
AIX XL Pascal/6000

User’s Guide

SC09-1756–00

Version 2.1

Note to US Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.
IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

Before using this information, and the product it supports, be sure to read the general information
under “Notices” on page v.

Note!

Second Edition (December 1993)

This edition applies to Version 2, Release 1 of IBM AIX XL Pascal Compiler/6000 (Program 5765–245), and to all
subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 Eglinton Avenue
North York, Ontario, Canada. M3C 1H7

You can also send your comments by facsimile to (attention: RCF Coordinator), or you can send your comments
electronically to IBM. Please see “Communicating Your Comments to IBM” for a description of the methods. This page
immediately precedes the Readers’ Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1990, 1993. All rights reserved.

iiiContents Copyright IBM Corp. 1990, 1993

Contents

Notices v.

Chapter 1. Introduction 1.

How to Read Syntax Diagrams 2.

Pascal Industry Standards 5.

Related Publications 6.

Typographical Conventions 7.

Chapter 2. Features of the XL Pascal Compiler 9.

Compiler Installation 10.

Chapter 3. Compiling, Linking, and Running Programs 13.

Invoking the XL Pascal Compiler 13.

The XL Pascal Compilation Environment 14.

The XL Pascal Configuration File 15.

Input Files to the xlp Command 19.

Output Files from the xlp Command 20.

Prime Files 21.

Compiler Options 22.

Summary of the Compiler Options 25.

Detailed Descriptions of the Compiler Options 29.

Invoking the Linkage Editor 40.

Running a Program 41.

The XL Pascal Runtime Environment 41.

Chapter 4. Input and Output Facilities 43.

Environment-Determined File Names 43.

Opening Files for Input and Output 45.

File Opening Procedures 50.

Processing a TEXT File 53.

Processing a Record File 61.

Closing a File (CLOSE) 65.

Appending Data to a File 66.

File-Name Association 66.

Chapter 5. Improving Performance 69.

Optimization Levels 69.

Optimization Techniques 70.

Making Your Programs More Efficient 71.

iv XL Pascal User’s Guide

Chapter 6. Problem Determination 73.

Compiler Listings 73.

Error Messages 79.

Message Catalog Errors 86.

Chapter 7. Interlanguage Applications 89.

Interlanguage Reference Requirements 89.

External Names 89.

Matching Data Types 90.

Character Variable Types 92.

Storage of Arrays 93.

Pascal Arrays, C Pointers, and Arrays 93.

Routine Calls and Returned Values 94.

Routine Linkage Convention 95.

Interlanguage Parameter Passing Conventions 97.

Enforcement of Type Matching 104.

Appendix A. Example Program 105.

Appendix B. ASCII Character Set 107.

Appendix C. XL Pascal and the 1983 ANSI/IEEE Pascal Standard 111.

Implementation-Defined Features 111.

Implementation-Dependent Features 113.

Error Handling 114.

Extension Handling 116.

Appendix D. Implementation Dependencies 117.

Routines That Can Be Passed as Parameters 117.

Data Types 117.

Compiler Limits 118.

Differences between XL Pascal and the VS Pascal Release 1 Licensed Program 119.

Differences between XL Pascal and the VS Pascal Release 2 Licensed Program 121.

Appendix E. Data Storage 123.

Storage Classes 123.

Data Size and Boundary Alignment 124.

Dynamic Storage Management 129.

Appendix F. Single Precision Floating-Point Overflow 133.

Glossary 135.

Index 141.

 Copyright IBM Corp. 1990, 1993 vNotices

Notices

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM licensed program in this publication is not intended to state or imply that only IBM’s
licensed program may be used. Any functionally equivalent product, program or service that
does not infringe any of IBM’s intellectual property rights may be used instead of the IBM
product, program, or service. Evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Commercial Relations, IBM
Corporation, Purchase, NY 10577.

This publication contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

Trademarks and Service Marks
The following terms, denoted by an asterisk (*), used in this publication, are trademarks or
service marks of IBM Corporation in the United States or other countries:

AIX IBM IBMLink

POWER2 PowerPC PROFS

RISC System/6000 RT PC RT

System/370

The following terms, denoted by a double asterisk (**), used in this publication, are
trademarks of other companies as follows:

ANSI American National Standards Institute, Inc.

vi XL Pascal User’s Guide

1 Copyright IBM Corp. 1990, 1993 Chapter 1. Introduction

Chapter 1. Introduction

This book describes the IBM* AIX* XL Pascal Compiler/6000, and shows how to compile,
link, and run programs written in XL Pascal. It also describes how to use input and output
(I/O) facilities and storage, and how to do interlanguage calls.

The exceptional (XL) family of compilers provides consistency and high performance across
multiple programming languages by sharing the same code optimization technology. The XL
Pascal Compiler/6000 is an optimizing compiler for the Pascal language for AIX Version 3
for the RISC System/6000*system. It allows invocation of routines written in other
programming languages, and the creation of routines that can be invoked by programs
written in other languages. It also provides detailed compile-time and runtime diagnostics,
error recovery, and debugging facilities.

XL Pascal compiles programs written using the American National Standards Institute
(ANSI) Pascal language with selected VS Pascal extensions. The publication American
National Standard Pascal Computer Programming Language, ANSI/IEEE 770X3.97–1983
details the Pascal language standard. The XL Pascal language is described in the Language
Reference for IBM AIX XL Pascal Compiler/6000, SC09–1757.

Note: For brevity, the IBM* AIX* XL Pascal Compiler/6000 is referred to throughout this
book as XL Pascal. The AIX Version 3 for the RISC System/6000* is referred to as
AIX.

Who Should Use This Book
You should use this book if you are already familiar with Pascal and want to use the XL
Pascal compiler to write or maintain applications in XL Pascal. You should be familiar with
the AIX Version 3 Operating System, and have some previous programming experience. If
you are not familiar with the operating system, refer to AIX Version 3.2 System User’s
Guide: Operating System and Devices, GC23–2522.

This book does not contain detailed information about how to write a program in XL Pascal.
If you have no prior Pascal knowledge or familiarity with a high-level programming language,
you may first want to obtain any of the tutorial-style Pascal books that are commercially
available.

For detailed information about Pascal and Pascal language keywords and definitions, refer
to the Language Reference for IBM AIX XL Pascal Compiler/6000 manual.

How to Use This Book
This book is organized in the order of the steps necessary to compile, link-edit, and run a
program using the XL Pascal Compiler/6000.

If you have not used a compiler on the RISC System/6000 computer before, you should first
read Chapter 2, “Features of the XL Pascal Compiler” and Chapter 3, “Compiling, Linking,
and Running Programs.” The remaining chapters deal with more advanced topics. After you
are familiar with the system and the compiler, you can use this book as a handy reference.

Use this book along with the Language Reference for IBM AIX XL Pascal Compiler/6000.

2 XL Pascal User’s Guide

How This Book Is Organized
Each of the following chapters is devoted to a major concept or feature of the XL Pascal
compiler:

Chapter 1, “Introduction” is the chapter you are reading now. It introduces the major
elements of the compiler, the standards it conforms to, and tells you where to go for more
information.

Chapter 2, “The XL Pascal Compiler” summarizes what you should know about the
compiler before creating a Pascal source program.

Chapter 3, “Compiling, Linking, and Running Programs” shows how to invoke the
compiler, specify compiler options, invoke the linkage editor, and run your compiled
program.

Chapter 4, “Input and Output Facilities” shows how to use the XL Pascal I/O facilities
under the AIX Version 3.2 operating system.

Chapter 5, “Improving Performance” shows some of the optimizations XL Pascal
performs and how to make your programs more efficient.

Chapter 6, “Problem Determination” shows how to use error messages, the compiler
listing, and the symbolic debugger to find and eliminate problems in your programs.

Chapter 7, “Interlanguage Applications” shows how to write function and procedure
calls and external data references among the IBM AIX RISC System/6000 XL languages.

Appendix A, “Example Program” presents an example program, the listing it produces
with the options specified, and the output from running it.

Appendix B, “ASCII Character Set” lists the standard ASCII characters in ascending
numerical order, with the corresponding decimal and hexadecimal values and ASCII
control characters with Ctrl– notation.

Appendix C, “XL Pascal and the 1983 ANSI/IEEE Pascal Standard” shows the
implementation-defined and implementation-dependent features of XL Pascal, error
handling, and extensions to the Pascal standard language.

Appendix D, “Implementation Dependencies” discusses the XL Pascal
implementation dependencies, compiler limits, and other factors that affect programming.
It also summarizes the differences between XL Pascal and VS Pascal.

Appendix E, “Data Storage” shows how XL Pascal data values are represented in
storage, and how storage management operations are implemented.

Appendix F, “Single Precision Floating Point Overflow” shows a hardware error in
the implementation of the frsp (floating round to single precision) instruction and how to
use the XFLAG=DD24 compiler option to avoid the error.

How to Read Syntax Diagrams
The following conventions are used in syntax diagrams:

• Keywords and reserved words are in bold uppercase letters (for example, VAR, BEGIN,
and END). They can be written in uppercase or lowercase, but they must be spelled
exactly as shown.

• Variables or identifiers that you supply are in all lowercase italics (for example, label_dcl).

• You enter punctuation marks, parentheses, arithmetic operators, and other nonalphabetic
symbols as they are shown in the syntax.

3Chapter 1. Introduction

Read syntax diagrams from left to right, from top to bottom, following the path of the line:

• The following symbol indicates the beginning of a diagram:

• The following symbol indicates that the syntax continues on the next line:

• The following symbol indicates that the syntax is continued from the previous line:

• The following symbol indicates the end of the diagram:

• Syntactical units that are not complete statements start with the following symbol:

• Syntactical units that are not complete statements end with the following symbol:

Required and Optional Items
Required items are on the horizontal line (the main path).

ASSERT expr

Branching shows two paths through the syntax.

%INCLUDE

path_name

file_name

If you must choose one of three or more items, they are in a multiple choice box on the main
path.

unsigned_number

character_string

constant_identifier

NIL

Optional items are on the lower line of a branched path. The upper line is empty, indicating
that you need not write anything for this syntax item.

PACKED

FILE OF type

Repeatable Items
An arrow returning to the left below a line shows items that you can repeat.

compound_statement;declaration ;

4 XL Pascal User’s Guide

Punctuation on a repeat arrow is always between the repeated items.

ENDstatement

;

BEGIN
;

A repeat arrow below a multiple choice box indicates that you can choose one or more items
in the box, but you must choose at least one.

letter

digit
underscore

letter

Default Items
A heavy line is the default path.

ON

OFF

%LIST

Example

rangeCASE OF

END

expr statement

;

statementOTHERWISE

,
;

;

1 2 3

4

5 6

8

9

10

:
7

11

The diagram is interpreted as follows:

1. This is the start of the diagram.

2. Type the keyword CASE.

3. Type a valid expression followed by the word OF.

4. Type at least one range. For more than one range, separate each by a comma.

5. Type the colon symbol (:).

6. Type a valid statement.

5Chapter 1. Introduction

7. Type the semicolon symbol (;).

8. This path is optional.

9. The diagram is continued at 10.

10. The diagram is continued from 9.

11. The end of the diagram.

The following CASE statements conform to the syntax shown in the syntax diagram:

CASE a_card.r OF
 ace:
 points := 11;
 two..ten:
 points := ORD(a_card.r) + 1;
 OTHERWISE
 points := 10
END ;

CASE s OF
 triangle:
 area := 0.5 * side * base;
 rectangle:
 area := sidea * sideb;
 circle:
 area := 3.14159 * SQR(radius)
END ;

CASE s OF
 triangle:
 area := 0.5 * side * base
END ;

A Note about Examples
Examples in this book are written in a simple style. They do not attempt to conserve storage,
check for errors, achieve fast run time, or demonstrate all possible uses of a language
element.

Pascal Industry Standards
XL Pascal complies with the ANSI standard (commonly referred to as ANSI-83) defined in
American National Standard Pascal Computer Programming Language, ANSI/IEEE
770X3.97–1983.

This standard is adopted by International Standards Organization (ISO) and Federal
Information Processing Standards (FIPS). It also implies conformance to:

• International Standard ISO 7185–1983 (Level 0), Programming Languages, Pascal

• Federal Information Processing Standard, FIPS PUB 109, Pascal.

In this book, Standard Pascal or Standard mode refers to the ANSI-83 standard.

6 XL Pascal User’s Guide

Related Publications

IBM Publications
• Language Reference for IBM AIX XL Pascal Compiler/6000, SC09–1757, includes a

detailed description of the program structure, declarations, constants, data types,
variables, expressions, statements, and routines in XL Pascal.

• Installation Instructions for IBM AIX XL Pascal Compiler/6000, GC09–1775, shows how to
install the AIX XL Pascal Compiler/6000 Version 2.1.

• VS Pascal Language Reference, SC26–4320, provides definition of the VS Pascal
programming language and its syntax.

• VS Pascal Application Programming Guide, SC26–4319, describes how to use the VS
Pascal compiler and explains how to compile, link-edit, run, and debug VS Pascal
programs.

• AIX Version 3.2 System User’s Guide: Operating System and Devices, GC23–2522,
introduces the AIX operating system to first-time users. It describes basic tasks, such as,
logging in, running commands, working with files and directories, and using the
information that supports the system.

• AIX Version 3.2 Topic Index and Glossary, GC23–2201, provides a glossary of terms
used in AIX and RISC System/6000 publications. It also contains a list of some topics in
the AIX and RISC System/6000 library and the books in which those topics are
discussed.

• AIX Version 3.2 Commands Reference (4 volumes), GBOF–1802, contains descriptions
and examples of the AIX commands and their available flags.

• AIX Version 3.2 General Programming Concepts, SC23–2205, discusses the AIX
operating system from a programming perspective.

• AIX Version 3.2 Technical Reference: Base Operating System and Extensions,
SC23–2198, describes AIX base operating system runtime services and device services.

• AIX Version 3.2 Assembler Language Reference, SC23–2197, describes the assembler
language program implemented by the AIX Assembler Version 3.2.5.

• Optimization and Tuning Guide for Fortran, C, and C++: AIX Version 3.2 for RISC
System/6000, SC09–1705, describes techniques you can use to improve the
performance of programs compiled with the AIX compilers.

Non-IBM Publications
• American National Pascal Computer Programming Language, ANSI/IEEE

770X3.97–1983

• International Standards Organization Programming Language Pascal, (ISO) 7185–1983
(Level 0)

• Federal Information Processing Standards Publication Pascal, (FIPS) PUB 109

• ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754–1985

7Chapter 1. Introduction

Typographical Conventions
Type style highlights important terms and elements of the compiler. The following kinds of
information are distinguished by different typographical conventions.

Keywords and Reserved Words
Predefined identifiers, which you must write exactly as presented, are in BOLD CAPITALS.
When used generically, these words are in lowercase. For example, the reserved word
TYPE is in capital letters, but general references to data type are in lowercase.

New Terms
When a term is used for the first time, it is in italics, often followed by a brief definition. All of
these terms and definitions are in the AIX Version 3.2 Topic Index and Glossary.

Multibyte Characters
VS mode XL Pascal permits the use of multibyte character set (MBCS) characters:

• A boldface capital D represents one multibyte character

• A boldface capital B represents one MBCS blank

8 XL Pascal User’s Guide

9 Copyright IBM Corp. 1990, 1993 Chapter 2. Features of the XL Pascal Compiler

Chapter 2. Features of the XL Pascal Compiler

The XL Pascal compiler is an IBM licensed program that operates within the IBM AIX RISC
System/6000 environment.

Language Support
The XL Pascal compiler supports two language levels:

Standard is the Pascal ANSI-83 standard definition.

VS includes selected IBM VS Pascal Release 1 and Release 2 extensions.

The Language Reference for IBM AIX XL Pascal Compiler/6000 gives a complete
description of the XL Pascal language and extensions to the ANSI-83 Standard Pascal
language.

Compiler Features
The XL Pascal compiler supports:

• Optimized object code
• VS Pascal and RT PC* VS Pascal compatibility (with some exceptions)
• Descriptive diagnostics
• Separate segment compilation
• Flexible command-line options
• Interlanguage communication among IBM AIX RISC System/6000 XL languages

Compiler Options
You can invoke the compiler with the xlp command and control its actions with the options
provided. The compiler sets the return code to indicate the completion status of the program
compilation, and also provides timing and resource usage data.

The compiler output listing has optional sections controlled by XL Pascal compiler options.
By default, XL Pascal produces no listing.

Symbolic Debugger (dbx)
With the XL Pascal compiler options, you can generate debug information tables compatible
with the AIX symbolic debugger, which is invoked with the command dbx.

Online Compiler Help
The xlp command with no arguments invokes online help that details available
command-line options.

Migration Characteristics
The XL Pascal compiler aids code migration by providing source code compatibility with
other compilers, but it does not provide object code compatibility with them.

• XL Pascal is source compatible with the following VS Pascal licensed programs, with
some exceptions as outlined in Appendix D, “Implementation Dependencies”:

– RT PC VS Pascal

– VS Pascal Release 1 and Release 2

10 XL Pascal User’s Guide

• The following symbol conventions may make your programs portable with VS mode:

– @ or –> instead of ^ for pointer references and declarations
– (* and *) or /* and */ instead of { and } for comments
– NOT instead of the tilde (~) character
– (. and.) instead of [and]
– <> instead of ~= for not equal

Compiler Modes
XL Pascal offers two modes for compiling programs: Standard mode and VS mode. The
LANGLVL compiler option sets the language mode. More than one mode is permitted in a
program, but each separate compilation unit must be in a single mode. Work in the mode
you need or the one you are most familiar with:

Standard Mode Uses only the ANSI-83 definition of Pascal. When you work in it, only
programs that satisfy the syntax of the ANSI-83 standard are
compiled.

VS Mode Is the default mode of the compiler. It allows you to compile code that
uses the IBM VS Pascal Release 1 definition of Pascal, with selected
features from VS Pascal Release 2.

Related Information
Invoking the compiler and using the compiler options are described in Chapter 3,
“Compiling, Linking, and Running Programs”. The format of the compiler output listing is
described in “Compiler Listings” on page 73. The AIX Version 3.2 Commands Reference
describes the dbx symbolic debugger.

Compiler Installation
You install the compiler using the AIX installp command while logged on with root authority.
The following list shows the files that are installed on the system and the source of the files:

• The xlpcmp.obj installp image contains:

/usr/lpp/xlp/lib/xlpentry
/usr/lpp/xlp/lib/README.xlp
/usr/lpp/xlp/lib/xlp_prime
/usr/lpp/xlp/lib/xlp_base_prime
/usr/lpp/xlp/lib/xlp.pas
/usr/lpp/xlp/lib/xlp_base.pas
/usr/bin/xlp
/usr/man/cat1/pascal
/usr/lpp/xlp/lib/default_msg/xlp00.cat
/usr/lpp/xlp/lib/default_msg/xlp01.cat
/usr/lpp/xlp/lib/default_msg/xlp03.cat
/usr/lpp/xlp/lib/default_msg/xlp.help

• The xlpcmpEn_US.msg installp image contains:

/usr/lib/nls/msg/En_US/xlp00.cat
/usr/lib/nls/msg/En_US/xlp01.cat
/usr/lib/nls/msg/En_US/xlp03.cat
/usr/lib/nls/msg/En_US/xlp.help

11Chapter 2. Features of the XL Pascal Compiler

• The xlprte.obj installp image contains:

/usr/lib/libxlp.a
/usr/lpp/xlprtemsg/xlp02.cat

• The xlprtemEn_US.msg installp image contains:

/usr/lib/nls/msg/En_US/xlp02.cat

Related Information
The AIX Version 3.2 Commands Reference describes the installp command. See the
Installation Instructions for IBM AIX XL Compiler/6000 for further information about installing
XL Pascal.

12 XL Pascal User’s Guide

13 Copyright IBM Corp. 1990, 1993 Chapter 3. Compiling, Linking, and Running Programs

Chapter 3. Compiling, Linking, and Running Programs

This chapter discusses the details of invoking the compiler, specifying the compiler options,
invoking the linkage editor, and running your compiled program. It also describes the IBM
AIX XL Pascal runtime environment.

Note: Before using the XL Pascal Compiler/6000, read the descriptions of the compiler
options to understand the correct operation of the compiler.

Invoking the XL Pascal Compiler
To compile an XL Pascal source program, use the xlp command.

Syntax

option
file

option file

xlp

Parameters
xlp is the command name.

option is a command line option. An option has one of the following forms:

–qoption some of these options take one or more parameters.

option_flag is usually a single letter preceded by an initial dash (–).

file is an input file to the compiler.

Description
The xlp command compiles the source files, links them with any specified object files in the
order on the command line, and then produces an executable file called a.out. To specify an
alternative name for this file, use the –o compiler option.

The following sequence of programs is run on each input file. Each program processes the
source file according to the suffix of the file name and then sends the results to the next step
in the sequence. No compiling is done if you list only object files after the xlp command.

1. The xlp command calls the compiler or the assembler:

– If the input file has a .pas suffix, it calls the compiler. The default suffix can be changed
with the psuffix attribute.

– If the input file has a .s suffix, it calls the assembler. The default suffix can be changed
with the ssuffix attribute.

2. If you did not specify the –c compiler option, the xlp command then calls the linkage
editor.

14 XL Pascal User’s Guide

Example
The command

xlp toplev.pas mappr.s seg1.pas seg2.o

has the following results:

• Files toplev.pas and seg1.pas are compiled by the compiler.

• File mappr.s is assembled by the assembler.

• The object (.o) files produced for toplev.pas, seg1.pas, and mappr.s, together with
object code file seg2.o, are sent to the linkage editor, which produces the executable file
a.out.

Related Information
The syntax of command line options is described in “Specifying Options on the Command
Line” on page 23. “Input Files to the xlp Command” on page 19 describes files and input file
suffixes. Detailed information about command line options and flags appears in “Compiler
Options” on page 22.

The XL Pascal Compilation Environment
Before you compile your Pascal programs, make sure that the environment variables and
the configuration file are set up to meet your needs.

Environment Variables for the Message Catalogs and Help Files
Before using the compiler, you must install the message catalogs and help files and set the
following two environment variables:

LANG Specifies the national language locale name in effect for message catalogs

and help files.

NLSPATH Specifies the full path name of message catalogs and help files.

You can set the LANG environment variable to any of the locales provided on the system.
See the AIX Version 3.2 System User’s Guide: Operating System and Devices manual for
more information on configuring the National Language environment.

The locale name En_US is the national language code for United States English. If the
appropriate message catalogs have been installed on your system, any other valid national
language code can be substituted for En_US.

To determine the current setting of the national language on your system, use the following
echo commands:

echo $LANG
echo $NLSPATH

These environment variables are initialized when the operating system is installed, and may
differ from the settings you want to use.

You use different commands to set the environment variables depending on the shell you
are in, the Korn shell (ksh), Bourne shell (bsh or sh), or C shell (csh). To determine the
current shell, use the echo command:

echo $SHELL

The Bourne shell path is /usr/bin/bsh or /usr/bin/sh. The Korn shell path is /usr/bin/ksh.
The C shell path is /usr/bin/csh.

15Chapter 3. Compiling, Linking, and Running Programs

Setting Environment Variables from the Korn Shell or Bourne Shell
To set environment variables from the Bourne shell or Korn shell, use the following
commands:

LANG=En_US

NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/prime/%N

export LANG NLSPATH

You can use the two special variables, %N and %L, in the NLSPATH environment variable.
The %N variable is the name of the catalog to be opened. The %L variable is the
locale-specific directory containing message catalogs. The current value of the
LC_MESSAGES locale category is used for the directory name.

To set the variables so that all users have access to them, add the commands to the file
/etc/profile. To set them for a specific user only, add the commands to the file .profile in the
user’s home directory. The environment variables are set each time the user logs on.

Setting Environment Variables from the C Shell
To set the environment variables from the C shell, use the following commands:

setenv LANG En_US

setenv NLSPATH /usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/prime/%N

In the C shell, you cannot set the environment variables so that all users have access to
them. To set them for a specific user only, add the commands to the file .cshrc in the user’s
home directory. The environment variables are set each time the user logs on.

Related Information
For more information about using environment variables, see the AIX Version 3.2 System
User’s Guide: Operating System and Devices manual. For more information about the AIX
national language facilities and setting NLSPATH and LANG, see the AIX Version 3.2
General Programming Concepts manual. For details about Korn shell commands and C
shell commands, see the AIX Version 3.2 Commands Reference.

The XL Pascal Configuration File
The configuration file specifies information that the compiler uses when you invoke it. A
configuration file consists of a series of stanzas, each of which consists of a label and a
series of attribute definitions. The XL Pascal compiler uses the attribute definitions in one
stanza of a configuration file.

The default configuration file used by XL Pascal is /etc/xlp.cfg, and the default stanza name
is the name by which the compiler is invoked.

To specify a different stanza name, link the XL Pascal compiler to a different command
name, as described in “Customizing Configuration File Stanzas” on page 17.

16 XL Pascal User’s Guide

Configuration File Attributes
The configuration file contains the following attributes:

as The path name to be used for the assembler.

asopt List of options that, if seen on the command line, are directed to the
assembler and not to the compiler. These flags override all normal
processing by XL Pascal and are directed to the assembler as specified in
the configuration file. The string is formatted for the AIX getopt() subroutine
as a concatenation of flag letters, with a letter followed by a colon (:) if the
corresponding flag takes a parameter.

crt The path name of the object file passed as the first parameter to the linkage
editor if you do not specify either the –p or –pg flag. The default is
/usr/lib/crt0.o.

gcrt The path name of the object file passed as the first parameter to the linkage
editor if you specify the –pg flag. The default is /usr/lib/gcrt0.o.

ld The absolute path name of the linkage editor.

ldopt List of options that, if seen on the command line, are directed to the linkage
editor and not to the compiler. These flags override all normal processing by
XL Pascal and are directed to the linkage editor as specified in the
configuration file. The string is formatted for the AIX getopt() subroutine as
a concatenation of flag letters, with a letter followed by a colon (:) if the
corresponding flag takes a parameter.

libraries Library options, separated by commas, that XL Pascal passes as the last
parameters to the linkage editor. This attribute specifies all the libraries the
linkage editor is to use at link-edit time for which a corresponding profiled
library does not exist. The default is –lxlp,–lm,–lc.

mcrt The path name of the object file passed as the first parameter to the linkage
editor if you specify the –p flag. The default is /usr/lib/mcrt0.o.

options A string of option flags, separated by commas, to be processed by XL
Pascal as if they are being entered on the command line.

osuffix The suffix for object files. The default is o. The suffix cannot be the source
code suffix for the XL Pascal language processor (pas).

proflibs Binder library options, separated by commas, that XL Pascal uses to pick
up profiled versions of the libraries when the linkage editor is called with
one of the profiling flags –p or –pg.

The default is –L/lib/profiled,–L/usr/lib/profiled.

psuffix The suffix for Pascal source programs. The default is pas.

ssuffix The suffix for assembler programs. The default is s.

use The values for attributes that are taken from the named stanza in addition to
the local stanza. For single-valued attributes, values in the use stanza apply
if no value is provided in the local, or default, stanza. For comma-separated
lists, the values from the use stanza are added to the values from the local
stanza.

17Chapter 3. Compiling, Linking, and Running Programs

xlp The path name to be used for the compiler. The default is
/usr/lpp/xlp/lib/xlpentry.

xlpopt List of options that, if encountered on the command line, are directed to the
compiler. These flags override all normal processing by XL Pascal and are
directed to the compiler as specified in the configuration file. The string is
formatted for the AIX getopt() subroutine as a concatenation of flag letters,
with a letter followed by a colon (:) if the corresponding flag takes a
parameter.

A Typical Configuration File
The configuration file in the following example contains the xlp stanza and the DEFLT
stanza. The xlp stanza is used by the XL Pascal compiler, and the DEFLT stanza
supplies default values for certain names.

* standard xlp compiler
xlp: use = DEFLT

* common definitions
* The ”proflibs2” stanza sets the search order to locate the
* profiling
* versions of libraries before locating the non-profiling versions
*
* This stanza is used for dynamically binding with libxlp.a. If
* the intention is to bind with libxlp.a statically,two additional
* options need to be specified: –bnso,–bimport:/lib/syscalls.exp
DEFLT: xlp = /usr/lpp/xlp/lib/xlpentry
 as = /bin/as
 crt = /lib/crt0.o
 mcrt = /lib/mcrt0.o
 gcrt = /lib/gcrt0.o
 ld = /bin/ld
 libraries = –lxlp,–lm,–lc
 proflibs = –L/lib/profiled,–L/usr/lib/profiled
 options = –T512,–H512,–qprime=xlp_prime,
–I/usr/lpp/xlp/lib,–bh:4

Customizing Configuration File Stanzas
Each stanza in a configuration file has a name. When an AIX program uses a configuration
file, it gets attributes from the configuration file stanza whose name is the same as the
program name. You can define versions of the XL Pascal compiler that have default
properties different from the basic XL Pascal compiler. To define your own Pascal
compilation environment, follow these steps:

1. Choose a name for your version of the compiler.

2. In the configuration file, insert a stanza with the same name as your compiler version
name.

3. Copy the xlp stanza from the default XL Pascal configuration file /etc/xlp.cfg into this
new stanza.

4. Change the new stanza to the properties you want for your version of the compiler.

5. Link your compiler version name to the xlp command using the AIX ln command:

 ln xlp_name new_name

18 XL Pascal User’s Guide

where

xlp_name is the path name of the xlp command. Installation of the XL Pascal
compiler usually puts this command in /usr/bin/xlp.

new_name is the path name of your version of the compiler.

Invoke your version of the compiler by using your compiler version name instead of the
xlp command.

Note: To specify a different configuration file, stanza name, or both, use the –F compiler
option, as described on page 29.

Example
Suppose you want command stdp to invoke the XL Pascal compiler with the default option
–qlanglvl=standard and with .pastd as the default suffix for Pascal source files. The steps
are outlined below.

1. Name this version of the compiler stdp.

2. Use the same default configuration file as for the xlp command, which is /etc/xlp.cfg.

3. Copy xlp.cfg to a directory under your home directory.

4. Copy the xlp: stanza into new stanza stdp:

5. In this new stanza, add the psuffix attribute set to pastd.

6. Copy the options attribute from the DEFLT stanza into the stdp stanza, and add
–qlanglvl=standard to the options attribute.

7. Change to the directory under your home directory where you have copied the new
xlp.cfg.

8. Use the following AIX command to put the new stdp command in /usr/bin, the same
directory as the xlp command:

ln /usr/bin/xlp ./stdp

9. To invoke the compiler with the stdp command, specify the full path or ./stdp, if you are
in the directory. You must also use the –F option with the path to the directory containing
your new xlp.cfg:

./stdp –F./xlp.cfg example.pastd

With this modified configuration file, you now use the stdp command to run the XL Pascal
compiler. The stdp command now treats files with the suffix .pastd as Pascal source files,
and always sets the option langlvl=standard.

19Chapter 3. Compiling, Linking, and Running Programs

The following example shows your customized configuration file:

* standard xlp compiler
xlp: use = DEFLT
* new stanza with different psuffix and –qlanglvl=standard
stdp: use = DEFLT
 psuffix = pastd
 options = –T512,–H512,–qprime=xlp_prime,
–I/usr/lpp/xlp/lib,–bh:4,–qlanglvl=standard

* common definitions
* The ”proflibs2” stanza sets the search order to locate the
* profiling versions of libraries before locating the
* non–profiling versions
*
* This stanza is used for dynamically binding with libxlp.a. If
* the intention is to bind with libxlp.a statically, two
* additional options need to be specified:
* –bnso,–bimport:/lib/syscalls.exp

DEFLT: xlp = /usr/lpp/xlp/lib/xlpentry
 as = /bin/as
 crt = /lib/crt0.o
 mcrt = /lib/mcrt0.o
 gcrt = /lib/gcrt0.o
 ld = /bin/ld
 libraries = –lxlp,–lm,–lc
 proflibs = –L/lib/profiled,–L/usr/lib/profiled
 options = –T512,–H512,–qprime=xlp_prime,
–I/usr/lpp/xlp/lib,–bh:4

Related Information
For more information about configuration files, see the AIX Version 3.2 General
Programming Concepts manual. For more information about the getopt subroutine and its
attributes, see the AIX Version 3.2 Technical Reference: Base Operating System and
Extensions manual. The as and ld commands are described in the AIX Version 3.2
Commands Reference. The –F compiler option is described on page 29. The –p and –pg
flags are described on page 30.

Input Files to the xlp Command
The kind of code to be processed determines the part of the system that is called by the xlp
command. The input files to xlp are as follows.

