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Go Forward

This is a book on linear optimization, written in LATEX. I started it, aiming it at the
course IOE 510, a masters-level course at the University of Michigan. Use it as is, or
adapt it to your course! It is an ongoing project. It is alive! It can be used, modified
(the LATEX source is available) and redistributed as anyone
pleases, subject to the terms of the Creative Commons At-
tribution 3.0 Unported License (CC BY 3.0) cb. Please
take special note that you can share (copy and redistribute
in anymediumor format) and adapt (remix, transform, and
build upon for any purpose, even commercially) thismate-
rial, but youmust give appropriate credit, provide a link to
the license, and indicate if changesweremade. Youmay do
so in any reasonable manner, but not in any way that sug-
gests that I endorse you or your use. If you are interested
in endorsements, speak to my agent.

I started this material, but I don’t control so much what
you do with it. Control is sometimes overrated — and I am a control freak, so I should
know!

I hope that you find this material useful. If not, I am happy to refundwhat you paid
to me.

Jon Lee

Ann Arbor, Michigan
started March 2013
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Preface

This book is a treatment of linear optimization meant for students who are reason-
ably comfortable with matrix algebra (or willing to get comfortable rapidly). It is not
a goal of mine to teach anyone how to solve small problems by hand. My goals are to
introduce: (i) the mathematics and algorithmics of the subject at a beginning mathe-
matical level, (ii) algorithmically-aware modeling techniques, and (iii) high-level com-
putational tools for studying and developing optimization algorithms (in particular,
Python/Gurobi1).

Proofs are givenwhen they are important in understanding the algorithmics. Imake
free use of the inverse of a matrix. But it should be understood, for example, that B−1b
is meant as a mathematical expression for the solution of the square linear system of
equationsBx = b . I am not in any way suggesting that an efficient way to calculate the
solution of a large (often sparse) linear system is to calculate an inverse! Also, I avoid
the dual simplex algorithm (e.g., even in describing branch-and-bound and cutting-
plane algorithms), preferring to just think about the ordinary simplex algorithm ap-
plied to the dual problem. Again, my goal is not to describe the most efficient way to
do matrix algebra!

Conventional illustrations are woefully few. Though if Lagrange could not be both-
ered1, who am I to aim higher? Still, I am gradually improving this aspect, and many
of the algorithms and concepts are illustrated and verified in the modern way, with com-
puter code.2

The material that I present was mostly well known by the 1960’s. As a student at
Cornell in the late 70’s and early 80’s, I learned and got excited about linear optimiza-
tion from Bob Bland, Les Trotter and Lou Billera, using [1] and [5]. The present book
is a treatment of some of that material, with additional material on integer-linear op-
timization, mostly which I originally learned from George Nemhauser and Les. But
there is new material too; in particular, a “deconstructed post-modern” version of Go-
mory pure and mixed-integer cuts. There is nothing here on interior-point algorithms
and the ellipsoid algorithm; don’t tell Mike Todd!

Jon Lee

Ann Arbor, Michigan
started March 2013
(or maybe really in Ithaca, NY in 1979)

1New in the 4th Edition! But thanks for the very fond memories AMPL.
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The Nitty Gritty

You can always get the released edition of this book (in .pdf format) from my web
page or github and the materials to produce them (LATEX source, etc.) from me.

I make significant use of software. Everything seems to work with:

Python 3.8.3 (default, Jul 2 2020, 17:30:36) [MSC v.1916 64 bit (AMD64)]

(via Anaconda distribution)

Jupyter Notebook server 6.0.3 (via Anaconda distribution)

Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (win64)

WinEdt 10.3

MiKTeX 2.9

Use of older versions is inexcusable. Newer versions will surely break things. Nonethe-
less, if you can report success or failure on newer versions, please let me know.

I use lots of LATEX packages (which, as you may know, makes things rather fragile).
I could not possibly gather the version numbers of those — I do have a day job! (but
WinEdt does endeavor to keep the packages up to date).
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Chapter 1

Let’s Get Started

Our main goals in this chapter are as follows:
• Introduce some terminology associated with linear optimization.
• Describe elementary techniques for transforming any linear-optimization prob-

lems to one in a ‘standard form.’
• Introduce the Weak Duality Theorem.
• Review ideas from linear algebra that we will make use of later.

1.1 Linear Optimization and Standard Form

Linear optimization is the study of the mathematics and algorithms associated with
minimizing or maximizing a real linear objective function of a finite number of real
variables, subject to a finite number of linear constraints, each being that a real linear
function on these variables be = , ≤ or ≥ a constant. A polyhedron is the solution

1



2 CHAPTER 1. LET’S GET STARTED

set of a finite number of linear constraints; so we are studying optimization of a linear
function on a polyhedron.

A solution of a linear-optimization problem is an assignment of real values to the
variables. A solution is feasible if it satisfies the linear constraints. A solution is optimal
if there is no feasible solution with better objective value. The set of feasible solutions
(which is a polyhedron) is the feasible region.

It is convenient to put a general linear-optimization problem into a standard form

min c′x
Ax = b ;
x ≥ 0 ,

where c ∈ Rn , b ∈ Rm , A ∈ Rm×n has full row rank m , and x ia a vector of variables in
Rn . That is,minimization of a linear function on a finite number number of non-negative
real variables, subject to a non-redundant and consistent system of linear equations. Note
that even though the system of equations, Ax = b, has a solution, the problem may not
have a feasible solution.

Through afinite sequence of simple transformations, every linear-optimizationprob-
lem can be brought into an equivalent one in standard form. Specifically, we can apply
any of the follow steps, as needed, in the order presented.

• The maximum of c′x is the same as the negative of the minimum of −c′x .
• We can replace any non-positive variable xj with a non-negative variables x−j ,

substituting −x−j for xj . Additionally, we can replace any unrestricted variable
xj with the difference of a pair of non-negative variables x+j and x−j . That is,
substituting x+j −x−j for xj . In this way, we can make all variables constrained to
be non-negative.

• Next, ifwe have an inequality∑n
j=1 αjxj ≤ γ , we simply replace itwith∑n

j=1 αjxj+
s = γ , where a real slack variable s is introduced which is constrained to be non-
negative. Similarly, we can replace∑n

j=1 αjxj ≥ γwith∑n
j=1 αjxj−s = γ , where

a real surplus variable s is introduced which is constrained to be non-negative.
• Applying these transformations as needed results in a standard-form problem,

except possibly for the condition that the matrix of coefficients of the systems of
equations have full row rank. Butwe can realize this last condition by carrying out
elementary row operations on the system of equations, resulting in the elimina-
tion of any redundant equations or the identification that the system of equations
is inconsistent. In the latter case, the linear-optimization problem is infeasible.

1.2 A Standard-Form Problem and its Dual

Let c ∈ Rn , b ∈ Rm , and A ∈ Rm×n . Let x be a vector of variables in Rn . Consider the
standard-form problem

min c′x
Ax = b ;
x ≥ 0 .

(P)



1.3. LINEAR-ALGEBRA REVIEW 3

Let y be a vector of variables in Rm , and consider the linear-optimization problem

max y′b
y′A ≤ c′ .

(D)

It is worth emphasizing that (P) and (D) are both defined from the same data A , b
and c . We have the following very simple but key result, relating the objective values
of feasible solutions of the two linear-optimization problems.

Theorem 1.1 (Weak Duality Theorem)
If x̂ is feasible in (P) and ŷ is feasible in (D), then c′x̂ ≥ ŷ′b .

Proof.
c′x̂ ≥ ŷ′Ax̂ ,

because ŷ′A ≤ c′ (feasibility of ŷ in (D)) and x̂ ≥ 0 (feasibility of x̂ in (P)). Furthermore

ŷ′Ax̂ = ŷ′b ,

because Ax̂ = b (feasibility of x̂ in (P)). The result follows. ut

1.3 Linear-Algebra Review

For a matrix A ∈ Rm×n , we denote the entry in row i and column j as aij . For a
matrix A ∈ Rm×n , we denote the transpose of A by A′ ∈ Rn×m . That is, the entry in
row i and column j of A′ is aji .

Except when we state clearly otherwise, vectors are “column vectors.” That is, we
can view a vector x ∈ Rn as a matrix in Rn×1 . Column j of A is denoted by A·j ∈ Rm .
Row i ofA is denoted byAi· , and we view its transpose as a vector in Rn . We will have
far greater occasion to reference columns of matrices rather than rows, so we will often
write Aj as a shorthand for A·j , so as to keep notation less cluttered.

FormatricesA ∈ Rm×p andB ∈ Rp×n , the (matrix) productAB ∈ Rm×n is defined
to be thematrix having∑p

k=1 aikbkj as the entry in row i and column j . Note that for the
product AB to make sense, the number of columns of A and the number of rows of B
must be identical. It is important to emphasize that matrix multiplication is associative;
that is, (AB)C = A(BC) , and so we can always unambiguously write the product
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of any number of matrices without the need for any parentheses. Also, note that the
product and transpose behave nicely together. That is, (AB)′ = B′A′ .

Thedot product or scalar product of vectorsx, z ∈ Rn is the scalar 〈x, z〉 :=
∑n

j=1 xjzj ,
which we can equivalently see as x′z or z′x , allowing ourselves to consider a 1× 1 ma-
trix to be viewed as a scalar. Thinking about matrix multiplication again, and freely
viewing columns as vectors, the entry in row i and column j of the product AB is the
dot product 〈(Ai·)′, B·j〉 .

Matrix multiplication extends to “block matrices” in a straightforward manner. If

A :=




A11 · · · A1p

A21 · · · A2p

... . . . ...
Am1 · · · Amp


 and B :=




B11 · · · B1n

B21 · · · B2n

... . . . ...
Bp1 · · · Bpn


 ,

where each of the Aij and Bij are matrices, and we assume that for all i and j the
number of columns of Aik agrees with the number of rows of Bkj , then

AB =




∑p
k=1A1kBk1 · · · ∑p

k=1A1kBkn

∑p
k=1A2kBk1 · · · ∑p

k=1A2kBkn

... . . . ...
∑p

k=1AmkBk1 · · · ∑p
k=1AmkBkn




.

That is, block i, j of the product is∑p
k=1AikBkj , and AikBkj is understood as ordinary

matrix multiplication.
For vectors x1, x2, . . . , xp ∈ Rn , and scalars λ1, λ2, . . . , λp , ∑p

i=1 λix
i is a linear

combination of x1, x2, . . . , xp . The linear combination is trivial if all λi = 0 . The vec-
tors x1, x2, . . . , xp ∈ Rn are linearly independent if the only representation of the zero
vector inRn as a linear combination of x1, x2, . . . , xp is trivial. The set of all linear combi-
nations of x1, x2, . . . , xp is the vector-space span of {x1, x2, . . . , xp} . The dimension of
a vector space V , denoted dim(V ) , is the maximum number of linearly-independent
vectors in it. Equivalently, it is the minimum number of vectors needed to span the
space.

A set of dim(V ) linearly-independent vectors that spans a vector space V is a ba-
sis for V . If V is the vector-space span of {x1, x2, . . . , xp} , then there is a subset of
{x1, x2, . . . , xp} that is a basis for V . It is not hard to prove the following very useful
result.

Theorem 1.2 (Greedy Basis Extension Theorem)
Let V be the vector-space span of {x1, x2, . . . , xp} . Then every linearly-independent
subset of {x1, x2, . . . , xp} can be extended to a basis for V using vectors from
x1, x2, . . . , xp .
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The span of the rows of amatrixA ∈ Rm×n is the row space ofA , denoted r.s.(A) :=
{y′A : y ∈ Rm} . Similarly, the span of the columns of a matrix A is the column space
of A , denoted c.s.(A) := {Ax : x ∈ Rn} . It is a simple fact that, for a matrix A ,
the dimension of its row space and the dimension of its column space are identical,
this common number being called the rank of A . The matrix A has full row rank if
its number of rows is equal to its rank. That is, if its rows are linearly independent.
Similarly, the matrix A has full column rank if its number of columns is equal to its
rank. That is, if its columns are linearly independent.

Besides the row and columns spaces of a matrix A ∈ Rm×n , there is another very
important vector space associated with A . The null space of A is the set of vectors
having 0 dot product with all rows of A , denoted n.s.(A) := {x ∈ Rn : Ax = 0} .

An important result is the following theorem relating the dimensions of the row
and null spaces of a matrix.

Theorem 1.3 (Rank-Nullity Theorem)
If A is a matrix with n columns, then

dim(r.s.(A)) + dim(n.s.(A)) = n .

There are some simple operations on a matrix that preserve its row and null spaces.
The following operations are elementary row operations:

1. multiply a row by a non-zero scalar;

2. interchange a pair of rows;

3. add a scalar multiple of a row to another row;

4. delete a row that is identically zero.

There is onemore operation that we allow, which is really one of convenience rather
than mathematics. It is convenient to be able to permute columnswhile also permuting
the corresponding column indices. That is, if A ∈ Rm×n , we regard the columns as
labeled, in left-to-right order: 1, 2, . . . , n . So we have

A = [A1, A2, . . . , An] .

It can be convenient to have a permutation σ1, σ2, . . . , σn of 1, 2, . . . , n , and then write

[Aσ1 , Aσ2 , . . . , Aσn ] .

This matrix is really equivalent to A , because we regard its columns as labeled by
σ1, σ2, . . . , σn rather than 1, 2, . . . , n . Put another way, when we write a matrix, the
order of the columns is at our convenience, but the labels of columns is determined by
the order that we choose for placing the columns.
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The identity matrix Ir in Rr×r is the matrix having 1 as every diagonal element and
0 as every off-diagonal element. Via elementary row operations, any matrix A , that is
not all zero, can be transformed, via elementary row operations, into one of the form

[Ir,M ] .

Using corresponding operations on the associated system of equations, this is known
as Gauss-Jordan elimination.

For an r × r matrix B of rank r , there is a unique r × r matrix “B−1” such that
B−1B = Ir . For this reason, such a matrix B is called invertible, and B−1 is called the
inverse of B . According to the definition, B−1B = Ir , but we also have BB−1 = Ir .
Also, (B′)−1 = (B−1)′ , and if A and B are both invertible, then (AB)−1 = B−1A−1 .

Noting that,
B−1[B, Ir] = [Ir, B

−1] ,

we see that there is a nice way to compute the inverse of a matrix B using elementary
row operations. That is, we perform elementary row operations on

[B, Ir]

so that we have the form
[Ir,M ],

and the resulting matrixM is B−1 .
The Sherman-Morrison formula is a useful way to relate the inverse of a matrix to

the inverse of a rank-1 change to the matrix:

(
B + uv′

)−1
= B−1 − B−1uv′B−1

1 + v′B−1u
,

where the r × r matrix B is invertible, u, v ∈ Rr, and it must be assumed that 1 +
v′B−1u 6= 0 for otherwise B + uv′ would not be invertible.

Next, we define the determinant of a square r × r matrix B , which we denote
det(B) . We define the determinant in a non-standard but usefulmanner, via a recursive
formula known as Laplace expansion.3

If r = 1 , then B = (b11) , and we define det(B) := b11 . For r > 1 , choose any fixed
column j of B , and we define

det(B) =

r∑

i=1

(−1)i+j bij det(Bij) ,

where Bij is the (r− 1)× (r− 1) matrix obtained by deleting row i and column j of B .
It is a fact that this is well defined— that is, the value of det(B) does not depend on the
choice of j (taken at each step of the recursion). Moreover, we have det(B′) = det(B) ,
so we can could as well choose any fixed row i of B , and we have

det(B) =
r∑

j=1

(−1)i+j bij det(Bij) ,
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resulting in the same value for det(B) .
An interesting observation links det(B) with elementary row operations. Consider

performing elementary row operations on

[B, Ir]

to obtain
[Ir, B

−1] .

As we carry out the elementary row operations, we sometimes multiply a row by a
non-zero scalar. If we accumulate the product of all of these multipliers, the result is
det(B−1) ; equivalently, the reciprocal is det(B) .

Finally, for an invertible r × r matrix B and a vector b , we can express the unique
solution x̄ of the system Bx = b , via a formula involving determinants. Cramer’s rule
is the following formula:

x̄j =
det(B(j))

det(B)
, for j = 1, 2, . . . , r ,

whereB(j) is defined to be the matrixB with its j-th column replaced by b . It is worth
emphasizing that direct application of Cramer’s rule is not to be thought of as a useful
algorithm for computing the solution of a system of equations. But it can be very useful
to have in the proof toolbox.4

1.4 Exercises
Exercise 1.0 (Learn LATEX)
Learn to use LATEX forwriting all of your homework solutions. Personally, I useMiKTEX,
which is an implementation of LATEX for Windows. Specifically, within MiKTEX, I am
using pdfLATEX (it only matters for certain things like including graphics and also pdf
into a document). I find it convenient to use the editor WinEdt, which is very LATEX
friendly. A good book on LATEX is

In Appendix A.1 there is a template to get started. Also, there are plenty of tutorials
and beginner’s guides on the web.

Exercise 1.1 (Convert to standard form)
Give an original example (i.e., with actual numbers) to demonstrate that you know
how to transform a general linear-optimization problem to one in standard form.

http://miktex.org/
http://www.winedt.com/
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Exercise 1.2 (Weak Duality example)
Give an original example to demonstrate the Weak Duality Theorem.

Exercise 1.3 (Convert to≤ form)
Describe a general recipe for transforming an arbitrary linear-optimization problem
into one in which all of the linear constraints are of ≤ type.

Exercise 1.4 (m + 1 inequalities)
Prove that the system ofm equations in n variables Ax = b is equivalent to the system
Ax ≤ b augmented by only one additional linear inequality — that is, a total of only
m+ 1 inequalities.

Exercise 1.5 (Weak duality for another form)
Give and prove a Weak Duality Theorem for

max c′x
Ax ≤ b ;
x ≥ 0 .

(P′)

HINT: Convert (P′) to a standard-form problem, and then apply the ordinary Weak
Duality Theorem for standard-form problems.

Exercise 1.6 (Weak duality for a complicated form)
Give and prove a Weak Duality Theorem for

min c′x + f ′w
Ax + Bw ≤ b ;
Dx = g ;
x ≥ 0 w ≤ 0 .

(P′)

HINT: Convert (P′) to a standard-form problem, and then apply the ordinary Weak
Duality Theorem for standard-form problems.

Exercise 1.7 (Weak duality for a complicated matrix form — with Python/Gurobi)
Python is an interpreted, general-purpose programming language. Anaconda is a free
and open-source distribution of Python (and R). Via the Anaconda distribution, one also
gets Jupyter Notebook, which is a convenient way to experiment with Python. Gurobi
is a state-of-the art commercial linear and integer linear optimization software, with
free temporary licensing for students. Gurobi can be easily accessed with gurobipy, a
Python module. The Jupyter notebook MatrixLP.ipynb (see Appendix A.2) sets up
and solves an instance of (P′) from Exercise 1.6. Run the code and it, to see how it is
works. Now, extend the code to solve the dual of (P′). Also, after converting (P′) to
standard form (as indicated in the HINT for Exercise 1.6), use Python/Gurobi to solve
that problem and its dual. Make sure that you get the same optimal value for all of
these problems.



Chapter 2

Modeling

Our goals in this chapter are as follows:

• Learn some basic linear-optimization modeling techniques.

• Learn how to use an Python as an LP modeling language in connection with
Gurobi as an LP solver.

2.1 A Production Problem

9
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Wesuppose that a companyhasm resources, available in quantities bi , i = 1, 2, . . . ,m ,
and n production activities, with per-unit profits cj , j = 1, 2, . . . , n . Each unit of ac-
tivity j consumes aij units of resources i . Each production activity can be carried out
at any non-negative level, as long as the resources availabilities are respected. We as-
sume that any unused resource quantities have no value and can be disposed of at no
cost. The problem is to find a profit-maximizing production plan. We can formulate
this problem as the linear-optimization problem

max c′x
Ax ≤ b ;
x ≥ 0 ,

(P)

where b := (b1, b2, . . . , bm)′ , c := (c1, c2, . . . , cn)′ , A ∈ Rm×n is the matrix of aij , and x
is a vector of variables in Rn .

From the very same data, we can formulate a related linear-optimization problem.
The goal now is to set per-unit prices yi , for the resources i = 1, 2, . . . ,m . The total cost
of purchasing the resources from the company is then y′b , and we wish to minimize
the total cost of obtaining the resources from the company. We want to set these prices
in such a way that the company would never have an incentive to carry out any of the
production activities versus selling the resources at the associated resources at these
prices. That is, we require that ∑m

i=1 yiaij ≥ cj , for j = 1, 2, . . . , n . Because of our
assumption that the company can dispose of any unused quantities of resources at no
cost, we have yi ≥ 0 , for i = 1, 2, . . . ,m . All in all, we have the linear-optimization
problem

min y′b
y′A ≥ c′ ;
y ≥ 0 ,

(D)

Comparing this pair of linear-optimization problem with what you discovered in Ex-
ercise 1.5, we see that a Weak Duality Theorem holds: that is, the profit of any feasible
production plan is bounded above by the cost of the resources determined by any set
of prices that would render all production activities non-profitable.

2.2 NormMinimization
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“Norms” are very useful as a measure of the “size” of a vector. In some applica-
tions, we are interested in making the “size” small. There are many different “norms”
(for example, the Euclidean norm), but two are particularly interesting for linear opti-
mization.

For x ∈ Rn , the∞-norm (ormax-norm) of x is defined as

‖x‖∞ := max{|xj | : j = 1, 2, . . . , n}.

We would like to formulate the problem of finding an∞-norm minimizing solution of
the system of equationsAx = b . This is quite easy, via the linear-optimization problem:

min t
t − xi ≥ 0 , i = 1, 2, . . . , n ;
t + xi ≥ 0 , i = 1, 2, . . . , n ;

Ax = b ,

where t ∈ R is an auxiliary variable. Notice how the minimization “pressure” ensures
that an optimal solution (x̂, t̂) has t̂ = maxnj=1{|x̂j |} = ‖x̂‖∞ . This would not work for
maximization!

The 1-norm of x is defined as

‖x‖1 :=
n∑

j=1

|xj | .

Now, we would like to formulate the problem of finding a 1-norm minimizing solu-
tion of the system of equations Ax = b . This is quite easy, via the linear-optimization
problem:

min
∑n

j=1 tj
tj − xj ≥ 0 , j = 1, 2, . . . , n ;
tj + xj ≥ 0 , j = 1, 2, . . . , n ;

Ax = b ,

where t ∈ Rn is a vector of n auxiliary variables. Notice how the minimization “pres-
sure” ensures that an optimal solution (x̂, t̂) has t̂j = |x̂j | , for j = 1, 2, . . . , n (again,
this would not work for maximization!), and so we will have∑n

j=1 t̂j = ‖x̂‖1 .

2.3 Network Flow
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A finite network G is described by a finite set of nodesN and a finite set A of arcs.
Each arc e has two key attributes, namely its tail t(e) ∈ N and its head h(e) ∈ N . We
think of K ≥ 1 commodities as being allowed to “flow” along each arc, from its tail to
its head. Indeed, we have “flow” variables

xke := amount of flow of commodity k on arc e ,

for e ∈ A, and k = 1, 2, . . . ,K . Formally, a flow x̂ on G is simply an assignment of any
real numbers x̂ke to the variables xke , for e ∈ A, and k = 1, 2, . . . ,K . We assume that
the total flow on arc e should not exceed

ue := the flow upper bound on arc e ,

for e ∈ A . Associated with each arc e and commodity k is a cost

cke := cost per-unit-flow of commodity k on arc e ,

for e ∈ A, and k = 1, 2, . . . ,K . The (total) cost of the flow x̂ is defined to be
K∑

k=1

∑

e∈A
ckex

k
e .

We assume that we have further data for the nodes. Namely,

bkv := the net supply of commodity k at node v ,

for v ∈ N . A flow is conservative if the net flow out of node v , minus the net flow into
node v , is equal to the net supply at node v , for all nodes v ∈ N , and all commodities
k = 1, 2, . . . ,K .

The multi-commodity min-cost network-flow problem is to find a minimum-cost
conservative flow that is non-negative and respects the flow upper bounds on the arcs.
We can formulate this as follows:

min

K∑

k=1

∑

e∈A
ckex

k
e

∑

e∈A :
t(e)=v

xke −
∑

e∈A :
h(e)=v

xke = bkv , ∀ v ∈ N , k = 1, 2, . . . ,K ;

K∑

k=1

xke ≤ ue , ∀ e ∈ A ;

xke ≥ 0 , ∀ e ∈ A , k = 1, 2, . . . ,K .
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2.4 Modeling in Software
Optimization modeling languages fa-

cilitate rapid development of mathemat-
ical optimization models, instantiation
with data, and the subsequent solution
by solvers. Well-known examples of op-
timization modeling languages are AMPL

and GAMS. Another is Pyomo, which is a
Python package. All of these are means
to set up structured LP models, instanti-
ate them with data, pass to an LP solver,
and recover the solutions (with the oppor-
tunity to manipulate them) back in their
environments. All have the ability to it-
erate, solving sequences of LPs, dynami-
cally setting them up at each iteration. In
fact, we will not use any of them here, but
will instead work directly in Python, mak-
ing direct calls to Gurobi, a state-of-the-art
LP solver1. A strong advantage of work-
ing in Python is that it is a well-supported
programming language with lots of useful
add-on packages.

