called recursively or repeatedly, it accesses the same instance of
each static variable.

To initialize static variables at compile time, use a VALUE declaration.

Example
The following program demonstrates the effect of declaring variables using the VAR and
STATIC declarations. Note that you cannot initialize the variable auto_var in procedure
auto_static in the same way as in static_var using a VALUE declaration.

PROGRAM statauto;

VAR
 i : INTEGER;

PROCEDURE auto_static;
 VAR
 auto_var : INTEGER ;(* cannot be init’d at compile time *)
 STATIC
 static_var : INTEGER ;
 VALUE
 static_var := 0; (* STATIC variable initialization *)
 BEGIN (* start of auto_static *)
 static_var := static_var + 1;
 (* value of static_var is preserved *)
 (* across each call to procedure *)
 WRITELN(auto_var);(* value of auto_var is undefined *)
 END; (* end of auto_static *)

BEGIN (* start of statauto *)
 FOR i := 0 TO 10 DO
 auto_static ;
END. (* end of statauto *)

VALUE

Purpose
Specifies initial values for STATIC and DEF variables. It consists of a list of value
assignments separated by semicolons.

Syntax

VALUE variable :=

constant_expr

structured_const
;

37Chapter 4. Declarations

Parameters
VALUE is the declaration reserved word.

variable is a variable to be assigned a value.

constant_expr is any constant expression.

structured_const is any structured constant.

Description
The assignments in a VALUE declaration have the same form as the assignments in the
body of a routine, except that all subscripts and expressions must be able to be evaluated at
compile time. For example:

(* Initializing a three-dimensional array *)
TYPE
 cube = ARRAY[1..10,1..10,1..10] OF REAL;

STATIC
 block : cube ;

(* the following assignments take place at compile time *)
VALUE
 block := cube (((0.0:10):10):10) ;

You can use VALUE declarations to initialize separate scalar components of a DEF or
STATIC variable, for example:

TYPE
 complex = RECORD
 re,im: REAL
 END;
 vector = ARRAY[1..7] of INTEGER;

STATIC
 c : complex;
 v : vector;
 v1 : vector;

DEF
 i : INTEGER;
 q : ARRAY[1..10] OF complex;

(* the following assignments take place at compile time *)
VALUE
 c := complex(3.0, 4.0);
 v := vector(1, 0 : 5, 7);
 v1 := vector(, , , 4);
 v[2] := 2;
 v[3] := 3 * 4 – 1;
 i := 0;
 q[1].re := 3.1415926 / 2;
 q[1].im := 1.414;

You cannot specify more than one initial value for any scalar component of a DEF or
STATIC variable within one program or segment unit.

For example, all of the statements in the following example can be in one program or
segment. Together they initialize the odd-numbered elements of array a, and each element
has no more than one VALUE specification.

38 XL Pascal Language Reference

TYPE
 atype = ARRAY[1..10] OF INTEGER;

DEF
 a : atype;

VALUE
 a := atype(111 , , 333 , , , , 777);
 a[5] := 555;
 a[9] := 999;

You do not need to initialize all scalar components of a DEF array or record. You cannot
initialize any of them more than once in one program or segment unit.

You can use VALUE to initialize a DEF variable in any of the program or segment units that
declare the DEF variable. The loader does not use the initial values in all but the first
program or segment unit that is linked together into a program. In the following example, the
program unit initializes the first and third elements of array B:

PROGRAM defvaldemo(OUTPUT);

PROCEDURE defvaldup; EXTERNAL;

 TYPE
 Bt = ARRAY[1..4] OF INTEGER;

 DEF
 B : Bt;

 VALUE
 B[1] := 111;
 B[3] := 333;
 .
 .

The following example shows a segment unit that contains the external procedure called by
the program defvaldemo. This segment initializes the second and fourth elements of array
B:

SEGMENT defvalseg;

TYPE
 Bt = ARRAY[1..4] OF INTEGER;

DEF
 B : Bt;

VALUE
 B[2] := 222;
 B[4] := 444;

PROCEDURE defvaldup; EXTERNAL;
PROCEDURE defvaldup;
 BEGIN
 .
 .

If the program unit defvaldemo and the segment unit defvalseg are compiled and linked
by the command

xlp defvaldemo.pas defvalseg.pas

39Chapter 4. Declarations

the first value the linkage editor uses is the initial value of B specified in program unit
defvaldemo. Therefore, the linkage editor does not use the initial value of B specified in
the segment unit defvalseg even though it specifies values of different scalar components
of B. When the complete program is run, B has only the initial values specified in the unit
defvaldemo.

The compiler does not detect conflicting initial value specifications made in different
compilation units. The results are unpredictable if you use VALUE specifications to give
different initial values to a DEF variable in more than one program or segment. To avoid
unpredictable initialization, you should specify the initial value of a DEF variable in one of
two ways:

• In an %INCLUDE file so that all compilation units have the same initial values for it. It
makes no difference which value is first.

• Only in the program unit, where it has only one initial value.

40 XL Pascal Language Reference

41 Copyright IBM Corp. 1990, 1993 Chapter 5. Constants

Chapter 5. Constants

The constants are either literal values, identifiers declared as constant names by CONST
declarations, or structured constants. Literals represent values of simple types and string
types. Structured constants represent values of structured types. You can use structured
constants only in VS mode.

This chapter describes the predefined constants and structured constants of XL Pascal.

Syntax

Constant

unsigned_constant

unsigned_number

–

+

Unsigned Constant

unsigned_number

character_string

constant_identifier

NIL

Unsigned Number

unsigned_integer

real_number

Note: In “Constant”, signed constant identifiers must represent numeric values.

XL Pascal in VS mode permits constant expressions in places where standard mode permits
only constants. Constant expressions are evaluated and replaced by a single result at
compile time.

Related Information
Literal values are described on page 17.

The CONST declarations are described on page 30.

Constant expressions are described on page 105.

42 XL Pascal Language Reference

Predefined Constants
Identifiers already defined within XL Pascal are known as predefined constants. They are
declared in the default prime file, so you need not define them.

In Standard Mode
FALSE Constant of type BOOLEAN, FALSE < TRUE

MAXINT Maximum value of type INTEGER: 2147483647

NIL Constant of any pointer type representing an empty pointer value

TRUE Constant of type BOOLEAN, TRUE > FALSE.

In VS Mode
ALFALEN Length of type ALFA, value is 8

ALPHALEN Length of type ALPHA, value is 16

EPSREAL The smallest REAL value that, when added to 1, is detectable:
2.220446049250E–016 (’3CB0000000000000’XR)

EPSSREAL The smallest SHORTREAL value that, when added to 1, is detectable:
1.192092895508E–007 (’3E80000000000000’XR)

MAXCHAR Maximum value of type CHAR: ’FF’XC

MAXREAL Maximum value of type REAL: 1.797693134862E+308
(’7FEFFFFFFFFFFFFF’XR)

MININT Minimum value of type INTEGER: –2147483648

MINREAL Minimum positive value of type REAL: 4.940656458412E–324
(’0000000000000001’XR)

MAXSREAL Maximum value of type SHORTREAL: 3.402823466385E+038
(’47EFFFFFE0000000’XR)

MINSREAL Minimum positive value of type SHORTREAL: 1.401298464325E–045
(’36A0000000000000’XR).

Related Information
Prime files are described in the User’s Guide for IBM AIX XL Pascal Compiler/6000.

43Chapter 5. Constants

Structured Constants
Structured constants provide a convenient way of specifying a structured data element.
They are expressions of structured type. Type definitions are determined by the type
identifier in the constant’s definition. Structured constants can be used in value
declarations, other constant declarations, or in expressions.

Syntax

record_structure

array_structure

set_structure

Array Structure

id_type ()

,

constant_expr
constant_expr:

Record Structure

id_type ()

,
constant_expr

Set Structure

id_type ()

,
constant_expr

Parameters
constant_expr is any constant expression.

id_type is an array, record, or set type that does not contain a file.

Note: In “Array Structure”, the repetition of constant expression after the colon (:) must be
evaluated to a positive integer.

For structured constants imbedded within other structured constants, you can omit the type
identifier that begins the constant. This simplifies the syntax for structured constants that are
multidimensional arrays or records with structured fields.

44 XL Pascal Language Reference

XL Pascal allows three types of structured constants:

• Array constants
• Record constants
• Set constants

Array Constants
Array constants are specified by a list of constant expressions in which each expression
defines one element of the array.

To omit an element of the array within the list, specify nothing between the commas, as
shown in the definition of vector_2. You can omit an element either within the list or at the
end of the array; in either case, the value of that element is not defined. Commas are
necessary even in empty lists.

To specify that the value of the constant expression is to be placed in a specified number of
array elements, follow the constant expression with a colon and a repetition expression, as
shown in the definition of vector_1. This has the same effect as having a series of values
separated by commas, as shown in the following example:

TYPE
 vector = ARRAY[1..7] OF INTEGER;
 tetra = ARRAY[1..3,1..2,1..4] OF INTEGER;

CONST
 (* Structured Constants *)
 vector_1 = vector(7, 0 : 5, 1);
 vector_2 = vector(2, 3, , 4);
 zero_tetra = tetra(((0 : 4) : 2),
 ((0 : 4), (0 : 4)),
 ((0, 0, 0, 0), (0, 0, 0, 0)));

Related Information
Constant expressions are described on page 105.

Record Constants
Record constants are specified by a list of constant expressions where each expression
defines one field of the record in the order declared. You can omit a field of the record within
the list by specifying nothing between two commas; the value of that field is not defined.
Commas are necessary even in empty lists.

TYPE
 complex = RECORD
 re, im: REAL
 END;
CONST
 (* Structured Constants *)
 threefour = complex(3.0,4.0);

45Chapter 5. Constants

Values within the list may correspond to fields of a record’s variant part. To tell the compiler
which variant is being referenced, you must specify the tag field value immediately before
those values to be assigned to the variant fields. When only a tag type is specified, you must
specify the tag field even if it is not a field, as shown in the following example.

TYPE
 form = (fchar, finteger, freal, fstring);
 konst = RECORD
 size : INTEGER ;
 CASE f : form OF
 fchar :
 (c : char);
 finteger :
 (CASE size : OF
 4 :
 (s : SHORTREAL);
 8 :
 (r : REAL)
);
 fstring :
 (CASE BOOLEAN OF
 TRUE :
 (len : packed 0..32767;
 a : ALPHA
);
 FALSE :
 (st : STRING(16))
);
 END;

CONST
 a = konst(1,fchar,’A’);
 int = konst(4,finteger,3);
 short = konst(4,freal,4,1.2345);
 pi = konst(8,freal,3.14159);
 blank = konst(1,fstring,FALSE,’ ’);
 stars = konst(4,fstring,TRUE,4,’****’);
 bars = konst(4,fstring,FALSE,’––––’);

A refer-back tag field must be specified twice in the list: once to be assigned a value, and
once to identify the variant being referenced. Both occurrences can specify different values
for the refer-back tag field, but the compiler checks whether the same value is specified in
both places. If a conflict occurs, a warning is issued and the second value is used, which is
the value specified at the location of the variant part of the record.

46 XL Pascal Language Reference

The following example shows an array and a record constant combined:

TYPE
 complex = RECORD
 re,im: REAL
 END;
 carray = ARRAY[0..9] OF complex;

CONST
 (* the following two declarations are equivalent *)
 vector_3 = carray (complex (1.0, 0.0),
 complex (1.0, 1.0) : 8,
 complex (0.0, 1.0));
 vector_4 = carray ((1.0, 0.0),
 (1.0, 1.0) : 8,
 (0.0, 1.0)) ;

Related Information
Refer-back tag fields are described in “Variant Part” on page 75.

Set Constants
Structured constants can also be set-valued. These allow a set type to be specified as part
of the constant. Like the other types of structured constants, set constants are specified by a
list of constant expressions where each expression defines one element of the set, as
shown in the following example:

TYPE
 smallnums = SET OF 0..127;

CONST
 small_powers_of_two = smallnums(1, 2, 4, 8, 16, 32, 64);

Set members can be in any order, and you can specify the same element more than once. A
set-valued structured constant is equivalent to the disjunction (the OR operation) of the
members of the base type specified as constant expressions in the set constant.

47 Copyright IBM Corp. 1990, 1993 Chapter 6. Data Types

Chapter 6. Data Types

Every variable and constant in a Pascal program has a type associated with it. A data type
determines the permissible values that a variable can assume or a function can return. It
also determines the operations that can be performed on variables and constants. For
example, integers can be multiplied; characters cannot. XL Pascal provides several
predefined data types. You can also define your own data types using TYPE declarations.

This chapter describes data types and strings, and shows how to create your own data
types.

Basic Data Types
Three kinds of data types are simple, pointer, and structured.

Simple

Standard Mode:

Boolean The enumerated type whose values are (FALSE, TRUE).

Char All the values of the American National Standard Code for Information
Interchange (ASCII) character set.

Enumerated An ordered set of values defined by listing the identifiers that stand for
specific values. For example, you can enumerate the days of the week as
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday.

Integer A positive or negative whole number, or zero.

Real A positive or negative double-precision floating-point number, or zero.

Subrange The minimum and maximum values permitted for a previously defined data
type. A subrange is not permitted for REAL data type.

VS Mode:

Gchar All the values of a multibyte character set (MBCS).

Shortreal A positive or negative single-precision floating-point number.

Subrange A subrange is not permitted for SHORTREAL or GCHAR data types.

Ordinal and Scalar
Any of the simple data types can fall under one or both of the following general categories:

Scalar A type whose values contain only one element. All simple data types are
scalars.

Ordinal A scalar type whose values are mapped to a continuous range of integers.
All scalars are ordinal except REAL, SHORTREAL, and GCHAR.

Pointer
Pointer data types reference dynamic variables, which are variables whose storage is
allocated at run time.

48 XL Pascal Language Reference

String Pointer (STRINGPTR)
In VS mode programs, a STRINGPTR data type defines a pointer to a dynamic string
variable. The maximum length of a string pointer target is determined at run time.

Multibyte Character String Pointer (GSTRINGPTR)
In VS mode programs, a GSTRINGPTR data type defines a pointer to a dynamic variable
that is a string of multibyte characters. The maximum length of a GSTRINGPTR target is
determined at run time.

Structured
Structured types are collections of data defined by describing the types of the components
and indicating their structuring method. How components are structured depends on the
way they are selected and the operations that apply to them.

Standard Mode:

Array An indexed list of elements of the same data type.

File A sequence of components of the same type.

Record A list of named components, or fields, of related data that can be of different
types.

Set A collection of objects of an ordinal type.

Text A predefined data type representing a file of character lines.

VS Mode:

Alfa A predefined data type representing a fixed string of 8 characters.

Alpha A predefined data type representing a fixed string of 16 characters.

Gstring A predefined data type representing a packed array of multibyte characters
(a graphic string) whose length varies at run time up to a maximum
specified during compilation.

Space A variable whose components can be positioned at any byte in the total
storage area of the variable.

String A predefined data type representing a packed array of characters whose
length varies at run time up to a maximum specified during compilation.

Strings and Fixed Strings
A fixed string is a variable or constant that has an associated type of PACKED ARRAY [1..n]
OF CHAR, where n is a positive integer constant. In standard mode XL Pascal, this value
must be greater than 1, and any two strings compared or assigned must have the same
length.

Note: The relative magnitude of two fixed strings is based on the collating sequence of
ASCII.

The following operators are defined for fixed strings and MBCS fixed strings: =, <, < =, >=,
>, <> or ~= (VS Mode only).

The following predefined routines apply to fixed string data in standard mode:

• PACK
• UNPACK

49Chapter 6. Data Types

Strings in VS Mode
The following predefined routines apply to fixed string and MBCS data in VS mode:

• ADDR
• HBOUND
• LBOUND
• SIZEOF

In VS mode fixed strings, the upper bound of the array can equal 1. Strings being compared
or assigned need not be the same length.

The predefined routine STR applies to fixed string data, and the predefined routine GSTR
applies to MBCS fixed string data. An MBCS fixed string is a variable or constant that has an
associated type of PACKED ARRAY [1..n] OF GCHAR, where n is a positive integer
constant.

XL Pascal supports varying-length, or dynamic strings; that is, strings with lengths that can
vary at run time. A variable can be declared as a varying-length string with the predefined
type STRING. Throughout this book, the term string refers to an object of the predefined
type STRING.

Notes:

1. Relative magnitude of two MBCS fixed strings is based on the binary value of
MBCS codes.

2. If two strings or MBCS strings being compared are of different lengths, the shorter
is assumed to be padded with blanks on the right until the lengths match.

Related Information
Sections in Chapter 10, “Routines,” describe the predefined routines in detail. A table
showing the full ASCII character set is in the User’s Guide for IBM AIX XL Pascal
Compiler/6000. More information about dynamic strings is in “STRING” on page 82.

Packed Types
For each variable declared with a particular type, XL Pascal allocates a specific amount of
storage on a specific alignment boundary. The PACKED attribute directs XL Pascal to
minimize the number of bytes of storage required for data of a given type. Packed data
occupies less space and is more compact, but code compiled to use packed data is
processed less efficiently, and programs with packed data may take longer to run.

Components of Packed Records and Arrays
Each component of a structured type usually has proper alignment. Offset is assigned
sequentially, and the components are padded as necessary for boundary alignment as if
they were separate variables.

Packing the array or record allocates storage more efficiently by leaving no unused bytes
between components. Packed arrays and records have each component start in the next
byte following the previous component.

Components of packed arrays or records that are arrays or records with named types do not
inherit the packing attributes of the main, or parent, array or record. Each component has
independent packing attributes. Therefore, if field type is a named type, field is not packed
unless it is of a type declared as PACKED; elements of a packed array are not packed
unless they are of a type declared as PACKED.

50 XL Pascal Language Reference

Packing saves space, but it affects normal alignment rules and restricts how components of
packed records and arrays can be passed as parameters. Standard mode XL Pascal does
not permit elements of packed arrays or records to be passed by VAR to user-defined
procedures.

Sets
The PACKED attribute affects only sets whose base types are subrange types. Unpacked
sets of subrange type always occupy 32 bytes as a 256-bit string. Packed sets of subrange
type use only enough bytes to allocate one bit per value in the subrange.

Subranges
An unpacked subrange occupies as much storage as its base type. A packed subrange
occupies just enough bytes to store the largest and smallest values in the subrange.

Other Packed Types
Declaring the PACKED attribute in type declarations other than records, arrays, sets, and
subranges has no effect on storage. For example, a PACKED FILE is no different from a
FILE.

Anonymous Types
Data types declared without a type name are said to be anonymous types. A field of a
packed RECORD type that is an anonymous subrecord is implicitly packed. An anonymous
array type that is a field of packed RECORD is not implicitly packed.

Related Information
The implementation requirements of packed types and other characteristics of data
representation are described in the User’s Guide for IBM AIX XL Pascal Compiler/6000.

Type Compatibility
XL Pascal supports strong typing of data; that is, objects of one type cannot be combined in
operations with objects of a different type. Strong typing puts strict rules on data types that
are the same. These rules define type compatibility and require you to declare data carefully.
Strong typing permits XL Pascal to check the validity of many operations at compile time,
which helps to produce reliable programs.

Implicit Type Conversion
In general, XL Pascal does not perform implicit type conversions on data. The following are
the implicit conversions:

Implicit Type Conversion in Standard Mode:

• An INTEGER value is converted to a REAL value when one operand of a binary
operation is an INTEGER, and the other is a REAL.

• An INTEGER value is converted to a REAL value when it is assigned to a REAL variable.

• An INTEGER value is converted to a REAL value if it is used in a floating-point divide
operation (/).

• An INTEGER value is converted to a REAL value if it is passed by VALUE to a parameter
requiring a REAL value.

51Chapter 6. Data Types

Implicit Type Conversion in VS Mode:

• An INTEGER value is converted to a SHORTREAL value when one operand of a binary
operation is an INTEGER, and the other is a SHORTREAL.

• An INTEGER value is converted to a SHORTREAL value when it is assigned to a
SHORTREAL variable.

• An INTEGER value is converted to a SHORTREAL value if it is used in a floating-point
divide operation (/) where the other operand is a SHORTREAL.

• An INTEGER value is converted to a SHORTREAL value if it is passed by VALUE or by
CONST to a parameter requiring a SHORTREAL value.

• An INTEGER value is converted to a REAL value if it is passed by CONST to a
parameter requiring a REAL value.

• A SHORTREAL value is converted to a REAL when one operand of a binary operation is
a SHORTREAL and the other is a REAL.

• A SHORTREAL value is converted to a REAL when it is assigned to a REAL variable. A
REAL value is converted to a SHORTREAL value when it is assigned to a SHORTREAL
variable.

• A SHORTREAL value is converted to a REAL if it is passed by VALUE or by CONST to a
parameter requiring a REAL value. A REAL value is converted to a SHORTREAL value if
it is passed by VALUE or by CONST to a parameter requiring a SHORTREAL value.

• A STRING value is converted to a fixed string on assignment to a fixed-string variable.
The string is padded with blanks on the right if it is shorter than the array to which it is
being assigned. The STRING value is truncated on the right if it is longer than the array to
which it is being assigned. Truncation causes a runtime error if checking is enabled.

• A STRING value being passed by VALUE or by CONST to a fixed string formal
parameter is converted to a fixed string. The string is padded with blanks on the right if it
is shorter than the array to which it is being passed. The STRING value is truncated on
the right if it is longer.

• A GSTRING value is converted to an MBCS fixed string on assignment to an MBCS
fixed-string variable. The MBCS string is padded with blanks on the right if it is shorter
than the array to which it is being assigned. The GSTRING value is truncated on the right
if it is longer than the array to which it is being assigned. Truncation causes a runtime
error if checking is enabled.

• A GSTRING value being passed by VALUE or by CONST to an MBCS fixed string formal
parameter is converted to an MBCS fixed string. The MBCS string is padded with blanks
on the right if it is shorter than the array to which it is being passed. The GSTRING value
is truncated on the right if it is longer than the array to which it is being passed.

Same Data Types
Two variables are said to be of the same type if the declarations of the variables are either
of the following:

• Both refer to the same type identifier

• Both refer to different type identifiers defined as equivalent by a type definition of the
form:

TYPE T1 = T2

where T2 is a type identifier.

52 XL Pascal Language Reference

Compatible Data Types
You can do binary operations on two values of compatible types. Any object of type SET is
compatible with the empty set. Any object that is a pointer type is compatible with the value
NIL.

Standard Mode
Two types are compatible when any one of the following is true:

• Both types are the same.

• One type is a subrange of the other.

• Both types are subranges of the same type.

• One value is a character constant, the other is a fixed string and both have the same
number of characters.

• Both are set types with compatible base types, and both are either packed or unpacked.
In VS mode, the packing of the sets need not match.

• Both are fixed strings and both have the same number of characters. In VS mode, the
number of characters need not be the same.

VS Mode
Two types are compatible when any one of the following is true:

• One value is an MBCS character constant, and the other is an MBCS fixed string

• Both are type STRING or both are type GSTRING of the same maximum length

• One value is a string literal, and the other is a fixed string

• One value is a string literal of one character, and the other is a CHAR

• One value is an MBCS string literal, and the other is an MBCS fixed string

• One value is an MBCS string literal of one character, and the other is a GCHAR

String constants are compatible with character, fixed string, or varying-length string values,
assuming that all length requirements are met.

A packed array can be assigned to another packed array of a larger size.

Assignment Compatibility
You can assign a value to a variable if the types are assignment compatible. In the
assignment statement V := E, an expression E is assignment-compatible with variable V
when any one of the following is true.

Standard Mode
• Both V and E are the same type, and neither V nor E is a file type nor contains a file type

• V is of type REAL, and E is compatible with type INTEGER

• V is a compatible subrange of E, and the value to be assigned is within the allowable
subrange of V

• V and E have compatible set types, and all members of E are permissible members of V

• Both V and E are fixed strings of the same length

53Chapter 6. Data Types

VS Mode
• V is of type REAL or SHORTREAL, and E is compatible with type INTEGER

• V is an MBCS fixed string, and E is a GSTRING whose current length is less than or
equal to the length of V

• Both V and E are MBCS fixed strings of the same length

• V is type REAL, and E is type SHORTREAL

• V is type SHORTREAL, and E is type REAL

• V is a fixed string, and E is a dynamic string whose current length is less than or equal to
the length of V

• Both V and E are type STRING or GSTRING, and the current length of E is less than or
equal to the maximum length of V

• Both V and E are packed arrays of characters, and the size of V is less than the size of E

• V is type POINTER, and E is any pointer type

Examples
Given the following declarations:

TYPE
 x = ARRAY [1..10] OF INTEGER;
 days = (mon, tues, wed, thurs, fri, sat, sun);
 weekday = mon..fri;

VAR
 a : ARRAY [1..10] OF INTEGER;
 b : ARRAY [1..10] OF INTEGER;
 c, d : ARRAY [1..10] OF CHAR;
 e : x;
 f : x;
 w1 : days;
 w2 : weekday;

the following type compatibilities apply:

Variable Is Compatible With Has the Same Type As

a
b
c
d
e
f
w1
w2

a
b
c, d
d, c
e, f
f, e
w1, w2
w2, w1

a
b
c, d
d, c
e, f
f, e
w1
w2

54 XL Pascal Language Reference

Creating Your Own Data Types
Using the TYPE definition, you can create your own data types. You can then use the
identifiers for these new data types in type declarations for variables. You might want to
define a data type color with the values yellow, cyan, and magenta, and then define
a variable ink as being type color, as shown in the following example:

TYPE
 color = (yellow, cyan, magenta) ;

VAR
 ink : color ;
begin
 .
 .
 ink := cyan ;
 .
 .
end ;

A type identifier such as color can be used wherever a type definition is needed:

• In a variable declaration (VAR, STATIC, DEF, or REF)
• As the type of a formal parameter
• As a result type in a function
• In a field declaration within a record definition
• In another TYPE declaration

A type has an associated size but reserves no storage itself. Storage is only reserved when
you declare a variable as an instance of that type.

55Chapter 6. Data Types

Summary of Data Types

Standard Mode

Data Type Subtypes Consists Of

Enumerated
scalar

A list of permitted values

Subrange scalar A subset of consecutive values of
a previously defined ordinal type

Predefined
scalar

BOOLEAN An enumerated type with the values
(FALSE,TRUE)

CHAR All the values of the ASCII
character set

INTEGER The subset of the whole numbers
from negative MAXINT to
MAXINT (2147483647)

REAL Double-precision floating-point
data

ARRAY A collection of homogeneous
elements

FILE A one-dimensional sequence of
components of the same type

RECORD A collection of heterogeneous
elements

SET A collection of values taken from
the same ordinal type

Predefined
structure

TEXT A file of character lines

Pointer The address of a dynamic variable

56 XL Pascal Language Reference

VS Mode

Data Type Subtypes Consists Of

Predefined
scalar

GCHAR All the values of the multibyte
character set (MBCS)

SHORTREAL Single-precision floating-point
data

INTEGER The subset of the whole numbers
from MININT (–2147483648) to
MAXINT (2147483647)

SPACE A storage allocation for data of
varying length

Predefined
structure

ALFA A fixed string of 8 characters

ALPHA A fixed string of 16 characters

GSTRING An MBCS fixed string whose length
varies up to a specified maximum

STRING A fixed string whose length varies
up to a specified maximum

Predefined
Pointers

POINTER A value assignment compatible with
any pointer type

GSTRINGPTR A pointer to a variable of type
GSTRING

STRINGPTR A pointer to a variable of type
STRING

Related Information
Operators are described on page 100. The predefined routines are described in Chapter 10,
“Routines”.

ALFA (VS Mode)

Purpose
The predefined type ALFA is defined as:

CONST
 ALFALEN = 8;

TYPE
 ALFA = PACKED ARRAY [1..ALFALEN] OF CHAR;

Description
The ALFA data type is a predefined 8-character fixed string. The predefined constant
ALFALEN has a value of 8.

57Chapter 6. Data Types

Operations
The following operators and predefined functions apply to the ALFA data type.

• Operators =, <, <=, >=, >, <> or ~=
• ADDR
• HBOUND
• LBOUND
• SIZEOF
• STR

ALPHA (VS Mode)

Purpose
The predefined type ALPHA is defined as:

CONST
 ALPHALEN = 16;

TYPE
 ALPHA = PACKED ARRAY [1..ALPHALEN] OF CHAR;

Description
The ALPHA data type is a predefined 16-character fixed string. The predefined constant
ALPHALEN has a value of 16.

Operations
The following operators and predefined functions apply to the variables of the predefined
type ALPHA.

• Operators =, <, <=, >=, >, <> or ~=
• ADDR
• HBOUND
• LBOUND
• SIZEOF
• STR

ARRAY

Purpose
Defines a list of homogeneous elements in which each element is paired with one value of
an index. The index can be any finite ordinal type.

Syntax

OF[]enumerated
ordinal

subrange
PACKED

 type

,

ARRAY

58 XL Pascal Language Reference

Parameters
enumerated is an enumerated scalar data type.

ordinal is an ordinal type name.

subrange is a subrange data type.

type is any type.

Description
An element of the array is accessed through its subscript. To subscript a variable, you must
specify an index. The number of elements in the array is the number of values potentially
assumable by the index. The index type cannot define more than MAXINT potentially
assumable values.

Each element of the array is of the same type, called the element type of the array. The
element type can be any valid XL Pascal type (including FILE types). Entire arrays can be
assigned if they are of the same type.

Pascal uses square brackets [and] in the declaration of arrays. Because these symbols are
not directly available on many I/O devices, you can use (. and .) as an alternative to the
square brackets.

An array defined with more than one index is said to be multidimensional. Such an array is
equal to an array of arrays. For example, the following is an array definition:

ARRAY [i,j,...] OF t

The following is an abbreviated form of the array definition:

ARRAY [i] OF
 ARRAY [j] OF
 ... t

where i and j are scalar type definitions.

Operations
The following predefined routines operate on the ARRAY data type:

Standard Mode:

• PACK
• UNPACK

VS Mode:

• ADDR
• HBOUND
• LBOUND
• SIZEOF

59Chapter 6. Data Types

Examples
In the following example, the first and second type declarations are alternatives for the same
structure.

TYPE
 matrix = ARRAY [1.. 10, 1..10] OF REAL;
 matrix0 = ARRAY [1..10] OF
 ARRAY [1..10] OF REAL;
 able = ARRAY [BOOLEAN] OF INTEGER;
 color = (red, yellow, blue);
 intensity = PACKED ARRAY [color] OF REAL;
 ALFA = PACKED ARRAY [1..ALFALEN] OF CHAR;

BOOLEAN

Purpose
Is a predefined enumerated scalar whose constant values are FALSE and TRUE as defined
in the following type declaration:

TYPE
 BOOLEAN = (FALSE, TRUE);

Operations
The logical operators shown in the following table form Boolean functions.

Name Operation Result

AND (&) FALSE & FALSE
FALSE & TRUE
TRUE & FALSE
TRUE & TRUE

FALSE
FALSE
FALSE
TRUE

OR (|) FALSE | FALSE
FALSE | TRUE
TRUE | FALSE
TRUE | TRUE

FALSE
TRUE
TRUE
TRUE

NOT (~) ~FALSE
~TRUE

TRUE
FALSE

XOR (&&) FALSE && FALSE
FALSE && TRUE
TRUE && FALSE
TRUE && TRUE

FALSE
TRUE
TRUE
FALSE

The predefined functions that operate on enumerated scalar types also apply to type
BOOLEAN.

The following operators apply to the standard type BOOLEAN:

Standard Mode:

• =, <>, <, <=, >=, >
• NOT
• AND
• OR

60 XL Pascal Language Reference

VS Mode:

• ~, &, |, ~=
• XOR, &&

XL Pascal makes the evaluation of Boolean expressions involving AND (&) and OR (|) more
efficient so that the right operand of the expression is not evaluated if the result of the
operation can be determined by evaluating the left operand.

Related Information
Boolean Expressions are described on page 106.

CHAR

Purpose
Is a predefined ordinal type consisting of all of the values of the ASCII character set.
Variables of this type occupy 1 byte of storage and are aligned on a byte boundary.

If the context so dictates, a string constant with a single character is a CHAR constant. For
example, the following assignment statement sets variable c to the ASCII code for the
character ’A’:

VAR
 c : CHAR;

BEGIN
 ...
 c := ’A’;
 ...
END;

Operations
The following operations and predefined functions apply to the standard type CHAR:

Standard Mode:

• The operators =, <>, <, <=, >=, >
• ORD
• PRED
• SUCC

VS Mode:

• The operator ~=
• ADDR
• HIGHEST
• LOWEST
• MAX
• MIN
• SIZEOF
• STR

VS Mode Predefined Character Constant
VS mode provides a predefined constant, MAXCHAR, representing the maximum value of
the type CHAR. Its value is ’FF’XC.

61Chapter 6. Data Types

Related Information
The tables on page 83 describe applying relational operators to characters and converting
characters on assignment. A table showing the full ASCII character set is in the User’s
Guide for IBM AIX XL Pascal Compiler/6000.

Enumerated Scalar

Purpose
Is formed by listing each value permitted for a particular type of variable. A meaningful name
is associated with each value.

Syntax

id()
,

Parameter
id is an identifier treated as a self-defining constant.

Description
An enumerated scalar data type definition declares the identifiers in the enumeration list as
constants of the same type as the enumerated scalar being defined. The lexical scope of the
newly defined constants is the same as any other identifier declared explicitly at the same
lexical level. These constants are ordered so that the first value is less than the second, the
second less than the third, and so forth.

Note: Two enumerated scalar type definitions must not have any elements of the same
name in the same lexical scope.

Operations
The following predefined functions operate on enumerated scalars.

Standard Mode:

• ORD
• PRED
• SUCC

VS Mode:

• ADDR
• HIGHEST
• LOWEST
• MAX
• MIN
• SIZEOF

62 XL Pascal Language Reference

Examples
In the type declarations in the following example, no value is less than the first, or greater
than the last.

TYPE
 days = (mon, tues, wed, thurs, fri, sat, sun);
 months = (jan, feb, mar, apr, may, jun,
 jul, aug, sep, oct, nov, dec);
VAR
 shape : (triangle, rectangle, square, circle);
 rec : record
 suit : (spade, heart, diamond, club);
 day : days
 END;
 month : months;

FILE

Purpose
A file is a structure consisting of a sequence of components where each component is of the
same type.

Syntax

PACKED

FILE OF type

Parameter
type is any data type not containing a file

Description
Input and output in Pascal are usually done through a file. Variables of this type refer to the
components with pointers called file pointers. A file pointer can be thought of as a pointer
into an input/output buffer.

Declaring a file PACKED has no effect on its storage requirements.

The association of a file variable to an actual file of the system is implementation dependent,
and is described in the User’s Guide for IBM AIX XL Pascal Compiler/6000.

Operations
The following predefined routines allow access to file variables.