Pascal source files Have either the default suffix .pas, or the suffix specified by the
psuffix attribute in the configuration file.

The xlp command sends all Pascal source files with the suffix
.pas to the compiler in the order in which they appear. If it cannot
find the specified source files, XL Pascal produces an error
message, and the xlp command proceeds to the next file if one
exists.

20 XL Pascal User’s Guide

Assembler source files Have either the default suffix .s, or the suffix specified by the
ssuffix attribute in the configuration file.

The xlp command sends all assembler source files with the suffix
.s to the assembler (as).

Object code files Have either the default suffix .o, or the suffix specified by the
osuffix attribute in the configuration file.

After it compiles all the source files, the xlp command sends all
object code files, including those produced by the compiler and
assembler, to the linkage editor (ld). The input files are then
link-edited to produce a single executable output file.

Library Files (Archive) Have the suffix .a.

The xlp command sends all the library files (.a files) to the
linkage editor at link-edit time.

Note: Any files with unrecognized suffixes are sent to ld.

Output Files from the xlp Command
The output files produced by the xlp command include the following:

Executable files – a.out If you do not specify the –c compiler option, XL Pascal
produces an executable file in the current directory. Its
default name is a.out. To name the executable file explicitly,
use the compiler option flag –ofilename, where filename
must not have the XL Pascal language processor source
file suffix (pas).

If you specify –c, XL Pascal does not produce an
executable file.

Object files – filename.o If you specify the –c compiler option, the compiler produces
an object file for each of the .pas source files. It does not
produce an executable file. The object files have the same
prefix name as the source file, and appear in the current
directory.

If you do not specify the –c compiler option, XL Pascal
deletes the object files after calling the linkage editor (ld). If
you use –c, the object files remain.

Object files can have either the .o default suffix, or a suffix
specified by the osuffix attribute in the configuration file.

Listing files – filename.lst By default, no listing appears unless you request one or
more listing-related compiler options. The listing file has the
same file name as the source prefix, but with an extension
of .lst. Listing files are placed in the current directory.

Assembler files –filename.s If you specify the –S compiler option, the compiler produces
an object file for each of the .s source files. The object files
have the same prefix name as the source file, and appear
in the current directory.

21Chapter 3. Compiling, Linking, and Running Programs

Prime Files
An integral part of XL Pascal compiler operation, prime files contain precompiled
declarations in the internal table format of the compiler. The compiler uses a prime file to
initialize its internal tables before beginning compilation.

Using Prime Files
To use a prime file, specify its name in either a –qprime compiler option or a %OPTION
PRIME directive. The XL Pascal compiler initializes its internal tables from the prime file
before beginning compilation. The declarations from the prime file are placed in a scope
outside your program or segment, so they are accessible throughout your source file. Your
program can redefine any identifier supplied in a prime file.

XL Pascal uses a default prime file xlp_prime, which supplies the declarations for
predefined identifiers, such as constants (for example, MAXINT and MININT), and data
types (for example, BOOLEAN). This prime file also supplies declarations used by the
compiler for the runtime environment routines that support I/O, string manipulation, and
other functions. If you do not specify a –qprime or –qnoprime option, the default is
–qprime=xlp_prime.

Using a prime file is similar to using an %INCLUDE compiler directive but provides faster
compilation because the declarations in a prime file are precompiled. Prime files are useful
in large programming projects where it is necessary to use common type declarations and
external routine declarations in several program components.

You can use both a –qprime and a –qprimeout option in the same compilation. For
example, the following command creates a prime file named combo.prime combining all of
the declarations in the prime file commrout.prime with the declarations in file
commtypes.pas:

xlp commtypes.pas –qprime=commrout.prime –qprimeout=combo.prime

Note: Declarations in a prime file being created are at the same scope as any declarations
in a prime file it invokes. Therefore a prime file being created cannot redeclare any
identifiers from an invoked prime file.

Creating Prime Files
To create new prime files, specify either a –qprimeout compiler option or a %OPTION
PRIMEOUT directive. When you do this:

• Your source files can only contain declarations, with the exception of VAR declarations;
prime files cannot contain any executable code. They can contain %INCLUDE directives,
but not any PROGRAM or SEGMENT statements or executable routine bodies.

• The compiler generates a prime file instead of an object code file.

• The prime file you create contains all of the declarations introduced by the –qprime
option or the %OPTION PRIME option, together with the declarations in your source files.

• You cannot specify langlvl=standard when creating prime files.

22 XL Pascal User’s Guide

Example
The following source file newc.pas defines a new constant. This file does not contain any
executable code:

(* File newc.pas : define new constant ”newconst” *)
CONST newconst = 7; (* Define a new constant. *)

Compile newc.pas to create a prime file named newprime with the following command:

xlp newc.pas –qprimeout=newprime

This command uses the default –qprime=xlp_prime. The prime file it creates contains
everything in xlp_prime and your new declaration for newconst.

In the following example, file primdemo.pas contains a program that uses newconst:

(* File primdemo.pas to demonstrate ”–qprime...” option *)
PROGRAM primdemo(output);
BEGIN
 WRITELN(’newconst = ’,newconst)
END.

The following command compiles primdemo.pas using the new prime file:

xlp primdemo.pas –qprime=newprime

Prime Files Supplied with XL Pascal
Two prime files are supplied when you install XL Pascal:

xlp_prime contains declarations for most of the predefined Pascal identifiers and
for the routines in the XL Pascal library. This is the default prime file.

xlp_base_prime contains declarations for the minimum collection of predefined Pascal
identifiers needed by the compiler.

The source code for xlp_prime is in file xlp.pas and the source code for xlp_base_prime is
in file xlp_base.pas. To use –qprime=xlp_base_prime, you must also supply declarations
for all library routines called by the object code generated from your source files.

Compiler Options
With XL Pascal compiler options, you can change any default settings of the compiler. You
can specify compiler options in the source file or on the command line. Options specified on
the command line remain in effect for all compilation units in the file, unless the compiler
directive %OPTION overrides them. Command-line options can also appear in the
configuration file and remain in effect for all compilations unless the command-line or
compiler directive options override them.

If you specify no options, the compiler:

• Folds all source code (except string literals) to lowercase
• Sets margins at 1 and 256
• Uses configuration file /etc/xlp.cfg
• Generates DDNAMEs compatible with VS Pascal
• Uses prime file xlp_prime
• Sends object files directly to the linkage editor to produce the executable file a.out
• Does not produce source listing
• Writes all error messages to the standard error device
• Compiles in VS mode
• Produces warning messages

23Chapter 3. Compiling, Linking, and Running Programs

Specifying Options in the Source File
Use the %OPTION compiler directive in the source file to modify the options specified on the
command line, or to change the default setting temporarily if no command line options are in
effect.

Syntax

option%OPTION

;

Option:

option_keyword
parameter=

,

:

You can use either commas or blanks to separate options in the directive. Blanks are
permitted between punctuation marks, option keywords, and parameters.

If the parameter you specify for an option contains special characters, you can specify the
parameter as a string literal (delimited with single or double quotation marks).

Option settings designated with the %OPTION statement are effective only for the
compilation unit in which the statement appears.

Specifying Options on the Command Line
Use either –qoption or single-letter option flags to specify compiler options on the command
line. You can specify any command line option before or after file names.

For example:

xlp –qxref=full –c file.pas

is the same as

xlp file.pas –qxref=full –c

Command Line Options with the –q Flag

Syntax

–qoption

24 XL Pascal User’s Guide

Option:

option_keyword
parameter=

:

Option keywords can appear in either uppercase or lowercase, but the –q must be in
lowercase.

For example:

xlp –qsource file.pas

is the same as

xlp –qSOURCE file.pas

More than one –qoption can appear in the same command line, but the options must be
separated by blanks:

xlp file.pas –qstat –qattr=full –qalign

Some options take one or more parameters, which are indicated on the command line with
an equal sign following the –qoption. Multiple parameters are separated with colons (:). No
blanks can appear between punctuation marks and parameters, for example:

xlp –qhalt=W –qmargins=1:80 file.pas

Single or double quotation marks can enclose the options after the –q, but the opening and
the closing quotation marks must be the same type. Option keywords can appear in either
uppercase or lowercase, and either commas or blanks can separate options within the
quoted string.

For example, you can write:

xlp file.pas –qlanglvl=standard –qsource

as either

xlp file.pas –q”langlvl=standard source”

or

xlp file.pas –q”langlvl=standard,source”

Single Letter Flags
XL Pascal supports many conventional single-letter flags in common with the other XL
compilers, as well as flags directed to the AIX ld command. XL Pascal passes those flags to
the linkage editor. All single-letter flags are case sensitive.

You can type multiple flags that do not take arguments in one string. For example,
xlp –cv file.pas has the same effect as xlp –c –v file.pas.

Blanks must separate flags that take arguments. For example, the –o flag cannot run
together with other flags:

xlp –otest –cv test.pas

Note: Though it consists of two characters, the flag –pg is considered a single option. It
does not mean –p –g.

25Chapter 3. Compiling, Linking, and Running Programs

Summary of the Compiler Options
The following tables summarize the compiler options available in XL Pascal. You can enter
the options in the source code using the option directive, or on the command line using the
–q flags and single-letter flags.

The tables show:

• The syntax for the command line option in –qoption form, and the corresponding
single-letter flag, if applicable.

• The option syntax for the %OPTION command. The uppercase letters in the option
keyword represent its valid abbreviation. For example, ATTR is a valid abbreviation for
ATTRibutes. You can spell out in full any options that allow abbreviation.

• The default value of the option if you do not specify it on the command line, in an
%OPTION statement, or in the configuration file. This value is underlined.

• A brief description of the option’s effect during compilation.

• A page reference to a more detailed description of the option.

Options Describing the Input to the Compiler

Command–Line Option %OPTIONS Name Description Page

–Bprefix Constructs path names for substitute preprocessor,
compiler, assembler, or linkage editor programs by
adding prefix to the standard program names.

29

–Fconfig_file:stanza
–Fconfig_file

Names an alternative configuration file for xlp.

Default: –F/etc/xlp.cfg

29

–Idirectory Determines search path if file name in the INCLUDE
directive does not start with an absolute path.

Default: –I/usr/lpp/xlp/lib

30

–qmargins=left:right MARgins=left:right Compiles only source code inside the left and right
columns of the source line.

Default: –qmargins=1:256

36

–qdbcs
–qnodbcs

DBCS
NODBCS

Allows the compiler to accept DBCS characters in
literals and comments. This option is obsolete. The
preferred option is MBCS.

Default: –qnodbcs

32

–qmbcs
–qnombcs

MBCS
NOMBCS

Allows the compiler to accept MBCS characters in
literals and comments.

Default: –qnombcs

37

–qmixed
–qnomixed
–U

MIXED
NOMIXED

Specifies case sensitivity.

Default: –qnomixed

37

–tprograms Applies the –Bprefix to construct a file name for the
designated programs.

30

–Wprogram,flags Passes the listed flags to the designated program. 31

Related Information
Specifying an alternative configuration file is described in “Customizing Configuration File
Stanzas” on page 17.

26 XL Pascal User’s Guide

Options Describing the Compiler Object Code to Be Produced

Command–Line Option %OPTIONS Name Description Page

–g
–qnodbg

DBG
NODBG

Generates debug information for use by the
symbolic debug program.

Default: –qnodbg

32

–qarch=com
–qarch=pwr
–qarch=pwr2
–qarch=ppc
–qarch=pwrx

ARCH=COM
ARCH=PWR
ARCH=PWR2
ARCH=PPC
ARCH=PWRX

Specifies the architecture on which the executable
program is run.

Default: –qarch=com

31

–qcheck
–qnocheck

CHECK
NOCHECK

Specifies runtime error checking for the error
conditions controlled by the %CHECK directive.

Default: –qcheck

32

–qddname=unique
–qddname=compat

DDNAME Determines whether DDNAMEs are unique names
or compatible with VS Pascal.

Default: –qddname=compat

32

–qextchk
–qnoextchk

EXTCHK
NOEXTCHK

Specifies whether to check for type conflicts in
external name declarations.

Default: –qextchk

32

–qfloat=options FLOAT=options Specifies various floating-point options. Use this
form in your new applications.

Default: –qfloat=nohsflt:nohssngl:norndsngl:
maf:fold:norrm:nospnans:nonans:norsqrt

33

–qflttrap=options FLTTRAP=options Generates extra instructions to detect and trap
floating–point exceptions.

34

–qfold
–qnofold

FOLD
NOFOLD

Specifies whether constant floating–point
expressions are to be evaluated at compile time.
This option is obsolete.

Default: –qfold

35

–qfpret=std
–qfpret=return
–qfpret=fast

FPRET=options Sets levels of conformance with conventions for
floating-point values returned from functions.

Default: –qfpret=fast

35

–qlanglvl=vs
–qlanglvl=standard
–qlanglvl=std

LANGLVL Determines which XL Pascal language mode is
used.

Default: –qlanglvl=vs

36

–qlog
–qnolog

LOG
NOLOG

Requests logging and reporting of floating-point
exceptions.

Default: –qnolog

36

–qmaf
–qnomaf

MAF
NOMAF

Specifies whether the compiler is to generate
floating–point multiply–add instructions.

Default: –qmaf

36

–qmaxmem=num
–qnomaxmem

MAXMEM=num
NOMAXMEM

Limits the amount of memory used for local tables of
memory-intensive optimizations to num kilobytes.

Default: –qmaxmem=2048

36

–qopt=0
–qopt=2
–qopt=3
–O
–O2
–O3

OPT=0
OPT=2
OPT=3

Specifies object code optimization during
compilation.

Default: –qopt=0

37

27Chapter 3. Compiling, Linking, and Running Programs

Command–Line Option PageDescription%OPTIONS Name

–qprime=file
–qnoprime

PRIME=file
NOPRIME

Requests that file be used as the prime file.

Default: –qprime=xlp_prime

37

–qprimeout=file
–qnoprimeout

PRIMEOUT=file
NOPRIMEOUT

Creates file as a prime file.

Default: –qnoprimeout

38

–qptr4
–qnoptr4

PTR4
NOPTR4

Specifies that POINTER data types occupy 4 bytes.

Default: –qnoptr4

38

–qrrm
–qnorrm

RRM
NORRM

Prevents floating-point optimizations that are
incompatible with runtime rounding modes Plus
Infinity and Minus Infinity.

Default: –qnorrm

38

–qspill=n SPILL=n Sets the register allocation spill area as n bytes.

Default: –qspill=512

38

–qtraceid
–qnotraceid

TRACEID
NOTRACEID

Requests that routine names be included in
traceback tables so the TRACE procedure can
display routine names.

Default: –qnotraceid

39

–qxflag=dd24 Generates floating-point no-op instructions to cause
detection of overflow in rounding floating-point
intermediate results to single precision.

38

–yn
–ym
–yp
–yz

IEEE=mode
IEEE=mode:comply

Controls the handling of floating-point arithmetic
during compilation.

Default: –yn

36

Related Information
The %CHECK directive is described in the Language Reference for IBM AIX XL Pascal
Compiler/6000. See “Enforcement of Type Matching” on page 104 for information about
using NOEXTCHK in interlanguage calls. Some of the optimizations performed by XL
Pascal are described in Chapter 5, “Performance Considerations”. Using prime files is
described in “Prime Files” on page 21.

Options Describing the Compiler Output

Command–Line Option %OPTIONS Name Description Page

–c Prevents the completed object file from being sent to
the AIX ld command for link-editing.

29

–qattr
–qattr=full
–qnoattr

ATTR
ATTR=FULL
NOATTR

Requests an attribute listing.

Default: –qnoattr

31

–qflag=sev1:sev2 FLAG=sev1:sev2 Sets minimum severity level at which diagnostic
messages are reported.

Default: –qflag=w:w

33

–qhalt=sev HALT=sev Stops compilation at any compilation phase that
encounters an error of specified severity or greater.

Default: –qhalt=s

35

–qlist
–qnolist

LIST
NOLIST

Requests an object listing.

Default: –qnolist

36

28 XL Pascal User’s Guide

Command–Line Option PageDescription%OPTIONS Name

–qoption
–qnooption

OPTIONs
NOOPTIONs

Specifies that the settings of all options in effect
during compilation are to be displayed in the listing.

Default: –qnooption

37

–qquiet
–qnoquiet

QUIET
NOQUIET

Specifies that no compilation phase timings be
shown at the terminal.

Default: –qquiet

38

–qsource
–qnosource

SOURCE
NOSOURCE

Requests a source listing.

Default: –qnosource

38

–qtune=PPC601
–qtune=PPC
–qtune=PWR
–qtune=PWR2
–qtune=PWRX

TUNE=option Specifies the architecture system for which the
executable program is optimized.

The default depends on the architecture.

39

–qxref
–qxref=full
–qnoxref

XREF
XREF=FULL
NOXREF

Requests a cross-reference listing.

Default: –qnoxref

40

–qwrite
–qnowrite

WRITE
NOWRITE

Enables the %WRITE compiler directive to produce
output to the terminal.

Default: –qnowrite

40

–S Generates an assembler file (.s) for each source file. 30

Options Used for Debugging Programs

Command–Line Option %OPTIONS Name Description Page

–# Displays information about the progress of the
compilation, without actually invoking the individual
components.

29

–p
–pg

Sets up the object file for profiling. 30

–v Instructs the compiler to generate information on the
progress of the compilation.

30

Related Information
For more information on options used for debugging, refer to the DBG option on page 32,
the FLAG option on page 33, and the HALT option on page 35.

Using the ld, prof, and gprof commands for profiling is described in the AIX Version 3.2
Commands Reference.

Options Used for the Linkage Editor
Because the following are ld options, any conflicts are handled by the ld command.

Command–Line Option %OPTIONS Name Description Page

–lkey Searches the specified library file specified by
libkey.a.

30

–Ldir Searches dir for library files specified by the –lkey
option.

30

–oname Specifies a name for the object module.

Default: a.out

30

29Chapter 3. Compiling, Linking, and Running Programs

Options Used for Performance Optimization

Command–Line Option %OPTIONS Name Description Page

–qcompact
–qnocompact

COMPACT
NOCOMPACT

Reduces optimizations that increase code size.

Default: –qnocompact

32

–qstrict
–qnostrict

STRICT
NOSTRICT

Ensures that optimizations performed by the OPT=3
option do not alter the semantics of the program.

Default: –qnostrict

38

Miscellaneous Options

Command–Line Option %OPTIONS Name Description Page

–qwait=num
–qnowait

Specifies the maximum wait time in num seconds for
a network license token.

Default: –qnowait

39

Detailed Descriptions of the Compiler Options
You can type the compiler options in the source code using an option directive, or on the
command line using the –q flags and the single-letter flags.

Except for the FLAG option, if you set an option more than once in the configuration file, on
the command line, or in your source, the option that you specify last controls the compiler. If
FLAG options conflict, the option you set first takes precedence. The –I option takes
exception to both of these rules; it has a cumulative effect, building a list of directory paths
that are searched in the order in which they are specified.

Unless otherwise indicated, you can set or reset an option no later than the program prefix,
that is, before the first real source language statement. You can set some options only in the
command line; you can specify others anywhere in the command line or the source
program. These are indicated in the descriptions that follow.

Compiler options that have no parameters represent on/off functions. For example, to turn
on option –qLIST, you specify –qLIST. To turn it off, you specify –qNOLIST.

Note: Before using the XL Pascal Compiler/6000, read the descriptions of the compiler
options to understand its correct operation and limitations.

–# Displays information about the progress of the compilation, without actually
invoking the individual components.

–Bprefix Constructs path names for substitute compiler, assembler, or linkage editor
programs. The prefix defines part of a path name to the new programs. To
form the complete path name for each program, xlp adds prefix to the
standard program names. The standard program names for the compiler,
assembler, and linkage editor are xlpentry, as, and ld, respectively.

–c Prevents the completed object file from being sent to the AIX ld command
for link-editing. With this flag, the output is an object code file (.o) for each
source file.

–Fconfig_file | –Fconfig_file:stanza | –F/etc/xlp.cfg
Specifies an alternative configuration file. The configuration file specifies the
location of various files required by the compiler. Default configuration file
/etc/xlp.cfg is supplied at installation time.

30 XL Pascal User’s Guide

–Idir | –I/usr/lpp/xlp/lib
Specifies the search path if the file name in the INCLUDE statement does
not start with an absolute path (/). The argument dir must be a valid path
name (for example, /home/dir or /tmp or ./subdir). The compiler appends a
right slash (/) to the argument dir, and then concatenates it to the file name
before making a search. If more than one –I option is specified in the
command line, directories are searched in the order that the –I options
occur.

–Ldir Looks in dir for files specified by the –l keys. Because this is an ld option,
any conflicts are handled by the ld command.

–lkey Searches the specified library file, where key selects the file libkey.a.
Because this is an ld option, any conflicts are handled by the ld command.

–oname | a.out
Specifies a name for the object module. A name with the XL Pascal source
file suffix (pas), such as file.pas, causes an error. Because this is an ld
option, any conflicts are handled by the ld command.

 –p | –pg Sets up the object file for profiling, where:

–p Prepares the program so that the AIX prof command can generate
a runtime profile. The compiler produces code that counts the
number of times each routine is called.

If programs are sent to ld, the compiler replaces the startup routine
with one that calls the monitor subroutine at the start and writes a
mon.out file when the program ends normally.

–pg Like –p, but invokes a runtime recording mechanism that keeps
more extensive statistics and produces a gmon.out file when the
program ends normally. Use the gprof command to generate a
runtime profile.

–S Generates an assembler file (.s) for each source file, as opposed to the
executable file that is generated when this option is not specified. You can
assemble the resulting .s files to produce object files (.o) or an executable
file (a.out).

You can use the –o option to specify the name of the file produced only if no
more than one source file is supplied. For example, the following is not
valid:

xlp myprogram1.s myprogram2.s –oyourname.s –S

For more information about .s files, refer to the AIX Version 3.2 Assembler
Language Reference.

–tprogram1 program2 programn

Applies the –B flag instructions for constructing a file name for the
designated path names, where program is:

c compiler

a assembler

l linkage editor

–v Instructs the compiler to generate information on the progress of the
compilation.

31Chapter 3. Compiling, Linking, and Running Programs

–Wprogram1,flag,flag2, . . . flagn

Assigns the listed flags to the compiler program, where program is:

c compiler

a assembler

l linkage editor

ARCH | –qarch=option
Specifies the architecture on which the executable program is run. You can
specify the architecture using the following values of option:

COM Produces an object that contains instructions that run on all
the POWER, PowerPC*, and POWER2* hardware
platforms.

PPC Produces an object that contains instructions that run on
any of the 32-bit PowerPC hardware platforms.

PWR Produces an object that contains instructions that run on
any of the POWER hardware platforms.

PWR2/PWRX Produces an object that contains instructions that run on
the POWER2 hardware platforms.

The default is –qarch=com.

You can use the –qarch=option option with the –qtune=option. The
–qarch=option option specifies the architecture for which the instructions
are to be generated, and the –qtune=option option specifies the target
platform for which the code is optimized. The following table summarizes
the valid combinations of –qarch=option and –qtune=option.

–qarch option Valid –qtune options Default

COM PWR, PWR2/PWRX, PPC601 PWR

PWR PWR, PWR2/PWRX, PPC601 PWR

PWR2/PWRX PWR2/PWRX PWR2/PWRX

PPC PPC601 PPC601

Note: PWRX is interchangeable with PWR2. However, PWR2 is preferred.

Use –qarch=com (the default) if you want your program to be widely
distributable.

If you want maximum performance on a specific architecture and will not be
using the program on other architectures, use the appropriate architecture
option.

ATTR | NOATTR | ATTR=FULL | –qattr | –qnoattr | –qattr=full
Requests an attribute list consisting of all referenced objects and their
attributes, giving the type and size of identifiers. If you specify ATTR
without a parameter, the compiler reports only identifiers that are actually
referenced. If you specify ATTR=FULL, the compiler reports all identifiers,
even if they are not referenced.

32 XL Pascal User’s Guide

CHECK | NOCHECK | –qcheck | –qnocheck
Specifies runtime error checking for the error conditions controlled by the
%CHECK directive. The CHECK option lets you use %CHECK directives in
your source code to turn checking for different conditions on and off.

NOCHECK specifies that no error conditions are checked, and tells the
compiler to ignore any %CHECK directives in your source code.

You can use the CHECK and NOCHECK options together with %CHECK
directives in your source code to control runtime checking selectively:

• %OPTION CHECK turns on all checking.

• From one %OPTION CHECK to the next %OPTION NOCHECK, you
can use %CHECK directives to turn specific checking on or off.

• From one %OPTION NOCHECK to the next %OPTION CHECK, no
checking is done, and the compiler ignores all %CHECK directives.

COMPACT | NOCOMPACT | –qcompact | –qnocompact
Reduces optimizations that increase code size. Some performance
optimization techniques also make the program larger. Use the –qcompact
option to reduce the expansion if your system has limited storage.
Optimization options will still work with –qcompact in effect.

DBCS | NODBCS | –qdbcs | –qnodbcs
Allows the compiler to accept DBCS characters in literals and comments. If
double-byte characters appear when the option is off, syntax errors are
likely. This option is obsolete. Please use the MBCS option in your new
applications.

DBG | NODBG | –g | –qnodbg
Generates information required by the symbolic debugger to access
variables in the object program by name. NODBG allows only limited
debugger functions.

DDNAME=options | –qddname=unique | –qddname=compat
Determines whether DDNAMEs are unique names or compatible with VS
Pascal, where:

UNIQUE Generates a unique DDNAME. This is the default for
Standard mode.

COMPAT Generates a DDNAME compatible with VS Pascal. This is
the default for VS mode.

For more information about DDNAME, refer to “File Name Association” on
page 66.

EXTCHK | NOEXTCHK | –qextchk | –qnoextchk
Specifies whether to check for type conflicts in external name declarations.
If you specify EXTCHK, the linkage editor will check external name
declarations for type conflicts with the declarations of those names in other
program or segment units. If you specify NOEXTCHK, the linkage editor will
not check the declarations of external names. You can specify this option
anywhere in the command line or the source file.

33Chapter 3. Compiling, Linking, and Running Programs

FLAG=sev1:sev2 | FLAG=W:W | –qflag=sev1:sev2
Specifies the minimum severity level of diagnostic messages to be reported,
where:

sev1 No messages less than this level reported in listing

sev2 No messages less than this level displayed on terminal.

The message severities sev1 and sev2 can have the following values:

W Warning messages

E Error messages

S Severe error messages

Q Do not report any messages

The compiler reports messages of the specified severity level or higher. In
case of conflicting options, the last option specified takes effect.

FLOAT=options | –qfloat=opt1:opt2:...:optn
Specifies floating-point options that are to be in effect. Use this format in
your new applications. The default setting is:

FLOAT(FOLD, NOHSFLT, NOHSSNGL, MAF, NONANS, NORNDSNGL, NORRM,

NORSQRT, NOSPNANS).

The available suboptions (opt1, opt2,...,optn) are:

FOLD Specifies that constant floating-point expressions are to be
evaluated at compile time. This is the default setting for the
FOLD/NOFOLD suboption pair.

HSFLT Specifies that single-precision expressions are not to be
rounded and that floating-point-to-integer conversions are
performed without range checking.

Note: The HSFLT option is for specific applications in
which floating-point computations have known
characteristics. If you use this option when
compiling other application programs, it may
produce incorrect results without warning.

HSSNGL Specifies that single-precision expressions be rounded only
when the results are stored in SHORTREAL memory
locations.

MAF Specifies whether or not the compiler produces
multiply-add instructions. Multiply-add instructions may
affect the precision of floating-point intermediate results,
giving better performance and better accuracy. This is the
default setting for the MAF/NOMAF suboption pair.

NANS Detects runtime operations involving signaling NaNs so that
you can use –qflttrap=inv:en to deal with exception
conditions involving signaling NaNs. Use this suboption
only if your program explicitly creates NaNs values.

RNDSNGL Specifies that the result of each single-precision operation
be rounded to single-precision.

34 XL Pascal User’s Guide

RRM Specifies the runtime rounding mode. This option is used if
the runtime rounding mode is rounded to +infinity, –infinity,
or is not known.

RSQRT Specifies whether a sequence of code that contains division
by the result of a square root can be replaced by calculating
the reciprocal of the square root and multiplying. This
produces code that executes faster.

SPNANS Specifies that conversion of single-precision NaNs to
double-precision is to be detected.

NOFOLD Specifies that the preceding FOLD suboption not be done.

NOHSFLT Specifies that single-precision expressions be rounded after
expression evaluation, and that floating-point-to-integer
conversions are checked for out-of-range values. This
suboption is the default setting for the HSFLT/NOHSFLT
suboption pair.

NOHSSNGL Specifies that single-precision expressions be rounded after
expression evaluation. This suboption is the default setting
for the HSSNGL/NOHSSNGL suboption pair.

NOMAF Specifies that the preceding MAF suboption not be done.

NONANS Specifies not to do the NANS suboption above.

NORNDSNGL Specifies that single-precision expressions be rounded only
after full expressions have been evaluated. This suboption
is the default setting for the RNDSNGL/NORNDSNGL
suboption pair.

NORRM Specifies not to do runtime rounding as described in the
RRM suboption above. This suboption is the default setting
for the RRM/NORRM suboption pair.

NORSQRT Specifies that a sequence of code that involves division by
the result of a square root is not to be replaced by
calculating the reciprocal of the square root and multiplying.
This suboption is the default setting for the
RSQRT/NORSQRT suboption pair.

NOSPNANS Specifies that SPNANS conversion need not be detected.
This suboption is the default setting for the
SPNANS/NOSPNANS suboption pair.

FLTTRAP=options | –qflttrap=opt1:opt2:...:optn
Generates extra instructions to detect and trap floating-point exceptions.

The flttrap option has the following suboptions:

OVerflow Generates code to detect and trap floating-point overflow
when enabled.

UNDerflow Generates code to detect and trap floating-point underflow
when enabled.

ZEROdivide Generates code to detect and trap floating-point division by
zero when enabled.

INValid Generates code to detect and trap floating-point invalid
operation exceptions when enabled.

35Chapter 3. Compiling, Linking, and Running Programs

INEXact Generates code to detect and trap floating-point inexact
exceptions when enabled.

ENable Enables the specified exceptions in the prologue of the
main program.

IMPrecise Generates code for imprecise detection of the specified
exceptions. If an exception occurs, it is detected, but the
exact location of the exception is not determined.

Specifying the flttrap option only once with no suboptions is equivalent to
setting:

–qflttrap=ov:und:zero:inv:inex.

The exceptions are not automatically enabled and all floating-point
operations are checked to provide precise exception-location information.

FOLD | NOFOLD | –qfold | –qnofold
Specifies whether constant floating-point expressions are to be evaluated at
compile time. This option is obsolete. Use –qfloat=fold in your new
applications.

FPRET=options | –qfpret=std | –qfpret=return | –qfpret=fast
Sets levels of conformance with conventions for floating-point values
returned from functions, where:

STD Full conformance. Functions return floating-point results
both in the general-purpose registers and the floating-point
registers. The compiler always expects floating-point results
in both these registers.

RETURN Partial conformance. Functions return floating-point results
both in the general-purpose registers and the floating-point
registers, but the compiler uses them only in floating-point
registers.

FAST No conformance. Functions return floating-point results only
in floating-point registers, and the compiler expects them in
floating-point registers. This parameter improves
performance.

HALT=sev | HALT=S | –qhalt=sev
Stops the compiler after any compilation phase in which the maximum
severity of messages encountered equals or exceeds the specified severity.
In case of conflicting options, the smallest value takes effect.

The message severity is specified as one of:

W Warning messages

E Error messages

S Severe error messages

U Unrecoverable error messages.

To get a syntax check, use HALT=W.

36 XL Pascal User’s Guide

IEEE=mode | IEEE=mode:comply | IEEE=NEAR:Nocomply | –yn | –ym | –yp | –yz
Controls the handling of floating-point arithmetic during compilation. The
first parameter specifies the rounding mode, and the second specifies
whether to round intermediate results to single precision. Compliance
causes all intermediate results to be rounded to single precision, which is
less efficient.

Rounding mode can have the following values:

NEAR | –yn Round to nearest whole number.

MINUS | –ym Round toward minus infinity.

PLUS | –yp Round toward plus infinity.

ZERO | –yz Round toward zero.

The intermediate rounding option has two values:

Comply Round intermediate results to single precision

Nocomply Allow intermediate results to be double precision.

The –y flags set only rounding mode, not intermediate rounding.