In Exercise 1.7, we sawhow to set up “matrix-style” optimizationmodels, instantiate
them with data, and solve them. For models that relate to applications, it is often more
natural and convenient to specify models in a way that does not obscure the problem
being solved and is close to the way that we would naturally write the model mathe-
matically. We will do this in Python, making direct calls to Gurobi. As a first step in
this direction, we consider the Production problem of Section 2.1. For this problem, we
specify the model in Python/Gurobi as follows.

First, it is convenient to number the resources as M:= {0, 1, . . . ,m− 1} and the vari-
ables as N:= {0, 1, . . . , n− 1}. We do this in Python via:
M=list(range(0,m))

N=list(range(0,n))

We instantiate a Gurobi Model object via
model = gp.Model()

Note that model is the name that we have given Gurobi Model object in Python.
We create (continuous nonnegative) variables x[j], for j ∈ N, attached to model, via:

x = model.addMVar(n)

These variable names x[j] are accessible to us in Python and are not used internally by Gurobi.
We define and attach our objective function, revenueobjective, to model via:

1Another is CPLEX

https://ampl.com/
https://www.gams.com/
http://www.pyomo.org/
https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer
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revenueobjective = model.setObjective(sum(c[j]*x[j] for j in N), GRB.MAXIMIZE)

This objective name is accessible to us in Python and is not used internally by Gurobi.
Finally, we define our resource constraints and attach them to model via:

for i in M:

model.addConstr(sum(A[i,j]*x[j] for j in N) <= b[i], name='r'+str(i))

Note that we have created names, rj, for j ∈ N, for the constraints inside Gurobi. This enables
us to easily retrieve constraint “attributes” from Gurobi. A Juptyer notebook giving the full
Python/Gurobi implementation is Production.ipynb (see Appendix A.3).

Next, we consider the Network Flow problem of Section 2.3. The model is specified as:

x = model.addVars(ArcsCrossCommods)

model.setObjective(sum(sum(CapacityCosts[i,j][k]*x[(i,j),k] for (i,j) in Arcs)

for k in Commods), GRB.MINIMIZE)

model.addConstrs(sum(x[(i,j),k] for k in Commods) <= CapacityCosts[i,j][0]

for (i,j) in Arcs)

model.addConstrs(

(sum(x[(i, j),k] for j in Nodes if (i, j) in Arcs) - sum(x[(j, i),k]

for j in Nodes if (j,i) in Arcs)

== Supplies[i][k-1] for i in Nodes for k in Commods))

A Python/Gurobi implementation is in the Jupyter notebook Multi-commodityFlow.ipynb

(see Appendix A.4).
Example 2.1
Figure 2.1 depicts an 8-node network for a K = 2 commodity example. Each arc e is labeled
[ue, c

1
2, c

2
e]. Figures 2.2 and 2.3 depict the node supply data and the optimal solutions. Figures

2.2 corresponds to commodity 1 and Figure 2.3 corresponds to commodity 2. Node v is labeled
v : bkv and arc e is labeled with the optimal value of xke .
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Figure 2.1: Arc data

Figure 2.2: Commodity 1: supplies and flows



16 CHAPTER 2. MODELING

Figure 2.3: Commodity 2: supplies and flows

2.5 Exercises
Exercise 2.1 (Dual in Python/Gurobi)
Without changing the data specification in Production.ipynb (seeAppendixA.3), use Python/Gurobi
to solve the dual of the Production Problem example, as described in Section 2.1. You will need
to modify the model in Production.ipynb appropriately.

Exercise 2.2 (Sparse solution for linear equations)
In some application areas, it is interesting to find a “sparse solution”— that is, onewith fewnon-
zeros — to a system of equations Ax = b, on say the domain −1 ≤ xj ≤ +1, for j = 1, 2, . . . , n.

It is empiricallywell known that a 1-normminimizing solution is a goodheuristic for finding
a sparse solution. The moral justification of this is as follows. We define the function indicator
function I6=0 : R 7→ R by

I6=0(w) :=

{
1, w 6= 0;
0, w = 0.

It is easy to see (make a graph) that f(w) := |w| is the “best convex function under-estimator” of
I 6=0 on the domain [−1, 1]. Sowe can hope thatminimizing∑n

j=1 |x|j comes close tominimizing∑n
j=1 I6=0(xj) .
Using Python/Gurobi try this idea out on several large examples, using 1-norm minimiza-

tion as a heuristic for finding a sparse solution.
HINT: To get an interesting example, try generating a random m × n matrix A of zeros

and ones, perhaps m = 50 equations and n = 500 variables, maybe with probability 1/2 of
an entry being equal to one. Next, choose a random z̃ ∈ Rm

2 satisfying −1 ≤ z̃j ≤ +1, for
j = 1, 2, . . . ,m/2, and z̃j = 0 for j = m/2 + 1, . . . , n. Now let b := Az̃. In this way, you will
know that there is a solution (i.e., z̃) with onlym/2 non-zeros (which is already pretty sparse).
Your 1-norm minimizing solution might in fact recover this solution (,), or it may be sparser
(,,), or perhaps less sparse (/).
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Exercise 2.3 (Bloody network)
A transportation problem is a special kind of (single-commoditymin-cost) network-flowprob-
lem. There are certain nodes v called supply nodes which have net supply bv > 0. The other
nodes v are called demand nodes, and they have net supply bv < 0. There are no nodes with
bv = 0 , and all arcs point from supply nodes to demand nodes.

A simplified example is for matching available supply and demand of blood, in types A, B,
AB andO . Suppose that we have sv units of blood available, in types v ∈ {A,B,AB,O} . Also,
we have requirements dv by patients of different types v ∈ {A,B,AB,O} . It is very important
to understand that a patient of a certain type can accept blood not just from their own type.
Do some research to find out the compatible blood types for a patient; don’t make a mistake —
lives depend on this! In this spirit, if your model allocates any blood in an incompatible fashion, you
will receive a grade of F on this problem.

Describe a linear-optimization problem that satisfies all of the patient demand with com-
patible blood. Youwill find that typeO is the most versatile blood, then bothA andB, followed
byAB. Factor in this point when you formulate your objective function, with the idea of having
the left-over supply of blood being as versatile as possible.

Using Multi-commodityFlow.ipynb (see Appendix A.4)with a single commodity only; that is,
K = 1, set up and solve an example of a blood-distribution problem.

Exercise 2.4 (Mix it up)
“I might sing a gospel song in Arabic or do something in Hebrew. I want to mix it up and
do it differently than one might imagine.” — Stevie Wonder

We are given a set of ingredients 1, 2, . . . ,m with availabilities bi , measured in kilograms,
and per kilogram costs ci . We are given a set of products 1, 2, . . . , nwith minimum production
requirements dj , measured in kilograms, and per kilogram revenues ej . It is required that
product j have at least a fraction (by weight) of lij of ingredient i and at most a fraction (by
weight) of uij of ingredient i . The goal is to devise a plan to maximize net profit.

Formulate,mathematically, as a linear-optimizationproblem. Then,modelwith Python/Gurobi,
make up some data, try some computations, and report on your results.

Exercise 2.5 (Task scheduling)

We are given a set of tasks, numbered 1, 2, . . . , n that should be completed in the minimum
amount of time. For convenience, task 0 is a “start task” and taskn+1 is an “end task”. Each task,
except for the start and end task, has a known duration di . For convenience, let d0 := 0 . Any
number of tasks can be carried out simultaneously, except that there are precedences between
tasks. Specifically, Ψi is the set of tasks that must be completed before task i can be started. Let
t0 := 0 , and for all other tasks i , let ti be a decision variable representing its start time.

Formulate the problem, mathematically, as a linear-optimization problem. The objective
should be to minimize the start time tn+1 of the end task. Then, model the problem with
Python/Gurobi, make up some data, try some computations, and report on your results.
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Exercise 2.6 (Investing wisely)
Almost certainly, Albert Einstein did not say that “compound interest is themost powerful force
in the universe.”

A company wants to maximize their cash holdings at the end of T time periods. They have
an external inflow of pt dollars at the start of time period t , for t = 1, 2, . . . , T . At the start
of each time period, available cash can be allocated to any of K different investment vehicles
(in any available non-negative amounts). Money allocated to investment-vehicle k at the start
of period t must be held in that investment k for all remaining time periods, and it generates
income vkt,t , vkt,t+1 , . . . , vkt,T , per dollar invested. It should be assumed that money obtained
from cashing out the investment is incorporated into these parameters. For example, (v9

4,4 , v9
4,5 ,

v9
4,6 , v9

4,7 , v9
4,8 , v9

4,9 , v9
4,10 , v9

4,11 , v9
4,12) = (0.1, 0.1, 0.1, 1.1, 0, 0, 0, 0, 0) can be interpreted as 1

dollar invested in investment vehicle #9 at the start of time period 4 yields 0.1 dollars of income
for times periods 4–7, and with the original dollar returned in time period 7, and no returns at
all in the remaining time periods 8–12.

Note that at the start of time period t , the cash available is the external inflow of pt , plus
cash accumulated from all investment vehicles in prior periods that was not reinvested. Finally,
assume that cash held over in any time period earns interest of q percent.

Formulate the problem, mathematically, as a linear-optimization problem. Then, model the
problem with Python/Gurobi, make up some data, try some computations, and report on your
results.

http://www.snopes.com/quotes/einstein/interest.asp
http://www.snopes.com/quotes/einstein/interest.asp


Chapter 3

Algebra Versus Geometry

Our goals in this chapter are as follows:
• Develop the algebra needed later for our algorithms.
• Develop some geometric understanding of this algebra.

Throughout, we refer to the standard-form problem

min c′x
Ax = b ;
x ≥ 0 .

(P)

3.1 Basic Feasible Solutions and Extreme Points
A basic partition of A ∈ Rm×n is a partition of {1, 2, . . . , n} into a pair of ordered sets, the
basis β = (β1, β2, . . . , βm) and the non-basis η = (η1, η2, . . . , ηn−m), so that the basis matrix

19
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Aβ := [Aβ1
, Aβ2

, . . . , Aβm ] is an invertible m × m matrix. The connection with the standard
“linear-algebra basis” is that the columns of Aβ form a “linear-algebra basis” for Rm. But for
us, “basis” almost always refers to β.

We associate a basic solution x̄ ∈ Rn with the basic partition via:

x̄η := 0 ∈ Rn−m ;
x̄β := A−1

β b ∈ Rm .

We can observe that x̄β = A−1
β b is equivalent to Aβ x̄β = b , which is the unique way to write b

as a linear combination of the columns ofAβ . Of course this makes sense, because the columns
of Aβ form a “linear-algebra basis” for Rm .

Note that every basic solution x̄ satisfies Ax̄ = b , because

Ax̄ =

n∑

j=1

Aj x̄j =
∑

j∈β
Aj x̄j +

∑

j∈η
Aj x̄j = Aβ x̄β +Aηx̄η = Aβ

(
A−1
β b
)

+Aη 0 = b .

A basic solution x̄ is a basic feasible solution if it is feasible for (P). That is, if x̄β = A−1
β b ≥ 0 .

It is instructive to have a geometry for understanding the algebra of basic solutions, but for
standard-form problems, it is hard to draw something interesting in two dimensions. Instead,
we observe that the feasible region of (P) is the solution set, in Rn , of

xβ + A−1
β Aηxη = A−1

β b ;

xβ ≥ 0 , xη ≥ 0 .

Projecting this onto the space of non-basic variables xη ∈ Rn−m , we obtain
(
A−1
β Aη

)
xη ≤ A−1

β b ;

xη ≥ 0 .

Notice how we can view the xβ variables as slack variables.
In the following example, because it is convenient in Python, we use “zero indexing”. In

particular, we use indices {0, 1, . . . , n− 1} for the variables xj and the columns Aj , and for the
basic partition we label β := (β0, β1, . . . , βm−1) and η := (η0, η1, . . . , ηn−m−1).

Example 3.1
For this system, it is convenient to draw pictures when n − m = 2 , for example n = 6 and
m = 4 . In such a picture, the basic solution x̄ ∈ Rn maps to the origin x̄η = 0 ∈ Rn−m , but
other basic solutions (feasible and not) will map to other points.

Suppose that we have the data:

A :=




1 2 1 0 0 0
3 1 0 1 0 0

3/2 3/2 0 0 1 0
0 1 0 0 0 1


 ,

b := (7, 9, 6, 33/10)′ ,

β := (β0 , β1 , β2 , β3) = (0, 1, 3, 5) ,

η := (η0 , η1) = (2, 4) .
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Then

Aβ = [Aβ0
, Aβ1

, Aβ2
, Aβ3

] =




1 2 0 0
3 1 1 0

3/2 3/2 0 0
0 1 0 1


 ,

Aη = [Aη0 , Aη1 ] =




1 0
0 0
0 1
0 0


 ,

xβ = (x0, x1, x3, x5)′

xη := (x2, x4)′ .

We can calculate

A−1
β Aη =




−1 4/3
1 −2/3
2 −10/3
−1 2/3


 ,

A−1
β b := (1, 3, 3, 3/10)′ ,

and then we have plotted this in Figure 3.1. The plot has xη0 = x2 as the abscissa, and xη1 = x4

as the ordinate. In the plot, besides the non-negativity of the variables x2 and x4, the four
inequalities of

(
A−1
β Aη

)
xη ≤ A−1

β b are labeled with their slack variables — these are the basic
variables x0 , x1 , x3 , x5 . The correct matching of the basic variables to the inequalities of(
A−1
β Aη

)
xη ≤ A−1

β b is simply achieved by seeing that the i-th inequality has slack variable
xβi .

The feasible region is colored cyan, while basic feasible solutions project to green points and
basic infeasible solutions project to red points. We can see that the basic solution associate with
the current basis is feasible, because the origin (corresponding to the non-basic variables being
set to 0) is feasible.

A set S ⊂ Rn is a convex set if it contains the entire line segment between every pair of
points in S . That is,

λx1 + (1− λ)x2 ∈ S , whenever x1, x2 ∈ S and 0 < λ < 1 .

It is simple to check that the feasible region of every linear-optimization problem is a convex set
— do it!

For a convex set S ⊂ Rn , a point x̂ ∈ S is an extreme point of S if it is not on the interior of
any line segment wholly contained in S . That is, if we cannot write

x̂ = λx1 + (1− λ)x2 , with x1 6= x2 ∈ S and 0 < λ < 1 .

Theorem 3.2
Every basic feasible solution of standard-form (P) is an extreme point of its feasible region.

Proof. Consider the basic feasible solution x̄with
x̄η := 0 ∈ Rn−m ;
x̄β := A−1

β b ∈ Rm .
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Figure 3.1: Feasible region projected into the space of non-basic variables

If
x̄ = λx1 + (1− λ)x2 , with x1 and x2 feasible for (P) and 0 < λ < 1 ,

then 0 = x̄η = λx1
η + (1 − λ)x2

η and 0 < λ < 1 implies that x1
η = x2

η = 0 . But then Aβxiβ = b

implies that xiβ = A−1
β b = x̄β , for i = 1, 2 . Hence x̄ = x1 = x2 (but we needed x1 6= x2), and

so we cannot find a line segment containing x̄ that is wholly contained in S . ut

Theorem 3.3
Every extreme point of the feasible region of standard-form (P) is a basic solution.

Proof. Let x̂ be an extreme point of the feasible region of (P). We define

ρ := {j ∈ {1, 2, . . . , n} : x̂j > 0} .

That is, ρ is the list of indices for the positive variables of x̂ . Also, we let

ζ := {j ∈ {1, 2, . . . , n} : x̂j = 0} .

That is, ζ is the list of indices for the zero variables of x̂ . Together, ρ and ζ partition {1, 2, . . . , n} .
Our goal is to construct a basic partition, β, η , so that the associated basic solution is pre-

cisely x̂ .
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The first thing that we will establish is that the columns of Aρ are linearly independent. We
will do that by contradiction. Suppose that they are linearly dependent. That is, there exists
zρ ∈ R|ρ| different from the zero vector, such that Aρzρ = 0 . Next we extend zρ to a vector
z ∈ Rn , by letting zζ = 0 . Clearly Az = Aρzρ + Aζzζ = 0 + Aζ0 = 0 ; that is, z is in the null
space of A . Next, let

x1 := x̂+ εz

and
x2 := x̂− εz ,

with ε chosen to be sufficiently small so that x1 and x2 are non-negative. Because z is only
non-zero on the ρ coordinates (where x̂ is positive), we can choose an appropriate ε . Notice
that x1 6= x2 , because zρ and hence z is not the zero vector. Now, it is easy to verify that
Ax1 = A(x̂ + εz) = Ax̂ + εAz = b + 0 = b and similarly Ax2 = b . Therefore, x1 and x2 are
feasible solutions of (P). Also, 1

2x
1 + 1

2x
2 = 1

2 (x̂ + εz) + 1
2 (x̂ − εz) = x̂ . So x̂ is on the interior

(actually it is the midpoint) of the line segment between x1 and x2 , in contradiction to x̂ being
an extreme point of the feasible region of (P). Therefore, it must be that the columns of Aρ are
linearly independent.

In particular, we can conclude that |ρ| ≤ m , since we assume that A ∈ Rm×n has full row
rank. If |ρ| < m , we choose (via Theorem 1.2) m − |ρ| columns of Aζ to append to Aρ in such
a way as to form a matrix Aβ having m linearly-independent columns — we note that such a
choice is not unique. As usual, we let η be a list of the n −m indices not in β . By definition,
the associated basic solution x̄ has x̄η = 0 , and we observe that it is the unique solution to the
system of equations Ax = b having xη = 0 . But x̂η = 0 because x̂η is a subvector of x̂ζ = 0 .
Therefore, x̂ = x̄ . That is, x̂ is a basic solution of (P). ut

Taken together, these last two results give us the main result of this section.

Corollary 3.4
For a feasible point x̂ of standard-form (P), x̂ is extreme if and only if x̂ is a basic solution.

3.2 Basic Feasible Directions
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For a point x̂ in a convex set S ⊂ Rn , a feasible direction relative to the feasible solution
x̂ is a ẑ ∈ Rn such that x̂ + εẑ ∈ S , for sufficiently small positive ε ∈ R . Focusing now on the
standard-form problem (P), for ẑ to be a feasible direction relative to the feasible solution x̂ ,
we need A(x̂+ εẑ) = b . But

b = A(x̂+ εẑ) = Ax̂+ εAẑ = b+ εAẑ ,

so we need Aẑ = 0 . That is, ẑ must be in the null space of A .
Focusing on the standard-form problem (P), we associate a basic direction z̄ ∈ Rn with the

basic partition β, η and a choice of non-basic index ηj via

z̄η := ej ∈ Rn−m ;
z̄β := −A−1

β Aηj ∈ Rm .

Note that every basic direction z̄ is in the null space of A :

Az̄ = Aβ z̄β +Aη z̄η = Aβ

(
−A−1

β Aηj

)
+Aηej = −Aηj +Aηj = 0 .

So
A (x̂+ εz̄) = b ,

for every feasible x̂ and every ε ∈ R . Moving a positive amount in the direction z̄ corresponds
to increasing the value of xηj , holding the values of all other non-basic variables constant, and
making appropriate changes in the basic variables so as to maintain satisfaction of the equation
system Ax = b .

There is a related point worthmaking. We have just seen that for a given basic partition β, η ,
each of the n−m basic directions is in the null space ofA— there is one such basic direction for
each of the n −m choices of ηj . It is very easy to check that these basic directions are linearly
independent — just observe that they are columns of the n× (n−m) matrix

(
I

−A−1
β Aη

)
.

Because the dimension of the null space ofA is n−m , these n−m basic directions form a basis
for the null space of A .

Now, we focus on the basic feasible solution x̄ determined by the basic partition β, η . The
basic direction z̄ is a basic feasible direction relative to the basic feasible solution x̄ if x̄ + εz̄
is feasible, for sufficiently small positive ε ∈ R . That is, if

A−1
β b− εA−1

β Aηj ≥ 0 ,

for sufficiently small positive ε ∈ R .
Recall that x̄β = A−1

β b , and let Āηj := A−1
β Aηj . So, we need that

x̄β − εĀηj ≥ 0 ,

for sufficiently small positive ε ∈ R . That is,

x̄βi − εāi,ηj ≥ 0 ,

for i = 1, 2, . . . ,m . If āi,ηj ≤ 0 , for some i , then this imposes no restriction at all on ε . So, the
only condition that we need for z̄ to be a basic feasible direction relative to the basic feasible solution
x̄ is that there exists ε > 0 satisfying

ε ≤ x̄βi
āi,ηj

, for all i such that āi,ηj > 0 .
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Equivalently, we simply need that
x̄βi > 0 , for all i such that āi,ηj > 0 .

So, we have the following result:

Theorem 3.5
For a standard-formproblem (P), suppose that x̄ is a basic feasible solution relative to the basic
partition β, η . Consider choosing a non-basic index ηj . Then the associated basic direction z̄
is a feasible direction relative to x̄ if and only if

x̄βi > 0 , for all i such that āi,ηj > 0 .

3.3 Basic Feasible Rays and Extreme Rays
For a non-empty convex set S ⊂ Rn , a ray of S is a ẑ 6= 0 in Rn such that x̂ + τ ẑ ∈ S , for all
x̂ ∈ S and all positive τ ∈ R .

Focusing on the standard-from problem (P), it is easy to see that ẑ 6= 0 is a ray of the feasible
region if and only if Aẑ = 0 and ẑ ≥ 0.

Recall from Section 3.2 that for a standard-form problem (P), a basic direction z̄ ∈ Rn is
associated with the basic partition β, η and a choice of non-basic index ηj via

z̄η := ej ∈ Rn−m ;
z̄β := −A−1

β Aηj ∈ Rm .

If the basic direction z̄ is a ray, then we call it a basic feasible ray. We have already seen
that Az̄ = 0. Furthermore, z̄ ≥ 0 if and only if Āηj := A−1

β Aηj ≤ 0.
Therefore, we have the following result:

Theorem 3.6
The basic direction z̄ is a ray of the feasible region of (P) if and only if Āηj ≤ 0 .

Recall, further, that z̄ is a basic feasible direction relative to the basic feasible solution x̄ if x̄+ εz̄
is feasible, for sufficiently small positive ε ∈ R . Therefore, if z̄ is a basic feasible ray, relative to the
basic partition β, η and x̄ is the basic feasible solution relative to the same basic partition, then
z̄ is a basic feasible direction relative to x̄ .

A ray ẑ of a convex set S is an extreme ray if we cannot write
ẑ = z1 + z2 , with z1 6= µz2 being rays of S and µ 6= 0 .

Similarly to the correspondence between basic feasible solutions and extremepoints for standard-
form problems, we have the following two results.

Theorem 3.7
Every basic feasible ray of standard-form (P) is an extreme ray of its feasible region.
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Theorem 3.8
Every extreme ray of the feasible region of standard-form (P) is a positive multiple of a basic
feasible ray.

3.4 Exercises
Exercise 3.1 (Illustrate algebraic and geometric concepts)
Using the Jupyter notebook pivot_tools.ipynb (see Appendix A.6), make a small example,
say with six variables and four equations, to fully illustrate the concepts in this chapter. The
Jupyter notebook pivot_example.ipynb (see Appendix A.5) shows how to start to work with
pivot_tools.ipynb.

Exercise 3.2 (Basic feasible rays are extreme rays)
Prove Theorem 3.7.

Exercise 3.3 (Extreme rays are positive multiples of basic feasible rays)
If you are feeling very ambitious, prove Theorem 3.8.

Exercise 3.4 (Dual basic direction — do this if you will be doing Exercise 4.2)
Let β, η be a basic partition for our standard-form problem (P). As you will see on the first page
of the next chapter, we can associate with the basis β, a dual solution

ȳ′ := c′βA
−1
β

of
max y′b

y′A ≤ c′ .
(D)

It is easy to see that ȳ satisfies the constraints y′Aβ ≤ c′β (of (D)) with equality; that is, the dual
constraints indexed from β are “active”.

Let us assume that ȳ is feasible for (D). Now, let β` be a basic index, and let w̄ := H`· be
row ` of H := A−1

β . Consider ˜̄y := ȳ − λw̄′, and explain (with algebraic justification) what is
happening to the activity of each constraint of (D), as λ increases. HINT: Think about the cases
of (i) i = `, (ii) i ∈ β, i 6= `, and (iii) j ∈ η .



Chapter 4

The Simplex Algorithm

Our goal in this chapter is as follows:
• Develop a mathematically-complete Simplex Algorithm for optimizing standard-form

problems.

4.1 A Sufficient Optimality Criterion
The dual solution of (D) associated with basis β is

ȳ′ := c′βA
−1
β .

Lemma 4.1
If β is a basis, then the primal basic solution x̄ (feasible or not) and the dual solution ȳ (feasible
or not) associated with β have equal objective value.