Standard Mode:

• EOF
• GET
• PUT
• READ
• RESET
• REWRITE
• WRITE

63Chapter 6. Data Types

VS Mode:

• ADDR
• CLOSE
• SEEK
• SIZEOF
• UPDATE

Examples
TYPE
 line = FILE OF PACKED ARRAY [1..80] OF CHAR;
 pfile = FILE OF RECORD
 name : PACKED ARRAY [1..25] OF CHAR;
 person_no : INTEGER;
 date_employed : PACKED ARRAY [1..8] OF CHAR;
 weekly_salary : INTEGER
 END;

GCHAR (VS Mode)

Purpose
The predefined data type GCHAR is a scalar representing an MBCS character in the AIX
National Language operating environment established during the program run. Variables of
this type occupy 2 bytes of storage.

Because values of GCHAR are not mapped on consecutive integers, GCHAR is not an
ordinal type. The GCHAR data type cannot be used in the following situations:

• In subranges or sets of GCHAR
• As an array index type
• As a CASE selector
• As the type name of an ordinal conversion routine
• As the type of variable in a FOR loop index
• As a type of variant selector
• In the predefined functions SUCC, PRED, ORD, HIGHEST, and LOWEST

In certain contexts, an MBCS string constant is regarded as a GCHAR constant. For
example, the following assignment statement sets variable c to the MBCS code value for
the multibyte character D:

VAR
 c: GCHAR;

BEGIN
 ...
 c := ’D’G;
 ...
END;

Note: D represents one MBCS character.

64 XL Pascal Language Reference

Operations
The following operators and predefined functions apply to the data type GCHAR:

• The operators =, <>, ~=, <, <=, >=, >
• ADDR
• GSTR
• MAX
• MIN
• SIZEOF

Related Information
Applying relational operators to MBCS strings and MBCS fixed strings is described on
page 66.

Converting MBCS strings and MBCS fixed strings on assignment is described on page
66.

GSTRING (VS Mode)

Purpose
The predefined data type GSTRING is defined as:

TYPE
 GSTRING = PACKED ARRAY [1..n] OF GCHAR;

The length of GSTRING varies at run time up to a compile-time specified maximum given by
the constant expression.

Syntax

GSTRING

()constant_expr

Parameter
constant_expr is any constant expression.

Description
A variable declared as GSTRING is a string of multibyte characters. The constant
expression gives the maximum number of GCHARs that GSTRING can contain. The default
maximum is 255. The lower bound is always 1.

Assignment and concatenation operations determine the number of GCHAR elements
considered active. This number must not exceed the maximum specified at the time you
declared the variable. The maximum upper bound for GSTRING is 16382.

The length of the array is obtained during run time by the LENGTH function. The length is
managed implicitly by the operators and functions that apply to GSTRINGs. The maximum
length of the array is obtained during run time by the MAXLENGTH function. The length of a
GSTRING variable is determined when the variable is assigned.

65Chapter 6. Data Types

A GSTRING variable can be subscripted with an integer expression to refer to a multibyte
characters. A subscript of 1 refers to the first multibyte character. The subscript value must
neither be less than 1, nor exceed the length of the GSTRING.

Any variable of type GSTRING is compatible with any other variable of type GSTRING. That
is, the maximum length field of a type definition has no bearing in type compatibility tests.
Implicit conversion is performed when a GSTRING is assigned to a variable whose type is
PACKED ARRAY [1..n] OF GCHAR. All other conversions must be done explicitly.

The assignment of one GSTRING to another may cause a runtime error if the length of the
source GSTRING is greater than the maximum length of the target.

Operations
The following operators and predefined routines apply to variables of type GSTRING:

• Operators =, <>, ~=, <, <=, >=, >, ||, +
• ADDR
• COMPRESS
• DELETE
• GSTR
• GTOSTR
• HBOUND
• INDEX
• LBOUND
• LENGTH
• LPAD
• LTRIM
• MAXLENGTH
• PACK
• RINDEX
• RPAD
• SIZEOF
• SUBSTR
• TRIM
• UNPACK

Note: Both operands must be of type GSTRING.

66 XL Pascal Language Reference

Applying Relational Operators to MBCS Data
The following table shows how to apply relational operators to variables of type GCHAR and
GSTRING and to MBCS fixed strings:

Left Operand Right Operand Result

GCHAR GCHAR Allowed

PACKED ARRAY OF GCHAR Not permitted

GSTRING Use GSTR on the GCHAR

PACKED ARRAY OF GCHAR Not permitted

GCHAR PACKED ARRAY OF GCHAR Allowed if operands
are type compatible

GSTRING Use GSTR on the array

GSTRING GCHAR Use GSTR on the GCHAR

PACKED ARRAY OF GCHAR Use GSTR on the array

GSTRING Allowed

Converting MBCS Strings on Assignment

Target Variable Source Expression Result

GCHAR GCHAR Allowed

PACKED ARRAY OF GCHAR Not permitted

GSTRING Use string indexing to
obtain a GCHAR

PACKED ARRAY OF GCHAR Not permitted

GCHAR PACKED ARRAY OF GCHAR Allowed if operands
are type compatible

GSTRING GSTRING is converted.
If truncation is
required, an error
results.

GSTRING GCHAR Use GSTR to convert
the GCHAR to a GSTRING

PACKED ARRAY OF GCHAR Use GSTR to convert
the array to a GSTRING

GSTRING Allowed

67Chapter 6. Data Types

Examples
FUNCTION Getgchar(CONST s : GSTRING ; idx : INTEGER) : GCHAR;
 BEGIN
 Getgchar := s[idx]; (* subscripted GSTRING object *)
 END;
 .
 .
 VAR
 gs1 : GSTRING(10);
 gs2 : GSTRING(5);
 gc : GCHAR;

 BEGIN
 gs1 := ’DDDDD’G; (* for this example assume *)
 . (* that D represents a *)
 . (* multibyte character *)
 gs2 := ’BBBB’G;
 gs1 := gs1 || gs2; (* pad gs1 with blanks *)
 gc := getgchar(gs1, 4);(* gets the fourth GCHAR *)
 (* from gs1 *)
 END;

GSTRINGPTR (VS Mode)

Purpose
Defines a pointer to a dynamic MBCS string variable, which is a GSTRING with no
maximum length associated with it until run time.

GSTRINGPTR is equivalent to:

TYPE
 GSTRINGPTR = @GSTRING;

The procedure NEW allocates storage for the GSTRINGPTR data type. An integer
expression is passed to the procedure that specifies the maximum length of the allocated
GSTRING.

Variables of type GSTRING have two lengths associated with them:

• The current length that defines the number of multibyte characters in the GSTRING

• The maximum length that defines the storage required for the GSTRING

Operations
The following operators and predefined routines are valid for the GSTRINGPTR data type:

• Operators =, <>, ~=
• ADDR
• DISPOSE
• DISPOSEHEAP
• MARK
• NEW
• NEWHEAP
• QUERYHEAP
• RELEASE
• SIZEOF
• USEHEAP

68 XL Pascal Language Reference

Example
VAR
 gp : gstringptr;
 i : 1..16000;

BEGIN
 i := 50;
 NEW(gp, i); (* create new gstring variable that can *)
 (* contain up to 50 GCHARs. Set gp to *)
 (* point to that variable *)
 READLN(gp@);(* read from INPUT, GCHAR data into the *)
 (* new string *)
 WRITELN(LENGTH (gp@))(* write the length of data read *)
END;

INTEGER

Purpose
Represents the subset of whole numbers defined as follows:

TYPE
 INTEGER = MININT..MAXINT;

where MININT is a VS mode predefined integer constant whose value is –2147483648, and
MAXINT is a predefined integer constant whose value is 2147483647. The predefined type
INTEGER represents 32-bit values in 2’s complement notation. Variables of the type
INTEGER are word aligned.

Operations
The following operations and predefined functions apply to values of the standard type
INTEGER:

Standard Mode:

• The operators DIV, MOD, +, –, *, /, =, <>, <, <=, >=, >
• ABS
• CHR
• ODD
• PRED
• SQR
• SUCC

VS Mode:

• The operators NOT, ~, OR, |, AND, &, XOR, &&, <<, >>, ~=
• FLOAT
• HIGHEST
• LOWEST
• MAX
• MIN
• SIZEOF

69Chapter 6. Data Types

Pointer Data Types

Purpose
Track dynamic variables by maintaining their addresses in storage using pointer variables.
The predefined procedure NEW lets you create dynamic variables, which are variables
under your explicit control during program run time.

Syntax

@

^
–>

id_type

string_type

Parameters
id_type is any type.

string_type is any string data type.

Note: The pointer reference symbol –> is available in VS mode only.

Description
NEW creates a new variable of the appropriate type and assigns its address to the argument
of NEW. You must explicitly deallocate a dynamic variable with either of the predefined
procedures DISPOSE and RELEASE; otherwise, dynamic variables are deallocated at the
end of the program.

Pointers are constrained to point to a particular type. When you declare a pointer you must
specify the type of the dynamic variable that is generated or referenced.

XL Pascal defines the named constant NIL as the value of an empty pointer, which is a
pointer that does not point to any dynamic variable. The NIL is type-compatible to every
pointer type.

Operations
The only operators that can be applied to variables of pointer types are the tests for equality
and inequality. The following operators and predefined routines apply to the pointer data
types.

Standard Mode:

• Operators =, <>
• DISPOSE
• NEW

70 XL Pascal Language Reference

VS Mode:

• Operator ~=
• ADDR
• DISPOSEHEAP
• MARK
• NEWHEAP
• QUERYHEAP
• RELEASE
• SIZEOF
• USEHEAP

Example
In the following example, the data type element is referred to before it is declared. Usually
you must not refer to an identifier before declaring it. A type identifier used as the base type
in a pointer declaration is, however, an exception to this rule. The example illustrates a data
type used to build a tree structure.

TYPE
 ptr = @ element;
 element = RECORD
 parent : ptr;
 child : ptr;
 sibling : ptr
 END;

POINTER (VS Mode)

Purpose
Is assignment compatible with any pointer type. This predefined data type does not have a
target type. A variable of type POINTER can be assigned to a variable of any pointer type.
The NEW and DISPOSE procedures cannot be used on a parameter of type POINTER.

Operations
The following operators and predefined routines are valid for the POINTER data type:

• Operators =, <>, ~=
• ADDR
• SIZEOF

71Chapter 6. Data Types

Example
TYPE
 reckind = (big, small);
 smallrec = RECORD
 .
 .
 END;
 bigrec = RECORD
 .
 .
 END;

PROCEDURE process_record(ptrparam : POINTER;
 whichkind : reckind);

 VAR
 bigptr : @bigrec;
 smallptr : @smallrec;

 BEGIN
 CASE whichkind OF
 big : BEGIN
 bigptr := ptrparam;
 (* process object ”bigptr@” of type ”bigrec” *)
 END
 small : BEGIN
 smallptr := ptrparam;
 (* process object ”smallptr@” *)
 (* of type ”smallrec” *)
 END ;
 END ; (* CASE *)
 END ; (* BEGIN – process_record *)

In procedure process_record, parameter ptrparam is of type POINTER and is
compatible with any pointer type. Parameter whichkind determines whether ptrparam
points to a variable of type bigrec or smallrec. If you assign ptrparam to a pointer
variable with the same target type as the variable ptrparam points, you can process that
variable. You cannot process ptrparam@ directly as a variable because it does not have a
specified type.

REAL

Purpose
Represents floating-point data. Variables of this type occupy 8 bytes of storage and are
aligned on a double word boundary. All REAL arithmetic is done using double-precision
floating-point instructions.

Operations
The following operations and predefined functions apply to values of type REAL:

Standard Mode:

• Operators +, –, *, /, =, <>, <, <=, >=, >
• ABS
• ARCTAN
• COS

72 XL Pascal Language Reference

• EXP
• LN
• ROUND
• SIN
• SQR
• SQRT
• TRUNC

VS Mode:

• Operator ~=
• ADDR
• MAX
• MIN
• SIZEOF

VS Mode Predefined Constants
XL Pascal provides three predefined REAL constant values in VS mode:

• MAXREAL is a predefined constant whose value is the largest floating-point magnitude of
the type REAL.

• MINREAL is a predefined constant whose value is the smallest nonzero floating-point
magnitude of the type REAL.

• EPSREAL is the smallest REAL value that, when added to 1, is detectable.

Restrictions
The REAL type is not ordinal. It has restrictions that other scalar types do not have and
cannot be used under the following circumstances:

• In subranges or sets of REAL
• As an array index type
• In the predefined functions SUCC, PRED, ORD, HIGHEST, and LOWEST
• As the type of variable in a FOR loop index
• As a CASE selector
• As the type of variant selector

Example
In the following example, n cannot be REAL in the subrange [1..n], and the variable i
cannot be of type REAL.

VAR
 reals : ARRAY [1..n] OF REAL;
 .
 .
BEGIN
 reals [i] := 3.14159

Related Information
Other data types are converted to REAL under some operations, as described in “Implicit
Type Conversion” on page 50.

73Chapter 6. Data Types

RECORD

Purpose
A record is a data structure composed of heterogeneous components called fields. Each
field can be of a different type.

Syntax

RECORD

PACKED

ENDfield–list

Field–list

fixed–part

; variant–partfixed–part

variant–part

;

Fixed–part

type

;

,

:
field

Variant–part

:
CASE OFid_type

id_field :

id_field

 : field–list ()

;

range
,

id_type

74 XL Pascal Language Reference

Field

()constant_expr
id

Range

.. constant_expr

constant

constant_expr

Parameters
id is the name of variable

type is the type of record field

id_type is the type of tag field

constant is any constant

id_field is a tag field identifier (The id_field without an id_type parameter is used in
VS mode only)

constant_expr is any constant expression (VS mode only)

Operations
In VS mode only, the following predefined functions operate on the RECORD data type:

• ADDR
• SIZEOF

Naming a Field
A field is referred to by its name. The scope of a field name is within the record to which the
field belongs. You can use the same field identifier in more than one record, but every field
name within a record must be unique, even if that name appears in a variant part. No field
name can be the same as that of any field type in the same record.

In VS mode, the field of a record need not be named, and the field identifier may be missing.
In such a case, the field serves only as padding and cannot be referred to.

75Chapter 6. Data Types

Examples
TYPE
 rec = RECORD
 a, b : INTEGER;
 : CHAR; (* unnamed; VS mode only *)
 c : CHAR
 END;
 date = RECORD
 day : 1..31;
 month : 1..12;
 year : 1900..2100
 END;
 person = RECORD
 last_name, first_name : ALFA;
 middle_initial : CHAR;
 age : 0..99;
 employed : BOOLEAN
 END;

Fixed Part
The fixed part of a record is a series of fields in every variable declared to be of that record
type. If present, it always appears before the variant part.

Variant Selector
The variant selector follows the reserved word CASE in the variant part of the record. This is
an ordinal type that indicates which variant of the record is active.

When the variant selector is followed by a colon and a type, a new tag field is defined within
the record. For example, the following results in i being a tag field of type INTEGER:

CASE i: INTEGER OF

The variant part of a record need not have a tag field at all. In this case, only a type identifier
is specified in the CASE construct. For example, the following means no tag field is present:

CASE INTEGER OF

The variants are denoted by integer values in the variant declaration. You must still refer to
the variant fields by their names, but it is your responsibility to keep track of which variant is
active (that is, contains valid data) at run time.

Variant Selectors in VS Mode
If the type identifier of the tag field is missing, the tag field name must be one previously
defined within the record. The tag field can appear anywhere in the fixed part of the record.
For example, the following means that i is the tag field and it must have been declared in
the fixed part:

CASE i: OF

The type of i is given in the field definition of i.

Variant Part
The variant part of a record permits you to define an alternative structure in the record. The
record structure adopts one of the variants at a time.

All variant tags must be assignment compatible with the tag type, and all possible values of
a tag type must correspond to a variant. A variant part can only occur after the fixed part,
and it can only occur once within each record.

76 XL Pascal Language Reference

Variant Parts in VS Mode
You can omit the tag constants you do not want to be used.

Examples
TYPE
 shape = (triangle , rectangle , square , circle);
 coordinates = (* fixed part: *)
 RECORD
 x, y : REAL;
 area : REAL;
 CASE s : shape OF
 (* variant part: *)
 triangle : (side : REAL;
 base : REAL);
 rectangle : (sidea, sideb : REAL);
 square : (edge : REAL);
 circle : (radius : REAL)
 END;

In this example, the record type defined as coordinates contains a variant part. The tag
field is s, its type is shape, and its value (whether triangle, rectangle, square, or
circle) indicates which variant is in effect. The fields side, sidea, edge, and radius
occupy the same offset within the record.

The following figure shows how the record would look in storage.

Storage of a Record with a Tag Field

Fixed Part:

Tag Field

Variant Part:

x

y

area

s

side

base

sidea

sideb

edge radius

Each column in the variant represents one alternative for the variant.

77Chapter 6. Data Types

If you prefer the tag field to be absent altogether, define the record as follows:

coordinates = RECORD
 x, y : REAL;
 area : REAL;
 CASE shape OF
 (* variant part: *)
 triangle : (side : REAL;
 base : REAL);
 rectangle : (sidea, sideb : REAL);
 square : (edge : REAL);
 circle : (radius : REAL)
 END;

The following figure shows how the record would look in storage.

Storage of a Record Variant with No Tag Field

Fixed Part:

Variant Part:

x

y

area

side

base

sidea

sideb

edge radius

In VS mode only, if you prefer the tag field to be the first field instead of the fourth, define it
as follows:

coordinates = RECORD
 s : shape;
 x, y : REAL;
 area : REAL;
 CASE s : OF
 (* variant part: *)
 triangle : (side : REAL;
 base : REAL);
 rectangle : (sidea, sideb : REAL);
 square : (edge : REAL);
 circle : (radius : REAL)
 END;

78 XL Pascal Language Reference

The following figure shows how the record would look in storage.

Storage of a Record with a Back-Reference Tag Field

Fixed Part:

Tag Field

Variant Part:

x

y

area

s

side

base

sidea

sideb

edge radius

Offset Qualification of Fields (VS Mode Only)
XL Pascal allows you to force the fields of a record to begin at a specified byte offset in the
record. A field name can be followed by an integer constant expression enclosed in
parentheses. This expression represents the byte offset within the record where the field
begins. All fields so specified must be in consecutive order according to offsets. If the offset
is not specified and the record is not packed, the field is assigned the next offset required for
boundary alignment. If the record is packed, the field is byte-aligned to the next available
offset. If an offset specification tries to assign an incorrect boundary for a field and the
record is not packed, a compile-time error message is issued.

79Chapter 6. Data Types

Examples
Assume that a large control block of 100 bytes is needed in which four fields at various
offsets must be referenced. The fields of the control block, and how the control block can be
represented in XL Pascal, are shown in the following example.

Byte Displacement Information

0 Field a (integer)

36 Field b (8 characters)

80 Field c (4 flags)

92 Field d (integer)

TYPE
 flags = SET OF (f1 , f2 , f3 , f4);
 padding = PACKED ARRAY [1..4] OF CHAR;
 cb = PACKED RECORD
 a : INTEGER;
 b(36) : ALFA;
 c(80) : flags;
 d(92) : INTEGER;
 : padding
 END;

VAR
 block : cb;

You cannot use an offset qualifier on the variant part tag field. To set the tag field at a certain
offset, make the tag field a backward reference, give the last identifier of the fixed part the
same name as the tag field, and put the offset qualifier on this last identifier. The following
example illustrates this:

TYPE tag = PACKED RECORD
 a : BOOLEAN;
 b(2) : BOOLEAN;
 CASE b : OF
 TRUE : (c : CHAR);
 FALSE : (d : REAL)
 END;

VAR
 block : TAG;

SET

Purpose
Contains any combination of values taken from the base scalar type.

Syntax

SET OF enumerated_scalar

ordinal
subrange

PACKED

80 XL Pascal Language Reference

Parameters
enumerated_scalar is an enumerated scalar data type.

ordinal is an ordinal type name.

subrange is a subrange data type.

Description
A value is either in the set or it is not in the set. XL Pascal sets can be used in many of the
same ways as bit strings. Each bit corresponds to one element of the base type, and is set
to a binary one when that element is a member of the set. For example, a set operation
such as intersection, whose operator is an asterisk (*), is the same as taking the Boolean
AND of two bit strings.

Operations
The following operators and predefined functions apply to variables of the type SET:

Standard Mode:

• The operators IN, =, <>,< =, >=, +, *, –

VS Mode:

• The operators XOR, NOT, &&, ~=, ~
• ADDR
• SIZEOF.

Example
TYPE
 days = (monday, tuesday, wednesday, thursday, friday);
 chars = SET OF CHAR;
 daysofmon = PACKED SET OF 1..31;
 daysofweek = SET OF monday..friday;
 flags = SET OF (a, b, c, d, e, f, g, h);

SHORTREAL (VS Mode)

Purpose
Represents floating-point data. Variables of this type occupy 4 bytes of storage and are
aligned on a word boundary.

To pass a SHORTREAL as an operand to a function or procedure that requires a REAL
parameter, that parameter must be passed by value or by CONST.

Predefined Constants
XL Pascal provides three predefined constant SHORTREAL values:

• MAXSREAL is a predefined constant whose value is the largest floating-point magnitude
of the type SHORTREAL.

• MINSREAL is a predefined constant whose value is the smallest nonzero floating-point
magnitude of the type SHORTREAL.

• EPSSREAL is the smallest SHORTREAL value that, when added to 1, is detectable.

81Chapter 6. Data Types

Operations
Operations between data of type REAL and SHORTREAL are done using double-precision
floating-point instructions. The SHORTREAL operand in such operations is implicitly
converted to a REAL, as described in “Implicit Type Conversion” on page 50.

The following operations and predefined functions apply to values declared as
SHORTREAL:

• The operators +, –, *, /, =, <>, ~=, <, <=, >=, >
• ABS
• ADDR
• ARCTAN
• COS
• EXP
• LN
• MAX
• MIN
• ROUND
• SIN
• SIZEOF
• SQR
• SQRT
• TRUNC

Restrictions
The SHORTREAL type is not ordinal; therefore, it has restrictions other scalar types do not
have. It cannot be used under the following circumstances:

• In subranges or sets of SHORTREAL
• As an array index type
• In the predefined functions SUCC, PRED, ORD, HIGHEST, and LOWEST
• As the type of variable in a FOR loop index
• As a CASE selector
• As the type of variant selector

SPACE (VS Mode)
Represents a collection of objects of the same element type. The components of a SPACE
variable can be of different lengths.

Syntax

SPACE OF type[]constant_expr

Parameters
constant_expr is the size of the storage area (in bytes) of the type.

type is any type except FILE or TEXT.

Description
A variable of the type SPACE occupies the number of bytes indicated in the length specifier
of the type definition and is byte-aligned.

82 XL Pascal Language Reference

Unlike an array, where an element is accessed by an index value, an element of a SPACE
variable is accessed with an INTEGER expression that represents the byte offset of the
element within the SPACE storage area. The offset is specified with an origin of zero.

You can pass an element of a SPACE variable by CONST or VALUE.

Operations
The following predefined functions are valid for the SPACE data type.

• ADDR
• HBOUND
• LBOUND
• SIZEOF

Related Information
Refer to page 95 for examples of the SPACE data type.

STRING (VS Mode)

Purpose
The predefined data type STRING is defined as a 2-byte length field plus a PACKED
ARRAY [1..n] OF CHAR whose length varies at run time up to a compile-time specified
maximum given by the constant expression. The value of the constant expression defining
the length of the string must be in the range 0..32767. The default maximum length is 255.

Syntax

STRING
constant_expr)(

Parameter
constant_expr is any integer constant expression.

Description
The current length of the array is obtained during run time by the LENGTH function. The
length is managed implicitly by the operators and functions that apply to strings. The
maximum length of the array is obtained during run time by the MAXLENGTH function. The
length of a string variable is determined when the variable is assigned.

If the length of the source strings is greater than the maximum length of the target, the
assignment of one string to another may cause a runtime error. XL Pascal does not
automatically truncate strings unless given explicit directions to do so.

A string variable can be subscripted with an integer expression to refer to individual
characters. A subscript of 1 refers to the first character. The subscript value must not be less
than 1 nor exceed the length of the string.

Implicit conversion is performed when a string is assigned to a variable whose type is
PACKED ARRAY [1..n] OF CHAR. All other conversions must be done explicitly.

83Chapter 6. Data Types

Operations
The following operations and predefined routines apply to variables of type STRING.

• The operators =, <>, ~=, <, <=, >=, > , ||, +
• ADDR
• COMPRESS
• DELETE
• HBOUND
• INDEX
• LBOUND
• LENGTH
• LPAD
• LTRIM
• MAXLENGTH
• PACK
• PICTURE
• READSTR
• RINDEX
• RPAD
• SIZEOF
• STOGSTR
• STR
• SUBSTR
• TRIM
• UNPACK
• WRITESTR

Notes:

1. Both operands must be of type STRING.

2. If two strings being compared are of different lengths, the shorter is assumed to be
padded with blanks on the right until the lengths match.

3. Relative magnitude of two strings is based upon the collating sequence of ASCII.

Applying Relational Operators to String Data
The following table shows how to apply relational operators to variables of type CHAR and
STRING and to fixed strings:

Left Operand Right Operand Result

CHAR CHAR Allowed

PACKED ARRAY OF CHAR Not Allowed

STRING Use STR on the CHAR

PACKED ARRAY OF CHAR CHAR Not permitted

PACKED ARRAY OF CHAR Allowed if operands
are type compatible

STRING Use STR on the array

STRING CHAR Use STR on the CHAR

PACKED ARRAY OF CHAR Use STR on the array

STRING Allowed

84 XL Pascal Language Reference

Converting Strings on Assignment

Target Variable Source Expression Result

CHAR CHAR Allowed

PACKED ARRAY OF CHAR Not permitted

STRING Use string indexing
to obtain a CHAR

PACKED ARRAY OF CHAR CHAR Not permitted

PACKED ARRAY OF CHAR Allowed if operands
are type compatible

STRING STRING is converted.
If truncation is
required, an error
results.

STRING CHAR Use STR to convert
the CHAR to a string

PACKED ARRAY OF CHAR Use STR to convert
the array to a string

STRING Allowed

Mixed Strings
Strings with a mixture of single-byte characters and multibyte characters are called mixed
strings. XL Pascal provides a set of routines that allow you to manipulate mixed strings.
These routines recognize and preserve multibyte characters by counting them as a unit.

Note: Mixed string routines cannot have GSTRING operands.

The following routines apply to mixed strings:

• MCOMPRESS
• MDELETE
• MINDEX
• MLENGTH
• MLTRIM
• MRINDEX
• MSUBSTR
• MTRIM

85Chapter 6. Data Types

Examples
FUNCTION getchar(CONST s : STRING; idx : INTEGER) : CHAR;
 BEGIN
 getchar := s[idx] (* Subscripted string variable *)
 END;
 ...
 VAR
 s1 : STRING(10);
 s2 : STRING(5);
 c : CHAR;
 BEGIN
 s1 := ’MESSAGE:’;
 c := getchar(s1, 4); (* Returns 4th character in the *)
 ... (* string s1; c is assigned ’S’ *)
 s2 := ’FIVE’;
 c := getchar(s2, 2); (* Returns 2nd character in the *)
 (* string s2; c is assigned ’I’ *)
 END;

STRINGPTR (VS Mode)

Purpose
Defines a pointer to a dynamic string variable, which is a string with no maximum length
associated with it until run time.

STRINGPTR is equivalent to:

TYPE
 STRINGPTR = @STRING;

The procedure NEW allocates storage for the STRINGPTR data type. An integer expression
is passed to the procedure that specifies the maximum length of the allocated string.

Variables of type STRING have two lengths associated with them:

• The current length that defines the number of characters in the string at any instant.
• The maximum length that defines the storage required for the string.

Operations
The following operators and predefined routines apply to the STRINGPTR data type:

• Operators =, <>, ~=
• ADDR
• DISPOSE
• DISPOSEHEAP
• MARK
• NEW
• NEWHEAP
• QUERYHEAP
• RELEASE
• SIZEOF
• USEHEAP

86 XL Pascal Language Reference

Example
VAR
 p : STRINGPTR;
 q : STRINGPTR;
 i : 0..32767;

BEGIN
 ...
 i := 30;
 NEW(p, i); (* allocates a string variable *)
 (* with maximum length 30, and *)
 (* sets pointer p to point at it *)
 p@ := ’abc’;
 WRITELN(MAXLENGTH(p@)); (* writes ’30’ to output *)
 WRITELN(LENGTH(p@)); (* writes ’3’ to output *)
 NEW(q, 5);
 q@ := ’1234567890’;(* causes a truncation error at run time*)

END;

Subrange Scalar

Purpose
Is a subset of consecutive values of a previously defined ordinal scalar. Any operation
permitted on a scalar is also permitted on any subrange of it.

Syntax

constant

..PACKED RANGE

constant_expr

constant
..

..
constant_expr constant_expr

Parameters
constant is any ordinal constant.

constant_expr is any ordinal constant expression (VS mode only).

Description
A subrange is defined by specifying the minimum and maximum values permitted for data
declared with that type. The lower bound of a subrange type must not be greater than the
upper bound, and both bounds must be of identical scalar types.

Subranges in VS Mode
For packed subranges in VS mode, XL Pascal assigns the smallest number of bytes
required to represent a value of that type.

The VS mode reserved word RANGE allows you to use a constant expression for the
minimum value. If the reserved word RANGE appears in the subrange definition, both the
minimum and maximum values can be any expression that can be computed at compile
time. If you do not use the reserved word RANGE, the minimum value of the range must be
a simple constant, while the maximum value can still be any expression that can be
computed at compile time.

87Chapter 6. Data Types

Operations
The following predefined routines operate on subrange expressions.

Standard Mode:

• ORD
• PRED
• SUCC

VS Mode:

• HIGHEST
• LOWEST
• MAX
• MIN

Restrictions

Standard Mode:

• A subrange of type REAL is not permitted.
• The number of values in a subrange of type CHAR is determined by the collating

sequence of the ASCII character set.
• PACKED subranges are not allowed.

VS Mode:

• Subranges of type SHORTREAL or GCHAR are not permitted.
• The lower bound of a subrange definition not prefixed with RANGE must be a simple

constant instead of a generalized constant expression.

Examples
In the following VS mode example, some_upper_case, one_hundred, codes, and
index are subrange scalar types. All of the VAR declarations define subrange scalar
variables.

CONST
 size = 1000;

TYPE
 days = (su, mo, tu, we, th, fr, sa);
 months = (jan, feb, mar, apr, may, jun,
 jul, aug, sep, oct, nov, dec);
 some_upper_case = ’A’..’I’;
 one_hundred = 0..99;
 codes = RANGE CHR(0)..CHR(255);
 index = PACKED 1..size + 1;

VAR
 work_day : mo..fr;
 summer : jun..aug;
 smallint : PACKED 0..255;
 year : 1900..2000;

The following example illustrates two subrange types defined over the same base type.
Operations are permitted between these two variables because they have the same base
type.

VAR
 neg : MININT..–1;
 pos : 1..MAXINT;

88 XL Pascal Language Reference

Related Information
A table showing the full ASCII character set is in the User’s Guide for IBM AIX XL Pascal
Compiler/6000.

TEXT

Purpose
The predefined data type TEXT is a file of character data divided into lines by the ASCII new
line character (X’0A’).

XL Pascal predefines two TEXT variables named INPUT and OUTPUT. The default for
INPUT and OUTPUT is terminal I/O. XL Pascal in standard mode requires that the files
INPUT and OUTPUT be listed in the program header if you use them in the program. VS
mode defines STDERR as an additional predefined variable of the type TEXT. Because
these files are predefined, you do not need to explicitly declare them in your program.

Operations
The following predefined routines apply to the TEXT data type:

Standard Mode:

• EOF
• EOLN
• GET
• PAGE
• PUT
• READ
• READLN
• RESET
• REWRITE
• WRITE
• WRITELN

VS Mode:

• ADDR
• CLOSE
• COLS
• SIZEOF
• TERMIN
• TERMOUT

89 Copyright IBM Corp. 1990, 1993 Chapter 7. Variables

Chapter 7. Variables

XL Pascal divides variables into five classes, depending on how they are declared:

• Automatic (VAR variables)
• Dynamic (POINTER variables)
• Parameter (declared in a routine header)
• Static (STATIC variables)
• External (DEF/REF variables)

A variable has a type and a storage area in memory. Initially, it has no value associated with
it. At any given time after acquiring a value, a variable takes on one value out of the
collection of values that define its type.

You must declare all variables in an XL Pascal program before they are used. To avoid
unpredictable results, you should explicitly initialize all variables before they are used.

Variable References
Depending on its type, you can refer to a variable in several ways. You can reference the
entire variable specifying its name, and you can refer to a dynamic variable or a component
of a structured variable by using the following syntax.

Syntax

@

^
–>

.

,
[]exprid

id_field

Parameters
id is the name of the variable

@ or ^ is a pointer or file reference

–> is a pointer or file reference (VS mode only)

expr is a subscripted variable reference (index expression)

id_field is a field reference

90 XL Pascal Language Reference

Example
PROGRAM test ;

TYPE
 mytype = @INTEGER ;
 info = RECORD
 current : ARRAY [1..5] OF mytype ;
 other : INTEGER ;
 END ;

VAR
 abc : INTEGER ;
 storage : ARRAY [1..3, 2..5] OF info ;
BEGIN
 .
 .
 abc := storage[1, 2].current[1]@ ; (*variable reference*)
 .
 .
END.

Predefined Variables
XL Pascal provides three predefined variables:

INPUT Default input file, TEXT data type
OUTPUT Default output file, TEXT data type
STDERR Default standard error file, TEXT data type (VS mode only)

Lifetime of Variables and Parameters

Standard Mode
Local Variables

The lifetime of a local variable is the same as that of the block in which it is
declared. Allocation occurs on each entry to that block, and local variables
are deallocated on each exit from that block.

Global Variables
The lifetime of global variables is that of the entire program. Variables
outside of procedures or functions in a program or a segment unit are
considered global.

Dynamic Variables
The allocation operation NEW establishes, but does not initialize, dynamic
variables. Dynamic variables become undefined when they are explicitly
deallocated by the DISPOSE or RELEASE procedures, or when no pointer
variable points to them.

Formal Parameters
The lifetime of a formal parameter is the same as that of the procedure or
function containing it. A formal parameter is established with each entry to
the procedure or function and becomes undefined upon exit from it.

91Chapter 7. Variables

VS Mode
Static Variables

These are allocated before you run a program, and they exist for the life of
the program run. Separate invocations of a routine preserve data in static
variables local to that routine. Use VALUE declarations to initialize static
variables at compile time.

External Variables
These are allocated before running a program and exist for the life of a
program. Unlike static variables, they are accessible to several separately
compiled routines (that is, throughout the program). Use VALUE
declarations to initialize external variables at compile time.

Related Information
For more information about the VALUE declaration, refer to page 36.

Subscripted Variables

Array
Select an element of an array by placing an indexing expression enclosed within square
brackets after the name of that array. The indexing expression must be assignment
compatible with the type declared on the corresponding array index definition.