LANGLVL=options | –qlanglvl=vs | –qlanglvl=standard | –qlanglvl=std
Determines which XL Pascal language mode is used. DIALECT and
IBMSET are synonyms for LANGLVL. Language mode has two values:

VS Accepts the IBM VS Pascal language dialect. The
parameter IBM is a synonym for the VS parameter.

STANDard Accepts the ANSI-83 Standard Pascal language dialect.
The parameter STD is a synonym for the parameter
STANDard.

LIST | NOLIST | –qlist | –qnolist
Requests an object listing. You can specify this option anywhere in the
command line or the source file.

LOG | NOLOG | –qlog | –qnolog
Requests logging and reporting of floating-point exception and the routine in
which it occurred.

MAF | NOMAF | –qmaf | –qnomaf
Specifies whether the compiler is to generate multiply-add instructions,
which may affect the precision of floating-point intermediate results. This
option is obsolete. Use –qfloat=maf in your new applications.

MARgins=left:right | MARgins = 1:256 | –qmargins=left:right
Compiles only source code inside the left and right columns of the source
line. The default is 1:256. This option can be specified anywhere in the
command line or the source file.

MAXMEM=num | MAXMEM=2048 | NOMAXMEM | –qmaxmem=num | –qnomaxmem
Limits the amount of memory used for local tables of specific,
memory-intensive optimizations to num kilobytes. If that memory is
insufficient for a particular optimization, the quality of the optimization is
reduced. The –qnomaxmen option permits each optimization to take as
much memory as it needs without checking for limits. Depending on the
source file being compiled, the size of subprograms in the source, the
machine configuration, and the workload on the system, this might exceed
available paging space. The default is maxmem=2048.

37Chapter 3. Compiling, Linking, and Running Programs

Notes:

1. The limit set by maxmem is the amount of memory for specific
optimization phases, and not for the compiler as a whole. Tables
required during entire compilation process are not affected.

2. Setting a large limit has no negative effect on the compilation of
source files where the compiler needs less memory.

3. The num value must be non-negative.

MBCS | NOMBCS | –qmbcs | –qnombcs
Allows the compiler to accept MBCS characters in literals and comments. If
multibyte characters appear when the option is off, syntax errors are likely.

MIXED | NOMIXED | –U | –qmixed | –qnomixed
Specifies the case sensitivity. If MIXED is specified, the source is not folded
to lowercase. NOMIXED does fold it to lowercase. Reserved words can be
in any case.

OPT=0 | OPT=2 | OPT=3 | –O | –O2 | –O3 | –qopt=0
Specifies object code optimization during compilation, where:

OPT=0 is default object code generation

OPT=2 performs extensive object code optimization.

OPT=3 performs additional optimizations that are memory intensive,
compile-time intensive, and may change the semantics of the
program. These optimizations are recommended when the
desire for runtime speed improvements outweighs the concern
for limiting compile-time resources.

This level of optimization also affects the setting the –qfloat
option, turning on the RSQRT suboption by default.

The STRICT option on page 38 shows how to turn off the effects
of OPT=3 that may change the semantics of a program.

Notes:

1. Increasing the optimization level may or may not result in additional
performance improvements, depending on whether the additional
analysis detects any further optimization opportunities.

2. Compilations with optimizations may require more time and machine
resources than other compilations.

3. The more the compiler optimizes a program, the more difficult it is to
debug the program with a symbolic debugger.

OPTIONs | NOOPTIONs | –qoption| –qnooption
Specifies that the settings of all options in effect during compilation are to be
displayed in the listing. An abbreviated list of options is always shown.

PRIME=file | PRIME=xlp_prime |NOPRIME| –qprime=file | –qnoprime
Requests that file be used as the prime file. The default prime file is
xlp_prime. This option can be specified anywhere in the command line.
You can also specify PRIME in the source file, but only in a %OPTION
directive before all other statements in the compilation unit.

38 XL Pascal User’s Guide

PRIMEOUT=file | NOPRIMEOUT | –qprimeout=file | –qnoprimeout
Creates file as a prime file. This prime file includes the declarations
provided in the current source and can be used for later compilations. This
option must be specified in the program prefix of the source file. Please
note that the linkage editor is invoked if the PRIMEOUT option is specified
in the source file, unless the –c option was specified on the command line;
the linkage editor is not invoked when –qprimeout is specified on the
command line.

PTR4 | NOPTR4 | –qptr4 | –qnoptr4
Specifies that POINTER data types occupy 4 bytes, containing address
information only. Use this option for interlanguage calls where you require
4-byte pointers.

QUIET | NOQUIET | –qquiet | –qnoquiet
Specifies that no compilation phase timings be shown at the terminal.
NOQUIET displays the timing of each compilation phase. The timing of the
following compilation phases is displayed:

• Syntax checking
• Code generation
• Optimization
• Register allocation
• Object generation

–qxflag=dd24
Generates floating-point no-op instructions to cause detection of overflow in
rounding floating-point intermediate results to single precision. See
Appendix F, “Single Precision Floating Point Overflow” for more information.

RRM | NORRM | –qrrm | –qnorrm
Prevents floating-point optimizations that are incompatible with runtime
rounding modes Plus Infinity and Minus Infinity. The default is NORRM,
which generates code that is compatible with runtime rounding modes
Nearest and Zero. This option is obsolete. Use –qfloat=rrm in your new
applications.

SOURCE | NOSOURCE | –qsource |–qnosource
Requests a source listing. You can specify this option anywhere in the
command line or the source file.

SPILLsize=n | SPILL=512 | –qspill=n
Sets the spill area size equal to n. The spill area is a storage area used to
save the contents of registers. The default is 512.

STRICT | NOSTRICT | –qstrict | –qnostrict
Ensures that optimizations performed by the OPT=3 option do not alter the
semantics of a program. By default, OPT=3 optimizations may rearrange
calculations and exception-producing code so that results or exceptions are
different than in unoptimized programs.

This option is intended for rare situations where the changes in program
execution produce different results from unoptimized programs.

The –qnostrict option is only valid with the OPT=3 option.

39Chapter 3. Compiling, Linking, and Running Programs

With OPT=3 in effect, the following optimizations are turned on unless
STRICT is also specified:

• Code that may cause an exception may be rearranged. The
corresponding exception might happen at a different point in
execution, or might not occur at all. The compiler minimizes such
situations.

• Floating-point operations may not preserve the sign of a zero value. In
order to make certain that this sign is preserved, you also need to
specify either –qfloat=rrm or –qfloat=nomaf.

• Floating-point expressions may be reassociated. For example,
(2.0*3.1)*4.2 might become 2.0*(3.1*4.2) if the latter were faster, even
though the result is not identical.

• The RSQRT suboption of the FLOAT option is turned on.

TRACEID | NOTRACEID | –qtraceid | –qnotraceid
TRACEID includes routine names in traceback tables so the TRACE
procedure can display routine names. NOTRACEID removes routine names
from traceback tables. With NOTRACEID the display produced by the
TRACE procedure does not contain routine names.

TUNE | –qtune=option
Specifies the architecture system for which the executable program is
optimized. You can specify the architecture using the following values of
option:

PPC601 Produces an object optimized for all the PowerPC601
processors

PPC Produces an object optimized for the 32-bit PowerPC
hardware platforms

PWR Produces an object optimized for the POWER hardware
platforms

PWR2/PWRX Produces an object optimized for the POWER2 Power
hardware platforms

You can use –qtune=option with –qarch=option. –qarch=option specifies
the architecture for which the instructions are to be generated, and
–qtune=option specifies the target platform for which the code is optimized.
The following table summarizes the valid combinations of –qarch=option
and –qtune=option:

–qarch option Valid –qtune options Default

COM PWR, PWR2/PWRX, PPC601 PWR

PWR PWR, PWR2/PWRX, PPC601 PWR

PWR2/PWRX PWR2/PWRX PWR2/PWRX

PPC PPC601 PPC601

WAIT=num | NOWAIT | –qwait=num | –qnowait
WAIT specifies the maximum wait time in num seconds for a network
license token. NOWAIT specifies indefinite wait time.

40 XL Pascal User’s Guide

WRITE | NOWRITE | –qwrite | –qnowrite
Enables the %WRITE compiler directive to produce output to the terminal.
You can specify this option anywhere on the command line or in the source
file.

XREF | NOXREF | XREF=FULL| –qxref | –qnoxref | –qxref=full
Requests a cross-reference listing. If you specify XREF with no parameter,
the compiler reports only the identifiers actually used and their line
numbers. If you specify XREF=FULL, the compiler reports all identifiers that
appear in the program, whether they are used or not. You can specify this
option anywhere in the command line or the source file.

Invoking the Linkage Editor
You can start the compiler without the –c option. The XL Pascal compiles the source
program and calls the linkage editor program. The names of all object files created by the
compiler are passed to the linkage editor along with any object files specified with the xlp
command. The compiler also passes to the linkage editor the names of the libraries needed
for the programs.

If you specify –c as a compiler option, XL Pascal only compiles the source program and
creates object files. To link edit object files as a separate step, invoke the linkage editor
explicitly with the AIX ld command, or issue the xlp command a second time without the –c
or –S options, specifying the desired object file (.o) names.

Example
The following command invokes XL Pascal to compile p1.pas into an object module
p1.o:

xlp p1.pas p2.o p3.o

Because the –c option is not specified in this command, the compiler invokes the linkage
editor with object files p1.o, p2.o, and p3.o, and the libraries of runtime routines
specified in the xlp.cfg file.

If you specify no .pas files, XL Pascal performs no compilation, but passes libraries and any
.o files specified to the linkage editor to create an object program.

The .o file from a compilation is normally removed from the system after it passes to the
linkage editor. Any .o files named in the xlp command but not produced during the current
invocation are retained. In the preceding example, files p2.o and p3.o are retained, but
p1.o is removed. If you specify the –c option, newly created .o files are also retained
because –c prevents the linkage editor from being invoked. For example:

xlp p2.pas –c

creates p2.o;

xlp p3.pas –c

creates p3.o;

xlp p1.pas –c

creates p1.o, and

xlp p1.o p2.o p3.o –oprog

creates the file prog using p1.o, p2.o, p3.o, and the libraries.

41Chapter 3. Compiling, Linking, and Running Programs

Static Linking
In statically linked programs, all code is in a single executable module. Library references
are more efficient because the library procedures are statically linked into the program.
Static linking increases the file size of your program, and it may increase the code size in
memory if other applications, or other copies of your application, are being run on the
system.

You can use the command line option –bnso –bI:/lib/syscalls.exp when you
compile your programs to create statically linked object files. This option forces the linker to
place the library procedures that your program references into the program’s object file. The
file /lib/syscalls.exp contains the names of system routines that must be imported to your
program from the system. This file must be specified for static linking.

Related Information
The ld command and linkage editor flags are described in the AIX Version 3.2 Commands
Reference.

Running a Program
To run a program, enter the path name and file name of the executable object file, and any
runtime options on the command line. If the –oname compiler option is specified, the file
name is name. The default file name is a.out.

The XL Pascal Runtime Environment
Object code produced by the XL Pascal compiler may call several runtime routines. The XL
Pascal runtime environment includes a library of runtime routines and also facilities for
producing runtime diagnostic messages in the national language appropriate for your
system. Normally, you cannot run object code produced by the XL Pascal compiler without
the runtime environment.

External Names in the Runtime Environment
Runtime routines are collected into libraries. When you use the xlp command without the –c
or –S options, the compiler invokes the linkage editor and gives it the names of the libraries
that contain runtime routines called by Pascal object code.

The names of these runtime routines are external symbols. When object code produced by
the XL Pascal compiler calls a runtime routine, the .o object code file contains an external
symbol reference to the name of the routine. A library contains an external symbol definition
for the routine. The linkage editor resolves the runtime routine call with the routine definition.

Avoiding the Use of Runtime Routine Names
You should avoid using external names in your XL Pascal program that conflict with names
of runtime routines. Conflict arises under two conditions:

• The name of an EXTERNAL routine has the same name as a runtime routine.

• The Pascal program calls an EXTERNAL routine with the same name as a runtime
routine but does not supply a definition for the routine.

42 XL Pascal User’s Guide

If you define an EXTERNAL routine with the same name as a runtime routine, your
definition of that name may be used in place of the runtime routine, or it may cause a
binding error. To avoid conflicts with the names of the external symbols in the XL Pascal
runtime environment, the identifiers you use should not begin with the dollar sign ($) or be
the same as an XL Pascal predefined identifier. You should also avoid naming an
EXTERNAL routine main because XL Pascal defines an entry point main to start your
program.

Object code produced by the XL Pascal compiler can call some routines from libraries other
than the XL Pascal runtime environment.

User References to Undefined Runtime Routine Names
Do not leave names of EXTERNAL routines or REF variables undefined. If your Pascal
code refers to an external name without defining it, the linkage editor will attempt to resolve
the reference in the XL Pascal runtime environment or in any of the other libraries from
which XL Pascal uses runtime routines. Resolution by the linkage editor may appear to be
successful but the program will probably run unpredictably.

Note: XL Pascal uses some runtime routines in the C and mathematics libraries. Each of
these libraries contains several names with common spellings.

AIX Shared Libraries
The runtime library included in the XL Pascal runtime environment is an AIX shared library.
Shared libraries are processed by the linkage editor to resolve all references to external
names. This limits the possibility of conflicts between user-defined external names and the
names of any routines that are called by runtime routines.

For example, when you invoke the Pascal NEW procedure, the XL Pascal compiler
generates a call to the runtime routine $pnew. This runtime routine in turn calls AIX system
routines to allocate blocks of storage. All calls within $pnew are resolved among the XL
Pascal runtime environment library and other libraries. This allows a Pascal user program to
define and call a routine with the same name as any of the system routines called by
$pnew, and the name will not conflict with any calls in $pnew.

Related Information
Shared libraries are described in the AIX Version 3.2 Technical Reference: Base Operating
System and Extensions. The description of the ld command in the AIX Version 3.2
Commands Reference contains other details of creating and using shared libraries.

43 Copyright IBM Corp. 1990, 1993 Chapter 4. Input and Output Facilities

Chapter 4. Input and Output Facilities

Your program retrieves information, processes it the way you specify, and then produces the
results you want. An essential part of every program you develop is reading and writing
data.

XL Pascal uses input and output statements to read and write data. Input and output
statements operate on files. A file is a named set of records stored and processed as a unit.
File records are the ordered information items that program statements manipulate. An input
statement reads data from a file; an output statement writes data to one.

XL Pascal supports two types of files:

• TEXT files consisting of character data.
• RECORD files containing a sequence of data items of any type. All data in the same

record file must be of the same type, and each item in the file of a fixed size.

This chapter shows how to use the XL Pascal input and output (I/O) facilities under the AIX
Version 3 Operating System.

Environment-Determined File Names
The name of an input or output file can be determined at program run time by using
environment-determined file names. Using environment variables permits access to a
different file each time you run the program. You can set environment variables two ways to
open environment-determined files: on the command line or in shell scripts.

Using Environment Variables on the Command Line
Use AIX environment variables to associate a file name with a program variable, such as
infile. The following AIX commands demonstrate the use of environment variables in the
Korn shell and in the C shell. Enter these commands on the command line before invoking
the program.

Note: Unless otherwise specified, the examples in this section use the Korn shell.

Syntax

Korn or Bourne Shell:

environment–name=external–filename; export environment–name

environment–name=’(option,...)’; export environment–name

C Shell:

setenv environment–name ’(option,...)’

Parameters
environment–name is the same as the DDNAME of the file. In standard mode, you must

use the file variable name.

external–filename is the external file name used in the AIX file system.

option is the file opening option NAME=external–filename alone, or both
NAME=external–filename and DISP=MOD. You cannot use the
DISP=MOD option alone.

44 XL Pascal User’s Guide

Environment Variables in the Runtime Environment
In the Korn shell, you must use the AIX export command so that the system can use the
environment variables in your runtime environment.

In the following example, the environment variable infile, which is used as a program
variable, is associated with the file file1.text. Then the program myprog is run.

infile=file1.text; export infile
myprog

After the program is run, the exported file name, infile, remains in the AIX environment
for any subsequent runs that use the same variable and AIX file. To run the same program
using a different file, you must associate the new file name with the infile environment
variable and export it again.

It is possible to run the same program both in the background and in the foreground using
different files as shown in the following example:

infile=file1.text; export infile; myprog&
infile=file2.text; export infile
myprog

By entering the program invocation on the same line as the environment statements, you
associate the statements on each line with its own unique AIX process. Environment
variables are only known in their current environment. Therefore, file1 is local to the first
invocation of myprog, and file2 is local to its second invocation.

If you define the environment variable of a file with the DISP=MOD option and use
REWRITE to open the file, output is appended to the end of the existing file.

Options are not case sensitive, so you can enter them in uppercase or lowercase. Some
examples of environment variables with open options are:

infile=’(name=file1.text)’; export infile
infile=’(name=file1.text, disp=mod)’; export infile

Related Information
The DDNAME of a file in VS mode is described on page 66.

Using Environment Variables in Shell Scripts
The easiest and most efficient method to run a program with a variable name is to use a
shell script with all the necessary commands. When you invoke the shell script, each
command in the file is processed sequentially.

The shell script allows you to associate an environment variable either with the same file
name each time you call the script, or with a different file name each time.

Shell Script Using the Same File Name
The following example illustrates a shell script called run1, which associates the
environment variable named infile with the file named file1.text. It also contains
the command to run the program myprog.

The shell script run1 contains

infile=file1.text; export infile
myprog

After the shell script is created as a file, you can use the following AIX command:

chmod 755 run1

45Chapter 4. Input and Output Facilities

To run it, enter:

run1

While the script is running, it is considered an AIX process. Therefore, anything that runs
within the shell script is local to that process, and the content of the infile environment
variable is unknown to other AIX processes.

Shell Script Using Different Files
To avoid having to edit the shell script whenever you use a different AIX file, you can create
the shell script with a variable in place of the file name. The following version of the shell
script run1 uses a variable $1 in place of the physical file name:

infile=$1; export infile
myprog

To run the file script using file1.text, enter:

run1 file1.text

When you run the shell script, file1.text replaces the variable $1. You can use the
script with any file name, so that run1 can run in the background under one file name and in
the foreground under a second, as illustrated in the following example:

run1 file1.text&
run1 file2.text

Related Information
See AIX Version 3.2 System User’s Guide: Operating System and Devices for information
on shells, writing shell scripts, and using environment variables. The AIX Version 3.2
Commands Reference describes the csh command.

Opening Files for Input and Output
Before your program can read data from or write it to a file, that file must be opened.
Opening a file associates a file variable with a file or device in the system and establishes
whether the file variable will be used for input or output.

Options for Opening a File
All XL Pascal file opening procedures are defined with a string parameter that contains the
options pertaining to the file being opened. These options determine how the file is to be
opened and what attributes it is to have.

The file opening options are valid for the following XL Pascal I/O procedures:

• RESET
• REWRITE
• TERMIN
• TERMOUT
• UPDATE

Not all of the options apply to all open procedures. If an incorrect option is specified for a
procedure, XL Pascal ignores the option.

46 XL Pascal User’s Guide

Syntax

’ ’
NAME=external–filename

LRECL=n

RECFM=c

DISP=MOD

UCASE

INTERACTIVE

DDNAME=name

,

You can use either commas or blanks to separate options.

Parameters
NAME=external–filename

Specifies the external name of the physical file to be associated with the file
variable being opened. This name remains associated with the file variable
until the file is closed. You can specify the name as a full AIX path name or,
if the file is in the directory in which the program is running, as a simple file
name.

The NAME option applies to the following procedures:

• RESET
• REWRITE
• UPDATE
• TERMIN
• TERMOUT

If the name of the external file is specified in one of these procedures using
the NAME option, then that declaration overrides any subsequent attempt
to use a different file or file name with the file variable.

Using the NAME attribute is shown in the following example:

CONST
 open_opt = ’NAME=/u/fred/data/tempfile.info’;

VAR
 f : TEXT;
 s : STRING;

BEGIN
 .
 .
 REWRITE(f, open_opt);
 WRITELN(f, ’this goes into the file’);
 .
 .
 RESET(f, open_opt);
 READLN(f, s);
END.

47Chapter 4. Input and Output Facilities

LRECL=n Specifies the logical record length to be associated with an output file. The
value n must be an integer. LRECL applies to the REWRITE and
TERMOUT procedures.

You are not required to specify a logical record length for your files. Let the
compiler assign a default value for LRECL.

For TEXT files with a variable length record format (RECFM=V), the system
uses the LRECL value you supply. The default logical record length for
TEXT files with fixed length record format (RECFM=F) is 256.

The logical record length of a record file must be at least large enough to
contain the base component of the file; otherwise, a runtime error message
is issued when you open the file. For example, a file variable declared as
FILE OF INTEGER requires the associated physical file to have a logical
record length of at least 4 bytes.

You can use the LRECL attribute in the TERMOUT procedure to determine
the maximum length of the line to be written to your terminal.

RECFM=c Specifies a record format to be associated with an input file. Fixed format
(F) is the only value of c allowed for record files. TEXT files can have fixed
or variable length (V) record format. RECFM=V is the default for TEXT files.

RECFM applies to REWRITE.

You are not required to specify a record format for your files. Let the
compiler assign a default value for RECFM.

If a file has fixed-length records and the logical record length is larger than
necessary to contain the component type of the file, the extra space in each
logical record is wasted.

DISP=MOD Adds data to the file instead of rewriting it completely. If the file does not
exist, it is created. Usually REWRITE erases an existing file; this option
preserves existing data. The only value for DISP is MOD, and the option
applies only to REWRITE.

UCASE Causes text being read from a file to be translated to uppercase. This option
only applies to TERMIN.

INTERACTIVE Indicates that the file is to be opened for input as an interactive file. You can
write a prompt asking the operator for data before your program reads data.
That is, the program does not read ahead when it reaches the end of a line.

If the end-of-file condition on an interactive TEXT file tests FALSE, it is still
possible for the file to be empty on the next READ operation.

The INTERACTIVE attribute applies to the RESET procedure and is implied
for TERMIN.

48 XL Pascal User’s Guide

Opening a file for interactive input is shown in the following example:

PROGRAM interact;

VAR
 sysin : TEXT;
 data : STRING(80);

BEGIN
 RESET(sysin, ’INTERACTIVE’);
 (* open sysin for interactive input *)
 WRITELN(’ ENTER DATA: ’);
 (* prompt for response *)
 READLN(sysin, data);
 (* read in response *)
END.

DDNAME=name
Causes the physical file associated with the file variable to have DDNAME
indicated by name. This new DDNAME remains associated with the file
variable even if the file is closed and then opened again. It can only be
changed by another call to a file open routine with the DDNAME attribute
specified.

The name you specify can be of any length, up to the maximum for valid XL
Pascal identifiers (256 characters), and can include the AIX path name. If
you do not specify the NAME attribute as well, the DDNAME is used for the
external file name.

DDNAME applies to the following procedures:

• RESET
• REWRITE
• UPDATE
• TERMIN
• TERMOUT

The DDNAME depends on the compiler option in effect:

• The DDNAME=COMPAT compiler option causes XL Pascal to generate
DDNAMEs that match the identifiers used in the program. Note that the
operating system does not observe XL Pascal scoping rules. For
example, a file variable file in one scope would be different from one in
another scope, but both would have the DDNAME file. When
DDNAME=COMPAT is in effect, the first occurrence of a file variable can
be overwritten by the second occurrence of one with the same name.

• The DDNAME=UNIQUE compiler option instructs XL Pascal to generate
unique DDNAMEs based on the names used in the program. This option
ensures that file variables with the same name but different scopes do
not get mapped to the same external file.

To ensure that a particular file variable gets mapped to the external file you
want, you must ensure that the first 32 characters of the file variable names
you use are unique. To generate external file names for file variables that
are not unique in the first 32 characters, use the DDNAME=UNIQUE
compiler option in VS mode.

49Chapter 4. Input and Output Facilities

Interactions between LRECL and RECFM Open Options
Record format and logical record length can interact to cause runtime errors under the
following conditions:

Text Files with Variable Length Records:
For TEXT files with RECFM=V, a runtime warning is generated if you exceed the logical
record length currently in effect. The line is broken up according to the LRECL, as shown in
the following example:

.

.
REWRITE(infile, ’RECFM=V,LRECL=5’);
WRITELN(infile, ’thisismorethan5see?’)
.
.

The previous lines put the following into infile:

’thisi’
’smore’
’than5’
’see?’

Note: No padding occurs with a variable record format, regardless of the logical record
length.

Text Files with Fixed Length Records:
With fixed-format files, no new lines are supplied. If you do not specify LRECL for TEXT files
with RECFM=F, the LRECL is set to a default of 256. A WRITELN applied to a fixed-format
file results in blank padding to fill out the line to the value of LRECL.

If you attempt to write a line of data longer than the LRECL permits, a warning message is
issued and the program continues running. Writing to a TEXT file with RECFM=F and
LRECL=5 is shown in the following example:

.

.
REWRITE(infile, ’RECFM=F,LRECL=5’);
WRITE(infile, ’ab’);
WRITE(infile, ’cde’);
WRITE(infile, ’c’);
.
.

The previous lines put the following into infile:

’ab cde c ’

Record Files:
XL Pascal does not allow variable length record format for record files. If you specify
RECFM=V for a record file, you are notified at run time that the record format is being
changed to RECFM=F, so the program can continue running.

Logical record length has the following effect on record files:

LRECL Effect

Not specified Default LRECL is set to hold exactly one element of the file.
No extra padding is done

50 XL Pascal User’s Guide

Smaller than file elements XL Pascal issues a runtime error message and changes
LRECL to let the program run

Larger than file elements Each record in the file is padded with blanks to to specified

LRECL

Using the INTERACTIVE Option with RESET
Because RESET performs an implicit read operation to fill a file buffer, it is not well suited for
files you intend to associate with interactive input. For example, if the file you want to open is
assigned to your terminal, you must enter a line of data when the file is opened. You may
want to do this if your program displays prompt messages before it reads data.

To avoid this problem, you can open a file for interactive input by specifying INTERACTIVE
in the options string of RESET. No initial read operation is performed on files opened this
way. The file pointer has the value NIL until the first file operation (GET or READ). If the file
is a TEXT file, the end-of-line condition is initially TRUE.

Related Information
The end-of-file condition for TEXT files is described on page 60.

The end-of-line condition for TEXT files is described on page 59.

The DDNAME compiler option is described on page 32. See “File-Name Association” on
page 66 for more information on external file names. You can set NAME and DISP attributes
with environment variables, as described on page 43.

File Opening Procedures
The following sections describe the XL Pascal procedures for opening files for input and
output.

The options for opening a file are described in “Opening Files for Input and Output” on page
45.

Opening a File for Input (RESET)
To explicitly open a file for input, use the procedure RESET. A call to RESET has the form

RESET (f, options)

Where Represents

f a file variable

options an optional string containing the open options

The RESET procedure allocates a buffer, reads the first logical record, and positions the file
pointer at the beginning of the buffer. For TEXT file f, the statement RESET(f) implies that
f@ points to the first character of the file.

If the RESET operation is performed on an open file, the file is closed and then reopened.

51Chapter 4. Input and Output Facilities

Example
PROGRAM doreset;

VAR
 sysin : TEXT;
 c : CHAR;

BEGIN
 (* open sysin for input *)
 RESET(sysin, ’NAME=sysin.text’);
 (* get first character of file *)
 c := sysin@;
END.

Opening a File for Output (REWRITE)
Use the REWRITE procedure to open a file for output. A call to the procedure has the form:

REWRITE(f, options)

Where Represents

f a file variable

options an optional string containing the open options

REWRITE positions the file pointer at the beginning of an empty buffer. Files already open
are closed before being reopened.

Examples

Opening a TEXT File with REWRITE

PROGRAM dorewrite;

VAR
 sysprint : TEXT;

BEGIN
 REWRITE(sysprint);
 WRITELN(sysprint, ’MESSAGE’);
END.

Opening a Record File with REWRITE

PROGRAM dorewrite;

VAR
 outfile : FILE OF INTEGER;
 i : INTEGER;

BEGIN
 REWRITE(outfile, ’NAME=/tmp/foo.file’);
 (* open the file *)
 i := 3;
 outfile@ := i
 PUT(outfile); (* write out an integer value *)
END.

52 XL Pascal User’s Guide

Opening a File for Terminal Input (TERMIN)
Use the TERMIN procedure to open a TEXT file for interactive input directly from the
keyboard. No initial input/output operation is performed on files opened interactively until a
READ, READLN, or GET statement is encountered.

Unless you specify an input file, a READ, READLN, or GET operation gets its data from the
predefined file INPUT, which comes from the AIX standard input. The default standard input
is the terminal, but you can redirect the data from a file. If you apply TERMIN, the READ,
READLN, or GET is sent directly to the terminal device (TTY) for input. You cannot redirect
the input from a file.

A call to the procedure has the following form:

TERMIN(f, options)

Where Represents

f a TEXT file variable

options an optional string containing the open options

Note: The TERMIN procedure opens the file with the INTERACTIVE attribute.

Opening a File for Terminal Output (TERMOUT)
Use the TERMOUT procedure to open a TEXT file for terminal output.

Usually, a WRITE, WRITELN, or PUT operation places its data into the predefined file
OUTPUT, which goes to the AIX standard output. The default standard output is the
terminal, but you can redirect the data to a file. If you apply TERMOUT, WRITE, WRITELN,
or PUT output is displayed directly on the terminal device (TTY). You cannot redirect the
output to a file.

A call to the procedure has the form

TERMOUT(f, options)

Where Represents

f a TEXT file variable

options an optional string containing the open options

Example
PROGRAM dotermio;

VAR
 ttyin, ttyout : TEXT;
 i : INTEGER;

BEGIN
 (* open terminal files input and output *)
 TERMIN(ttyin);
 TERMOUT(ttyout);
 WRITELN(ttyout, ’ENTER DATA:’); (* write a prompt message*)
 READLN(ttyin, i); (* read in the response *)
 .
 .
END.

53Chapter 4. Input and Output Facilities

Opening a File for Updating (UPDATE)
Use the UPDATE procedure to open a record file for reading and writing data. In this mode,
you can read records, modify them, and then replace them. A call to the procedure has the
form:

UPDATE(f, options)

Where Represents

f a record file variable

options an optional string containing the open options

On a call to UPDATE, a file buffer is allocated and the first record of the file is read into it. A
subsequent GET, PUT, READ, WRITE, or SEEK operation causes the contents of the buffer
to be stored in the file at the location from which it was read.

Each GET operation reads successive records in the file. A PUT operation writes the record
back to the location from which the last GET obtained it.

Example
PROGRAM doupdate;

VAR
 f : FILE OF RECORD
 name : STRING(30);
 age : 0..99;
 END;

BEGIN
 UPDATE(f);
 WHILE NOT EOF(f) DO
 (* update each record by incrementing age *)
 BEGIN
 f@.age := f@.age + 1;
 PUT(f);
 GET(f);
 END;
END.

Related Information
Redirecting input is described in AIX Version 3.2 System User’s Guide: Operating System
and Devices. The INTERACTIVE attribute is described in “Options for Opening a File” on
page 45.

Processing a TEXT File
This section describes how to read data from and write it to a TEXT file.

Reading Data from a TEXT File (GET)
Use the GET procedure to read data from a file. A call to the procedure has the form:

GET(f)

Where Represents

f a TEXT file variable

54 XL Pascal User’s Guide

When applied to an input TEXT file, GET causes the file pointer to be incremented by one
character position. If the file pointer is at the last position of a logical record, the GET
operation causes the end-of-line condition to become TRUE, and the file pointer to be
positioned to a blank.

If, before the call to GET, the end-of-line condition is TRUE, the file pointer is positioned at
the beginning of the next logical record. Conversely, if the file pointer is positioned to the end
of the last logical record of a TEXT file before the call to GET, the end-of-file condition
becomes TRUE.

Attempting to use GET on a TEXT file that has not been opened for input causes the file to
be opened implicitly, as if RESET had been called. When this happens, the file pointer skips
the first character of the file and is positioned at the second character.

Example
PROGRAM doget;

VAR
 infile : TEXT;
 c1, c2 : CHAR;
 .
 .

BEGIN
 RESET(infile); (* get first character of infile *)
 c1 := infile@;
 GET(infile); (* get second character of infile *)
 c2 := infile@;
 .
 .
END.

Related Information
The end-of-file condition for a TEXT file is described on page 60.

The end-of-line condition for a TEXT file is described on page 59.

Writing Data to a TEXT File (PUT)
Use the PUT procedure to write data to a file. A call to the procedure has the form:

PUT(f)

Where Represents

f a TEXT file variable

Before issuing a PUT operation, you must open the file for output or update it, and ensure
that the associated output buffer contains the data to be written.