Proof. The objective value of x̄ is c′x̄ = c′β x̄β + c′ηx̄η = c′β(A−1
β b) + c′η0 = c′βA

−1
β b . The objective

value of ȳ is ȳ′b = (c′βA
−1
β )b = c′βA

−1
β b . ut

The vector of reduced costs associated with basis β is

c̄′ := c′ − c′βA−1
β A = c′ − ȳ′A .

27
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Lemma 4.2
The dual solution of (D) associated with basis β is feasible for (D) if

c̄η ≥ 0 .

Proof. Using the definitions of ȳ and c̄ , the condition c̄η ≥ 0 is equivalent to

ȳ′Aη ≤ c′η .

The definition of ȳ gives us

ȳ′Aβ = c′β (equivalently, c̄β = 0) .

So we have
ȳ′[Aβ , Aη] ≤ (c′β , c

′
η) ,

or, equivalently,
ȳ′A ≤ c′ ,

Hence ȳ is feasible for (D). ut

Theorem 4.3 (Weak Optimal Basis Theorem)
If β is a feasible basis and c̄η ≥ 0 , then the primal solution x̄ and the dual solution ȳ associated
with β are optimal.

Proof. We have already observed that c′x̄ = ȳ′b for the pair of primal and dual solutions associ-
ated with the basis β . If these solutions x̄ and ȳ are feasible for (P) and (D), respectively, then
by weak duality these solutions are optimal. ut

We can also take (P) and transform it into an equivalent form that is quite revealing. Clearly,
(P) is equivalent to

min c′βxβ + c′ηxη
Aβxβ + Aηxη = b
xβ ≥ 0 , xη ≥ 0 .

Next, multiplying the equations on the left by A−1
β , we see that they are equivalent to

xβ +A−1
β Aηxη = A−1

β b .

We can also see this as
xβ = A−1

β b−A−1
β Aηxη .

Using this equation to substitute for xβ in the objective function, we are led to the linear objective
function

c′βA
−1
β b+ min

(
c′η − c′βA−1

β Aη

)
xη = c′βA

−1
β b+ min c̄′ηxη ,

which is equivalent to the original one on the set of points satisfyingAx = b . In this equivalent
form, it is now solely expressed in terms of xη . Now, if c̄η ≥ 0 , the best we could hope for in
minimizing is to set xη = 0 . But the unique solution having xη = 0 is the basic feasible solution
x̄ . So that x̄ is optimal.
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Example 4.4
This is a continuation of Example 3.1. In Figure 4.1, we have depicted the sufficient optimality
criterion, in the space of a particular choice of non-basic variables — not the choice previously
depicted. Specifically, we consider the equivalent problem

min c̄′ηxη
Āηxη ≤ x̄β ;
xη ≥ 0 .

This plot demonstrates the optimality of β := (2, 5, 3, 4) (η := (0, 1)). The basic directions
available from the basic feasible solution x̄ appear as standard unit vectors in the space of the
non-basic variables. The solution x̄ is optimal because c̄η ≥ 0 ; we can also think of this as
c̄η having a non-negative dot product with each of the standard unit vectors, hence neither
direction is improving.

Figure 4.1: Sufficient optimality criterion
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4.2 The Simplex Algorithm with No Worries

Improving direction. Often it is helpful to directly refer to individual elements of the vector
c̄η ; namely,

c̄ηj = cηj − c′βA−1
β Aηj = cηj − c′βĀηj , for j = 1, 2, . . . , n−m .

If the sufficient optimality criterion is not satisfied, thenwe choose an ηj such that c̄ηj is negative,
and we consider solutions that increase the value of xηj up from x̄ηj = 0 , changing the values
of the basic variables to insure that we still satisfy the equations Ax = b , while holding the
other non-basic variables at zero.

Operationally, we take the basic direction z̄ ∈ Rn defined by
z̄η := ej ∈ Rn−m ;
z̄β := −A−1

β Aηj = −Āηj ∈ Rm ,

and we consider solutions of the form x̄ + λz̄ , with λ > 0 . The motivation is based on the
observations that

• c′(x̄+ λz̄)− c′x̄ = λc′z̄ = λc̄ηj < 0 ;
• A(x̄+ λz̄) = Ax̄+ λAz̄ = b+ λ0 = b .

That is, the objective function changes at the rate of c̄ηj , and we maintain satisfaction of the
Ax = b constraints.

Maximum step — the ratio test and a sufficient unboundedness criterion. By our
choice of direction z̄, all variables that are non-basic with respect to the current choice of basis
remain non-negative (xηj increases from 0 and the others remain at 0). So the only thing that
restricts our movement in the direction z̄ from x̄ is that we have to make sure that the current
basic variables remain non-negative. This is easy to take care of. We just make sure that we
choose λ > 0 so that

x̄β + λz̄β = x̄β − λĀηj ≥ 0 .

Notice that for i such āi,ηj ≤ 0 , there is no limit on how large λ can be. In fact, it can well
happen that Āηj ≤ 0 . In this case, x̄ + λz̄ is feasible for all λ > 0 and c′(x̄ + λz̄) → −∞ as
λ→ +∞ , so the problem is unbounded.

Otherwise, to insure that x̄+ λz̄ ≥ 0 , we just enforce

λ ≤ x̄βi
āi,ηj

, for i such that āi,ηj > 0 .

Finally, to get the best improvement in the direction z̄ from x̄, we let λ equal

λ̄ := min
i : āi,ηj>0

{
x̄βi
āi,ηj

}
.
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Non-degeneracy. There is a significant issue in even carrying out one iteration of this algo-
rithm. If x̄βi = 0 for some i such that āi,ηj > 0 , then λ̄ = 0 , and we are not able to make any
change from x̄ in the direction z̄ . Just for now, we will simply assume away this problem, using
the following hypothesis that every basic variable of every basic feasible solution is positive.
The problem (P) satisfies the non-degeneracy hypothesis if for every feasible basis β, we have
x̄βi > 0 for i = 1, 2, . . . ,m . Under the non-degeneracy hypothesis, λ̄ > 0 .

Another basic feasible solution. By our construction, the new solution x̄ + λ̄z̄ is feasible
and has lesser objective value than that of x̄ . We can repeat the construction as long as the new
solution is basic. If it is basic, there is a natural guess as towhat an appropriate basismay be. The
variable xηj , formerly non-basic at value 0 has increased to λ̄ , so clearly it must become basic.
Also, at least one variable that was basic now has value 0 . In fact, under our non-degeneracy
hypothesis, once we establish that the new solution is basic, we observe that exactly one variable
that was basic now has value 0. Let

i∗ := argmin
i : āi,ηj>0

{
x̄βi
āi,ηj

}
.

If there is more than one i that achieves the minimum (which can happen if we do not assume
the non-degeneracy hypothesis), then we will see that the choice of i∗ can be any of these. We
can see that xβi∗ has value 0 in x̄ + λ̄z̄ . So it is natural to hope we can replace xβi∗ as a basic
variable with xηj .

Let
β̃ := (β1, β2, . . . , βi∗−1, ηj , βi∗+1, . . . , βm)

and
η̃ := (η1, η2, . . . , ηj−1, βi∗ , ηj+1, . . . , ηn−m) .

Lemma 4.5
Aβ̃ is invertible.

Proof. Aβ̃ is invertible precisely when the following matrix is invertible:

A−1
β Aβ̃ = A−1

β

[
Aβ1

, Aβ2
, . . . , Aβi∗−1

, Aηj , Aβi∗+1
, . . . , Aβm

]

=
[
e1, e2, . . . , ei∗−1, Āηj , ei∗+1, . . . , em

]
.

But the determinant of this matrix is precisely āi∗,ηj 6= 0 . ut

Lemma 4.6
The unique solution of Ax = b having xη̃ = 0 is x̄+ λ̄z̄ .

Proof. (x̄+ λ̄z̄)j = 0, for j ∈ η̃. Moreover, x̄+ λ̄z̄ is the unique solution to Ax = b having xη̃ = 0
because Aβ̃ is invertible. ut

Putting these two lemmata together, we have the following key result.
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Theorem 4.7
x̄+ λ̄z̄ is a basic solution; in fact, it is the basic solution determined by the basic partition β̃, η̃ .

Passing from the partition β, η to the partition β̃, η̃ is commonly referred to as a pivot.

Worry-Free Simplex Algorithm

Input: c ∈ Rn , b ∈ Rm , A ∈ Rm×n of full row rankm , for the standard-form problem:

min c′x
Ax = b ;
x ≥ 0 ,

(P)

where x is a vector of variables in Rn .
0. Start with any basic feasible partition β, η .
1. Let x̄ and ȳ be the primal and dual solutions associated with β, η .

If c̄η ≥ 0, then STOP: x̄ and ȳ are optimal.
2. Otherwise, choose a non-basic index ηj with c̄ηj < 0 .
3. If Āηj ≤ 0 , then STOP: (P) is unbounded and (D) is infeasible.
4. Otherwise, let

i∗ := argmin
i : āi,ηj>0

{
x̄βi
āi,ηj

}
,

replace β with (
β1, β2, . . . , βi∗−1, ηj , βi∗+1, . . . , βm

)

and η with (
η1, η2, . . . , ηj−1, βi∗ , ηj+1, . . . , ηn−m

)
.

5. GOTO 1.
Example 4.8
This is a continuation of Example 3.1 / Example 4.4. In Figure 4.2, be have depicted the solution
one step after the initial solution depicted in Figure 3.1. The result of the next pivot is depicted
in Figure 4.3. Finally, in one more pivot, we reach the optimum depicted in Figure 4.1.

Theorem 4.9
Under the non-degeneracy hypothesis, the Worry-Free Simplex Algorithm terminates cor-
rectly.

Proof. Under the non-degeneracy hypothesis, every timewe visit Step 1, we have a primal feasi-
ble solution with a decreased objective value. This implies that we never revisit a basic feasible
partition. But there are only a finite number of basic feasible partitions, so we must terminate,
after a finite number of pivots. But there are only two places where the algorithm terminates;
either in Step 1 where we correctly identify that x̄ and ȳ are optimal by our sufficient optimality
criterion, or in Step 3 because of our sufficient unboundedness criterion. ut
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Remark 4.10
There are two very significant issues remaining:

• How do we handle degeneracy? (see Section 4.3).
• How do we initialize the algorithm in Step 0? (see Section 4.4).

Figure 4.2: After one pivot
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Figure 4.3: After two pivots

4.3 Anticycling

To handle degeneracy, we will eliminate it with an algebraic perturbation. It is convenient
to make the perturbation depend on an m × m non-singular matrix B — eventually we will
choose B in a convenient manner. We replace the problem (P) with

min c′x
Ax = bε(B) ;
x ≥ε 0ε ,

(Pε(B))

where
• bε(B) := b+B~ε , and ~ε := (ε, ε2, . . . , εm)′ (these are exponents not superscripts);
• the scalar ε is an arbitrarily small indeterminant; ε is not given a numerical value; it is
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simply considered to be a quantity that is positive, yet smaller than any positive real
number;

• 0ε denotes a vector in which all entries are the zero polynomial (in ε);
• the variables xj are polynomials in εwith real coefficients;
• the ordering of polynomials used to interpret the inequality ≥ε is described next.

The ordering is actually quite simple, but for the sake of precision, we describe it formally.

An ordered ring. The set of polynomials in ε, with real coefficients, form what is known in
mathematics as an “ordered ring”. The ordering<ε is simple to describe. Let p(ε) :=

∑m
j=0 pjε

j

and q(ε) :=
∑m
j=0 qjε

j . Then p(ε) <ε q(ε) if the least j for which pj 6= qj has pj < qj . Another
way to think about the ordering <ε is that p(ε) <ε q(ε) if p(ε) < q(ε) when ε is considered to be
an arbitrarily small positive number. Notice how the ordering <ε is in a certain sense a more
refined ordering than < . That is, if p(0) < q(0) , then p(ε) <ε q(ε) , but we can have p(0) = q(0)
without having p(ε) =ε q(ε) . Finally, we note that the zero polynomial “0ε”(all coefficients
equal to 0) is the zero of this ordered ring, so we can speak, for example about polynomials that
are positive with respect to the ordering <ε . Concretely, p(ε) 6= 0ε is positive if the least i for
which pi 6= 0 satisfies pi > 0 . Emphasizing that <ε is a more refined ordering than < , we see
that p(ε) ≥ε 0ε implies that p(0) = p0 ≥ 0 .

For an arbitrary basis β, the associated basic solution x̄ε has x̄εβ := A−1
β (b + B~ε) = x̄β +

A−1
β B~ε . It is evident that x̄εβi is a polynomial, of degree at mostm, in ε , for each i = 1, . . . ,m .

Because the ordering<ε refines the ordering< , we have that x̄εβ ≥ε 0ε implies that x̄β ≥ 0 . That
is, any basic feasible partition for (Pε(B)) is a basic feasible partition for (P). This implies that
applying theWorry-Free SimplexAlgorithm to (Pε(B)), using the ratio test to enforce feasibility
of x̄ in (Pε(B)) at each iteration, implies that each associated x̄β is feasible for (P). That is, the
choice of a leaving variable dictated by the ratio test when we work with (Pε(B)) is valid if we
instead do the ratio test working with (P).

The objective value associated with x̄ε is c′βA−1
β (b + B~ε) = ȳ′b + ȳ′B~ε , is a polynomial (of

degree at most m) in ε . Therefore, we can order basic solutions for (Pε(B)) using <ε , and
that ordering refines the ordering of the objective values of the corresponding basic solution of
(P). This implies that if x̄ε is optimal for (Pε(B)) , then the x̄ associated with the same basis is
optimal for (P).

Lemma 4.11
The ε-perturbed problem (Pε(B)) satisfies the non-degeneracy hypothesis.
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Proof. For an arbitrary basis matrixAβ , the associated basic solution x̄ε has x̄εβ := A−1
β (b+B~ε) =

x̄β +A−1
β B~ε . As we have already pointed out, x̄εβi is a polynomial, of degree at mostm, in ε , for

each i = 1, . . . ,m . x̄εβi = 0ε implies that the i-th row of A−1
β B is all zero. But this is impossible

for the invertible matrix A−1
β B . ut

Theorem 4.12
Let β0 be a basis that is feasible for (P). Then the Worry-Free Simplex Algorithm applied to
(Pε(Aβ0)), starting from the basis β0 , correctly demonstrates that (P) is unbounded or finds
an optimal basic partition for (P).

Proof. The first important point to notice is that we are choosing the perturbation of the original
right-hand side to depend on the choice of a basis that is feasible for (P). Then we observe that
x̄εβ0 := A−1

β0 (b + Aβ0~ε) = A−1
β0 b + ~ε . Now because x̄ is feasible for (P), we have A−1

β0 b ≥ 0 .
Then, the ordering <ε implies that x̄εβ0 = A−1

β0 b+~ε ≥ε 0 . Therefore, the basis β0 is feasible for
(Pε(Aβ0)), and the Worry-Free Simplex Algorithm can indeed be started for (Pε(Aβ0)) on β0 .

Notice that it is only in Step 4 of the Worry-Free Simplex Algorithm that really depends
on whether we are considering (Pε(Aβ0)) or (P). The sufficient optimality criterion and the
sufficient unboundedness criterion are identical for (Pε(Aβ0)) and (P). Because (Pε(Aβ0)) sat-
isfies the non-degeneracy hypothesis, the Worry-Free Simplex Algorithm correctly terminates
for (Pε(Aβ0)). ut

(Pivot.mp4)

Figure 4.4: With some .pdf viewers, you can click above to see or download a short
video. Or just see it on YouTube (probably with an ad) by clicking here.


Pivot.mp4
Media File (video/mp4)

https://www.youtube.com/watch?v=n67RYI_0sc0
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4.4 Obtaining a Basic Feasible Solution
Next, wewill deal with the problem of finding an initial basic feasible solution for the standard-
form problem

min c′x
Ax = b ;
x ≥ 0 .

(P)

4.4.1 Ignoring degeneracy

At first, we ignore the degeneracy issue — why worry about two things at once?! The idea is
rather simple. First, we choose any basic partition β̃, η̃ . If we are lucky, then A−1

β̃
b ≥ 0 .

Otherwise, we have some work to do. We define a new non-negative variable xn+1, which we
temporarily adjoin as an additional non-basic variable. So our basic indices remain as

β̃ =
(
β̃1, β̃2, . . . , β̃m

)
,

while our non-basic indices are extended to

η̃ =
(
η̃1, η̃2, . . . , η̃n−m, η̃n−m+1 := n+ 1

)
.

This variable xn+1 is termed an artificial variable. The column for the constraint matrix
associated with xn+1 is defined as An+1 := −Aβ̃1 . Hence Ān+1 = −1 . Finally, we temporarily
put aside the objective function from (P) and replace it with one of minimizing the artificial
variable xn+1. That is, we consider the so-called phase-one problem

min xn+1

Ax + An+1xn+1 = b ;
x , xn+1 ≥ 0 .

(Φ)

With this terminology, the original problem (P) is referred to as the phase-two problem.
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It is evident that any feasible solution x̂ of (Φ) with x̂n+1 = 0 is feasible for (P). Moreover,
if the minimum objective value of (Φ) is greater than 0, then we can conclude that (P) has no
feasible solution. So, toward establishing whether or not (P) has a feasible solution, we focus
our attention on (Φ). We will soon see that we can easily find a basic feasible solution of (Φ).

Finding a basic feasible solution of (Φ). Choose i∗ so that x̄β̃i∗ is most negative. Then
we exchange β̃i∗ with η̃n−m+1 = n+ 1 . That is, our new basic indices are

β :=
(
β̃1, β̃2, . . . , β̃i∗−1, n+ 1, β̃i∗+1, . . . , β̃m

)
,

and our new non-basic indices are

η :=
(
η̃1, η̃2, . . . , η̃n−m, β̃i∗

)
.

Lemma 4.13
The basic solution of (Φ) associated with the basic partition β, η is feasible for (Φ).

Proof. This pivot, from β̃, η̃ to β, η amounts to moving in the basic direction z̄ ∈ Rn+1 defined
by

z̄η̃ := en−m+1 ∈ Rn−m+1 ;
z̄β̃ := −A−1

β̃
An+1 = 1 ∈ Rm ,

in the amount λ := −x̄β̃i∗ > 0 . That is, x̄ + λz̄ is the basic solution associated with the basic
partition β, η . Notice how when we move in the direction z̄ , all basic variables increase at
exactly the same rate that xn+1 does. So, using this direction to increase xn+1 from 0 to−x̄β̃i∗ >
0 results in all basic variables increasing by exactly −x̄β̃i∗ > 0 . By the choice of i∗ , this causes
all basic variable to become non-negative, and xβ̃i∗ to become 0 , whereupon it can leave the
basis in exchange for xn+1 . ut

The end game for (Φ). If (P) is feasible, then at the very last iteration of the Worry-Free
Simplex Algorithm on (Φ), the objective value will drop from a positive number to zero. As
this happens, xn+1 will be eligible to leave the basis, but so may other variables also be eligible.
That is, there could be a tie in the ratio-test of Step 4 of the Worry-Free Simplex Algorithm.
As is the case whenever there is a tie, any of the tying indices can leave the basis — all of the
associated variables are becoming zero simultaneously. For our purposes, it is critical that if
there is a tie, we choose i∗ so that βi∗ = n + 1 ; that is, xn+1 must be selected to become non-
basic. In this way, we not only get a feasible solution to (P), we get a basis for it that does not use
the artificial variable xn+1 . Now, starting from this basis, we can smoothly shift to minimizing
the objective function of (P).
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4.4.2 Not ignoring degeneracy
Anticycling for (Φ). There is one lingering issue remaining. We have not discussed anticy-
cling for (Φ).

But this is relatively simple. We define an ε-perturbed version

min xn+1

Ax + An+1xn+1 = bε(B) ;
x , xn+1 ≥ε 0ε ,

(Φε)

where bε(B) := b+ ~ε , and ~ε := (ε, ε2, . . . , εm)′ . Then we choose i∗ so that x̄ε
β̃i∗

is most negative
with respect to the ordering <ε, and exchange β̃i∗ with η̃n−m+1 = n + 1 as before. Then, as in
Lemma 4.13, the resulting basis is feasible for (Φε).

We do need to manage the final iteration a bit carefully. There are two different ways we
can do this.

“Early arrival”. If (P) has a feasible solution, at some point the value of xn+1 will decrease to
a homogeneous polynomial in ε . That is, the constant termwill become 0. At this point, although
xn+1 may not be eligible to leave the basis for (Φε), it will be eligible to leave for (P). So, at this
point we let xn+1 leave the basis, and we terminate the solution process for (Φε), having found
a feasible basis for (P). In fact, we have just constructively proved the following result.

Theorem 4.14
If standard form (P) has a feasible solution, then it has a basic feasible solution.

Note that because xn+1 may not have been eligible to leave the basis for (Φε) whenwe apply
the “early arrival’ idea, the resulting basis may not be feasible for (Pε). So we will have to re-
perturb (P) .
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“Be patient”. Perhaps a more elegant way to handle the situation is to fully solve (Φε). In
doing so, if (P) has a feasible solution, then the minimum objective value of (Φε) will be 0 (i.e.,
the zero polynomial), and xn+1 will necessarily be non-basic. That is because, at every iteration,
every basic variable in (Φε) is positive. Because xn+1 legally left the basis for (Φε) at the final
iteration, the resulting basis is feasible for (Pε). So we do not re-perturb (P) , and we simply
revert to solving (Pε) from the final basis of (Φε) .

4.5 The Simplex Algorithm

“This is a very complicated case,
Maude. You know, a lotta ins, a lotta
outs, a lotta what-have-yous. And,
uh, a lotta strands to keep in my head,
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man. Lotta strands in old Duder’s head.” — The Dude

Putting everything together, we get a mathematically complete algorithm for linear opti-
mization. That is:

1. Apply an algebraic perturbation to the phase-one problem;
2. Solve the phase-one problem using the Worry-Free Simplex Algorithm, adapted to alge-

braically perturbed problems, but always giving preference to xn+1 for leaving the basis
whenever it is eligible to leave for the unperturbed problem. Go to the next step, as soon
as xn+1 leaves the basis;

3. Starting from the feasible basis obtained for the original standard-form problem, apply
an algebraic perturbation (Note that the previous step may have left us with a basis that
is feasible for the original unperturbed problem, but infeasible for the original perturbed
problem — this is why we apply a perturbation anew (see the “Early arrival" paragraph
in Section 4.4.2);

4. Solve the problemusing theWorry-Free SimplexAlgorithm, adapted to algebraically per-
turbed problems.

It is important to know that the Simplex Algorithm will be used, later, to prove the cele-
brated Strong Duality Theorem. For that reason, it is important that our algorithm be math-
ematically complete. But from a practical computational viewpoint, there is substantial over-
head in working with the ε-perturbed problems. Therefore, in practice, no computer code that
is routinely applied to large instances worries about the potential for cycling associated with the
very-real possibility of degeneracy.

4.6 Exercises
Exercise 4.1 (Carry out the Simplex Algorithm)
pivot_tools.ipynb (see Appendix A.6) implements the primitive steps of the simplex algo-
rithm. Using these primitives only, write a Python function to carry out the simplex algorithm.
Initialize your data as is done in pivot_example.ipynb. Do not worry about degeneracy/anti-
cycling. But I do want you to take care of algorithmically finding an initial feasible basis as
described in Section 4.4.1. Make some small examples to fully illustrate the different possibili-
ties for (P) (i.e., infeasible, optimal, unbounded).
Exercise 4.2 (Dual change — first do Exercise 3.4)
Let β, η be any basic partition for the standard-form problem (P). The associated dual solution
is ȳ′ := c′βA

−1
β . Now, suppose that we pivot, letting ηj enter the basis and β` leave the basis,

so that the new partition β̃, η̃ is also a basic partition (in other words, Aβ̃ is invertible). Let ˜̄y

be the dual solution associated with the basic partition β̃, η̃ , and letH`· be row ` ofH := A−1
β .

Prove that
˜̄y = ȳ +

c̄ηj
ā`,ηj

H ′`·

HINT: Use the Sherman-Morrison formula; see Section 1.3.
Exercise 4.3 (Traditional phase one)
Instead of organizing the phase-one problem as (Φ), we could first scale rows of Ax = b as
necessary so as to achieve b ≥ 0. Then we can formulate the “traditional phase-one problem”

min
∑m
j=1 xn+j

Ax +
∑m
j=1 ejxn+j = b ;

x , xn+1, . . . , xn+m ≥ 0 .

(Φ̂)
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Here we have m artificial variables: xn+1, xn+2, . . . , xn+m . It is easy to see that (i) β :=

{n+ 1, n+ 2, . . . , n+m} is feasible for (Φ̂), and (ii) the optimal value of (Φ̂) is zero if and only
if (P) has a feasible solution.

It may be that the optimal value of (Φ̂) is zero, but the optimal basis discovered by the
Simplex Algorithm applied to (Φ̂) contains some of the indices {n + 1, n + 2, . . . , n + m} of
artificial variables. Describe how we can take such an optimal basis and pass to a different
optimal basis that uses none of {n+ 1, n+ 2, . . . , n+m} (and is thus a feasible basis for (P)).
HINT: Use Theorem 1.2.