A multidimensional array can be referenced as an array of arrays. For example, let
variable A be declared as follows:

A: ARRAY [a..b, c..d] OF T

As explained in “ARRAY Data Type” on page 57, this declaration is equivalent to:

A: ARRAY [a..b] OF
 ARRAY [c..d] OF T

A reference of the form A[i] represents a single row in array A, and is a variable of type:

ARRAY [c..d] OF T

A reference of the form A[i][j] is a variable of type T, and represents the jth element of
the ith row of array A. This latter reference is customarily abbreviated as:

A[i,j]

You can abbreviate any array reference with two or more subscript indexes by writing the
subscripts in order, separated by commas. That is, you can write A[i][j]... as:

A[i,j,...]

92 XL Pascal Language Reference

Example
TYPE
 matrix = ARRAY [1..10, 1..10] OF REAL;
 matrix0 = ARRAY [1..10] OF (* An alternative declaration *)
 ARRAY [1..10] OF REAL; (* for matrix, above *)
 color = (red, yellow, blue) ;
 intensity = PACKED ARRAY [color] OF REAL;

VAR
 m : matrix;
 hue : intensity;

BEGIN
 (* assign ten element array *)
 m[1] := m[2];
 (* assign one element of a two dimensional array two ways *)
 m[1,1] := 3.14159;
 m[1] [1] := 3.14159;
 (* this is a reddish orange *)
 hue [red] := 0.7;
 hue [yellow] := 0.7;
 hue [blue] := 0.7;
END;

STRING and GSTRING
In VS mode, variables of type STRING or GSTRING can be subscripted with integer
expressions to reference individual characters. The value of the subscript must not be less
than 1 or greater than the length of the string. Subscripting a STRING returns a CHAR;
subscripting a GSTRING returns a GCHAR.

Error Checking
If the %CHECK SUBSCRIPT option is turned on, the index expression is checked at run
time to make sure its value lies within the subscript range of the array. A runtime error
diagnostic occurs if the value lies outside of the prescribed range.

93Chapter 7. Variables

Field References
To select a field of a record, write the record variable name followed by a period, and then
the name of the field.

Examples
VAR
 i : INTEGER;
 person : RECORD
 first_name, last_name : STRING(15);
 END;
 date : RECORD
 day : 1..31;
 month : 1..12;
 year : 1900..2000
 END;
 deck : ARRAY [1..52] OF
 RECORD
 card : 1..13;
 suit : (spade, heart, diamond, club)
 END;
 .
 .

BEGIN
 i := 1;
 person.first_name := ’JOE’;
 person.last_name := ’SMITH’;
 date.year := 1993;
 deck[i].card := 2;
 deck[i].suit := spade;
END;

Pointer References
You create a dynamic variable with the predefined procedure NEW. You can refer either to
the pointer or to the dynamic variable. To refer to the dynamic variable, you must use the
pointer notation. This is also called dereferencing the pointer.

For example, in the following declaration, a reference to p refers to the pointer, and a
reference to p@ refers to the dynamic variable to which p points:

VAR
 p : @ r;

Note: The pointer reference p@ cannot refer to a pointer-valued function.

Any attempt to refer to a dynamic variable using a pointer with the value NIL when
%CHECK POINTER is specified results in a runtime error message.

94 XL Pascal Language Reference

Example
TYPE
 info = RECORD
 age : 1..99;
 weight : 1..400;
 END;
 family = RECORD
 father, mother, self : @info;
 kids : 0..20
 END;

VAR
 family_pointer : @family;
 .
 .
 NEW(family_pointer);
 family_pointer@.kids := 2;
 NEW(family_pointer@.father);
 family_pointer@.father@.age := 35;
 .
 .

Related Information
For more information on pointer-valued functions, refer to page 140.

File References
Use pointer notation to select a component of a file from the file buffer. The file variable is
established by using the predefined procedures GET and PUT. Each call to these
procedures moves the current component to the output file (PUT) or assigns a new
component from the input file (GET).

Example
VAR
 INPUT : TEXT;
 OUTPUT : TEXT;
 line1 : ARRAY [1..80] OF CHAR;
 i : INTEGER;
 .
 .

(* scan off blanks from a file of CHAR *)
GET(INPUT);
WHILE INPUT@ = ’ ’ DO
 GET(INPUT);
(* transfer a line to the OUTPUT file *)
FOR i := 1 TO 80 DO
 BEGIN
 OUTPUT@ := line1[i];
 PUT(OUTPUT)
 END;

Related Information
The GET Procedure is described on page 154. The PUT procedure is described on page
176.

95Chapter 7. Variables

SPACE References
Just as in array references, you select a component of a SPACE by placing an index
expression, enclosed within square brackets, after the SPACE variable.

The indexing expression must be of type INTEGER or a subrange of INTEGER. The value
of the index is the offset within the SPACE at which the component is to be accessed. The
unit of the index is the byte. The index is always based upon a zero origin; the index range
of the SPACE is from zero to one less than the value of the size of the SPACE.

If the %CHECK SUBSCRIPT option is enabled, XL Pascal checks the index expression at
run time to make sure that the computed address does lies within the storage occupied by
the space. If the value is not valid, a runtime error occurs, and a diagnostic message is
issued.

Examples
VAR
 s : SPACE[100] OF RECORD
 (* declare a SPACE variable with index range 0..99 *)
 a, b : INTEGER
 END;

BEGIN
 (* base record begins at offset 10 WITHIN SPACE *)
 s[10].a := 26;
 s[10].b := 0;
END;

No check is made for values that extend past the end of a SPACE unless the %CHECK
SUBSCRIPT option is turned on. If the option is specified, the index expression is checked
at run time to make sure its value lies within the subscript range of the array. The results are
unpredictable if you try to make such an assignment or reference, as shown in the following
example.

VAR
 s : SPACE[100] OF INTEGER;
 i : INTEGER;

BEGIN
 s[98] := i; (* not valid – extends past end of space *)
END;

Related Information
For a description of the %CHECK compiler directive, refer to page 205.

96 XL Pascal Language Reference

String References
You can refer to string variables as single entities when the entire string is being operated
on. Single characters from a string can be referenced like a PACKED ARRAY OF CHAR.
Either of the following allows you to assign values to string variables:

• Assignment statements
• Predefined string functions

String indexing starts from 1.

Always use an index value less than or equal to the current string length. It is an error to
reference a string with an index greater than the length of the string.

97 Copyright IBM Corp. 1990, 1993 Chapter 8. Expressions

Chapter 8. Expressions

An expression, when evaluated, returns a value. XL Pascal expressions are similar in
function and form to expressions in other high-level programming languages. Expressions
permit you to combine and manipulate data according to specific computational rules.

Syntax

Constant Expression or Expression

simple_expression

simple_expression

relational_operator

A relational_operator is one of the following : =, >=, <>, >, <, <=, IN, or ~= (VS Mode
only).

Simple expression

+

–

|

&&

OR

XOR

term
term

–

+

Term

factor
factor*

/

DIV

MOD

AND

>>

<<

||

&

98 XL Pascal Language Reference

Factor

function_call
variable

set_constructor

expression

structured_constant

unsigned_constant

()

NOT

~

Unsigned Constant

unsigned_number

character_string

constant_identifier

NIL

Examples
CONST
 acme = ’ACME’;
TYPE
 color = (red, yellow, blue);
 shade = SET OF color;
 days = (sun, mon, tues, wed, thur, fri, sat);
 months = (jan, feb, mar, apr, may, jun,
 jul, aug, sep, oct, nov, dec);
VAR
 a_color : color;
 a_set : shade;
 bool : BOOLEAN;
 month : months;
 i, j : INTEGER;

The following are examples of factors, terms, and expressions derived from the above
example:

Factors: Description:

i variable
15 unsigned constant
(i*8+j) parenthesized expression
[red] set of one element
[] empty set
ODD(i*j) function call
NOT bool complement expression
acme constant reference
color(1) scalar type converter

99Chapter 8. Expressions

Terms: Description:

i factor
i * j multiplication
i DIV j integer division
a_set * [red] set intersection
bool & ODD(I) Boolean AND
acme || ’ TRUCKING’ concatenation
i & ’FF00’X logical AND on integers

Simple expressions: Description:

i * j term
i + j addition
a_set + [blue] set union
– i unary minus on an integer
i | ’80000000’X logical OR on integers

Expressions: Description:

i + j simple expression
red = a_color relational operations
red IN a_set test for set inclusion

Evaluating Expressions
The type of calculation to be performed in an expression is directed by operators grouped
into four classes according to the following precedence:

1. The NOT operator (highest)
2. The multiplication operators
3. The addition operators
4. The relational operators (lowest)

An expression is evaluated by applying the operators of highest precedence first, operators
of the next precedence second, and so forth. Operators of equal precedence are applied in
left-to-right order. If an operator has an operand that is a subexpression in parentheses, the
subexpression is evaluated before applying the operator.

The operands of an expression may be evaluated in either order; that is, the left operand of
a binary operator may be evaluated after the right operand. If either operand changes a
global variable through a function call, and if the other operand uses that value, the value
used is not necessarily the updated value. The only exception is in Boolean expressions
involving the logical operations of AND (&) and OR (|); for these operations, the right
operand is not evaluated if the result can be determined from the left operand.

Because simple expressions are prefaced with arithmetic signs, confusion can arise when
using signs on the operands. The following example shows correct and incorrect use of
signs in simple expressions:

CONST
 c = –7;
 x = c MOD 4; (* yields 1 *)
 y = –7 MOD 4; (* yields –3 because it is treated *)
 (* as –(7 MOD 4) *)
 z = 7 DIV –4 (* error: –4 must be in parentheses *)

100 XL Pascal Language Reference

Out-of-Range Values
Avoid arithmetic expressions that yield results outside of the defined range of values for a
given type. Compiling and running a program containing such expressions can give
unpredictable results.

Operators
The operators are the logical or algebraic processes, such as addition or multiplication, that
can be performed on a value or pair of values to produce a new value. The operands are the
values manipulated by the operators to give a result. The following sections summarize the
four categories of operators used in XL Pascal.

The following tables describe the types of operand that you can use with these operators
and the result types for each operation.

NOT Operator
The NOT operator applies to operands of the type BOOLEAN, INTEGER, or SET. When
applied to type BOOLEAN, it means negation, for example, NOT TRUE = FALSE. When
applied to type INTEGER, the NOT operator negates all the bits in the operand. This is
called one’s-complement negation. When applied to type SET, the NOT operator returns the
complement of the set. For example, if set x is SET of 1..4 and has the value [1], the
complement of set x is [2,3,4].

Standard Mode

Operator Operation Operand Result

NOT Boolean NOT BOOLEAN BOOLEAN

VS Mode

Operator Operation Operand Result

NOT (~) Boolean NOT BOOLEAN BOOLEAN

Logical one’s
complement

INTEGER INTEGER

Set complement SET of t SET of t

101Chapter 8. Expressions

Multiplication Operators
The multiplication operators have the next highest precedence after the NOT operator.

Standard Mode

Operator Operation Operand Result

* Multiplication INTEGER INTEGER

REAL, INTEGER REAL

Set
Intersection

SET of t SET of t

/ Real Division REAL, INTEGER REAL

DIV Integer
Division

INTEGER INTEGER

MOD Modulus INTEGER INTEGER

AND Boolean AND BOOLEAN BOOLEAN

VS Mode

Operator Operation Operand Result

* Multiplication SHORTREAL SHORTREAL

SHORTREAL,
INTEGER

SHORTREAL

SHORTREAL, REAL REAL

|| String
Concatenation

STRING STRING

GSTRING GSTRING

AND (&) Boolean AND BOOLEAN BOOLEAN

Logical AND INTEGER INTEGER

<< Left Logical
Shift

INTEGER INTEGER

>> Right Logical
Shift

INTEGER INTEGER

The DIV operator represents truncating division. DIV always truncates toward zero. The right
operand cannot be zero. DIV is defined as

a DIV b = TRUNC (a / b), b ~= 0

Operands with the same sign yield a positive result; those with different signs return a
negative value.

The MOD operator defines the modulus operation between two integer values. The right
operand of MOD must be positive. The MOD operator is interpreted this way:

a MOD b = a – (a DIV b) * b, a >= 0, b > 0
a MOD b = b – ABS (a) MOD b, a < 0, b > 0

102 XL Pascal Language Reference

Addition Operators
The addition operators have the next highest precedence after the multiplication operators.

Standard Mode

Operator Operation Operand Result

+ Addition INTEGER INTEGER

REAL, INTEGER REAL

Set Union SET of t SET of t

– Subtraction INTEGER INTEGER

REAL, INTEGER REAL

Set Difference SET of t SET of t

OR Boolean OR BOOLEAN BOOLEAN

VS Mode

Operator Operation Operand Result

+ Addition SHORTREAL SHORTREAL

SHORTREAL,
INTEGER

SHORTREAL

SHORTREAL, REAL REAL

String STRING STRING

Concatenation GSTRING GSTRING

– Subtraction SHORTREAL SHORTREAL

SHORTREAL,
INTEGER

SHORTREAL

SHORTREAL, REAL REAL

OR (|) Boolean OR BOOLEAN BOOLEAN

Logical OR INTEGER INTEGER

XOR (&&) Logical XOR INTEGER INTEGER

Boolean XOR BOOLEAN BOOLEAN

Set exclusive
union

SET of t SET of t

103Chapter 8. Expressions

Relational Operators
All scalar type operands for relational operations define ordered sets of values.

Standard Mode

Operator Operation Operand Result

= Compare equal Any set, scalar
type, pointer,
or character

BOOLEAN

<> Compare not
equal

Any set, scalar
type, pointer,
or character

BOOLEAN

< Compare less
than

Scalar type or
character type

BOOLEAN

<= Compare less
than or equal
to

Scalar type or
character type

BOOLEAN

Subset SET of t BOOLEAN

> Compare greater
than

Scalar type or
character type

BOOLEAN

>= Compare greater
than or equal

Scalar type or
character type

BOOLEAN

 Superset SET of t BOOLEAN

IN Set membership t and SET of t BOOLEAN

VS Mode

Operator Operation Operand Result

~= Compare not
equal

Any set, scalar
type, pointer,
or character

BOOLEAN

Comparison According to Type
The following types can be compared with each other with predictable results:

• Scalar types
• Pointer types
• Strings
• Sets

Comparison of Scalars:

Scalar operands are ordered according to type. For numeric operands, the ordering is
defined as follows:

1. INTEGER
2. SHORTREAL
3. REAL

104 XL Pascal Language Reference

For operands of different numeric types, the lower type of operand is converted to the level
of the higher operand type before the two are compared. For example, in the following
expression, the SHORTREAL is converted to REAL before the comparison is made:

SHORTREAL value < REAL value

For operands of type BOOLEAN, the ordering is defined as:

FALSE < TRUE

The ASCII collating sequence determines the ordering of operands of type CHAR and
GCHAR.

The ordering of enumerated types depends on the order in which the values were specified
in the type definition.

Direct Pointer Comparison:

You can compare two pointers if they are pointers to identical types. To compare pointers of
different types, find their ORD value as described in “ORD Function” on page 170.

Compare pointers for equality or inequality only. Two pointers with the value NIL are always
equal.

Character Comparison:

The relational operators compare both PACKED ARRAY [1..n] OF CHAR and STRING
values. For a PACKED ARRAY [1..n] OF CHAR both operands must be the same size. The
compiler does not check for the size difference.

In VS mode, you can compare STRING type operands of different lengths or GSTRING type
operands of different lengths. In either situation, trailing blanks are not significant. You
cannot compare a GSTRING operand with a STRING operand. The collating sequence of
the ASCII character set determines the alphabetical ordering of STRING type operands or
PACKED ARRAY [1..n] OF CHAR operands.

The type of a string literal is converted to the type of the other operand when you compare a
string literal with a STRING operand or with a PACKED ARRAY [1..n] OF CHAR operand.
Similarly, the type of a multibyte character literal is converted to the type of the other
operand when you compare such a literal with a GSTRING operand or with a PACKED
ARRAY [1..n] OF GCHAR operand.

Set Comparison:

The IN operator determines if a scalar value is a member of set. The base type of the set
must be the same as the base type of the scalar.

The following operations are defined between two set values of the same base type. For two
sets, S1 and S2, and element e1:

Operation Result

S1 = S2 True if all members of S1 are contained in S2, and all members of S2 are
contained in S1

S1 <> S2 True when S1= S2 is false

S1 <= S2 True if all members of S1 are also members of S2

S1 >= S2 True if all members of S2 are also members of S1

e1 IN S2 True if e1 is a member of S2

105Chapter 8. Expressions

Noncomparable Types:

You cannot compare the following XL Pascal types:

• ARRAY
• FILE
• RECORD

Note: You can compare PACKED ARRAY [1..n] OF CHAR operands of the same size
because they can be compared as strings.

Related Information
A table showing the full ASCII character set is in the User’s Guide for IBM AIX XL Pascal
Compiler/6000.

Constant Expressions
Constant expressions are expressions that can be evaluated by the compiler and replaced
with a result at compile time. By definition, a constant expression cannot contain a reference
to a variable, or to a user-defined function.

The following predefined functions are permitted in constant expressions.

Standard Mode:
• ABS
• CHR
• ODD
• ORD
• PRED
• ROUND
• SQR
• SUCC
• TRUNC

VS Mode:
• FLOAT
• HBOUND
• HIGHEST
• LBOUND
• LENGTH
• LOWEST
• MAX
• MAXLENGTH
• MIN
• Ordinal conversion
• SIZEOF
• STR

In VS mode, constant expressions can appear in constant declarations, record variant tag
lists, and CASE constant lists.

106 XL Pascal Language Reference

Examples
Constant Expression Type of Value

SUCC(CHR(’F0’X)) CHAR
256 DIV 2 INTEGER
[’0’..’9’] SET OF CHAR
32768*2–1 INTEGER
ORD(’A’) INTEGER
’TOKEN’||STR(CHR(0)) STRING
’8000’X |’0001’X INTEGER

Related Information
See Chapter 10, “Routines,” for descriptions of the predefined functions.

Boolean Expressions
Pascal assigns the logical operators a higher priority than that of the relational operators.
The expression

a<b & c<d

is evaluated as

(a < (b&c)) < d.

Thus, to ensure that your expressions are evaluated as you intend, use parentheses when
writing expressions of this sort.

XL Pascal makes the evaluation of Boolean expressions involving AND (&) and OR (|) more
efficient so that the right operand of the expression is not evaluated if the result of the
operation can be determined by evaluating the left operand. For example, given that a, b,
and c are Boolean expressions and x is a Boolean variable, the evaluation of

x := a or b or c

is performed as

IF a THEN
 x := TRUE
ELSE
 IF b THEN
 x := TRUE
 ELSE
 x := c

The evaluation of

x := a and b and c

is performed as

IF NOT a THEN
 x := FALSE
ELSE
 IF NOT b THEN
 x := FALSE
 ELSE
 x := c

107Chapter 8. Expressions

This type of evaluation is called short-circuiting. The evaluation of the expression is always
from left to right. Because some Pascal compilers do not support this interpretation of
Boolean expressions, you should write the compound tests in a form that uses nested IF
statements to assure portability between XL Pascal and other Pascal implementations.

You should not rely on short-circuiting because your program might not work as you intend.
For example, if you use a function in the right operand of a Boolean expression, the function
might not be evaluated. To avoid unexpected results, your programs should not permit
functions to modify global variables or to contain VAR parameters.

Example
The following example demonstrates the logic that depends on the conditional evaluation of
the right operand of the AND operator. If both operands in the WHILE statement were
always evaluated, a NIL pointer checking error would occur when p had the value of NIL.

TYPE
 recptr = @rec;
 rec = RECORD
 name : ALPHA;
 next : recptr;
 END;

VAR
 p : recptr;
 lname : ALPHA;

BEGIN
 ...
 WHILE (p <> NIL) AND (p@.name <> lname) DO
 p := p@.next;
 END;
 ...
END;

Set Expressions
The following operations can be performed on the SET data type:

• Set complement produces a set that has all of the elements not in the set undergoing the
operation.

• Set union produces a set containing all of the elements that are members of the two
operands.

• Set intersection produces a set containing only the elements common to both sets.

• Set difference produces a set that includes all elements from the left operand except
those elements in the right operand.

• Set exclusive union produces a set containing all elements from the two operands except
those elements common to both operands.

• The IN operator tests for membership of a scalar within a set. If the scalar is not a value
of the set, FALSE is returned.

108 XL Pascal Language Reference

Logical Expressions
Many of the logical operators provided in XL Pascal perform logical operations on integer
operands; the operands are considered as unsigned strings of binary digits instead of
signed arithmetic quantities. For example, if the integer value of –1 was used as an operand
of a logical operation, it would be seen as a string of binary digits with a hexadecimal value
of ’FFFFFFFF’X.

The logical operations are defined to yield 32-bit values. Such an operation on a subrange
of an INTEGER could yield a result outside the subrange.

The following operators perform logical operations on integer operands:

• & (AND) performs a bit-wise AND of two integers.

• | (OR) performs a bit-wise inclusive OR.

• && (XOR) performs a bit-wise exclusive OR.

• ~ (NOT) performs a one’s complement negation of an integer.

• << shifts the left operand value left by the amount indicated in the right operand. Zeros
are shifted in from the right.

• >> shifts the left operand value right by the amount indicated in the right operand. Zeros
are shifted in from the left.

Examples
257 & ’FF’X (* yields 1 *)
2 | 4 | 8 (* yields 14 *)
4 << 2 (* yields 16 *)
–4 << 1 (* yields –8 *)
8 >> 1 (* yields 4 *)
–8 >> 1 (* yields ’7FFFFFFC’X *)
’FFFF’X >> 3 (* yields ’1FFF’X *)
~1 & ’FF’X (* yields ’FE’X *)
~0 (* yields –1 *)
’FF’X && 8 (* yields ’F7’X *)

Function Calls
A function returns a value to the caller. A call to a function passes the actual parameters to
the corresponding formal parameters.

Syntax

 actual_parameter

(

,

function_id
)

109Chapter 8. Expressions

Actual Parameter

expression

procedure_id

function_id

Description
Each actual parameter must be assignment compatible with the corresponding formal
parameter.

Parameters passed by read/write reference (VAR) can only be variables, and never
expressions or constants. In standard mode, actual and formal VAR parameters must be of
the same type. Also in standard mode, you cannot pass fields of a packed record or
elements of packed arrays by VAR. Parameters passed by value or read-only reference
(CONST) can be any expression.

In VS Mode, if the function requires no parameters, you can omit the expression in
parentheses. To draw attention to a function call with no parameters and make it appear
different from a variable reference, follow the function name with an empty set of
parentheses. In standard mode, however, the parentheses must be omitted.

Example
VAR
 a, b, c : INTEGER;

FUNCTION sum(m, n : INTEGER) : INTEGER;
 BEGIN
 sum := m + n
 END;
 ...
 BEGIN
 ...
 c := sum(a, b) * 2;
 ...
 END;

Related Information
Parameter compatibility rules are defined in “Routine Parameters” on page 136. The rules
for expression compatibility are given in “Type Compatibility” on page 50. See Chapter 10,
“Routines”, for information about defining functions.

Ordinal Conversions
In VS mode, the definition of any type identifier that specifies an ordinal type (scalars or
subranges) forms an ordinal conversion function. Ordinal conversion functions convert an
INTEGER into a specified ordinal type.

Related Information
Ordinal conversion functions are described on page 170.

110 XL Pascal Language Reference

Set Constructors
A set constructor computes the value of a SET.

Syntax

[]
..

 expression
expression

,

Description
The set constructor is either a list of expressions separated by commas or a group of
expression pairs. Square brackets contain the expressions. An expression pair designates
that all values from the first expression through the last expression are to be included in the
resulting set. If the value of the first expression is greater than the value of the second, no
values are designated.

All expressions must be type compatible, and this type becomes the base scalar type of the
set. If the set specifies integer-valued expressions, the base scalar type of the set is 0..255.

Example
TYPE
 days = SET OF (sun, mon, tue, wed, thu, fri, sat);
 charset = SET OF CHAR;

VAR
 workdays, weekend : days;
 nonletters : charset;
 ...

BEGIN
 workdays := [mon..fri];
 weekend := ~ workdays;
 nonletters := ~ [’a’..’z’,’A’..’Z’];
 ...
END;

111 Copyright IBM Corp. 1990, 1993 Chapter 9. Statements

Chapter 9. Statements

The statements denote algorithmic operations and define what actions a program is to
perform on the program objects introduced by type and variable declarations. XL Pascal
statements are similar to those found in most high-level programming languages.

This chapter describes statement labels and the statements of XL Pascal.

Syntax

statement

:label

Parameters
label is an optional label.

statement is any XL Pascal statement.

Statement Labels
You can label a statement with an unsigned integer constant in the range 0..9999 followed
by a colon and the statement you want to label. Labels permit you to explicitly refer to a
statement by a GOTO statement. On encountering a GOTO label sequence, the system
processes the statement prefixed by a label as the next statement instead of the statement
following the GOTO.

In VS mode only, you can also label a statement with an identifier.

Scope of Statement Labels
The scope of a statement label is the body of the routine in which the label is declared and
all of its nested routines. The GOTO statement cannot transfer control into a routine unless
that routine has been activated.

Summary of XL Pascal Statements

Standard Mode
Assignment Assigns a value to a variable.

CASE Permits a program to process one member of a list of possible
statements based upon the evaluation of an expression.

Compound Brackets a series of statements to be processed sequentially.

Empty Serves as a place holder and has no effect on the running of the
program.

FOR Causes a program to repeatedly run a group of statements a specified
number of times.

GOTO Changes the flow of control within a program.

112 XL Pascal Language Reference

IF Specifies that one of two statements be processed depending on the
evaluation of a Boolean expression.

Procedure call Calls a procedure.

REPEAT Causes statements between the statement delimiters REPEAT and
UNTIL to be processed until a control expression is TRUE.

WHILE Processes a statement while a control expression remains TRUE.

WITH Simplifies reference to a record variable by eliminating an addressing
description on every reference to a field.

VS Mode
ASSERT Checks for a condition and signals a runtime error if the condition is

not met.

CONTINUE Causes a jump to the loop-continuation portion of the innermost
enclosing FOR, WHILE, or REPEAT statement.

LEAVE Causes an immediate, unconditional exit from the innermost enclosing
FOR, WHILE, or REPEAT loop.

RETURN Permits an exit from a procedure or function.

ASSERT

Purpose
Checks for a specific condition and signals a runtime error if the condition is not met.

Syntax

ASSERT expr

Parameters
ASSERT is a reserved word

expr is any Boolean expression

Description
The condition is specified by the expression, which must be evaluated to a Boolean value. If
the condition is FALSE, a runtime diagnostic message is issued. The compiler may remove
the statement from the object program if it can determine that the assertion is always TRUE.

Example
In the following example, if a is greater than or equal to b, the value is TRUE and no action
is taken; otherwise, an error message is displayed.

ASSERT a >= b ;

113Chapter 9. Statements

Assignment

Purpose
Replaces the current value of a variable with a new value derived from an expression
evaluation. An assignment statement can also define the value a function variable returns.

Syntax

:=

variable

function_id
expr

Parameters
variable is any variable.

function_id is the identifier for any enclosing user defined function. Note that function_id
can only appear to the left of an assignment operator within the body of the
function itself.

expr is any expression assignment compatible with the variable or function_id,
including arrays or records.

Restrictions:
• A variable of type FILE, TEXT, or of a type containing a file even indirectly cannot appear

in an assignment statement.

• VS mode does not permit the assignment of a value to a pass-by-CONST parameter.

Assignments to Variables and Functions
The assignment statement consists of a reference to a variable followed by the assignment
symbol (:=), followed by an expression that, when evaluated, is the new value. The current
value of the referenced variable is then replaced by the value of the expression. The value
must be assignment compatible with the variable.

You can assign a string constant to a variable of the type PACKED ARRAY [1..n] OF CHAR,
provided that the string value is the same length as the array object.

When you make array assignments (assign one array to another array) or record
assignments (assign one record to another), the entire array or record is assigned.

To return a result from a user-defined function, assign a value to the function name before
leaving the function.

114 XL Pascal Language Reference

Example
TYPE card = RECORD
 suit : (spade, heart, diamond, club);
 rank : 1..13
 END;

VAR
 p , x , y , z : REAL;
 letters, digits, letter_or_digit : SET OF CHAR;
 i, j, k : INTEGER;
 deck : ARRAY [1..52] OF card;

FUNCTION square(a : REAL) : REAL;
 BEGIN
 square := a * a;
 END;
 ...
 BEGIN
 i := 1 ;
 z := 0.016 ;
 x := y * z ;
 letters := [’A’..’Z’];
 digits := [’0’..’9’];
 letter_or_digit := letters + digits;
 deck[i].suit := heart;
 deck[j] := deck[k];
 p := square(2.0);
 END;

CASE

Purpose
Processes one member of a list of possible statements, based on the evaluation of an
expression.

Syntax

rangeCASE OF

END

expr statement

;

;

statementOTHERWISE

;

,
:

Range:

constant

constant_expr .. constant_expr

115Chapter 9. Statements

Parameters
CASE is a reserved word.

expr is any expression that evaluates to an ordinal type.

OF is a reserved word.

statement is any statement.

END is a reserved word.

constant is any constant assignment compatible with expr.

OTHERWISE is a reserved word (VS mode only).

constant-expr is any constant expression whose type is compatible with expr (VS mode
only).

Description
The statement consists of an expression called the selector and a list of statements. The
selector must be an ordinal type, one of:

• BOOLEAN
• CHAR
• Enumerated
• INTEGER
• Subrange

Each statement is prefixed with one or more ranges of the same type as the selector. Each
range is separated by a comma and designates one or more values called case labels.
Case selectors and case labels must be of the same scalar type. XL Pascal evaluates the
selector and processes the statement whose CASE range contains the CASE label equal to
the value of the selector.

You can write the range values of a CASE statement in any order, but the CASE ranges
cannot overlap. The same CASE label cannot appear more than once in a CASE statement.
XL Pascal allows a maximum of 255 CASE labels for each CASE statement.

VS Mode
If no CASE label equals the value of the selector, the OTHERWISE statement is processed
(if it is present). If no CASE label equals the value of the selector and there is no
OTHERWISE statement, a runtime error results when the %CHECK CASE option is on. If
the checking is not on, the results are unpredictable.

116 XL Pascal Language Reference

Examples
TYPE
 shape = (triangle, rectangle, square, circle);
 coordinates = RECORD
 x, y : REAL;
 area : REAL;
 CASE s : shape OF
 (* variant part of record coordinates *)
 triangle : (side : REAL;
 base : REAL);
 rectangle : (sidea , sideb : REAL);
 square : (edge : REAL);
 circle :
 (radius : REAL)
 END; (* of record coordinates *)

 VAR
 coord : coordinates;
 .
 .
 WITH coord DO
 CASE s OF
 triangle : area := 0.5 * side * base;
 rectangle : area := sidea * sideb;
 square : area := SQR(edge);
 circle : area := 3.14159 * SQR(radius)
 END;

The following example shows a CASE statement with the OTHERWISE reserved word:

TYPE
 rank = (ace, two, three, four, five, six, seven,
 eight, nine, ten, jack, queen, king);
 suit = (spade, heart, diamond, club);
 card = RECORD
 r : rank;
 s : suit
 END;

 VAR
 points : INTEGER;
 a_card : card;
 . . .
 CASE a_card.r OF
 ace : points := 11 ;
 two..ten : points := ORD(a_card.r) + 1;
 OTHERWISE points := 10
 END;
 . . .

117Chapter 9. Statements

Compound

Purpose
Brackets a series of statements to be processed sequentially as if they were a single
statement.

Syntax

ENDstatement

;

BEGIN
;

Parameters
BEGIN is a reserved word

statement is any statement

END is a reserved word

Description
The reserved words BEGIN and END delimit the statement list. The statement list can be
exited either by an explicit transfer of control to another program unit, or when the last
statement in the list is processed.

Example
IF a > b THEN
 BEGIN (* swap a and b *)
 temp := a;
 a := b;
 b := temp
 END;

CONTINUE

Purpose
Causes a jump to the loop-continuation portion of the innermost enclosing FOR, WHILE, or
REPEAT statement, acting as a GOTO to the end of the loop body.

Syntax

CONTINUE

118 XL Pascal Language Reference

Examples
The following examples illustrate how the CONTINUE statement functions in each of the
loop constructs.

FOR Statements:

FOR i := expr1 TO expr2 DO
 BEGIN
 ...
 CONTINUE;
 ...
 (* continue jumps to here *)
 END;

WHILE Statements:

WHILE expr DO
 BEGIN
 ...
 CONTINUE;
 ...
 (* continue jumps to here *)
 END;

REPEAT Statements:

REPEAT
 ...
 CONTINUE;
 ...
 (* continue jumps to here *)
UNTIL expr;

The following example shows a CONTINUE statement and its equivalent:

WHILE expr DO
 BEGIN
 .
 .
 IF expr THEN
 CONTINUE;
 .
 .
 END;

is equivalent to

WHILE expr DO
 BEGIN
 .
 .
 IF expr THEN
 GOTO label;
 .
 .
 label: (* continue jumps to here *)
 END;

119Chapter 9. Statements

Empty

Purpose
Is a place holder and has no effect on program processing.

Syntax

Description
The empty statement is often useful when you want to place a label in the program but do
not want it attached to another statement (such as at the end of a compound statement). It
is also useful in avoiding the ambiguity that arises in nested IF statements. You can force an
ELSE clause to be paired with an outer nested IF statement by using an empty statement
after an ELSE clause in the inner nested IF statement.

Example
IF b1 THEN
 IF b2 THEN
 s1
 ELSE
 (* empty statement *)
ELSE
 s2

FOR

Purpose
Processes a group of statements a specified number of times.

Syntax

FOR

TO

DO:= expr1 statement
DOWNTO

id expr2

Parameters
FOR is a reserved word.

id is any local, automatic variable of any ordinal type.

expr1 is any valid expression which must be assignment compatible with id.
Evaluated to an ordinal, this is the initial value of the control variable.

TO calculates the value of the control variable by the SUCC function after
processing the statement.

120 XL Pascal Language Reference

DOWNTO calculates the value of the control variable by the PRED function after
processing the statement.

expr2 is any valid expression which must be assignment compatible with id.
Evaluated to an ordinal, this is the limiting value of the control variable.

DO is a reserved word.

statement is any valid statement.

Restrictions:
• The control variable must be an automatic ordinal scalar declared in the routine

immediately enclosing.

• The control variable cannot be subscripted, field qualified, or referred to through a pointer.

• The processed statement must not change the control variable. If the control variable is
changed within the loop, processing of the resultant loop is not predictable.

• In the statement in the FOR loop, and in any routine declared in the routine immediately
enclosing the FOR loop, the control variable cannot be used:

– In an assignment statement
– As the control variable of another FOR statement
– As an actual VAR parameter
– As a parameter to an input routine like READ or READLN.

