densityHeatmap.Rd
Visualize Density Distribution by Heatmap
densityHeatmap(data, density_param = list(na.rm = TRUE), col = rev(brewer.pal(11, "Spectral")), color_space = "LAB", ylab = deparse(substitute(data)), column_title = paste0("Density heatmap of ", deparse(substitute(data))), title = column_title, ylim = NULL, range = ylim, title_gp = gpar(fontsize = 14), ylab_gp = gpar(fontsize = 12), tick_label_gp = gpar(fontsize = 10), quantile_gp = gpar(fontsize = 10), show_quantiles = TRUE, column_order = NULL, column_names_side = "bottom", show_column_names = TRUE, column_names_max_height = unit(6, "cm"), column_names_gp = gpar(fontsize = 12), column_names_rot = 90, cluster_columns = FALSE, clustering_distance_columns = "ks", clustering_method_columns = "complete", mc.cores = 1, ...)
data | A matrix or a list. If it is a matrix, density is calculated by columns. |
---|---|
density_param | Parameters send to |
col | A vector of colors that density values are mapped to. |
color_space | The color space in which colors are interpolated. Pass to |
ylab | Label on y-axis. |
column_title | Title of the heatmap. |
title | Same as |
ylim | Ranges on the y-axis. |
range | Same as |
title_gp | Graphic parameters for title. |
ylab_gp | Graphic parameters for y-labels. |
tick_label_gp | Graphic parameters for y-ticks. |
quantile_gp | Graphic parameters for the quantiles. |
show_quantiles | Whether show quantile lines. |
column_order | Order of columns. |
column_names_side | Pass to |
show_column_names | Pass to |
column_names_max_height | Pass to |
column_names_gp | Pass to |
column_names_rot | Pass to |
cluster_columns | Whether cluster columns? |
clustering_distance_columns | There is a specific distance method |
clustering_method_columns | Pass to |
mc.cores | Multiple cores for calculating ks distance. |
... | Pass to |
To visualize data distribution in a matrix or in a list, we normally use
boxplot or violinplot. We can also use colors to map the density values and
visualize distribution of values through a heatmap. It is useful if you have
huge number of columns in data
to visualize.
The density matrix is generated with 500 rows ranging between the maximun and minimal values in all densities.
A Heatmap-class
object. It can oly add other heatmaps/annotations vertically.
https://jokergoo.github.io/ComplexHeatmap-reference/book/other-high-level-plots.html#density-heatmap
ha = HeatmapAnnotation(points = anno_points(runif(10)), anno = rep(c("A", "B"), each = 5), col = list(anno = c("A" = "red", "B" = "blue"))) densityHeatmap(matrix, top_annotation = ha)