Exercise 4.4 (Worry-Free Simplex Algorithm can cycle)

Let θ := 2π/k, with integer k ≥ 5. The idea is to use the symmetry of the geometric circle,
and complete a cycle of the Worry-Free Simplex Algorithm in 2k pivots. Choose a constant γ
satisfying 0 < γ < tan(θ/2) . Let

A1 :=

(
1

0

)
, A2 :=

(
0

γ

)
.

Let
R :=

(
cos θ − sin θ
sin θ cos θ

)
.

Then, for j = 3, 4, . . . , 2k , let

Aj :=

{
R(j−1)/2A1 , for odd j ;
R(j−2)/2A2 , for even j .

We can observe that for odd j , Aj is a rotation of A1 by (j − 1)π/k radians, and for even j , Aj
is a rotation of A2 by (j − 2)π/k radians.

Let cj := 1 − a1j − a2j/γ , for j = 1, 2, . . . , 2k , and let b := (0, 0)′ . Because b = 0 , the
problem is fully degenerate; that is, x̄ = 0 for all basic solutions x̄ . Notice that this implies that
either the problem has optimal objective value zero, or the objective value is unbounded on the
feasible region.

For k = 5 , you can choose γ := 1
2 tan(θ/2) , and then check that the following is a sequence

of bases β that are legal for the Worry-Free Simplex Algorithm:

β = (1, 2)→ (2, 3)→ (3, 4)→ . . .→ (2k − 1, 2k)→ (2k, 1)→ (1, 2) .

You need to check that for every pivot, the incoming basic variable xηj has negative reduced
cost, and that the outgoing variable is legally selected — that is that āi,ηj > 0 . Feel free to use
any software that you find convenient (e.g., Python, MATLAB, Mathematica, etc.).
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Note that it may seem hard to grasp the picture at all5. But see Section 6.1.3 and Figure 4.5;
you can look at it from different perspectives using the Jupyter notebook Circle.ipynb (see
Appendix A.7).

If you are feeling ambitious, check that for all k ≥ 5 , we get a cycle of the Worry-Free
Simplex Algorithm.

Exercise 4.5
Run the code pivot_example.ipynb, but with the following line uncommented:

#pivot_perturb() # uncomment to perturb the right-hand side

See how this carries out the algebraic-perturbation method from Section 4.3.
Now, using this code as your starting point, solve the example from Exercise 4.4 with k = 5

to optimality, using the algebraic-perturbation method. Just change the data to correspond to
the example that we want to solve, and do the pivots one at a time, following the rules of the
simplex method.
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Figure 4.5: A picture of the cycle with k = 5



Chapter 5

Duality

Our goals in this chapter are as follows:

• Establish the Strong Duality Theorem for the standard-form problem.

• Establish the Complementary Slackness Theorem for the standard-form problem.

• See howduality and complementarity carry over to general linear-optimization problems.

• Learn about “theorems of the alternative.”

As usual, we focus on the standard-form problem

min c′x
Ax = b ;
x ≥ 0

(P)

and its dual
max y′b

y′A ≤ c′ .
(D)

45
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5.1 The Strong Duality Theorem
We have already seen two simple duality theorems:

• Weak Duality Theorem. If x̂ is feasible in (P) and ŷ is feasible in (D), then c′x̂ ≥ ŷ′b .
• WeakOptimal Basis Theorem. If β is a feasible basis and c̄η ≥ 0 , then the primal solution
x̄ and the dual solution ȳ associated with β are optimal.

The Weak Duality Theorem directly implies that if x̂ is feasible in (P) and ŷ is feasible in (D),
and c′x̂ = ŷ′b , then x̂ and ŷ are optimal. Thinking about it this way, we see that both the Weak
Duality Theorem and the Weak Optimal Basis Theorem assert conditions that are sufficient for
establishing optimality.

Theorem 5.1 (Strong Optimal Basis Theorem)
If (P) has a feasible solution, and (P) is not unbounded, then there exists a basis β such that the
associated basic solution x̄ and the associated dual solution ȳ are optimal. Moreover, c′x̄ = ȳ′b .

Proof. If (P) has a feasible solution and (P) is not unbounded, then the Simplex Algorithm
will terminate with a basis β such that the associated basic solution x̄ and the associated dual
solution ȳ are optimal. ut

As a direct consequence, we have a celebrated theorem.

Theorem 5.2 (Strong Duality Theorem)
If (P) has a feasible solution, and (P) is not unbounded, then there exist feasible solutions x̂
for (P) and ŷ for (D) that are optimal. Moreover, c′x̂ = ŷ′b .

It is important to realize that the Strong Optimal Basis Theorem and the Strong Duality
Theorem depend on the correctness of the Simplex Algorithm — this includes: (i) the correct-
ness of the phase-one procedure to find an initial feasible basis of (P), and (ii) the anti-cycling
methodology.

5.2 Complementary Slackness
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With respect to the standard-form problem (P) and its dual (D), the solutions x̂ and ŷ are
complementary if

(cj − ŷ′A·j)x̂j = 0 , for j = 1, 2, . . . , n ;

ŷi(Ai·x̂− bi) = 0 , for i = 1, 2, . . . ,m .

Theorem 5.3
If x̄ is a basic solution (feasible or not) of standard-form (P), and ȳ is the associated dual
solution, then x̄ and ȳ are complementary.

Proof. Notice that if x̄ is a basic solution then Ax̄ = b. Then we can see that complementarity of
x̄ and ȳ amounts to

c̄j x̄j = 0 , for j = 1, 2, . . . , n .

It is clear then that x̄ and ȳ are complementary, because if x̄j > 0 , then j is a basic index, and
c̄j = 0 for basic indices. ut

Theorem 5.4
If x̂ and ŷ are complementary with respect to (P) and (D), then c′x̂ = ŷ′b .

Proof.
c′x̂− ŷ′b = (c′ − ŷ′A)x̂+ ŷ′(Ax̂− b) ,

which is 0 by complementarity. ut

Corollary 5.5 (Weak Complementary Slackness Theorem)
If x̂ and ŷ are feasible and complementary with respect to (P) and (D), then x̂ and ŷ are
optimal.

Proof. This immediately follows from Theorem 5.4 and the Weak Duality Theorem. ut

Theorem 5.6 (Strong Complementary Slackness Theorem)
If x̂ and ŷ are optimal for (P) and (D), then x̂ and ŷ are complementary (with respect to (P)
and (D)).

Proof. If x̂ and ŷ are optimal, then by the Strong Duality Theorem, we have c′x̂ − ŷ′b = 0 .
Therefore, we have

0 = (c′ − ŷ′A)x̂+ ŷ′(Ax̂− b)

=

n∑

j=1

(cj − ŷ′A·j)x̂j +

m∑

i=1

ŷi(Ai·x̂− bi) .
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Next, observing that x̂ and ŷ are feasible, we have
n∑

j=1

(cj − ŷ′A·j)︸ ︷︷ ︸
≥0

x̂j︸︷︷︸
≥0

+

m∑

i=1

ŷi (Ai·x̂− bi)︸ ︷︷ ︸
=0

.

Clearly this expression is equal to a non-negative number. Finally, we observe that this expres-
sion can only be equal to 0 if

(cj − ŷ′A·j)x̂j = 0 , for j = 1, 2, . . . , n .

ut

5.3 Duality for General Linear-Optimization Problems
Thus far, we have focused on duality for the standard-form problem (P). But we will see that
every linear-optimization problem has a natural dual. Consider the rather general linear mini-
mization problem

min c′PxP + c′NxN + c′UxU
AGPxP + AGNxN + AGUxU ≥ bG ;
ALPxP + ALNxN + ALUxU ≤ bL ;
AEPxP + AENxN + AEUxU = bE ;
xP ≥ 0 , xN ≤ 0 .

(G)

We will see in the next result that a natural dual for it is
max y′GbG + y′LbL + y′EbE

y′GAGP + y′LALP + y′EAEP ≤ c′P ;
y′GAGN + y′LALN + y′EAEN ≥ c′N ;
y′GAGU + y′LALU + y′EAEU = c′U ;
y′G ≥ 0 , y′L ≤ 0 .

(H)

Theorem 5.7
• Weak Duality Theorem: If (x̂P , x̂N , x̂U ) is feasible in (G) and (ŷG, ŷL, ŷE) is feasible in

(H), then c′P x̂P + c′N x̂N + c′U x̂U ≥ ŷ′GbG + ŷ′LbL + ŷ′EbE .
• Strong Duality Theorem: If (G) has a feasible solution, and (G) is not unbounded,

then there exist feasible solutions (x̂P , x̂N , x̂U ) for (G) and (ŷG, ŷL, ŷE) for (H) that are
optimal. Moreover, c′P x̂P + c′N x̂N + c′U x̂U = ŷ′GbG + ŷ′LbL + ŷ′EbE .

Proof. The Weak Duality Theorem for general problems can be demonstrated as easily as it
was for the standard-form problem and its dual. But the Strong Duality Theorem for general
problems is most easily obtained by converting our general problem (G) to the standard-form

min c′PxP − c′N x̃N + c′U x̃U − c′U ˜̃xU
AGPxP − AGN x̃N + AGU x̃U − AGU ˜̃xU − sG = bG ;

ALPxP − ALN x̃N + ALU x̃U − ALU ˜̃xU + tL = bL ;

AEPxP − AEN x̃N + AEU x̃U − AEU ˜̃xU = bE ;

xP ≥ 0 , x̃N ≥ 0 , x̃U ≥ 0 , ˜̃xU ≥ 0 , sG ≥ 0 , tL ≥ 0 .
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Above, we substituted −x̃N for xN and x̃U − ˜̃xU for xU . Taking the dual of this standard-form
problem, we obtain

max y′GbG + y′LbL + y′EbE
y′GAGP + y′LALP + y′EAEP ≤ c′P ;

− y′GAGN − y′LALN − y′EAEN ≤ −c′N ;
y′GAGU + y′LALU + y′EAEU ≤ c′U ;

− y′GAGU − y′LALU − y′EAEU ≤ −c′U ;
− y′G ≤ 0 ;

+ y′L ≤ 0 ,

which is clearly equivalent to (H). ut

With respect to (G) and its dual (H), the solutions (x̂P , x̂N , x̂U ) and (ŷG, ŷL, ŷE) are com-
plementary if

(cj − ŷ′GAGj − ŷ′LALj − ŷ′EAEj) x̂j = 0 , for all j ;

ŷi (AiPxP +AiNxN +AiUxU − bi) = 0 , for all i .

Theorem 5.8
• WeakComplementary Slackness Theorem: If (x̂P , x̂N , x̂U ) and (ŷG, ŷL, ŷE) are feasible

and complementary with respect to (G) and (H), then (x̂P , x̂N , x̂U ) and (ŷG, ŷL, ŷE) are
optimal.

• Strong Complementary Slackness Theorem: If (x̂P , x̂N , x̂U ) and (ŷG, ŷL, ŷE) are opti-
mal for (G) and (H), (x̂P , x̂N , x̂U ) and (ŷG, ŷL, ŷE) are complementary (with respect to
(G) and (H)).

Proof. Similarly to the proof for standard-form (P) and its dual (D), we consider the following
expression.

0 =
∑

j∈P
(cj − ŷ′GAGj − ŷ′LALj − ŷ′EAEj)︸ ︷︷ ︸

≥0

x̂j︸︷︷︸
≥0

+
∑

j∈N
(cj − ŷ′GAGj − ŷ′LALj − ŷ′EAEj)︸ ︷︷ ︸

≤0

x̂j︸︷︷︸
≤0

+
∑

j∈U
(cj − ŷ′GAGj − ŷ′LALj − ŷ′EAEj)︸ ︷︷ ︸

=0

x̂j

+
∑

i∈G
ŷi︸︷︷︸
≥0

(AiPxP +AiNxN +AiUxU − bi)︸ ︷︷ ︸
≥0

+
∑

i∈L
ŷi︸︷︷︸
≤0

(AiPxP +AiNxN +AiUxU − bi)︸ ︷︷ ︸
≤0

+
∑

i∈E
ŷi (AiPxP +AiNxN +AiUxU − bi)︸ ︷︷ ︸

=0

.

The results follows easily using the Weak and Strong Duality Theorems for (G) and (H). ut
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The table below summarizes the duality relationships between the type of each primal con-
straint and the type of each associated dual variable. Highlighted in yellow are the relation-
ships for the standard-form (P) and its dual (D). It is important to note that the columns are
labeled “min” and “max”, rather than primal and dual — the table is not correct if “min” and
“max” are interchanged.

min max

constraints




≥ ≥ 0



variables≤ ≤ 0

= unres.

variables




≥ 0 ≤



constraints≤ 0 ≥

unres. =

5.4 Theorems of the Alternative

In this section, we use linear-optimization duality to understandwhen a linear-optimization
problem has a feasible solution. This fundamental result, expounded by Farkas6, opened the
door for studying linear inequalities and optimization.

Theorem 5.9 (Farkas Lemma)
Let A ∈ Rm×n and b ∈ Rm be given. Then exactly one of the following two systems has a
solution.

Ax = b ;
x ≥ 0 .

(I)

y′b > 0 ;
y′A ≤ 0′ .

(II)

Proof. It is easy to see that there cannot simultaneously be a solution x̂ to (I) and ŷ to (II).
Otherwise we would have

0 ≥ ŷ′A︸︷︷︸
≤0

x̂︸︷︷︸
≥0

= ŷ′b > 0 ,

which is a clear inconsistency.
Next, suppose that (I) has no solution. Then the following problem is infeasible:

min 0′x
Ax = b ;
x ≥ 0 .

(P)
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Its dual is
max y′b

y′A ≤ 0′ .
(D)

Because (P) is infeasible, then (D) is either infeasible or unbounded. But ŷ := 0 is a feasible
solution to (D), therefore (D) must be unbounded. Therefore, there exists a feasible solution
ŷ to (D) having objective value greater than zero (or even any fixed constant). Such a ŷ is a
solution to (II). ut

Remark 5.10
Geometrically, the Farkas Lemma asserts that exactly one of the following holds:
(I) b is in the “cone generated by the columns of A” (i.e., b is a non-negative linear combina-

tion of the columns of A), or
(II) there is ŷ ∈ Rm that makes an acute angle with b and a non-acute (i.e., right or obtuse)

angle with every column of A .
In the case of (II), considering the hyperplane H containing the origin having ŷ as its normal
vector, thisH separates b from the cone generated by the columns of A . So, the Farkas Lemma
has the geometric interpretation as a“Separating-Hyperplane Theorem.” See Figure 5.1 for an
example with m = 2 and n = 4 . The cone is red and the point b that we separate from the
cone is blue. The green point is a solution ŷ for (II), and the dashed green line is the separating
hyperplane. Notice how the (solid) green vector makes an acute angle with the blue vector and
a non-acute angle with all points in the cone.
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Figure 5.1: Case (II) of the Farkas Lemma

In a similar fashion to the Farkas Lemma, we can develop theorems of this type for feasible
regions of other linear-optimization problems.

Theorem 5.11 (Theorem of the Alternative for Linear Inequalities)
Let A ∈ Rm×n and b ∈ Rm be given. Then exactly one of the following two systems has a
solution.

Ax ≥ b . (I)
y′b > 0 ;
y′A = 0′ ;
y ≥ 0 .

(II)

Proof. It is easy to see that there cannot simultaneously be a solution x̂ to (I) and ŷ to (II).
Otherwise we would have

0 = ŷ′A︸︷︷︸
=0

x̂ ≥ ŷ′b > 0 ,

which is a clear inconsistency.
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Next, suppose that (I) has no solution. Then the following problem is infeasible:

min 0′x
Ax ≥ b .

(P)

Its dual is
max y′b

y′A = 0′ ;
y ≥ 0 .

(D)

Because (P) is infeasible, then (D) is either infeasible or unbounded. But ŷ := 0 is a feasible
solution to (D), therefore (D) must be unbounded. Therefore, there exists a feasible solution ŷ
to (D) having objective value greater than zero (or even greater than any fixed constant). Such
a ŷ is a solution to (II). ut

5.5 Exercises
Exercise 5.1 (Dual picture)
For the standard-form problem (P) and its dual (D), explain aspects of duality and comple-
mentarity using this picture:

Exercise 5.2 (Reduced costs as dual values)
In this exercise, wewill see that we can regard reduced costs (corresponding to an optimal basic
partition) as (optimal) values of dual variables for non-negativity constraints.

Consider the ordinary standard-form problem

z := min c′x dual variables
Ax = b ; y
x ≥ 0 ,

(P)
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and let β, η be an optimal basic partition for (P).
We can equivalently see (P) as

z := min c′x dual variables
Ax = b ; y
x ≥ 0 , w

(P̃)

where in (P̃), we regard the non-negativity constraints of (P) as ordinary structural constraints
— with dual variables.

Define w̄ ∈ Rn by
w̄β := 0 ∈ Rm ;
w̄η := c̄η ∈ Rn−m .

Prove that together, ȳ′ := c′βA
−1
β and w̄ are optimal for the dual of (P̃).

Exercise 5.3 (Duality and complementarity with Python/Gurobi)
After optimization using Python/Gurobi, it is easy to get more information regarding primal
and dual problems. In particular, we can obtain optimal primal and dual solutions, and slacks
for these solutions in the primal anddual constraints. See how this is done in Production.ipynb
(Appendix A.3), and verify the concepts of duality and complementarity developed in this
chapter.

Exercise 5.4 (Complementary slackness)
Construct an example where we are given x̂ and ŷ and asked to check whether x̂ is optimal
using complementary slackness. I want your example to have the property that x̂ is optimal, x̂
and ŷ are complementary, but ŷ is not feasible.

The idea is to see an example where there is not a unique dual solution complementary to
x̂ , and so x̂ is optimal, but we only verify it with another choice of ŷ.

Exercise 5.5 (Over complementarity)
With respect to the standard-form problem (P) and its dual (D), complementary solutions x̂
and ŷ are overly complementary if exactly one of

cj − ŷ′A·j and x̂j is 0 , for j = 1, 2, . . . , n .

Prove that if (P) has an optimal solution, then there are always optimal solutions for (P) and
(D) that are overly complementary.

HINT: Let v be the optimal objective value of (P). For each j = 1, 2, . . . , n , consider

max xj
c′x ≤ v
Ax = b .
x ≥ 0 .

(Pj)

(Pj) seeks an optimal solution of (P) that has xj positive. Using the dual of (Pj), show that
if no optimal solution x̂ of (P) has x̂j positive, then there is an optimal solution ŷ of (D) with
cj − ŷ′A·j positive. Once you do this you can conclude that, for any fixed j, there are optimal
solutions x̂ and ŷ with the property that exactly one of

cj − ŷ′A·j and x̂j is 0 .

Take all of these n pairs of solutions x̂ and ŷ and combine them appropriately to construct
optimal x̂ and ŷ that are overly complementary.
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Exercise 5.6 (Another proof of a Theorem of the Alternative)
Prove the Theorem of the Alternative for Linear Inequalities directly from the Farkas Lemma,
without appealing to linear-optimization duality. HINT: Transform (I) of the Theorem of the
Alternative for Linear Inequalities to a system of the form of (I) of the Farkas Lemma.

Exercise 5.7 (A general Theorem of the Alternative)
State and prove a “Theorem of the Alternative” for the system:

AGPxP + AGNxN + AGUxU ≥ bG ;
ALPxP + ALNxN + ALUxU ≤ bL ;
AEPxP + AENxN + AEUxU = bE ;

xP ≥ 0 , xN ≤ 0 .

(I)

Exercise 5.8 (Dual ray)
Consider the linear-optimization problem

min c′x
Ax ≥ b ;
x ≥ 0 .

(P)

a) Suppose that (P) is infeasible. Then, by a ‘Theorem of the Alternative’ there is a solution
to what system?

b) Suppose, further, that the dual (D) of (P) is feasible. Take a feasible solution ŷ of (D) and
a solution ỹ to your system of part (a) and combine them appropriately to prove that (D)
is unbounded.





Chapter 6

Sensitivity Analysis

Our goal in this chapter is as follows:

• Learn how the optimal value of a linear-optimization problem behaves when the right-
hand side vector and objective vector are varied.

6.1 Right-Hand Side Changes

We define a function f : Rm → R via

f(b) := min c′x
Ax = b ;
x ≥ 0 .

(Pb)

That is, (Pb) is simply (P)with the optimal objective value viewed as a function of its right-hand
side vector b .

57
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6.1.1 Local analysis

Consider a fixed basis β for (Pb). Associated with that basis is the basic solution x̄β = A−1
β b

and the corresponding dual solution ȳ′ = c′βA
−1
β . Let us assume that ȳ is feasible for the dual

of (Pb) — or, equivalently, c′η − ȳ′Aη ≥ 0′ . Considering the set B of b ∈ Rm such that β is an
optimal basis, is it easy to see that B is just the set of b such that x̄β := A−1

β b ≥ 0 . That is,
B ⊂ Rm is the solution set of m linear inequalities (in fact, it is a “simplicial cone” — we will
return to this point in Section 6.1.3). Now, for b ∈ B , we have f(b) = ȳ′b . Therefore, f is a
linear function on b ∈ B . Moreover, as long as b is in the interior of B , we have ∂f

∂bi
= ȳi . So we

have that ȳ is the gradient of f , as long as b is in the interior of B . Now what does it mean for
b to be in the interior of B ? It just means that x̄βi > 0 for i = 1, 2, . . . ,m .

Let us focus our attention on changes to a single right-hand side element bi . Suppose that
β is an optimal basis of (P) , and consider the problem

min c′x
Ax = b+ ∆iei ;
x ≥ 0 ,

(Pi)

where ∆i ∈ R . The basis β is feasible (and hence still optimal) for (Pi) if A−1
β (b + ∆iei) ≥ 0 .

Let hi := A−1
β ei . So

[h1, h2, . . . , hm] = A−1
β .

Then, the condition A−1
β (b+ ∆iei) ≥ 0 can be re-expressed as x̄β + ∆ih

i ≥ 0 . It is straightfor-
ward to check that β is feasible (and hence still optimal) for (Pi) as long as ∆i is in the interval
[Li, Ui] , where

Li := max
k : hik>0

{
−x̄βk/hik

}
,

and
Ui := min

k : hik<0

{
−x̄βk/hik

}
.

It is worth noting that it can be the case that hik ≤ 0 for all k, in which case we define Li := −∞,
and it could be the case that hik ≥ 0 for all k, in which case we define Ui := +∞,

In summary, for all ∆i satisfying Li ≤ ∆i ≤ Ui , β is an optimal basis of (P) . It is important
to emphasize that this result pertains to changing one right-hand side element and holding all
others constant. For a result on simultaneously changing all right-hand side elements, we refer
to Exercise 6.3.

6.1.2 Global analysis
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The domain of f is the set of b for which (Pb) has an optimal solution. Assuming that the
dual of (Pb) is feasible (note that this just means that y′A ≤ c′ has a solution), then (Pb) is never
unbounded. So the domain of f is just the set of b ∈ Rm such that (Pb) is feasible.

Theorem 6.1
The domain of f is a convex set.

Proof. Suppose that bj is in the domain of f , for j = 1, 2 . Therefore, there exist xj that are
feasible for (Pbj) , for j = 1, 2 . For any 0 < λ < 1 , let b̂ := λb1 + (1 − λ)b2 , and consider
x̂ := λx1 + (1− λ)x2 . It is easy to check that x̂ is feasible for (Pb̂) , so we can conclude that b̂ is
in the domain of f . ut

Before going further, we need a few definitions. We consider functions f : Rm → R. The
domain of f is the subset S of Rm on which f is defined. We assume that S is a convex set. A
function f : Rm → R is a convex function on its domain S, if

f(λu1 + (1− λ)u2) ≤ λf(u1) + (1− λ)f(u2) ,

for all u1, u2 ∈ S and 0 < λ < 1 . That is, f is never underestimated by linear interpolation.
A function f : Rm → R is an affine function, if it has the form f(u1, . . . , um) = a0 +∑m

i=1 aiui , for constants a0, a1, . . . , am ∈ R . If a0 = 0 , then we say that f is a linear function.
Affine (and hence linear) functions are easily seen to be convex.

A function f : Rm → R having a convex set as its domain is a convex piecewise-linear
function if, on its domain, it is the pointwise maximum of a finite number of affine functions.

It would be strange to refer to a function as being “convex piecewise-linear” if it were not convex!
The next result justifies the moniker.

Theorem 6.2
If f̌ is a convex piecewise-linear function, then it is a convex function.

Proof. Let
f̌(u) := max

1≤i≤k
{fi(u)} ,

for u in the domain of f̌ , where each fi is an affine function. That is, f̌ is the pointwisemaximum
of a finite number (k) of affine functions.
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Then, for 0 < λ < 1 and u1 , u2 ∈ Rm ,

f̌(λu1 + (1− λ)u2) = max
1≤i≤k

{
fi(λu

1 + (1− λ)u2)
}

= max
1≤i≤k

{
λfi(u

1) + (1− λ)fi(u
2)
} (using the definition of affine)

≤ max
1≤i≤k

{
λfi(u

1)
}

+ max
1≤i≤k

{
(1− λ)fi(u

2)
}

= λ max
1≤i≤k

{
fi(u

1)
}

+ (1− λ) max
1≤i≤k

{
fi(u

2)
}

= λf̌(u1) + (1− λ)f̌(u2) .

ut

Theorem 6.3
f is a convex piecewise-linear function on its domain.