Description
The FOR loop begins with an identifier initialized to the first control expression. With each
iteration of the loop, the value of the identifier is replaced by either its SUCC or PRED value,
depending on the syntax of the statement.

You use the reserved word TO between the control expressions to increase the value of the
loop control identifier. The new value of the identifier is computed automatically by the
SUCC function before the statement is processed. Iteration continues as long as the value
of the identifier is less than or equal to the value of the second control expression.

You use the reserved word DOWNTO between the control expressions to decrease the
value of the loop control identifier. The new value of the identifier is computed automatically
by the PRED function before the statement is processed. Iteration continues if the value of
the identifier is greater than or equal to the value of the second control expression.

XL Pascal computes the value of the second expression at the beginning of the FOR
statement and uses the result for the duration of the statement. Once the value of the
second control expression is computed, it must not be changed during the FOR statement.

The value of the control variable after the FOR statement is processed is undefined on the
normal termination of the FOR loop. Do not expect the control variable to contain any
particular value. If a GOTO statement causes the program to exit from the FOR statement
prematurely, the value of the control variable is defined.

Examples
In the following statement, i is an automatic scalar variable, expr1 and expr2 are scalar
expressions type-compatible with i, and statement is any arbitrary statement:

FOR i := expr1 TO expr2 DO statement

121Chapter 9. Statements

The following compound statement is functionally equivalent to this FOR statement.

BEGIN
 temp1 := expr1;
 temp2 := expr2;
 IF temp1 <= temp2 THEN
 BEGIN
 i := temp1;
 statement;
 WHILE i <> temp2 DO
 BEGIN
 i := SUCC(i);
 statement
 END;
 END;
END;

In the following statement, i is an automatic scalar variable, expr1 and expr2 are scalar
expressions type-compatible with i, and statement is any arbitrary statement:

FOR i := expr1 DOWNTO expr2 DO statement

The following compound statement is functionally equivalent to this FOR statement.
Variables temp1 and temp2 are compiler-generated temporary variables.

BEGIN
 temp1 := expr1;
 temp2 := expr2;
 IF temp1 >= temp2 THEN
 BEGIN
 i := temp1;
 statement;
 WHILE i <> temp2 DO
 BEGIN
 i := PRED(i);
 statement
 END;
 END;
END;

Other examples of the FOR statement are as follows:

Find the Maximum Integer in an Array of Integers:

max := a[1];
largest := 1;
FOR i := 2 TO size_of_a DO
 IF a[i] > max THEN
 BEGIN
 largest := i;
 max := a[i]
 END;

Matrix Multiplication:

FOR i := 1 TO n DO
 FOR j:= 1 TO n DO
 BEGIN
 x := 0.0;
 FOR k := 1 TO n DO
 x := a[i,k] * b[k,j] + x;
 c[i,j] := x (* c<–a*b *)
 END;

122 XL Pascal Language Reference

Sum All Hours Worked This Week:

sum := 0;
FOR day := mon TO fri DO
 sum := sum + timecard[day]

GOTO

Purpose
Changes the flow of control within the program. The GOTO names a labeled statement as
its successor.

Syntax

GOTO label

Parameters
GOTO is a reserved word.

label is an unsigned integer in the range 0 to 9999. It must be declared in the
label declaration part of the routine with the GOTO statement. In VS mode,
label can also be an identifier.

Restrictions
• If a GOTO to a nonlocal label exits a function, the function result is not checked.

• The GOTO must be contained by the routine that declared the label.

• You cannot branch into a compound statement from a GOTO statement.

• You cannot branch into a THEN clause or an ELSE clause from a GOTO statement
outside an IF statement. You cannot branch between a THEN clause and an ELSE
clause in the same IF statement.

• You cannot branch into a CASE alternative from outside the CASE statement, nor branch
between CASE alternative statements in the same CASE statement.

• You cannot branch into a FOR, REPEAT, or WHILE loop from a GOTO statement not
contained within the loop.

• You cannot branch into a WITH statement from a GOTO statement outside the WITH
statement.

• For a GOTO statement that specifies a label defined in an outer routine, the target label
cannot be defined within a compound statement or loop.

• You cannot branch out of a procedure declared with the EXTERNAL routine directive.

123Chapter 9. Statements

Example
PROCEDURE goto_example;

LABEL
 l1, l2, l3, l4;

PROCEDURE inner;
 BEGIN
 GOTO l4; (* permitted *)
 GOTO l3; (* not permitted *)
 END;

BEGIN
 GOTO l3; (* not permitted *)
 BEGIN
 l3 : GOTO l4; (* permitted *)
 GOTO l3; (* permitted *)
 END;
 l4:IF expr THEN
 l1: GOTO l2 (* not permitted *)
 ELSE
 l2: GOTO l1 (* not permitted *)
END;

IF

Purpose
Specifies that one of two statements is to be processed depending on the evaluation of a
Boolean expression.

Syntax

THEN

ELSE

expr statement

statement
IF

Parameters
IF is a reserved word

expr is any Boolean expression

THEN is a reserved word

statement is any statement

ELSE is a reserved word

Description
The expression must be evaluated to a Boolean value. If the result of the expression is
TRUE, the statement in the THEN clause is processed. If the expression evaluates to
FALSE and there is an ELSE clause, the statement in the ELSE clause is processed; if
there is no ELSE clause, control passes to the next statement.

124 XL Pascal Language Reference

Nested IF Statements
To select one out of many conditions, you can nest IF statements in a series of ELSE–IF
clauses. For example:

VAR
 inpchar : CHAR
 .
 .

BEGIN
 .
 .
 IF (inpchar = ’A’) THEN
 statement1;
 ELSE
 BEGIN
 statement2;

 IF (inpchar = ’B’) THEN
 statement3;
 ELSE
 BEGIN
 statement4;
 IF (inpchar = ’C’) THEN
 statement5;
 END;
 END;
 .
 .
END;

Like other programming languages, XL Pascal accommodates the so-called dangling else.
This condition arises when one IF statement contains another IF but only one ELSE clause.
The ELSE clause must always be paired with the innermost IF statement with no ELSE
clause.

Nesting an IF statement within an IF statement can be interpreted with two different
meanings if only one of the statements has an ELSE clause. The following example
illustrates this condition, and the two resulting interpretations.

For this statement:

IF b1 THEN IF b2 THEN stmt1 ELSE stmt2

Interpretation assumed by XL Pascal:

IF (b1) THEN
 BEGIN
 IF (b2) THEN
 stmt1
 ELSE
 stmt2;
 END

125Chapter 9. Statements

Alternate interpretation:

IF (b1) THEN
 BEGIN
 IF (b2) THEN
 stmt1
 END
ELSE
 stmt2;

If you prefer the second interpretation, either write it as shown or take advantage of the
empty statement, as illustrated in the following example:

IF (b1) THEN
 IF (b2) THEN
 stmt1
 ELSE
 (* empty statement *)
ELSE
 stmt2;

Examples
The following example shows simple IF statements:

IF a <= b THEN
 a := (a + 1.0) / 2.0;
IF ODD(i) THEN
 j := j + 1
ELSE
 j := j DIV 2 + 1;

The following example shows an IF statement that controls two compound blocks:

IF a > b + c THEN
 BEGIN
 WRITELN(’Found a > b + c’);
 a := a – delta
 END
ELSE
 BEGIN
 WRITELN(’Found a <= b + c’);
 a := a + delta
 END;

LEAVE

Purpose
Causes an immediate, unconditional exit from the innermost enclosing FOR, WHILE, or
REPEAT loop.

Syntax

LEAVE

126 XL Pascal Language Reference

Examples
p := first;
WHILE p <> NIL DO
 IF p@.NAME = ’MIKE SMITH’ THEN
 LEAVE
 ELSE
 p := p@.NEXT ;
 (* p either points to the desired data or is NIL *)

This portion of code with a LEAVE statement

WHILE expr DO
 BEGIN
 ...
 LEAVE
 .
 .
 END;

is equivalent to

WHILE expr DO
 BEGIN
 .
 .
 GOTO label;
 .
 .
 END;
label: ;

Procedure Call

Purpose
Passes control to a procedure.

Syntax

procedure_id

expr

(

,

)

Parameters
procedure_id is any defined procedure

expr is any valid expression compatible with the type of the corresponding formal
parameter

127Chapter 9. Statements

Description
When a procedure is called, the actual parameters are substituted for the corresponding
formal parameters. An actual parameter corresponds to the formal parameter that occupies
the same ordinal position in the formal parameter list. The actual parameters must conform
to the formal parameter types.

Parameters passed by read/write reference (VAR) can only be variables, and can never be
expressions or constants. In standard mode, actual and formal VAR parameters must be of
the same type. Also in standard mode, fields of a packed record can neither be passed by
VAR, nor can elements of packed arrays be passed by VAR. Parameters passed by value or
read-only reference (CONST) can be any expression.

VS Mode
You can pass components of packed objects by VAR parameters in VS mode only.

If a user-defined procedure requires no parameters, an empty set of parentheses can be
used on a procedure call to distinguish it from a variable.

Example
transpose(an_array, num_of_rows, num_of_columns);

matrix_add(a_array, b_array, c_array, n, m);

xyz(i + j, k * l);

matrix_sum();

Related Information
For parameter compatibility rules, see “Routine Parameters” on page 136. The rules for
expression compatibility are given in “Type Compatibility” on page 50. See Chapter 10,
“Routines”, for information about defining procedures.

REPEAT

Purpose
Controls the repetitive processing of a list of statements.

Syntax

REPEAT UNTILstatement expr

;

Parameters
REPEAT is a reserved word.

statement is any valid statement.

UNTIL is a reserved word.

expr is any Boolean expression. This expression is evaluated after each
processing of the statement.

128 XL Pascal Language Reference

Description
The statements contained between the statement delimiters REPEAT and UNTIL are
processed until the control expression is evaluated to TRUE. The control expression must
be of type BOOLEAN. Because a REPEAT can contain a list of statements, it can act as a
compound statement.

Because the termination test is at the end of the loop, the body of the loop is always
processed at least once. Contrast this mechanism with the WHILE statement.

Example
The following example shows a REPEAT statement in which the greatest common factor of
i and j is stored in i.

REPEAT
 k := i MOD j;
 i := j;
 j := k
UNTIL j = 0;

RETURN

Purpose
Permits an exit from a procedure or function.

Syntax

RETURN

Description
This statement is in effect a GOTO to an imaginary label after the last statement in the
routine being processed. If the %CHECK option is enabled, XL Pascal ensures that a
function has been assigned a value before the return from the function. If a value has not
been assigned, a runtime error occurs.

Example
PROCEDURE p;
 BEGIN
 ...
 IF expr THEN RETURN;
 ...
 END;

129Chapter 9. Statements

WHILE

Purpose
Allows you to specify a statement to be processed while a control expression remains
TRUE.

Syntax

WHILE DO statementexpr

Parameters
WHILE is a reserved word.

expr is any Boolean expression. The expression is evaluated before each time
the statement is processed.

DO is a reserved word.

statement is any statement.

Description
The expression must be of type BOOLEAN. The condition is tested before the statement is
processed the first time through the loop. The statement is processed repeatedly until the
control expression is evaluated to FALSE. At this point, control passes to the statement after
the WHILE statement.

If the value of the BOOLEAN expression is FALSE when the WHILE statement is
encountered for the first time, the subordinate statement is never processed. Contrast this
mechanism with the REPEAT statement.

Example
The following example calculates the decimal size of N and assumes N is greater than or
equal to 1:

i := 0;
j := 1;
WHILE n > 10 DO
 BEGIN
 i := i + 1;
 j := j * 10;
 n := n DIV 10
 END;
(* i is the power of ten of the original n *)
(* j is ten to the i power ; 1 <= n <= 9 *)

130 XL Pascal Language Reference

WITH

Purpose
Simplifies references to a record variable by eliminating an addressing description on every
reference to a field.

Syntax

 WITH DOvariable statement

,

Parameters
WITH is a reserved word

variable is any record variable

DO is a reserved word

statement is any valid statement

Description
The WITH statement makes the fields of a record available as if the fields were variables in
the nested statement. Its effect is to insert implicitly the required record identifier before the
name of each field of any record variables in the statement.

Examples
In the following example, the variable father is a pointer to a dynamic variable of the type
employee. You must use pointer notation to specify the employee record.

For the following declarations:

TYPE employee = RECORD
 name : STRING(20);
 man_no : 0..999999;
 salary : INTEGER;
 id_no : 0..999999
 END;

VAR
 father : @ employee;
 ...

NEW (father);

this code segment:

WITH father@ DO
 BEGIN
 name := ’SMITH’;
 man_no := 666666;
 salary := weekly_salary;
 id_no := man_no
 END;

131Chapter 9. Statements

is equivalent to

BEGIN
 father@.name := ’SMITH’;
 father@.man_no := 666666;
 father@.salary := weekly_salary;
 father@.id_no := father@.man_no
END;

The WITH statement in effect computes the address of a record variable upon processing
the statement. Any modification to a variable that changes the address computation is not
reflected in the precomputed address within the WITH statement, as illustrated in the
following example:

VAR
 a : ARRAY [1..10] OF RECORD
 field : INTEGER
 END;
 ...
 i := 1;
WITH a[i] DO
 BEGIN
 k := field; (* k:=a[1].field *)
 i := 2;
 k := field; (* k:=a[1].field *)
 END;

The comma notation of a WITH statement is an abbreviation of nested WITH statements.
The names within a WITH statement are in a scope such that the last WITH statement takes
precedence. A variable with the same name as a field of a record becomes unavailable in a
WITH statement that specifies the record, as shown in the following example:

VAR
 v : RECORD
 v2 : INTEGER;
 v1 : RECORD
 a : REAL
 END;
 a : INTEGER
 END;
 a : CHAR;
 ...

WITH v, v1 DO
 BEGIN
 v2 := 1; (* v.v2 := 1 *)
 a := 1.0;(* v.v1.a := 1.0 *)
 v.a := 1 (* v.a := 1 ; CHAR a is not available here *)
 END;
a := ’A’; (* CHAR a is now available *)

132 XL Pascal Language Reference

133 Copyright IBM Corp. 1990, 1993 Chapter 10. Routines

Chapter 10. Routines

This chapter describes procedures and functions, known collectively as routines.

Routines are the building blocks of XL Pascal programs. They define a block of statements
to be processed as a unit each time the procedure or function is called.

Procedures can be thought of as adding new blocks of statements to the language. They
effectively increase the language to a superset language tailored to your specialized needs.
A procedure has no value associated with its name.

Functions add new operators to the language. Because they act as expressions to compute
and return a value, they add to your ability to manipulate data exactly as you want.

Procedures and functions can return data three ways:

• Through the function results.
• Through VAR parameters.
• By assigning variables outside the lexical scope of the routine making the assignment.

These variables are said to be global to the routine.

Using a routine identifier within the body of that routine implies recursive processing of that
routine. Recursive processing does not occur when the function identifier appears on the left
side of an assignment statement. This placement indicates assignment to the function
variable rather than recursive activation of the function.

With XL Pascal, you can nest routines at least 20 levels deep.

Related Information
For more information on functions in assignment statements, see “Assignments to Variables
and Functions” on page 113.

Routine Declarations
You must declare routines before using them. A routine declaration consists of:

• Routine heading
• Declarations of local labels and identifiers
• One compound statement

Syntax

procedure–heading

function–heading

procedure–id

function–id

function–heading

procedure–heading

directive ;

procedure–block;

;

134 XL Pascal Language Reference

Procedure Block

compound_statement;declaration ;

Procedure Heading

;

procedure–id
()formal–parameter–section

Function Heading

;

()
function–id

formal–parameter–section
id_type:

Procedure–id

PROCEDURE id

Function–id

FUNCTION id

Directive

EXTERNAL

FORTRAN

FORWARD

MAIN

NONPASCAL

REENTRANT

Note: MAIN, REENTRANT, and FORTRAN directives are provided for VS Pascal
compatibility.

135Chapter 10. Routines

Formal–parameter–section

 id_type:

function–heading

procedure–heading

CONST

VAR id
,

Description
In VS mode, you can declare procedures, functions, labels, constants, and variables in any
order. Multiple declarations of these elements are also permitted. In both VS mode and
standard mode, a user-defined routine with the same name as a predefined XL Pascal
routine takes precedence over the predefined routine.

The routine heading defines the name of the routine, and binds the formal parameters to the
routine. The heading of a function declaration also binds the function name to the type of
value returned by the function. Formal parameters represent data to be passed to the
routine when it is called. The procedure block can contain any number of the following
declarations:

• CONST
• DEF (VS Mode only)
• LABEL
• REF (VS Mode only)
• STATIC (VS Mode only)
• TYPE
• VALUE (VS Mode only)
• VAR
• Routine

The compound statement is processed when the routine is called.

136 XL Pascal Language Reference

Examples
STATIC
 c : CHAR;

FUNCTION getchar : CHAR; EXTERNAL;

PROCEDURE expr (VAR val : INTEGER); EXTERNAL;

PROCEDURE factor (VAR val : INTEGER); EXTERNAL;

PROCEDURE factor;

 BEGIN
 c := getchar;
 IF c = ’(’ THEN
 BEGIN
 c := getchar;
 expr(val)
 END
 ELSE
 ...
 END;

PROCEDURE expr;
 (* defined above as EXTERNAL, with VAR val : INTEGER *)

 BEGIN
 factor(val);
 ...
 END;

Related Information
Declarations are described in Chapter 4.

Routine Parameters
A routine can have formal parameters associated with it when it is defined. These
parameters define what kind of data can be passed to the routine when it is called; they
determine how the data is passed. They also permit a routine to process different sets of
data in different invocations of the routines.

When the routine is called, a list of actual parameters is built. These are substituted for the
formal parameters, which then become local variables initialized to the value of the actual
parameters.

The formal parameters declared in a routine and the actual parameters supplied when the
routine is activated must agree both in number and type.

Routine Parameters in Standard Mode
XL Pascal in standard mode permits parameters to be passed in the following ways:

• Pass-by-value
• Pass-by-read/write-reference (VAR)
• Formal routine parameter

137Chapter 10. Routines

Pass-by-Value Parameters
These parameters are like local variables initialized by the caller. The called routine can
change the value of this kind of parameter, but the change is never returned to the caller.

If the actual parameter is a scalar, the parameter list contains the value of the actual
parameter. If it is an ARRAY, RECORD, SET, SPACE, STRING, or has any pointer type, the
parameter list contains the address of the actual parameter. The called procedure copies the
parameter into its local storage.

All expressions, variables, or constants that are assignment compatible with the declared
formal routine parameters can be passed with this mechanism. The exception is a
parameter that is a file type or any type that even indirectly contains a file type. If the actual
parameter is a scalar, the parameter list contains the value of the actual parameter.

Pass-by-VAR Parameters
Pass-by-VAR (variable) parameters are also called pass-by-read/write-reference
parameters. Parameters passed by VAR reflect modifications to the parameters back to the
actual parameter. You can use this parameter type as both an input and output parameter.
The use of the VAR symbol before a parameter indicates that the parameter is to be passed
by read/write reference. Only variables can be passed by this mechanism; expressions and
constants cannot be passed this way.

In standard mode, actual routine parameters must be the same type as the formal routine
parameters. The following cannot be passed as VAR parameters in standard mode:

• Fields of a packed record
• Elements of a packed array
• A field that is the selector of a variant part

The VAR parameters should be distinct actual variables. It is poor programming style to
supply the same variable to more than one actual parameter in a routine reference, although
no compile-time or runtime error results.

All index computations, field selection, and pointer referencing are done at the time the
routine reference is made.

VS Mode:

Actual routine parameters corresponding to pass-by-VAR formal parameters must either be
the same type or subrange variables. A runtime trap could occur if the value being assigned
is out of range. Fields of a packed record or elements of a packed array can be passed as
VAR parameters in VS mode XL Pascal.

Formal Routine Parameters
A procedure or function can be passed to a routine as a formal parameter by specifying the
routine in the parameter list. Within the called routine, the formal parameter can be used as
a procedure or function.

When you use actual and formal routine parameters, both routines must be either
procedures or functions with the same result type. Also, the formal parameter lists of the
actual and formal parameters must be congruous. Parameter lists are congruous under the
following conditions:

• Both lists contain the same number of formal parameter sections
• Corresponding formal parameter sections match as defined in the ANSI–83 Pascal

standard

138 XL Pascal Language Reference

VS Mode:

Formal parameters match when both are:

• Value parameters with the same type
• VAR parameters with the same type
• CONST parameters with the same type
• For a procedure, parameters with congruous parameter lists
• For a function, parameters with congruous parameter lists and the same result type

Routine Parameters in VS Mode
XL Pascal in VS mode permits parameters to be passed in the following ways:

• Pass-by-read-only-reference (CONST) (VS mode only)
• Pass-by-conformant-string (VAR or CONST) (VS mode only)

Pass-by-CONST Parameters
These are also called pass-by-read-only-reference parameters. They appear to be
constants from the point of view of the called routine, which is not permitted to alter
pass-by-CONST parameters.

Any expression, variable, or constant can be passed by CONST. Fields of a packed record
and elements of a packed array can also be passed. If you pass a CONST pointer type
parameter to either of the predefined procedures DISPOSE or RELEASE, the parameter is
not set to NIL.

The use of the CONST reserved word in a parameter indicates that the parameter is to be
passed by this mechanism. With parameters that are structures (such as strings), passing
by CONST is usually more efficient than passing by value. Actual routine parameters must
be assignment compatible with the declared formal routine parameters.

Conformant String Parameters
You may want to call a procedure or function and pass in a string whose declared length
does not match that of the formal parameter. Use the conformant string parameter for this
purpose.

You can declare a parameter or function return type as STRING with no length specification
as follows:

FUNCTION (parm : STRING) : STRING ;

The interpretation of such a declaration depends on its context.

When a conformant string declaration appears as the type for a pass-by-value parameter or
as the type for a value returned by a function, it is treated as a STRING of default length
255. Because strings are generally compatible, the parameter accepts any string type as its
argument; however, truncation errors can occur if the actual string length exceeds 255.

When a conformant string parameter appears as the type for a pass-by-CONST or
pass-by-VAR parameter, no assumption is made about the string size. Strings of any
declared length conform to such a parameter. The actual string is available, and you can
use the MAXLENGTH function to obtain the declared maximum length.

139Chapter 10. Routines

Example:

PROCEDURE translate (VAR s : STRING; CONST table : STRING);

 VAR
 i : 0..32767;
 j : 1..ORD(HIGHEST (CHAR)) + 1;

 BEGIN
 FOR i := 1 TO LENGTH(s) DO
 BEGIN
 j := ORD(s[i]) + 1;
 IF j > LENGTH(table) THEN
 s[i] := ’ ’
 ELSE
 s[i] := table[j];
 END;
 END;

Routines That Can Be Passed as Parameters
Standard mode XL Pascal does not allow any predefined routines to be passed as actual
parameters.

VS mode XL Pascal allows the predefined routines in the following table to be passed as
actual routine parameters to another routine.

ARCTAN
CLOCK
COLS
COS
DATETIME

EXP
GTOSTR
HALT
ITOHS
LN

LTOKEN
PARMS
PICTURE
RANDOM
RETCODE

SIN
SQRT
STOGSTR
TOKEN
TRACE

Function Results
To return a result from a function, assign a value to the function name before leaving the
function. This value is inserted in the expression at the point of the call. The value must be
assignment-compatible with the declared function type.

If a function is used to evaluate itself (such as being on the right side of an assignment to
the function itself), it is a recursive call. The following example shows the function
factorial, which calls itself if x is greater than 1.

FUNCTION factorial (x : INTEGER) : INTEGER;

 BEGIN
 IF x <= 1 THEN
 factorial := 1 (* return result *)
 ELSE
 factorial := x * factorial(x–1);
 (* recursive function call *)
 END;

Standard mode XL Pascal permits a function to return only a scalar or a pointer value.

140 XL Pascal Language Reference

VS Mode
XL Pascal lets a function return any type except a file or any type containing a file. You can
write a Pascal function that returns a record structure as its result. You may want to use a
record structure to implement a complex arithmetic library, as illustrated in the following
example:

TYPE complex = RECORD
 r, i : REAL
 END;

FUNCTION cadd (CONST a, b : complex) : complex;

 VAR
 c : complex;

 BEGIN
 c.r := a.r + b.r;
 c.i := a.i + b.i;
 cadd := c
 END;

A function can also return a STRING or a GSTRING. If you do not specify the maximum
length of the STRING or GSTRING, a value of 255 is returned.

Pointer-Valued Functions
A function that returns a pointer value is known as a pointer-valued function. You cannot
apply the pointer-dereferencing operator to the name of a pointer-valued function within the
function body. You cannot refer to the target of the returned value in a pointer-valued
function by using the function name.

141Chapter 10. Routines

Examples
The following example shows a pointer-valued function that returns a STRINGPTR and
allows access to a dynamic string.

(* Function to allocate a dynamic string, provide an initial *)
(* value and return the stringptr that allows access to *)
(* the string *)
FUNCTION dynstr (sz : INTEGER) : STRINGPTR;

 VAR
 wsp : STRINGPTR;

 BEGIN;
 NEW(wsp, sz); (* allocate dynamic string with *)
 (* max length based on sz *)
 dynstr := wsp; (* set return value for function *)
 wsp@ := ’’; (* initialize string to empty *)
 (* NOTE: coding this as: *)
 (* dynstr@ := ’’ ; *)
 (* would result in a recursive *)
 (* invocation of this function, *)
 (* which is not correct *)
 END;
 .
 .

 VAR
 msp : STRINGPTR;

 BEGIN;
 msp := dynstr(25); (* create and initialize dynamic *)
 (* string with max size 25 *)
 END;

Routine Directives
You must declare a routine before you call it. The compiler can assure the validity of a call
by checking parameter compatibility.

XL Pascal provides three routine directives:

• FORWARD
• NONPASCAL
• EXTERNAL (VS mode only)

For VS Pascal compatibility, and to assist in migration of VS Pascal programs, XL Pascal
recognizes the following routine directives in both VS mode and standard mode:

• FORTRAN
• MAIN
• REENTRANT

They are equivalent to the EXTERNAL directive, but they have no effect on an XL Pascal
program. They are not described here; for complete information about their use, see the VS
Pascal Language Reference (Release 2).

142 XL Pascal Language Reference

FORWARD Routines
The FORWARD directive identifies a routine whose heading is declared in advance of the
routine body. The declaration consists only of the routine heading, followed by the
FORWARD routine directive. To declare the body of a FORWARD routine, once again
declare the routine heading, but omit the formal parameter list. Declare only the
procedure-id and the procedure-body or the function-id and the function-body of the routine.

Declaring a routine FORWARD lets you call a routine before actually defining the body of
the routine. This is particularly useful when two routines call each other and are at the same
nesting level; one of the routines must be declared FORWARD.

When a routine makes a recursive call to itself, a FORWARD declaration is not needed.

Examples
The following program illustrates the use of the Pascal directives FORWARD and
NONPASCAL. Note that when the procedure sineof is defined, the procedure
parameters do not have to be declared again, because they were previously declared in the
FORWARD declaration of the procedure.

PROGRAM nf;

PROCEDURE convert (VAR r : REAL); NONPASCAL; (* language *)
 (* program written in another language *)

PROCEDURE sineof (VAR r : REAL); FORWARD;
 (* procedure declared ahead of its definition *)

FUNCTION calc (r : REAL) : REAL;
 BEGIN
 (* function using procedures convert and sineof *)
 convert(r);
 sineof(r);
 calc := r;
 END;

PROCEDURE sineof; (* procedure sineof defined *)
 BEGIN
 r := SIN(r);
 END;

BEGIN
 WRITELN(calc (2.0));
END.

NONPASCAL Routines
The NONPASCAL directive is a special case of the EXTERNAL directive required by the
parameter passing conventions of calls to other XL languages. The NONPASCAL directive
is a safer, though slightly less efficient, parameter passing mechanism for floating-point data.
The previous example shows the NONPASCAL routine.

If you are not sure how floating-point values are passed by the programs you are linking,
you may want to use NONPASCAL instead of the EXTERNAL directive. See the User’s
Guide for IBM AIX XL Pascal Compiler/6000 for more information on interlanguage
communication.

143Chapter 10. Routines

EXTERNAL Routines
An external routine is a procedure or function that can be called from outside of its lexical
scope (such as another unit). The EXTERNAL directive specifies the heading of such a
routine. It is available only in VS mode.

Although many units can call an external routine, only one unit actually contains the body of
the routine. The formal parameters defined in the external routine declaration must match
those in the unit where the routine is defined. An external routine declaration can refer to an
XL Pascal routine located later in the same unit or located in another segment unit. It can
also refer to code produced by other means (such as assembler code).

The body of an external routine can be defined only in the outermost nesting level of a unit;
that is, it must not be nested in another routine.

Example
The following example illustrates two units, the program unit test and a segment unit
seg, that share a single external routine. Both units can call the routine, but only one
contains the definition of the routine.

PROGRAM test;

FUNCTION square (x : REAL) : REAL; EXTERNAL;

 BEGIN
 WRITELN (square (44));
 END.

SEGMENT seg;

FUNCTION square (x : REAL) : REAL; EXTERNAL;

FUNCTION square;

 BEGIN
 square := x * x
 END; .

Internal Routines
An internal routine can be called only from within the lexical scope containing the routine
definition. It can only have the FORWARD directive in its declaration.

Predefined Routines
XL Pascal provides a wide range of predefined procedures and functions. The following is a
summary all of the predefined routines by category.

Conversion
These routines perform conversions from one data type to another.

Standard Mode:
The CHR function, described on page 147
The ORD function, described on page 170
The ROUND function, described on page 185
The TRUNC function, described on page 194

144 XL Pascal Language Reference

VS Mode:
The FLOAT function, described on page 153
The GSTR function, described on page 154
The GTOSTR function, described on page 155
The ITOHS function, described on page 157
Ordinal conversion functions, described on page 170
The STOGSTR function, described on page 188
The STR function, described on page 189

Data Access
These routines let you inquire about compile-time and runtime bounds and values.

Standard Mode:
The ODD function, described on page 170
The PRED function, described on page 175
The SUCC function, described on page 191

VS Mode:
The ADDR function, described on page 147
The HBOUND function, described on page 155
The HIGHEST function, described on page 156
The LBOUND function, described on page 157
The LOWEST function, described on page 159
The MAX function, described on page 162
The MIN function, described on page 164
The SIZEOF function, described on page 187

Data Movement
These routines provide you with efficient ways of reformatting when you are moving large
amounts of data.

The PACK procedure, described on page 171
The UNPACK procedure, described on page 194

General
These VS mode routines provide several useful features of the XL Pascal runtime
environment.

The HALT procedure, described on page 155
The TRACE procedure, described on page 193
The xl__trap procedure, described on page 203

Input/Output
An XL Pascal program communicates through input and output (I/O) facilities. Input and
output are done using the file data structure. There are two types of files in XL Pascal: TEXT
files and record files. The predefined input/output routines let you write to and read from
these files.

The User’s Guide for IBM AIX XL Pascal Compiler/6000 provides more detail on how to use
the XL Pascal I/O routines in the AIX Version 3 Operating System.

145Chapter 10. Routines

Standard Mode:
The EOF function (record or TEXT files), described on page 152
The EOLN function (TEXT files only), described on page 152
The GET procedure (record or TEXT files), described on page 154
The PAGE procedure (TEXT files only), described on page 172
The PUT procedure (record or TEXT files), described on page 176
The READ procedure (record or TEXT files), described on page 177
The READLN procedure (TEXT files only), described on page 177
The RESET procedure (record or TEXT files), described on page 183
The REWRITE procedure (record or TEXT files), described on page 184
The WRITE procedure (record or TEXT files), described on page 196
The WRITELN procedure (TEXT files only), described on page 197

VS Mode:
The CLOSE procedure (record or TEXT files), described on page 148
The COLS function (TEXT files only), described on page 148
The SEEK procedure (record files only), described on page 186
The TERMIN procedure (TEXT files only), described on page 191
The TERMOUT procedure (TEXT files only), described on page 191
The UPDATE procedure (record files only), described on page 195

Mathematical
These routines define various mathematical operations.

Standard Mode:
The ABS function, described on page 147
The ARCTAN function, described on page 147
The COS function, described on page 149
The EXP function, described on page 153
The LN function, described on page 159
The SIN function, described on page 187
The SQR function, described on page 188
The SQRT function, described on page 188

VS Mode:
The RANDOM function, described on page 176

Mixed String Support (VS Mode)
This set of VS mode routines lets you manipulate strings with a mixture of single-byte
characters and Extended, or Multibyte, Character Set (MBCS) characters. These routines
recognize and preserve MBCS characters. The arguments of mixed string support routines
must be defined as type STRING, never type GSTRING.

The MCOMPRESS function, described on page 163
The MDELETE function, described on page 163
The MINDEX function, described on page 164
The MLENGTH function, described on page 165
The MLTRIM function, described on page 165
The MRINDEX function, described on page 165
The MSUBSTR function, described on page 166
The MTRIM function, described on page 167

146 XL Pascal Language Reference

Storage Management
These routines let you control the allocation of dynamic variables. Several routines manage
these variables in a collection called a heap.

Standard Mode:
The DISPOSE procedure, described on page 150
The NEW procedure, described on page 167

VS Mode:
The DISPOSEHEAP procedure, described on page 151
The MARK procedure, described on page 161
The NEWHEAP procedure, described on page 169
The QUERYHEAP procedure, described on page 176
The RELEASE procedure, described on page 182
The USEHEAP procedure, described on page 196

STRING Manipulation (VS Mode)
These VS mode routines provide a convenient means of operating on string data. They
manipulate single-byte and mixed strings in a byte-oriented manner.

The COMPRESS function, described on page 149
The DELETE function, described on page 150
The INDEX function, described on page 156
The LENGTH function, described on page 158
The LPAD procedure, described on page 160
The LTOKEN procedure, described on page 160
The LTRIM function, described on page 161
The MAXLENGTH function, described on page 162
The PICTURE function, described on page 173
The READSTR procedure, described on page 181
The RINDEX function, described on page 184
The RPAD procedure, described on page 186
The SUBSTR function, described on page 190
The TOKEN procedure, described on page 192
The TRIM function, described on page 193
The WRITESTR procedure, described on page 201

System Interface (VS Mode)
These VS mode routines provide interfaces to system facilities. In general, they are
dependent on the implementation of XL Pascal.

The CLOCK function, described on page 148
The DATETIME procedure, described on page 149
The PARMS function, described on page 172
The RETCODE procedure, described on page 184

147Chapter 10. Routines

ABS Function

Purpose
Returns the absolute value of the parameter, which can be any numeric type.

Definition
FUNCTION ABS(i : INTEGER)
 : INTEGER ;
FUNCTION ABS(r : REAL)
 : REAL ;
FUNCTION ABS(s : SHORTREAL)
 : SHORTREAL ;

Where Represents

i an INTEGER expression

r a REAL expression

s a SHORTREAL expression (VS mode only).

ADDR Function

Purpose
Returns the address in storage of a specified variable. A variable includes qualified variables
such as dereferenced pointers, subscripted variables, and fields of records.