When applied to a TEXT file opened for output, the PUT procedure increases the file pointer
by one character position. If, before the call, the number of characters in the current logical
record is equal to the logical record length of the file (LRECL), the file pointer is positioned
within the associated buffer to begin a new logical record.

When the file buffer is filled, the buffer is written to the associated physical file. The file
pointer is then positioned to the beginning of the buffer so that it can be refilled on
subsequent calls to PUT.

55Chapter 4. Input and Output Facilities

Example
PROGRAM doput;

VAR
 outfile : TEXT;
 c : CHAR;

BEGIN
 REWRITE(outfile);
 outfile@ := c;
 PUT(outfile); (* write out value of c *)
END.

Reading Data from a TEXT File (READ)
The READ procedure reads data from a TEXT file. A call to the procedure has either of the
following forms:

READ(f, v)

READ(f, v : n)

Where Represents

f an optional TEXT file variable. If you omit the file variable f and the comma
following it, the file INPUT is assumed.

v one or more variables of the following types:

CHAR (or subrange)
GCHAR
GSTRING
INTEGER (or subrange)
PACKED ARRAY[1..n] OF CHAR
PACKED ARRAY[1..n] OF GCHAR
REAL
SHORTREAL
STRING

n an optional field length that is an INTEGER expression.

If the file pointer is not set when READ is called, an initial GET operation is performed. This
happens when a file is opened interactively.

If you call READ for a closed file, the file is opened for input by an implicit call to RESET.

56 XL Pascal User’s Guide

Examples
PROGRAM doread;

VAR
 infile : TEXT;
 r : ARRAY[1..10] OF RECORD
 name : STRING(25);
 age : 0..99;
 weight : REAL;
 END;
 i : 1..10;

BEGIN
 RESET(infile);
 FOR i := 1 TO 10 DO
 WITH r[i] DO
 BEGIN
 READ(infile, name, age);
 READ(infile, weight);
 READLN(infile);
 END;
END.

The following example shows the READ procedure with length qualifiers. Given this input
stream from file INPUT:

951239999991000.00JUNK

the program readzip produces the following output:

ZIP = 95123
MAN = 999999
BALANCE = 1000.00

Immediately after the READ statement in readzip is processed, the file INPUT is
positioned to the character ’N’.

PROGRAM readzip;

VAR
 zip : 0..99999;
 man : 0..999999;
 balance : REAL;

BEGIN
 READ(zip : 5, man : 6, balance : 9);
 WRITELN(’ZIP = ’, zip);
 WRITELN(’MAN = ’, man);
 WRITELN(’BALANCE = ’, balance : 8 : 2);
END.

Related Information
The INTERACTIVE file opening option is described on page 47. Using the INTERACTIVE
option with the RESET procedure is described on page 50.

57Chapter 4. Input and Output Facilities

Reading Data from a TEXT File (READLN)
A call to READLN is identical to READ and performs the same function, except that after the
data is read, all remaining characters in the logical record are skipped. The procedure
READLN applies to TEXT files only. READLN implicitly opens a closed TEXT file.

Unless the end-of-file is reached, READLN normally causes the next logical record to be
read. The file pointer is positioned at the beginning of the buffer containing the record. For
TEXT files opened with the INTERACTIVE attribute (which occurs (1) when the predefined
files INPUT, OUTPUT, and STDERR are implicitly opened with the INTERACTIVE attribute
in VS Mode, (2) as the result of a call to RESET with the INTERACTIVE attribute specified,
or (3) when the TERMIN procedure is used), the file pointer is positioned after the end of the
logical record, and the end-of-line condition is set to TRUE.

Example
PROGRAM copy;

VAR
 infile,
 outfile : TEXT;
 buff : STRING(100);

BEGIN
 (* open infile for input and outfile for output *)
 RESET(infile);
 REWRITE(outfile);
 WHILE NOT EOF(infile) DO
 BEGIN
 (* read each line from infile *)
 READ(infile, buff);
 (* write out the first 100 characters *)
 (* of each line to outfile *)
 WRITELN(outfile, buff);
 READLN(infile); (* skip characters after column 100*)
 (* in each line *)
 END;
END.

Related Information
The end-of-file condition for TEXT files is described on page 60.

The end-of-line condition for TEXT files is described on page 59.

The INTERACTIVE file opening option is described on page 47.

Writing Data to a TEXT File (WRITE)
The WRITE procedure writes data to a TEXT file beginning at the current position of the file
pointer. A call to the procedure has the form:

WRITE(f, e)

or

WRITE(f, e : n)

or

WRITE(f, e : n1 : n2)

58 XL Pascal User’s Guide

Where Represents

f an optional TEXT file variable. If you omit the file variable f, the file OUTPUT
is assumed.

e one or more expressions of the following types:

BOOLEAN
CHAR (or subrange)
GCHAR
GSTRING
INTEGER (or subrange)
PACKED ARRAY[1..n] OF CHAR
PACKED ARRAY[1..n] OF GCHAR
REAL
SHORTREAL
STRING

n, n1, n2 optional field lengths that are INTEGER expressions.

If WRITE is called for a closed file, the file is opened implicitly for output.

If, during a call to WRITE, the length of the logical record being produced becomes longer
than the logical record length (LRECL) of the TEXT file, a runtime error message is
generated.

Example
PROGRAM dowrite;

VAR
 outfile : TEXT;
 r : ARRAY[1..10] OF RECORD
 name : STRING(25);
 age : 0..99;
 weight : REAL;
 END;
 i : 1..10;

BEGIN
 REWRITE(outfile); (* open outfile for output *)
 FOR i := 1 TO 10 DO
 WITH r[i] DO
 BEGIN
 WRITE(outfile, name : –30, age : 3, ’ ’);
 WRITE(outfile, weight);
 WRITELN(outfile);
 END;
END.

Writing Data to a TEXT File (WRITELN)
A call to WRITELN has the same form as a call to WRITE and performs the same function,
except that it completes the current logical record so that the next output operation can

begin a new logical record. The WRITELN procedure applies to TEXT files only.

If the record format of the file is fixed (RECFM=F), WRITELN fills the remainder of the
current record with blanks. For variable length records (RECFM=V), no padding occurs,
regardless of the logical record length.

WRITELN implicitly opens a closed TEXT file.

59Chapter 4. Input and Output Facilities

Example
PROGRAM doublespace;

VAR
 filein,
 fileout : TEXT;
 buff : STRING(255);

BEGIN
 REWRITE(fileout);
 RESET(filein);
 WHILE NOT EOF(filein) DO
 BEGIN
 READLN(filein, buff);
 WRITELN(fileout, buff);
 WRITELN(fileout); (* insert a blank line *)
 END;
END.

The PAGE Procedure
The PAGE procedure writes an ASCII form feed character (X’OC’) to a TEXT file.

A call to the procedure has the form:

PAGE(f)

Where Represents

f an optional TEXT file variable. The default is OUTPUT.

The PAGE procedure checks whether WRITE has written anything to the file since the most
recent WRITELN. If it has, PAGE does an implicit WRITELN on the file, and then writes the
form feed character to the file.

Example
PROGRAM dopage;

VAR
 print : TEXT;

BEGIN
 .
 .
 REWRITE(print);
 .
 .
 PAGE(print); (* start a new page *)
END.

End-of-Line Condition
The end-of-line condition occurs on a TEXT file opened for input when the file pointer is
positioned after the end of a logical record. To test for this condition, use the EOLN function.

The end-of-line condition becomes true when GET is called for a file positioned at the last
character of a logical record, or if a call to READ consumes all of the characters of the
current logical record.

The file pointer always points to a blank character when the end-of-line condition occurs.

The EOLN function applies only to TEXT files.

60 XL Pascal User’s Guide

Example
PROGRAM getlrecl;

VAR
 sysin : TEXT;
 cnt : 0..32767;
BEGIN
 RESET(sysin); (* compute the length of the first logical*)
 cnt := 0; (* record of sysin *)
 WHILE NOT EOLN(sysin) DO
 BEGIN
 cnt := cnt + 1;
 GET(sysin);
 END;
 WRITELN(cnt); (*write out the total length of the first *)
 (* record *)
END.

End-of-File Condition
The end-of-file condition becomes true for a TEXT file when one of the following occurs:

• RESET is called and the file is empty.
• The file is open for output.
• READ or READLN is called and all characters of the last logical record are consumed.
• GET is called when the file pointer is positioned at the end of the last logical record of the

file. That is, the end-of-line condition is true.

To test for this condition, use the EOF function.

When the end-of-file condition is true for a file, any calls to GET, READ, or READLN on that
file result in a runtime error.

Example
PROGRAM getnumrec;

VAR
 sysin : TEXT;
 cnt : 0..32767;

BEGIN
 RESET(sysin); (* compute the number of logical *)
 cnt := 0; (* records in file sysin *)
 WHILE NOT EOF(sysin) DO
 BEGIN
 cnt := cnt + 1;
 READLN(sysin);
 END;
 WRITELN(cnt); (* write out the number of records *)
END.

The COLS Function
The COLS function returns the position of the next character to be written to an output file.
COLS applies only to TEXT files. A call to the procedure has the form:

COLS(f)

Where Represents

f a TEXT file variable

61Chapter 4. Input and Output Facilities

Example
The following example shows how to use COLS to force output to a specific column:

IF tab > COLS(f) THEN
 WRITE(f, ’ ’ : tab–COLS(f)) ;

Processing a Record File
This section describes how to read data from and write it to a record file.

Reading Data from a Record File (GET)
Use the GET procedure to read data from a file. A call to the procedure has the form:

GET(f)

Where Represents

f a record file variable

Each call to GET reads the next logical record into the buffer referenced by the file pointer.
The end-of-file condition becomes true when no more records are in the file.

If the record file is not open for input or update before doing a GET operation, a runtime
error message is issued.

Example
The program getrecf in the following example loops through the file, reading each record
and printing out the name and age fields:

PROGRAM getrecf;

VAR
 f : FILE OF RECORD
 name : STRING(25);
 age : 0..99;
 weight : REAL;
 sex : (male,female);
 END;

BEGIN
 RESET(f); (* open f for input *)
 WHILE NOT EOF(f) DO
 BEGIN
 WRITE(’ Name : ’, f@.name);
 (* print the fields and read *)
 WRITE(’ Age : ’, f@.age : 3);
 (* the next record *)
 WRITELN;
 GET(f);
 END;
END.

Related Information
The end-of-file condition for a record file is described on page 64.

62 XL Pascal User’s Guide

Writing Data to a Record File (PUT)
Use the PUT procedure to write data to a file. A call to the procedure has the form:

PUT(f)

Where Represents

f a record file variable

The PUT procedure writes the file record assigned to the output buffer by the file pointer to
the associated physical file. Each call to PUT produces one logical record.

If the file is not open for output or update before PUT is called, a runtime error message is
issued.

Example
The program putrecf in the following example builds up an output structure for a record
file and writes the data to the file.

PROGRAM putrecf;

VAR
 f : FILE OF RECORD
 name : STRING(25);
 age : 0..99;
 weight : REAL;
 sex : (male, female);
 END;

BEGIN
 REWRITE(f); (* open f for input *)
 f@.name := ’John F. Doe’;
 f@.age := 36;
 f@.weight := 100.0;
 f@.sex := male;
 PUT(f); (* write data to f *)
END.

Reading Data from a Record File (READ)
The statement

READ(f, v)

is equivalent to

v := f@;
GET(f);

Where Represents

f a record file variable

v a variable of the same type as the components of the record file

If file f is not open for input or update when READ is called, a runtime error message is
issued.

Using the READ procedure on record files is shown in “Writing Data to a Record File
(WRITE)” on page 63.

63Chapter 4. Input and Output Facilities

Writing Data to a Record File (WRITE)
The statement

WRITE(f, e)

is equivalent to

f@ := e;
PUT(f);

Where Represents

f a record file variable

e a variable of the same type as the components of the record file

If file f is not open for output or update when WRITE is called, a runtime error message is
issued.

Example of Using the READ and WRITE Procedures on Record Files
The program rdwrtrec in the following example copies infile to outfile and
loops through the files, reading and writing.

PROGRAM rdwrtrec;

TYPE
 rec = RECORD
 name : STRING(25);
 age : 0..99;
 sex : (male, female);
 END;
VAR
 infile : FILE OF rec;
 outfile : FILE OF rec;
 buffer : rec;

BEGIN
 RESET(infile);
 REWRITE(outfile);
 WHILE NOT EOF(infile) DO
 BEGIN
 READ(infile, buffer);
 WRITE(outfile, buffer);
 END;
END.

Relative Record Access (SEEK)
You can search records of a record file in random order with the SEEK procedure. The
SEEK procedure positions a file pointer to a specific element within a record file. A call to
the procedure has the form:

 SEEK(f, n)

Where Represents

f a record file previously opened with RESET, REWRITE, or UPDATE.

n a positive integer expression that corresponds to a record number. The
number of the first record is 1.

64 XL Pascal User’s Guide

A call to GET or PUT operates on the nth record of the file. Each subsequent call to GET or
PUT will operate on subsequent records.

If you use SEEK to position a file pointer beyond the end of a file, the file is extended to
accommodate the new file pointer position.

Note: The SEEK procedure does not perform an I/O operation.

Example
Using the SEEK procedure to search records randomly is illustrated in the following
example. The program goseek writes out records from recfile in the order specified
by the index entries in idxfile.

PROGRAM goseek;

TYPE
 rec = RECORD
 name : STRING(25);
 age : 0..99;
 sex : (male, female);
 END;
 idx = RECORD
 recno : 0..MAXINT;
 END;

VAR
 recfile : FILE OF rec;
 idxfile : FILE OF idx;

BEGIN
 RESET(idxfile); (* open files for input *)
 RESET(recfile);
 WHILE NOT EOF(idxfile) DO
 BEGIN
 SEEK(recfile, idxfile@.recno);
 (* search recfile for the relative record number *)
 (* given by the current index value *)
 GET(recfile);
 WRITELN(OUTPUT, recfile@.name);
 GET(idxfile); (* get the next index *)
 END;
END.

End-of-File Condition
The end-of-file condition becomes true for a record file when one of the following occurs:

• RESET is called for an empty file.
• The file is opened for output.
• No more records remain in the file on a call to GET or READ.

To test for this condition, use the EOF function.

Any calls to GET or READ for a file with an end-of-file condition of TRUE result in an error
message.

65Chapter 4. Input and Output Facilities

Closing a File (CLOSE)
Use the CLOSE procedure to close a file explicitly. A call to the procedure has the form:

CLOSE(f)

Where Represents

f a file variable

Closing a file affects the data that ends up in the corresponding external file. If two or more
file variables map to the same external file, the external file contains only data associated
with the last file closed. When files are closed implicitly, the order in which they are closed is
often unpredictable, making it difficult to determine the contents of an external file. Using file
names that are not unique within 32 characters or allowing the default external naming
convention to take effect can give unpredictable results.

Files are closed implicitly under the following conditions:

• At the end of run time

• When you use one of the following procedures to open a file:

RESET
REWRITE
TERMIN
TERMOUT
UPDATE

Files declared in the body of a routine are closed implicitly when the routine returns to its
caller.

If you are uncertain about the order in which files are implicitly closed in your program, use
CLOSE to explicitly close them.

Example
This example shows how to use the CLOSE procedure:

PROGRAM doclose(OUTPUT);

VAR
 fstk : ARRAY[1..4] OF TEXT;
 filename : STRING(8);
 i : 1..4;

BEGIN
 filename := ’TEST ’;
 FOR i := 1 TO 4 DO
 BEGIN
 filename[5] := CHR(i + ORD(’0’));
 REWRITE(fstk[i], ’FILE = ’||filename);
 WRITELN(fstk[i], ’Test #’, i : 1);
 CLOSE(fstk[i]);
 END;
END.

66 XL Pascal User’s Guide

Appending Data to a File
You can append data to an existing file by opening it for output with a call to REWRITE and
specifying DISP=MOD in the open parameters.

Example
PROGRAM ex1;

VAR
 myfile : TEXT;
 s1, s2 : STRING;

BEGIN
 REWRITE(myfile);
 WRITELN(myfile, ’line ONE’);
 RESET(myfile);
 READLN(myfile, s1);
 IF s1 <> ’line ONE’ THEN
 WRITELN(’error’);
 REWRITE(myfile, ’DISP=MOD’);
 WRITELN(myfile, ’line TWO’);

 RESET(myfile);
 READLN(myfile, s1);
 IF s1 <> ’line ONE’ THEN
 WRITELN(’error’);
 READLN(myfile, s2);
 IF s2 <> ’line TWO’ THEN
 WRITELN(’error’);
 END.

File-Name Association
Whenever you use RESET, REWRITE, or UPDATE to open a file for input or output, the file
variable is associated with an AIX data file. This section shows how the name of the data file
is determined and how you can control the association between your Pascal file variables
and AIX data file names.

The DDNAME of a File
The DDNAME of an opened file variable is a name you can use to determine the external
name of the data file associated with that file variable. The DDNAME of an open file is
determined in one of three ways:

1. If the file variable was opened with a DDNAME option, the name given by that option is
the DDNAME.

2. If the file variable was opened, but not with a DDNAME option, the compiler generates a
DDNAME for you in the following cases:

• For any file variable that is a record field, an array element, or a pointer target, the
compiler concatenates a sequence number, an underscore, and the letters pas to
form the DDNAME.

67Chapter 4. Input and Output Facilities

For example, in VS mode with compiler option DDNAME=COMPAT, the statement:

REWRITE(a[2,j])

would generate a DDNAME like

0_pas

or:

13_pas

In standard mode, or in VS mode with compiler option DDNAME=UNIQUE, the
statement:

RESET(p–>r.f)

would generate a DDNAME in a similar way.

• In VS mode with compiler option DDNAME=UNIQUE, the compiler generates a
DDNAME for every file variable that has a name; that is, it is not a record field, an
array element, or a pointer target. The name consists of a sequence number prefix, an
underscore, and the actual file variable name. All characters of the name are
significant.

For example, the statement:

RESET(myfile1)

would generate a DDNAME like

5_myfile1

or :

17_myfile1

3. In all other cases, the name of the file variable is the DDNAME. This applies only in
standard mode or in VS mode with compiler option DDNAME=COMPAT, and only to a
file variable that is not a record field, an array element, or a pointer target. The compiler
does not generate a DDNAME for you. In VS mode with compiler option
DDNAME=COMPAT, the DDNAME is unique in the first 32 characters of the file variable
name.

Data File Name
A data file is associated with a file variable when the file variable is opened. The name of the
data file associated with an open file variable is determined in one of three ways:

1. If you use a NAME file opening option to open the file variable, the name of the data file
is the name you specify in the NAME option.

2. If you do not use a NAME file opening option to open the file variable, but an AIX
environment variable exists whose name is the same as the DDNAME of the file
variable, the name of the data file is the value of that environment variable.

3. If no environment variable exists whose name is the same as the DDNAME, the name of
the data file is the DDNAME.

Note: Because the DDNAME in standard mode is generated by the compiler and is
therefore unpredictable, you should use the same file variable name as the
environment variable in standard mode.

68 XL Pascal User’s Guide

Related Information
RESET, REWRITE, and UPDATE are described in “File Opening Procedures” on page 50.
The DDNAME and NAME file opening options are described on page 45. The DDNAME
compiler option is described on page 32. Using environment variables to supply file names
through DDNAMEs is described in “Environment-Determined File Names” on page 43.

69 Copyright IBM Corp. 1990, 1993 Chapter 5. Improving Performance

Chapter 5. Improving Performance

This chapter discusses the performance features of XL Pascal. It summarizes the XL Pascal
optimization levels, describes some of the optimizations XL Pascal performs, and outlines
some programming techniques that you can use to take advantage of the optimization
features of the compiler.

Optimization is the process of improving the object code generated by the compiler. Some
optimizations make the object code smaller, while others allow it to execute faster.
Optimization requires additional compile time, but usually results in reduced run time.

Although optimization makes your program run faster, it does not change what it does or its
overall design. Careful choice of an algorithm for each task is your best strategy for optimal
performance. The optimizing feature of the compiler is no substitute for an efficient
algorithm.

Optimization Levels
XL Pascal compile-time options specify whether optimization is performed. Three
optimization levels are available: OPT=0, OPT=2, and OPT=3.

The OPT=0 compiler option generates default object code without optimizing the program. It
is the recommended level of optimization for a program you are compiling to check syntax or
debugging. It provides the fastest compile time but a less efficient program run. The
compiler may perform some minor optimizations.

When you request the OPT=2 option, XL Pascal performs the optimization techniques
shown in the following sections.

When you request the OPT=3 option, XL Pascal performs the OPT=2 optimizations and
additional optimizations that may:

• Require more machine resources during compilation

• Take longer to compile

• Change the semantics of the program

Use the OPT=3 option when runtime performance is a critical factor, and machine resources
can accommodate the extra compile-time work.

Optimization is accomplished by control and data flow analysis for the entire program.
Particular attention is paid to innermost loops and to subscript address calculations.
Variables are retained in registers where possible to eliminate unnecessary loads and
stores.

In loops, optimization operates to prevent movement of any code that might cause an
exception unless the exception will occur anyway. For example, in the following loop, code
evaluating the expression n/k could be moved outside the loop, because it is invariant for
each iteration of the loop:

FOR j:=1 TO n DO
 IF (K<>0) THEN
 m[j]:=n/k;

However, the code will not be moved because K could be 0. Invariant computations
involving floating-point arithmetic or integer division (including the MOD function) are not
moved out of a loop.

70 XL Pascal User’s Guide

Optimization Techniques
Value Numbering

Involves local constant propagation, local expression elimination, and
folding several instructions into a single instruction.

Straightening Rearranges the program code to minimize branching logic and to combine
physically separate blocks of code.

Common Expression Elimination
Evaluates an expression once and saves its value instead of recalculating
several times. This is done even for intermediate expressions within
expressions. For example, if your program contains the following
statements, where C and D are variables, the common expression C+D
may be saved from its first evaluation for use in determining the value of F:

A := C + D;
 ...
F := C + D + E;

Code Motion If variables used in a computation within a loop are not altered within the
loop, it may be possible to perform the calculation outside of the loop and
use the results within the loop. Code motion accomplishes this.

Reassociation
Rearranges the sequence of calculations in a subscript expression
producing more candidates for common expression elimination.

Strength Reduction
Replaces less efficient instructions with more efficient ones.

Constant Folding
Combines constants used in an expression, and creates new ones.

For example:

A := 3 * SQR(20);

would be compiled as:

A := 1200;

All operators are eligible for constant folding, but only functions that can be
used in constant expressions are eligible for constant folding. An expression
like SUBSTR(’abc’,1,2) still requires a library call.

Dead Code Elimination
Eliminates unnecessary code. Other optimization techniques may cause
code to become dead.

Global Register Allocation
Allocates variables and expressions to available hardware registers by
coloring.

Instruction Scheduling
Reorders instructions to minimize execution time.

Related Information
Refer to the Optimization and Tuning Guide for Fortran, C, and C++: AIX Version 3.2 for
RISC System/6000 for techniques you can use for improve the performance of programs
compiled with the AIX compilers.

71Chapter 5. Improving Performance

Debugging Optimized Code
Avoid using dbx to debug code that has been optimized. If you must debug optimized code,
use caution with debugging techniques that rely on examining values in storage. A common
expression evaluation may have been deleted or moved. Variables assigned to a register do
not appear in storage.

Programs compiled with no optimization may appear to work differently when compiled with
OPT=2. This is often caused by program variables that have not been initialized. If a
program that worked with OPT=0 fails when compiled with OPT=2, you should look at the
cross-reference listing. Check for variables that are used but never set, and for program
logic that allows a variable to be used before being set.

Making Your Programs More Efficient
This section contains programming suggestions to take advantage of the optimization
features in making your programs more efficient.

Boolean Short Circuiting
XL Pascal makes the evaluation of Boolean expressions with AND (&) and OR (|) more
efficient by short-circuiting. That is, the right operand of these expressions is not evaluated if
the result of the operation can be determined by evaluating the left operand. The evaluation
of the expression is always from left to right.

You can take advantage of Boolean short-circuiting two ways:

• Put guard expressions at the beginning of Boolean expressions. They check that other
operations can be done, as illustrated in the following example:

IF (p <> NIL) & (p@.q = key1) THEN
 (* process record p@ *)
ELSE
 (* p does not point to a record that can be processed *)

is equivalent to:

IF (p <> NIL) THEN
 IF (p@.q = key1) THEN
 (* process record p@ *)
 ELSE
 (* p does not point to a record that can be processed*)
ELSE
 (* p does not point to a record that can be processed *)

The expression (p <> NIL) guards the statement (p@.q = key1), assuring that
p@.q is not evaluated if p = NIL. Because you need only one copy of the code at (*
p does not point to a record that can be processed *), the logic of the
program is also simplified.

• For faster execution, put operands determining the value of a Boolean expression early in
your code. For example, an expression consisting of several operands joined by AND is
FALSE if any one of the operands is FALSE. If you know that one of the operands is
usually FALSE and the others are as likely to be FALSE as TRUE, put the one that is
usually FALSE first.

72 XL Pascal User’s Guide

The following example illustrates this technique.

IF test_1(x) AND test_2(y) AND test_3(x, y) THEN
 (* process x and y *)
ELSE
 (* do something else *)

If test_1(x) is more likely to be FALSE than test_2(y) or test_3(x,y), the
program is likely not going to need to evaluate test_2(y) AND test_3(x,y). To
make the processing of the IF statement more efficient, make test_1(x) the first
operand.

Value, VAR, and CONST Parameter Passing
The data type of the parameter passed to a routine affects the efficiency of the parameter
passing convention you choose.

Scalar Type Parameters
Passing by value is the default, and is the most efficient way to pass scalar
type parameters. If the routine changes the value of the actual parameter,
pass it by VAR. Passing a scalar type parameter by CONST is usually of no
advantage.

Structured Type Parameters
For structured types, passing by CONST or VAR is more efficient than
passing by value. If the routine does not change any of the components of a
structured type parameter, pass it by CONST. If the routine changes any of
the components of a structured parameter, you must pass it by VAR.
Because the called routine must make a copy of the actual parameter,
passing a structured parameter by value is less efficient.

Any pointer, including the STRINGPTR and GSTRINGPTR type, is a
structured object. To change the target of the pointer but not the pointer
itself, you can pass a pointer parameter by CONST.

VALUE Initializations
Use a VALUE declaration to initialize a STATIC or DEF variable rather than using an
assignment statement at the beginning of a routine. The linkage editor performs this
initialization if you use a VALUE declaration.

Note: If a routine modifies a STATIC or DEF variable, the next time the routine is called,
the variable will have the new value, not that specified in the VALUE declaration.

73 Copyright IBM Corp. 1990, 1993 Chapter 6. Problem Determination

Chapter 6. Problem Determination

The compiler listing, error messages, and the symbolic debugger help you find and correct
problems in your program. This chapter describes how to use them to determine where an
error in your program may lie.

Compiler Listings
Depending on the compiler options you specify, the compiler produces a listing that consists
of a combination of the following sections:

• Header Section
• Options Section
• Source Section (optional)
• Cross Reference and Attribute Section (optional)
• File Table Section
• Object Section (optional)
• Compilation Epilogue Section

A heading identifies each major section of the listing. Angle brackets precede this heading,
allowing you to locate easily the beginning of a section. The heading looks like this:

>>>>> section name

This simple programming example demonstrates the sections of a listing:

IBM AIX RISC System/6000 XL Pascal Version 02.01 ––– sample.pas
10/25/93 13:38:24

>>>>> Options in effect:
 ASCII ATTRIBUTES=FULL CHECK FLOAT=MAF:FOLD NOFLTTRAP
 NOINLINE LANGLVL=VS
 LIST MAXMEM=2048 NATIVE NOOPTIMIZE SOURCE STRICT TRACEID
 XCOFF XREF=FULL

>>>>> Source Listing:

 1 |program sample ;
 2 |var
 3 |i: integer ;
 4 |begin
 5 | (* Write out the numbers from 1 to 5 *)
 6 | for i := 1 to 5 do
 7 | begin
 8 | write(i) ;
 9 | end ;
 10 | writeln ;
 11 |end.

74 XL Pascal User’s Guide

>>>>> Input Files:

 M sample.pas(line 0)

>>>>> Object Listing:
%EJECT 0

GPR’s set/used: ss–s ssss ssss s––– –––– –––– –––– –sss
FPR’s set/used: ssss ssss ssss ss–– –––– –––– –––– ––––
 CR’s set/used: ss–– ––ss

 | 000000 PDEF sample
 | 000000 PROC
 1| 000000 mfspr 7C08 02A6 1 –MFSPR r0=LR
 1| 000004 stm BFA1 FFF4 3 –STM (r1,–12)=r29–r31
 1| 000008 st 9001 0008 1 –ST (r1,8)=r0
 1| 00000C stu 9421 FFB0 1 –STU r1=(r1,–80)
 1| 000010 l 83E2 0000 1 L r31=.+sample(r2,0)
 6| 000014 cal 3860 0001 1 LI r3=1
 6| 000018 st 9061 0038 1 ST #1(r1,56)=r3
 6| 00001C cmpi 2C83 0005 1 C cr1=r3,5
 6| 000020 bc 4185 0060 3 BT CL.4,cr1,0x2/gt
 CL.5:
 CL.1:
 1| 000024 l 83A2 001C 1 L r29=./GlAuto/(r2,0)
 6| 000028 l 8061 0038 1 L r3=#1(r1,56)
 6| 00002C st 907D 0000 2 ST i(r29,0)=r3
 1| 000030 l 83C2 0014 1 L r30=.output(r2,0)
 8| 000034 oril 63C3 0000 2 LR r3=r30
 8| 000038 ai 30BF 0060 1 AI r5=r31,96
 8| 00003C cal 3880 0001 1 LI r4=1
 8| 000040 bl 4BFF FFC1 0 CALL $pckopen,3,output”,r3,r4
,r5,$pckopen”,cr[0167]”,r0”,r3”–r12”,fp0”–fp13”,mq”,lr”,xer”–ffsr
”,ffcr

 8| 000044 cror 4DEF 7B82 0
 8| 000048 oril 63A4 0000 1 LR r4=r29
 8| 00004C oril 63C3 0000 1 LR r3=r30
 8| 000050 l 8084 0000 1 L r4=i(r4,0)
 8| 000054 cal 38A0 000C 1 LI r5=12
 8| 000058 cal 38C0 0000 1 LI r6=0
 8| 00005C bl 4BFF FFA5 0 CALL Spfwrti,4,output”,r3,r4
,r5,r6,$pfwrti”,cr[0167]”,r0”,r3”–r12”,fp0”–fp13”,mq”,lr”,xer”–ff
sr”,ffcr

75Chapter 6. Problem Determination

 8| 000060 cror 4DEF 7B82 0
 CL.2:
 6| 000064 l 8061 0038 1 L r3=#1(r1,56)
 6| 000068 cmpi 2C83 0005 2 C cr1=r3,5
 6| 00006C bc 4186 0014 3 BT CL.6,cr1,0x4/eq
 6| 000070 l 8061 0038 1 L r3=#1(r1,56)
 6| 000074 ai 3063 0001 2 AI r3=r3,1
 6| 000078 st 9061 0038 1 ST #1(r1,56)=r3
 6| 00007C b 4BFF FFA8 0 B CL.1
 CL.6:
 CL.7:
 CL.3:
 CL.4:
 1| 000080 l 83C2 0014 1 L r30=.output(r2,0)
10| 000084 oril 63C3 0000 2 LR r3=r30
10| 000088 ai 30BF 0060 1 AI r5=r31,96
10| 00008C cal 3880 0001 1 LI r4=1
10| 000090 bl 4BFF FF71 0 CALL $pckopen,3,output”,r3,r4
,r5,$pckopen”,cr[0167]”,r0”,r3”–r12”,fp0”–fp13”,mq”,lr”,xer”–ffsr
”,ffcr

10| 000094 cror 4DEF 7B82 0
10| 000098 oril 63C3 0000 1 LR r3=r30
10| 00009C bl 4BFF FF65 0 CALL
$pfwrtln,1,output”,r3,$pfwrtln”
,cr[0167]”,r0”,r3”–r12”,fp0”–fp13”,mq”,lr”,xer”–ffsr”,ffcr
10| 0000A0 cror 4DEF 7B82 0
 CL.0:
 1| 0000A4 cal 3860 0004 1 LI r3=4
 1| 0000A8 cal 38A0 0000 1 LI r5=0
 1| 0000AC oril 60A4 0000 1 LR r4=r5
 1| 0000B0 bl 4BFF FF51 0 CALL
$plstmng,3,r3,r4,r5,$plstmng”
,cr[0167]”,r0”,r3”–r12”,fp0”–fp13”,mq”,lr”,xer”–ffsr”,ffcr

1| 0000B4 cror 4DEF 7B82 0
 CL.8:
11| 0000B8 l 8001 0058 1 L r0=#stack(r1,88)
11| 0000BC mtspr 7C08 03A6 2 LLR lr=r0
11| 0000C0 ai 3021 0050 1 AI r1=r1,80
11| 0000C4 lm BBA1 FFF4 3 LM
r29,r30,r31=#stack(r1,–12)
11| 0000C8 bcr 4E80 0020 0 BA lr

 Straight–line exec time 53
 | 0000CC Tag Tables
 | 0000CC 00000000
 | 0000D0 00022041
 | 0000D4 80030001
 | 0000D8 000000CC
 | 0000DC 0006

76 XL Pascal User’s Guide

 | sample
 | 0002E8 Constant Area Starts Here
 | 0002E8 186D9BE0 696E7075 74202020 20202020
 | 0002F8 20202020 20202020 20202020 20202020
 | 000308 20202020 696E7075 74202020 20202020
 | 000318 20202020 20202020 20202020 20202020
 | 000328 20202020 00000000 00000000 00000000
 | 000338 FFFFFFFF 8A000400 00000000 00000000
 | 000348 186D9BE0 6F757470 75742020 20202020
 | 000358 20202020 20202020 20202020 20202020
 | 000368 20202020 6F757470 75742020 20202020
 | 000378 20202020 20202020 20202020 20202020
 | 000388 20202020 00010101 00000000 00000000
 | 000398 FFFFFFFF 8A000080 00000000 00000000
 | 0003A8 186D9BE0 73746465 72722020 20202020
 | 0003B8 20202020 20202020 20202020 20202020
 | 0003C8 20202020 73746465 72722020 20202020
 | 0003D8 20202020 20202020 20202020 20202020
 | 0003E8 20202020 00020101 00000000 00000000
 | 0003F8 FFFFFFFF 8A000080 00000000 00000000
 | 000408 End Of Code Csect

 Instruction count is 51

>>>>> CROSS REFERENCE LISTING

===
IDENTIFIER ATTRIBUTES
(File#–Line#)
===
i CLASS = global auto TYPE = integer SIZE = 4
(0–3) ALIGN = double word
 REFERENCES: *0–6 0–8

sample CLASS = automatic TYPE = SIZE = 0
(0–1)

>>>>> Compilation Epilog:
Compiler was created 93/10/09 23:21:31.