Proof. We refer to the dual

f(b) := max y′b
y′A ≤ c′ ;

(Db)

of (Pb).
A basis β is feasible or not for (Db), independent of b . Thinking about it this way, we can

see that
f(b) = max

{(
c′βA

−1
β

)
b : β is a dual feasible basis

}
,

and so f is a convex piecewise-linear function, because it is the pointwise maximum of a finite
number of affine (even linear) functions. ut

6.1.3 A brief detour: the column geometry for the Simplex Algorithm

In this section, we will describe a geometry for visualizing the Simplex Algorithm.7 The
ordinary geometry for a standard-form problem, in the space of the non-basic variables for
same choice of basis, can be visualized when n−m = 2 or 3. The “column geometry” that we
will describe is in Rm+1 , so it can be visualized when m + 1 = 2 or 3. Note that the graph of
the function f(b) (introduced at the start of this chapter) is also in Rm+1 , which is why we take
the present detour.
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We think of the n points (
cj
Aj

)
,

for j = 1, 2, . . . , n , and the additional so-called requirement line
{(

z
b

)
: z ∈ R

}
.

We think of the first component of these points and of the line as the vertical dimension; so the
requirement line is thought of as vertical. It of particular interest to think of the cone generated
by the n points. That is,

K :=

{(
c′x

Ax

)
∈ Rm+1 : x ≥ 0

}
.

Notice how the top coordinate of a point in the cone gives the objective value of the associated x
for (P). So the goal of solving (P) can be thought of as that of finding a point on the intersection
of the requirement line and the cone that is as low as possible.

Restricting ourselves to a basis β , we have the cone

Kβ :=

{(
c′βxβ

Aβxβ

)
∈ Rm+1 : xβ ≥ 0

}
.

The coneKβ is an “m-dimensional simplicial cone.” Next, we observe that if β is a feasible basis,
thenKβ intersects the requirement line uniquely at the point

(
c′β x̄β

Aβ x̄β

)
,

where x̄ is the basic solution associated with β .
In a pivot of the Simplex Algorithm from basis β to basis β̃, we do so with the goal of having

Kβ̃ intersect the requirement line at a lower point than did Kβ . In Figure 6.1 (m = 2 and the
coordinate axes are the red lines), we see an example depicting a single pivot. Kβ is the yellow
cone, intersecting the blue requirement line at the red point. After the pivot (with one cone
generator exchanged), we have the green coneKβ̃ intersecting the requirement line at the pink
point.
So at each iteration of the Simplex Algorithm, we exchange a single “generator” of the simplicial
coneKβ associated with our basis β, to descend along the requirement line, ultimately finding
a point ofK that meets the requirement at its lowest point.

6.2 Objective Changes

“Here is what is needed for Occupy Wall Street to become a force for change: a clear, and
clearly expressed, objective. Or two.” — Elayne Boosler
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Figure 6.1: A simplex pivot

We define a function g : Rn → R via
g(c) := min c′x

Ax = b ;
x ≥ 0 .

(Pc)

That is, (Pc) is simply (P) with the optimal objective value viewed as a function of its objective
vector c .

6.2.1 Local analysis
Consider a fixed basis β for (Pc). Associated with that basis is the basic solution x̄β = A−1

β b

and the corresponding dual solution ȳ′ = c′βA
−1
β . Let us assume that x̄ is feasible for (Pc)— or,

equivalently,A−1
β b ≥ 0 . Considering the set C of c ∈ Rn such that β is an optimal basis, is it easy

to see that this is just the set of c such that c′η − c′βA−1
β Aη ≥ 0′ . That is, C ⊂ Rn is the solution

set of n − m linear inequalities (in fact, it is a cone). Now, for c ∈ C , we have g(c) = c′β x̄β .
Therefore, g is a linear function on c ∈ C .

6.2.2 Global analysis
The domain of g is the set of c for which (Pc) has an optimal solution. Assuming that (Pc) is
feasible, then the domain of g is just the set of c ∈ Rn such that (Pc) is not unbounded.

Similarly to the case of variations in the right-hand side vector b, we have the following two
results.

Theorem 6.4
The domain of g is a convex set.
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A function g : Rn → R is a concave function on its domain S, if

g(λu1 + (1− λ)u2) ≥ λg(u1) + (1− λ)g(u2) ,

for all u1, u2 ∈ S and 0 < λ < 1 . That is, f is never overestimated by linear interpolation.
The function g is a concave piecewise-linear function if it is the pointwise minimum of a finite
number of affine functions.

Theorem 6.5
g is a concave piecewise-linear function on its domain.

6.3 Exercises
Exercise 6.1 (Local sensitivity analysis with Python/Gurobi)
Wecan easily carry out some local sensitivity analysiswith Python/Gurobi. See how this is done
in Production.ipynb (Appendix A.3). Verify the calculations of Python/Gurobi by ‘hand’,
using the ideas and formulas in Section 6.1.1 to make the calculations yourself; you may use
any convenient software (e.g., Python, MATLAB, Mathematica, etc.) to assist you, but only for
doing arithmetic on scalars, vector and matrices.

Exercise 6.2 (Illustrate global sensitivity analysis using Python/Gurobi)
Using Python/Gurobi, make an original example, with at least three constraints, graphing the
objective value of (P ) , as a single b[i] is varied from−∞ to +∞ . As you work on this, bear in
mind Theorem 6.3, using local analysis to identify successive ranges where the optimal value is
linear.
Exercise 6.3 (“I feel that I know the change that is needed.” —Mahatma Gandhi)
We are given 2m numbers satisfying Li ≤ 0 ≤ Ui , i = 1, 2, . . . ,m . Let β be an optimal basis for
all of them problems

min c′x
Ax = b+ ∆iei ;
x ≥ 0 ,

(Pi)

for all ∆i satisfying Li ≤ ∆i ≤ Ui . Let’s be clear on what this means: For each i individually,
the basis β is optimal when the ith right-hand side component is changed from bi to bi + ∆i , as
long as ∆i is in the interval [Li, Ui] (see Section 6.1.1).

The point of this problem is to be able to say something about simultaneously changing all
of the bi . Prove that we can simultaneously change bi to

b̃i := bi + λi

{
Li
Ui

}
,



64 CHAPTER 6. SENSITIVITY ANALYSIS

where λi ≥ 0 , when∑m
i=1 λi ≤ 1 . [Note that in the formula above, for each iwe can pick either

Li (a decrease) or Ui (an increase)].

Exercise 6.4 (Domain for objective variations)
Prove Theorem 6.4.

Exercise 6.5 (Concave piecewise-linear function)
Prove Theorem 6.5.



Chapter 7

Large-Scale Linear Optimization

Our goals in this chapter are as follows:

• To see some approaches to large-scale linear-optimization problems

• In particular, to learn about decomposition, Lagrangian relaxation and column genera-
tion.

• Also, via a study of the “cutting-stock problem,” we will have a first glimpse at some
issues associated with integer-linear optimization.

7.1 Decomposition

65
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In this section we describe what is usually known as Dantzig-Wolfe Decomposition. It is
an algorithm aimed at efficiently solving certain kinds of structured linear-optimization prob-
lems. The general viewpoint is that we might have a very efficient way to solve a certain type
of structured linear-optimization problem, if it were not for a small number of constraints that
break the structure. For example, the constraintmatrixmight have the form in Figure 7.1, where
if it were not for the top constraints, the optimization problem would separate into many small
problems8.




· · ·

. . .




Figure 7.1: Nearly separates

7.1.1 The master reformulation

Theorem 7.1 (The Representation Theorem)
Let

min c′x
Ax = b ;
x ≥ 0 .

(P)

Suppose that (P) has a non-empty feasible region. Let X := {x̂j : j ∈ J } be the set of basic-
feasible solutions of (P), and let Z := {ẑk : k ∈ K} be the set of basic-feasible rays of (P).
Then the feasible region of (P) is equal to



∑

j∈J
λj x̂

j +
∑

k∈K
µkẑ

k :
∑

j∈J
λj = 1 ; λj ≥ 0 , j ∈ J ; µk ≥ 0 , k ∈ K



 .

Proof. Let S be the feasible region of (P) . Let

S′ =




∑

j∈J
λj x̂

j +
∑

k∈K
µkẑ

k :
∑

j∈J
λj = 1 ; λj ≥ 0 , j ∈ J ; µk ≥ 0 , k ∈ K



 .

We will demonstrate that S = S′ . It is very easy to check that S′ ⊂ S , and we leave that to the
reader. For the other direction, suppose that x̂ ∈ S , and consider the system

∑

j∈J
λj x̂

j +
∑

k∈K
µkẑ

k = x̂ ;

∑

j∈J
λj = 1 ;

λj ≥ 0 , j ∈ J ; µk ≥ 0 , k ∈ K .

(I)

Keep in mind that in (I), x̂ is fixed as well as are the x̂j and the ẑk — the variables are the λj
and the µk . By way of establishing that S ⊂ S′ , suppose that x̂ /∈ S′— that is, suppose that (I)
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has no solution. Applying the Farkas Lemma to (I) , we see that the system

w′x̂ + t > 0 ;
w′x̂j + t ≤ 0 , ∀ j ∈ J ;
w′ẑk ≤ 0 , ∀ k ∈ K

(II)

has a solution, say ŵ, t̂ . Now, consider the linear-optimization problem

min −ŵ′x
Ax = b ;
x ≥ 0 .

(P̂)

(P̂) cannot be unbounded, because −ŵ′ẑk ≥ 0 , for all k ∈ K . In addition, every basic feasible
solution of (P̂) has objective value at least t̂ . By Theorem 5.1 (the Strong Optimal Basis Theo-
rem), this implies that the optimal value of (P̂) is at least t̂ . But the objective value −ŵ′x̂ of x̂ is
less than t̂ . Therefore, x̂ cannot be feasible. That is, x̂ /∈ S . ut

Corollary 7.2 (The Decomposition Theorem)
Let

min c′x
Ex ≥ h ;
Ax = b ;
x ≥ 0 .

(Q)

Let S := {x ∈ Rn : Ax = b , x ≥ 0} , let X := {x̂j : j ∈ J } be the set of basic-feasible
solutions S, and let Z := {ẑk : k ∈ K} be the set of basic-feasible rays of S. Then (Q) is
equivalent to theMaster Problem

min
∑

j∈J

(
c′x̂j

)
λj +

∑

k∈K

(
c′ẑk

)
µk

∑

j∈J

(
Ex̂j

)
λj +

∑

k∈K

(
Eẑk

)
µk ≥ h ;

∑

j∈J
λj = 1 ;

λj ≥ 0 , j ∈ J , µk ≥ 0 , k ∈ K .

(M)

Proof. Using the Representation Theorem, we just substitute the expression
∑

j∈J
λj x̂

j +
∑

k∈K
µkẑ

k

for x in c′x and in Ex ≥ h of (Q), and it is easy to see that (M) is equivalent to (Q). ut

Decomposition is typically applied in a way such that the constraints defining (S) are some-
how relatively “nice,” and the constraints Ex ≥ h somehow are “complicating” the situation.
For example, we may have a problemwhere the overall constraint matrix has the form depicted
in Figure 7.1. In such a scenario, we would let

E :=
(

· · ·
)
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and

A :=


 . . .




We note that there is nothing special here about the “nice” constraints being “=”, and the
complicating constraints being “≥”. The method, with small modifications, can handle any
types of constraints; we take the particular form that we do for some convenience.

7.1.2 Solution of the Master via the Simplex Algorithm
Next, we describe how to solve (M) using the Simplex Algorithm. Our viewpoint is that we
cannotwrite out (M) explicitly; there are typically far toomanyvariables. Butwe can reasonably
maintain a basic solution of (M̄), the standard-formproblemobtained from (M) by adding slack
variables for the Ex ≥ 0 constraints, because the number of constraints of (M̄), is just one more
than the number of constraints in Ex ≤ h .

The only part of the Simplex Algorithm that is sensitive to the total number of variables is
the step in which we check whether there is a variable with a negative reduced cost. So rather
than checking this directly, we will find an indirect way to carry it out.

Toward this end, we define dual variables y and σ for (M) .

min
∑

j∈J

(
c′x̂j

)
λj +

∑

k∈K

(
c′ẑk

)
µk dual variables

∑

j∈J

(
Ex̂j

)
λj +

∑

k∈K

(
Eẑk

)
µk ≥ h ; y ≥ 0

∑

j∈J
λj = 1 ; σ unrestricted

λj ≥ 0 , j ∈ J , µk ≥ 0 , k ∈ K .

(M)

While σ is a scalar variable, y is a vector with a component for each row of E .
Using a vector of slack variables s, we obtain the standard-from problem

min
∑

j∈J

(
c′x̂j

)
λj +

∑

k∈K

(
c′ẑk

)
µk

∑

j∈J

(
Ex̂j

)
λj +

∑

k∈K

(
Eẑk

)
µk − Is = h ;

∑

j∈J
λj = 1 ;

λj ≥ 0 , j ∈ J , µk ≥ 0 , k ∈ K .

(M̄)

Wewill temporarily put aside howwe calculate values for y and σ , but for nowwe suppose
that we have a basic partition of (M̄) and an associated dual solution ȳ and σ̄ .

Entering variable. Notice that nonnegativity of the dual variables y in (M), is is equivalently
realized in (M̄) via the reduced costs of the slack variables being nonnegative. Therefore, a slack
variable si is eligible to enter the basis if ȳi < 0.

The reduced cost of a variable λj is
(
c′x̂j

)
− ȳ′

(
Ex̂j

)
− σ̄ = −σ̄ + (c′ − ȳ′E) x̂j .
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It is noteworthy thatwith the dual solution fixed (at ȳ and σ̄), the reduced cost of λj is a constant
(−σ̄) plus a linear function of x̂j . A variable λj is eligible to enter the basis if its reduced cost
is negative. So we formulate the following optimization problem:

−σ̄ + min (c′ − ȳ′E)x
Ax = b ;
x ≥ 0 .

(SUB)

If the “subproblem” (SUB) has as optimal solution, then it has a basic optimal solution — that
is, an x̂j . In such a case, if the optimal objective value of (SUB) is negative, then the λj corre-
sponding to the optimal x̂j is eligible to enter the current basis of (M̄). On the other hand, if
the optimal objective value of (SUB) is non-negative, then we have a proof that no non-basic λj
is eligible to enter the current basis of (M̄).

If (SUB) is unbounded, then (SUB) has a basic feasible ray ẑk having negative objective
value. That is, (c′ − ȳ′E) ẑk < 0 . Amazingly, the reduced cost of µk is precisely (c′ẑk) −
ȳ′
(
Eẑk

)
= (c′ − ȳ′E) ẑk , so, in fact, µk is then eligible to enter the current basis of (M̄).

Leaving variable. To determine the choice of leaving variable, let us suppose that B is the
basis matrix for (M̄). Note that B consists of at least one column of the form

(
Ex̂j

1

)

and columns of the form (
Eẑk

0

)
and

(
−ei

0

)
.

With respect to the current basis, to carry out the ratio test of the Simplex Algorithm, we
simply need

B−1

(
h
1

)

and:
B−1

(
Ex̂j

1

)

if λj is entering the basis, or
B−1

(
Eẑk

0

)

if µk is entering the basis, or
B−1

(
−ei

0

)

if si is entering the basis.

Calculation of basic primal and dual solutions. It is helpful to explain a bit about the
calculation of basic primal and dual solutions. Aswe have said,B consists of at least one column
of the form (

Ex̂j

1

)

and columns of the form (
Eẑk

0

)
and

(
−ei

0

)
.
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So organizing the basic variables λj , µk and si into a vector ζ , with their order appropriately
matched with the columns of B , the vector ζ̄ of values of ζ is precisely the solution of

Bζ =

(
h
1

)
.

That is,
ζ̄ = B−1

(
h
1

)
.

Finally, organizing the costs c′x̂j , c′ẑk, and 0 of the basic variables λj , µk and si into a vector ξ ,
with their order appropriately matched with the columns of B , the associated dual solution
(ȳ, σ̄) is precisely the solution of

(y′, σ)B = ξ′ .

That is,
(ȳ′, σ̄) = ξ′B−1 .

Starting basis. It is not obvious how to construct a feasible starting basis for (M̄); after all,
we may not have at hand any basic feasible solutions and rays of (S). Next, we give a simple
recipe. First, we take as x̂1 any basic feasible solution of (P) . Such a solution can be readily
obtained by using our usual (phase-one) methodology of the Simplex Algorithm. Our initial
basic variables are all of the slack variables si and also λ1, associated with x̂1. So we have the
initial basis matrix

B =

(
−I Ex̂1

0′ 1

)
.

It is very easy to see that this is an invertible matrix.
It is very important to realize that we have given a recipe for finding an initial basic solution

of (M̄). This basic solution is feasible precisely when x1 satisfies the Ex ≥ h constraints. If
this solution is not feasible, then we would introduce an artificial variable and do a phase-
one procedure. Following the methodology of Section 4.4.1, we introduce the single artificial
column (

1− Ex̂1

1

)
,

with cost 1. We let the artificial variable enter the basis, removing the slack variable that is the
most negative from the basis. This yields a feasible basis for the phase-one problem, with pos-
itive objective value. Now we carry out phase-one of the simplex method, using Decomposition,
minimizing the artificial variable, seeking to drive it down to zero.

A demonstration implementation.

It is not completely trivial to write a small Python/Gurobi) code for the Decomposition Algo-
rithm. First of all, we solve the subproblems (SUB) using functionality of Gurobi. Another
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point is that rather than carry out the simplex method at a detailed level on (M̄), we just ac-
cumulate all columns of (M̄) that we generate, and always solve linear-optimization problems,
using functionality of Gurobi, with all of the columns generated thus far. In this way, we do not
maintain bases ourselves, andwe do not carry out the detailed pivots of the Simplex Algorithm.
Note that the linear-optimization functionality of Gurobi does give us a dual solution, so we do
not compute that ourselves. Our code is in the Jupyter notebook Decomp.ipynb (see Appendix
A.8)

In Figures 7.2 and 7.3, we see quite good behavior for the Decomposition Algorithm, for
a problem with 100 variables, 200 “complicating” constraints (i.e., rows of E), and 50 “nice”
constraints (i.e., rows of A).

Figure 7.2: Example: Phase-one objective values with Decomposition
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Figure 7.3: Example: Phase-two objective values with Decomposition

Convergence and lower bounds. Practically speaking, the convergence behavior of the
Decomposition Algorithm can suffer from a tailing-off effect. That is, while the sequence of
objective values for successive iterates is non-increasing, at some point improvements can be-
come quite small. It would be helpful to know when we already have a very good but possibly
non-optimal solution. If we could rapidly get a good lower bound on z , then we could stop the
Decomposition when the its objective value is close to such a lower bound. Lower bounds on
z can be obtained from feasible solutions to the dual of (Q) . But there is another way, closely
related to the dual of (Q), to rapidly get good lower bounds. We develop this in the next section.
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7.2 Lagrangian Relaxation

Again, we consider
z := min c′x

Ex ≥ h ;
Ax = b ;
x ≥ 0 ,

(Q)

but our focus now is on efficiently getting a good lower bound on z , with again the view that
we are able to quickly solve many linear-optimization problems having only the constraints:
Ax = b , x ≥ 0 .

7.2.1 Lagrangian bounds
For any fixed choice of ŷ ≥ 0, consider the following “Lagrangian” optimization problem

v(ŷ) := ŷ′h+ min (c′ − ŷ′E)x
Ax = b
x ≥ 0 .

(Lŷ)

Note that the only variables in the minimization are x , because we consider ŷ to be fixed.

Theorem 7.3
v(ŷ) ≤ z , for all ŷ in the domain of v.

Proof. Let x∗ be an optimal solution for (Q). Clearly x∗ is feasible for (Lŷ). Therefore

v(ŷ) ≤ ŷ′h+ (c′ − ŷ′E)x∗

= c′x∗ − ŷ′(Ex∗ − h)

≤ z .

The last equation uses the fact that x∗ is optimal for (Q), so z = c′x∗, and also thatEx∗ ≥ h and
ŷ ≥ 0 . ut
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From what we learned in studying sensitivity analysis, it can be seen that v is a concave
(piecewise-linear) function on its domain (see Theorem 6.5). Because of this nice behavior, it is
plausible that we could calculate the maximum of v as a means of getting a good lower bound
on z . Before doing that, we examine the precise relationship between primal and dual solutions
of (Q), minimizers of v , and primal and dual solutions of the Lagrangian.

Theorem 7.4
Suppose that x∗ is optimal for (Q) , and suppose that ŷ and π̂ are optimal for the dual of (Q) .
Then x∗ is optimal for (Lŷ) , π̂ is optimal for the dual of (Lŷ) , ŷ is a maximizer of v(y) over
y ≥ 0, and the maximum value of v(y) over y ≥ 0 is z .

In the theorem above, we refer to two duals. The dual of (Q) is:

min y′h+ π′b
y′E + π′A ≤ c′ ;
y ≥ 0 .

The dual of (Lŷ) is:
ŷ′h + max π′b

π′A ≤ c′ − ŷ′E .

Proof. x∗ is clearly feasible for (Lŷ) . Because ŷ and π̂ are feasible for the dual of (Q) , we have
ŷ ≥ 0, and ŷ′E + π̂′A ≤ c′ . The latter implies that π̂ is feasible for the dual of (Lŷ) .

Using the StrongDuality Theorem for (Q) implies that c′x∗ = ŷ′h+π̂′b . Using thatEx̂∗ ≥ h
(feasibility of x∗ in (Q)), we then have that (c′ − ŷ′E)x∗ ≤ π̂′b . Finally, using theWeak Duality
Theorem for (Lŷ) , we have that x∗ is optimal for (Lŷ) and π̂ is optimal for the dual of (Lŷ) .

Next,

z ≥ v(ŷ) (by Theorem 7.3)
= ŷ′h+ (c′ − ŷ′E)x∗ (because x∗ is optimal for (Lŷ))
= ĉ′x∗ + ŷ′(Ex∗ − h)

≥ c′x∗ (because Ex∗ ≥ h and y ≥ 0)
= z .

Therefore the all of the inequalities are equations, and so ŷ is amaximizer of v and themaximum
value is z . ut

Theorem 7.5
Suppose that ŷ is a maximizer of v(y) over y ≥ 0 , and suppose that π̂ is optimal for the dual
of (Lŷ) . Then ŷ and π̂ are optimal for the dual of (Q) , and the optimal value of (Q) is v(ŷ) .
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Proof.

v(ŷ) = max
y≥0
{v(y)}

= max
y≥0

{
y′h+ min

x
{(c′ − y′E)x : Ax = b , x ≥ 0}

}

= max
y≥0

{
y′h+ max

π
{π′b : π′A ≤ c′ − y′E}

}

= max
y≥0,π

{y′h+ π′b : y′E + π′A ≤ c′}
= z .

The third equation follows from taking the dual of the inner (minimization) problem. The last
equation follows from seeing that the final maximization (over y ≥ 0 and π simultaneously) is
just the dual of (Q).

So, we have established that the optimal value z of (Q) is v(ŷ) . Looking a bit more closely,
we have established that z = ŷ′h+ π̂′b , and because π̂′A ≤ c′ − ŷ′E and y ≥ 0, we have that ŷ
and π̂ are optimal for the dual of (Q) . ut

Note that the conclusion of Theorem 7.5 gives us an optimal ŷ and π̂ for the dual of (Q), but
not an optimal x∗ for (Q) itself.

7.2.2 Solving the Lagrangian Dual
Theorem 7.3 gives us a simple way to calculate a lower bound on z , by solving a potentially
much-easier linear-optimization problem. But the bound depends on the choice of ŷ ≥ 0 . Can
we find the best such ŷ ? This would entail solving the so-called Lagrangian Dual problem of
maximizing v(y) over all y ≥ 0 in the domain of v . It should seem that there is hope for doing
this — because v is a concave function. But v is not a smooth function (it is piecewise linear),
so we cannot rely on calculus-based techniques.

Theorem 7.6
Suppose that we fix ŷ , and solve for v(ŷ) . Let x̂ be the solution of (Lŷ) . Let γ̂ := h − Ex̂ .
Then

v(ỹ) ≤ v(ŷ) + (ỹ − ŷ)′γ̂ ,

for all ỹ in the domain of v .

Proof.

v(ŷ) + (ỹ − ŷ)′γ̂ = ŷ′h+ (c′ − ŷ′E)x̂+ (ỹ − ŷ)′(h− Ex̂)

= ỹ′h+ (c′ − ỹ′E)x̂

≥ v(ỹ) .