Definition
FUNCTION ADDR(v : anytype)
 : INTEGER;

Where Represents

v an identifier declared as a variable.

ARCTAN Function

Purpose
Computes the arctangent of a floating-point number. The result is expressed in radians.

Definition
FUNCTION ARCTAN(x : REAL)
 : REAL;

Where Represents

x a REAL expression.

REAL functions will accept INTEGER and SHORTREAL arguments. See “Type
Compatibility” on page 50 for more information.

CHR Function

Purpose
Returns the ASCII character corresponding to the given INTEGER value. It is the inverse of
ORD for characters. That is, ORD(CHR(I))=I if I is in the subrange:

ORD(LOWEST(CHAR))..ORD(HIGHEST(CHAR))

148 XL Pascal Language Reference

If the operand is outside this range when checking is active, a runtime error results. If
checking is not active, XL Pascal acts unpredictably. See the User’s Guide for IBM AIX XL
Pascal Compiler/6000 for a table of the ASCII character set and information on the values
for ASCII characters.

Definition
FUNCTION CHR(i : INTEGER)
 : CHAR;

Where Represents

i an INTEGER expression that represents the ordinal value of a character.

CLOCK Function

Purpose
Returns the number of microseconds the program has been running.

Definition
FUNCTION CLOCK : INTEGER;

CLOSE Procedure

Purpose
Ends all processing of a specific file, and leaves the file variable for that file undefined. If a
file is already closed, a CLOSE call does nothing. You must reopen the file before using it
again.

Definition
PROCEDURE close(VAR f : filetype);

Where Represents

f a file variable.

COLS Function

Purpose
Returns the current column number (position of the next character to be written) on the
output TEXT file designated by the file variable.

Definition
FUNCTION COLS(CONST f : TEXT)
 : INTEGER;

Where Represents

f a TEXT file open for output.

You can force the output to a specific column with the following code:

IF tab > COLS(f) THEN
 WRITE (f, ’ ’ : tab–COLS(f));

149Chapter 10. Routines

COMPRESS Function

Purpose
Replaces multiple consecutive blanks in the specified source string with a single blank, and
sequences of MBCS blanks with a single MBCS blank.

Definition
FUNCTION COMPRESS(CONST source : STRING)
 : STRING;

FUNCTION COMPRESS(CONST source : GSTRING)
 : GSTRING;

Where Represents

source a STRING or GSTRING expression to be compressed.

Note: The COMPRESS function works best with pure single-byte character strings or pure
MBCS strings. Use the predefined routine MCOMPRESS for operating on mixed
strings.

Examples
k := COMPRESS(’a b cd ’) ; (* yields ’a b cd ’ *)
k := COMPRESS(’BBDBB’G) ; (* yields ’BDB’G *)

Note: The D represents one MBCS character, and B represents one MBCS blank.

COS Function

Purpose
Computes the cosine of a floating-point number representing an angle in radians.

Definition
FUNCTION COS(x : REAL)
 : REAL;

Where Represents

x a REAL expression.

REAL functions will accept INTEGER and SHORTREAL arguments. See “Type
Compatibility” on page 50 for more information.

DATETIME Procedure

Purpose
Returns the current date and time of day as two ALFA arrays.

Definition
PROCEDURE DATETIME(VAR date, time : ALFA);

Where Represents

date the returned date in the format mm/dd/yy

time the returned time in the format hh:mi:ss.

150 XL Pascal Language Reference

Where Represents

mm the month expressed as a two-digit value
dd the day of the month
yy the year
hh the hour
mi the minute
ss the second

DELETE Function

Purpose
Returns the source string with a specified portion removed.

Definition
FUNCTION DELETE (CONST source : STRING;
 start : INTEGER;
 len : INTEGER) : STRING;

FUNCTION DELETE (CONST source : GSTRING;
 start : INTEGER;
 len : INTEGER) : GSTRING;

Where Represents

source a STRING or GSTRING expression from which a portion will be deleted

start an INTEGER expression that specifies the starting position within the
source where characters are to be deleted

len an optional INTEGER expression that specifies the number of characters to
be deleted.

The first character of the source string is at position 1. If the length is omitted, all remaining
characters are deleted. The string is truncated beginning at position start.

The following conditions must exist to avoid an error message at run time:

• start must be greater than 0
• len must be greater than or equal to 0
• start+len–1 must be less than or equal to the current length of the string.

If len is 0, the whole string is returned.

Note: DELETE works best with pure single–byte character strings or pure MBCS strings.
The predefined routine MDELETE is recommended for operating on mixed strings.

Examples
k := DELETE(’abcde’,2,3) ; (* yields ’ae’ *)
k := DELETE(’abcde’,3) ; (* yields ’ab’ *)
k := DELETE(’abcde’,3,1) ; (* yields ’abde’ *)
k := DELETE(’abcde’,1) ; (* yields ’’ *)
k := DELETE(’abcde’,6,0) ; (* yields ’abcde’ *)
k := DELETE(’abcde’,2,5) ; (* is an error *)

DISPOSE Procedure

Purpose
Frees storage for a single dynamic variable, and if the pointer is a valid destination for
assignment, sets the pointer to NIL.

151Chapter 10. Routines

Definition
Form 1:
 PROCEDURE DISPOSE(p1 : pointer);

Form 2:
 PROCEDURE DISPOSE(p2 : pointer;
 t1, t2... : ordinal–type);

Form 3:
 PROCEDURE DISPOSE(p3 : STRINGPTR;
 len : INTEGER);

 PROCEDURE DISPOSE(p3 : GSTRINGPTR;
 len : INTEGER);

Where Represents

p1 a pointer expression returned from a call to NEW

p2 a pointer expression to a record returned from a call to NEW

t1,t2 ordinal constants representing tag fields

p3 a STRINGPTR or GSTRINGPTR expression returned from a call to NEW

len an INTEGER expression (VS mode only).

DISPOSE frees only the storage referred to by the pointer and does not free any storage
that the dynamic variable references. That is, if the dynamic variable is an element of a
linked list, DISPOSE frees storage only for that single element. If you want to dispose of the
whole list, you must explicitly dispose of every element of the list. If you have other pointers
that reference the same dynamic variable that has been disposed, you should not use these
pointers because the dynamic variable they represented is no longer allocated.

Form 1 deallocates storage for any POINTER, STRINGPTR, or GSTRINGPTR
allocated using any form of NEW.

Form 2 works only on a pointer to a variant record type with nested variants whose
tag types are assignment compatible with the tag field constants.

Form 3 can only be used to deallocate pointers previously allocated with Form 3 of
NEW. XL Pascal checks that the specified length is an integer but ignores
the length value otherwise. Form 3 is available only in VS mode.

Related Information
The NEW procedure is described on page 167. For information on how to free an entire
subheap, see “RELEASE Procedure” on page 182.

DISPOSEHEAP Procedure

Purpose
Frees storage in a heap.

Definition
PROCEDURE DISPOSEHEAP(VAR p : pointer);

Where Represents

p a pointer to any type. Its value must be a heap–id set by a call to
NEWHEAP or QUERYHEAP.

152 XL Pascal Language Reference

DISPOSEHEAP frees the dynamic variables and the mark-values in the heap designated by
its argument. It also frees storage allocated for the heap-id, which is the pointer passed to a
heap created by the NEWHEAP procedure.

If the argument of DISPOSEHEAP is a variable, it is set to NIL. If you dispose of the
currently active heap with DISPOSEHEAP, the default heap becomes the currently active
heap. If you dispose of the default heap with DISPOSEHEAP, the contents of the default
heap are freed, but the heap-id of the default heap remains allocated.

EOF Function

Purpose
Tests a file for the end-of-file condition. EOF is a Boolean function that returns a value of
TRUE if the end-of-file condition is true for the file; otherwise, it returns FALSE. The
end-of-file condition occurs on any attempt to read past the last element of an input file. If
the file is open for output, this function returns a value of TRUE.

Definition
FUNCTION EOF(f : filetype)
 : BOOLEAN;

Where Represents

f an optional file variable. The default is the predefined file INPUT.

Example of Testing for End-of-File Condition
In the following example, all the records are read from sysin and written to sysout.

TYPE frec = RECORD
 a, b : INTEGER
 END;

VAR
 sysin, sysout : FILE OF frec;

BEGIN
 RESET(sysin);
 REWRITE(sysout);
 WHILE NOT EOF(sysin) DO
 BEGIN
 sysout@ := sysin@;
 PUT(sysout);
 GET(sysin)
 END;
END;

EOLN Function

Purpose
Tests a TEXT file for the end-of-line condition. EOLN is a Boolean function that returns a
value of TRUE if the file pointer is positioned to an end-of-line character; otherwise, it returns
a value of FALSE.

An end-of-line character is inserted when you use WRITELN to write out the data. If the
end-of-line condition is true, the file pointer points to a blank.

153Chapter 10. Routines

Definition
FUNCTION EOLN(f : TEXT)
 : BOOLEAN;

Where Represents

f an optional TEXT file variable. The default is the predefined file INPUT.

Example of Copying a Text File
In the following example, the file is copied from sysin to sysout.

VAR
 sysin, sysout : TEXT;

BEGIN
 RESET(sysin);
 REWRITE(sysout);
 WHILE NOT EOF(sysin) DO
 BEGIN
 WHILE NOT EOLN(sysin) DO
 BEGIN
 sysout@ := sysin@;
 PUT(sysout);
 GET(sysin);
 END;
 WRITELN(sysout);
 READLN(sysin);
 END;
END;

EXP Function

Purpose
Computes the value of the base of the natural logarithm, e, raised to the power expressed
by a floating-point number.

Definition
FUNCTION EXP(x : REAL)
 : REAL;

Where Represents

x a REAL expression.

Functions of type REAL accept INTEGER and SHORTREAL arguments. See “Type
Compatibility” on page 50 for more information on implicit type conversion.

FLOAT Function

Purpose
Converts an INTEGER value to a REAL value. Use FLOAT to make this conversion explicit
in a program. See “Implicit Type Conversion” on page 50 for more information on type
conversion.

154 XL Pascal Language Reference

Definition
FUNCTION FLOAT(i : INTEGER)
 : REAL;

Where Represents

i an INTEGER expression.

GET Procedure

Purpose
Positions the file pointer of a file (previously opened for input) to the next component in the
file. For example, if the file is defined to be made up of strings, each GET advances the file
pointer to the next string in the file. A call to GET on a TEXT file causes the file pointer to be
advanced to the next single character in the file.

Definition
PROCEDURE GET(VAR f : filetype);

Where Represents

f a file variable.

Note: GET can only read pure MBCS data from a TEXT file one byte at a time.

GSTR Function

Purpose
Converts a GSTRING, GCHAR, or PACKED ARRAY OF GCHAR to a GSTRING. XL Pascal
implicitly converts an MBCS literal string to a GCHAR or PACKED ARRAY OF GCHAR on
assignment, but all other conversions require you to explicitly state the conversion. If the
parameter is a GSTRING, the function is valid but has no effect.

Definition
FUNCTION GSTR(x : GCHAR)
 : GSTRING;

FUNCTION GSTR(x : PACKED ARRAY[1..n] OF GCHAR)
 : GSTRING;

FUNCTION GSTR(x : GSTRING)
 : GSTRING;

Where Represents

x a GCHAR, GSTRING, or PACKED ARRAY OF GCHAR expression.

Example
VAR
 gc : GCHAR;
 ga : PACKED ARRAY [1..4] OF GCHAR;
 g4 : GSTRING(4);

BEGIN
 gc := ’D’G; (* D is stored in gc *)
 g4 := GSTR(gc); (* D is stored in g4 *)
 ga := ’DB’G; (* DB is stored in ga *)
 g4 := GSTR(ga); (* DB is stored in g4 *)
END;

155Chapter 10. Routines

GTOSTR Function

Purpose
Converts a GSTRING to a mixed STRING. Data is converted from file code to process code.

 Definition
FUNCTION GTOSTR(x : GSTRING)
 : STRING;

Where Represents

x a GSTRING expression.

Example
VAR
 g : GSTRING(4);
 s : STRING(10);

BEGIN
 g := ’DB’G; (* DB is stored in g *)
 s := GTOSTR(g) (* DB is stored in s *)
END;

HALT Procedure

Purpose
Stops the processing of an XL Pascal program.

Definition
PROCEDURE HALT;

HBOUND Function

Purpose
Returns the upper bound of an index to an array. The array can be specified in two ways:

• An identifier declared as an array or space in the TYPE section
• A variable of type ARRAY or SPACE

Definition
FUNCTION HBOUND(v : array–type;
 i : integer–const)
 : ordinal–type;

Where Represents

v an identifier declared as an array type or variable, or a SPACE type or
variable

i an optional constant expression with a positive INTEGER value. The default
is 1.

The type of the value returned is the same as the type of the index. You use the second
parameter for multidimensional arrays to define the dimension of the array for which the
upper bound is returned.

The HBOUND function also works on SPACE types by returning the size of the space in
bytes.

156 XL Pascal Language Reference

Examples
TYPE
 grid = ARRAY [–10..10,–5..5] OF REAL;

VAR
 a : grid;
 b : ARRAY [1..100] OF
 ARRAY [0..9] OF CHAR;
 .
 .
 k := HBOUND(a) ; (* is 10 *)
 k := HBOUND(grid) ; (* is 10 *)
 k := HBOUND(b, 2) ; (* is 9 *)
 k := HBOUND(b[1]) ; (* is 9 *)

HIGHEST Function

Purpose
Returns the highest value in the ordinal type of the operand. The operand can be either a
type identifier or a variable. If it is a type identifier, the value of the function is the highest
value that a variable of that type can be assigned. If it is a variable, the value of the function
is the highest value that the variable can be assigned.

Definition
FUNCTION HIGHEST(s : ordinal–type)
 : ordinal–type;

Where Represents

s an identifier declared as an ordinal type or variable.

Examples
TYPE
 days = (sun, mon, tues, wed, thu, fri, sat);
 small = 0..31 ;

VAR
 i : INTEGER;
 j : 0..255;
 .
 .
 k := HIGHEST(days) ; (* is SAT *)
 k := HIGHEST(BOOLEAN) ; (* is TRUE *)
 k := HIGHEST(small) ; (* is 31 *)
 k := HIGHEST(i) ; (* is MAXINT *)
 k := HIGHEST(j) ; (* is 255 *)

INDEX Function

Purpose
Returns the starting index of the first instance of the second parameter within the first
parameter. If the second parameter does not exist in the first parameter, INDEX returns a
zero. If the second parameter is null, it returns a 1.

157Chapter 10. Routines

Definition
FUNCTION INDEX(CONST source : STRING ;
 CONST lookup : STRING)
 : 0..32767;

FUNCTION INDEX(CONST source : GSTRING ;
 CONST lookup : GSTRING)
 : 0..16382;

Where Represents

source a STRING or GSTRING expression to which lookup is compared

lookup the STRING or GSTRING expression to be compared to source.

Note: INDEX works best with pure single-byte character strings or pure MBCS strings. Use
the predefined routine MINDEX for operating on mixed strings.

Examples
VAR
 s : STRING(10);
 .
 .
 s := ’abcabcabc’;
 .
 .
 k := INDEX(s, ’bc’) ; (* yields 2 *)
 k := INDEX(s, ’x’) ; (* yields 0 *)

ITOHS Function

Purpose
Converts an INTEGER value into a string containing the hexadecimal representation of the
integer.

Definition
FUNCTION ITOHS(i : INTEGER)
 : STRING(8);

Where Represents

i the INTEGER expression to be converted.

Example
WRITELN(’The value ’,I:0,
 ’ is ’, ITOHS(I),
 ’ in hexadecimal.’);

LBOUND Function

Purpose
Returns the lower bound of an index to an array. The array can be specified in two ways:

• As an identifier declared as an array or space in the TYPE section
• As a variable of type ARRAY or SPACE

158 XL Pascal Language Reference

Definition
FUNCTION LBOUND(v : array–type;
 i : integer–const)
 : ordinal–type;

Where Represents

v an identifier declared as an array type or variable, or a SPACE type or
variable

i an optional constant expression with a positive INTEGER value. The default
is 1.

The type of the value returned is the same as the type of the index. You use the second
parameter for multidimensional arrays to define the dimension of the array for which the
lower bound is returned.

The LBOUND function also works on SPACE types, returning a value of 0.

Examples
TYPE
 grid = ARRAY [–10..10,–5..5] OF REAL ;

VAR
 a : ARRAY [1..100] OF ALFA;
 b : ARRAY [1..100] OF
 ARRAY [0..9] OF CHAR;
 .
 .
 k := LBOUND(a) ; (* is 1 *)
 k := LBOUND(grid) ; (* is –10 *)
 k := LBOUND(b, 2) ; (* is 0 *)
 k := LBOUND(b[1]) ; (* is 0 *)

LENGTH Function

Purpose
Returns the current length of the specified parameter string or GSTRING. For STRING
parameters, the value is in the range 0 to 32767. For parameters of type GSTRING, the
value is in the range 0 to 16382 characters.

Definition
FUNCTION LENGTH(s : STRING)
 : 0..32767;

FUNCTION LENGTH(s : GSTRING)
 : 0..16382;

Where Represents

s a STRING or GSTRING expression.

Note: LENGTH works best with pure single-byte character strings or pure MBCS strings.
The predefined routine MLENGTH is recommended for operating on mixed strings.

Examples
k := LENGTH(’abcd’) ; (* yields 4 *)
k := LENGTH(’DDDD’G) ; (* yields 4 *)

Note: D represents one MBCS character.

159Chapter 10. Routines

LN Function

Purpose
Computes the natural logarithm of a floating-point number.

Definition
FUNCTION LN(x : REAL)
 : REAL;

Where Represents

x a REAL expression with a value greater than 0.

Functions of type REAL will accept INTEGER and SHORTREAL arguments. See “Type
Compatibility” on page 50 for more information.

LOWEST Function

Purpose
Returns the lowest value in the ordinal type of the operand. The operand can be either a
type identifier or a variable. If the operand is a type identifier, the value of the function is the
lowest value that a variable of that type can be assigned. If the operand is a variable, the
value of the function is the lowest value that the variable can be assigned.

Definition
FUNCTION LOWEST(s : ordinal–type)
 : ordinal–type;

Where Represents

s an identifier declared as an ordinal type or variable.

Examples
TYPE
 days = (sun, mon, tues, wed, thu, fri, sat);
 small = 0..31;

VAR
 i : INTEGER;
 j : 0..255;
 .
 .
 k := LOWEST(days) ; (* is SUN *)
 k := LOWEST(BOOLEAN) ; (* is FALSE *)
 k := LOWEST(small) ; (* is 0 *)
 k := LOWEST(i) ; (* is MININT *)
 k := LOWEST(j) ; (* is 0 *)

160 XL Pascal Language Reference

LPAD Procedure

Purpose
Pads or truncates a string or GSTRING on the left.

Definition
PROCEDURE LPAD(VAR s : STRING;
 l : INTEGER;
 c : CHAR);

PROCEDURE LPAD(VAR s : GSTRING;
 l : INTEGER;
 c : GCHAR);

Where Represents

s the STRING or GSTRING to be padded

l the final length of s

c the pad character.

If LENGTH(s) is greater than l, LPAD truncates characters on the left. If LENGTH(s) is less
than l, LPAD extends s with the character c on the left.

Example
s := ’abcdef’;
k := LPAD(s, 10, ’$’) ; (* produces ’$$$$abcdef’ in s *)
s := ’abcdef’ ;
k := LPAD(s, 5, ’$’) ; (* produces ’bcdef’ in s *)

LTOKEN Procedure

Purpose
Scans its source parameter looking for a token and returns the token as a STRING type.
The LTOKEN procedure is declared with three parameters.

Definition
PROCEDURE LTOKEN(VAR pos : INTEGER;
 CONST source : STRING;
 VAR result : STRING);

Where Represents

pos an INTEGER corresponding to the position in the source string where the
search for the token begins. The value of this INTEGER is updated to the
starting position for subsequent calls to LTOKEN.

source a STRING expression containing the data from which a token is to be
extracted.

result the resulting token.

The starting position of the scan is the value of the first parameter in the LTOKEN call. In
subsequent calls to LTOKEN, this parameter is changed to the position at which the scan is
to be resumed.

When LTOKEN scans a string, it ignores leading blanks, multiple blanks, and trailing blanks.
If no token is in the string, the value of the first parameter is set to LENGTH(source)+1 and
the result parameter is set to one blank. If the token is longer than the result variable, an
error results.

161Chapter 10. Routines

A token can be any of the following:

• An identifier consisting of any number of alphanumeric characters, dollar signs ($), or
underscores (_). The first letter must be alphabetic or $.

• An unsigned number.

• The following special symbols:

 + – * / –> @ ¢
 = <> < <= >= > !
 () [] ’ ” %
 | & && || ~ ~= #
 : ; := . , ..
 { } (* *) /* */
 (. .) << >>

• Any other single character.

Example
In the following example, LTOKEN would return the same value if i were set to 3; that is,
leading blanks are not used:

i := 2;
k := LTOKEN(i, ’, Token+’, result) ; (* i is set to 8 *)
 (* result is set to ’Token’ *)

LTRIM Function

Purpose
Returns the value of the specified parameter with all leading blanks removed. The function
removes MBCS blanks from GSTRING data.

Definition
FUNCTION LTRIM(CONST source : STRING)
 : STRING;

FUNCTION LTRIM(CONST source : GSTRING)
 : GSTRING;

Where Represents

source the STRING or GSTRING to be trimmed.

Note: LTRIM works best with pure single-byte character strings or pure MBCS strings. The
predefined routine MLTRIM is recommended for operating on mixed strings.

Example
k := LTRIM(’ a b ’) ; (* yields ’a b ’ *)
k := LTRIM(’ ’) ; (* yields ’’ *)
k := LTRIM(’BBBD’G) ; (* yields ’D’G *)

MARK Procedure

Purpose
Establishes a subset of dynamic variables called a subheap in the currently active heap. It
sets its parameter to a heap control value that designates the newly established subheap.
The predefined procedure NEW allocates a dynamic variable in the subheap most recently
established by MARK in the currently active heap. Storage for all dynamic variables in the
subheap can be freed with a single call to the RELEASE procedure.

162 XL Pascal Language Reference

Definition
PROCEDURE MARK(VAR p : POINTER);

Where Represents

p a pointer to any type.

MARK does not allocate storage for dynamic variables. The pointer variable passed as
parameter p is called a subheap pointer. To avoid unpredictable results, you should not use
the returned pointer as the base of a dynamic variable.

MAX Function

Purpose
Returns the maximum value of one or more parameters.

Definition
FUNCTION MAX(expr,expr.. : scalar–type)
 : scalar–type;

Where Represents

expr a scalar expression, including REAL and SHORTREAL.

The parameters for MAX can be a mixture of INTEGER, REAL, and SHORTREAL
expressions. If the parameters are mixed and one of them is a REAL, a REAL value is
returned. If the parameters are mixed and do not include a REAL but do include a
SHORTREAL, a SHORTREAL value is returned.

MAXLENGTH Function

Purpose
Returns the maximum length of the specified parameter string. The value is in the range 0 to
32767. For parameters of type GSTRING, the value is in the range 0 to 16382.

Definition
FUNCTION MAXLENGTH(s : STRING)
 : 0..32767;

FUNCTION MAXLENGTH(s : GSTRING)
 : 0..16382;

Where Represents

s a STRING or GSTRING expression.

Example
VAR
 s : STRING(8);
 g : GSTRING(4);
 .
 .
 k := MAXLENGTH(s) ; (* yields 8 *)
 k := MAXLENGTH(g) ; (* yields 4 *)

163Chapter 10. Routines

MCOMPRESS Function

Purpose
Replaces multiple consecutive blanks in the specified mixed source string with single blanks.

Definition
FUNCTION MCOMPRESS(CONST msource : STRING)
 : STRING;

Where Represents

source a mixed string expression to be compressed.

Single-byte blanks are replaced with one single-byte blank, and MBCS blanks are replaced
with one MBCS blank. MCOMPRESS manipulates mixed strings in a character-oriented
manner, treating single-byte characters and MBCS characters as distinct.

Example
s := ’ BBBB BB ’
k := MCOMPRESS(s) ; (* yields ’ B B ’ *)

Note: The B represents one MBCS blank.

MDELETE Function

Purpose
Returns the source mixed string with a portion removed.

Definition
FUNCTION MDELETE(CONST msource : STRING;
 start : INTEGER;
 len : INTEGER) : STRING;

FUNCTION MDELETE(CONST msource : STRING;
 start : INTEGER) : STRING;

Where Represents

msource a mixed string expression from which a portion will be deleted

start an INTEGER expression that specifies the starting position within the
source where characters are to be deleted

len an optional INTEGER expression that specifies the number of characters to
be deleted.

The first character of the source string is at position 1. If the length is omitted, all remaining
characters are deleted. The string is truncated beginning at position start.

The following conditions must exist to avoid an error message at run time:

• start must be greater than 0
• len must be greater than or equal to 0
• start+len–1 must be less than or equal to the current length of the string.

If len is 0, the whole string is returned.

MDELETE manipulates mixed strings in a character-oriented manner, treating single-byte
characters and MBCS characters as distinct.

164 XL Pascal Language Reference

Examples
k := MDELETE(’aBDd’, 1, 2) ; (* yields ’Dd’ *)
k := MDELETE(’DBD’, 2, 1) ; (* yields ’DD’ *)

Note: The D represents one MBCS character, and B represents one MBCS blank.

MIN Function

Purpose
Returns the minimum value of one or more expressions.

Definition
FUNCTION MIN(expr,expr.. : scalar–type)
 : scalar–type;

Where Represents

expr a scalar expression, including REAL and SHORTREAL.

The parameters for MAX can be a mixture of INTEGER, REAL, and SHORTREAL
expressions. If the parameters are mixed and one of them is a REAL, a REAL value is
returned. If the parameters are mixed and do not include a REAL, but do include a
SHORTREAL, a SHORTREAL value is returned.

MINDEX Function

Purpose
Returns the starting index of the first instance of the second mixed string within the first
mixed string. If the second mixed string does not exist in the first, MINDEX returns zero. If
the second mixed string is null, it returns a 1.

Definition
FUNCTION MINDEX(CONST msource : STRING ;
 CONST mlookup : STRING)
 : 0..32767;

Where Represents

msource a mixed string expression containing the data to be compared

mlookup the data to be compared to msource.

MINDEX manipulates mixed strings in a character-oriented manner, treating single-byte
characters and MBCS characters as distinct.

Examples
k := MINDEX(’DB’, ’D’) ; (* yields 1 *)
k := MINDEX(’DB’, ’a’) ; (* yields 0 because a *)
 (* single-byte ’a’ is not *)
 (* the same as an MBCS ’D’ *)

Note: The D represents one MBCS character, and B represents one MBCS blank.

165Chapter 10. Routines

MLENGTH Function

Purpose
Returns the number of characters in a mixed string.

Definition
FUNCTION MLENGTH(expr : STRING)
 : INTEGER;

Where Represents

expr a mixed string parameter.

The MLENGTH function manipulates mixed strings in a character-oriented manner, treating
single-byte characters and MBCS characters as distinct.

Example
k := MLENGTH(’aDDd’) ; (* yields 4 *)

Note: The D represents one MBCS character.

MLTRIM Function

Purpose
Returns the value of a specified mixed string with all leading blanks removed.

Definition
FUNCTION MLTRIM(CONST msource : STRING)
 : STRING;

Where Represents

msource the mixed string expression to be trimmed.

The MLTRIM function manipulates mixed strings in a character-oriented manner, treating
single-byte characters and MBCS characters as distinct.

Examples
k := MLTRIM(’ BB ’) ; (* yields ’’ *)
k := MLTRIM(’ BBabD’) ; (* yields ’abD’ *)

MRINDEX Function
The MRINDEX function returns the starting index of the last instance of the second mixed
string within the first. If the second mixed string does not exist in the first mixed string,
MRINDEX returns a zero. If the second mixed string is null, it returns MLENGTH(s)+1.

Definition
FUNCTION MRINDEX(CONST msource : STRING;
 CONST mlookup : STRING)
 : 0..32767;

Where Represents

msource a mixed string expression containing the data to be compared

mlookup the data to be compared to msource.

MRINDEX manipulates mixed strings in a character-oriented manner, treating single-byte
characters and MBCS characters as distinct.

166 XL Pascal Language Reference

Examples
k := MRINDEX(’DBBD’, ’D’) ; (* yields 4 *)
k := MRINDEX(’DBBD’, ’a’) ; (* yields 0 because a *)
 (* single-byte ’a’ is *)
 (* not the same as *)
 (* an MBCS ’D’ *)

Note: The D represents one MBCS character, and B represents one MBCS blank.

MSUBSTR Function

Purpose
Returns a specified portion of a mixed string.

Definition
FUNCTION MSUBSTR(CONST msource : STRING;
 start : INTEGER;
 len : INTEGER) : STRING;

FUNCTION MSUBSTR(CONST msource : STRING;
 start : INTEGER) : STRING;

Where Represents

msource a mixed string expression from which a substring is returned

start an INTEGER expression that specifies the starting position within the
source from which the substring is to be extracted

len an INTEGER expression that determines the length of the substring.

The first character of the source string is at position 1. If the length is omitted, the substring
returned is the remaining portion of the source string from position start.

The following conditions must exist to avoid an error message at run time:

• start must be greater than 0
• len must be greater than or equal to 0
• start+ len–1 must be less than or equal to the current length of the string.

If len is 0, a null string is returned.

MSUBSTR manipulates mixed strings in a character-oriented manner, treating single-byte
characters and MBCS characters as distinct.

Examples
k := MSUBSTR(’aDDd’,2,3) ; (* yields ’DDd’ *)
k := MSUBSTR(’aDDd’,1,3) ; (* yields ’aDD’ *)
k := MSUBSTR(’aDDd’,3) ; (* yields ’Dd’ *)
k := MSUBSTR(’aDDd’,1) ; (* yields ’aDDd’ *)
k := MSUBSTR(’aDDd’,5,0) ; (* yields ’’ *)
k := MSUBSTR(’aDDd’,2,5) ; (* is an error *)

Note: The D represents one MBCS character.

167Chapter 10. Routines

MTRIM Function

Purpose
Returns the value of a specified mixed string with all trailing blanks removed.

Definition
FUNCTION MTRIM(CONST msource : STRING)
 : STRING;

Where Represents

msource the mixed string expression to be trimmed.

MTRIM manipulates mixed strings in a character-oriented manner, treating single-byte
characters and MBCS characters as distinct.

Examples
k := MTRIM(’ BB ’) ; (* yields ’’ *)
k := MTRIM(’abD BB’) ; (* yields ’abD’ *)

Note: The D represents one MBCS character, and B represents one MBCS blank.

NEW Procedure

Purpose
Allocates storage for a dynamic variable in the current heap and sets the pointer to point to
the dynamic variable.

Definition
Form 1:
 PROCEDURE NEW(VAR p1 : POINTER);

Form 2:
 PROCEDURE NEW(VAR p2 : POINTER;
 t1,t2... : ordinal–type);

Form 3:
 PROCEDURE NEW(VAR p3 : STRINGPTR;
 len : INTEGER);

 PROCEDURE NEW(VAR p3 : GSTRINGPTR;
 len : INTEGER);

Where Represents

p1 a pointer to any type

p2 a pointer to a RECORD type with variants

t1,t2 ordinal constants representing tag fields

p3 a STRINGPTR or a GSTRINGPTR (VS mode only)

len an INTEGER expression (VS mode only)

Form 1 allocates the amount of storage necessary to represent a value of the type
to which the pointer refers. If the type of the dynamic variable is a record
with a variant part, the space allocated is the amount required for the record
when the largest variant is active.

168 XL Pascal Language Reference

Form 2 allocates a variant record when it is known which variant (and subvariants)
is active. The amount of storage allocated is only what is necessary to
contain the variants specified. The scalar constants are tag field values. The
first one indicates a particular variant in the record that is active;
subsequent tags indicate active subvariants.

Note: This procedure does not set tag fields. The tag list only indicates
 the amount of storage required; you must set the tag fields after
 the record is allocated.

Form 3 allocates a string whose maximum length is known only at run time. It is
available only in VS mode. The amount of storage made available for the
string is defined by the required second parameter. See “STRINGPTR” on
page 85 and “GSTRINGPTR” on page 67 for more information.

Examples
The following example shows Form 1 of the NEW procedure.

TYPE
 linkp = @link;
 link = RECORD
 name : STRING(30);
 next : linkp
 END;

 VAR
 p, head : linkp;
 .
 .
 BEGIN
 .
 .
 NEW(p);
 WITH p@ DO
 BEGIN
 name := ’’;
 next := head ;
 END ;
 head := p ;
 .
 .
 END;

169Chapter 10. Routines

In the following example, Form 2 of the NEW procedure is used to allocate records with
variants.

TYPE
 age = 0..100;
 recp = @rec;
 rec = RECORD
 name : STRING(30);
 CASE how_old : age OF
 0..18 :
 (father : recp);
 19..100 :
 (CASE married : BOOLEAN OF
 TRUE : (spouse : recp) ;
 FALSE : ())
 END ;

VAR
 p, father, spouse : recp;
 .
 .
BEGIN
 .
 .
 NEW(p, 18); (* First call to NEW *)
 WITH p@ DO
 BEGIN
 name := ’J. B. SMITH, JR’ ;
 how_old := 18 ;
 NEW(father, 54, TRUE); (* Second call to NEW *)
 WITH father@ DO
 BEGIN
 name := ’J. B. SMITH’;
 how_old := 54;
 married := TRUE;
 NEW(spouse, 50, TRUE); (* Third call to NEW *)
 .
 .
 END (* with father@ *) ;
 END (* with p@ *) ;
 .
 .
END;

NEWHEAP Procedure

Purpose
Creates a new heap.

Definition
PROCEDURE NEWHEAP(VAR p : pointer);

PROCEDURE NEWHEAP(VAR p : pointer; CONST s : string);

Where Represents

p a pointer to any type

s an optional string. This string is ignored by XL Pascal. It is used only for
compatibility with VS Pascal.

170 XL Pascal Language Reference

NEWHEAP makes the pointer passed to NEWHEAP a heap-id for the new heap. The heap
is initially empty. It will contain all of the dynamic variables created by NEW while the heap is
established as the currently active heap by the USEHEAP procedure.

To avoid unpredictable results, you should not use a pointer that is a heap-id set by
NEWHEAP as the base of a dynamic variable.

ODD Function

Purpose
Returns TRUE if the INTEGER value is odd, or FALSE if it is even.

Definition
FUNCTION ODD(i : INTEGER)
 : BOOLEAN;

Where Represents

i an INTEGER expression.

ORD Function

Purpose
Returns an integer that corresponds to an ordinal value. The ORD function also works with
pointers.

Definition
FUNCTION ORD(s : ordinal–type)
 : INTEGER;

FUNCTION ORD(s : pointer)
 : INTEGER;

Where Represents

s any ordinal type. In VS mode, s can also be a pointer expression.