Diagnostics Issued:
 Total errors :0
 Maximum Severity :0

Another listing is shown in Appendix A, “Example Program”.

Header Section
The listing file always has a header section containing the following:

• A compiler identifier consisting of:
– compiler name
– version number
– release number

• Source file name
• Date of compilation
• Time of compilation

The header section appears only once in the file as the first line in the listing.

77Chapter 6. Problem Determination

Options Section
The options section is always present in a listing. It lists only the options in effect for the
compilation. With the OPTIONs compiler option set, this section lists the settings for all
options. Refer to page 37 for more information on the OPTIONs compiler option.

Source Section
The source section contains the input source lines, each with a line number and a file
number, if one exists. The source section also contains error messages interspersed with
the code, as they would appear on the terminal during compilation. The source lines and the
numbers associated with them appear only if the SOURCE compiler option is in effect. Refer
to page 38 for more information on the SOURCE compiler option.

Related Information
“Correcting Compile-Time Errors” on page 81 describes the format of error messages in the
source section. “Compile-Time Error Messages” on page 79 describes file and line
numbering.

Cross-Reference and Attribute Section
This section provides information about the variables used in the compilation unit. It is
present if the XREF or ATTR compiler option is in effect. Depending on the options in effect,
this section contains all or part of the following information about the variables used in the
compilation unit:

• Name of the variable.

• Attributes of the variable (if ATTR is in effect). Attributes information includes the type and
the storage class of the variable.

Storage class can be any one of the XL Pascal variable types:

automatic
dynamic
external
global automatic
parameter
static
type

Type can be any one of the XL Pascal data types:

alfa pointer

alpha procedure

array real

boolean record

char set

file shortreal

function space

gchar string

gstring stringptr

gstringptr text

integer

• Dimensions of the variable (if an array), the size in bytes, and the alignment of the
variable (if ATTR is in effect).

78 XL Pascal User’s Guide

• File and line numbers on which your program defines, references, or modifies the
variable. If the variable is initialized or set, the coordinates are marked with an asterisk
(*), for example, TEST 0–10, 0–20, *0–30. If the variable is referenced, the
coordinates are not marked.

Specifying the FULL suboption with XREF or ATTR causes XL Pascal to report all variables
in the compilation unit. Specifying no suboption displays only the variables you use.

File Table Section
This section is always present. It contains a table showing the number and name for each
main source file and include file used, and lists the line number of the main source file at
which the include file is referenced.

Object Section
This section is produced only when the LIST compiler option is in effect. It contains the
object code listing, which shows the source line number, the instruction offset in
hexadecimal, the assembler mnemonic of the instruction, and the hexadecimal value of the
instruction. On the right side, it also shows the cycle time of the instruction and the
intermediate language of the compiler. Finally, the total cycle time (straight-line run time) and
the total number of assembler instructions produced is displayed. XL Pascal repeats this
section for each compilation unit.

Compilation Epilog Section
This section is always present in a listing. It is the last section of the listing for each
compilation. It displays the date and time the compiler was created, contains the diagnostics
summary, and says whether the compilation was successful.

79Chapter 6. Problem Determination

Error Messages
The compiler issues messages for all errors it detects during compilation. Compiled object
code and runtime environment routines issue error messages for errors they detect at run
time.

Compile-Time Error Messages
Compile-time error messages go to STDOUT. With the appropriate options set, they can
also be displayed in the listing file in which the errors were detected.

This type of message describes the error that was detected and its location. The format of a
compile-time error message is

ff . ll |===> (s) 15cc–nnn message–text

Where Is

ff source file number

ll line number within the source file where the error was detected

s severity level

15 product number, indicating that the XL Pascal compiler issued the error
message

cc component number, indicating the component of the compiler that issued
the message:

30 Pascal-specific message, indicating a syntax error or a violation of
 Pascal requirements

00 code generation error message

01 IBM AIX RISC System/6000 XL general compiler message

nnn unique error message number

message–text message text describing the error, including identifiers and line numbers
associated with it

Include files are numbered sequentially in the order in which %INCLUDE directives are
processed. The top-level source file has no source file number. XL Pascal numbers source
lines separately for each file.

The error severity level is a number from 0 to 8, indicating how severe the error is and what
the compiler does about it. The return code value of the compiler is the highest error
message severity code in the program.

80 XL Pascal User’s Guide

Message Classes and Compiler Response

Message Class Return

Code

Explanation Compiler

Response

Informational 0 Note or suggestion to
programmer about
conditions found during
compilation. Not an
error.

Compilation
continues

Warning 1 A minor error has been
detected that should be
corrected. The error
does not interfere with
compilation.

Compilation
continues

Error 2 The compiler detects an
error that will cause a
runtime trap if the
program is run.

Compilation
continues

Severe error 3 The program has an
error that prevents
object code generation.

Compilation
continues but
object code is
not produced

Unrecoverable
error

4–8 A compiler limit has
been exceeded, a
compiler error has
occurred, or a source
file cannot be found.

The compiler
halts

Example
This XL Pascal compile-time error message:

3 . 26 |===> (3) 1530–267 XMIN is already defined on line 5.

means:

• The error was detected in the third include file on line 26.

• The error is a level-3 error, so compilation continues but the compiler does not generate
object code.

• The error message was issued by the XL Pascal compiler (15) and is specific to Pascal
(30).

• The error message number is 267.

• The message text indicates that the identifier XMIN was defined more than once: on line
5 in the top-level source file, and again on the line where the error was detected.

Note: The identifier XMIN appears in uppercase in the error message, but it can be in any
combination of uppercase and lowercase letters in the source file.

81Chapter 6. Problem Determination

Correcting Compile-Time Errors
XL Pascal displays compile-time diagnostic messages to standard error. Messages are
placed in the source listing if you request a listing using the LIST, SOURCE, XREF, ATTR,
or STAT compiler option. Compile-time error messages generally mean program errors that
prevent the program from running in its present form. These error messages identify the file
and line numbers in the source program where the error is detected. A column mark line
appears above the error message in the listing, but not in the standard error file displayed
after compilation. The symbol _|_ marks the column at which the error is first detected.

If the SOURCE option is in effect, the error messages generated during the compilation
process are interspersed with the source listing. They contain:

• Source line
• Column mark line
• Error message, which consists of:

– File and line number of the error
– Severity of the message
– Number of the error message
– Text of the error

For example:

20 | i := max(’a’, 3);
 |
20 |===> (3) 1530–210: Arguments to max not conformable.

If the NOSOURCE option is in effect and you request, for example, an object listing (with the
LIST option), only error messages appear in the source section of the listing. They contain:

• Column mark line
• Error message, which consists of:

– File and line number of the error
– Severity of the message
– Number of the error message
– Text of the error

For example:

 |
20 |===> (3) 1530–210: Arguments to max not conformable.

There are two kinds of compile-time errors: syntax errors and semantic errors. Syntax errors
are caused by incorrect punctuation or misuse of reserved words or operators. Semantic
errors result from incorrect definition or use of constants and identifiers.

Correcting Syntax Errors
Syntax error message texts include one of the following phrases:

• Syntax error, unexpected symbol
• Unexpected reserved word
• Unexpected keyword
• Unexpected end-of-file

They also include the unexpected symbol or identifier, and the column mark line shows
which column contains it.

The XL Pascal compiler does all syntax checking on one pass. It detects errors based on
the language objects it encounters during its single pass through the source code, marking
points where it detected unexpected symbols. XL Pascal issues a diagnostic if it finds
something it did not expect based on what it has processed to that point.

82 XL Pascal User’s Guide

Because XL Pascal syntax analysis processes combinations of several input symbols at
once, an error might be detected one symbol before or after the one identified in the error
message. In the following example of a syntax error, XL Pascal detects a missing semicolon
at the end of the VAR statement only after it has read the BEGIN symbol.

PROGRAM error ;

VAR
 sysprint : TEXT (* semicolon missing here *)

BEGIN
 REWRITE(sysprint) ;
 WRITELN(sysprint,’Here’s a message from XL Pascal’) ;
END.

Compiling the program results in the following syntax error messages:

>>>>> Source Listing:
 1 |PROGRAM error ;
 2 |
 3 |VAR
 4 | sysprint : TEXT (* semicolon missing here *)
 5 |
 6 |BEGIN
 |
 6 |===> (3) 1530–144: Syntax error: unexpected symbol BEGIN.
 7 | REWRITE(sysprint) ;
 8 | WRITELN(sysprint,’Here’s a message from XL Pascal’) ;
 |
 8 |===> (3) 1530–144: Syntax error: unexpected symbol ,.
 |
 8 |===> (3) 1530–126: String ended by end of line.
 9 |END.
 |
 9 |===> (3) 1530–145: Unexpected end of file.

The compiler recovers from a syntax error by finding the next error-free part of the program
and starting again there. In the program error, the compiler cannot compile any of the
program past the line with the mismatched single quotation marks, and indicates that it was
unable to recover from a syntax error by issuing the following message:

Unexpected end of file.

Correcting other syntax errors usually gets rid of Unexpected end of file messages.

83Chapter 6. Problem Determination

Correcting Semantic Errors
Semantic errors usually result from using an identifier or constant incorrectly, as shown in
the following example:

>>>>> Source Listing:
 1 |PROGRAM error ;
 2 |
 3 |TYPE this_type = no_type ;
 |
 3 |===> (3) 1530–372: Type NO_TYPE is undefined.
 4 |
 5 |VAR
 6 | my_var : no_type ;
 7 | another_var : no_type ;
 8 |STATIC more_var : no_type ;
 9 |
 10 |BEGIN
 11 | REWRITE(my_var) ;
 |
 11 |===> (3) 1530–205: Argument to rewrite must be of type FILE.
 12 | WRITELN(my_var,’This has no type’) ;
 |
 12 |===> (3) 1530–166: Identifier not in proper context.
 13 |END.

For each error detected, the error message describes the problem, and the column mark
line shows which symbol is incorrect.

One error can cause more than one message. In the example, the type declaration for
this_type in line 3 has an error message. At line 5, the variable my_var is declared as
type no_type, and XL Pascal issues an error message the first time the variable my_var
is used at line 12. Correcting the type declaration prevents the other error messages.

Semantic error messages are generally not repeated. As shown in the example, only the
first variable declaration with type no_type causes an error message stating that the type
name is not valid. The other VAR declaration and the STATIC declaration that use the type
no_type do not have error messages.

Runtime Error Messages
Runtime error messages are issued either by compiled object code or by runtime
environment routines. They are put in the standard error file.

The format of an XL Pascal runtime error message is:

1530–nnn message–text

Where Is

1530 the combined product and component number indicating that the error
message is from XL Pascal object code or an XL Pascal runtime
environment routine

nnn the unique error message number

message–text the message text describing the error.

Some runtime error messages are simply warnings indicating that an error was detected but
the program can continue running. For example, the following shows that the operand of
DISPOSE was either NIL or not currently pointing to a Pascal dynamic variable:

1530–022 DISPOSE operand NIL or invalid.

84 XL Pascal User’s Guide

The DISPOSE operation is unsuccessful, but the program continues running.

Other runtime errors are not recoverable and the program ends immediately. For example,
the following shows that the program tried to access a subscripted variable with an incorrect
subscript value:

1530–101 Subscript out of range.

Correcting Runtime Errors
Runtime error messages generally mean that the program will run, but it does not run
correctly. It may end abnormally, or it may run but give incorrect output.

Runtime Checking Errors
If checking is activated with the %CHECK compiler directive, a runtime trap occurs when the
compiler detects an error. When this happens, the program ends. The following errors cause
a runtime trap:

Subscript error The value of an array subscript is outside the bounds allowed for the
subscript.

Subrange error The value assigned to a subrange variable is outside the bounds
allowed for the subrange.

NIL pointer Attempting to reference a variable from a pointer with the value NIL.

CASE label The expression of a CASE statement has a value other than any of
the specified CASE labels, and there is no OTHERWISE clause.

String truncation Attempting to assign a value to a string with more characters than the
maximum length of the string.

Assertion failure Processing an ASSERT statement with an associated Boolean
expression value of FALSE.

String subscript out of bounds
An indexing operation was attempted on a string with a length greater
than the current length of the string.

Function value A function was returned without assigning a result value.

85Chapter 6. Problem Determination

Example
VAR
 st3 : STRING(3);
 st5 : STRING(5);
 ch : CHAR;
 i : INTEGER;
 .
 .

FUNCTION
 f : INTEGER;
BEGIN
 RETURN;
 f := 1;
END;
.
.
st5 := ’abcde’;
st3 := st5; (* string truncation *)
ASSERT FALSE > TRUE (* assertion failure *)
st3 := ’ab’;
ch := st3[3]; (* string subscript out of bounds *)
i := f; (* function not assigned a result *)

Using the Symbolic Debugger
XL Pascal supports the dbx symbolic debugger. Use the –g compiler option when compiling
to use the symbolic debugger.

Using Traceback Facilities
If you use one of the traceback facilities and your program causes a runtime trap, the
program halts.

XL Pascal can produce a traceback when there is a runtime trap. A traceback shows the
sequence of routine calls that led to the trap. To get a traceback, call the predefined
procedure xl__trap sometime before the trap occurs. If your program causes a trap any
time after calling xl__trap, XL Pascal produces a traceback. If your program does not cause
a trap, xl__trap has no effect.

Note: Be careful to spell xl__trap correctly. There are two underscore characters together.

Example
Given the following program:

PROGRAM traceback;
BEGIN
 xl__trap;
 assert(FALSE);
END.

If you compile without the –g option, the following output is produced:

Trap encountered:
SIGTRAP – Trace trap

Traceback:

Offset 0x00000014 in procedure traceback

––– End of call chain –––

86 XL Pascal User’s Guide

If you compile with the –g option, the following output is produced:

Trap encountered:
SIGTRAP – Trace trap

Traceback:

Offset 0x00000014 in procedure traceback, line 6 in file p.pas

––– End of call chain –––

When you run the program within dbx, an error message is written to standard error. By
specifying the –g option at compilation time, the line number of the instruction causing the
trap and the file name are also written to standard error. Use the where subcommand in
dbx to get a complete traceback written to standard error showing the line number and the
sequence of instructions leading up to the trap.

Related Information
The dbx symbolic debugger and its subcommands are described in the AIX Version 3.2
Commands Reference. The –g compiler option is described on page 32. The format of
runtime messages is described in “Runtime Error Messages” on page 83.

Message Catalog Errors
The XL Pascal Compiler and runtime environment produce all of their messages from
message catalogs using the AIX National Language Support facilities. Before you can use
these facilities, the AIX environment variables LANG and NLSPATH should be set to a
language for which the XL Pascal message catalogs were installed on your system.

Default Messages
The default U.S. English message catalogs are in the following directories:

/usr/lpp/xlp/lib/default_msg (compile-time messages)
/usr/lpp/xlprtemsg (runtime messages)

These directories contain the most current message catalogs in U.S. English. They are the
default message catalogs that are shipped with the compiler and runtime licensed program
products.

The file names of the message catalogs are the same for all supported international
languages.

If the specified language message catalog cannot be opened to display messages, the
corresponding default U.S. English message catalog is used.

If the specified language message catalog can be opened, but a particular message cannot
be found, the missing message is retrieved from the corresponding default U.S. English
message catalog. Messages which can be found appear in the specified language.

If compile-time messages are appearing in U.S. English when they should be in another
language, verify that the correct message catalogs are installed and that the environment
variables are set accordingly. For runtime messages, also ensure that your program calls
the setlocale routine.

87Chapter 6. Problem Determination

To determine the XL Pascal message catalogs that were installed, use the following
command to display a list:

lslpp –h xlp*.msg

Related Information
See “Environment Variables for the Message Catalogs and Help FIles” on page 14 for more
information on LANG and NLSPATH. For more information about the AIX national language
facilities, see the AIX Version 3.2 General Programming Concepts.

88 XL Pascal User’s Guide

89 Copyright IBM Corp. 1990, 1993 Chapter 7. Interlanguage Applications

Chapter 7. Interlanguage Applications

The AIX Operating System for IBM RISC System/6000 system and the XL Pascal compiler
support routine calls and data references among routines written in different languages. This
chapter shows how to write Pascal references to external variables defined in other XL
languages. It also discusses how to write Pascal routines that call code written in those
languages and that can be called from such routines.

This chapter assumes you are familiar with the syntax of the languages you will be using.
The elements of the languages are not defined here. Refer to the appropriate XL language
reference manuals for detailed information.

The Pascal language described here is IBM AIX XL Pascal. The Fortran language is IBM
AIX XL Fortran, and the C language is IBM AIX XL C.

Interlanguage Reference Requirements
Code written in XL Pascal must meet four requirements to use data defined in other XL
languages or to call routines written in other XL languages:

1. The name of a variable or routine defined in another language must be accessible in
Pascal as an external name.

2. An external variable defined in another language must be declared in Pascal with a
matching data type.

3. An actual parameter passed to a routine written in another language must be declared in
the calling program with a data type that matches the corresponding formal parameter. It
must also be passed with the same parameter-passing mode as the corresponding
formal parameter.

4. The type of value returned by a function written in another language must match the type
of value expected by the calling program.

External Names
This section discusses how your XL Pascal program gains access to external routines and
variables, and how to refer to external names that contain uppercase and lowercase letters.

External Routine Names
To call an external routine, Pascal code must include an appropriate FUNCTION or
PROCEDURE declaration containing an EXTERNAL directive. For example, the following
procedure declaration gives a Pascal routine access to external procedure getscr:

PROCEDURE getscr(var img : rc); EXTERNAL;

External Variable Names
To gain access to an external variable, Pascal code must include an appropriate REF or
DEF declaration for the variable. The declaration in the following example gives a Pascal
routine access to external variable xaxis_symb:

DEF xaxis_symb : integer;

90 XL Pascal User’s Guide

A REF declaration is preferable to DEF because REF does not create the variable if no
other definition of it exists, whereas a DEF creates the variable even if it has not been
previously defined. For example, if you misspell the name of the external variable, DEF
creates a variable with the incorrect name, but a REF declaration generates an undefined
symbol diagnostic message when the program is link-edited and loaded.

Mixed-Case External Names
By default, all external names used in XL Pascal programs are folded to lowercase
regardless of how they are written in the source code. Letters are folded to lowercase, and
all other characters remain intact. For example, external names written as Z_axis2,
Z_Axis2, or Z_AXIS2 all become references to the external name z_axis2.

If the program being called requires it, your program can preserve mixed uppercase and
lowercase in external names: with the MIXED compiler option or with the linkage editor
rename command. The rename command is equivalent to the –brename linkage editor
option.

The MIXED Compiler Option
Specifying MIXED makes all identifiers case sensitive. You can set this option in the Pascal
source code with the %OPTION MIXED directive, or on the xlp command line with the –U
option or the –qmixed option.

Linkage Editor Rename Command
The rename command in the linkage editor (ld) converts a reference to one name into a
reference to another name. Both names can be mixed case. For example, the following
linkage editor command converts a Pascal reference to the lowercase external name
z_axis2 into a reference to the mixed-case name Z_Axis2:

rename z_axis2 Z_axis2

The rename command is useful if you want only certain selected Pascal identifiers to be in
mixed case. To make all identifiers in your program case sensitive, use the MIXED compiler
option.

Related Information
The MIXED compiler option is described on page 37. The linkage editor rename command
is described with the AIX ld command in the AIX Version 3.2 Commands Reference.

Matching Data Types
Matching data types in different languages have the same internal representation. A data
object can be processed by code written in different languages only if all of the declarations
for the object specify matching types. This section describes the correspondence between
data types in XL Pascal and other XL languages.

Matching Data Types among XL Languages
When passing data between programs written in different languages, you must know which
data types have counterparts across languages, and where no equivalent representation
exists. You should avoid using Pascal data types not available in other languages.

The following table shows the correspondence among the data types available in the XL
Pascal, XL Fortran, and XL C languages. Blank cells indicate that no applicable matching
data type exists.

91Chapter 7. Interlanguage Applications

XL Pascal Data Types XL Fortran Data Types XL C Data Types

ARRAY Dimensioned variable
(transposed)

array pointer (*)
to type

BOOLEAN

CHAR CHARACTER*1 char

Enumeration enumeration

FILE No corresponding type

Functional Parameter Dummy procedure pointer (*) to
function

GCHAR wchar_t

GSTRING(n)

GSTRINGPTR

INTEGER INTEGER

INTEGER*4

signed long int

PACKED –32768..32767 INTEGER*2 short signed int

PACKED 0..65535 LOGICAL*2 short unsigned int

PACKED –128..127 INTEGER*1 signed char

PACKED 0..255 LOGICAL*1 unsigned char

PACKED ARRAY[1..n]
OF CHAR

CHARACTER*n char array

PACKED RECORD Sequence derived type

POINTER (with
NOPTR4)

no corresponding type

POINTER (with PTR4) Integer POINTER *type

REAL REAL*8

DOUBLE PRECISION

double

RECORD Derived type struct

RECORD variant union

SET

SHORTREAL REAL

REAL*4

float

SPACE

STRING(n)

STRINGPTR

TEXT

Creating Matching Data Types
In some cases, defining a new data type in XL Pascal to match an otherwise unmatched
type of another language is possible, as shown in the following examples:

• Pascal does not have a predefined type to match the Fortran COMPLEX type. To define a
Pascal matching type for COMPLEX, use a Pascal RECORD type with two
SHORTREAL fields.

92 XL Pascal User’s Guide

• C does not have a predefined type that matches a Pascal POINTER type. To define a C
matching type for a POINTER, use a C struct with one C pointer field and one int field.
However, if the –qptr4 option was used on the Pascal file, no changes are required in C.

Character Variable Types
Most numeric data types have counterparts across languages, but character and string data
types generally do not. This section describes the conventions for passing character data
between XL Pascal and the other XL languages.

Pascal and Fortran
Both Pascal and Fortran have the same internal representation for fixed strings. In Fortran,
the only character type is CHARACTER*N, which corresponds to the Pascal PACKED
ARRAY[1..n] OF CHAR. Both are stored as sets of contiguous bytes, one character per
byte. Like the Pascal fixed string, the length of a Fortran character variable or character
array element is determined at compile time, and is therefore static. Fortran does not have a
data type to match the Pascal varying-length STRING type.

Pascal and C
Pascal and C use different internal representations for character stings. In Pascal, you can
declare strings several different ways, each of which has a different internal representation.
C has one internal representation of character strings but has several ways to declare them.

C Strings and char Arrays
C represents a character string in a sequence of consecutive bytes with an ASCII null
character (hexadecimal ’00’XC) in the byte immediately following the last character in the
string. Storing a C string in a fixed-length array of char requires that one of the array
elements contain the ASCII null to mark the end of the string content.

The C analog of a Pascal fixed-length character string is an array of char whose size is the
length of the Pascal string. The C analog of a Pascal varying-length character string is a
struct containing two fields:

• A short int giving the current length of the string
• A char array whose size is the maximum length of the Pascal string

Pascal Arrays of CHAR
Pascal represents fixed-length and varying-length character strings in a fixed-length array of
characters.

Fixed-length strings The size of the array is the length of the string, and all elements
of the array are character positions in the string.

Varying-length strings An additional 2-byte packed subrange value gives the current
length of the string. The fixed-length array is large enough for the
maximum length of the string.

The Pascal analog of a C character string of indeterminate length is a PACKED ARRAY OF
CHAR containing an ASCII null (’00’XC) in the element following the actual string content.
If a Pascal program does not insert the ASCII null element, C code cannot find the end of
the string.

Note: XL Pascal will not treat an ASCII null as the end of a string unless the Pascal
program explicitly looks for the null.

93Chapter 7. Interlanguage Applications

Storage of Arrays
Fortran arrays have a user-defined lower bound. Arrays in C have a lower bound of 0. XL
Pascal and XL C store elements of multidimensional arrays in row-major order; that is, in
consecutive locations as their rightmost subscript increases. Conversely, Fortran arranges
array elements in ascending storage units in column-major order, with the elements stored
in consecutive locations as their leftmost subscript increases.

Example
The following table shows how a two-dimensional array declared in Pascal by

a:ARRAY[1..3,1..2] OF INTEGER

is stored in all three XL languages.

Language XL Pascal XL Fortran XL C

Array Declaration a:ARRAY[1..3,1..2]
OF INTEGER

INTEGER a(2,3) int
a[3][2]

Elements a[1,1]
a[1,2]
a[2,1]
a[2,2]
a[3,1]
a[3,2]

a(1,1)
a(2,1)
a(1,2)
a(2,2)
a(1,3)
a(2,3)

a[0][0]
a[0][1]
a[1][0]
a[1][1]
a[2][0]
a[2][1]

Pascal Arrays, C Pointers, and Arrays
A Pascal POINTER occupies 8 bytes. It contains the address of an object and additional
information about the size, alignment, and allocation status of the object. However, when the
–qptr4 option is turned on, the POINTER will occupy 4 bytes. When you specify –qptr4,
only the address of the object is included. A Pascal POINTER type has no matching analog
in C, unless the –qptr4 option is specified.

The C pointer type (*) is an address occupying 4 bytes. A C program can use a pointer in
two ways:

• As the address of an isolated object, which corresponds to a Pascal VAR or CONST
parameter whose type matches the target object of the C pointer.

• As the address of a generic element in an array, which corresponds to a Pascal VAR or
CONST parameter that is an array whose type matches the target object of the C pointer.

94 XL Pascal User’s Guide

Examples
The following examples show how to convert between XL Pascal 8-byte pointers and XL C
4-byte pointers, assuming the –qptr4 option is not used.

SEGMENT POINTERS;

TYPE
 BOTH_PTRS = RECORD (*overlap Pascal pointer with C pointer *)
 CASE INTEGER OF
 1 : (pp : POINTER);
 2 : (cp : INTEGER;
 cf : INTEGER);
 END; (* endcase *)

(* Converting a Pascal pointer to an integer *)
(* to be used as a C pointer *)

FUNCTION PTR_P2C(ppi : POINTER) : INTEGER; EXTERNAL;

FUNCTION PTR_P2C;

VAR
 gp : BOTH_PTRS;

BEGIN (* PTR_P2C *)
 gp.pp := ppi;
 PTR_P2C := gp.cp;
END; (* PTR_P2C *)

(* Converting an integer representing a C pointer *)
(* to a Pascal pointer *)

FUNCTION PTR_C2P(cpi : INTEGER) : POINTER; EXTERNAL;

FUNCTION PTR_C2P;

VAR
 gp : BOTH_PTRS;

BEGIN (* PTR_C2P *)
 gp.cp := cpi;
 gp.cf := MAXINT; (*defeats Pascal addressing range check*)
 PTR_C2P := gp.pp;
END; (* PTR_C2P *)

Routine Calls and Returned Values
Pascal code that calls an external routine must declare that routine as an EXTERNAL
FUNCTION or an EXTERNAL PROCEDURE. This section describes how the language of
the external routine and the type of the return value determine the corresponding declaration
of the routine in the calling program.

Function Calls
Declaring an external routine in the Pascal code as a FUNCTION requires the routine to
return a value whose type matches the type of value that the calling routine expects.

95Chapter 7. Interlanguage Applications

Pascal External Routines
You must define the external routine as a FUNCTION. In the calling routine,
the FUNCTION declaration corresponding to the external routine must be
the same type as the external routine.

Fortran External Routines
You must define the external routine as a FUNCTION. The type of the
external routine must match the type in the FUNCTION declaration in the
Pascal program.

C External Routines
All C routines are defined as functions. The type of the function must match
the type in the FUNCTION declaration in the Pascal program. If the function
definition in C does not specify a return value type, it returns a C int that
matches the Pascal INTEGER type. The C type void is equivalent to int for
all interlanguage references.

Procedure Calls
Declaring an external routine as a PROCEDURE causes a Pascal program to ignore any
value returned by the called routine.

Pascal External Routines
You must define the external routine as a PROCEDURE.

Fortran External Routines
You can define the external routine as a SUBROUTINE or a FUNCTION. If
it is a function, a Pascal routine can call it as a procedure and ignore the
returned value.

C External Routines
You must define all C routines as functions. A Pascal routine can call a C
function as a procedure and ignore its returned value.

Routine Linkage Convention
XL Pascal uses the AIX common linkage convention. For every routine call, the compiler
forms a sequence of parameter words from the types and modes of the routine parameters.
AIX common linkage convention uses the parameter word sequence and the type of the
routine return value to define the following details of routine linkage:

• Register contents
• Register usage (both general and floating-point registers)
• Stack contents
• Object code format

The other XL languages also use the AIX common linkage convention. In general, for code
written in one XL language to call a routine written in another language, both must form
identical parameter word sequences for the routine call.

Parameter Linkage
XL Pascal passes parameters as a sequence of parameter words. The parameter word
sequence for each formal parameter is determined from left to right by the formal parameter
list of the called routine.

Each parameter is passed as one or two parameter words. The first word is either the value
or the address of the actual parameter. If the actual parameter requires a descriptor, the
second word is the value of the descriptor.

96 XL Pascal User’s Guide

First Parameter Word
The first parameter word is determined by the mode and type of the formal parameter.

Pass by Value (no VAR or CONST Specified)
For a scalar type whose value fits in one 32-bit word, the first parameter
word is the value of the actual parameter.

For a REAL parameter, the 64-bit value is treated as two words containing
a 64-bit floating-point value.

For a parameter that is not a scalar, the first parameter word is the address
of the actual parameter. The called routine makes a local copy of the actual
parameter and processes its local copy. A RECORD or ARRAY parameter
is passed this way, even if its entire value fits in one word.

Pass by VAR or CONST
The first parameter word is the address of the actual parameter.

Procedural Parameters
The first parameter word is the address of the routine descriptor of the
actual parameter.

Second Parameter Word
The second parameter word is a descriptor word whose value is determined by the type of
the formal parameter. A descriptor gives additional information about the size of the actual
parameter or the sizes of its components. It is used only if the actual parameter requires a
descriptor. If the type of the formal parameter does not require any descriptor information,
XL Pascal uses no second parameter word.