The inequality follows from the fact that x̂ is feasible (but possible not optimal) for (Lỹ). ut

Subgradient. What is v(ŷ) + (ỹ − ŷ)′γ̂ ? It is a linear estimation of v(ỹ) starting from the
actual value of v at ŷ . The direction ỹ − ŷ is what we add to ŷ to move to ỹ . The choice of
γ̂ := h−Ex̂ is made so that Theorem 7.6 holds. That is, γ̂ is chosen in such a way that the linear
estimation is always an upper bound on the value v(ỹ) of the function, for all ỹ in the domain of
f . The nice property of γ̂ demonstrated with Theorem 7.6 has a name: we say that γ̂ := h−Ex̂
is a subgradient of (the concave function) v at ŷ (because it satisfies the inequality of Theorem
7.6).
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Subgradient Optimization. Next, we describe a simple “Projected Subgradient Optimiza-
tion Algorithm” for solving the Lagrangian Dual. The general idea is to iteratively move in the
direction of a subgradient.

Projected Subgradient Optimization Algorithm

0. Start with any ŷ1 ∈ Rm . Let k := 1 .
1. Solve (Lŷk) to get x̂k .
2. Calculate the subgradient γ̂k := h− Ex̂k .
3. Let ŷk+1 ← ProjRm+ (ŷk + λkγ̂

k) .

4. Let k ← k + 1 , and GOTO 1.

Above, ProjRm+ (·) means project onto the nonnegative orthant. That is, we take the closest
point (in Euclidean norm) to the argument of the function. In fact, this means just zeroing-out
the negative entries.

Convergence. We have neglected, thus far, to fully specify the Subgradient Optimization
Algorithm. We can stop if, at some iteration k , we have γ̂k = 0 (or, more generally, if ŷk =
ProjRm+ (ŷk + λkγ̂

k)), because the algorithm will make no further progress if this happens, and
indeed we will have found that ŷk is a maximizer of v(y) over y ≥ 0 . But this is actually very
unlikely to happen. In practice, we may stop if k reaches some pre-specified iteration limit, or
if after many iterations, v is barely increasing.

We are interested in mathematically analyzing the convergence behavior of the algorithm,
letting the algorithm iterate infinitely. We will see that the method converges (in a certain
sense), if we take a sequence of λk > 0 that in some sense slowly diverges; Specifically, we
will require that ∑∞k=1 λ

2
k < +∞ and ∑∞k=1 λk = +∞ . That is, “square summable, but not

summable.” For example, taking λk := α/(β + k) , with α > 0 and β ≥ 0 , we get a sequence
of step sizes satisfying this property; in particular, for α = 1 and β = 0 we have the harmonic
series∑∞k=1 1/k which satisfies ln(k + 1) <

∑∞
k=1 1/k < ln(k) + 1 and∑∞k=1 1/k2 = π2/6 .

To prove convergence of the algorithm, we must first establish a key technical lemma.

Lemma 7.7
Let y∗ be any maximizer of v(y) over y ≥ 0. Suppose that λk > 0 , for all k . Then

‖y∗ − ŷk+1‖2 − ‖y∗ − ŷ1‖2 ≤
k∑

i=1

λ2
i ‖γ̂i‖2 − 2

k∑

i=1

λi
(
v(y∗)− v(ŷi)

)
.

Proof. Let wk+1 := ŷk + λkγ̂
k ; that is, the unprojected k + 1-st iterate. For k ≥ 1, we have

‖y∗ − ŷk+1‖2 − ‖y∗ − ŷk‖2

≤ ‖y∗ − wk+1‖2 − ‖y∗ − ŷk‖2

= ‖(y∗ − ŷk)− λkγ̂k‖2 − ‖y∗ − ŷk‖2

= λ2
k‖γ̂k‖ − 2λk

(
y∗ − ŷk

)′
γ̂k

≤ λ2
k‖γ̂k‖ − 2λk

(
v(y∗)− v(ŷk)

)
.
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The first inequality uses that fact that the projection of a point onto a convex set is no further to
any point in that convex set than the unprojected point. The final inequality uses the assumption
that λk > 0 and the subgradient inequality:

v(ỹ) ≤ v(ŷk) + (ỹ − ŷk)′γ̂k ,

plugging in y∗ for ỹ.
Finally, adding up the established inequality over k yields the result. ut

Now, let
v∗k := maxki=1

{
v(ŷi)

}
, for k = 1, 2, . . .

That is, v∗k is the best value seen up through the k-th iteration.

Theorem 7.8 (“Square summable, but not summable” convergence)
Let y∗ be any maximizer of v(y) over y ≥ 0. Assume that we take a basic solution as the
solution of each Lagrangian subproblem. Suppose that λk > 0 , for all k . Suppose further
that∑∞k=1 λ

2
k < +∞ and∑∞k=1 λk = +∞ . Then limk→∞ v∗k = v(y∗) .

Proof. Because the left-hand side of the inequality in the statement of Lemma7.7 is non-negative,
we have

2

k∑

i=1

λi
(
v(y∗)− v(ŷi)

)
≤ ‖y∗ − ŷ1‖2 +

k∑

i=1

λ2
i ‖γ̂i‖2 .

Because v∗k ≥ v(ŷi) for all i ≤ k , we then have

2

(
k∑

i=1

λi

)
(v(y∗)− v∗k) ≤ ‖y∗ − ŷ1‖2 +

k∑

i=1

λ2
i ‖γ̂i‖2 ,

or
v(y∗)− v∗k ≤

‖y∗ − ŷ1‖2 +
∑k
i=1 λ

2
i ‖γ̂i‖2

2
∑k
i=1 λi

.

Next, we observe that ‖γ̂i‖2 is bounded by some constant Γ , independent of i , because our
algorithm takes γ̂ := h − Ex̂ , where x̂ is a basic solution of a Lagrangian subproblem. There
are only a finite number of bases. Therefore, we can take

Γ = max
{
‖h− Ex̂‖2 : x̂ is a basic solution of Ax = b , x ≥ 0

}
.

So, we have
v(y∗)− v∗k ≤

‖y∗ − ŷ1‖2 + Γ
∑k
i=1 λ

2
i

2
∑k
i=1 λi

.

Now, we get our result by observing that ‖y∗ − ŷ1‖2 is a constant,∑k
i=1 λ

2
i is converging to a

constant and∑k
i=1 λi goes to +∞ (as k increases without limit), and so the right-hand side of

the final inequality converges to zero. The result follows. ut

A simple implementation. It is very easy to write a small Gurobi/Python code for Subgra-
dient Optimization. Our code is in the Jupyter notebook SubgradProj.ipynb (see Appendix
A.9). Typical behavior is a very bad first iteration, then some iterations to recover from that,
and then a slow and steady convergence to an optimum. The method is usually stopped after
a predetermined number of iterations or after progress becomes very slow. In Figure 7.4, we
see this typical behavior, for a problem with 100 variables, 200 “complicating” constraints (i.e.,
rows of E), and 50 “nice” constraints (i.e., rows of A).



78 CHAPTER 7. LARGE-SCALE LINEAR OPTIMIZATION

Figure 7.4: Example: Projected subgradient optimization with harmonic step sizes

Practical steps. Practically speaking, in order to get a ŷwith a reasonably high value of v(ŷ) ,
it can be better to choose a sequence of λk that depends on a “good guess” of the optimal value
of v(ŷ), taking bigger steps when one is far away, and smaller steps when one is close (try to
develop this idea in Exercise 7.3). A further idea is take shorter steps when the subgradient has
a big norm. With these ideas, we can achieve faster practical convergence of the algorithm; see
Figure 7.5

Dual estimation. From Theorem 7.5, we see that the Subgradient Optimization Method is a
way to try and quickly find an estimate of an optimal solution to the dual of (Q). At each step,
ŷ together with the π̂ that is optimal for the dual of (Lŷ) give a feasible solution of (Q) with
objective value v(ŷ). But note that we give something up—we do not get an x∗ that solves (Q)
from a ŷ that maximizes v and a π̂ that is optimal for the dual of (Lŷ) . There is no guarantee
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Figure 7.5: Example: Projected subgradient optimization with better step sizes

that a x̂ that is optimal for (Lŷ) will be feasible for (Q) .
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7.3 The Cutting-Stock Problem

The cutting-stock problem is a nice concrete topic at this point. Wewill develop a technique
for it, using column generation, but the context is different than for decomposition. Moreover,
the topic is a nice segue into integer linear optimization — the topic of the next chapter.

The story is as follows. We have stock rolls of some type of paper of (integer) width W .
But we encounter (integer) demand di for rolls of (integer) width wi < W , for i = 1, 2, . . . ,m .
The cutting-stock problem is to find a plan for satisfying demand, using as few stock rolls as
possible.9

7.3.1 Formulation via cutting patterns
There are several different ways to formulate the cutting-stock problemmathematically. A par-
ticularly useful way is based on a consideration of the problem from the point of view of the
worker who has to adjust the cutting machine. What she dearly hopes for is that a plan can be
formulated that does not require that the machine be adjusted for (different cutting patterns)
too many times. That is, she hopes that there are a relatively small number of ways that will be
utilized for cutting a stock roll, and that these good ways can each be repeated many times.

With this idea in mind, we define a cutting pattern to be a solution of
∑m
i=1 wiai ≤ W ;

ai ≥ 0 integer, i = 1, . . . ,m ,

where ai is the number of pieces of width wi that the pattern yields.
Conceptually, we could form amatrixAwithm rows, and an enormous number of columns,

where each column is a distinct pattern. Then, letting xj be the number of times that we use
pattern Aj , we can conceptually formulate the cutting-stock problem as

z := min
∑
j xj∑

j Ajxj ≥ d ;

xj ≥ 0 integer, ∀ j .
(CSP)

7.3.2 Solution via continuous relaxation
Our approach to getting a good solution to (CSP) is to solve its continuous relaxation and then
round. Toward this end, we subtract surplus variables and consider the linear-optimization
problem

z := min
∑
j xj∑

j Ajxj − t = d ;

xj ≥ 0 , ∀ j ;
t ≥ 0 .

(CSP)
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We endeavor to compute a basic optimum (x̄, t̄) . Because of the nature of the formulation, we
can see that dx̄e is feasible for (CSP). Moreover, we have produced a solution using 1′dx̄e stock
rolls, and we can give an a priori bound on its quality. Specifically, as we will see in the next
theorem, the solution that we obtain wastes at most m − 1 stock rolls, in comparison with an
optimal solution. Moreover, we have a practically-computable bound on the number of wasted
rolls, which is no worse than the worst-case bound of m − 1. That is, our waste is at worst
1′dx̄e − dze .

Theorem 7.9

dze ≤ z ≤ 1′dx̄e ≤ dze+ (m− 1) .

Proof. Because (CSP) is a relaxation of (CSP) and because z is an integer, we have dze ≤ z .
Because dx̄e is a feasible solution of (CSP), we have z ≤ 1′dx̄e . Now, 1′dx̄e =

∑m
i=1(x̄βi + fi) ,

with each fi < 1 . But∑m
i=1(x̄βi + fi) = 1′x̄ +

∑m
i=1 fi ≤ d1′x̄e +

∑m
i=1 fi . Therefore, 1′dx̄e ≤

d1′x̄e +
∑m
i=1 fi . Now the left-hand side of this last inequality is an integer, so we may round

down the right-hand side. So we can conclude that 1′dx̄e ≤ dze+ (m− 1) . ut

7.3.3 The knapsack subproblem
Toward describing how we can solve (CSP) by the Simplex Algorithm, we introduce a vector
y ∈ Rm of dual variables.

z := min
∑
j xj dual variables∑

j Ajxj − t = d ; y

xj ≥ 0 , ∀ j ;
t ≥ 0 .

(CSP)

We suppose that we have a feasible basis of (CSP) and that we have, at hand, the associated
dual solution ȳ . For each i , 1 ≤ i ≤ m , the reduced cost of ti is simply ȳi . Therefore, if ȳi < 0 ,
then ti is eligible to enter the basis.

So, moving forward, we may assume that ȳi ≥ 0 for all i . We now want to examine the
reduced cost of an xj variable. The reduced cost is simply

1− ȳ′Aj = 1−
m∑

i=1

ȳiaij .

The variable xj is eligible to enter the basis then if 1 −∑m
i=1 ȳiaij < 0 . Therefore, to check

whether there is some column xj with negative reduced cost, we can solve the so-called knap-
sack problem

max
∑m
i=1 ȳiai∑m
i=1 wiai ≤ W ;

ai ≥ 0 integer, i = 1, . . . ,m ,

and check whether the optimal value is greater than one. If it is, then the new variable that we
associate with this solution pattern (i.e., column of the constraint matrix) is eligible to enter the
basis.
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Our algorithmic approach for the knapsack problem is via recursive optimization (known
popularly as dynamic programming10). We will solve this problem for all positive integers up
throughW . That is, we will solve

f(s) := max
∑m
i=1 ȳiai∑m
i=1 wiai ≤ s ;

ai ≥ 0 integer, i = 1, . . . ,m ,

starting with f(s) = 0 , for 0 ≤ s < minmi=1 {wi} , and proceeding from s = minmi=1 {wi} − 1 by
incrementing the argument of f by 1 at each step. Then, we have the recursion

f(s) = max
i : wi≤s

{ȳi + f(s− wi)} , for s ≥ minmi=1 {wi} .

It is important to note that we can always calculate f(s) provided that we have already calcu-
lated f(s′) for all s′ < s . Why does this work? It follows from a very simple observation: If
we have optimally filled a knapsack of capacity s and we remove any item i, then what remains
optimally fills a knapsack of capacity s − wi . If there were a better way to fill the knapsack of
capacity s − wi , then we could take such a way, replace the item i , and we would have found
a better way to fill a knapsack of capacity s . Of course, we do not know even a single item that
we can be sure is in an optimally filled knapsack of capacity s , and this is why in the recursion,
we maximize over all items that can fit in (i.e., i : wi ≤ s).

The recursion appears to calculate the value of f(s) , but it is not immediate how to recover
optimal values of the ai . Actually, this is rather easy.

Recover the Solution of a Knapsack Problem

0. Let s := W , and let ai := 0 , for i = 1, . . . ,m .
1. While (s > 0)

(a) Find ı̂ : f(s) = ȳı̂ + f(s− wı̂).
(b) Let aı̂ := aı̂ + 1 .
(c) Let s := s− wı̂ .

2. Return ai , for i = 1, . . . ,m .
Note that in Step 1.a, there must be such an ı̂ , by virtue of the recursive formula for calcu-

lating f(s) . In fact, if we like, we can save an appropriate ı̂ associated with each s at the time
that we calculate f(s) .

7.3.4 Applying the Simplex Algorithm
An initial feasible basis. It is easy to get an initial feasible basis. We just consider the m
patterns Ai := bW/wicei , for i = 1, 2, . . . ,m . The values of the m basic variables associated
with the basis of these patterns are x̄i = di/bW/wic , which are clearly non-negative.
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Basic solutions: dual and primal. At any iteration, the basis matrix B has some columns
corresponding to patterns and possibly other columns for ti variables. The column correspond-
ing to ti is −ei .

Organizing the basic variables xj and ti into a vector ζ , with their order appropriately
matched with the columns of B , the vector ζ̄ of values of ζ is precisely the solution of

Bζ = d .

That is,
ζ̄ = B−1d .

The cost of an xj is 1, while the cost of a ti is 0. Organizing the costs of the basic variables
into a vector ξ , with their order appropriately matched with the columns of B , the associated
dual solution ȳ is precisely the solution of

y′B = ξ′ .

That is,
ȳ′ = ξ′B−1 .

7.3.5 A demonstration implementation
We can use Python/Gurobi, in a somewhat sophisticated manner, to implement our algorithm
for the cutting-stock problem. As we did for the Decomposition Algorithm, rather than carry
out the simplex method at a detailed level on (CSP), we just accumulate all columns of (CSP)
that we generate, and always solve linear-optimization problems, using functionality of Gurobi,
with all of the columns generated thus far. In this way, we do not maintain bases ourselves,
and we do not carry out the detailed pivots of the Simplex Algorithm. Note that the linear-
optimization functionality of Gurobi does give us a dual solution, so we do not compute that
ourselves. Our full code is in the Jupyter notebook CSP.ipynb (see Appendix A.10).

On the example provided, our algorithmgives a lower bound of 1378 on theminimumnum-
ber of stock rolls needed to cover demand, and it gives us an upper bound (feasible solution)
of 1380.

***** Solving LP...

***** A:

[[1. 0. 0. 0. 0.]

[0. 2. 0. 0. 0.]

[0. 0. 2. 0. 0.]

[0. 0. 0. 4. 0.]

[0. 0. 0. 0. 3.]]

***** x:

x[ 0 ]= 205.0

x[ 1 ]= 1160.5

x[ 2 ]= 71.5

x[ 3 ]= 272.25

x[ 4 ]= 39.0

***** y': [1. 0.5 0.5 0.25 0.3333]

***** Solving Knapsack...

***** Gurobi Knap objval: 1.5

***** DP Knap objval: 1.5

***** Column: [1. 1. 0. 0. 0.]
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***** Solving LP...

***** A:

[[1. 0. 0. 0. 0. 1.]

[0. 2. 0. 0. 0. 1.]

[0. 0. 2. 0. 0. 0.]

[0. 0. 0. 4. 0. 0.]

[0. 0. 0. 0. 3. 0.]]

***** x:

x[ 0 ]= 0.0

x[ 1 ]= 1058.0

x[ 2 ]= 71.5

x[ 3 ]= 272.25

x[ 4 ]= 39.0

x[ 5 ]= 205.0

***** y': [0.5 0.5 0.5 0.25 0.3333]

***** Solving Knapsack...

***** Gurobi Knap objval: 1.25

***** DP Knap objval: 1.25

***** Column: [0. 2. 0. 1. 0.]

***** Solving LP...

***** A:

[[1. 0. 0. 0. 0. 1. 0.]

[0. 2. 0. 0. 0. 1. 2.]

[0. 0. 2. 0. 0. 0. 0.]

[0. 0. 0. 4. 0. 0. 1.]

[0. 0. 0. 0. 3. 0. 0.]]

***** x:

x[ 0 ]= 0.0

x[ 1 ]= 0.0

x[ 2 ]= 71.5

x[ 3 ]= 7.75

x[ 4 ]= 39.0

x[ 5 ]= 205.0

x[ 6 ]= 1058.0

***** y': [0.625 0.375 0.5 0.25 0.3333]

***** Solving Knapsack...

***** Gurobi Knap objval: 1.0833333333333333

***** DP Knap objval: 1.0833333333333333

***** Column: [0. 0. 0. 3. 1.]

***** Solving LP...

***** A:

[[1. 0. 0. 0. 0. 1. 0. 0.]

[0. 2. 0. 0. 0. 1. 2. 0.]

[0. 0. 2. 0. 0. 0. 0. 0.]

[0. 0. 0. 4. 0. 0. 1. 3.]

[0. 0. 0. 0. 3. 0. 0. 1.]]

***** x:



7.3. THE CUTTING-STOCK PROBLEM 85

x[ 0 ]= 0.0

x[ 1 ]= 0.0

x[ 2 ]= 71.5

x[ 3 ]= 0.0

x[ 4 ]= 35.5556

x[ 5 ]= 205.0

x[ 6 ]= 1058.0

x[ 7 ]= 10.3333

***** y': [0.6111 0.3889 0.5 0.2222 0.3333]

***** Solving Knapsack...

***** Gurobi Knap objval: 1.0555555555555556

***** DP Knap objval: 1.0555555555555556

***** Column: [0. 1. 0. 0. 2.]

***** Solving LP...

***** A:

[[1. 0. 0. 0. 0. 1. 0. 0. 0.]

[0. 2. 0. 0. 0. 1. 2. 0. 1.]

[0. 0. 2. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 4. 0. 0. 1. 3. 0.]

[0. 0. 0. 0. 3. 0. 0. 1. 2.]]

***** x:

x[ 0 ]= 0.0

x[ 1 ]= 0.0

x[ 2 ]= 71.5

x[ 3 ]= 0.0

x[ 4 ]= 0.0

x[ 5 ]= 205.0

x[ 6 ]= 1033.3846

x[ 7 ]= 18.5385

x[ 8 ]= 49.2308

***** y': [0.6154 0.3846 0.5 0.2308 0.3077]

***** Solving Knapsack...

***** Gurobi Knap objval: 1.0

***** DP Knap objval: 1.0

***** No more improving columns

***** Pattern generation complete. Main LP solved to optimality.

***** Total number of patterns generated: 9

***** A:

[[1. 0. 0. 0. 0. 1. 0. 0. 0.]

[0. 2. 0. 0. 0. 1. 2. 0. 1.]

[0. 0. 2. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 4. 0. 0. 1. 3. 0.]

[0. 0. 0. 0. 3. 0. 0. 1. 2.]]

***** x:

x[ 0 ]= 0.0

x[ 1 ]= 0.0

x[ 2 ]= 71.5

x[ 3 ]= 0.0

x[ 4 ]= 0.0
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x[ 5 ]= 205.0

x[ 6 ]= 1033.3846

x[ 7 ]= 18.5385

x[ 8 ]= 49.2308

***** Optimal LP objective value: 1377.6538461538462

***** rounds up to: 1378.0 (lower bound on rolls needed)

***** x rounded up:

x[ 0 ]= 0.0

x[ 1 ]= 0.0

x[ 2 ]= 72.0

x[ 3 ]= 0.0

x[ 4 ]= 0.0

x[ 5 ]= 205.0

x[ 6 ]= 1034.0

x[ 7 ]= 19.0

x[ 8 ]= 50.0

***** Number of rolls used: 1380.0

By solving a further integer-linear optimization problem to determine the best way to cover
demand using all patterns generated in the course of our algorithm, we improve the upper
bound to 1379.

***** Now solve the ILP over all patterns generated to try and get a better soution...

***** x:

x[ 0 ]= 0.0

x[ 1 ]= 0.0

x[ 2 ]= 72.0

x[ 3 ]= 1.0

x[ 4 ]= 1.0

x[ 5 ]= 205.0

x[ 6 ]= 1034.0

x[ 7 ]= 17.0

x[ 8 ]= 49.0

***** Number of rolls used: 1379.0

It remains unknown as to whether the optimal solution to this instance is 1378 or 1379.

7.4 Exercises
Exercise 7.1 (Dual solutions)
Refer to (Q) and (M) defined in the Decomposition Theorem (i.e., Corollary 7.2) What is the
relationship between optimal dual solutions of (Q) and (M) ?

Exercise 7.2 (Lagrangian value function)
Using Theorem 6.5, prove that v (from Section 7.2.1) is a concave piecewise-linear function on
its domain.
Exercise 7.3 (Play with subgradient optimization)
Playwith the Gurobi/Python code in the Jupyter notebook SubgradProj.ipynb (seeAppendix
A.9). Try bigger examples. Try different ideas for the step size, with the goal of gaining faster
convergence — be a real engineer and think ‘outside of the box’ (you can use any information
you like: e.g., the current subgradient ŷk, the current function value v(γ̂k), an estimate v̄ of the
maximum value of v, etc.).
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Exercise 7.4 (Cutting it closer to reality)
Real cuttingmachinesmay have a limited number, sayK , of blades. This means that we can cut
at mostK + 1 pieces for patterns that leave no scrap (i.e.,∑m

i=1 wiai = W ⇒∑m
i=1 ai ≤ K + 1)

and at most K pieces for patterns that leave scrap (i.e., ∑m
i=1 wiai < W ⇒ ∑m

i=1 ai ≤ K).
Describe how tomodify our algorithm for the cutting-stock problem to account for this. Modify
CSP.ipynb that I provided (see Appendix A.10) to try this out.

Exercise 7.5 (Another kind of question)
Print is dying, right? Why should we care about the cutting-stock problem?





Chapter 8

Integer-Linear Optimization

Our goals in this chapter are as follows:
• to develop some elementary facility with modeling using integer variables;
• to learn how to recognize when we can expect solutions of linear-optimization problems

to be integer automatically;
• to learn the fundamentals of the ideas that most solvers employ to handle integer vari-

ables;
• to learn something about solver-aware modeling in the context of integer variables.

8.1 Integrality for Free
8.1.1 Some structured models
Network-flow problem. Recapitulating a bit from Section 2.3, a finite network G is de-
scribed by a finite set of nodes N and a finite set A of arcs. Each arc e has two key attributes,
namely its tail t(e) ∈ N and its head h(e) ∈ N , both nodes. We think of a single commodity
as being allowed to “flow” along each arc, from its tail to its head. Indeed, we have “flow”
variables

xe := amount of flow on arc e ,
for e ∈ A . Formally, a flow x̂ on G is simply an assignment of any real numbers x̂e to the
variables xe , for all e ∈ A . We assume that the flow on arc e should be non-negative and
should not exceed

ue := the flow upper bound on arc e ,
for e ∈ A . Associated with each arc e is a cost

ce := cost per-unit-flow on arc e ,

89
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for e ∈ A . The (total) cost of the flow x̂ is defined to be
∑

e∈A
cex̂e .