If the operand is of type CHAR, the value returned is the position in the ASCII character set
for the character operand. See the User’s Guide for IBM AIX XL Pascal Compiler/6000 for a
table of the ASCII character set and more information on the ASCII values and
corresponding characters. If the operand is an enumerated scalar, ORD returns the position
in the enumeration (beginning at zero). For example, in the following declaration:

COLOR = (RED, YELLOW, BLUE)

ORD(RED) is 0 and ORD(BLUE) is 2. If the operand is a pointer, the function returns the
machine address of the dynamic variable referenced by the pointer.

Note: Although pointers can be converted to integers, XL Pascal provides no function to
convert an integer to a pointer.

Ordinal Conversions

Purpose
The definition of any type identifier that specifies an ordinal type (scalars or subranges)
forms an ordinal conversion function. The ordinal conversion functions convert an INTEGER
into a specified ordinal type. Ordinal conversion is the opposite of the XL Pascal predefined
function ORD, which converts any ordinal value into a 32-bit INTEGER.

171Chapter 10. Routines

Definition
FUNCTION id–type(i : INTEGER)
 : ordinal–type;

Where Represents

id–type type identifier for any scalar including reals

i an expression with an INTEGER value to be converted to the type of
id–type.

Syntax

()id_type expression

Description
An integer expression is converted to another ordinal type by enclosing the expression in
parentheses and prefixing it with the type identifier of the desired ordinal type. The
conversion is performed in such a way as to be the inverse of the ORD function. If the
operand is not in the following range, a subrange error exists:

ORD (LOWEST (ordinal type))..ORD (HIGHEST (ordinal type))

Equivalent Expressions
The following XL Pascal expressions are equivalent by definition:

Expression Is Equivalent to

CHAR(x) CHR(x)

INTEGER(x) x

ORD(type(x)) x

REAL(x) FLOAT(x) for numbers of type REAL or SHORTREAL

Examples
TYPE
 week = (sun, mon, tue, wed, thu, fri, sat);

VAR
 day : week;
 .
 .
 day := week(6); (* assigns sat to day *)
 day := week(0); (* assigns sun to day *)
 day := week(3); (* assigns wed to day *)
 day := week(7); (* is a compile-time error *)

PACK Procedure

Purpose
Copies elements from an unpacked source array to a packed target array. Copying starts
with the specified element of the source array. The types of the elements of the two arrays
must be identical. In VS mode, if the array elements are of subrange type, they need only
have identical bounds.

172 XL Pascal Language Reference

Definition
PROCEDURE PACK(CONST source : array–type;
 index : index–of–source;
 VAR target : pack–array–type);

Where Represents

source an array

index an expression compatible with the index of source

target a packed array variable

Example
The following example shows the use of the PACK procedure, and equivalent code that
performs the same task without the predefined routine. An error results if the number of
elements in array z is greater than the number of elements used in array a.

Assuming the following declarations:

a : ARRAY [m..n] OF t;
z : PACKED ARRAY [u..v] OF t;

the example

PACK(a, i, z);

is equivalent to

k := i;
FOR j := LBOUND(z) TO HBOUND(z) DO
 (* j and k are temporary variables *)
 BEGIN
 z[j] := a[k];
 IF j <> HBOUND(z)
 THEN k := SUCC(k);
 END;

PAGE Procedure

Purpose
Causes a skip to the top of the next page when the TEXT file is printed.

Definition
PROCEDURE PAGE(VAR f : TEXT);

Where Represents

f an optional TEXT file variable. The default is the predefined file OUTPUT.

PARMS Function

Purpose
Returns a string associated with the initial call to the XL Pascal main program.

Definition
FUNCTION PARMS : STRING;

173Chapter 10. Routines

PICTURE Function

Purpose
Formats a floating-point value according to a picture format.

Definition
FUNCTION PICTURE(CONST p : STRING;
 r : REAL): STRING(100);

Where Represents

p a picture specification

r the REAL number to be formatted

The PICTURE function returns the string representation of a REAL number formatted
according to a picture specification. The characters that make up the picture specification
are similar to those found in PL/I and COBOL. A picture specification consists of two fields: a
decimal field and an exponent field. The latter is optional, but the decimal field is always
required. The decimal field can consist of two subfields: the integer part and the fractional
part. The latter is optional, but the integer part is always required.

Picture characters can be specified in lowercase. A picture character can be grouped into
the following categories:

• Digit and decimal-point specifiers
• Zero suppression characters
• Insertion characters
• Mathematical signs and the dollar symbol
• Exponent specifiers

Digit and decimal-point specifiers:
9 specifies that the associated position in the data item is to contain a decimal

digit.

V divides the decimal field into two parts: the integer part and the fractional
part. This character specifies that a decimal point is to be assumed at this
position in the associated data item.

Note: V does not specify that an actual decimal point is to be inserted. The integer
and fractional parts of the assigned value are aligned on the V character. An
assigned value can be truncated or extended with zero digits at either end.
If no V character appears, a V is assumed at the right end of the decimal
field.

Zero suppression characters:
Z specifies a conditional digit position in the character string value and may

cause a leading zero to be replaced with a blank.

* specifies a conditional digit position in the character string value and may
cause a leading zero to be replaced with an asterisk (*).

Leading zeros occur in the leftmost digit positions of the integer part of floating-point
numbers.

174 XL Pascal Language Reference

Insertion characters:
Insertion characters are added into corresponding positions in the output string provided that
zero suppression is not taking place. If zeros are being suppressed when an insertion
character is encountered, a blank or an asterisk is inserted in the corresponding place in the
output string, depending on whether the zero-suppression character is a Z or an asterisk (*).

, causes a comma to be inserted into the associated position of the output
string.

. causes a point (.) to be inserted into the associated position of the output
string. The character never causes point alignment in the number; that
function is served solely by the character V.

B causes a blank to be inserted into the associated position of the output
string.

Mathematical signs and the dollar symbol:
Mathematical sign and the dollar symbol (S, +, –, $) can be used in either a static or a
drifting manner. The static use specifies that a sign, a dollar symbol, or a blank always
appears in the associated position. The drifting use specifies that leading zeros are to be
suppressed.

A drifting character is specified by multiple use of that character in a picture field.

+ specifies a plus sign character (+) if the number is >=0, if the number is <0,
it specifies a blank.

– specifies a minus sign character (–) if the number is <0, if the number is
>=0, it specifies a blank.

S specifies a plus sign character (+) if the number is >=0, if the number is <0,
it specifies a minus sign character (–).

$ specifies a dollar sign character ($).

Exponent specifiers:
The characters E and K delimit the exponent field of a picture specification. The exponent
field must always be the last field.

E specifies that the associated position contains the letter E, which indicates
the start of the exponent field.

K specifies that the exponent field appears to the right of the associated
position. It does not specify a character data item.

175Chapter 10. Routines

Examples
In the following table, the first column shows the picture specification format P, the second
column shows the real numbers to be formatted (R), and the third column shows the results
of PICTURE(P,R).

Picture (P) Real Number (R) PICTURE (P,R)

’99999’
’ZZZZ9’
’****9’
’ZZZZ9’
’ZZZZZ’
’****9’
’*****’
’S9999’
’+9999’
’+9999’
’999.99’
’999V.99’
’ZZZ,ZZZ,ZZ9’
’***,***,**9’
’–ZZ,ZZZ,ZZ9’
’–––,–––,––9’
’$**,***,**9V.99’
’$$$,$$$,$$9V.99’
’S9V.9999ES99’
’S9V.9999KS99’
’–999.999,V99’
’–9.999E9’
’9B9B9B9B9B9’
’9.9.9.9.9.9’
’999999S’
’999+’
’999+’
’ZZZ.V99’
’ZZZV.99’
’–9V.999ES9’
’S9999VESZ9’
’–V.999E–99’

123.0
123.0
123.0

0.0
0.0
0.0
0.0

123.0
123.0

–123.0
–123.456
123.456

123456.0
123456.0

–123456.0
–123456.0
123456.78
123456.78

1.23456
1.23456

1234.567
–1234.567
123456.0
12345.0

–12345.0
–123.45
+123.45

0.12
0.12

1.23E4
–123456.0
123456.0

’00123’
’ 123’
’**123’
’ 0’
’ ’
’****0’
’*****’
’+0123’
’+0123’
’ 0123’
’001.23’
’123.46’
’ 123,456’
’****123,456’
’– 123,456’
’ –123,456’
’$***123,456.78’
’ $123,456.78’
’+1.2346E+00’
’+1.2346+00’
’ 001.234,57’
’–1.235E0’
’1 2 3 4 5 6’
’0.1.2.3.4.5’
’12345–’
’123 ’
’123+’
’ 12’
’ .12’
’ 1.230E+4’
’–1235E+ 2’
’ .123E 06’

PRED Function

Purpose
Returns the predecessor value of the parameter expression.

Definition
FUNCTION PRED(s : ordinal–type)
 : ordinal–type;

Where Represents

s any ordinal expression.

The PRED of the first element of an ordinal type is an error. PRED(TRUE) is FALSE and
PRED(’B’) is ’A’. The PRED of an integer is equivalent to subtracting one from the
value of the integer. PRED of a REAL argument is an error.

176 XL Pascal Language Reference

Example
TYPE
 nephews = (huey, duey, louie);

 k := PRED(duey) ; (* yields huey *)
 k := PRED(huey) ; (* is an error *)
 k := PRED(TRUE) ; (* yields FALSE *)
 k := PRED(’b’) ; (* yields ’a’ *)
 k := PRED(i) ; (* yields i–1 *)
 k := PRED(3.0) ; (* is an error *)

PUT Procedure

Purpose
Writes the contents of the file pointer into the specified file, and positions a file pointer to its
next element. The file must have been previously opened for output.

Definition
PROCEDURE PUT(VAR f : filetype);

Where Represents

f a file variable

In VS mode, the open is implicit for TEXT files.

Note: The PUT procedure cannot write MBCS data to a TEXT file.

QUERYHEAP Procedure

Purpose
Gets the heap-id of the currently active heap.

Definition
PROCEDURE QUERYHEAP(VAR p : pointer);

Where Represents

p a pointer to any type

QUERYHEAP sets its pointer argument to the heap-id of the currently active heap. The
currently active heap can be either the default heap or a heap created by NEWHEAP and
then established as the current heap by USEHEAP.

To avoid unpredictable results, you should not use a pointer that is a heap-id set by
QUERYHEAP as the base of a dynamic variable.

RANDOM Function

Purpose
Returns a pseudorandom REAL value in the range >0.0 and <1.0.

Definition
FUNCTION RANDOM(s : INTEGER) : REAL;

Where Represents

s an expression evaluated to an INTEGER value

177Chapter 10. Routines

The parameter s is called the seed of the random number and specifies the beginning of the
sequence. RANDOM always returns the same value when called with the same nonzero
seed. If you pass a seed value of 0, RANDOM returns the next number as generated from
the previous seed. Thus, the general way to use this function is to pass it a nonzero seed on
the first invocation and a zero value thereafter.

READ Procedure (for RECORD Files)

Purpose
Reads data from RECORD files. Each call to READ reads one record from the specified file
into each variable in the call.

Definition
PROCEDURE READ(VAR f : FILE OF t;
 VAR v1, v2... : t);

Where Represents

f a RECORD file variable

v a list of variables whose type matches the file component type of f

You can specify more than one variable on each call by separating each variable with a
comma. The effect is the same as multiple calls to READ.

Examples
The following example shows the READ procedure used for record files.

READ(f, v);

is equivalent to

v := f@;
GET(f);

The following example shows multiple variables on READ.

READ(f, v1, v2);

is equivalent to

READ(f, v1);
READ(f, v2);

Related Information
See the User’s Guide for IBM AIX XL Pascal Compiler/6000 for more information on READ
for record files.

READ and READLN Procedures (for TEXT Files)

Purpose
Read data from a TEXT file. The READ procedure reads character data from a TEXT file
and converts character data to conform to the type of the operand. The file parameter is
optional; the default file is INPUT.

The READLN procedure reads in data (if any variables are specified) the same way READ
operates, and then moves the file pointer to the beginning of the next line. For TEXT files
opened with the INTERACTIVE attribute (which is turned on by default using the TERMIN
procedure or for the input identifier when –qlanglvl=vs), the file pointer is positioned after
the end of the logical record, and the end-of-line condition is set to TRUE.

178 XL Pascal Language Reference

Definition
PROCEDURE READ(VAR f : TEXT;
 v : see below);

PROCEDURE READLN(VAR f : TEXT;
 v : see below);

PROCEDURE READLN(VAR f : TEXT);
(* resets file pointer to first character of the next file row *)

Where Represents

f an optional TEXT file open for reading. The default is the predefined file
INPUT.

v a list of variables (optional for READLN):

CHAR (or subrange)
MBCS fixed string (PACKED ARRAY [1..n] OF GCHAR)
Fixed string (PACKED ARRAY [1..n] OF CHAR)
GCHAR
GSTRING
INTEGER (or subrange)
REAL
SHORTREAL
STRING

Because TEXT files not currently open for WRITE are implicitly opened for READ, a call to
reset a TEXT file is not necessary before a call to READ or READLN.

You can specify more than one variable on each call by separating the variables with a
comma, with input data read from left to right. The effect is the same as multiple calls to
READ.

The following example shows multiple variables on READ.

READ(f, v1, v2);

is equivalent to

READ(f, v1);
READ(f, v2);

The following example shows multiple variables on READLN.

READLN(f, v1, v2, v3);

is equivalent to

READ(f, v1);
READ(f, v2);
READ(f, v3);
READLN(f);

179Chapter 10. Routines

Reading Variables with a Length
You can qualify a READ variable with a field length expression such as

READ(f, v : n)

where v is the variable being read and n is the field length expression.

This expression denotes the number of characters in the input line to be processed for the
variable v. If the number of characters indicated by the field length is exhausted during a
read operation, the reading operation stops and a subsequent read operation begins at the
first character following the field. If the reading is completed before processing all characters
of the field, the rest of the field is skipped.

In the following example, field lengths in the call to READLN are specified for the integer
and character variables.

Given the following data:

36 24 abcdefghiklmnopqrstuvwxyz

with this declaration:

VAR
 i,j : INTEGER;
 s : STRING(100);
 ch : CHAR;
 cc : PACKED ARRAY [1..10] OF CHAR;
 f : TEXT;
 .
 .
READLN(f, i : 4, j : 10, ch : j, cc, s);

the variables would be assigned

i 36
j 4
ch ’I’
cc ’nopqrstuvw’
s ’xyz’
LENGTH (s) 3

Reading CHAR Data
The next character in the file is assigned to a variable of type CHAR.

Reading MBCS Fixed String Data
If the variable is declared as an MBCS fixed string (PACKED ARRAY [1..n] OF GCHAR),
multibyte characters are stored into each element of the array. This is equivalent to
performing a read operation for each element using a loop ranging from the lower bound of
the array to the upper bound. If the end-of-line condition becomes true before the variable is
filled, the rest of the variable is filled with blanks. Reading MBCS fixed string data causes
the data to be converted from file code format to process code format.

Reading Fixed String Data
If the variable is declared as a fixed string (PACKED ARRAY [1..n] OF CHAR), characters
are stored into each element of the array. This is equivalent to a loop ranging from the lower
bound of the array to the upper bound performing a read operation for each element. If the
end-of-line condition should become true before the variable is filled, the rest of the variable
is filled with blanks.

180 XL Pascal Language Reference

Reading GCHAR Data
The next multibyte character in the file is assigned to a variable of type GCHAR. Reading
GCHAR data converts it from file code format to process code format.

Reading GSTRING Data
Multibyte characters are read into a GSTRING variable until the variable has reached its
maximum length, or until the end of the line is reached. Reading GSTRING data converts it
from file code format to process code format.

Reading INTEGER Data
The INTEGER data is read by skipping leading blanks and end of lines, and reading an
optional sign followed by one or more numeric characters until a nonnumeric character is
found. If the characters read do not form a valid INTEGER, a runtime error occurs.

Reading REAL and SHORTREAL Data
REAL data is read by skipping leading blanks and end of lines. Characters are then read
until a character is found that is not a REAL number. If the characters read do not form a
valid REAL number, a runtime error occurs.

In VS mode, SHORTREAL data is read in the same way that REAL data is read.

Reading STRING Data
Characters are read into a STRING variable until the variable has reached its maximum
length, or until the end of the line is reached.

Example
Given the following data:

36 24 abcdefghijklmnopqrstuvwxyz

with this declaration:

VAR
 i, j : INTEGER;
 s : STRING(100);
 ch : CHAR;
 cc : PACKED ARRAY [1..10] OF CHAR;
 f : TEXT;
 .
 .
 READLN(f, i, j, ch, cc, s);

the variables would be assigned

i 36
j 24
ch ’ ’
cc ’abcdefghij’
s ’klmnopqrstuvwxyz’
LENGTH(s) 16

Related Information
See the User’s Guide for IBM AIX XL Pascal Compiler/6000 for more information on READ
and READLN.

181Chapter 10. Routines

READSTR Procedure

Purpose
Reads character data from a source string into one or more variables.

Definition
PROCEDURE READSTR(CONST s : STRING;
 VAR v : see below);

Where Represents

s a string expression to be used for input

v a list of one or more variables; each must be one of the following types:

CHAR (or subrange)
MBCS fixed string (PACKED ARRAY [1..n] OF GCHAR)
Fixed string (PACKED ARRAY [1..n] OF CHAR)
GCHAR
GSTRING
INTEGER (or subrange)
REAL
SHORTREAL
STRING

The source string can be a variable or a constant string value. The actions of READSTR are
identical to that of READ except that the source data is extracted from a string expression
instead of a text file. READSTR is especially useful for converting a string to a different type.

The compiler regards the source string for READSTR as a virtual line. When it is totally
empty or when the end of the line is reached, a virtual end-of-line exists.

The same principles apply to arguments of type STRING and PACKED ARRAY OF CHAR.
Strings are assigned a null string at end-of-line, and packed arrays of CHAR get filled with
blanks at end-of-line.

Examples
As with the READ procedure, variables can be qualified with a field length expression. This
is shown in the following example.

With this declaration:

VAR
 i , j : INTEGER;
 s : STRING(100);
 s1 : STRING(100);
 ch : CHAR;
 cc : PACKED ARRAY [1..10] OF CHAR;
 .
 .
 s := ’36 245abcdefghijk’;
 READSTR(s, i, j : 3, ch, cc : 5, s1);

the variables would be assigned

i 36
j 24
ch ’5’
cc ’abcde ’
s1 ’fghijk’
LENGTH(s1) 6

182 XL Pascal Language Reference

The following example shows code that has the same effect as READSTR.

READSTR(s, v1, v2);

has the same effect as

REWRITE(f);
WRITE(f, s);
RESET(f);
READ(f, v1, v2);

In the following example, the READSTR procedure on the empty source string s assigns a
blank to c1.

VAR
 c1, c2 : CHAR;
 .
 .
 s : = ’’;
 READSTR(s, c1);

In the following example, however, a runtime error message is generated when the system
attempts to read into c2:

VAR
 c1, c2 : CHAR;
 .
 .
 s : = ’’;
 READSTR(s, c1, c2);

Related Information
The READ procedure is described on page 177.

RELEASE Procedure

Purpose
Frees one or more subheaps previously established by calls to MARK. The parameter of
RELEASE must contain the heap control value returned in the pointer parameter of a
previous call to MARK.

Definition
PROCEDURE RELEASE(VAR p : pointer);

Where Represents

p a pointer returned from a call to MARK

Subheaps are created and cleared in a stack-like manner within a heap. RELEASE frees all
subheaps established in the heap since the corresponding MARK was processed. The
subheap freed by RELEASE can be in the currently active heap or a different heap.

When you free a heap, all of the dynamic variables allocated in the heap are also freed. As a
result, RELEASE is a means for disposing of many dynamic variables at one time. Pointers
that reference dynamic variables of a heap are undefined when the heap is freed. Using
these pointer values later may cause unpredictable results.

RELEASE sets its parameter variable p to NIL if it is a valid destination for assignment.

183Chapter 10. Routines

Example of the RELEASE and MARK Procedures
TYPE
 markp = @INTEGER;
 linkp = @link;
 link = RECORD
 name : STRING(30);
 next : linkp
 END;

VAR
 p : markp;
 q1, q2, q3 : linkp;

BEGIN
 .
 .
 MARK(p);
 .
 .
 NEW(q1);
 NEW(q2);
 NEW(q3);
 .
 .
 RELEASE(p); (* Frees q1, q2 and q3 *)
 .
 .
END;

RESET Procedure

Purpose
Opens a file for input, positions the file pointer to the beginning of the file, and prepares the
file to be used for input. After you call RESET, the file pointer points to the first data element
of the file. When RESET cannot locate the specified file, processing stops and a runtime
error message is issued.

In VS mode, a call to RESET a TEXT file is not necessary before a call to READ or
READLN unless the file is open for output.

Definition
PROCEDURE RESET(VAR f : filetype;
 CONST s : STRING);

Where Represents

f a file variable

s an optional string of file-dependent options to be used in opening the file
(VS mode only)

Related Information
File opening options are described in the User’s Guide for IBM AIX XL Pascal
Compiler/6000.

184 XL Pascal Language Reference

RETCODE Procedure

Purpose
Sets the program completion code, which is the return code passed to the caller of the XL
Pascal program.

Definition
PROCEDURE RETCODE(retvalue : INTEGER);

Where Represents

retvalue an INTEGER value in the range 0..32767

The value of the operand is returned to the system when an exit is made from the main
program. If this routine is called several times, only the last value specified is passed back to
the system.

Note: Passing a negative value to RETCODE has unpredictable results.

REWRITE Procedure

Purpose
Opens a file for output, positions the file pointer to the beginning of the file, and prepares the
file to receive output. REWRITE erases the contents of the referenced file unless you
request an open option that preserves the existing data (for example, DISP = MOD in VS
mode).

In VS mode, a call to REWRITE a TEXT file is not necessary before a WRITE or WRITELN
call, unless the file is open for input.

Definition
PROCEDURE REWRITE(VAR f : filetype;
 CONST s : STRING);

Where Represents

f a file variable

s an optional string of file-dependent options to be used in opening the file
(VS mode only)

Related Information
File opening options are described in the User’s Guide for IBM AIX XL Pascal
Compiler/6000.

RINDEX Function

Purpose
Returns the starting index of the last instance of the second parameter within the first
parameter. If the second parameter does not exist in the first parameter, RINDEX returns a
zero. If the second parameter is null, RINDEX returns LENGTH(s)+1.

185Chapter 10. Routines

Definition
FUNCTION RINDEX(CONST source : STRING ;
 CONST lookup : STRING)
 : 0..32767;

FUNCTION RINDEX(CONST source : GSTRING ;
 CONST lookup : GSTRING)
 : 0..16382;

Where Represents

source a STRING or GSTRING expression to which lookup is compared

lookup the STRING or GSTRING expression to be compared to source

Note: The RINDEX function works best with pure single-byte character strings or pure
MBCS strings. The predefined routine MRINDEX is recommended for operating on
mixed strings.

Example
VAR
 s : STRING(10);
 .
 .
 s := ’abcabcabc’;
 .
 .
 k := RINDEX(s, ’bc’) ; (* yields 8 *)
 k := RINDEX(s, ’x’) ; (* yields 0 *)

ROUND Function

Purpose
Converts a real value to an integer value by rounding the operand. XL Pascal uses the
rounding algorithm defined in the ANSI–83 Pascal standard. ROUND(r) is equivalent to:

IF r > 0.0 THEN
 ROUND := TRUNC(r + 0.5)
ELSE
 ROUND := TRUNC(r – 0.5)

Definition
FUNCTION ROUND(r : REAL)
 : INTEGER;

FUNCTION ROUND(s : SHORTREAL)
 : INTEGER;

Where Represents

r a REAL expression

s a SHORTREAL expression (VS mode only)

Note: INTEGER arguments are not allowed with the ROUND function.

186 XL Pascal Language Reference

Examples
k := ROUND(1.0) ; (* is 1 *)
k := ROUND(1.1) ; (* is 1 *)
k := ROUND(1.9) ; (* is 2 *)
k := ROUND(0.0) ; (* is 0 *)
k := ROUND(–1.0) ; (* is –1 *)
k := ROUND(–1.1) ; (* is –1 *)
k := ROUND(–1.9) ; (* is –2 *)

RPAD Procedure

Purpose
Pads or truncates a string or GSTRING on the right.

Definition
PROCEDURE RPAD(VAR s : STRING;
 l : INTEGER;
 c : CHAR);

PROCEDURE RPAD(VAR s : GSTRING;
 l : INTEGER;
 c : GCHAR);

Where Represents

s the STRING or GSTRING to be padded

l the final length of s

c the pad character

If LENGTH(s) is greater than l, RPAD truncates characters on the right. If LENGTH(s) is
less than l, RPAD extends s with the character c on the right.

Example
s := ’abcdef’;
k := RPAD(s, 10, ’$’) ; (* yields ’abcdef$$$$’ in s *)
s := ’abcdef’;
k := RPAD(s, 5, ’$’) ; (* yields ’abcde’ in s *)
g := ’DDDDDD’G;
k := RPAD (g, 10, ’B’G) ; (* yields ’DDDDDDBBBB’G in g *)
g := ’DDDDDD’G;
k := RPAD (g, 5, ’B’G) ; (* yields ’DDDDD’G in g *)

SEEK Procedure

Purpose
Positions a file pointer to a specified element. SEEK specifies the number of the next file
component to be operated on by a GET or PUT operation. File components have an origin
of 1. The SEEK procedure is not supported for TEXT files. The file specified in the SEEK
procedure must be opened by RESET, REWRITE, or UPDATE.

The value of the file buffer is undefined after a call to SEEK. The SEEK procedure does not
perform an I/O operation.

187Chapter 10. Routines

Definition
PROCEDURE SEEK(VAR f : filetype;
 n : INTEGER);

Where Represents

f a RECORD file variable

n component number of the file

SIN Function

Purpose
Computes the sine of a floating-point number representing an angle in radians.

Definition
FUNCTION SIN(x : REAL)
 : REAL;

Where Represents

x a REAL expression

REAL functions will accept INTEGER and SHORTREAL arguments. See “Type
Compatibility” on page 50 for more information.

SIZEOF Function

Purpose
Returns the storage amount in bytes needed to contain a variable of the type specified.

The SIZEOF function is useful for block input and output, where you need to specify the
number of bytes to be transferred.

Definition
FUNCTION SIZEOF(s : any–type)
 : INTEGER;

FUNCTION SIZEOF(s : record–type;
 t1,t2,... : ordinal–type);
 : INTEGER;

Where Represents

s a type or variable identifier

t1,t2 ordinal constants representing tag fields

If the parameter s refers to a RECORD with a variant part, and if no tag
values are specified, the storage required for the record with its largest
variant is returned.

If parameter s is a record variable or a type identifier of a record, it can be
followed by a tag list that defines a particular variant configuration of the
record. The function returns the amount of storage required for a record
with that variant configuration.

188 XL Pascal Language Reference

SQR Function

Purpose
Computes the square of a number. The function returns the same type as the argument.

Definition
FUNCTION SQR(i : INTEGER)
 : INTEGER;

FUNCTION SQR(r : REAL)
 : REAL;

FUNCTION SQR(s : SHORTREAL)
 : SHORTREAL;

Where Represents

i an INTEGER expression

r a REAL expression

s a SHORTREAL expression (VS mode only)

SQRT Function

Purpose
Computes the square root of a number. If the argument is less than zero, a runtime error
message is produced.

Definition
FUNCTION SQRT(x : REAL)
 : REAL;

Where Represents

x a REAL expression

REAL functions will accept INTEGER and SHORTREAL arguments. See “Type
Compatibility” on page 50 for more information.

STOGSTR Function

Purpose
Converts a STRING to a GSTRING, and converts data from file code to process code.

Definition
FUNCTION STOGSTR(x : STRING)
 : GSTRING;

Where Represents

x a string containing only MBCS characters

189Chapter 10. Routines

Example
VAR
 g : GSTRING(4);
 s : STRING(10);

BEGIN
 s := ’DB’ (* DB is stored in s *)
 g := STOGSTR(s); (* DB is stored in g *)
 s := ’Dbc’ (* Dbc is stored in s *)
 g := STOGSTR(s); (* Dbc is stored in g, including the *)
 (* single-byte characters (since the ASCII *)
 (* character set is a subset of every MBCS)*)

STR Function

Purpose
Converts a CHAR, STRING, or PACKED ARRAY OF CHAR to a STRING. If the parameter
is a STRING, the function is valid but has no effect.

Definition
FUNCTION STR(x : CHAR)
 : STRING;

FUNCTION STR(x : PACKED ARRAY [1..n] OF CHAR)
 : STRING;

FUNCTION STR(x : STRING)
 : STRING;

Where Represents

x a CHAR, PACKED ARRAY[1..n] OF CHAR, or STRING

XL Pascal implicitly converts a literal string to a CHAR or PACKED ARRAY OF CHAR and a
STRING type to a PACKED ARRAY OF CHAR on assignment. All other conversions require
you to explicitly state the conversion.

Given a declaration like this:

VAR
 aoc : PACKED ARRAY [1..5] OF CHAR
 ch : CHAR;
 ...

you can assign a CHAR to a PACKED ARRAY OF CHAR by either of the following:

1) aoc := STR(ch);
2) aoc := ’ ’;
 aoc[1] := ch;

190 XL Pascal Language Reference

Examples
VAR
 sc : CHAR;
 sa : PACKED ARRAY [1..4] OF CHAR;
 s4 : STRING;

BEGIN
 sc := ’a’; (* ’a’ is stored in sc *)
 s4 := STR(sc); (* ’a’ is stored in s4 *)
 sa := ’ab’; (* ’ab’ is stored in sa *)
 s4 := STR(sa); (* ’ab’ is stored in s4 *)
END;

SUBSTR Function

Purpose
Returns a substring from the specified source string.

Definition
FUNCTION SUBSTR(CONST source : STRING;
 start : INTEGER;
 len : INTEGER) : STRING;

FUNCTION SUBSTR(CONST source : GSTRING;
 start : INTEGER;
 len : INTEGER) : GSTRING;

Where Represents

source a STRING or GSTRING expression from which a substring is returned

start an INTEGER expression that specifies the starting position within the
source of the substring

len an optional INTEGER expression that determines the length of the
substring

The first character of the source string is at position 1. If the length is omitted, the substring
returned will be the remaining portion of the source string from position start. The returned
string includes the character in the source string at position start.

The following conditions must exist to avoid an error message at run time:

• start must be greater than 0
• len must be greater than or equal to 0
• start+ len–1 must be less than or equal to the current length of the string.

If len is 0, a null string is returned.

Note: SUBSTR works best with pure single-byte character strings or pure MBCS strings.
The predefined routine MSUBSTR is recommended for operating on mixed strings.

Examples
k := SUBSTR(’abcde’,2,3) ; (* yields ’bcd’ *)
k := SUBSTR(’abcde’,1,3) ; (* yields ’abc’ *)
k := SUBSTR(’abcde’,4) ; (* yields ’de’ *)
k := SUBSTR(’abcde’,1) ; (* yields ’abcde’ *)
k := SUBSTR(’abcde’,2,5) ; (* is an error *)
k := SUBSTR(’abcde’,6,0) ; (* returns ’’ *)

191Chapter 10. Routines

SUCC Function

Purpose
Returns the successor value of the parameter expression.

Definition
FUNCTION SUCC(s : ordinal–type)
 : ordinal–type;

Where Represents

s an ordinal expression

The SUCC of the last element of an enumerated scalar is an error. The SUCC of an
INTEGER is equivalent to adding one to the value of the INTEGER. Using a REAL
argument with SUCC is an error.

Examples
TYPE
 nephews = (huey, duey, louie);

 k := SUCC(duey) ; (* yields louie *)
 k := SUCC(louie) ; (* is an error *)
 k := SUCC(FALSE) ; (* yields TRUE *)
 k := SUCC(’b’) ; (* yields ’c’ *)
 k := SUCC(i) ; (* yields i+1 *)
 k := SUCC(3.0) ; (* is an error *)

TERMIN Procedure

Purpose
Opens a designated file for input from your terminal.

Definition
PROCEDURE TERMIN(VAR f : TEXT;
 CONST s : STRING);

Where Represents

f a TEXT file variable

s an optional string of file-dependent options to be used in opening the file

Related Information
File opening options are described in the User’s Guide for IBM AIX XL Pascal
Compiler/6000.

TERMOUT Procedure

Purpose
Opens a designated file for output to the terminal.

192 XL Pascal Language Reference

Definition
PROCEDURE TERMOUT(VAR f : TEXT;
 CONST s : STRING);

Where Represents

f a TEXT file variable

s an optional string of file-dependent options to be used in opening the file

Related Information
File opening options are described in the User’s Guide for IBM AIX XL Pascal
Compiler/6000.

TOKEN Procedure

Purpose
Scans its source parameter looking for a token and returns the token in an ALPHA array.
The TOKEN procedure is defined with three parameters.

Definition
PROCEDURE TOKEN (VAR pos : INTEGER;
 CONST source : STRING;
 VAR result : ALPHA);

Where Represents

pos an INTEGER corresponding to the position in the source string where the
search for the token begins. The value of this INTEGER is updated to the
starting position for subsequent calls to TOKEN.

source a STRING expression containing the data from which a token is to be
extracted.

result the resulting token.

The starting position of the scan is the value of the first parameter in the TOKEN call. In
subsequent calls to TOKEN, this parameter is changed to the position at which the scan is
to be resumed. When TOKEN scans a string, it ignores leading blanks, multiple blanks, and
trailing blanks. If no token is in the string, the value of the first parameter is set to
LENGTH(source)+1 and the result parameter is set to all blanks.

If the token is longer than ALPHALEN, only the first ALPHALEN characters are returned
but pos is updated to point past the entire token and any trailing blanks.

A token can be any of the following:

• An identifier consisting of any number of alphanumeric characters, dollar signs ($), or
underscores (_). The first character must be a letter.

• An unsigned number.

193Chapter 10. Routines

• The following special symbols:

+ – * / –> @ ¢
= <> < <= >= > !
() [] ’ ” %
| & && || ~ ~= #
: ; := . , ..
{ } (* *) /* */
(. .) << >>

• Any other character.

Example
In the following example, TOKEN would return the same value if i were set to 3; that is,
leading blanks are ignored.

i := 2;
k := TOKEN(i, ’, Token+’, result) ; (* i is set to 8 *)
 (* result is set to ’Token ’ *)

TRACE Procedure

Purpose
Displays the list of procedures and functions currently on the invocation stack. Each line of
the output shows the following:

• Name of the routine
• Statement number where the call took place
• Return address in hexadecimal format
• Name of the unit with the calling procedure

Definition
PROCEDURE TRACE(VAR f : TEXT);

Where Represents

f the TEXT file to receive the trace listing

TRIM Function

Purpose
Returns the value of a specified parameter with all trailing blanks removed. It removes
trailing MBCS blanks from GSTRING data.