Descriptor words are required for two types of formal parameters:

Conformant string
The length of the string, including the leading two bytes that contain the
current length of the string. This is 2 plus the declared maximum length of
the string.

Variant record
The size of the record. If the record was created by NEW with tag values,
the size is determined by the active variants for those tag values. For any
tag values not specified, the size of the largest variant is used.

Examples of Parameter Word Sequences
For this routine declaration:

PROCEDURE d1 (p1:INTEGER; VAR p2:CHAR; p3:STRINGPTR);

XL Pascal forms the following parameter word sequence:

1. The value of the first actual parameter, an INTEGER.

2. The address of the second actual parameter, a CHAR.

3. The address of the third parameter, a STRINGPTR, which occupies 8 bytes and cannot
be passed as one word. Procedure d1 makes a local copy of the parameter and
processes that local copy.

For this routine declaration:

FUNCTION f (r:recptr; procedure pp(VAR x:REAL);
VAR
 s:STRING); (* recptr is a variant record type *)

97Chapter 7. Interlanguage Applications

XL Pascal forms the following parameter word sequence:

1. The address of the first actual parameter, a variant record of the type recptr. Function
f makes a local copy of the parameter and processes that local copy.

2. The size of the first actual parameter, which is determined by the calling program from
the tag values that are specified when the record is created.

3. The address of the descriptor for the procedure that is passed as the second actual
parameter.

4. The address of the third actual parameter, a varying-length string.

5. The size of the third actual parameter, which is 2 plus the declared maximum length of
the actual parameter.

The NONPASCAL Routine Directive
Within each XL language, the AIX common linkage convention is controlled by the compiler
options and varies according to whether certain kinds of information are duplicated both in
the stack and in parameter registers.

To have an XL Pascal routine call an external routine written in a language that uses a
different linkage variation, your Pascal code should use the NONPASCAL directive in the
EXTERNAL declaration for that routine.

The NONPASCAL directive causes the compiler to generate code that satisfies all of the
AIX common linkage convention variations. Calls to NONPASCAL routines may generate
less efficient code than other calls, but NONPASCAL works with all variations of the AIX
common linkage convention.

Related Information
Refer to the AIX Version 3.2 Assembler Language Reference for details of the AIX common
linkage convention.

Interlanguage Parameter Passing Conventions
This section describes the general correspondence of formal parameter definitions across
XL languages.

Calls between XL Pascal and XL C
XL C is case sensitive. The name of a routine or external variable can include both
uppercase and lowercase letters, exactly as it appears in the C source code. Pascal by
default is not case sensitive. To make Pascal external names match C external names, use
the techniques described in “Mixed-Case External Names” on page 90.

Parameter Handling in C and Pascal
Pointers A C pointer (*) is an address that occupies 4 bytes. A Pascal POINTER type

occupies 8 bytes. It contains the address of an object and additional
information about the size, alignment, and allocation status of the object.
However, when the –qptr4 option is turned on, the POINTER will occupy 4
bytes. When you specify –qptr4, only the address of the object is included.
“Pascal Arrays, C Pointers, and Arrays” on page 93 explains in detail the
differences between C and Pascal pointers.

98 XL Pascal User’s Guide

Parameter Passing Modes
All C parameters are passed by value. Pascal parameters by default are
passed by value, but VAR and CONST are passed by reference. A C
parameter that is not a pointer (without *) generally corresponds to a default
Pascal parameter of the matching type.

A C pointer type by default is a one-word address that generally
corresponds to a Pascal VAR or CONST parameter, or a Pascal ARRAY,
depending on how the C code uses it. The type of the Pascal parameter
matches the target type of the C pointer.

Character Strings
C and Pascal use different internal representations for character strings, as
described in “Character Variable Types” on page 92.

External Variables
A C extern variable corresponds to a Pascal DEF variable of matching type.

Function Return Values
A C function return type that is not a pointer (without *) corresponds to a
Pascal function value of matching type.

A C pointer (*) function return type can correspond to a Pascal ARRAY of
matching type, depending on how the C code uses it. If it does not
correspond to a Pascal ARRAY, no matching type exists.

Passing Character Strings to C from Pascal
C functions frequently pass character strings as C char* parameters. Use the following
steps to write a Pascal function call that passes a char* parameter to a C function:

1. Write the Pascal FUNCTION declaration with a VAR CHAR formal parameter. This is
passed as one parameter word containing the address of a CHAR and matches a C
char* parameter.

2. Create the string in a Pascal PACKED ARRAY[1..n] OF CHAR object, where n is at least
one greater than the length of the string.

3. Insert an ASCII null (’00’xc) in the next array element immediately following the actual
string content, which is necessary for the C code to detect the end of the string.

4. Pass the first element of the array as the actual parameter.

Creating the string in a Pascal STRING or as the target of a STRINGPTR still permits C
code to process the string. If the C code modifies the string length by moving the null, the
change is not reflected in the current length of the Pascal string.

Receiving Character Strings from C in Pascal
If C code calls a Pascal routine and passes a character string to it, the string should be
passed as a C char array to match a Pascal PACKED ARRAY[1..n] OF CHAR.

A C program can call a Pascal routine and pass a character string to it as a C char*
parameter. Use the following steps to write an XL Pascal routine to accept the character
string this way:

1. Write the Pascal routine with a VAR PACKED ARRAY[1..n] OF CHAR parameter
corresponding to the C char*, where n is a constant at least one greater than the length
of the C string.

2. Since these are not matching parameter types, you may have to compile the Pascal
routine with the NOEXTCHK option.

99Chapter 7. Interlanguage Applications

3. Do not access elements of the PACKED ARRAY OF CHAR parameter past the first
element containing the ASCII null.

Note: Your XL Pascal routine may not be portable to other Pascal compilers.

Examples
The following examples show Pascal code that follows C conventions for routine
declarations, parameter passing, and string manipulation. All routines are functions,
parameters are passed by value, a C char* parameter is equivalent to a Pascal VAR CHAR
parameter, and all strings are terminated by ASCII null characters.

The following Pascal program p_call_c calls a C routine and passes an integer value
and the character string from Pascal to C:

PROGRAM p_call_c(OUTPUT);

CONST
 null_char = ’00’XC;

TYPE
 string_buffer = PACKED ARRAY[1..256] OF CHAR;

VAR
 i, rc : INTEGER;
 c_string : string_buffer;

FUNCTION c_callby_p(i : INTEGER; VAR c : CHAR) : INTEGER;
 EXTERNAL;

BEGIN
 i := 7;
 c_string := ’String passed from Pascal to C’ || null_char;
 WRITELN(’Pascal: p_call_c prepares to call c_callby_p.’);
 rc := c_callby_p(i, c_string[1]);
 RETCODE(rc)
END.

The following C routine c_callby_p is called with two parameters, an int value, and a
C-style char* string. It prints the input values, calls the Pascal function p_callby_c, and
passes it different values of the same types, returning the string:

”String passed from C to Pascal.”

100 XL Pascal User’s Guide

The Pascal function p_callby_c has the same interface as c_callby_p. It prints the
input values it receives from the C routine.

#include <stdio.h>

extern int p_callby_c(int,char*);

int c_callby_p(int ip,char* ps)
{
 int rc;
 printf(”C: c_callby_p receives integer value %5d\n”,ip);
 printf(”C: c_callby_p receives string ’%32s’\n”,ps);
 ip += 1;
 rc = p_callby_c(ip,”String passed from C to Pascal.\n”);
 return(rc);
}

The following example shows the Pascal segment containing the function p_callby_c.
Both the function and the segment have the same name, which is the Pascal way of
compiling an external routine separate from a program.

SEGMENT p_callby_c;

CONST
 null_char = ’00’XC;

TYPE
 string_template = PACKED ARRAY[1..256]OF CHAR;

FUNCTION p_callby_c(pi:INTEGER;VAR s:string_template) :
 INTEGER; EXTERNAL;
FUNCTION p_callby_c;

VAR
 i : INTEGER;
 c_string : STRING;

BEGIN
 WRITELN(’Pascal: p_callby_c receives integer value ’, pi);
 c_string := ’’;
 FOR i := 1 TO HBOUND(s) DO
 IF s[i] = null_char THEN
 BEGIN
 c_string := substr(str(s), 1, i);
 LEAVE
 END;
 WRITELN(’Pascal: p_callby_c receives character string
 ”’||c_string||’”’);
 p_callby_c := 0
END;

The following commands compile these programs into a single executable file p_call_c:

xlc c_callby_p.c –oc_callby_p.o –c

xlp p_call_c.pas p_callby_c.pas c_callby_p.o –op_call_c

101Chapter 7. Interlanguage Applications

The command p_call_c runs the program to produce the following output:

Pascal: p_call_c prepares to call c_callby_p.
C: c_callby_p receives integer value 7
C: c_callby_p receives string ’ String passed from Pascal to C’
Pascal: p_callby_c receives integer value 8
Pascal: p_callby_c receives character string ”String passed from
C to Pascal.”

Calls between XL Pascal and XL Fortran
The following are the major differences in parameter handling between Fortran and Pascal.

Parameter Handling in Fortran and Pascal
Arrays A Fortran dimensioned variable corresponds to a Pascal array of matching

type in which the dimension declarations are transposed.

Fortran stores arrays so that they appear to be transposed in Pascal. For
example, an external array declared in Fortran as:

 INTEGER a (5,20)

should be transposed in the Pascal declaration:

 DEF a: ARRAY[1..20 , 1..5] of INTEGER;

The element referred to as a(I,J) in a Fortran program is the same as
the element referred to in a Pascal program as a[J,I].

Fortran array dimensions always have a user-defined lower bound, but
Pascal ARRAY index types can be declared with arbitrary lower bounds.
“Storage of Arrays” on page 93 describes how Fortran and Pascal arrays
differ in storage.

Parameter passing modes
A Fortran parameter is by default passed by reference. If a Fortran routine
call passes an argument with the %VAL keyword, the argument is passed
by value.

The default parameter passing mode in Pascal is by value, which is the
opposite of Fortran. Parameters declared VAR or CONST are passed by
reference in Pascal.

102 XL Pascal User’s Guide

Examples
The following examples show Pascal code calling Fortran and being called by Fortran. The
conventions for routine declarations, parameter passing, and string manipulation are similar
to those used for interlanguage calls between Pascal and C as shown on page 99.

The following Pascal program p_call_f calls Fortran function f_callby_p and passes an
integer value and the following null-terminated character string to it:

PROGRAM p_call_f(OUTPUT);

CONST
 null_char = ’00’xc;

TYPE
 string_buffer = PACKED ARRAY[1..256] OF CHAR;

VAR
 i,rc:INTEGER;
 f_string:string_buffer;

FUNCTION f_callby_p(VAR i:INTEGER; VAR c:string_buffer):
 INTEGER;EXTERNAL;

BEGIN
 i := 7;
 (* Form string in C format, ended by null character. *)
 f_string := ’String passed from Pascal to Fortran.’ ||
 null_char;
 WRITELN(’Pascal: p_call_f prepares to call
 f_callby_p.’);
 rc := f_callby_p(i,f_string);
 RETCODE(rc)
END.

The Fortran function f_callby_p in the following example is called with two parameters,
an integer value, and a character string. It prints the input values, calls the Pascal function
p_callby_f, passes it different values of the same types, and returns the string:

’String passed from Fortran to Pascal.’

The Pascal function p_callby_f has the same interface as f_callby_p. It prints the
input values it receives from the Fortran function. The integer parameters are passed by
VAR because Fortran requires parameters passed by reference.

103Chapter 7. Interlanguage Applications

 integer function f_callby_p(ip,ps)
 integer ip
 character*256 ps
 character*256 as
 1 format(’Fortran: f_callby_p receives integer ’,i5)
 write(6,1)ip
 2 format(’Fortran: f_callby_p receives string ’’’,a40,’’’’)
 write(6,2)ps
 ip = ip + 1
C Form output string in C format, ending with null character.
 as = ’String passed from Fortran to Pascal.\0’
 f_callby_p = p_callby_f(ip,%ref(as))
 end

The following example shows the Pascal segment containing the function p_callby_f.
Both the function and the segment have the same name.

SEGMENT p_callby_f;

CONST
 null_char = ’00’xc;
TYPE
 string_template = PACKED ARRAY[1..256]OF CHAR;

FUNCTION p_callby_f(VAR pi : INTEGER; VAR
 s : string_template) : INTEGER; EXTERNAL;
FUNCTION p_callby_f;
VAR
 i : INTEGER;
 c_string : STRING;
BEGIN
 WRITELN(’Pascal: p_callby_f receives integer ’,pi);
 c_string := ’’;
 FOR i := 1 TO HBOUND(s) DO
 IF s[i] = null_char THEN
 BEGIN
 c_string := substr(str(s),1,i); LEAVE
 END;
 WRITELN(’Pascal: p_callby_f receives string
”’||c_string||’”’);
 p_callby_f := 0
END;
.

The following commands compile the programs to produce the executable file p_call_f:

xlf f_callby_p.f –of_callby_p.o –c

xlp p_call_f.pas p_callby_f.pas f_callby_p.o –lxlp –lxlf
–op_call_f

The xlp command includes ld command options that bind both the XL Pascal and XL
Fortran runtime environments.

The command p_call_f runs the program to produce the following output:

Pascal: p_call_f prepares to call f_callby_p.
Fortran: f_callby_p receives integer 7
Fortran: f_callby_p receives string String passed from Pascal to
Fortran.
Pascal: p_callby_f receives integer 8
Pascal: p_callby_f receives character string ”String passed from
Fortran to Pascal.”

104 XL Pascal User’s Guide

Enforcement of Type Matching
The XL compilers work together with the linkage editor to enforce the requirements for
matching data type.

Linkage Editor Type Checking
For each external variable or routine declaration, the compiler calculates a 32-bit hash
signature, which is calculated from the following:

• External variable types
• Numbers and types of formal parameters
• Function value types

The hash signature for each external variable and routine is included in the object file
produced by the compiler.

All XL compilers use the same utility to calculate these hash signatures. The hashing
algorithm is based on the internal representations of the data types. Different XL compilers
produce the same hash signature for matching data types.

The linkage editor compares the hash signatures of all references to each external symbol.
If two separately compiled object files do not have matching declarations for any external
symbol, the hash signatures are different. The linkage editor issues a diagnostic indicating
that the declarations are mismatched.

File Types Do Not Match
In general, file types do not match between different XL languages. Each of the languages
has its own file handling operations, so a file opened by code written in one language
generally cannot be correctly read from, written to, or closed by code written in another
language.

All routines in a multilanguage application can read from standard input and write to
standard output. A Pascal routine can read from the predefined file INPUT and write to the
predefined file OUTPUT even if other languages are also using standard input and standard
output. For any other file, the file should be opened, read from, written to, and closed in one
language.

Suppressing Type Checking with the NOEXTCHK Option
Two type declarations written in different languages can be mismatched in the linkage editor
even if their internal representations are the same. This is especially likely if the types
contain strings or files, components which are processed differently by each language.

To suppress type checking by the linkage editor, compile your Pascal file with the
NOEXTCHK option. With this option, the compiler produces a special no check hash
signature for all external variables and routines. The no check hash signature prevents the
linkage editor from checking references to external symbols.

Related Information
A full description of the NOEXTCHK option is on page 32.

105 Copyright IBM Corp. 1990, 1993 Appendix A. Sample Program

Appendix A. Example Program

This appendix outlines a sample program, the listing it would produce with the compiler
options specified, and the output from running it.

Source File
The following source file (sample.pas) contains a small program that prints the numbers
from 1 to 5:

program sample ;
var
i: integer ;
begin
 (* Write out the numbers from 1 to 5 *)
 for i := 1 to 5 do
 begin
 write(i) ;
 end ;
 writeln ;
end.

Example Listing
If you specify the SOURCE compiler option with the following command, XL Pascal produces
the listing (sample.lst) shown on page 106:

xlp –qsource sample.pas

106 XL Pascal User’s Guide

IBM AIX RISC System/6000 XL Pascal Version 02.01.0000.0000 –––
sample.pas 10/25/93 13:16:32

>>>>> Options in effect:
 ASCII CHECK FLOAT=MAF:FOLD NOFLTTRAP NOINLINE LANGLVL=VS
 MAXMEM=2048 NATIVE NOOPTIMIZE SOURCE STRICT TRACEID XCOFF

>>>>> Source Listing:

 1 |program sample ;
 2 |var
 3 |i: integer ;
 4 |begin
 5 | (* Write out the numbers from 1 to 5 *)
 6 | for i := 1 to 5 do
 7 | begin
 8 | write(i) ;
 9 | end ;
 10 | writeln ;
 11 |end.

>>>>> Input Files:

 M sample.pas(line 0)

>>>>> Compilation Epilog:

Compiler was created 93/10/09 23:21:31.

Diagnostics Issued:
 Total errors :0
 Maximum Severity :0

Output Produced
The following output is displayed when the sample program runs:

 1 2 3 4 5

107 Copyright IBM Corp. 1990, 1993 Appendix B. ASCII Character Set

Appendix B. ASCII Character Set

XL Pascal uses the American National Standard Code for Information Interchange (ASCII)
character set as its collating sequence.

The following table lists the standard ASCII characters in ascending numerical order, with
their corresponding decimal and hexadecimal values. It also shows the control characters
with Ctrl– notation. For example, the carriage return (ASCII symbol CR) appears as
Ctrl–M, which you enter by simultaneously pressing the Ctrl key and the M key.

Decimal

Value

Hex

Value

Control

Character

ASCII

Symbol

Meaning

0 00 Ctrl–@ NUL null

1 01 Ctrl–A SOH start of heading

2 02 Ctrl–B STX start of text

3 03 Ctrl–C ETX end of text

4 04 Ctrl–D EOT end of transmission

5 05 Ctrl–E ENQ enquiry

6 06 Ctrl–F ACK acknowledge

7 07 Ctrl–G BEL bell

8 08 Ctrl–H BS backspace

9 09 Ctrl–I HT horizontal tab

10 0A Ctrl–J LF new line

11 0B Ctrl–K VT vertical tab

12 OC Ctrl–L FF form feed

13 0D Ctrl–M CR carriage return

14 0E Ctrl–N SO shift out

15 0F Ctrl–O SI shift in

16 10 Ctrl–P DLE data link escape

17 11 Ctrl–Q DC1 device control 1

18 12 Ctrl–R DC2 device control 2

19 13 Ctrl–S DC3 device control 3

20 14 Ctrl–T DC4 device control 4

21 15 Ctrl–U NAK negative acknowledge

22 16 Ctrl–V SYN synchronous idle

23 17 Ctrl–W ETB end of transmission block

24 18 Ctrl–X CAN cancel

25 19 Ctrl–Y EM end of medium

26 1A Ctrl–Z SUB substitute

27 1B Ctrl–[ESC escape

28 1C Ctrl–\ FS file separator

108 XL Pascal User’s Guide

Decimal

Value

Meaning

ASCII

Symbol

Control

Character

Hex

Value

29 1D Ctrl–] GS group separator

30 1E Ctrl–^ RS record separator

31 1F Ctrl–_ US unit separator

32 20 SP digit select

33 21 ! exclamation point

34 22 ” double quotation mark

35 23 # number sign

36 24 $ dollar sign

37 25 % percent sign

38 26 & ampersand

39 27 ’ apostrophe

40 28 (left parenthesis

41 29) right parenthesis

42 2A * asterisk

43 2B + addition sign

44 2C , comma

45 2D – subtraction sign

46 2E . period

47 2F / right slash

48 30 0

49 31 1

50 32 2

51 33 3

52 34 4

53 35 5

54 36 6

55 37 7

56 38 8

57 39 9

58 3A : colon

59 3B ; semicolon

60 3C < less than

61 3D = equal

62 3E > greater than

63 3F ? question mark

64 40 @ at symbol

65 41 A

66 42 B

109Appendix B. ASCII Character Set

Decimal

Value

Meaning

ASCII

Symbol

Control

Character

Hex

Value

67 43 C

68 44 D

69 45 E

70 46 F

71 47 G

72 48 H

73 49 I

74 4A J

75 4B K

76 4C L

77 4D M

78 4E N

79 4F O

80 50 P

81 51 Q

82 52 R

83 53 S

84 54 T

85 55 U

86 56 V

87 57 W

88 58 X

89 59 Y

90 5A Z

91 5B [left bracket

92 5C \ left slash

93 5D] right bracket

94 5E ^ hat, circumflex, caret

95 5F _ underscore

96 60 ‘ grave accent

97 61 a

98 62 b

99 63 c

100 64 d

101 65 e

102 66 f

103 67 g

104 68 h

110 XL Pascal User’s Guide

Decimal

Value

Meaning

ASCII

Symbol

Control

Character

Hex

Value

105 69 i

106 6A j

107 6B k

108 6C l

109 6D m

110 6E n

111 6F o

112 70 p

113 71 q

114 72 r

115 73 s

116 74 t

117 75 u

118 76 v

119 77 w

120 78 x

121 79 y

122 7A z

123 7B { left brace

124 7C | logical or

125 7D } right brace

126 7E ~ similar, tilde

127 7F DEL delete

111 Copyright IBM Corp. 1990, 1993 Appendix C. XL Pascal and the 1983 ANSI/IEEE Pascal Standard

Appendix C. XL Pascal and the 1983 ANSI/IEEE Pascal
Standard

The XL Pascal Compiler complies with the requirements of ANSI/IEEE 770X3.97–1983. This
implies conformance to the following standards:

• International Standards Organization (ISO) 7185–1983 (Level 0), Programming
Languages, Pascal

• Federal Information Processing Standard (FIPS) PUB 109, Pascal

This appendix describes the following features of XL Pascal:

• Implementation-defined features
• Implementation-dependent features
• Error handling
• Extensions

Implementation-Defined Features
The implementation-defined features of XL Pascal constitute extensions to Pascal as it is
specified by ANSI/IEEE 770X3.97–1983.

VS Mode Extensions
• The characters allowed in string types are the printable characters of the ASCII character

set plus the space character. Depending on the system and terminal being used, different
characters may be displayed.

• The character set used by the data type CHAR is the ASCII character set. Depending on
the system and terminal being used, different characters may be displayed.

• The ordinal values used for each character in the CHAR data type are the values in the
ASCII character set. Depending on the system and terminal being used, certain ordinal
values may correspond to different characters.

• The subset of real numbers used by the XL Pascal REAL and SHORTREAL data types
is the set of floating-point values occupying 8 and 4 bytes respectively, as described by
ANSI/IEEE Standard 754–1985. The accuracy of real arithmetic is determined by RISC
System/6000 floating-point operations.

• The value of the predefined constant MAXINT is 2147483647.

• The actions taken by the file-handling procedures and the time of their performance are
specified as follows:

– REWRITE(f) erases the external file bound to f and opens the file for output. These
operations are performed immediately when running REWRITE.

– PUT(f) places the value of the file buffer into a special buffer. This buffer is written to
the external file when the special buffer becomes full, the routine or program containing
file f ends, or the procedures CLOSE, RESET, REWRITE, TERMIN, TERMOUT, and
UPDATE are applied to file f.

XL Pascal User’s Guide112

– RESET(f) opens the external file bound to f for input. This occurs immediately when
running RESET. The first element in the external file bound to f is immediately
assigned to the file buffer, unless the file is interactive. The file pointer of an interactive
file has the value NIL until the first GET or READ is done on the file. At this time, the
file buffer contains the first element in the file.

– GET(f) causes the file pointer to point to the next unread element of f (if any), and
updates the file buffer with that element. This action occurs immediately on processing
GET.

• The default length for integer output is 12.

• The default length for Boolean output is 10.

• Boolean variables are returned in all uppercase (TRUE, FALSE).

• The default length for real output is 20.

• The exponent character for real output is E.

• Files listed as program parameters are bound to external files in the same way as any
other file.

• Applying RESET and REWRITE to the TEXT files INPUT and OUTPUT yields the same
results as applying them to any other file.

AIX RISC System/6000 System Extensions
• Three exponent digits are used for real output.

• The number of significant characters in both internal and external identifiers is 256.

• No diagnostics are produced for multiple DEF variables on the same identifier.

• The number of significant characters in a program name is 256.

• XL Pascal supports ASCII single-byte character set (SBCS) data and multibyte character
set (MBCS) data in comments and literal constants targeted for an MBCS output device.

• Multiple VALUE declarations on a structured STATIC or DEF variable are allowed if there
is not more than one specification of the value of any scalar component of the structured
variable.

• Restrictions on the SPACE data type:

– If the %CHECK compiler option is off, references or assignments beyond the end of a
SPACE variable may cause unpredictable results.

– If %CHECK SUBSCRIPT is on and the computed address of the SPACE index
expression lies outside the storage occupied by the space, a runtime diagnostic
message is issued when the program is running in dbx.

– Passing an element of a SPACE by reference is valid.

• Routines can be nested to at least 20 levels.

• The result of a negative shift count is zero for <<, >>, or a shift count greater than 32 for
either shift left or shift right.

• The maximum number of set elements is 256, and the maximum set size is 32 bytes.

• When the expression in an ASSERT statement is not TRUE, and the program is running
in dbx, a diagnostic message is issued, and the program stops.

113Appendix C. XL Pascal and the 1983 ANSI/IEEE Pascal Standard

• The following are the supported keyword names of the XL Pascal file opening options:

NAME
LRECL
RECFM
DISP
UCASE
INTERACTIVE
DDNAME

• The pointer variable passed as a parameter of the MARK procedure is set to the address
of the associated heap control block. Do not use the returned pointer as a base of a
dynamic variable.

• RELEASE and DISPOSE set their parameter variables to NIL.

• The size of the string returned by the ITOHS function is 8 characters.

• The longest supported token returned by the TOKEN routine is 16 characters.

• The value returned by the CLOCK function is the number of microseconds the program
has been running.

• The PARMS routine returns a conformant string.

• The RETCODE procedure sets the completion code.

Implementation-Dependent Features
Because the following implementation-dependent features of XL Pascal are used frequently,
they are not flagged:

• The order-of-evaluation of these items is not predefined:

– Array indexes.

– Member-designators in a set constructor.

– Component expressions of a member designator in a set constructor.

– Operands of a binary operator (such as A + B). If the value of a relational expression
can be determined after the evaluation of the first operand, the second operand is not
evaluated.

– Actual parameters in a procedure or function call, including accessing and binding of
the actual parameter.

– The left side and the right side of an assignment statement.

– File parameters of the predefined procedures READ and WRITE.

– Array parameters of the predefined procedures PACK and UNPACK.

• Applying the PAGE procedure to a file causes the system to produce the ASCII form feed
character at the point where PAGE is applied.

• The binding of program parameters that are not declared as files depends on how they
are declared.

XL Pascal User’s Guide114

Error Handling
The ANSI standard for Pascal requires a complying system to document its treatment of
errors. The following list describes how XL Pascal handles the errors listed in the ANSI-83
Pascal Standard. It corresponds to the error-handling list in Appendix D of that standard.

This discussion assumes that all compile-time and runtime checking has been turned on. If
the checking is off, some errors normally detected are not detected. If an error is severe
enough to stop processing, further errors may not be detected.

An error stated to be generally detected may be left undetected under some conditions.
Errors stated to be detected without qualification are always detected.

1. Array subscripting errors are detected.

2. Accessing a component of an inactive variant is not detected (for RECORD data type).

3. NIL pointer dereferencing errors are detected.

4. Undefined pointer dereferencing errors are not detected, except in special
circumstances.

5. Removing the identifying value of an identified (pointer-qualified) variable while a
reference to that variable exists is not detected.

6. Altering the value of a file variable while a reference to its buffer variable exists is not
detected.

7. Assignment compatibility errors between actual and formal ordinal value parameters
are detected.

8. Assignment compatibility errors between actual and formal set value parameters are
detected.

9. Using the PUT, WRITE, WRITELN, and PAGE procedures on files not open for output
is generally detected.

10. Using the PUT, WRITE, WRITELN, and PAGE procedures on undefined files for output
is generally detected.

11. With LANGLVL=STANDARD, it is not possible to use the PUT, WRITE, WRITELN, and
PAGE procedures on files with the end-of-file condition not true before the call. For
LANGLVL=VS, the UPDATE procedure and random access I/O allow the end-of-file
condition to be false.

12. Using the PUT procedure with an undefined buffer variable is not detected.

13. Using the RESET procedure on an undefined file causes an error if the file cannot be
bound successfully.

14. Using the GET, READ, and READLN procedures on files not open for input is generally
detected.

15. Using the GET, READ, and READLN procedures on undefined files is generally
detected.

16. Attempting to use the GET, READ, and READLN procedures with the end-of-file
condition true is detected.

17. For READ, assignment compatibility errors are detected.

18. For WRITE, assignment compatibility errors are detected.

115Appendix C. XL Pascal and the 1983 ANSI/IEEE Pascal Standard

19. Activating a variant part of a variable created with the NEW procedure of the form
(p,t1,...,tn) where the variant is in the same variant part as, but different from, one of the
specified variants is not detected.

20. Using the DISPOSE(p) procedure on a variable created with the NEW procedure of the
form (p,t1,...,tn) is not detected.

21. Using the DISPOSE procedure of the form (p,t1,...,ty) on a variable created with the
NEW procedure of the form (p,t1,...,tx), where x is not equal to y, is not detected.

22. Using the DISPOSE procedure of the form (p,t1,...,tn) on a variable with active variants
different from (t1,...,tn) is not detected.

23. Using the DISPOSE procedure on a NIL pointer is detected.

24. Using the DISPOSE procedure on an undefined pointer is generally detected.

25. Accessing variables created by the NEW procedure of the form (p,t1,...,tn) using the
identified variable in a factor, an assignment statement, or as an actual parameter, is
not detected.

26. Assignment compatibility errors on the ordinal variable in the PACK procedure are
detected.

27. Accessing undefined elements of the unpacked array in the PACK procedure is not
detected.

28. Exceeding the index of the unpacked array in the PACK procedure is detected.

29. Assignment compatibility errors on the ordinal variable in the UNPACK procedure are
detected.

30. Having undefined elements in the packed array in the UNPACK procedure is not
detected.

31. Exceeding the index of the unpacked array in the UNPACK procedure is detected.

32. Applying the SQR function to a value whose square does not exist is not generally
detected.

33. Applying the LN function to a value less than or equal to zero is not generally detected.

34. Applying the SQRT function to a negative value is not detected (no error message is
displayed); the result is NaN.

35. Applying the TRUNC function to a value that would produce an integer with too large a
magnitude is generally detected.

36. Applying the ROUND function to a value that would produce an integer with too large a
magnitude is generally detected.

37. Applying the CHR function to a value with no character value is detected.

38. Applying the SUCC function to a value with no successor is not detected.

39. Applying the PRED function to a value with no predecessor is not detected.

40. Using the EOF function on an undefined file is not detected.

41. Using the EOLN function on an undefined file is not detected.

42. Using the EOLN function on a file with the end-of-file condition true is not detected.

43. Using undefined variables in an expression is not detected.

44. Real division by zero is not generally detected.

XL Pascal User’s Guide116

45. Integer division by zero is not generally detected.

46. Using the MOD operator with a second operand less than or equal to zero is detected.

47. Performing integer operations or functions in violation of the mathematical rules for
integer arithmetic is not generally detected.

48. Undefined function result errors are detected.

49. Assignment compatibility errors with ordinal types are detected.

50. Assignment compatibility errors with set types are detected.

51. CASE statement index errors are detected.

52. Assignment compatibility errors between FOR loop indexes and initial values are
detected.

53. Assignment compatibility errors between FOR loop indexes and final values are
detected.

54. Attempting to read an integer from a TEXT file where a sequence of characters does
not form a signed number, after skipping preceding spaces and end-of-line conditions,
is detected.

55. Type compatibility for integers read from TEXT files is checked and detected.

56. Attempting to read a number from a TEXT file where a sequence of characters does
not form a signed integer, after skipping preceding spaces and end-of-line conditions, is
detected.

57. Using the READ or READLN procedure on a file with the buffer variable undefined is
detected. Trying to read past the end of a file can cause this error.

58. Using the form e : TotalWidth : FracDigits or e : TotalWidth in the WRITE and WRITELN
procedures for TEXT files where TotalWidth or FracDigits is less than 1, is detected.
This error applies to LANGLVL=STANDARD only.

Extension Handling
When you specify LANGLVL=STANDARD, you cannot use any extensions to the ANSI-83
Standard Pascal. When you specify the LANGLVL=VS compiler option, you can use all of
the extensions described in the Language Reference for IBM AIX XL Pascal Compiler/6000.