We assume that we have further data for the nodes. Namely,
bv := the net supply at node v ,

for v ∈ N . A flow is conservative if the net flow out of node v , minus the net flow into node
v , is equal to the net supply at node v , for all nodes v ∈ N .

The single-commodity min-cost network-flow problem is to find a minimum-cost conser-
vative flow that is non-negative and respects the flow upper bounds on the arcs. This is the
K = 1 commodity version of the multi-commodity min-cost network-flow problem from Sec-
tion 2.3.

We can formulate the single-commodity min-cost network-flow problem as follows:

min
∑

e∈A
cexe

∑

e∈A :
t(e)=v

xe −
∑

e∈A :
h(e)=v

xe = bv , ∀ v ∈ N ;

0 ≤ xe ≤ ue , ∀ e ∈ A .
As we have stated this, it is just a structured linear-optimization problem. But there are many
situations where the given net supplies at the nodes and the given flow capacities on the arcs
are integer, and we wish to constrain the flow variables to be integers.

We will see that it is useful to think of the network-flow problem in matrix-vector language.
We define the network matrix of G to be a matrix A having rows indexed from N , columns
indexed from A , and entries

ave :=





1 , if v = t(e) ;
−1 , if v = h(e);

0 , if v /∈ {t(e), h(e)},
for v ∈ N , e ∈ A . With this notation, and organizing the bv in a column-vector indexed
accordingly with the rows of A , and organizing the ce , xe and ue as three column-vectors
indexed accordingly with the columns of A , we can rewrite the network-flow formulation as

min c′x
Ax = b ;
x ≤ u ;
x ≥ 0 .

Assignment problem on a graph.
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A finite bipartite graph G is described by two finite sets of vertices V1 and V2 , and a set
E of ordered pairs of edges, each one of which is of the form (i, j) with i ∈ V1 and j ∈ V2 . A
perfect matchingM of G is a subset of E such that each vertex of the graph meets exactly one
edge inM . We assume that there are given edge weights

cij := for (i, j) ∈ E ,

and our goal is to find a perfect matching that has minimum (total) weight.
We can define

xij := indicator variable for choosing edge (i, j) to be inM ,

for all (i, j) ∈ E . Then we can model the problem of finding a perfect matching of G having
minimum weight via the formulation:

min
∑

(i,j)∈E
cijxij

∑

j∈V2 :

(i,j)∈E

xij = 1 , ∀ i ∈ V1 ;

∑

i∈V1 :

(i,j)∈E

xij = 1 , ∀ j ∈ V2 ;

xij ∈ {0, 1} , ∀ (i, j) ∈ E .

It will be useful to think of this assignment-problem formulation inmatrix-vector language.
We define the vertex-edge incidence matrix of the bipartite graph G to be a matrix A having
rows indexed from V1 ∪ V2 , columns indexed from E , and entries

av,(i,j) :=

{
1 , if v = i or v = j ;
0 , otherwise,

for v ∈ V1 ∪ V2 , (i, j) ∈ E . With this notation, and organizing the cij , xij and as column-
vectors indexed accordingly with the columns of A , we can rewrite the assignment-problem
formulation as

min c′x
Ax = 1 ;
x ∈ {0, 1}E ,

Staffing problem. In this problem, we have discrete time periods numbered 1, 2, . . . ,m , and
we are given

bi := the minimum number of workers required at time period i ,
for each i = 1, 2, . . . ,m . Additionally, there is an allowable set of “shifts.” An allowable shift
is simply a given collection of time periods that a worker is allowed to staff. It may well be that
not all subsets of {1, 2, . . . ,m} are allowable; e.g., we may not want to allow too many or too
few time periods, and we may not want to allow idle time to be interspersed between non-idle
times. We suppose that the allowable shifts are numbered 1, 2, . . . , n , and we have

cj := the per worker cost to staff shift j ,
for each j = 1, 2, . . . , n . It is convenient to encode the shifts as a 0, 1-valued matrix A , where

aij :=

{
1 , if shift j contains time period i ;
0 , otherwise,
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for i = 1, 2, . . . ,m , j = 1, 2, . . . , n . Letting x be an n-vector of variables, with xj representing
the number of workers assigned to shift j , we can formulate the staffing problem as

min c′x
Ax ≥ b ;
x ≥ 0 integer.

As we have stated it, this staffing problem is really a very general type of integer-linear-
optimization problem because we have not restricted the form ofA beyond it being 0, 1-valued.
In some situations, however, it may may be reasonable to assume that shifts must consist of a
consecutive set of time periods. In this case, the 1’s in each column of A occur consecutively, so
we call A a consecutive-ones matrix.

8.1.2 Unimodular basis matrices and total unimodularity

In this section we explore the essential properties of a constraint matrix so that basic solu-
tions are guaranteed to be integer. This has important implications for the network-flow, assign-
ment, and staffing problems that we introduced.

LetA be anm×n real matrix. A basis matrixAβ is unimodular if det(Aβ) = ±1 . Checking
whether a large unstructuredmatrix has all of its basis matrices unimodular is not a simplemat-
ter. Nonetheless, we will see that this property is very useful for guaranteeing integer optimal
of linear-optimization problems, and certain structured constraint matrices have this property.

Theorem 8.1
IfA is an integer matrix, all basis matrices ofA are unimodular, and b is an integer vector, then
every basic solution x̄ of

Ax = b ;
x ≥ 0

is an integer vector.

Proof. Of course x̄ηj = 0, an integer, for j = 1, 2, . . . , n−m, so we concentrate now on the basic
variables. By Cramer’s rule, the basic variables take on the values

x̄βi =
det(Aβ(i))

det(Aβ)
, for i = 1, 2, . . . ,m ,
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where Aβ(i) is defined to be the matrix Aβ with its i-th column, Aβi , replaced by b . Because
we assume that A and b are all integer, the numerator above is the determinant of an integer
matrix, which is an integer. Next, the fact that A has unimodular basis matrices tells us that the
determinant of the invertible matrix Aβ is ±1 . That is, the denominator above is ±1 . So, we
have an integer divided by ±1 , which results in an integer value for x̄βi . ut

We note that Theorem 8.1 asserts that all basic solutions are integer, whether or not they are
feasible. There is a converse to this theorem.

Theorem 8.2
Let A be an integer matrix in Rm×n . If the system

Ax = b ;
x ≥ 0

has integer basic feasible solutions for every integer vector b ∈ Rm , then all basis matrices of
A are unimodular.

It is important to note that the hypothesis of Theorem 8.2 is weaker than the conclusion of
Theorem 8.1. For Theorem 8.2, we only require integrality for basic feasible solutions.
Proof. (Theorem 8.2). Let β be an arbitrary basis, choose an arbitrary i (1 ≤ i ≤ m), and consider
the associated basic solution when b := ei+∆Aβ1 . The basic solution x̄ has x̄β equal to the i-th
columnofA−1

β plus∆1 . Note that ifwe choose∆ to be an integer, then b is integer. Furthermore,
if we choose ∆ to be sufficiently large, then x̄β is non-negative. Therefore, we can chose ∆ so
that b is integer and x̄ is a basic feasible solution. Therefore, by our hypothesis, x̄ is integer.
So the i-th column of A−1

β plus ∆1 is an integer vector . But this clearly implies that the i-th
column of A−1

β is an integer vector . Now, because i was arbitrary, we conclude that A−1
β is an

integer matrix . Of course Aβ is an integer matrix as well. Now, it is a trivial observation that
an integer matrix has an integer determinant. Furthermore, the determinants of Aβ and A−1

β

are reciprocals. Of course the only integers with integer reciprocal are 1 and−1 . Therefore, the
determinant of Aβ is 1 or −1 . ut

Before turning to specific structured linear-optimization problems, we introduce a stronger
property than unimodularity of basis matrices. The main reason for introducing it is that for
the structured linear-optimization problems that we will look at, the constraint matrices satisfy
this stronger property, and the inductive proofs that we would deploy for proving the weaker
property naturally prove the stronger property as well.

Let A be anm× n real matrix. A is totally unimodular (TU) if every square non-singular
submatrix B of A has det(B) = ±1 .

Obviously every entry of a TU matrix must be 0 ,±1 , because the determinant of a 1 × 1
submatrix is just its single entry. It is quite easy to make an example of even a 2 × 2 non-TU
matrix with all entries 0 ,±1: (

1 −1
1 1

)
.

It is trivial to see that if A is TU, then every basis matrix of A is unimodular. But note that
even for integer A , every basis matrix of A could be unimodular, but A need not be TU. For
example, (

2 1
1 1

)
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has only itself as a basis matrix, and its determinant is 1, but there is a 1 × 1 submatrix with
determinant 2, so A is not TU. Still, as the next result indicates, there is a way to get the TU
property from unimodularity of basis matrices.

Theorem 8.3
If every basis matrix of [A, Im] is unimodular, then A is TU.

Proof. Let B be an r× r invertible submatrix of A , with r < m . It is an easy matter to choose a
(m×m) basis matrix H of [A, Im] that includes all r columns of A that include columns of B ,
and then them− r identity columns that have their ones in rows other than those used by B .
If we permute the rows of A so that B is within the first r rows, then we can put the identity
columns to the right, in their natural order, and the basis we construct is

H =

(
B 0

× Im−r

)
.

Clearly B and H have the same determinant. Therefore, the fact that every basis matrix has
determinant 1 or −1 implies that B does as well. ut

Next, we point out some simple transformations that preserve the TU property.

Theorem 8.4
If A is TU, then all of the following leave A TU.
(i) multiplying any rows or columns of A by −1 ;
(ii) duplicating any rows or columns of A ;
(iii) appending standard-unit columns (that is, all entries equal to 0 except a single entry of

1) ;
(iv) taking the transpose of A .

We leave the simple proof to the reader.
Remark 8.5
Relationship with transformations of linear-optimization problems. The significance of The-
orem 8.4 for linear-optimization problems can be understood via the following observations:

• (i) allows for reversing the sense of an inequality (i.e., switching between “≤” and “≥”) or
variable (i.e., switching between non-negative and non-positive) in a linear-optimization
problem with constraint matrix A .

• (ii) together with (i) allows for replacing an equation with a pair of oppositely senses
inequalities and for replacing a sign-unrestricted variable with the difference of a pair of
non-negative variables.

• (iii) allows for adding a non-negative slack variable for a “≤” inequality, to transform
it into an equation. Combining (iii) with (i) , we can similarly subtract a non-negative
surplus variable for a “≥” inequality, to transform it into an equation.

• (iv) allows for taking the dual of a linear-optimization problemwith constraint matrixA .
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8.1.3 Consequences of total unimodularity
Network flow.

Theorem 8.6
If A is a network matrix, then A is TU.

Proof. A network matrix is simply a 0 ,±1-valued matrix with exactly one +1 and one −1 in
each column.

Let B be an r × r invertible submatrix of the network matrix A . We will demonstrate that
det(B) = ±1 , by induction on r . For the base case, r = 1 , the invertible submatrices have a
single entry which is ±1 , which of course has determinant ±1 . Now suppose that r > 1 , and
we inductively assume that all (r − 1) × (r − 1) invertible submatrices of A have determinant
±1 .

Because we assume that B is invertible, it cannot have a column that is a zero-vector.
Moreover, it cannot be that every column of B has exactly one +1 and one −1 . Because, by

simply adding up all the rows of B , we have a non-trivial linear combination of the rows of B
which yields the zero vector. Therefore, B is not invertible in this case.

So, we only need to consider the situation in which B has a column with a single non-
zero ±1 . By expanding the determinant along such a column, we see that, up to a sign, the
determinant of B is the same as the determinant of an (r − 1)× (r − 1) invertible submatrix of
A . By the inductive hypothesis, this is ±1 . ut

Corollary 8.7
The single-commodity min-cost network-flow formulation

min
∑

e∈A
cexe

∑

e∈A :
t(e)=v

xe −
∑

e∈A :
h(e)=v

xe = bv , ∀ v ∈ N ;

0 ≤ xe ≤ ue , ∀ e ∈ A .

has an integer optimal solution if: (i) it has an optimal solution, (ii) each bv is an integer, and
(iii) each ue is an integer or is infinite.

Proof. Recall that we can rewrite the single-commodity min-cost network-flow formulation as
min c′x

Ax = b ;
x ≤ u ;
x ≥ 0 ,

where A is a network matrix. For the purpose of proving the theorem, we may as well assume
that the linear-optimization problem has an optimal solution. Next, we transform the formula-
tion into standard form:

min c′x
Ax = b ;
x + s = u ;
x , s ≥ 0 .
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The constraint matrix has the form
(
A 0
I I

)
. This matrix is TU, by virtue of the fact that A

is TU, and that it arises from A using operations that preserve the TU property. Finally, we
delete any redundant equations from this system of equations, and we delete any rows that
have infinite right-hand side ue . The resulting constraint matrix is TU, and the right-hand side
is integer, so an optimal basic solution exists and will be integer. ut

Remark 8.8
Considering Example 2.1, we can see that Corollary 8.7 does not extend to more than one com-
modity.

Assignments.

Theorem 8.9
If A is the vertex-edge incidence matrix of a bipartite graph, then A is TU.

Proof. The constraint matrix A for the formulation has its rows indexed by the vertices of G .
With each edge having exactly one vertex in V1 and exactly one vertex in V2 , the constraint
matrix has the property that for each column, the only non-zeros are a single 1 in a row indexed
from V1 and a single 1 in a row indexed from V2 .

Certainly multiplying any rows (or columns) of a matrix does not bear upon whether or
not it is TU. It is easy to see that by multiplying the rows of A indexed from V1 , we obtain a
network matrix, thus by Theorem 8.6, the result follows. ut

Corollary 8.10
The continuous relaxation of the following formulation for finding aminimum-weight perfect
matching of the bipartite graph G has an 0, 1-valued solution whenever it is feasible.

min
∑

(i,j)∈E
cijxij

∑

j∈V2 :

(i,j)∈E

xij = 1 , ∀ i ∈ V1 ;

∑

i∈V1 :

(i,j)∈E

xij = 1 , ∀ j ∈ V2 ;

xij ≥ 0 , ∀ (i, j) ∈ E .

Proof. After deleting any redundant equations, the resulting formulation as a TU constraint
matrix and integer right-hand side. Therefore, its basic solutions are all integer. The constraints
imply that no variable can be greater than 1, therefore the optimal value is not unbounded, and
the only integer solutions have all xij ∈ {0, 1} . The result follows. ut

A matching M of G is a subset of E such that each vertex of the graph is met by no more
that one edge inM . An interesting variation on the problem of finding a perfect matching of G
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having minimum weight, is to find a maximum-cardinality matching of G . This problem is
always feasible, becauseM := ∅ is always a matching.

How big can a matching of a finite graph G be? A vertex cover of G is a setW of vertices
that touches all of the edges of G . Notice that ifM is a matching andW is a vertex cover, then
|M | ≤ |W | , because each element ofW touches atmost one element ofM . Canwe always find a
matchingM and a vertex coverW so that |M | = |W | ? The next result, due to themathematician
König11, tells us that the answer is ’yes’ when G is bipartite.

Corollary 8.11 (König’s Theorem)
If G is a bipartite graph, then the maximum cardinality of a matching of G is equal to the
minimum cardinality of a vertex cover of G .

Proof. We can formulate the problem of finding the maximum cardinality of a matching of G
as follows:

max
∑

(i,j)∈E
xij

∑

j∈V2 :

(i,j)∈E

xij ≤ 1 , ∀ i ∈ V1 ;

∑

i∈V1 :

(i,j)∈E

xij ≤ 1 , ∀ j ∈ V2 ;

xij ≥ 0 integer, ∀ (i, j) ∈ E .

It is easy to see that we can relax integrality, and the optimal value will be unchanged, because
A is TU, and the constraint matrix will remain TU after introducing slack variables. The dual
of the resulting linear-optimization problem is

min
∑

v∈V
yv

yi + yj ≥ 1 , ∀ (i, j) ∈ E ;

yv ≥ 0 , ∀ v ∈ V .

It is easy to see that after putting this into standard form via the subtraction of surplus variables,
the constraint matrix has the form [A′,−I] , where A is the vertex-edge incidence matrix of G .
This matrix is TU, therefore an optimal integer solution exists.

Next, we observe that because of theminimization objective and the form of the constraints,
an optimal integer solutionwill be 0, 1-valued; just observe that if ȳ is an integer feasible solution
and ȳv > 1 , for some v ∈ V , then decreasing ȳv to 1 (holding the other components of ȳ
constant, produces another integer feasible solution with a lesser objective value. This implies
that every integer feasible solution ȳ with any ȳv > 1 is not optimal.

Next, let ŷ be an optimal 0, 1-valued solution. Let

W := {v ∈ V : ŷv = 1} .

It is easy to see thatW is a vertex cover of G and that |W | = ∑
v∈V ŷv . The result now follows

from the strong duality theorem. ut

For studying matching in non-bipartite graphs, one can have a look at [3, Chapter 4].
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Staffing.

Theorem 8.12
If A is a consecutive-ones matrix, then A is TU.

Proof. Let B be an r × r invertible submatrix of a consecutive-ones matrix A . We will demon-
strate that det(B) = ±1 , by induction on r . We take care that we preserve the ordering of the
rows of A in B . In this way, B is also a consecutive-ones matrix. Note that only the sign of the
determinant of B depends on the ordering of its rows (and columns).

For the base case, r = 1 , the invertible submatrix B has a single entry which is 1 , which
of course has determinant 1 . Now suppose that r > 1 , and we inductively assume that all
(r − 1)× (r − 1) invertible submatrices of all consecutive-ones matrices have determinant ±1 .
(We will see that the ’all’ in the inductive hypothesis will be needed — it will not be enough to
consider just (r − 1)× (r − 1) invertible submatrices of our given matrix A).

Next, we will reorder the columns of B so that all columns with a 1 in the first row come
before all columns with a 0 in the first row. Note that there must be a column with a 1 in the
first row, otherwise B would not be invertible. Next, we further reorder the columns, so that
among all columns with a 1 in the first row, a column of that type with the fewest number of 1s
is first.

Our matrix B now has this form



1 1 · · · 1 0 · · · 0
1 1 · · · 1

G

... ... ...
1 1 · · · 1
0

F...
0




,

where F and G are the submatrices indicated. Note that F and G are each consecutive-ones
matrices.
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Next, we subtract the top row from all other rows that have a 1 in the first column. Such
row operations do not change the determinant of B , and we get a matrix of the form




1 1 · · · 1 0 · · · 0
0 0 · · · 0

G

... ... ...
0 0 · · · 0
0

F...
0




.

Note that this resulting matrix need not be a consecutive-ones matrix — but that is not
needed. By expanding the determinant of this latter matrix along the first column, we see that
the determinant of this matrix is the same as that of the matrix obtained by striking out its first
row and column,




0 · · · 0

G

... ...
0 · · · 0

F



.

But this matrix is an (r − 1) × (r − 1) invertible consecutive-ones matrix (note that it is not
necessarily a submatrix of A). So, by our inductive hypothesis, its determinant is ±1 .

ut

Corollary 8.13
Let A be a shift matrix such that each shift is a contiguous set of time periods, let c be a vector
of non-negative costs, and let b be a vector of non-negative integer demands for workers in the
time periods. Then there is an optimal solution x̄ of the continuous relaxation

min c′x
Ax ≥ b ;
x ≥ 0

of the staffing formulation that has x̄ integer, whenever the relaxation is feasible.

Proof. A is a consecutive-onesmatrix when each shift is a contiguous set of time periods. There-
fore A is TU. After subtracting surplus variables to put the problem into standard form, the
constraint matrix takes the form [A,−I] , which is also TU . The result follows. ut
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8.2 Modeling Techniques

8.2.1 Disjunctions
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Example 8.14
Suppose that we have a single variable x ∈ R , and we want to model the disjunction

−12 ≤ x ≤ 2 or 5 ≤ x ≤ 20 .

By introducing a binary variable y ∈ {0, 1} , we can model the disjunction as

x ≤ 2 +M1y ,

x+M2(1− y) ≥ 5 ,

where the constant scalarsM1 andM2 (so-called bigM’s) are chosen to be appropriately large.
A little analysis tell us how large. Considering our assumption that x could be as large as 20 ,
we see thatM1 should be at least 18 . Considering our assumption that x could be as small as
−12 , we see thatM2 should be at least 17 . In fact, we should choose these constants to be as
small as possible so as make the feasible region with y ∈ {0, 1} relaxed to 0 ≤ y ≤ 1 as small as
possible. So, the best model for us is:

x ≤ 2 + 18y ,

x+ 17(1− y) ≥ 5 .

It is interesting to see a two-dimensional graph of this in x− y space; see Figures 8.1 and 8.2.

Figure 8.1: Optimal choice of “big M’s”

8.2.2 Forcing constraints
The uncapacitated facility-location problem involves n customers, numbered 1, 2, . . . , n andm
facilities, numbered 1, 2 . . . ,m . Associated with each facility, we have

fi := fixed cost for operating facility i ,

for i = 1, . . . ,m . Associated with each customer/facility pair, we have

cij := cost for satisfying all of customer j’s demand from facility i ,
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Figure 8.2: Comparing optimal vs non-optimal “big M’s”

for i = 1, . . . ,m , j = 1, . . . , n . The goal is to determine a set of facilities to operate and an
allocation of each customers demand across operation facilities, so as to minimize the total cost.
The problem is “uncapacitated” in the sense that each facility has no limit on its ability to satisfy
demand from even all customers.

We formulate this optimization problem with

yi := indicator variable for operating facility i ,

for i = 1, . . . ,m , and

xij := fraction of customer j demand satisfied by facility i ,

for i = 1, . . . ,m , j = 1, . . . , n .
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Our formulation is as follows:
min

∑m
i=1 fiyi +

∑m
i=1

∑n
j=1 cijxij

∑m
i=1 xij = 1, for j = 1, . . . , n ;

−yi + xij ≤ 0,
for i = 1, . . . ,m ,
j = 1, . . . , n ;

yi ∈ {0, 1}, for i = 1, . . . ,m ;

xij ≥ 0 ,
for i = 1, . . . ,m ,
j = 1, . . . , n .

All of these constraints are self-explanatory except for themn constraints:

− yi + xij ≤ 0 for i = 1, . . . ,m , j = 1, . . . , n . (S)

These constraints simply enforce that for any feasible solution x̂, ŷ , we have that ŷi = 1 when-
ever x̂ij > 0 . It is an interesting point that this could also be enforced via them constraints:

− nyi +

n∑

j=1

xij ≤ 0 , for i = 1, . . . ,m . (W)

We can view the coefficient−n of yi as a “bigM”, rendering the constraint vacuouswhen yi = 1 .
Despite the apparent parsimony of the latter formulation, it turns out that the original formu-
lation is preferred. The Python/Gurobi code is in Jupyter notebook UFL.ipynb can be used to
compare the use of (S) versus (W). (see Appendix A.11).

8.2.3 Piecewise-linear univariate functions
Of course many useful functions are non-linear. Integer-linear optimization affords a good way
to approximate well-behaved univariate non-linear functions. Suppose that f : R → R has
domain the interval [l, u] , with l < u . For some n ≥ 2 , we choose n breakpoints l = ξ1 < ξ2 <
· · · < ξn−1 < ξn = u . Then, we approximate f linearly between adjacent pairs of breakpoints.
That is, we approximate f by

f̂(x) :=

n∑

j=1

λjf(ξj) ,

where we require that
n∑

j=1

λj = 1 ;

λj ≥ 0 , for j = 1, . . . , n ,

and the adjacency condition:

λj and λj+1 may be positive for only one value of j .

This adjacency condition means that we “activate” the interval [ξj , ξj+1] for approximating
f(x) . That is, we will approximate f(x) by

λjf(ξj) + λj+1f(ξj+1) ,
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with

λj + λj+1 = 1 ;

λj , λj+1 ≥ 0 .

We can enforce the adjacency condition using 0, 1-variables. Let

yj :=

{
1, if the interval [ξj , ξj+1] is activated;
0, otherwise,

for j = 1, 2, . . . , n− 1 .
The situation is depicted in Figure 8.3, where the red curve graphs the non-linear function

f .

Figure 8.3: Piecewise-linear approximation

We only want to allow one of the n− 1 intervals to be activated, so we use the constraint
n−1∑

j=1

yj = 1 .

We only want to allow λ1 > 0 if the first interval [ξ1, ξ2] is activated. For an internal breakpoint
ξj , 1 < j < n , we only want to allow λj > 0 if either [ξj−1, ξj ] or [ξj , ξj+1] is activated. We
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only want to allow λn > 0 if the last interval [ξn−1, ξn] is activated. We can accomplish these
restrictions with the constraints

λ1 ≤ y1 ;

λj ≤ yj−1 + yj , for j = 2, . . . , n− 1 ;

λn ≤ yn−1 .

Notice how if yk is 1 , for some k (1 ≤ k ≤ n), and necessarily all of the other yj are 0 (j 6= k),
then only λk and λk+1 can be positive.