Definition
FUNCTION TRIM(CONST source : STRING)
 : STRING;
FUNCTION TRIM(CONST source : GSTRING)
 : GSTRING;

Where Represents

source the STRING or GSTRING to be trimmed

Note: The TRIM function works best with pure single-byte character strings or pure MBCS
strings. The predefined routine MTRIM is recommended for operating on mixed
strings.

194 XL Pascal Language Reference

Examples
k := TRIM(’ a b ’) ; (* yields ’ a b’ *)
k := TRIM(’ ’) ; (* yields ’’ *)

TRUNC Function

Purpose
Converts a real expression to an integer expression by rounding the operand toward zero.

Definition
FUNCTION TRUNC(r : REAL)
 : INTEGER;

FUNCTION TRUNC(s : SHORTREAL)
 : INTEGER;

Where Represents

r a REAL expression

s a SHORTREAL expression (VS mode only)

Examples
k := TRUNC(1.0) ; (* is 1 *)
k := TRUNC(1.1) ; (* is 1 *)
k := TRUNC(1.9) ; (* is 1 *)
k := TRUNC(0.0) ; (* is 0 *)
k := TRUNC(–1.0) ; (* is –1 *)
k := TRUNC(–1.1) ; (* is –1 *)
k := TRUNC(–1.9) ; (* is –1 *)

UNPACK Procedure

Purpose
Copies elements from a packed source array to an unpacked target array, starting with the
specified element of the target array. The types of the elements of the two arrays must be
identical.

In VS mode, if the array elements are of subrange type, they need only have identical
bounds.

Definition
PROCEDURE UNPACK(CONST source : pack–array–type;
 VAR target : array–type;
 index : index–of–target);

Where Represents

source a packed array

target an array variable

index an expression compatible with the index of target

195Chapter 10. Routines

Example
The following example shows the UNPACK procedure and equivalent code that performs
the same task without the predefined routine. An error results if the number of elements in z
is greater than the number of elements used in a.

Given the following declarations:

a : ARRAY [m..n] OF t;
z : PACKED ARRAY [u..v] OF t;

the example

UNPACK(z, a, i);

is equivalent to

k := i;
FOR j := LBOUND(z) TO HBOUND(z) DO
 (* j and k are temporary variables *)
 BEGIN
 a[k] := z[j];
 IF j <> HBOUND(z) THEN
 k:= SUCC(k);
 END;

UPDATE Procedure

Purpose
Opens a designated record for both input and output updating. A PUT operation replaces a
file component obtained from a preceding GET operation. Running UPDATE causes an
implicit GET of the first file component (as in RESET). You cannot update a file of type
TEXT.

Definition
PROCEDURE UPDATE(VAR f : filetype;
 CONST s : STRING);

Where Represents

f a RECORD file variable

s an optional string of file-dependent options to be used in opening the file

Example
VAR
 filevar : FILE OF RECORD
 cnt : INTEGER;
 ...
 END;
 ...

 UPDATE(filevar); (* open and get *)
 WHILE NOT EOF(filevar) DO
 BEGIN
 filevar@.cnt := filevar@.cnt + 1;
 PUT(filevar); (* update last element *)
 GET (filevar); (* get next element *)
 END;

196 XL Pascal Language Reference

Related Information
File opening options are described in the User’s Guide for IBM AIX XL Pascal
Compiler/6000.

USEHEAP Procedure

Purpose
Establishes a heap as the currently active heap.

Definition
PROCEDURE USEHEAP(VAR p : pointer);

Where Represents

p a pointer to any type. Its value must be a heap-id set by a call to NEWHEAP
or QUERYHEAP

The pointer argument p must be a heap-id previously set by NEWHEAP or QUERYHEAP.
USEHEAP establishes the corresponding heap as the currently active heap. All dynamic
variables created by NEW are put in the currently active heap, and all mark values or
subheap pointers established by MARK are in the currently active heap. If USEHEAP has
not established a current heap, the default heap is active.

WRITE Procedure (for RECORD Files)

Purpose
Writes data to RECORD files. Each call to WRITE writes the value of each expression in the
call to a new record in the specified file.

Definition
PROCEDURE WRITE(VAR f : FILE OF t;
 e : t);

Where Represents

f a RECORD file variable

e a list of expressions whose types match the file component type of f

You can write more than one expression on each call by separating each expression with a
comma. The effect is the same as multiple calls to WRITE.

Examples
The following example shows the WRITE procedure used for record files.

WRITE(f, e);

is equivalent to

f@ := e;
PUT(f);

Related Information
See the User’s Guide for IBM AIX XL Pascal Compiler/6000 for more information on WRITE
for record files.

197Chapter 10. Routines

WRITE and WRITELN Procedures (for TEXT Files)

Purpose
Writes data to a file.

Definition
PROCEDURE WRITE(VAR f : TEXT;
 e : see below);
PROCEDURE WRITELN(VAR f : TEXT;
 e : see below);
PROCEDURE WRITELN(VAR f : TEXT);

Where Represents

f an optional TEXT file variable. The default is the predefined file OUTPUT.

e a list of expressions (optional for WRITELN):

BOOLEAN
CHAR (or subrange)
MBCS fixed string (PACKED ARRAY [1..n] OF GCHAR)
Fixed string (PACKED ARRAY [1..n] OF CHAR)
GCHAR
GSTRING
INTEGER (or subrange)
REAL
SHORTREAL
STRING

The WRITE procedure writes character data to a TEXT file. The data is obtained by
converting the expression to the appropriate output form. The file parameter is optional; if
not specified, the default file OUTPUT is used. The WRITELN procedure writes data (if any
expressions are specified) the same way as WRITE, and then positions the file to the
beginning of the next line.

Because a TEXT file is implicitly opened if the file is closed, a call to REWRITE a TEXT file
is not necessary before a call to WRITE or WRITELN.

You can produce more than one expression on each call by separating each expression with
a comma. The effect is the same as multiple calls to WRITE. The following example shows
multiple expressions on WRITE.

WRITE(f, e1, e2);

is equivalent to

WRITE(f, e1);
WRITE(f, e2);

The following example shows multiple expressions on WRITELN.

WRITELN(f, e1, e2, e3);

is equivalent to

WRITE(f, e1);
WRITE(f, e2);
WRITE(f, e3);
WRITELN(f);

198 XL Pascal Language Reference

Writing Expressions with a Length
You can control the length of the resulting output to TEXT files by specifying actual
parameters on WRITE and WRITELN. Each expression in the WRITE procedure call can be
represented in one of three forms:

• e
• e : TotalWidth
• e : TotalWidth : FracDigits (used only for REAL and SHORTREAL)

The expression e represents the data to be placed in the file. The data is converted to
character representations from its internal form.

The expressions TotalWidth and FracDigits must be evaluated to an INTEGER value. In
Standard Pascal, TotalWidth and FracDigits must be greater than 0.

In VS mode, you can use any integer for TotalWidth and FracDigits.

Form 1 If TotalWidth is unspecified, a default value is used according to these
criteria:

Type of Expression e Default Value of TotalWidth

BOOLEAN 10
CHAR 1
MBCS fixed string length of array
Fixed string length of array
GCHAR 1
GSTRING LENGTH(expression)
INTEGER 12
REAL 20 (scientific notation)
SHORTREAL 20 (scientific notation)
STRING LENGTH(expression)

Form 2 The expression TotalWidth supplies the length of the field into which
the data is written. If TotalWidth specifies a positive value, the data is
right justified in the field.

In VS mode, if TotalWidth specifies a negative value, the data is
justified to the left within a field whose length is ABS(TotalWidth). If
TotalWidth is 0, the format of the results is unpredictable.

Form 3 You can specify the FracDigits expression only if e is an expression of
type REAL or SHORTREAL. FracDigits controls the number of
decimal places that appears in the output.

Writing BOOLEAN Data
The expression TotalWidth indicates the length of the field where the Boolean data is to be
placed. The number of characters in the field is the value of TotalWidth. Boolean data is
written exactly the same as the character strings True or False would be (depending on the
value of the expression). The data is placed in the field and justified according to the rules
stated in “Writing Expressions with a Length” on page 198.

Examples:
Call Result

WRITE(TRUE:10) ’bbbbbbTRUE’
WRITE(TRUE:–10) ’TRUEbbbbbb’
WRITE(FALSE:2) ’FA’

Note: The b represents a blank.

199Chapter 10. Routines

Writing CHAR Data
The value of TotalWidth indicates the length of the field where the character is to be placed.
If TotalWidth is not specified, a field length of 1 is assumed. If TotalWidth is greater than 1,
the character is padded on the left with blanks. If TotalWidth is zero, no data is written.

In VS mode, if TotalWidth is negative, and ABS(TotalWidth)>1, the character is padded on
the right with blanks.

Examples:
Call Result

WRITE(’A’:6) ’bbbbbA’
WRITE(’A’:–6) ’Abbbbb’

Note: The b represents a blank.

Writing MBCS Fixed String Data
If ABS(TotalWidth) is too small to hold the data, the MBCS string is truncated on the right. If
TotalWidth is zero, no characters are written.

Examples:
Given the following data:

VAR a : PACKED ARRAY[1..4] OF GCHAR ;
 ...
 a := ’DDDD’G;
 ...

Call Result

WRITE(a:6) ’BBDDDD’
WRITE(a:–6) ’DDDDBB’
WRITE(a:2) ’DD’
WRITE(a) ’DDDD’

Note: The D represents one MBCS character, and B represents one MBCS blank.

Writing Fixed String Data
The expression TotalWidth indicates the length of the field where the array is to be placed.
The data is placed in the field and justified according to the rules stated in “Writing
Expressions with a Length” on page 198. If TotalWidth is zero, no data is written. If
ABS(TotalWidth) is too small to hold the data, the string is truncated on the right.

Examples:
Given the following data:

VAR a : PACKED ARRAY [1..4] OF CHAR;
 ...
 a := ’abcd’;
 ...

Call Result

WRITE(a:6) ’bbabcd’
WRITE(a:–6) ’abcdbb’
WRITE(a:2) ’ab’
WRITE(a) ’abcd’

Note: The b represents a blank.

200 XL Pascal Language Reference

Writing GCHAR Data
For GCHAR data, the field width is the number of characters written to the file. If the field
width is zero, no characters are written.

Examples:
Call Result

WRITE(’D’G:6) ’BBBBBD’
WRITE(’D’G:–6) ’DBBBBB’

Note: The D represents one MBCS character, and B represents one MBCS blank.

Writing GSTRING Data
For GSTRING data, the field width is the number of characters written to the file. If the field
width is zero, no characters are written.

Examples:
Call Result

WRITE(’DDDD’G:6) ’BBDDDD’
WRITE(’DDDD’G:–6) ’DDDDBB’
WRITE(’DDDD’G:2) ’DD’
WRITE(’DDDD’G) ’DDDD’

Note: The D represents one MBCS character, and B represents one MBCS blank.

Writing INTEGER Data
The expression TotalWidth represents the minimum length of the field where the integer is to
be placed. The value is converted to character format and placed in a field of the specified
length. If the field is shorter than the size required to represent the value, the length of the
field is extended.

Examples:
Call Result

WRITE(1234:6) ’bb1234’
WRITE(1234:–6) ’1234bb’
WRITE(1234:1) ’1234’
WRITE(1234) ’bbbbbbbb1234’
WRITE(1234:–3) ’1234’

Note: The b represents a blank.

Writing REAL and SHORTREAL Data
REAL and SHORTREAL expressions can be written with any one of the three operand
formats, as shown in “Writing Expressions with a Length” on page 198.

Form 1 If TotalWidth is not specified, the result is written in scientific notation in a 20
character field.

Form 2 If TotalWidth is specified and FracDigits is not, the result is written in
scientific notation, but the number of characters in the field is the value of
TotalWidth. One decimal place is always generated and the result is
rounded to the last displayed decimal place.

In VS mode, when TotalWidth is zero; then the result is unpredictable.

201Chapter 10. Routines

Form 3 If both TotalWidth and FracDigits are specified, the data is written in fixed
point notation in a field with length TotalWidth, and FracDigits specifies the
number of digits that appears to the right of the decimal point. The REAL or
SHORTREAL expression is always rounded to the last digit to be printed.

In VS mode, if FracDigits equals zero, a decimal point is written, but no
decimal place is written. If FracDigits is negative, the number is written
using the scientific notation, as if FracDigits were not specified. If TotalWidth
is not large enough to fully represent the number, it is extended
appropriately.

Examples:
Call Result

WRITE(3.14159) ’b3.141590000000E+000’
WRITE(3.14159:10) ’b3.14E+000’
WRITE(3.14159:1) ’b3.1E+000’
WRITE(3.14159:0) unpredictable
WRITE(3.14159:10:4) ’bbbb3.1416’
WRITE(3.14159:–10:4) ’3.1416bbbb’
WRITE(3.14159:10:0) ’bbbbbbbb3.’
WRITE(3.14159:10:–1) ’b3.14E+000’

Note: The b represents a blank.

Writing STRING Data
The expression TotalWidth indicates the length of the field where the string is to be placed.
The data is placed in the field and justified according to the rules stated in “Writing
Expressions with a Length” on page 198. If TotalWidth is zero, no data is written. If
ABS(TotalWidth) is too small to hold the data, the string is truncated on the right.

Examples:
Call Result

WRITE(’ABCD’:6) ’bbABCD’
WRITE(’ABCD’:–6) ’ACBDbb’
WRITE(’ACBD’:2) ’AB’
WRITE(’ACBD’) ’ACBD’

Note: The b represents a blank.

Related Information
See the User’s Guide for IBM AIX XL Pascal Compiler/6000 for more information on WRITE
and WRITELN.

WRITESTR Procedure

Purpose
Converts expressions into character data and stores the data in a STRING variable.
WRITESTR is especially useful for converting data into strings.

Definition
PROCEDURE WRITESTR (VAR s : STRING;
 e : see below);

202 XL Pascal Language Reference

Where Represents

s a STRING variable

e a list of one or more expressions; each must be one of the following types:

BOOLEAN
CHAR (or subrange)
MBCS fixed string (PACKED ARRAY [1..n] OF GCHAR)
Fixed string (PACKED ARRAY [1..n] OF CHAR)
GCHAR
GSTRING
INTEGER (or subrange)
REAL
SHORTREAL
STRING

The actions of WRITESTR are identical to WRITE, except that the target of the data is a
STRING rather than a TEXT file. If the s variable appears in the e expression list of
WRITESTR, the value of s is unpredictable.

As with WRITE, the expressions being converted can be qualified with a field length
expression.

Examples
With this declaration:

VAR
 i, j : INTEGER;
 s : STRING(100);
 r : REAL;
 ch : CHAR;
 .
 .

i := 10;
j := –123;
r := 3.14159;
ch := ’*’;
WRITESTR(s, i : 3, j : 5, ’abc’, ch, r : 5 : 2);

the variable s would be assigned as

 ’ 10 –123abc* 3.14’

The following example shows code with the same effect as WRITESTR. An error results if
all variables are filled before all expressions are written.

WRITESTR(s, e1, e2);

has the same effect as

REWRITE (f)
WRITELN(f, e1, e2);
RESET (f)
READ(f, s);

Related Information
The WRITE and WRITELN procedures are described on page 197.

203Chapter 10. Routines

xl__trap Procedure

Purpose
Produces a traceback for a runtime trap.

Definition
PROCEDURE xl__trap

Note: The name xl__trap contains two underscore characters.

Related Information
The User’s Guide for IBM AIX XL Pascal Compiler/6000 shows how to use xl__trap to
diagnose runtime errors.

204 XL Pascal Language Reference

205 Copyright IBM Corp. 1990, 1993 Chapter 11. Compiler Directives

Chapter 11. Compiler Directives

The compiler directives of XL Pascal control compiler options and features. The compiler
recognizes these directives by the % symbol, and does not use the text between the
directive and the end of line. The compiler directives are available in VS mode only.

The following directives are accepted by XL Pascal to make migrating programs from VS
Pascal easier, but are not used by the compiler. They are printed in the listing when they are
found in the source code but otherwise have no effect. See the VS Pascal Language
Reference for details about their use.

• %CPAGE
• %PAGE
• %PRINT
• %SKIP
• %SPACE
• %TITLE

This chapter describes the following compiler directives:

• %CHECK
• %INCLUDE
• %LIST
• %MARGINS
• %WRITE

%CHECK

Purpose
Controls the runtime checking features of XL Pascal. The checking can be enabled for part
or all of the program.

Syntax

%CHECK

CASE

FUNCTION

POINTER

PTR

SUBRANGE

SUBSCRIPT

TRUNCATE

ON

OFF

206 XL Pascal Language Reference

Parameters
CASE checks whether the value of a CASE statement selector is not within any of

the CASE ranges.

FUNCTION checks the lack of an assignment of a value to a function before exiting from
the function.

POINTER checks the use of a pointer whose value is NIL.

PTR checks the use of a pointer whose value is NIL. This parameter is
synonymous with POINTER.

SUBRANGE checks values assigned to subrange variables for proper range. This
parameter also checks the range of values passed to subrange formal
parameters.

SUBSCRIPT checks the use of a subscript that is out of range for the array.

TRUNCATE checks whether the value of a string fits into the target string on an
assignment.

ON turns checking on. If no checks are listed before ON, all checks are turned
on. ON is the default.

OFF turns checking off. If no checks are listed before OFF, all checks are turned
off.

Description
If any of the checks are satisfied, a runtime trap occurs. If the CHECK option is missing, all
of the checks apply. For example, %CHECK ON activates all of the checks.

The %CHECK directive, like the other directives in this section, is a direction to the compiler.
Its effect depends on where it appears in the text and is not subject to any structuring
established by the program.

%INCLUDE

Purpose
Directs the compiler to insert source code from a file into the input stream immediately after
the current line. More precisely, the compiler is directed to begin reading its input from a file.
When it reaches the end of the file, the compiler resumes reading from the previous source.

Syntax

%INCLUDE

path_name

file_name

Parameters
path_name is a fully qualified or relative path name of the file to be included.

file_name is the name of the file to be included.

207Chapter 11. Compiler Directives

Description
If the file name is not a fully qualified or relative path name, the system searches the
directories specified by all –I compiler options in the order in which those options were
supplied. If the system cannot find the file, an error message is issued by the compiler and
compilation continues.

The %INCLUDE directive is case sensitive. The name of the file to be included must be in
the same case as the actual file name.

Example
PROGRAM abc;

CONST
 %INCLUDE CONSTS

TYPE
 %INCLUDE TYPES

VAR
 %INCLUDE VARS

BEGIN
 ...
END.

%LIST

Purpose
Enables or disables the pseudo-assembler listing of the compiler. This option only takes
effect if the –qlist compiler option is enabled.

Syntax

%LIST

ON

OFF

Parameters
ON lists pseudoassembler code. The default is ON.

OFF stops listing the pseudoassembler code.

The pseudoassembler listing for each procedure is controlled by the most recent %LIST ON
or %LIST OFF before the procedure header.

208 XL Pascal Language Reference

%MARGINS

Purpose
Specifies the character positions of compiler input lines that can contain source code. The
compiler skips all characters that lie outside the specified margins. The default is
%MARGINS 1 256.

Syntax

integer2%MARGINS integer1

Parameters
integer1 is an unsigned INTEGER to indicate the new left margin.

integer2 is an unsigned INTEGER to indicate the new right margin.

Description
If the %MARGINS directive appears in a file to be included by the %INCLUDE directive, the
new margins have effect only for the duration of that file. When the end of the file is reached
and the previous source is resumed, the margin settings revert to their previous values.

%WRITE

Purpose
Allows you to write a message to the terminal during compilation at a specified location in
the program. The –qwrite option must be specified for the %WRITE directive.

Syntax

character_string%WRITE

Parameter
character_string is any character string.

209 Copyright IBM Corp. 1990, 1993 Appendix A. XL Pascal Language Modes

Appendix A. XL Pascal Language Modes

The LANGLVL compiler option determines the language mode that XL Pascal uses to
compile your program. DIALECT and IBMSET are synonyms for LANGLVL.

Because it is possible to mix modes when you create a program, you may find it useful to
know the features of XL Pascal that are common to both standard mode and VS mode.
These features are summarized in the following tables. This appendix also briefly describes
the suboptions that specify the two language modes.

Standard Mode XL Pascal
To use the features described throughout this manual as belonging to XL Pascal standard
mode, specify LANGLVL=STANDARD. Standard mode Pascal is defined in the American
National Standards Institute Pascal (X3.97–1983), more commonly known as ANSI–83. The
language mode suboptions ANSI–83 and STD are synonyms for STANDARD.

VS Mode XL Pascal
If you prefer to use features beyond the ANSI–83 language level, you should specify
LANGLVL=VS, which is referred to throughout this manual as VS mode. It allows you to use
all of the functions of ANSI–83 Standard Pascal and the selected facilities from IBM VS
Pascal licensed program, implemented on the AIX RISC System/6000 computer.
LANGLVL=VS is the default. The language mode suboption IBM is a synonym for
suboption VS.

Comparison of Standard Mode and VS Mode Pascal
The following topics compare the features of the two language modes you can use under XL
Pascal. The first column of the tables lists all the available features of Pascal. An x is placed
under the appropriate column of the table if the particular item is available under that
language mode. The column heading STD Mode refers to XL Pascal standard mode.

In the tables, the column headed VS Mode shows features available in XL Pascal when you
select LANGLVL=VS or LANGLVL=IBM. If a feature in the ANSI–83 standard is modified or
enhanced in VS mode, a description of the change is provided in the last column. If the
feature belongs only to VS mode, no further description is added.

XL Pascal Program Structure

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

Declarations in any order x

Predefinition of INPUT and
OUTPUT

x

Redefinition of INPUT and
OUTPUT

x

Segment Unit x

210 XL Pascal Language Reference

XL Pascal Compiler Directives

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

%CHECK x

%CPAGE x

%INCLUDE x

%LIST x

%MARGINS x

%OPT x

%OPTION x

%PAGE x

%PRINT x

%PROCESS x

%SKIP x

%SPACE x

%TITLE x

%WRITE x

XL Pascal Constants

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

Predefined Constants x x

Structured Constants x

XL Pascal Data Types

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

ALFA x

ALPHA x

ARRAY x x

BOOLEAN x x

CHAR x x – MAXCHAR

GCHAR x

Enumerated Scalar x x

FILE x x

INTEGER x x – MININT

POINTER x

Pointer Type x x

REAL x x – MINREAL, MAXREAL, and EPSREAL

211Appendix A. XL Pascal Language Modes

Feature Comments About VS Mode ExtensionsVS ModeSTD

Mode

RECORD x x – Tag fields on the variant part can
be back referenced.

– Constant–expr can be used in
addition to constant.

– Record fields can be
offset–qualified.

SET x x

SHORTREAL x

SPACE x

STRING x

GSTRING x

STRINGPTR x

GSTRINGPTR x

Subrange Scalar x x – PACKED or RANGE can define subrange.

– Constant–expr can be used in
addition to constant in certain
instances.

TEXT x x – INPUT and OUTPUT files need not be
included in the program header.

XL Pascal Declarations

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

CONST x x – Constant–expr can be used in
addition to constant.

DEF x

FUNCTION x x – Can return any type except a file,
or any type containing a file.

Internal x x

LABEL x x – id can be used in addition to
unsigned integer.

PROCEDURE x x

REF x

STATIC x

TYPE x x

VALUE x

VAR x x – VAR declarations at the outermost
level in programs or segments
refer to global automatic data

212 XL Pascal Language Reference

XL Pascal Operators

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

NOT (~) x x – ~ can be used in addition to NOT.

* x x – SHORTREAL

/ x x – SHORTREAL

DIV x x

MOD x x

AND (&) x x – & can be used in addition to AND.

|| x

Shift operators (>> and
<<)_

x

+ x x – + can be used for string
concatenation.

– x x

OR (|) x x – | can be used in addition to OR.

XOR (&&) x – && can be used in addition to XOR.

= x x

<> x x

~= x

< x x

<= x x

> x x

>= x x

IN x x

XL Pascal Statements

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

ASSERT x

Assignment x x

CASE x x – The OTHERWISE statement can be
specified.

– Constant–expr can be used in
addition to constant.

Compound x x

CONTINUE x

Empty x x

FOR x x

GOTO x x

IF x x

LEAVE x

213Appendix A. XL Pascal Language Modes

Feature Comments About VS Mode ExtensionsVS ModeSTD

Mode

Procedure Call x x – Components of packed objects can be
passed by VAR.

– Empty parentheses for user–defined
functions with no parameters.

REPEAT x x

RETURN x

WHILE x x

WITH x x

XL Pascal Routine Parameters

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

Formal routine x x

Pass–by–conformant–string
(VAR or CONST)

x

Pass–by–read–only–reference
(CONST)

x

Pass–by–read/write–
reference(VAR)

x x

Pass–by–value x x

XL Pascal Routine Directives

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

EXTERNAL x

FORTRAN x x – Equivalent to EXTERNAL, but has no
effect on an XL Pascal program.

FORWARD x x

MAIN x x – Equivalent to EXTERNAL, but has no
effect on an XL Pascal program.

NONPASCAL x x – A special case of EXTERNAL required
by the parameter passing
conventions of calls to other XL
languages.

REENTRANT x x – Equivalent to EXTERNAL, but has no
effect on an XL Pascal program.

XL Pascal Conversion Routines

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

CHR x x

FLOAT x

ITOHS x

ORD x x – Pointer to integer conversions.

214 XL Pascal Language Reference

Feature Comments About VS Mode ExtensionsVS ModeSTD

Mode

ROUND x x – SHORTREAL

Ordinal Conversion x

STR x

TRUNC x x

XL Pascal Data Access Routines

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

ADDR x

HBOUND x

HIGHEST x

LBOUND x

LOWEST x

SIZEOF x

XL Pascal Data Movement Routines

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

PACK x x

UNPACK x x

XL Pascal General Routines

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

HALT x

TRACE x

xl__trap x

XL Pascal I/O Routines

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

CLOSE x

COLS x

EOF x x

EOLN x x

File Open Options x

GET x x

PAGE x x

PUT x x

READ x x

READLN x x

215Appendix A. XL Pascal Language Modes

Feature Comments About VS Mode ExtensionsVS ModeSTD

Mode

RESET x x – STRING

REWRITE x x – STRING

SEEK x

TERMIN x

TERMOUT x

UPDATE x

WRITE x x

WRITELN x x

XL Pascal Mathematical Routines

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

ABS x x – SHORTREAL

ARCTAN x x

COS x x

EXP x x

LN x x

MAX x

MIN x

ODD x x

PRED x x

RANDOM x

SIN x x

SQR x x – SHORTREAL

SQRT x x – SHORTREAL

SUCC x x

XL Pascal Mixed String Routines

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

MCOMPRESS x

MDELETE x

MINDEX x

MLENGTH x

MLTRIM x

MRINDEX x

MSUBSTR x

MTRIM x

216 XL Pascal Language Reference

XL Pascal Storage Management Routines

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

DISPOSE x x – form 3

DISPOSEHEAP x

MARK x

NEW x x – form 3

NEWHEAP x

QUERYHEAP x

RELEASE x

USEHEAP x

XL Pascal String Routines

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

COMPRESS x

DELETE x

INDEX x

LENGTH x

GSTR x

GTOSTR x

LPAD x

LTOKEN x

LTRIM x

MAXLENGTH x

PICTURE x

READSTR x

RINDEX x

STOGSTR x

RPAD x

SUBSTR x

TOKEN x

TRIM x

WRITESTR x

XL Pascal System Interface Routines

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

CLOCK x

DATETIME x

PARMS x

RETCODE x

217Appendix A. XL Pascal Language Modes

XL Pascal Variables

Feature STD

Mode

VS Mode Comments About VS Mode Extensions

Automatic x x

Dynamic x x

Static x

External (DEF and REF) x

Parameter x x

Predefined x x – STDERR.

Subscripted x x – STRING and GSTRING.

Field References x x

Pointer References x x

File References x x

SPACE References x

String References x x

218 XL Pascal Language Reference

219 Copyright IBM Corp. 1990, 1993 Appendix B. Predefined Identifiers in XL Pascal

Appendix B. Predefined Identifiers in XL Pascal

The following tables list all of the predefined identifiers of XL Pascal in alphabetical order,
with a brief description of each.

The names of predefined constants, types, variables, and routines in XL Pascal are declared
for you in every unit before the start of your program. You can redefine these names if you
want; however, it is better to use them according to their predefined meanings.

Standard Mode

Identifier Form Description

ABS Function Computes the absolute value of a number.

ARCTAN Function Returns the arctangent of the argument.

BOOLEAN Type Enumerated data type whose values are
(FALSE,TRUE).

CHAR Type Character data type.

CHR Function Converts an integer to a character
value.

COS Function Returns the cosine of the argument.

DISPOSE Procedure Deallocates a dynamic variable.

EOF Function Tests the file for end-of-file
condition.

EOLN Function Tests the file for end-of-line
condition.

EXP Function Returns base of natural log (e) raised
to the power of the argument.

FALSE Constant Constant of type BOOLEAN, FALSE < TRUE.

GET Procedure Advances the file pointer to the next
element of an input file.

INPUT Variable Default input file, TEXT data type.

INTEGER Type Integer data type.

LN Function Returns the natural logarithm of the
argument.

MAXINT Constant Maximum value of type INTEGER.

NEW Procedure Allocates a dynamic variable in the most
recent heap.

ODD Function Returns TRUE if integer argument is odd.

ORD Function Converts an ordinal value to an integer.

OUTPUT Variable Default output file, TEXT data type.

PACK Procedure Copies an array to a packed array.

PAGE Procedure Skips to the top of the next page.

PRED Function Obtains the predecessor of an ordinal
type.

220 XL Pascal Language Reference

Identifier Description Form

PUT Procedure Advances file pointer to next element of
output file.

READ Procedure Reads data from a file.

READLN Procedure Reads one line of a TEXT file.

REAL Type Floating point represented in long
floating-point format.

RESET Procedure Opens a file for input.

REWRITE Procedure Opens a file for output.

ROUND Function Converts a floating-point number to an
integer by rounding.

SIN Function Returns the sine of the argument.

SQR Function Returns the square of the argument.

SQRT Function Returns the square root of the argument.

SUCC Function Obtains the successor of an ordinal
type.

TEXT Type File of character lines.

TRUE Constant Constant of type BOOLEAN, TRUE > FALSE.

TRUNC Function Converts a floating-point number to an
integer by truncating.

UNPACK Procedure Copies a packed array to an array.

WRITE Procedure Writes data to a file.

WRITELN Procedure Writes one line to a TEXT file.

VS Mode

Identifier Form Description

ADDR Function Returns the offset of a variable.

ALFA Type Array of 8 characters, indexed
1..ALFALEN.

ALFALEN Constant HBOUND of type ALFA, value is 8.

ALPHA Type Array of 16 characters, indexed
1..ALPHALEN.

ALPHALEN Constant HBOUND of type ALPHA, value is 16.

CLOCK Function Returns the number of microseconds of
run time.

CLOSE Procedure Closes a file.

COLS Function Returns the current column on the output
line.

COMPRESS Function Replaces multiple blanks in a string
with one blank.

DATETIME Procedure Returns the current date and time of
day.

DELETE Function Returns a string with a portion removed.

221Appendix B. Predefined Identifiers in XL Pascal

Identifier Description Form

DISPOSEHEAP Procedure Frees dynamic variables allocated in a
heap.

EPSREAL Constant Smallest REAL magnitude that, when added
to 1, is detectable.

EPSSREAL Constant Smallest SHORTREAL magnitude that, when
added to 1, is detectable.

FLOAT Function Converts an integer to a floating-point
value.

GCHAR Type Holds a single character from the AIX
Extended (Multibyte) Character Set.

GSTR Function Converts an array of GCHAR to a GSTRING.

GSTRING Type Packed array of multibyte characters
whose length varies during run time up
to a maximum length.

GSTRINGPTR Type A type for dynamically allocated
multibyte character strings of a length
determined at run time.

GTOSTR Function Converts a GSTRING to a STRING.

HALT Procedure Halts running of the program.

HBOUND Function Returns the upper bound of an array.

HIGHEST Function Returns the maximum value of an ordinal
type.

INDEX Function Finds the first occurrence of one string
in another.

LBOUND Function Returns the lower bound of an array.

LENGTH Function Returns the current length of a string.

LOWEST Function Returns the minimum value of an ordinal
type.

LPAD Procedure Pads strings on the left.

LTOKEN Procedure Extracts tokens from a string.

LTRIM Function Returns a string with leading blanks
removed.

MARK Procedure Creates a new subheap.

MAX Function Returns the maximum value of a list of
scalars.

MAXCHAR Constant Maximum value of type CHAR: ’FF’XC.

MAXLENGTH Function Returns the maximum length of a string.

MAXREAL Constant Maximum value of type REAL.

MAXSREAL Constant Maximum value of type SHORTREAL.

MCOMPRESS Function Replaces multiple blanks in a mixed
string with one blank.

MDELETE Function Returns a mixed string with a portion
removed.

MIN Function Returns the minimum value of a list of
scalars.

222 XL Pascal Language Reference

Identifier Description Form

MINDEX Function Finds the first occurrence of one mixed
string in another.

MININT Constant Minimum value of type INTEGER.

MINREAL Constant Minimum value of type REAL (smallest
nonzero floating-point number).

MINSREAL Constant Minimum positive value of type
SHORTREAL.

MLENGTH Function Returns the current length of a mixed
string.

MLTRIM Function Returns a mixed string with leading
blanks removed.

MRINDEX Function Finds the last occurrence of one mixed
string in another.

MSUBSTR Function Returns a specific portion of a mixed
string.

MTRIM Function Returns a mixed string with trailing
blanks removed.

NEWHEAP Procedure Creates a heap.

PARMS Function Returns the system-dependent invocation
parameters.

POINTER Type Conforms to any actual parameter pointer
type.

QUERYHEAP Procedure Obtains heap-id of the currently active
heap.

RANDOM Function Returns a pseudo random number.

READSTR Procedure Converts a string to values assigned to
variables.

RELEASE Procedure Frees storage in one or more subheaps.

RETCODE Procedure Sets the system-dependent return code.

RINDEX Function Finds the last occurrence of one string
in another.

RPAD Procedure Pads strings on the right.

SEEK Procedure Positions an opened file at a specific
record.

SHORTREAL Type Floating point represented in short
floating-point format.

SIZEOF Function Returns the memory size of a variable or
type.

STDERR Variable Default standard error file, TEXT data
type.

STOGSTR Function Converts a STRING to a GSTRING.

STR Function Converts an array of characters to a
STRING.

STRING Type Packed array of characters whose length
varies during run time up to a maximum
length.

223Appendix B. Predefined Identifiers in XL Pascal

Identifier Description Form

STRINGPTR Type A type for dynamically allocated strings
of a length determined at run time.

SUBSTR Function Returns a specific portion of a string.

TERMIN Procedure Opens a file for input from the
terminal.

TERMOUT Procedure Opens a file for output to the terminal.

TOKEN Procedure Extracts tokens from a string.