117 Copyright IBM Corp. 1990, 1993 Appendix D. Implementation Dependencies

Appendix D. Implementation Dependencies

This appendix discusses the various implementation-specific characteristics of XL Pascal:

• Routines That Can be Passed as Parameters
• Data Types
• Compiler Limits
• Differences between XL Pascal and:

– VS Pascal Release 1
– VS Pascal Release 2

Note: Compiler limits are approximations; your program might deviate from the maximum
limits depending on its complexity.

Routines That Can Be Passed as Parameters
Standard mode XL Pascal does not allow any predefined routines to be passed as actual
parameters.

In VS mode, it allows the predefined routines listed in the following table to be passed as
actual routine parameters to another routine:

ARCTAN
CLOCK
COLS
COS
DATETIME

EXP
GTOSTR
HALT
ITOHS
LN

LTOKEN
PARMS
PICTURE
RANDOM
RETCODE

SIN
SQRT
STOGSTR
TOKEN
TRACE

Data Types

INTEGER Data Type
The largest integer that can be represented is 2147483647. This is the highest value that
can be represented in a 32-bit word and is equal to the predefined constant MAXINT.

The minimum value of the type INTEGER is equal to the predefined constant MININT, which
has the value –2147483648.

Representation of Floating-Point Constants

Constant Name Decimal Approximation Exact Representation

MAXREAL 1.797693134862E+308 ’7FEFFFFFFFFFFFFF’XR

MINREAL 4.940656458412E–324 ’0000000000000001’XR

EPSREAL 2.220446049250E–016 ’3CB0000000000000’XR

MAXSREAL 3.402823466385E+038 ’47EFFFFFE0000000’XR

MINSREAL 1.401298464325E–045 ’36A0000000000000’XR

EPSSREAL 1.192092895508E–007 ’3E80000000000000’XR

118 XL Pascal User’s Guide

Notes
• XL Pascal represents hexadecimal floating-point numbers with the syntax ’...’XR.

• MAXREAL is the largest finite double-precision floating-point number that can be
represented.

• MINREAL is the smallest positive finite double-precision floating-point number that can
be represented.

• EPSREAL is the smallest positive double-precision floating-point number that, when
added to 1, is detectable. This value is often needed in numerical computations involving
converging series.

• MAXSREAL is the largest finite single-precision floating-point number that can be
represented.

• MINSREAL is the smallest positive finite single-precision floating-point number that can
be represented.

• EPSSREAL is the smallest positive single-precision floating-point number that, when
added to 1, is detectable. Like EPSREAL, this value is often needed in numerical
computations involving converging series.

Related Information
See the Language Reference for IBM AIX XL Pascal Compiler/6000 for more information on
hexadecimal floating-point numbers.

SET Data Type
Given a SET data type of the form SET of a..b, where a and b express the lower and
upper bounds of the base scalar type, the following conditions must hold true:

ORD(a) >= 0
ORD(b) <= 255

Compiler Limits

Routine Nesting
The compiler requires temporary storage for each incompletely processed construct. Such
storage has a maximum of 255 tokens. This size affects the limits to cumulative nesting of
the following items:

• Routines
• Looping statements
• Structured data types
• Expressions

Many factors affect the maximum cumulative nesting of these constructs. Among the more
important are the length of the parameter list and the syntactic complexity of the routine.
Although it is difficult to state exactly the maximum number of nesting levels for routines, XL
Pascal supports routine nesting of at least 20 levels.

119Appendix D. Implementation Dependencies

Identifiers
Identifiers cannot span multiple lines, but XL Pascal permits identifiers up to the length of the
source line. Because XL Pascal accepts a source line of up to 256 characters, the longest
identifier can be 256 characters.

External procedures and DEF and REF variables should not start with the $ character. This
character is used internally by XL Pascal for runtime routine names.

Size Limitations
XL Pascal programs are subject to the following size limitations:

• Variables are limited to 2**28 bytes
• A maximum of 131072 identifiers is allowed in a program
• A maximum of 32767 routines is allowed
• The maximum length of a constant string is 32767 bytes
• A maximum of 255 %INCLUDE directives is allowed
• A maximum of 10 levels of %INCLUDE nesting is allowed

Differences between XL Pascal and the VS Pascal Release 1
Licensed Program

Additions
The following features of XL Pascal are additions to VS Pascal Release 1.

• VS mode and standard mode correspond to VS Pascal language level EXTENDED and
STANDARD respectively.

• A new predefined file, STDERR, exists in VS mode. This file is connected to standard
error, file descriptor two.

• The caret (^) as a pointer symbol is new to VS mode and standard mode.

• Because the ASCII character set has no logical not (¬) symbol, the functions assigned to
that character in XL Pascal are assigned to the tilde (~).

• Several new predefined constants are defined for VS mode:

– MAXCHAR
– MINSREAL
– MAXSREAL
– EPSREAL
– EPSSREAL

• XL Pascal supports an alternative method for specifying integer constants:

base # digit[digit].

• The plus sign (+) can be used as a concatenation operator.

• XL Pascal supports multibyte (MBCS) character data or Extended character data,
including:

– Data type GCHAR and data type GSTRING
– Mixed string support routines
– Application of the string functions to the data type GCHAR and data type GSTRING

120 XL Pascal User’s Guide

• The NONPASCAL function/procedure directive is an extension to VS Pascal release 1
and is also part of VS Pascal Release 2.

• The DISP=MOD option in the open string provides an additional function not available in
VS Pascal but which was available in RT VS Pascal using the format documented here.

Omissions
The following features of VS Pascal are omitted in XL Pascal.

• The LINECOUNT compiler option is not supported. Pagination can be done using a filter,
such as pr, after the listing file has been generated.

• The CMS runtime routine is not supported since XL Pascal has all of the system facilities
you need to issue system calls.

• The PDSIN and PDSOUT procedures are not supported, since the concept of a
partitioned data set does not exist on the AIX Operating System for IBM RISC
System/6000.

• The following runtime options are not supported:

COUNT
DEBUG
HEAP=n
NOSPIE
ONERROR
SETMEM
STACK=n

• The following open options are not supported:

ASIS
BLKSIZE=n
MEMBER=name
NOCC

• When you use the LRECL open option, the 4-byte length descriptor is not required for
variable length files.

Implementation Definitions
The following implementation definitions are different from those on VS Pascal and may
affect some programs. They are basically rules used by the XL Pascal compiler but not
defined for the language and thus are implementation defined.

• The size of an identifier or literal is limited to 256 characters rather than 100 as supported
by VS Pascal.

• A packed array of characters may not be assigned to a larger packed array, as supported
by VS Pascal.

• Variables are mapped to storage differently from VS Pascal in order to achieve proper
results on RISC System/6000 hardware without affecting performance. These differences
fall into two classes:

Internal data representation:

– Characters are coded in ASCII rather than EBCDIC
– Real values is represented in RISC System/6000 floating-point format rather than

System/370* floating point

121Appendix D. Implementation Dependencies

Storage requirements and relative positioning of variables:

The following minor differences exist between XL Pascal and VS Pascal:

– All XL Pascal pointers require 8 bytes, unless –qptr4 is specified, in which case they
only require 4 bytes. All VS Pascal pointers require only 4 bytes.

– All variants at a given level of an XL Pascal record begin at the same offset from the
start of a record. In VS Pascal the offset for each variant is determined by its alignment
requirement.

• You cannot pass a CONST parameter to DISPOSE.

• XL Pascal detects and handles errors differently from VS Pascal:

– The precise timing of error detection varies. Some errors detected at run time by one
compiler may be caught at compile time by the other.

– The presentation and recovery of runtime errors is different. The details of this support
are described in Chapter 6, “Problem Determination”.

• GCHAR and GSTRING are not part of VS Pascal Release 1. The definition supported by
XL Pascal is consistent with that of VS Pascal Release 2.

• Because of differences in the underlying operating systems, XL Pascal does not restrict
the modification of DEF and REF data when a program is operated in an environment
where multiple processes use the same program.

• XL Pascal accepts the directives MAIN and REENTRANT wherever VS Pascal accepts
them. They have no any semantic affect on the program, nor do they impose any
restrictions on your programs.

Differences between XL Pascal and the VS Pascal Release 2
Licensed Program

XL Pascal incorporates most of the features added to VS Pascal in Release 2. Several
features of VS Pascal Release 2 are either not implemented or implemented differently in XL
Pascal. The VS Pascal implementation of these features is described in VS Pascal
Language Reference Release 2.

Differences
The following VS Pascal Release 2 features are implemented differently in XL Pascal.

• XL Pascal supports Multibyte Character Set (MBCS) data, including the GCHAR and
GSTRING types and functions that process STRING types containing mixed single-byte
and multibyte character strings. XL Pascal uses AIX MBCS characters instead of the
System/370 method of shift-in and shift-out characters used in Release 2 of VS Pascal.

• XL Pascal supports AIX debugging facilities through the DBG and –qdbg compiler
options. VS Pascal Release 2 uses its DEBUG option to support System/370 debugging
facilities.

• XL Pascal implements traceback facilities through the predefined routine xl__trap. It does
not implement the ONERROR facilities used by VS Pascal Release 2.

122 XL Pascal User’s Guide

Omissions
The following VS Pascal Release 2 features are not implemented in XL Pascal.

• XL Pascal does not implement the GENERIC procedure directive. That feature was
added to VS Pascal Release 2 only to provide an interface to certain System/370
software products. XL Pascal uses the NOEXTCHK compiler option and the linkage
editor rename command to support calls to one polymorphic routine with several actual
parameter specifications.

• XL Pascal does not implement the conditional compilation facilities provided in VS Pascal
Release 2 through %SELECT, %WHEN, and %ENDSELECT.

• XL Pascal does not implement the HEADER compiler option or the %UHEADER
directive.

123 Copyright IBM Corp. 1990, 1993 Appendix E. Data Storage

Appendix E. Data Storage

This appendix describes how the different types of storage classes and data values in XL
Pascal are stored. It also describes how dynamic storage is managed.

Storage Classes
Storage classes determine where and when storage for a value is allocated, when it is
initialized, and when it is deallocated.

Automatic Variables
Automatic variables are declared in the VAR section of procedures or functions. Automatic
storage is not initialized. A runtime stack frame is created for each procedure or function
invocation that has not yet returned to its caller. Storage for automatic variables is allocated
in the stack frame of the routine invocation. It is freed when the routine call returns and its
stack frame is freed.

Global Automatic Variables
Global automatic variables are declared by VAR declarations at the outermost level of a
program or segment, not inside any procedure or function. Global automatic storage is not
initialized. A runtime stack frame is created for the invocation of the top level program.
Storage for global automatic variables is allocated in the stack frame of the program. It
remains in existence while the program is running.

The linkage editor maps global automatic variables of a segment into the same storage as
those of the program. XL Pascal performs no type checking of global automatic storage.

Static Variables
Static variables are declared by STATIC declarations. Storage for them is allocated in the
static section of the object code file for the program or segment in which the STATIC
declaration appears. The names used in this section are not known outside the scope where
the variable is declared.

You can initialize static variables with VALUE statements. Initial values are contained in the
object code file and are loaded with the object code. If you do not use VALUE to supply
initial values, the values of such variables are not initialized. All references to a given
variable address the same storage and get the last value set to that variable.

External Variables
External variables are declared in DEF declarations or referenced through REF declarations.
Storage for external variables is allocated for the first DEF declaration of the variable as a
separate named section of the object code file. All REF declarations and subsequent DEF
declarations of the variable use the same storage. It remains in existence while the program
is running.

You can initialize external variables with VALUE statements. Initial values are contained in
the object code file and are loaded into the external variable when the object code file is
loaded.

124 XL Pascal User’s Guide

Any object code file can specify an initial value for any component of an external variable. If
two or more object code files specify initial values for any components of an external
variable, only the initial values from the first such object code file are used.

Constant Storage
Storage for constants declared by CONST declarations is allocated in the constant section
of the object code file for the program or segment in which the CONST declaration appears.

Data Size and Boundary Alignment
A variable is assigned storage and aligned according to its declared type. In general, a
halfword value, which occupies 16 bits, is aligned on a halfword boundary. Values larger
than a halfword are aligned on a fullword boundary. A fullword value occupies 32 bits.
Values that can fit into a single byte of 8 bits are aligned on a byte boundary.

Whatever the size of the data element in question, the most significant data bit is always in
the first byte of the total number of bytes needed to represent that object.

This section describes the data size and boundary alignments requirements for storing
different types of XL Pascal values.

The Predefined Data Types
The following table shows the storage requirements and boundary alignments of variables
declared with a predefined type.

Data Type Size in Bytes Alignment

ALFA 8 Byte

ALPHA 16 Byte

BOOLEAN 1 Byte

CHAR 1 Byte

GCHAR 2 Halfword

GSTRING(length) length*2+2 Halfword

INTEGER 4 Fullword

SHORTREAL 4 Fullword

REAL 8 Doubleword

STRING(length) length+2 Halfword

STRINGPTR 8 Fullword

TEXT 144 Fullword

Enumerated Data Types
An enumerated variable with 256 or fewer possible distinct values occupies 1 byte and is
aligned on a byte boundary. One defining more than 256 values occupies a halfword and is
aligned on a halfword boundary. Whether or not the enumerated variable is packed, XL
Pascal and VS Pascal both use the minimum amount of space for enumerated data.

125Appendix E. Data Storage

Subrange Scalar Data Types
A subrange scalar data type not specified as packed is mapped exactly the same way as the
scalar type on which it is based.

For packed subranges, XL Pascal assigns the smallest number of bytes required to
represent a value of the scalar type on which it is based.

Note: Using packed subranges may slow the run time of a program. In particular, a packed
subrange whose size is 3 bytes may incur a runtime penalty. For subranges that are
not packed, the subrange variable is the same as a variable of the base type of the
subrange.

The following table defines the number of bytes required for different ranges of integers,
given the type definition t as

TYPE
 t = PACKED i..j;

For ranges other than those listed, use the first range that encloses the desired range. For
example, the range 100..250 would be mapped the same way as the range 0..255.

Storage Mapping of Packed Subrange Scalars:

Range of i..j Size in Bytes Alignment

0..255 1 Byte

–128..127 1 Byte

–32768..32767 2 Halfword

0..65535 2 Halfword

–8388608..8388607 3 Byte

0..16777215 3 Byte

Otherwise 4 Fullword

Record Data Types
The alignment of a record is the strictest alignment requirement of its component fields. The
alignment of a record field is determined from its type. For byte, halfword, or word alignment,
the alignment of the field is the same as the alignment required by the type of the field. A
field type that requires doubleword alignment gets word alignment.

The first field of a record starts with the alignment determined for the record type. In records
that are not packed, padding bytes are inserted between fields so that each succeeding field
satisfies its alignment requirement, unless specific offsets are specified. No padding is done
for packed records; each succeeding field begins in the byte following the previous field.

The alignment of a variant part is the strictest alignment requirement of the fields in the
variant part. All variants have the same alignment as the variant part, and the first fields of
all variants start at the same byte. Padding bytes are inserted before the variant part of
records that are not packed to satisfy their alignment requirements.

If the element type is a named record or an array type that was previously declared, the
format of such an element is determined by its packing characteristics.

126 XL Pascal User’s Guide

Examples
The following example shows alignment of records. The REAL field float gets word
alignment instead of doubleword alignment because it is a record field. The strongest
alignment in record M is word, so M is word aligned. The first field ch1 starts with word
alignment. Three padding bytes are inserted after field ch1 to put field named tag at
offset 4 with word alignment. The variant part has word alignment, so three padding bytes
are inserted after field ch2. All of the variants start at offset 12.

M : RECORD (* word aligned *)
 ch1 : CHAR ; (* offset 0 *)
 tag : INTEGER ; (* offset 4, integer requires word*)
 ch2 : CHAR ; (* offset 8 *)
 CASE TAG: OF
 1: (int1 : INTEGER);(* offset 12 *)
 2: (ch3 : CHAR); (* offset 12 *)
 3: (float: REAL); (* offset 12, word aligned *)
 END ;

The following example shows alignment of previously declared records. Record r1 is not
packed and has padding supplied between r1c and r1i. Record r2 is packed, so no
alignment padding is supplied between its elements. The padding remains within the two
fields of type r1, but none exists between the fields of r2.

TYPE
 r1 = RECORD
 r1c : CHAR ;
 r1i : INTEGER ;
 END ;

 r2 = PACKED RECORD
 r2c : CHAR ; (* offset 0 *)
 r2ra : r1 ; (* offset 1 *)
 r2rb : r1 ; (* offset 9 *)
 END ;

In the following example, the contained records are declared in place, so they take on the
packed attribute from the declaring structure.

r3 = PACKED RECORD
 r3c : CHAR ; (* offset 0 *)
 r3ra : RECORD (* offset 1 *)
 r3rac : CHAR ; (* offset 1 *)
 r3rai : INTEGER ; (* offset 2 *)
 END ;
 r3rb : RECORD (* offset 6 *)
 r3rbc : CHAR ; (* offset 6 *)
 r3rbi : INTEGER ; (* offset 7 *)
 END ;
 END ;

ARRAY Data Types
In unpacked arrays, each element is aligned on the next available proper boundary for the
element type. Any padding between elements is also repeated after the last element.

For example, consider the following type definition:

TYPE
 a = ARRAY [s] OF t

where type s is a simple scalar and t is any type.

127Appendix E. Data Storage

A variable declared with this type definition would be aligned on the boundary required for
type t. The amount of storage occupied by this variable is given by the following expression
for any type t except an unpacked record type:

(ORD(HIGHEST(s))–ORD(LOWEST(s)) + 1) * SIZEOF(t)

Padding is added to unpacked record types as required between elements, so that each
element is aligned on a boundary that meets the requirements of the record type.

In packed arrays, elements are adjacent with no padding between elements.

Note: This may result in unaligned data items within the array, which could slow
processing.

A multidimensional array is mapped as an array of arrays. For example, the following two
array definitions would be mapped identically in storage:

ARRAY [i..j, m..n] OF t

and

ARRAY [i..j] OF
 ARRAY [m..n] OF t

If the element type is a named record or array type that was previously declared, the format
of such an element is determined by its packing characteristics.

FILE Data Types
All file variables require 148 bytes, and are aligned to a fullword boundary.

Pointer Data Types
All pointers, including STRINGPTR and GSTRINGPTR, require 8 bytes and are aligned on a
word boundary.

SET Data Types
The SET data types are represented internally as a string of bits with one bit position for
each integer value from 0 to the largest ordinal value of an element of the base type of the
set. For example, a SET type of the form

SET of a..b

is represented by a bit string that includes one bit for each integer value from 0 to ORD(b). If
some value c is a member of the set, the bit in position ORD(c) is set to 1; otherwise, the bit
is set to 0.

The length of the bit string representing the set depends on the base type of the set and
whether the set is packed.

Unpacked Sets of Integer Subranges
An unpacked set over an integer subrange is represented by a string of 256 bits occupying
32 bytes with full word alignment. This string has bit positions representing all potential
ordinal values from 0 to 255 although some of the bit positions may not be needed.

For example, a set definition

SET of 100..200

is represented by 32 bytes containing 256 bit positions for the potential ordinal values 0 to
255, but bit positions 0 through 99 and 201 through 255 are not used.

128 XL Pascal User’s Guide

In the following example, all of the sets occupy 256 bits:

VAR
 a : SET of CHAR;
 b : SET of ’0’..’9’;
 c : SET of 0..255;
 d : SET of 10..20;

Packed Sets and Sets of Enumerated Types
Packed sets, and sets with an enumerated base type or a base type that is a subrange of an
enumerated type occupy the minimum number of bytes needed to allocate one bit for each
integer value from 0 to the largest ordinal value of an element of the base type of the set.

The representation of a packed set or a set of enumerated values is determined by m,
where

m := ORD (HIGHEST (base–type of the SET));

The following table shows the size and alignment of a packed set of base–type as a function
of m.

Storage mapping of a Packed Set:

Range of m Size in Bytes Alignment

0 <= m <= 7 1 Byte

8 <= m <= 15 2 Halfword

16 <= m <= 23 3 Byte

24 <= m <= 31 4 Fullword

32 <= m <= 255 (m+7) DIV 8 Byte

A set definition

PACKED SET of 100..200

requires bit positions for each value from 0 to 200. This set is represented by 26 bytes
containing 208 bit positions for the potential ordinal values 0 to 207, but bit positions 0
through 99 and 201 through 207 are not used. The following example shows the storage
mapping of other packed sets:

VAR
 e : PACKED SET of c1..c8; (* 8 bits *)
 f : PACKED SET of 10..20; (* 24 bits *)
 g : PACKED SET of 0..31; (* 32 bits *)

The set definition

SET OF BOOLEAN

is represented by one byte containing 8 bit positions, but only bit positions 0 (FALSE) and 1
(TRUE) are used. The following example shows the storage mapping of other sets with an
enumerated base type:

h : SET of (c1,c2,c3,c4,c5,c6,c7, (* 16 bits *)
 c8,c9,c10,c11,c12,c13,
 c14,c15,c16);
i : SET of c1..c8; (* 16 bits *)

129Appendix E. Data Storage

SPACE Data Types
A variable declared as SPACE is aligned on a word boundary and occupies the number of
bytes indicated in the length specifier of the type definition. For example, the variable s in
the following declaration occupies 1000 bytes of storage.

VAR s : SPACE [1000] of INTEGER;

String Types
XL Pascal string data types are STRING, PACKED ARRAY OF CHAR, GSTRING, and
PACKED ARRAY OF GCHAR.

Packed arrays of CHAR are fixed-length character arrays stored as a set of contiguous
bytes, one character per byte. All of the elements in the array are character positions in the
string, and the size of the array is the length of the string.

The STRING data type is a varying-length string that has a 2-byte packed subrange string
length aligned on halfword boundary followed by a fixed-length array large enough for the
maximum length of the string. The dynamic length of the string can be determined using the
LENGTH function.

Packed arrays of GCHAR and variables of type GSTRING consist of multibyte characters.

Anonymous Types
Data types declared without a type name are said to be anonymous. A field of a packed
record type that is an anonymous subrecord is implicitly packed. An anonymous array type
that is a field of packed record is not implicitly packed.

Examples
TYPE
 rt1 = RECORD ... END;
 t1 = ARRAY[1..5] of rt1;
 t2 = PACKED ARRAY[1..5] of rt1;
 r1 = PACKED RECORD
 f1 : rt1;
 f2 : t1; (* Not packed *)
 f3 : t2; (* Packed because t2 declared packed *)
 f4 : ARRAY[1..5] of rt1; (* Not packed *)
 f5 : RECORD ... END; (* PACKED –– a ”new” *)
 (* anonymous field *)
 (* type of a packed record is packed *)
 END;

Dynamic Storage Management
This section describes how the Standard Pascal NEW and DISPOSE routines are
implemented in XL Pascal. It also describes the AIX RISC System/6000 implementation of
the following VS Pascal routines:

• MARK
• RELEASE
• NEWHEAP
• QUERYHEAP
• USEHEAP
• DISPOSEHEAP

130 XL Pascal User’s Guide

Implementation of NEW and DISPOSE by malloc and free
XL Pascal uses the AIX subroutine malloc to implement the Pascal predefined NEW
routine, and the AIX subroutine free to implement the DISPOSE routine.

NEW and malloc
A call to NEW is compiled into a call to a runtime environment routine that calls malloc to
allocate a block of storage. This block contains both the Pascal dynamic variable and a
fixed-size dynamic block header. The dynamic block header contains the size of the storage
area.

Calling NEW with a list of case constants specifying tag values allocates to the dynamic
variable just enough storage for the variant specified by each such case constant. For any
variant part that does not have a case constant in the NEW invocation, NEW allocates
enough storage for the largest variant. The case constants given in the NEW invocation are
used only to determine the size of storage to be allocated by malloc. The case constant
values are not saved.

DISPOSE and free
A call to DISPOSE is compiled into a call to a runtime environment routine that calls free to
deallocate the block of storage containing the dynamic variable that was passed to
DISPOSE. Any case constant values passed to DISPOSE are ignored. DISPOSE always
frees exactly the storage allocated by NEW.

Heaps
A heap is a subset of the Pascal dynamic variables allocated by NEW but not yet freed by
DISPOSE. A heap is implemented by XL Pascal as a doubly-linked list of the dynamically
allocated blocks containing the Pascal dynamic variables in the heap. The dynamic block
header contains the links and is located in a head cell for the heap.

The active heap is initially a default heap implemented by a default head cell. NEW allocates
a new dynamic variable and links its dynamic block at the right-hand end of the currently
active heap. The XL Pascal multiple heap management routines are implemented the
following way:

NEWHEAP creates a new heap head cell with an empty list of dynamic blocks.

USEHEAP changes the currently active heap.

QUERYHEAP locates the head cell of the currently active heap.

DISPOSEHEAP frees all of the dynamic variables in a heap by freeing all of the
dynamic blocks accessible to the heap head cell. If the argument to
DISPOSEHEAP is the currently active heap, the default heap
becomes active again.

Subheaps
A subheap is a subset of the dynamic variables in a heap. Subheaps are implemented by
keeping a mark level counter in the dynamic header. This counter gives the number of
MARK operations that have not been released. The head cell of a heap has a mark level of
zero.

131Appendix E. Data Storage

The predefined Pascal procedures MARK and RELEASE operate on subheaps and are
implemented in the following way:

MARK creates an empty dynamic variable called a mark block and increments the
mark level in the mark block. A call to NEW allocates a dynamic variable
with the same mark level as the previous right-hand end of the currently
active heap.

RELEASE starts at a mark block and frees all of the dynamic blocks from that mark
block to the right up to, but not including, the heap head cell. RELEASE and
DISPOSEHEAP both call the same runtime environment routine to free the
dynamic variables you specify. Whereas DISPOSEHEAP frees entire heaps
including the head cell, RELEASE frees subheaps but does not include the
head cell.

DISPOSE, DISPOSEHEAP, and RELEASE Validity Checking
The Run Time Environment routines that support DISPOSE, DISPOSEHEAP, and
RELEASE clear the link fields in the dynamic headers of dynamic blocks as they are freed.
These routines also check for local integrity of the list representing the heap involved in the
operation. This checking in general detects DISPOSE, DISPOSEHEAP, and RELEASE
operations on inappropriate operands.

Validity checking is subject to the following conditions:

• For all three operations, the dynamic block involved must be linked to apparently valid
dynamic blocks to the right and left

• For DISPOSE, the mark level must be the same as that of the block to the left, and the
disposed block must not be a head cell

• For DISPOSEHEAP, the block must be a head cell

• For RELEASE, the mark level must increase by one from the dynamic block to the left

Related Information
See the AIX Version 3.2 Technical Reference: Base Operating System and Extensions
manual for a description of the malloc subcommand and the free subcommand. See the
Language Reference for IBM AIX XL Pascal Compiler/6000 for a description of the XL
Pascal routines that handle dynamic variables.

132 XL Pascal User’s Guide

133 Copyright IBM Corp. 1990, 1993 Appendix F. Single Precision Floating–Point Overflow

Appendix F. Single Precision Floating-Point Overflow

The following information is based on the IBM RISC System/6000 hardware technical
reference manual description of floating-point arithmetic. It describes an error in the
implementation of the frsp (floating round to single precision) instruction, which may affect
some single-precision floating-point results. The XFLAG=DD24 compiler option generates
instructions to avoid the error as described here.

The frsp Instruction
The Floating Round to Single Precision (frsp or frsp.) instruction may produce incorrect
results when all of the following conditions are met:

1. The frsp is dependent on a previous floating-point arithmetic operation. Dependent
means that it uses the target register of the arithmetic operation as the source register.

2. Less than two nondependent floating-point arithmetic operations occur between the frsp
and the operation on which it is dependent.

3. The magnitude of the double-precision result of the arithmetic operation is less than
2**128 before rounding.

4. The magnitude of the double-precision result after rounding is exactly 2**128.

If the error occurs, the magnitude of the result placed in the target register is 2**128:

X’47F0000000000000’

or

X’C7F0000000000000’

This is not a valid single-precision value. A single-precision store of this value will store the
same value, plus or minus infinity, as if the frsp had executed correctly. But the result in the
target register is the double-precision representation of 2**128.

Effects of Compiler Option XFLAG=DD24
One way to avoid this error is to insure that two nondependent floating-point operations are
placed between a floating-point arithmetic operation and the dependent round to single
precision. The target registers for these operations should not be the same register that is a
source register for the frsp.

If you use the XFLAG=DD24 option, the compiler detects the first two conditions that are
necessary for this error. The compiler inserts two no-op lrfl instructions between the
nondependent floating-point operation and the dependent frsp. This eliminates one of the
conditions necessary for the error.

The XFLAG=DD24 option only affects the results of floating-point calculations where the
magnitude of the double-precision result is less than 2**128, the result is rounded to single
precision, and the magnitude of the result is exactly 2**128. The effect of the XFLAG=DD24
option is that the rounded result is always treated as a single-precision infinity, and not as a
valid double-precision value 2**128.

The extra no-op lrfl instructions inserted by the XFLAG=DD24 option may degrade the
performance of the compiled program. These extra lrfl instructions are most likely to be
inserted if you compile with the OPTIMIZE or OPT=2 compiler option.

134 XL Pascal User’s Guide

135Glossary Copyright IBM Corp. 1990, 1993

Glossary

This is a glossary of commonly used terms in the User’s Guide for IBM AIX XL Pascal Compiler/6000, and
the Language Reference for IBM AIX XL Pascal Compiler/6000. It includes definitions developed by the
American National Standards Institute (ANSI) and entries from the IBM Dictionary of Computing,
SC20–1699. It supplements the AIX Version 3.2 Topic Index and Glossary.

A
actual parameter
The actual value passed to a routine. Contrast with
formal parameter.

allocate
To reserve a resource for use in performing a specific
task. Contrast with deallocate.

alphabetic character
Any one of the uppercase letters A through Z, lowercase
letters a through z, and the special characters $ and _.

alphanumeric
Pertaining to a character set containing letters, digits,
and usually other characters, such as, punctuation marks
and mathematical symbols.

American National Standard Code for Information
Interchange (ASCII)
The code developed by ANSI for information interchange
among data processing systems, data communications
systems, and associated equipment. The ASCII
character set consists of 7-bit control characters and
symbolic characters.

American National Standards Institute (ANSI)
An organization sponsored by the Computer and
Business Equipment Manufacturers Association through
which accredited organizations create and maintain
voluntary industry standards.

anonymous type
A data type defined without a type name.

ANSI
See American National Standards Institute.

arithmetic expression
One or more arithmetic operators and arithmetic
primaries, the evaluation of which produces a numeric
value. An arithmetic expression can be an unsigned
arithmetic constant; the name of an arithmetic constant; a
reference to an arithmetic variable, array element, or
function reference; or a combination of such primaries
formed by using arithmetic operators and parentheses.

arithmetic operator
A symbol that directs XL Pascal to perform an arithmetic
operation..

array element
A single data item in an array.

assignment compatible
Indicates whether the type of a value allows it to be
assigned to a variable. See also compatible types.

automatic variable
A variable allocated on entry to a routine and deallocated
on the subsequent return. An automatic variable is
declared with the VAR declaration. Contrast with static
variable.

B
base scalar type
The data type on which another type is based. See also
data type.

binary operator
An operator that represents an operation on exactly two
operands. Compare with unary operator.

binder
See linkage editor.

C
CASE label
A value or range of values that comes before a
statement in a CASE statement branch. When the
selector is evaluated to the value of a CASE label, the
statement following the CASE label is processed.

collating sequence
A specified arrangement for the order of characters in a
character set. The collating sequence for AIX RISC
System/6000 characters is ASCII.

column mark line
In an error message, the line that contains the symbol
| to indicate the column of code where the error was
detected.

compatible types
Different data types that can be operands for the same
operation.

136 XL Pascal User’s Guide

compilable unit
An independently compilable piece of code. There are
two types of compilable units in XL Pascal: the program
unit and the segment unit.

compilation time
The time during which a source program is translated
from a high-level language into a machine language.

compiler directive
A statement that controls what the compiler does rather
than what the user program does.

component
One part of a structured type or value, such as an array
element or record field.

conformant string
A string whose declared length does not match that of a
formal parameter.

constant
(1) An unvarying quantity. (2) A value that is either a
literal or an identifier associated with a value in a CONST
declaration.

constant expression
An expression that can be completely evaluated by the
compiler at compile time and used as a constant value.

constant folding
Performing operations whose operands are all constants
at compilation time, and treating the results as constants.

control statement
A statement that alters the continuous sequential
invocation of statements. It may be a conditional
statement, such as IF, or an imperative statement, such
as DO.

current heap
The area of storage where dynamic variables allocated
by calls to NEW reside. Other heaps can exist at the
same time, but only one is current.