TRACE Procedure Writes the routine return stack.

TRIM Function Returns a string with trailing blanks
removed.

UPDATE Procedure Opens a file for both input and output.

USEHEAP Procedure Establishes a new currently active heap.

WRITESTR Procedure Converts a series of expressions into a
string.

xl__trap Procedure Produces traceback if a trap occurs.

224 XL Pascal Language Reference

 Copyright IBM Corp. 1990, 1993 225Index

Index

Symbols
:= symbol, 13

& operator, 101, 108

&& operator, 102, 108

% statements
CHECK

CASE option, 115
compiler directive, 205
RETURN statement, 128
SPACE references, 95
SUBSCRIPT option, 92

INCLUDE, 32, 206
LIST, 207
MARGINS, 208
WRITE, 208

@ symbol, 13

+ operator, 102

– operator, 102

–> symbol, 13

* operator, 101

/ operator, 101

^ symbol, 13

| operator, 102, 108

|| operator, 101

= operator, 103

< operator, 103

<= operator, 103

<< operator, 101, 108

<> operator, 103

> operator, 103

>= operator, 103

>> operator, 101, 108

~ operator, 100, 108

~= operator, 103

A
ABS function, 147

actual parameters, 109, 136

addition operators, 102

ADDR function, 147

ALFA data type, 56

ALFALEN constant, 42, 56

ALPHA data type, 57

ALPHALEN constant, 42, 57

American National Standard Code for Information
Interchange. See ASCII

American National Standards Institute (ANSI), 1

anchor–pointing. See short–circuiting

AND operator, 101, 108

anonymous types, 50

ANSI standard Pascal
extensions, 5
industry standard, 5
language, 1
rounding algorithm, 185

ANSI–83. See ANSI standard Pascal

ARCTAN function, 147

ARRAY data type, 57

arrays
element type, 58
multidimensional, 58, 91
packed, 49
storage mapping, 49
structured constants, 44
subscripting, 58, 91

ASCII
coded character set

CHAR data type, 60
collating sequence, 9, 48
STRING data type, 83
subrange scalar data type, 87

new line character, 88

ASSERT statement, 112

assignment
compatibility

description, 52
DISPOSE procedure, 151
function results, 139
POINTER data type, 70
record variant tags, 75
routine parameters, 137, 138

converting MBCS strings, 66
converting strings, 84
function value, 113
statement, 113
symbol, 13

226 XL Pascal Language Reference

VALUE declarations, 36

automatic variables, 31

B
B character, 7

base scalar type, 79

basic data types, 47

basic symbols, 11–15

binary literals, 19

Boolean
data, writing, 198
expressions, 99, 106
operands, 104

BOOLEAN data type, 59

C
case label, 115

case sensitivity
folding, 10
identifiers, 10
keywords, 12
literals, 17
PICTURE function, 173
reserved words, 11
special symbols, 13
string literals, 18

CASE statement, 114, 115

CHAR data, 179, 199

CHAR data type, 60

CHAR operands, 104

character comparison, 104

character set, 9

CHECK compiler directive
CASE option, 115
description, 205
FUNCTION option, 128
SUBSCRIPT option, 92, 95

CHR function, 147

CLOCK function, 148

CLOSE procedure, 148

collating sequence, 9

COLS function, 148

comments, 16

comparison according to type, 103, 104, 105

compatibility, 50–53

compatible data types, 52

compilation unit, 21

compiler directives
%CHECK, 205
%INCLUDE, 206
%LIST, 207
%MARGINS, 208
%WRITE, 208

compiler option
–I, 207
–qlist, 207
–U, 10
–w, 208
DIALECT, 209
IBMSET, 209
LANGLVL, 209

complement, set, 107

compound statement
description, 117
program unit, 21
routines, 135

COMPRESS function, 149

concatenation, 18

conformant string parameters, 138

congruous parameter lists, 137

CONST declaration, 30

constant expressions
CONST declaration, 30
description, 105
predefined functions, 105
repetition, 43
syntax, 41, 97
VALUE declaration, 37

constants
CONST declaration, 30
GCHAR, 63
predefined

ALFALEN, 56
ALPHALEN, 57
EPSREAL, 72
EPSSREAL, 80
FALSE, 59
list and summary, 42
MAXCHAR, 60
MAXINT, 68
MAXREAL, 72
MAXSREAL, 80
MININT, 68
MINREAL, 72
MINSREAL, 80
NIL, 69
TRUE, 59

structured, 43–46
syntax, 41
unsigned, 41, 98

CONTINUE statement, 117

227Index

conversion
data type

description, 50
GSTRING, 65
REAL, 72
STRING, 82

MBCS strings, 66
ordinal, 109, 170
routines

CHR function, 147
FLOAT function, 153
GSTR function, 154
GTOSTR function, 155
ITOHS function, 157
list and summary, 143
ORD function, 170
ordinal conversion, 170
ROUND function, 185
STOGSTR function, 188
STR function, 189
TRUNC function, 194

strings, 84

COS function, 149

creating data types, 54

D
D character, 7

dangling else, 124

data access routines, list and summary, 144

data alignment, 49

data movement routines
list and summary, 144
PACK procedure, 171
UNPACK procedure, 194

data storage requirements, 49

data type
ARRAY, 44
comparison, 103, 104, 105
compatibility, 50–53
conversion

description, 50
GSTRING data type, 65
MBCS data, 66
REAL data type, 72
string data, 84
STRING data type, 82

identifier in a TYPE declaration, 31
RECORD, 44
SET, 46
TYPE declaration, 31

data types
ALFA, 56
ALPHA, 57
anonymous, 50
ARRAY, 57
assignment compatibility, 52

basic, 47–48
BOOLEAN, 59
CHAR, 60
creating, 54
enumerated scalar, 55, 61
FILE, 62
GCHAR, 63
GSTRING, 64
GSTRINGPTR, 67
INTEGER, 68
list and summary, 55
operations and routines

ALFA data type, 57
ALPHA data type, 57
ARRAY data type, 58
BOOLEAN data type, 59
CHAR data type, 60
enumerated scalar data type, 61
FILE data type, 62
GCHAR data type, 64
GSTRING data type, 65
GSTRINGPTR data type, 67
INTEGER data type, 68
mixed strings, 84
POINTER data type, 70
pointer data types, 69
REAL data type, 71
RECORD data type, 74
SET data type, 80
SHORTREAL data type, 81
SPACE data type, 82
STRING data type, 83
STRINGPTR data type, 85
subrange scalar data type, 87
TEXT data type, 88

ordinal, 47, 60
PACKED attribute, 49
POINTER, 70
pointer

description, 69
GSTRINGPTR, 67
list and summary, 47
POINTER, 70
STRINGPTR, 85

predefined, 55, 56
REAL, 71
RECORD, 73
same, 51
scalar

BOOLEAN, 59
CHAR, 60
description, 47
enumerated, 61
GCHAR, 63

SET, 79
SHORTREAL, 80
simple

BOOLEAN, 59
CHAR, 60
enumerated, 61
GCHAR, 63

228 XL Pascal Language Reference

INTEGER, 68
list and summary, 47
REAL, 71
SHORTREAL, 80
subrange, 86

SPACE, 81
STRING, 82
STRINGPTR, 85
strong typing, 50
structured

ARRAY, 57
FILE, 62
GSTRING, 64
list and summary, 48
RECORD, 73
SET, 79
SPACE, 81
TEXT, 88

subrange scalar, 55, 86
TEXT, 88
user–defined, 54

data–access routines
ADDR function, 147
HBOUND function, 155
HIGHEST function, 156
LBOUND function, 157
LOWEST function, 159
MAX function, 162
MIN function, 164
ODD function, 170
PRED function, 175
SIZEOF function, 187
SUCC function, 191

DATETIME procedure, 149

declarations
lexical scope of identifiers, 27–29
program unit, 21
routine, 133–136
standard mode, 29–33
VS mode, 33–40

DEF declaration, 33

DELETE function, 150

dereferencing a pointer, 93

difference, set, 107

directives
compiler

%CHECK, 205
%INCLUDE, 206
%LIST, 207
%MARGINS, 208
%WRITE, 208

routine, 141–143

DISPOSE procedure, 69, 150

DISPOSEHEAP procedure, 151

DIV operator, 101

double–precision data, 71

DOWNTO, in FOR statement, 120

dynamic variables
description, 69
lifetime, 90
references, 93

E
empty pointer, 69

empty statement, 119

enumerated scalar data type, 61

EOF function, 152

EOLN function, 152

EPSREAL constant, 42, 72

EPSSREAL constant, 42, 80

equivalent expressions, 171

error checking, 92

evaluating expressions, 99, 100

exclusive union, set, 107

EXP function, 153

exponential notation, 18

expressions
AND and OR operators, 60
Boolean, 106
constant, 105
equivalent, 171
evaluating, 99, 100
factors, 98
logical, 108
order of evaluation, 99, 106
parenthesized, 99
set, 107
terms, 97
with a length, 198

extensions to standard Pascal, 209–218

EXTERNAL routines, 143

external variables
DEF declaration, 33
lifetime, 91
REF declaration, 34
scope rules, 34
storage, 34
unresolved, 34

F
factors of expressions, 98

FALSE constant
ASSERT statement, 112
predefined, 42, 59

Federal Information Processing Standard. See FIPS

229Index

field
description, 73
naming, 74
offset qualification, 78
references, 93
syntax, 74
tag, 75

file
description, 62
options for opening, 184
references, 94

FILE data type, 62

file pointers, 62

FIPS (Federal Information Processing Standard), 5, 6

fixed part of a record, 73, 75

fixed strings
description, 48
operations and routines, 48
reading, 179
writing, 199

FLOAT function, 153

floating point, REAL data type, 71

floating point literals, 19

FOR statement, 119, 120

formal parameters
description, 136
function calls, 108
lifetime, 90
matching, 138

FORTRAN routines, 141

forward references, 22, 33

FORWARD routines, 142

function
See also procedure
calls, 108
declaration, 134
heading, 135
ordinal conversion, 109
parameters, 137
pointer–valued, 93
results, 139

functions, predefined. See predefined functions

G
GCHAR constant, 63

GCHAR data, 180

GCHAR data type, 63

general routines
HALT procedure, 155
list and summary, 144
TRACE procedure, 193

xl__trap procedure, 203

GET procedure, 154

global
automatic variables, 23, 32
identifiers, 27
variables, 90

GOTO statement, 111, 122

GSTR function, 154

GSTRING comparison, 104

GSTRING data, 180, 200

GSTRING data type, 65, 92

GSTRINGPTR data type, 67

GTOSTR function, 155

H
HALT procedure, 155

HBOUND function, 155

heap, 146

hexadecimal literals, 19, 20

HIGHEST function, 156

I
I/O routines. See input/output routines

identifiers
case folding, 10
case sensitivity, 10
global, 27
in syntax diagrams, 2
lexical scope, 27
local, 27
maximum length, 10
overview, 10
predefined, 10
program parameters, 24
redeclaring, 10
routine, 133
syntax, 10
type, 31
variable, 32
VS mode, 11

IF statement, 123

implicit type conversion
See also data type conversion
description, 50
GSTRING data type, 65
REAL data type, 72
STRING data type, 82

IN operator, 103, 107

230 XL Pascal Language Reference

INCLUDE compiler directive
description, 206
global automatic variables, 32
VALUE declarations, 39

INDEX function, 156

industry standards, 5

INPUT
predefined variable, 90
program parameters, 24
standard file, 26
TEXT data type, 88

input, standard, 26

input/output routines
See also runtime library routines
CLOSE procedure, 148
COLS function, 148
EOF function, 152
EOLN function, 152
GET procedure, 154
list and summary, 144
PAGE procedure, 172
PUT procedure, 176
READ procedure, 177
READLN procedure, 177
RESET procedure, 183
REWRITE procedure, 184
SEEK procedure, 186
TERMIN procedure, 191
TERMOUT procedure, 191
UPDATE procedure, 195
WRITE procedure, 196, 197
WRITELN procedure, 197

INTEGER data, 180, 200

INTEGER data type, 68

integer literals, 19

integer operands, 108

interlanguage communication, 142

internal routines, 143

International Standards Organization. See ISO

intersection, set, 107

ISO (International Standards Organization), 5, 6

ITOHS function, 157

K
keywords

See also reserved words
case sensitivity, 12
in syntax diagrams, 2
standard mode, 12
typographical conventions, 7
VS mode, 12

L
label, case, 115

LABEL declaration, 29

labels, 111

language
extensions to standard Pascal, 209–218
features

comparison of VS and standard mode, 209–218
overview, 209

LBOUND function, 157

LEAVE statement, 125

LENGTH function, 158

lexical level, 28

lexical scope. See scope

lifetime of variables and parameters, 90

linking program units, 25

LIST compiler directive, 207

literals
binary, 19
case sensitivity, 18
floating–point hexadecimal, 19
hexadecimal, 19
integer, 19
MBCS, 20
overview, 17
string

delimiter symbol, 13
hexadecimal, 20
in comments, 16

syntax, 17

LN function, 159

local identifiers, 27

local variables, 90

logical expressions, 108

logical operations on integers, 68

LOWEST function, 159

LPAD procedure, 160

LTOKEN procedure, 160

LTRIM function, 161

M
MAIN routines, 141

MARGINS compiler directive, 208

MARK procedure, 161

matching data types. See same data types

231Index

matching formal parameters, 138

mathematical routines
ABS function, 147
ARCTAN function, 147
COS function, 149
EXP function, 153
list and summary, 145
LN function, 159
RANDOM function, 176
SIN function, 187
SQR function, 188
SQRT function, 188

MAX function, 162

MAXCHAR constant, 42, 60

MAXINT constant, 42, 68

MAXLENGTH function, 162

MAXREAL constant, 42, 72

MAXSREAL constant, 42, 80

MBCS (multibyte character set)
applying relational operators, 66
comments, 16
GCHAR data type, 63
GSTRING data type, 64
GSTRING variables, 92
GSTRINGPTR data type, 67
hexadecimal literals, 20
literals, 20
mixed string support routines, 145
READ procedure, 179
READSTR procedure, 181
string comparison, 104
typographical conventions, 7
WRITE procedure, 199
WRITESTR procedure, 202

MCOMPRESS function, 163

MDELETE function, 163

membership, set, 107

MIN function, 164

MINDEX function, 164

MININT constant, 42, 68

MINREAL constant, 42, 72

MINSREAL constant, 42, 80

mixed string support routines
See also string manipulation routines
list and summary, 145
MCOMPRESS function, 163
MDELETE function, 163
MINDEX function, 164
MLENGTH function, 165
MLTRIM function, 165
MRINDEX function, 165
MSUBSTR function, 166
MTRIM function, 167

mixed strings, 84

MLENGTH function, 165

MLTRIM function, 165

MOD operator, 101

modulus operation, 101

MRINDEX function, 165

MSUBSTR function, 166

MTRIM function, 167

multibyte character set. See MBCS

multidimensional array, 58, 91

multiple declarations, 22, 33

multiplication operators, 101

mutually recursive routines, 142

N
naming record fields, 74

negation, 100

nesting
IF statements, 124
programs, 27
routines, 28, 133

NEW procedure, 69, 167

NEWHEAP procedure, 169

NIL constant, 42, 69

NIL pointer value, 42, 93

non–comparable types, 105

NONPASCAL routines, 142

NOT operator, 100, 108

O
ODD function, 170

offset qualification, 78

one’s–complement negation, 100

open options, 184

operands
Boolean, 104
CHAR, 104
description, 14
integer, 108
relational operations, 103
scalar, 103
set, 107

operations
ALFA data type, 57
ALPHA data type, 57
ARRAY data type, 58
BOOLEAN data type, 59
CHAR data type, 60

232 XL Pascal Language Reference

enumerated scalar data type, 61
FILE data type, 62
GCHAR data type, 64
GSTRING data type, 65
GSTRINGPTR data type, 67
INTEGER data type, 68
POINTER data type, 70
pointer data types, 69
REAL data type, 71
set, 107
SET data type, 80
SHORTREAL data type, 81
STRING data type, 83
STRINGPTR data type, 85

operators
addition, 15, 102
list and summary, 14
multiplication, 14, 101
NOT (~), 100
NOT(~), 14
overview, 100
precedence, 99
priority, 99
relational

applied to MBCS data, 66
applied to string data, 83
description, 103
list and summary, 15

options for opening files, 184

OR operator, 102, 108

ORD function, 170

order of declarations
standard mode, 21, 29
VS mode, 33

order of evaluation, 99, 106

ordinal conversion, 109, 170

ordinal data types, 47

OTHERWISE in a CASE statement, 116

out–of–range values, 100

OUTPUT
predefined variable, 90
program parameters, 24
standard file, 26
TEXT date type, 88

output, standard, 26

P
PACK procedure, 171

PACKED attribute, 49

packed types, 49, 50

PAGE procedure, 172

parameter
actual, 136

formal, 136
list, 137
passing

by CONST (read–only–reference), 138
by value, 137
by VAR (read/write–reference), 109, 137
conformant string, 138
predefined routines, 139
procedure, 137

parameters, program. See program parameters

parenthesized expressions, 99

PARMS function, 172

passing parameters. See parameter passing

PICTURE function, 173

pointer
comparison, 104
data types

description, 69
GSTRINGPTR, 48
list and summary, 47
POINTER, 70
STRINGPTR, 48

dereferencing, 93
empty, 69
file, 62
notation, 93
references, 93
subheap, 162
target types, 22, 33

POINTER data type, 70

pointer–valued function, 93, 140

PRED function, 175

predefined
constants

ALFALEN, 56
ALPHALEN, 57
EPSREAL, 72
EPSSREAL, 80
FALSE, 59
list and summary, 42
MAXCHAR, 60
MAXINT, 68
MAXREAL, 72
MAXSREAL, 80
MININT, 68
MINREAL, 72
MINSREAL, 80
NIL, 69
TRUE, 59

data types
pointer, 56
scalar, 55, 56
structured, 55, 56

functions
ABS, 147
ADDR, 147
ARCTAN, 147

233Index

CHR, 147
CLOCK, 148
COLS, 148
COMPRESS, 149
COS, 149
DELETE, 150
EOF, 152
EOLN, 152
EXP, 153
FLOAT, 153
GSTR, 154
GTOSTR, 155
HBOUND, 155
HIGHEST, 156
in constant expressions, 105
INDEX, 156
ITOHS, 157
LBOUND, 157
LENGTH, 158
LN, 159
LOWEST, 159
LTRIM, 161
MAX, 162
MAXLENGTH, 162
MCOMPRESS, 163
MDELETE, 163
MIN, 164
MINDEX, 164
MLENGTH, 165
MLTRIM, 165
MRINDEX, 165
MSUBSTR, 166
MTRIM, 167
ODD, 170
ORD, 170
ordinal conversion, 170
PARMS, 172
PICTURE, 173
PRED, 175
RANDOM, 176
RINDEX, 184
ROUND, 185
SIN, 187
SIZEOF, 187
SQR, 188
SQRT, 188
STOGSTR, 188
STR, 189
SUBSTR, 190
SUCC, 191
TRIM, 193
TRUNC, 194

identifiers
description, 10
standard mode, 219
VS mode, 220

pointer data types
GSTRINGPTR, 67
list and summary, 56
POINTER, 70
STRINGPTR, 85

procedures
CLOSE, 148
DATETIME, 149
DISPOSE, 150
DISPOSEHEAP, 151
GET, 154
HALT, 155
LPAD, 160
LTOKEN, 160
MARK, 161
NEW, 167
NEWHEAP, 169
PACK, 171
PAGE, 172
PUT, 176
QUERYHEAP, 176
READ, 177
READLN, 177
READSTR, 181
RELEASE, 182
RESET, 183
RETCODE, 184
REWRITE, 184
RPAD, 186
SEEK, 186
TERMIN, 191
TERMOUT, 191
TOKEN, 192
TRACE, 193
UNPACK, 194
UPDATE, 195
USEHEAP, 196
WRITE, 196, 197
WRITELN, 197
WRITESTR, 201
xl__trap, 203

routines
See also predefined functions; predefined

procedures
ALPHA data type, 57
ARRAY data type, 58
BOOLEAN data type, 59
CHAR data type, 60
constant expressions, 105
enumerated scalar data type, 61
FILE data type, 62
GCHAR data type, 64
GSTRING data type, 65
GSTRINGPTR data type, 67
INTEGER data type, 68
mixed strings, 84
parameter passing, 139
POINTER data type, 70
pointer data types, 69
REAL data type, 71
RECORD data type, 74
SET data type, 80
SHORTREAL data type, 81
SPACE data type, 82
STRING data type, 83
STRINGPTR data type, 85

234 XL Pascal Language Reference

subrange scalar data type, 87
TEXT data type, 88

scalar data types
BOOLEAN, 59
CHAR, 60
GCHAR, 63
INTEGER, 68
REAL, 71
SHORTREAL, 80
standard mode, 55
VS mode, 56

structured data types
ALFA, 56
ALPHA, 57
GSTRING, 64
standard mode, 55
STRING, 82
TEXT, 88
VS mode, 56

variables
description, 90
standard files, 26
TEXT data type, 88

prime files, 29, 42

procedure
See also function
block, 135
call statement, 126
declaration, 134
heading, 135
parameters, 137

procedures, predefined. See predefined procedures

program elements
basic symbols, 11
characters, 9
comments, 16
identifiers, 10
literals, 17

program parameters
lifetime, 90
overview, 24
procedure calls, 127
standard mode, 24
VS mode, 25

program structure
linking units to form a program, 25
program parameters, 24
program unit, 21
segment unit, 23
standard files, 26

program unit
See also segment unit
structure, 22
syntax, 21
VS mode, 22

PUT procedure, 176

Q
QUERYHEAP procedure, 176

quoted strings, 18

R
RANDOM function, 176

range, case, 115

READ procedure, 177

reading
CHAR data, 179
fixed string data, 179
GCHAR data, 180
GSTRING data, 180
INTEGER data, 180
MBCS fixed string data, 179
REAL data, 180
SHORTREAL data, 180
STRING data, 180
variables with a length, 179

READLN procedure, 177

READSTR procedure, 181

REAL data, 180, 200

REAL data type, 71

RECORD data type
description, 73–79
field, 74
fixed part, 75
naming fields, 74
structured constants, 44

RECORD file handling routines
See also TEXT file handling routines
READ procedure, 177
SEEK procedure, 186
UPDATE procedure, 195
WRITE procedure, 196

records, 49

recursive
function call, 139
routines, 32, 133

REENTRANT routines, 141

REF declaration, 34

references
file, 94
pointer, 93
record field, 93
space elements, 95
string variables, 96
variable, 89

235Index

relational operators
applied to MBCS data, 66
applied to string data, 83
description, 103

RELEASE procedure, 69, 182

REPEAT statement, 127

reserved words
See also keywords
case sensitivity, 11
in syntax diagrams, 2
standard mode, 11
typographical conventions, 7
VS mode, 12

RESET procedure, 183

RETCODE procedure, 184

RETURN statement, 128

REWRITE procedure, 184

RINDEX function, 184

ROUND function, 185

routine
declarations, 133–136
directives

EXTERNAL, 143
FORTRAN, 141
FORWARD, 142
MAIN, 141
NONPASCAL, 142
REENTRANT, 141
syntax, 134

heading, 135
parameters, 136–139
scope, 133
types, 141

routines
See also conversion routines; data access routines;

data movement routines; functions; general
routines; input/output routines; mathematical
routines; mixed string support routines; predefined
routines; procedures; storage management
routines; STRING manipulation routines; system
interface routines

internal, 143
mutually recursive, 142
nesting, 28, 133
predefined. See predefined routines
recursive, 133
returning data, 133

RPAD procedure, 186

runtime library routines
ABS function, 147
ADDR function, 147
ARCTAN function, 147
CHR function, 147
CLOCK function, 148
COMPRESS function, 149
COS function, 149

DATETIME procedure, 149
DELETE function, 150
DISPOSE procedure, 150
DISPOSEHEAP procedure, 151
EXP function, 153
FLOAT function, 153
GSTR function, 154
GTOSTR function, 155
HALT procedure, 155
HBOUND function, 155
HIGHEST function, 156
INDEX function, 156
ITOHS function, 157
LBOUND function, 157
LENGTH function, 158
LN function, 159
LOWEST function, 159
LPAD procedure, 160
LTOKEN procedure, 160
LTRIM function, 161
MARK procedure, 161
MAX function, 162
MAXLENGTH function, 162
MCOMPRESS function, 163
MDELETE function, 163
MIN function, 164
MINDEX function, 164
MLENGTH function, 165
MLTRIM function, 165
MRINDEX function, 165
MSUBSTR function, 166
MTRIM function, 167
NEW procedure, 167
NEWHEAP procedure, 169
ODD function, 170
ORD function, 170
ordinal conversion functions, 170
PACK procedure, 171
PARMS function, 172
PICTURE function, 173
PRED function, 175
QUERYHEAP procedure, 176
RANDOM function, 176
READSTR procedure, 181
RELEASE procedure, 182
RETCODE procedure, 184
RINDEX function, 184
ROUND function, 185
RPAD procedure, 186
SIN function, 187
SIZEOF function, 187
SQR function, 188
SQRT function, 188
STOGSTR function, 188
STR function, 189
SUBSTR function, 190
SUCC function, 191
TOKEN procedure, 192
TRACE procedure, 193
TRIM function, 193
TRUNC function, 194

236 XL Pascal Language Reference

UNPACK procedure, 194
USEHEAP procedure, 196
WRITESTR procedure, 201
xl__trap procedure, 203

S
same data types, 51

scalar comparison, 103

scalar data types
BOOLEAN, 59
CHAR, 60
definition, 47
enumerated, 61
GCHAR, 63
INTEGER, 68
REAL, 71
SHORTREAL, 80
subrange, 86

scalar operands, 103

scientific notation, 18

scope
enumerated scalar, 61
external variables, 34
identifiers, 27–29
nested routines, 27
prime files, 29
record field names, 74
routines, 133, 143
statement labels, 111
static variables, 36

SEEK procedure, 186

segment unit, 23
See also program unit

selectors, 75, 115

set
comparison, 104
constructors, 110
expressions, 107
operands, 107
packed, 50
storage mapping, 50
structured constants, 46

SET data type, 79

short–circuiting, 107

SHORTREAL data, 180, 200

SHORTREAL data type, 80, 81

simple data types
BOOLEAN, 59
CHAR, 60
enumerated, 61
GCHAR, 63
INTEGER, 68
list and summary, 47

REAL, 71
SHORTREAL, 80
subrange, 86

simple expressions, 97

SIN function, 187

single quotation mark, 13, 18

SIZEOF function, 187

SPACE data type, 81, 95

SPACE variables, 81

special symbols, 13

SQR function, 188

SQRT function, 188

standard error file, 26

standard files, 26

standard input, 26

standard mode
See also VS mode
addition operators, 102
assignment compatibility, 52
compatible types, 52
data types, 55
declarations, 29–33
extensions, 6
keywords, 12
language features, 209
language level, 5
multiplication operators, 101
NOT operator, 100
order of declarations, 21
predefined constants, 42
predefined identifiers, 219–220
program parameters, 24
relational operators, 103
reserved words, 11
routine parameters, 136
simple data types, 47
special symbols, 13
statements, 111
structured data types, 48
type conversions, 50

standard output, 26

standard Pascal, 5, 209

statement labels, 111

statements
ASSERT, 112
assignment, 113
CASE, 114
compound, 21, 117
CONTINUE, 117
empty, 119
FOR, 119
GOTO, 122
IF, 123

237Index

LEAVE, 125
list and summary, 111
procedure call, 126
PROGRAM, 21
REPEAT, 127
RETURN, 128
syntax, 111
WHILE, 129
WITH, 130

STATIC declaration, 35

static variables
description, 35
lifetime, 91
scope rules, 36
used in VALUE declarations, 36

STDERR
predefined variable, 90
standard file, 26
TEXT date type, 88

STOGSTR function, 188

storage
integer data, 68
packed, 49
REAL data type, 71
record, 76, 77, 78
SPACE data type, 81

storage management routines
DISPOSE procedure, 150
DISPOSEHEAP procedure, 151
list and summary, 146
MARK procedure, 161
NEW procedure, 167
NEWHEAP procedure, 169
QUERYHEAP procedure, 176
RELEASE procedure, 182
USEHEAP procedure, 196

STR function, 189

string
comparison, 104
concatenation, 18
conformant, 138
hexadecimal literals, 20
indexing, 96
literals

case sensitivity, 18
concatenation, 18
delimiter symbol, 13
in comments, 16
line length, 18

parameters, 138
references, 96
routines, 146
subscripting, 82, 92

string data
applying relational operators, 83
conversions on assignment, 84
reading, 180
writing, 201

STRING data type, 82, 92

STRING manipulation routines
See also mixed string support routines
COMPRESS function, 149
DELETE function, 150
INDEX function, 156
LENGTH function, 158
list and summary, 146
LPAD procedure, 160
LTOKEN procedure, 160
LTRIM function, 161
MAXLENGTH function, 162
PICTURE function, 173
READSTR procedure, 181
RINDEX function, 184
RPAD procedure, 186
SUBSTR function, 190
TOKEN procedure, 192
TRIM function, 193
WRITESTR procedure, 201

STRINGPTR data type, 85

strings, 48, 84

strong typing, 50

structured
constants

array, 44
overview, 43
record, 44
set, 46
VALUE declaration, 37

data types
ALFA, 56
ALPHA, 57
ARRAY, 57
FILE, 62
GSTRING, 64
list and summary, 48
RECORD, 73
SET, 79
SPACE, 81
STRING, 82
TEXT, 88

subheap, 161

subrange scalar data type, 86, 87

subranges, 50, 108

subscripting
ARRAY variable, 58, 91
error checking, 92
GSTRING variable, 65, 92
SPACE variable, 95
STRING variable, 92

SUBSTR function, 190

SUCC function, 191

system interface routines
CLOCK function, 148
DATETIME procedure, 149

238 XL Pascal Language Reference

list and summary, 146
PARMS function, 172
RETCODE procedure, 184

T
tag field

description, 75
record constants, 45
refer–back, 45

TERMIN procedure, 191

TERMOUT procedure, 191

terms of expressions, 97

TEXT data type, 88

TEXT file handling routines
See also RECORD file handling routines
COLS function, 148
EOLN function, 152
PAGE procedure, 172
READ procedure, 177
READLN procedure, 177
TERMIN procedure, 191
TERMOUT procedure, 191
TRACE procedure, 193
WRITE procedure, 197
WRITELN procedure, 197

TO, in FOR statement, 120

TOKEN procedure, 192

TRACE procedure, 193

TRIM function, 193

TRUE constant
ASSERT statement, 112
predefined, 42, 59

TRUNC function, 194

truncating division, 101

type. See data type

type conversion. See data type conversion

TYPE declaration, 31

typographical conventions, 7

U
union, set, 107

unit
compilation, 21
linking, 25
program, 21
segment, 23

UNPACK procedure, 194

unsigned
constant, 41, 98

integer literal, 17
number, 41
real number literal, 17

UPDATE procedure, 195

USEHEAP procedure, 196

user–defined data types, 54

V
valid programs, 6

VALUE declaration
assignments, 37
conflicting initializations, 39
description, 36
initializing variables, 37, 38

VAR declaration, 31, 32

variables
automatic, 31
dynamic, 69, 93
external, 33, 34
file, 62
global automatic, 23, 32
identifier, 32
in syntax diagrams, 2
lifetime, 90
predefined

description, 90
standard files, 26
TEXT data type, 88

references, 89
SPACE, 81
static, 35
subscripted, 91, 92
VAR declaration, 31
with a length, 179

variant
part of a record, 73, 75
selector of a record, 75

VS mode
See also standard mode
addition operators, 102
assignment compatibility, 53
case statement, 116
comments, 16
compatible types, 52
data types, 56
declarations, 33–40
extensions, 6
function results, 140
keywords, 12
language features, 209
language level, 6
MBCS literals, 20
multiplication operators, 101
naming record fields, 74
NOT (~) operator, 100

239Index

offsets in a record, 78
order of declarations, 22
pointer reference symbol, 69
predefined constants, 42
predefined identifiers, 220–224
program parameters, 25
program unit, 22
record tag field identifier, 74
record variant, 75, 76
relational operators, 103
reserved words, 12
routine parameters, 137, 138
segment unit, 23
simple data types, 47
special symbols, 13
standard error output file, 26
statements, 112
strings, 49
structured data types, 48
subrange scalar data type, 86
type conversions, 51
variables, 91

VS Pascal
extensions, 6
extensions to ANSI–83 Pascal, 209
language, 1
language features, 209

W
WHILE statement, 129

WITH statement, 130

WRITE compiler directive, 208

WRITE procedure, 196, 197

WRITELN procedure, 197

WRITESTR procedure, 201

writing
BOOLEAN data, 198
CHAR data, 199
expressions with a length, 198
fixed string data, 199
GCHAR data, 200
GSTRING data, 200
INTEGER data, 200
MBCS fixed string data, 199
REAL data, 200
SHORTREAL data, 200
STRING data, 201

X
XL Pascal extensions, 5

xl__trap procedure, 203

XOR operator, 102, 108

240 XL Pascal Language Reference

Communicating Your Comments to IBM

IBM AIX XL Pascal Compiler/6000
Language Reference

Version 2.1

Publication number SC09–1757–00

If there is something you like—or dislike—about this book, please let us know. You can use
one of the methods listed below to send your comments to IBM. If you want a reply, include
your name, address, and telephone number. If you are communicating electronically, include
the book title, publication number, page number, or topic you are commenting on.

The comments you send should only pertain to the information in this book and its
presentation. To request additional publications or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your IBM representative
or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the United
States, you can give it to the local IBM branch office or IBM representative for postage–paid
mailing.

• If you prefer to send comments by mail, use the RCF at the back of this book.

• If you prefer to send comments by FAX, use this number:

– United States and Canada: 416–448–6161

– Other countries: (+1)–416–448–6161

• If you prefer to send comments electronically, use the network ID listed below. Be sure to
include your entire network address if you wish a reply.

– Internet: torrcf@vnet.ibm.com
– IBMLINK: toribm(torrcf)
– IBM/PROFS: torolab4(torrcf)
– IBMMAIL: ibmmail(caibmwt9)

Readers’ Comments – We’d Like to Hear from You

IBM AIX XL Pascal Compiler/6000
Language Reference

Version 2.1

Publication Number SC09–1757–00

Overall, how satisfied are you with the information in this book?

Overall Satisfaction

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

How satisfied were you that the information in this book is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? � Yes � No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in
any way it believes appropriate without incurring any obligation to you.

Name

Company or Organization

Phone Number

Address

IIBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA M3C 1H7

PLACE
POSTAGE
STAMP
HERE

Fold and Tape Fold and Tape

C
u
t o

r F
o
ld

 A
lo

n
g
 L

in
e

Please Do Not Staple

Fold and Tape Fold and TapePlease Do Not Staple

SC09–1757–00

Readers’ Comments—We’d Like to Hear from You

SC09–1757–00