D
dangling else
A condition arising as a result of nesting an IF statement
in the IF part of an IF–ELSE statement. The ELSE is
associated with the closest IF, in this case, the inner one.
Placing an empty ELSE statement in the nested
statement prevents misinterpretation by forcing the outer
ELSE to associate with the outer IF.

data type
(1) The properties and internal representation that
characterize data and functions. (2) One of several
Pascal data classes that defines the permissible values a
variable belonging to it may assume.

DBCS
See Double-Byte Character Set.

DDNAME
A name that can be used to determine the external name
of the date file associated with a file variable.

deallocate
To release a resource assigned to a specific task.
Contrast with allocate.

default
A value, attribute, or option that is assumed when no
alternative is specified.

dereferenced pointer
An expression using –> or @ operator to locate a
dynamic variable from a pointer.

descriptor
In information retrieval, a parameter word used to
categorize or index information.

digit
A graphic character that represents an integer. For
example, one of the characters 0 through 9.

directory
A type of file containing the names and controlling
information for other files or other directories.

Double-Byte Character Set (DBCS)
A set of characters in which each character is
represented by 2 bytes of storage.

dynamic block header
A data structure used by XL Pascal to link dynamic
variables that are in the same heap.

dynamic string
 See string.

dynamic variable
A variable allocated under programmer control. Explicit
allocations and deallocations are required; the predefined
procedures NEW and DISPOSE are provided for this
purpose.

E
element
The component of an array, subrange, enumeration or
set. The data type of the element is the element type.

embedded blanks
Blanks surrounded by any other characters.

enumerated scalar type
A scalar defined by enumerating the elements of the
type. Each element is represented by an identifier.

expression
A notation that represents a value; a constant or a
reference appearing alone, or in combinations of
constants and/or references with operators. AN
expression can be arithmetic , character, logical, or
relational.

137Glossary

external routine
A procedure or function called from outside the program
in which the routine is defined.

external variable
A variable accessible in another compilation unit.

F
field
A component of a record.

file
A sequence of records stored and processed as a unit.
Files located in internal storage are internal files; files on
an input/output device are external files.

file pointer
An identifier indicating the location of an item of data in
an input/output buffer.

fixed part (of a record)
The part of a record common to all instances of a
particular record type.

fold
To translate the lowercase characters of a character
string into uppercase or vice versa. See also constant
folding.

formal parameter
A parameter declared in a routine heading. It specifies
what can be passed to a routine as an actual parameter.

format
(1) A defined arrangement of such things as characters,
fields, and lines, usually used for displays, printouts, or
files. (2) To arrange such things as characters, fields, and
lines.

function
(1) A named expression that calculates a single value.
(2) A routine called by coding its name on the right side
of an expression. The routine passes a result back to the
caller through the routine name.

G
guard expressions
Expressions placed at the beginning of Boolean
expressions to check that other operations can be done.

H
hashing
(1) A method of transforming a search key into an
address for the purpose of storing and retrieving items of
data. (2) Encoding a character string as a fixed-length bit
string for comparison. The encoding may not be unique.

hash signature
The fixed-bit character string resulting from hashing a
character string. Character strings can be compared
quickly by comparing their hash signatures.

heap
A collection of dynamically allocated variables.

hexadecimal
Pertaining to a system of numbers to the base 16;
hexadecimal digits range from 0 (zero) through 9 (nine)
and A (ten) through F (fifteen).

I
identifier
(1) The name of a declared item. (2) A lexical unit that
names a language object, for example, the names of
variables, arrays, records, labels, and procedures.

IEEE
Institute of Electrical and Electronics Engineers.

index
The selection mechanism applied to an array to identify
an element of the array.

input
(1) Data to be processed. (2) A predefined standard file
definition.

input/output (I/O)
Pertaining to either input or output, or both.

interactive
Pertaining to the exchange of information between
people and a computer.

internal routine
A routine functioning only within the lexical scope in
which it was declared.

invocation stack
A list of programs linked together as a result of programs
calling other programs with the CALL instruction, or
implicitly from some other event, within the same job.
Also known as program stack.

I/O
See input/output.

K
keyword
A predefined identifier representing a language construct
that can be redefined in a declaration. Contrast with
reserved word.

L
lexical level
The depth to which routines are nested within one
another, which determines the scope of the identifiers
declared within those routines.

138 XL Pascal User’s Guide

lexical scope
The portion of a program or segment unit in which a
declaration applies. An identifier declared in a routine is
known within that routine and all nested routines. If a
nested routine declares an item with the same name, the
outer item is not available in the nested routine.

link-editing
To create a loadable computer program by means of a
linkage editor.

linkage
The coding that passes control and parameters between
two routines.

linkage editor
A computer program for creating load modules from one
or more object modules or load modules by resolving
cross-references among the modules and, if necessary,
adjusting addresses. It may also check consistency of
data references among the modules.

literal string
A character string whose value is given by the characters
themselves.

logical file
A description of how data is to be presented to or
received from a program. This type of data base file
contains no data, but it defines formats for one or more
physical files.

M
mark block
A dynamic block header that designates a subheap
within a heap.

MBCS
See Multibyte Character Set.

mixed string
A string consisting of a mixture of MBCS characters and
single-byte characters.

Multibyte Character Set (MBCS)
A set of characters in which each character is
represented by more than one byte of storage.
Languages such as Japanese, Chinese, and Korean,
which contain more symbols than can be expressed in a
single byte, are represented in this character set.

N
nest
To incorporate a structure or structures of some kind into
a structure of the same kind, for example, to nest one
loop (the nested loop) within another loop (the nesting
loop), or to nest one subroutine (the nested subroutine)
within another subroutine (the nesting subroutine).

O
object
Anything that exists in, and occupies space in, storage
and on which operations can be performed, such as,
programs, files, and libraries.

object program
A set of instructions in machine-runnable form. The
object program is produced by a compiler from a source
program.

offset
(1) The distance from the beginning of an object to the
beginning of a particular field. (2) The selection
mechanism in the SPACE data type, an element of which
is selected by placing an integer value in brackets. The
origin of a SPACE is zero.

operand
A value manipulated by an operator.

operator
A token that specifies the algebraic or logical processes
that can be performed on one or more values.

optimize
To improve the speed of a program or reduce the use of
storage during processing.

ordinal type
A type whose members can be counted to indicate
position.

output
(1) The result of processing data. (2) A predefined
standard file definition.

P
pad
(1) To fill parts of a character string with a specified
pattern. (2) To leave unused bytes between components
of a structured type in order to satisfy alignment
requirements.

parameter
A value specified to a command, program, or routine.
The value is either used as input or controls the actions
of the command, program, or routine.

pass-by-CONST
The parameter passing mechanism by which a copy of
the variable is passed to the called routine. The called
routine is not permitted to modify the formal parameter.

pass-by-read-only-reference
Synonym for pass-by-CONST.

pass-by-read/write-reference
Synonym for pass-by-VAR.

139Glossary

pass-by-value
The parameter passing mechanism by which a copy of
the value of the actual parameter is passed to the called
routine. Called routines that modify the formal parameter
do not affect the corresponding actual parameter.

pass-by-VAR
The parameter passing mechanism by which the address
of a variable is passed to the called routine. Called
routines that modify the formal parameter do not affect
the corresponding actual parameter.

pointer type
Defines variables containing addresses and other
information about dynamic variables.

prime file
A file containing precompiled declarations in the internal
table format of the XL Pascal compiler. Prime files are
used to initialize the compiler’s internal tables before
compilation begins.

procedure
A routine, called by coding its name as a statement, that
does not pass a result back to the caller.

program unit
The name of a compilable block of code that gains initial
control when the compiled program is called.

R
real number
A number that contains a decimal point and is stored in
fixed-point or floating-point format.

recursive routine
A routine that can call itself or be called by another
routine called by the recursive routine.

register
A storage device having a specified capacity such as bit,
byte, or computer word, and usually intended for a
special purpose.

relational expression
An expression consisting of an arithmetic or character
expression, followed by a relational operator, followed by
another arithmetic or character expression. The result is
true or false.

relational operator
Any of the set of operators that compare values.

reserved word
An identifier that is predefined in the language and
syntax rules of XL Pascal and that cannot be redefined.

result
An entity produced by the performance of an operation.

routine
A block of statements called and processed as a unit.
The two types of routines are functions and procedures.
See also function and procedure.

S
scalar
Pertaining to a single data item.

scalar type
A type that defines a variable containing a single value at
run time. CHAR, BOOLEAN, INTEGER, REAL,
SHORTREAL, enumerated types, and subranges are
scalar types. Contrast with structured type.

scope
See lexical scope.

segment unit
An independently compilable unit of XL Pascal code
containing routines linked with the program unit. See also
program unit.

selector
The term in a CASE statement that, once evaluated,
determines which of the possible branches of the CASE
statement are processed.

semantic error
A compile-time error caused by incorrect definition of
constants and identifiers. See also syntax error.

short circuiting
The evaluation of Boolean expressions with AND (&) and
OR (|) such that the right operand is not evaluated if the
result of the operation can be determined by evaluating
the left operand. The evaluation of the expression is
always from left to right.

side effect
An undesirable result caused when a function or
procedure alters the values of nonlocal variables.

source program
A set of instructions written in a programming language
that must be translated to machine language before the
program can be run.

spill area
A storage area used to save the contents of registers.

statement
A language construct that represents a step in a
sequence of actions or a set of declarations.

static variable
A variable that is allocated as soon as a program starts
running and remains allocated until the program stops.
Contrast with automatic variable.

string
(1) A sequence of characters. the length of the sequence
can vary at run time. Synonymous with dynamic string.
(2) An object of the predefined type STRING.

140 XL Pascal User’s Guide

structured programming
A technique for organizing computer programs in
hierarchical modules, making programs easier to debug,
modify, and replace. Typically, all modules have a single
entry point and a single exit point. Control is passed
downward through the structure without unconditional
branches to higher levels of the structure.

structured type
Any of several data types that define variables having
multiple values; for example, records and arrays. Each
value is generally referred to as a component. See also
component. Contrast with scalar type.

subheap
Part of a heap delimited by a call to MARK. Subheaps
are treated in a stack-like manner within a heap.

subrange scalar type
A type that defines a variable whose value is restricted to
some subset of values of a base scalar type.

subscript
A subscript quantity or set of subscript quantities,
enclosed in parentheses and used with an array name to
identify a particular array element.

syntax error
A compile-time error caused by incorrect punctuation or
misuse of reserved words. See also semantic error.

T
tag field
The field of a record that defines the structure of the
variant part. See also variant part.

top-down
An approach to problem solving that starts at the highest
level of abstraction and proceeds toward the lowest level.

type
See data type.

type compatibility
See compatible types.

type definition
The specification of a data type. The specification can be
in a type declaration or in the declaration of a variable.

type identifier
The name given to a declared type.

U
unary operator
An operator that represents an operation on one operand
only. Compare with binary operator.

unit
See compatible unit.

V
variant part
The portion of a record that can vary from one instance
of the record to another. The variant portion consists of
alternate sequences of fields that share the same
physical storage.

141Index Copyright IBM Corp. 1990, 1993

Index

Symbols
.cshrc file, 15

.lst files, 20

.o files
–c compiler option, 29
invoking, 14, 40
output files, 20

.pas files
input files, 19
invoking, 14, 40

.profile file, 15

.s files, 20

%CHECK directive, 32, 84

%INCLUDE directive, 21, 119

%OPTION directive, 21, 22

–# compiler option, 29

–B flag, 29

–c compiler option
description, 29
invoking the linkage editor, 40
xlp command, 13

–F flag, 29

–g compiler option, 32, 85

–I flag, 30

–O compiler option, 37

–o flag, 20

–p compiler option, 16, 30

–pg compiler option, 16, 30

–q command line options, 23

–qlanglvl compiler option, 18

–qprime compiler option, 21

–qprimeout compiler option, 21

–qsource compiler option, 105

–S option, 30

–t flag, 30

–U compiler option, 37

–v compiler option, 30

–W flag, 31

–y flag, 36

/etc/profile file, 15

A
a.out file

–o flag, 30
invoking the compiler, 13
output file, 20

active heap, 130

AIX
commands

–c compiler option, 29
as, 16
dbx, 9
export, 44
gprof, 30
installp, 10
ld, 16, 28, 40
ln, 17
prof, 30

shared libraries, 42
subroutines, 130

AIX Version 3 for RISC System/6000. See AIX

algorithm, 69

alignment, boundary. See boundary alignment

American National Standard Code for Information
Interchange. See ASCII character set

American National Standards Institute (ANSI), 1

anchor–pointing. See short–circuiting

anonymous types, storage and alignment, 129

ANSI standard Pascal
AIX RISC System/6000 extensions, 112
compiler modes, 10
industry standard, 5
LANGLVL compiler option, 36
language support, 9
publication, 6
VS mode extensions, 111
XL Pascal compiler compliance

error handling, 114–116
extension handling, 116
implementation–defined features, 111–113
implementation–dependent features, 113

ANSI–83. See ANSI standard Pascal

appending data to a file, 66

ARCH compiler option, 31

array
element, 66
storage, 93

142 XL Pascal User’s Guide

ARRAY data types, 126

arrays, 101

as configuration file attribute, 16

ASCII character set, 107

asopt configuration file attribute, 16

assembler source files, input to xlp command, 13, 20

assembler, source files, suffix, 16

assertion failure, 84

associating file name, 66

ATTR compiler option, 31

attribute section, compiler listing, 77

automatic variables, storage, 123

B
Boolean, expressions, 71

BOOLEAN data type, 21

boundary alignment, 124–129

Bourne shell, 14

bsh command, 14

C
C language

array storage, 93
case sensitivity, 97
char arrays, 92
character variable types, 92
matching data types, 90
pointers, 93
routine calls, 94
strings, 92

C shell, 14

CASE label error, 84

case sensitivity, 90, 97

character strings, 98

character variable types, 92

CHECK compiler option, 32

CLOSE procedure, 65

code motion, 70

COLS function, 60

column–major order, 93

command line
configuration file attributes, 16
running a program, 41
specifying compiler options, 23
using environment varaibles, 43

xlp command, 13

commands, 14–17
See also AIX commands

common expression elimination, 70

COMPACT compiler option, 32

compatibility, 9

compile–time error messages, 79, 80

compiler
directives

%CHECK, 32
%INCLUDE, 21
%OPTION, 22, 23
%OPTION PRIME, 21
%OPTION PRIMEOUT, 21

error response, 80
features, 9
help, 9
installation, 10
invoking, 13
limits, 118, 119
listings, 73
mode, 10
options

–c, 13, 29
–p, 16, 30
–pg, 16, 30
–qlanglvl, 18
–qprime, 21
–qprimeout, 21
–S, 30
debugging, 28
default, 25
describing compiler output, 27
detailed descriptions, 29–40
input to the compiler, 25
LANGLVL, 10
linkage editor, 28
object code, 26
overview, 22
SOURCE, 105
specifying in the source file, 23
specifying on the command line, 23
xlp command, 9

output files, 20

compiling a program, 14

configuration file
attributes, 16–21
customizing, 17

CONST parameter, 93

constants
folding, 35, 70
predefined, 21, 117
storage, 124

control characters, 107

143Index

conventions
parameter passing, 97, 101
routine linkage

NONPASCAL routine directive, 97
overview, 95
parameter linkage, 95

source code symbols, 10

correcting
compile–time errors, 81
runtime checking errors, 84
semantic errors, 83
syntax errors, 81

creating matching data types, 91

cross reference section, compiler listing, 77

crt configuration file attribute, 16

csh command, 14

CTRL key, 107

customizing configuration files, 17

D
data file name, 67

data storage, 123

data types
BOOLEAN, 21
boundary alignment, 124
character variables. See matching data types
implementation dependencies

INTEGER, 117
REAL, 117
SET, 118
SHORTREAL, 117

matching. See matching data types
storage and alignment

anonymous types, 129
ARRAY types, 126
enumerated types, 124
FILE, 127
overview, 124
pointer types, 127
predefined types, 124
record types, 125
SET, 127
SPACE, 129
string, 129
subrange scalar types, 125

DBCS compiler option, 32

DBG compiler option, 32

dbx
See also symbolic debugger
command, 9
optimized code, 71
problem determination, 85
where subcommand, 86

DDNAME
compiler option, 32, 66
data file name, 67
file opening option, 48
open file variable, 66

dead code elimination, 70

debugging optimized code, 71

DEF declaration, 89

default
compiler options, 22, 25
configuration file, 15–19
DDNAME compiler option, 32
executable file name, 20, 41
IEEE compiler option, 36
input, 52
LRECL open option, 47
MARGINS compiler option, 36
NORRM compiler option, 38
OPT compiler option, 37
optimization level, 37
output, 52
Pascal source file suffix, 19, 20
prime file, 21
RECFM open option, 47
rounding mode, 36
SPILL compiler option, 38
stanza name, 15

descriptor word, 96

detailed descriptions of compiler options, 29–40

diagnostic messages. See see error messages

DIALECT compiler option, 36

DISP=MOD file opening option, 47, 66

DISPOSE procedure, 130

DISPOSEHEAP procedure, 130

double precision, intermediate rounding, 36

dynamic
block header, 130
storage management, 129–132

E
echo command, 14

end–of–file condition, 60, 64

end–of–line condition, 59

enumerated data types, storage and alignment, 124

environment variables
data file name, 67
LANG, 14, 86
NLSPATH, 14, 86

144 XL Pascal User’s Guide

opening files, 43, 44
runtime environment, 44
setting, 14

EOF function, 60, 64

EOLN function, 59

epilog section, compiler listing, 78

EPSREAL constant, 118

EPSSREAL constant, 118

error
detection, 114–116
runtime, 84

error messages
compile time

classes, 80
compiler response, 80
correcting, 81
description, 79
semantic errors, 83
syntax errors, 81

description, 79–86
FLAG compiler option, 33
HALT compiler option, 35
runtime, 83, 84
using the symbolic debugger, 85

executable files
output from xlp command, 13, 20
running a program, 41

export command, 44

expressions, guard, 71

EXTCHK compiler option, 32

external name, 66, 90

EXTERNAL routines, 41

external variables, 98, 123

F
Federal Information Processing Standard. See FIPS

file
.cshrc, 15
.profile, 15
/etc/profile, 15
/etc/xlp.cfg, 15
a.out, 20
configuration

attributes, 16–21
customizing, 17

data types, 104
description, 43
executable, 13
gmon.out, 30
input, 13, 19
mon.out, 30
name

associating with external name, 66

environment–determined, 43
unique, 65, 67

object, 13
open options

DDNAME, 48, 67
DISP=MOD, 47, 66
INTERACTIVE, 47, 50
LRECL, 47, 49
NAME, 46, 67
overview, 45
RECFM, 47, 49
UCASE, 47

opening procedures
overview, 50
RESET, 50
REWRITE, 51, 66
TERMIN, 52
TERMOUT, 52
UPDATE, 53

output, 20
prime, 21
RECORD, 43
source, 13
TEXT, 43
xlp_base_prime, 22
xlp_prime, 21, 22

FILE data types, 127

file table section, compiler listing, 78

FIPS (Federal Information Processing Standard), 5, 6

first parameter word, 96

fixed–length strings, 92

FLAG compiler option, 33

FLOAT compiler option
description, 33
suboptions, 33–36

floating round to single precsion (frsp). See frsp
instruction

floating–point
arithmetic, compiler option, 36
constant expressions, 35
data implementation, 117
exception, 36
function return values, 35
intermediate rounding, 133
overflow detection, 38
rounding mode, 38

FLTTRAP compiler option
description, 34
suboptions, 34–37

FOLD compiler option, 35

folding, 35, 70

145Index

formal parameter
definitions across XL languages, 97
interlanguage reference requirements, 89
routine linkage convention, 95
type checking, 104

Fortran
array storage, 93
character variable types, 92
matching data types, 90
routine calls, 94

FPRET compiler option, 35

free subroutine, 130

frsp instruction, 133

function calls, 94

function return value, 84

function return values, 98

G
gcrt configuration file attribute, 16

GET procedure, 53, 61

getopt subroutine, 16

global automatic variables, 123

global register allocation, 70

gprof command, 30

guard expressions, 71

H
HALT compiler option, 35

hash signature, 104

head cell, 130

header section, compiler listing, 76

heaps, 130

help, online, 9

I
IBMSET compiler option, 36

identifiers, in syntax diagrams, 2

IEEE compiler option, 36

implementation
defined features of XL Pascal, 111
dependent features of XL Pascal, 113

improving program performance, 71

industry standards, 5

input files, 13, 19

INPUT predefined file, 104

input procedures
RESET, 50
TERMIN, 52
UPDATE, 53

installing the compiler, 10

installp command, 10

instruction scheduling, 70

instructions, multiply–add, 36

INTEGER data type, 117

INTERACTIVE file opening option, 47, 50

interlanguage communication
array storage, 93
character variable types, 92
compiler feature, 9
external names, 89, 90
matching data types, 90
reference requirements, 89
routine calls, 94

intermediate rounding, 36, 38

International Standards Organization. See ISO

invoking, 13, 40

ISO (International Standards Organization), 5, 6

K
keywords, 2, 7

Korn shell, 14

ksh command, 14

L
LANG environment variable, 14

LANGLVL compiler option, 10, 36

language mode, 36

language support, 9

ld
command

See also linkage editor
–c compiler option, 29
–L flag, 30
–l flag, 30
–o flag, 30
compiler options, 28
invoking the linkage editor, 40
rename subcommand, 90
single letter flags, 24

configuration file attribute, 16

ldopt configuration file attribute, 16

146 XL Pascal User’s Guide

libraries configuration file attribute, 16

limits, compiler. See compiler limits

linkage convention, routine. See routine linkage
convention

linkage editor
See also ld command
configuration file attribute, 16
data type checking, 104
invoking, 40
rename subcommand, 90
xlp command, 13

linking, static, 41

LIST compiler option, 36

list files, 20

listings
overview, 73
sections

attributes, 77
cross reference, 77
epilog, 78
file table, 78
header, 76
object, 78
options, 77
source, 77

ln command, 17

LOG compiler option, 36

LRECL file opening option, 47, 49

M
MAF compiler option, 36

making programs more efficient, 71

malloc subroutine, 130

MARGINS compiler options, 36

mark block, 131

MARK procedure, 131

matching data types
creating, 91
enforcement of type matching, 104
file types, 104
interlanguage communication, 90
list and summary, 91

MAXMEM compiler option, 36

MAXREAL constant, 118

MAXSREAL constant, 118

MBCS (multibyte character set), 7

MBCS compiler option, 37

mcrt configuration file attribute, 16

message
catalogs, 86
classes, 80
diagnostic. See see error messages
error. See error messages

migration, 9

MINREAL constant, 118

MINSREAL constant, 118

MIXED compiler option, 37, 90

mode, 10

multibyte character set. See MBCS

multiple heap routines, 130

multiply–add instructions, 36

N
name, data file, 43, 67

NAME file opening option, 46, 67

national language support, 41, 86

NEW procedure, 42, 130

NEWHEAP procedure, 130

NIL pointer error, 84

NLSPATH environment variable, 14

no–check hash signature, 104

NOEXTCHK compiler option, 104

NONPASCAL routine directive, 97

NOSOURCE compiler option, 81

O
object

code
input to xlp command, 20
optimization, 37, 69
xlp command, 13

compiler listing section, 78
listing, 36

online help, 9

open options
DDNAME, 48, 67
DISP=MOD, 47, 66
INTERACTIVE, 47, 50
LRECL, 47, 49
NAME, 46, 67
overview, 45
RECFM, 47, 49
UCASE, 47

147Index

opening files
appending data to a file, 66
for input, 50, 52
for output

REWRITE, 51, 66
TERMOUT, 52

for updating, 53
input procedures, 50, 52
output procedures, 51, 52
overview, 45
procedures, 50, 53

OPT compiler option, 37, 69

optimization, 37, 69, 70

optimized code, debugging, 71

OPTION compiler option, 37

options
–S, 30
compiler

–c, 13, 29
–p, 16, 30
–pg, 16, 30
–qlanglvl, 18
–qprime, 21
–qprimeout, 21
default, 25
detailed descriptions, 29–40
LANGLVL, 10
listing section, 77
overview, 22
SOURCE, 105
specifying in the source file, 23
specifying on the command line, 23
xlp command, 9

configuration file attribute, 16
opening files, 45

osuffix configuration file attribute, 16

output files, 20

OUTPUT predefined file, 104

output procedures
REWRITE, 51, 66
TERMOUT, 52

P
packed sets, 128

PAGE procedure, 59

parameter
linkage

descriptor word, 96
first parameter word, 96
overview, 95
second parameter word, 96

passing
improving program performance, 72
interlanguage conventions, 97, 101

modes, 98, 101
routines, 117

word, 96

Pascal
array storage, 93
arrays of CHAR, 92
character variable types, 92
language, 1, 9
matching data types, 90
pointers, 93
routine calls, 94
source files

input to xlp command, 13, 19
suffix, 16

strings, 92

pointer data types, 127

pointer target, 66

pointers, 97

portability, 9

predefined
constants, 117
data types, 124

PRIME compiler option, 37

prime file, 21

PRIMEOUT compiler option, 38

problem determination
compiler listings, 73
error messages, 79
message errors, 86
traceback facilities, 85
using the symbolic debugger, 85

procedure calls, 95

procedures, opening files
overview, 50
RESET, 50
REWRITE, 51, 66
TERMIN, 52
TERMOUT, 52
UPDATE, 53

processing
a record file

end–of–file condition, 64
EOF function, 64
GET procedure, 61
PUT procedure, 62
READ procedure, 62
SEEK procedure, 63
WRITE procedure, 63

a TEXT file
COLS function, 60
end–of–file condition, 60
end–of–line condition, 59
EOF function, 60
EOLN function, 59
GET procedure, 53
PAGE procedure, 59

148 XL Pascal User’s Guide

PUT procedure, 54
READ procedure, 55
READLN procedure, 57
WRITE procedure, 57
WRITELN procedure, 58

prof command, 30

profiling, runtime, 30

proflibs configuration file attribute, 16

psuffix configuration file attribute, 16

PTR4 compiler option, 38

publications, 6

PUT procedure, 54, 62

Q
QUERYHEAP procedure, 130

QUIET compiler option, 38

R
random record access, 63

READ procedure, 55, 62

reading data
from a record file, 61, 62
from a TEXT file

GET procedure, 53
READ procedure, 55
READLN procedure, 57

READLN procedure, 57

reassociation, 70

RECFM file opening option, 47, 49

record data types, 125

record field, 66

REF, variables, 89

REF variables, 42

related documentation, 6

relative record access, 63

RELEASE procedure, 131

reserved words, 2, 7

RESET procedure
DDNAME, 66
opening a file for input, 50
opening files, 45

REWRITE procedure
appending data to a file, 66
DDNAME, 66
opening files, 45, 51

RISC System/6000, 1

rounding mode, 38

routine calls, 94

routine linkage convention
formal parameter, 95
NONPASCAL routine directive, 97
overview, 95
parameter linkage, 95

routines, parameter passing, 117

row–major order, 93

RRM compiler option, 38

RT PC VS Pascal, 9

running programs, 41

runtime
checking errors, 84
environment, 41, 86
messages, 83
profile, 30

S
scalar type parameters, 72

second parameter word, 96

SEEK procedure, 63

semantic errors, 83

SET data type, 118, 127

setenv command, 15

setting environment variables, 14

sh command, 14

shared libaries, 42

short–circuiting, 71

single precision, intermediate rounding
frsp error, 133
IEEE compiler option, 36
XFLAG compiler option, 38

single–letter flags, 24

source code symbol conventions, 10

SOURCE compiler option
compile–time errors, 81
description, 38
sample program, 105

source files, 13, 23

source section, compiler listing, 77

SPACE data types, 129

specifying compiler options, 23

SPILLSIZE compiler option, 38

ssuffix configuration file attribute, 16

standard mode
See also VS mode
ANSI standard Pascal, 5
compiler option, 10

149Index

DDNAME=UNIQUE, 32
file name association, 67
language support, 9

standard Pascal, 5, 111

standards, industry. See industry standards

static linking, 41

static variables, storage, 123

storage
anonymous types, 129
ARRAY data types, 126
arrays, 93
boundary alignment, 124
classes, 123
data types, 124
dynamic, 129–132
enumerated data types, 124
FILE data types, 127
packed sets, 128
pointer data types, 127
predefined data types, 124
record data types, 125
SET data types, 127
SPACE data types, 129
string data types, 129
subrange scalar data types, 125
unpacked sets, 127
variables, 123

straightening, 70

strength reduction, 70

STRICT compiler option, 38

STRING data type, 92

string data types, 129

string subscript out of bounds error, 84

string truncation error, 84

structured type parameters, 72

subheaps, 130

subrange error, 84

subrange scalar data types, 125

subscript error, 84

suppressing data type checking, 104

symbolic debugger
dbx command, 9
optimized code, 71
problem determination, 85

syntax diagrams, how to read, 2

syntax errors, 81

T
TERMIN procedure, 45, 52

TERMOUT procedure, 45, 52

traceback facilities, 85

TRACEID compiler option, 39

TUNE compiler option, 39

type matching. See matching data types

typographical conventions, 7

U
UCASE file opening option, 47

unique file names, 65, 67

unpacked sets, 127

UPDATE procedure
DDNAME, 66
description, 53
opening files, 45

use configuration file attribute, 16

USEHEAP procedure, 130

V
validity checking, 131

VALUE initialization, 72

value numbering, 70

VAR parameter, 93

variables
environment, 14
in syntax diagrams, 2
maximum size, 119
storage, 123

varying–length strings, 92

VS mode
compiler option, 10
DDNAME=COMPAT, 32, 67
DDNAME=UNIQUE, 67
extensions to standard Pascal, 111
language support, 9

VS Pascal
compatibility, 9
differences from XL Pascal, 119–121
LANGLVL compiler option, 36
language extensions, 1
migration, 9
omissions from XL Pascal, 120, 122

W
WAIT compiler option, 39

word, parameter. See parameter word

WRITE compiler option, 40

WRITE procedure, 57, 63

150 XL Pascal User’s Guide

WRITELN procedure, 58

writing data
to a record file, 62, 63
to a TEXT file

PUT procedure, 54
WRITE procedure, 57
WRITELN procedure, 58

X
XFLAG compiler option, 38, 133

XL Pascal
compiler, 1, 9
language, 1, 9

prime files, 22
runtime environment, 41, 86

xl__trap procedure, 85

xlp
command

calling run–time routines, 41
invoking, 13, 40
online help, 9
output files, 20

configuration file attribute, 17

xlp_prime file, 21, 37

xlpopt configuration file attribute, 17

XREF compiler option, 40

Communicating Your Comments to IBM

IBM AIX XL Pascal Compiler/6000
User’s Guide

Version 2.1

Publication number SC09–1756–00

If there is something you like—or dislike—about this book, please let us know. You can use
one of the methods listed below to send your comments to IBM. If you want a reply, include
your name, address, and telephone number. If you are communicating electronically, include
the book title, publication number, page number, or topic you are commenting on.

The comments you send should only pertain to the information in this book and its
presentation. To request additional publications or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your IBM representative
or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the United
States, you can give it to the local IBM branch office or IBM representative for postage–paid
mailing.

• If you prefer to send comments by mail, use the RCF at the back of this book.

• If you prefer to send comments by FAX, use this number:

– United States and Canada: 416–448–6161

– Other countries: (+1)–416–448–6161

• If you prefer to send comments electronically, use the network ID listed below. Be sure to
include your entire network address if you wish a reply.

– Internet: torrcf@vnet.ibm.com
– IBMLINK: toribm(torrcf)
– IBM/PROFS: torolab4(torrcf)
– IBMMAIL: ibmmail(caibmwt9)

Readers’ Comments – We’d Like to Hear from You

IBM AIX XL Pascal Compiler/6000
User’s Guide

Version 2.1

Publication Number SC09–1756–00

Overall, how satisfied are you with the information in this book?

Overall Satisfaction

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

How satisfied were you that the information in this book is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? � Yes � No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in
any way it believes appropriate without incurring any obligation to you.

Name

Company or Organization

Phone Number

Address

IIBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA M3C 1H7

PLACE
POSTAGE
STAMP
HERE

Fold and Tape Fold and Tape

C
u
t o

r F
o
ld

 A
lo

n
g
 L

in
e

Please Do Not Staple

Fold and Tape Fold and TapePlease Do Not Staple

SC09–1756–00

Readers’ Comments—We’d Like to Hear from You

SC09–1756–00