How do we actually use this? If we have a model involving such a non-linear f(x), then
wherever we have f(x) in the model, we simply substitute∑n

j=1 λjf(ξj) , and we incorporate
the further constraints:

n∑

j=1

λj = 1 ;

n−1∑

j=1

yj = 1 ;

λ1 ≤ y1 ;

λj ≤ yj−1 + yj , for j = 2, . . . , n− 1 ;

λn ≤ yn−1 ;

λj ≥ 0 , for j = 1, . . . , n ;

yj ∈ {0, 1} , for j = 1, . . . , n− 1 .

Of course a very non-linear f(x) will demand an f̂(x) :=
∑n
j=1 λjf(ξj) with a high value for n ,

so as to get an accurate approximation. And higher values for n imply more binary variables
yj , which come at a high computational cost.

8.3 A Prelude to Algorithms
For reasons that will become apparent, for the purpose of developing algorithms for linear-
optimization problems in which some variable are required to be integer, it is convenient to
assume that our problem has the form

z := max y′b
y′A ≤ c′ ;
y ∈ Rm ;
yi integer, for i ∈ I .

(DI)

The set I ⊂ {1, 2, . . . ,m} allows for a given subset of the variables to be constrained to be integer.
This linear-optimization problem has a non-standard form, but it is convenient that the dual of
the continuous relaxation has the standard form

min c′x
Ax = b ;
x ≥ 0 .

(P)

To prove that an algorithm for (DI) is finite, it is helpful to assume that the feasible region
of the continuous relaxation (D) of (DI) is non-empty and bounded.

We saw in Section 7.3.2 that there are situations inwhich rounding the solution of a continu-
ous relaxation can yield a good solution to an optimization problem involving integer variables.
But generally, this is not the case.
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Example 8.15
Consider the problem

max y2

2ky1 + y2 ≤ 2k ;
− 2ky1 + y2 ≤ 0 ;

− y2 ≤ 0 ;
y1 , y2 integer,

where k ≥ 1 is a possibly large positive integer. It is easy to check that (y1, y2) = (0, 0) and
(y1, y2) = (1, 0) are both optimal solutions of this problem, but the optimal solution of the con-
tinuous relaxation is (y1, y2) = (1

2 , k). If we consider rounding y1 up or down in the continuous
solution, we do not get a feasible solution, and moreover we are quite far from the optimal
solutions.

Example 8.16
Consider the problem

max
∑m
i=1 yi
yi + y` ≤ 1, for all 1 ≤ i < ` ≤ m;
−yi ≤ 0, for all 1 ≤ i ≤ m;
yi integer, for all 1 ≤ i ≤ m,

where m ≥ 3 is a possibly large positive integer. It is easy to check that each integer optimal
solution sets any single variable to one and the rest to zero, achieving objective value 1. While
the (unique) continuous optimal solution sets all variables to 1

2 , achieving objective value m
2 .

We can see that the continuous solution is not closely related to the integer solutions.

8.4 Branch-and-Bound

Next, we look at a rudimentary framework calledbranch-and-bound, which aims at finding
an optimal solution of (DI), a linear-optimization problem having some integer variables. We
assume that (P), the dual of the continuous relaxation of (DI), has a feasible solution. Hence,
even the continuous relaxation (D) of (DI) is not unbounded.

Our algorithm maintains a list L of optimization problems that all have the general form of
(DI). Keep inmind that problems on the list have integer variables. Wemaintain a lower bound
LB, satisfying LB ≤ z . Put simply, LB is the objective value of the best (objective maximizing)
feasible solution ỹLB of (DI) that we have seen so far. Initially, we set LB = −∞ , and we update
it in an increasing fashion.

The algorithm maintains the key invariant for branch-and-bound:
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Every feasible solution of the original problem (DI) with greater objective value than LB is feasible
for a problem on the list.

We stop when the list is empty, and because of the property that we maintain, we correctly
conclude that the optimal value of (DI) is LB when we do stop.

At a general step of the algorithm, we select and remove a problem (D̃I) on the list, and
we solve its continuous relaxation (D̃). If this continuous relaxation is infeasible, then we do
nothing further with this problem. Otherwise, we let ȳ be its optimal solution, and we proceed
as follows.

• If ȳ′b ≤ LB , then no feasible solution to the selected problem can have objective value
greater than LB, so we are done processing this selected problem.

• If ȳi is integer for all i ∈ I , then we have solved the selected problem. In this case, if
ȳ′b > LB , then we

– reset LB to ȳ′b ;
– reset ȳLB to ȳ .

• Finally, if ȳ′b > LB and ȳi is not integer for all i ∈ I , then (it is possible that this selected
problem has a feasible solution that is better than ȳLB , so) we

– select some i ∈ I such that ȳi is not integer;
– place two new “child” problems on the list, one with the constraint yi ≤ bȳic ap-

pended (the so-called down branch), and the other with the constraint yi ≥ dȳie
appended (the so-called up branch).
(observe that every feasible solution to a parent is feasible for one of its children, if
it has children.)

Because the key invariant for branch-and-bound is maintained by the processing rules, the
following result is evident.

Theorem 8.17
Suppose that the original (P) is feasible. Then at termination of branch-and-bound, we have
LB= −∞ if (DI) is infeasible or with ȳLB being an optimal solution of (DI).

Finite termination. If the feasible region of the continuous relaxation (D) of (DI) is a bounded
set, then we can guarantee finite termination. If we do not want to make such an assumption,
then if we assume that the data for the formulation is rational, it is possible to bound the region
that needs to be searched, and we can again assure finite termination.

Solving continuous relaxations. Some remarks are in order regarding the solution of con-
tinuous relaxations. Conceptually, we apply the Simplex Algorithm to the dual (P̃) of the con-
tinuous relaxation (D̃) of a problem (D̃I) selected and removed from the list. At the outset, for
an optimal basis β of (P̃), the optimal dual solution is given by ȳ′ := c′βA

−1
β . If i ∈ I is chosen,

such that ȳi is not an integer, then we replace the selected problem (D̃I) with one child having
the additional constraint yi ≤ bȳic (the down branch) and another with the constraint yi ≥ dȳie
appended (the up branch).

Adding a constraint to (D̃) adds a variable to the standard-form problem (P̃). So, a basis
for (P̃) remains feasible after we introduce such a variable.
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• The down branch: The constraint yi ≤ bȳic , dualizes to a new variable xdown in (P̃). The
variable xdown has a new columnAdown := ei and a cost coefficient of cdown := bȳic . Notice
that the fact that ȳi is not an integer (and hence ȳ violates yi ≤ bȳic) translates into the
fact that the reduced cost c̄down of xdown is c̄down = cdown − ȳ′Adown = bȳic − ȳi < 0 , so xdown
is eligible to enter the basis.

• The up branch: Similarly, the constraint yi ≥ dȳie , or equivalently−yi ≤ −dȳie , dualizes
to a new variable xup in (P̃). The variable xup has a new column Aup := −ei and a cost
coefficient of cup := −dȳie . Notice that the fact that ȳi is not an integer (and hence ȳ
violates yi ≥ dȳie) translates into the fact that the reduced cost c̄up of xup is c̄up = cup −
ȳ′Aup = −dȳie+ ȳi < 0 , so xup is eligible to enter the basis.

In either case, provided that we have kept the optimal basis for the (P̃) associated with a
problem (D̃I), the Simplex Algorithm picks up on the (˜̃P) associated with a child ( ˜̃DI) of that
problem , with the new variable of the child’s (˜̃P) entering the basis.

Notice that the (P̃) associated with a problem (D̃I) on the list could be unbounded. But
this just implies that the problem (D̃I) is infeasible.

Partially solving continuous relaxations. Notice that as the Simplex Algorithm is applied
to the (P̃) associated with any problem (D̃I) from the list, we generate a sequence of non-
increasing objective values, each one of which is an upperbound on the optimal objective value
of (D̃I). That is, for any such (P̃), we start with the upperbound value of its parent, and thenwe
gradually decrease it, step-by-step of the Simplex Algorithm. At any point in this process, if the
objective value of the Simplex Algorithm falls at or below the current LB, we can immediately
terminate the Simplex Algorithm on such a (P̃) — its optimal objective value will be no greater
than LB — and conclude that the optimal objective value of (D̃I) is no greater than LB.

Aglobal upper bound. As the algorithm progresses, if we let UBbetter be themaximum, over
all problems on the list, of the objective value of the continuous relaxations, then any feasible
solution ŷ with objective value greater than that LB satisfies ŷ′b ≤ UBbetter . Of course, it may be
that no optimal solution is feasible to any problem on the list — for example if it happens that
LB = z . But we can see that

z ≤ UB := max {UBbetter, LB} .

It may be useful to have UB at hand, because we can always stop the computation early, say
whenUB−LB < τ , returning the feasible solution ȳLB , with the knowledge that z−ȳ′LBb ≤ τ . But
notice that we do not readily have the objective value of the continuous relaxation for problems
on the list — we only solve the continuous relaxation for such a problem after it is selected
(for processing). But, for every problem on the list, we can simply keep track of the optimal
objective value of its parent’s continuous relaxation, and use that instead. Alternatively, we can
re-organize our computations a bit, solving continuous relaxations of subproblems before we
put them on the list.

Selecting a subproblem from the list. Which subproblem from the list should we process
next?

• A strategy of last-in/first-out, known as diving, often results in good increases in LB. To
completely specify such a strategy, one would have to decide which of the two children
of a subproblem is put on the list last (i.e., the down branch or the up branch). A good
choice can affect the performance of this rule, and such a good choice depends on the
type of model being solved.
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• A strategy of first-in/first-out is very bad. It can easily result in an explosion in the size of
the list of subproblems.

• A strategy of choosing a subproblem to branch on having objective value for its contin-
uous relaxation equal to UB, known as best bound, is a sound strategy for seeking a
decrease in UB. If such a rule is desired, then it is best to solve continuous relaxations of
subproblems before we put them on the list.

A hybrid strategy, doingmostly diving at the start (to get a reasonable value of LB) and shifting
more and more to best bound (to work on proving that LB is at or near the optimal value) has
rather robust performance.

Selecting a branching variable. Probably verymany times, wewill need to choose an i ∈ I
for which ȳi is fractional, in order to branch and create the child subproblems. Which such i
should we choose? Naïve rules such as choosing randomly or the so-calledmost fractional rule
of choosing an i that maximizesmin{ȳi−bȳic , dȳie−ȳi} seem to have rather poor performance.
Better rules are based on estimates of how the objective value of the childrenwill change relative
to the parent.

Using dual variables to bound the “other side” of an inequality. Our constraint
system y′A ≤ c′ can be viewed as y′Aj ≤ cj , for j = 1, 2, . . . , n ; that is, cj is an upper bound on
y′Aj . We may wonder if we can also derive lower bounds on y′Aj .

Theorem 8.18
Let LB be the objective value of any feasible solution of (DI). Let x̄ be an optimal solution of
(P), and assume that x̄j > 0 for some j . Then

cj +
LB− c′x̄

x̄j
≤ y′Aj

is satisfied by every optimal solution of (DI).

Proof. We consider a parametric version of (DI). For ∆j ∈ R, consider

z(∆j) := max y′b
y′A ≤ c′ + ∆je

′
j ;

y ∈ Rm ;
yi integer, for i ∈ I .

(DI(∆j))

Let zR(∆j) be defined the same way as z(∆j), but with integrality relaxed. Using ideas from
Chapters 6 and 7, we can see that zR is a concave (piecewise-linear) function on its domain, and
x̄j is a subgradient of zR at ∆j = 0 . It follows that

z(∆j) ≤ zR(∆j) ≤ zR(0) + ∆j x̄j = c′x̄+ ∆j x̄j .

So, we can observe that for
∆j <

LB− c′x̄
x̄j

,

we will have z(∆j) < LB. Therefore, every ŷ that is feasible for (DI(∆j)) with ∆j < (LB −
c′x̄)/x̄j will have ŷ′b < LB . So such a ŷ cannot be optimal for (DI). ut
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It is interesting to consider two special cases of Theorem 8.18:

Corollary 8.19 (Variable fixing)
Let LB be the objective value of any feasible solution of (DI). Let x̄ be an optimal solution of
(P). Assume that x̄j > 0 is the optimal dual variable for a constraint of the form: yk ≤ 1 (or
−yk ≤ 0) . If c′x̄ − LB < x̄j , then yk = 1 (respectively, yk = 0) is satisfied by every optimal
solution of (DI).

Because of Exercise 5.2, this is known as reduced-cost fixing.

8.5 Cutting Planes
This section is adapted from material in [2] and [4]. In fact, those papers were developed
to achieve versions of Gomory cutting-plane algorithms (with finiteness proofs) that would
mesh with our column-generation treatment of many topics in this book (i.e., cutting stock,
decomposition, and branch-and-bound).

8.5.1 Pure
In this section, we assume that all yi variables are constrained to be integer. That is, I =
{1, 2, . . . ,m}

We can choose any non-negative w ∈ Rn , and we see that

w ≥ 0 and y′A ≤ c′ =⇒ y′(Aw) ≤ c′w .

Note that this inequality is valid for all solutions of y′A ≤ c′ , integer or not. Next, if Aw is integer,
we can exploit the integrality of y . We see that

Aw ∈ Zm , y ∈ Zm =⇒ y′(Aw) ≤ bc′wc ,

for all integer solutions of y′A ≤ c′ .
The inequality y′(Aw) ≤ bc′wc is called a Chvátal-Gomory cut. The condition Aw ∈ Zm

may seem a little awkward, but usually we have that A is integer, so we can get Aw ∈ Zm by
then just choosing w ∈ Zn. In fact, for the remained of this section, we will assume that A and
c are integer.

Of course, it is by nomeans clear how to choose appropriatew, and this is critical for getting
useful inequalities. We should also bear in mind that there are examples for which Chvátal-
Gomory are rather ineffectual. Trying to apply such cuts to Example 8.15 reveals that infeasi-
ble integer points can “guard” Chvátal-Gomory cuts from getting close to any feasible integer
points.

We would like to develop a concrete algorithmic scheme for generating Chvátal-Gomory
cuts. We will do this via basic solutions. Let β be any basis for P. The associated dual basic
solution (for the continuous relaxation (D)) is ȳ′ := c′βA

−1
β . Suppose that ȳi is not an integer.

Our goal is to derive a valid cut for (DI) that is violated by ȳ.
Let

b̃ := ei +Aβr,

where r ∈ Zm, and, as usual, ei denotes the i-th standard unit vector in Rm. Note that by
construction, b̃ ∈ Zm.
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Theorem 8.20
ȳ′b̃ is not an integer, and so y′b̃ ≤ bȳ′b̃c cuts off ȳ.

Proof. ȳ′b̃ = ȳ′(ei +Aβr) = ȳi + (c′βA
−1
β )Aβr = ȳi︸︷︷︸

/∈Z

+ c′βr︸︷︷︸
∈Z

/∈ Z. ut

At this point, we have an inequality y′b̃ ≤ bȳ′b̃cwhich cuts off ȳ, but we have not established
its validity for (DI).

Let H·i := A−1
β ei, the i-th column of A−1

β . Now let

w := H·i + r.

Clearly we can choose r ∈ Zm so that w ≥ 0; we simply choose r ∈ Zm so that

rk ≥ −bhkic, for k = 1, . . . ,m. (∗≥)

Theorem 8.21
Choosing r ∈ Zm satisfying (∗≥), we have that y′b̃ ≤ bȳ′b̃c is valid for (DI).

Proof. Because w ≥ 0 and y′A ≤ c′, we have the validity of

y′Aβ(A−1
β ei + r) ≤ c′β(A−1

β ei + r),

even for the continuous relaxation (D) of (DI). Simplifying this, we have

y′(ei +Aβr) ≤ ȳi + c′βr.

The left-hand side is clearly y′b̃, and the right-hand side is

ȳi + c′βr = ȳi + ȳ′Aβr = ȳ′(ei +Aβr) = ȳ′b̃.

Sowehave that y′b̃ ≤ ȳ′b̃ is valid even for (D). Finally, observing that b̃ ∈ Zm and y is constrained
to be in Zm for (DI), we can round down the right-hand side and get the result. ut

So, given any non-integer basic dual solution ȳ, we have a way to produce a valid inequality
for (DI) that cuts it off. This cut for (DI) is used as a column for (P): the column is b̃with objec-
tive coefficient bȳ′b̃c. Taking β to be an optimal basis for (P), the new variable corresponding to
this column is the unique variable eligible to enter the basis in the context of the primal simplex
algorithm applied to (P) — the reduced cost is precisely

bȳ′b̃c − ȳ′b̃ < 0.

The new column for A is b̃ which is integer. The new objective coefficient for c is bȳ′b̃c
which is an integer. So the original assumption that A and c are integer is maintained, and we
can repeat. In this way, we get a legitimate cutting-plane framework for (DI) — though we
emphasize that we do our computations as column generation with respect to (P).

There is clearly a lot of flexibility in how r can be chosen. Next, we demonstrate that in a
very concrete sense, it is always best to choose a minimal r ∈ Zm satisfying (∗≥).
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Theorem 8.22
Let r ∈ Zm be defined by

rk = −bhkic, for k = 1, . . . ,m, (∗=)
and suppose that r̂ ∈ Zm satisfies (∗≥) and r ≤ r̂. Then the cut determined by r dominates
the cut determined by r̂.

Proof. It is easy to check that our cut can be re-expressed as
yi ≤ bȳic+

(
c′β − y′Aβ

)
r.

Noting that c′β − y′Aβ ≥ 0 for all y that are feasible for (D), we see that the strongest inequality
is obtained by choosing r ∈ Zm to be minimal. ut

Example 8.23
We work through an example in pure_gomory_example_1.ipynb (see Appendix A12) which
uses again pivot_tools.ipynb (see Appendix A.6). The function library pivot_tools.ipynb

contains two (additional) useful tools for this: pure_gomory( ) and dual_plot( , )

Let
A =

(
7 8 −1 1 3
5 6 −1 2 1

)
, b =

(
26
19

)

and c′ =
(

126 141 −10 5 67
)
.

So, the integer program (DI) which we seek to solve is defined by five inequalities in the two
variables y0 and y1. For the basis of (P), β = (0, 1), we have

Aβ =

(
7 8
5 6

)
, and hence A−1

β =

(
3 −4
−5/2 7/2

)
.

It is easy to check that for this choice of basis, we have

x̄β =

(
2

3/2

)
,

and for the non-basis η = (2, 3, 4, 5), we have c̄′η =
(

5 1/2 1
), which are both non-negative,

and so this basis is optimal for (P). The associated dual basic solution depicted in Figure 8.4 is
ȳ′ =

(
51/2 −21/2

)
, and the objective value is z = 463 1/2.

Because both ȳ1 and ȳ2 are not integer, we can derive a cut for (DI) from either. Recalling
the procedure, for any fraction ȳi, we start with the i-th column H·i of H := A−1

β , and we get a
new A·j := ei +Aβr. Throughout we will choose r via (∗=). So we have,

H·0 =

(
3
−5/2

)
⇒ r =

(
−3
3

)
⇒ b̃ =

(
1
0

)
+

(
7 8
5 6

)(
−3
3

)
=

(
4
3

)
=: A·5

H·1 =

(
−4
7/2

)
⇒ r =

(
4
−3

)
⇒ b̃ =

(
0
1

)
+

(
7 8
5 6

)(
4
−3

)
=

(
4
3

)
.

In fact, for this iteration of this example, we get the same cut for either choice of i. To calculate
the right-hand side of the cut, we have

ȳ′b̃ =
(

51/2 −21/2
)( 4

3

)
= 70 1/2,
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Figure 8.4:

so the cut for (DI) is
4y0 + 3y1 ≤ 70.

Now, we do our simplex-method calculations with respect to (P).
The new column for (P) is A·5 (above) with objective coefficient c5 := 70. Following the

ratio test, when index 5 enters the basis, index 2 leaves the basis, and so the new basis is β =
(0, 5), with

Aβ =

(
7 4
5 3

)
,

with objective value 462, a decrease. At this point, index 4 has a negative reduced cost, and
index 0 leaves the basis. So we now have β = (4, 5), which turns out to be optimal.

The associated dual basic solution depicted in Figure 8.5 is

ȳ′ =
(

131/5 −58/5
)
, and the objective value is z = 460 4/5.

We observe that the objective function has decreased, but unfortunately both ȳ0 and ȳ1 are
not integers. So we must continue. We have

Aβ =

(
3 4
1 3

)
, and hence A−1

β =

(
3/5 −4/5
−1/5 3/5

)
.
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Figure 8.5:

We observe that the objective function has decreased, but because both ȳ0 and ȳ2 are not
integers, we can again derive a cut for (DI) from either. We calculate

H·0 =

(
3/5
−1/5

)
⇒ r =

(
0
1

)
⇒ b̃ =

(
1
0

)
+

(
3 4
1 3

)(
0
1

)
=

(
5
3

)
=: A·6

H·1 =

(
−4/5
3/5

)
⇒ r =

(
1
0

)
⇒ b̃ =

(
0
1

)
+

(
3 4
1 3

)(
1
0

)
=

(
3
2

)
=: A·7 .

Correspondingly, we have ȳ′A·6 = 96 1/5 and ȳ′A·7 = 55 2/5, giving us c6 := 96 and c7 := 55.
So, we have two possible cuts for (DI):

5y0 + 3y1 ≤ 96 and 3y0 + 2y1 ≤ 55.

Choosing to incorporate both as columns for (P), and letting index 7 enter the basis, index
5 leaves (according to the ratio test), and it turns out that we reach an optimal basis β = (7, 5)
after this single pivot. The associated dual basic solution is depicted in Figure 8.6 (the second
graphic is zoomed in)

ȳ′ =
(

25 −10
)
, and the objective value is z = 460.

Not only has the objective decreased, but now all of the ȳi are integers, so we have an optimal
solution for (DI).



8.5. CUTTING PLANES 115

Figure 8.6:
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8.5.2 Mixed
In this section, we no longer assume that all yi variables are constrained to be integer. That is,
we only assume that non-empty I ⊂ {1, 2, . . . ,m}. The cuts from the previous section cannot
be guaranteed to be valid, so we start anew.

Let β be any basis partition for(P), and let ȳ be the associated dual basic solution. Suppose
that ȳi /∈ Z, for some i ∈ I. We aim to find a cut, valid for (DI) and violated by ȳ.

Let
b̃1 := ei +Aβr,

and r ∈ Rm will be determined later. We will accumulate the conditions we need to impose on
r, as we go.

Let w1 be the basic solution associated with the basis β and the “right-hand side” b̃1. So
w1
β = h·i + r, where h·i is defined as the i-th column of A−1

β , and w1
η = 0. Choosing r ≥ −h·i,

we can make w1 ≥ 0. Moreover, c′w1 = c′β(h·i + r) = c′βh·i + c′βr = ȳi + c′βr, so because we
assume that ȳi /∈ Z, we can choose r ∈ Zm, and we have that c′w1 /∈ Z.

Next, let
b̃2 := Aβr.

Let w2 be the basic solution associated with the basis β and the “right-hand side” b̃2. So, now
further choosing r ≥ 0, we have w2

β = r ≥ 0, w2
η = 0, and c′w2 = c′βr.

So, we choose r ∈ Zm so that:

rk ≥ max{−bhkic, 0}, for k = 1, . . . ,m, (∗≥+)

Because we have chosen w1 and w2 to be non-negative, forming (y′A)wl ≤ c′wl, for l = 1, 2,
we get a pair of valid inequalities for D. They have the form y′b̃l ≤ c′wl, for l = 1, 2. Let α′j
denote the j-th row of Aβ . Then our inequalities have the form:

(1 + α′ir)yi +
∑

j:j 6=i
(α′jr)yj ≤ ȳi + ȳ′Aβr, (I1)

(α′ir)yi +
∑

j:j 6=i
(α′jr)yj ≤ ȳ′Aβr. (I2)

Now, defining z :=
∑
j:j 6=i(α

′
jr)yj , we have the following inequalities in the two variables yi

and z:

slope
(1 + α′ir)yi + z ≤ ȳi + ȳ′Aβr −1/(1 + α′ir) (B1)

(α′ir)yi + z ≤ ȳ′Aβr −1/α′ir (B2)

Note that the intersection point (y∗i , z
∗) of the lines associated with these inequalities (subtract

the second equation from the first) has y∗i = ȳi and z∗ =
∑
j:j 6=i(α

′
jr)ȳj . Also, the “slopes”

indicated regard yi as the ordinate and z as the abscissa.
Bearing in mind that we choose r ∈ Zm and that A is assumed to be integer, we have that

α′ir ∈ Z. There are now two cases to consider:
• α′ir ≥ 0, in which case the first line has negative slope and the second line has more

negative slope (or infinite α′ir = 0);
• α′ir ≤ −1, in which case the second line has positive slope and the first line has more

positive slope (or infinite α′ir = −1).
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See Figures 8.7 and 8.8.
In both cases, we are interested in the point (z1, y1

i ) where the first line intersects the line
yi = bȳic+ 1 and the point (z2, y2

i ) where the second line intersects the line yi = bȳic.
We can check that

z1 = ȳi + ȳ′Aβr − (1 + α′ir) (bȳic+ 1) ,

z2 = ȳ′Aβr − (α′ir)bȳic.

Subtracting, we have
z1 − z2 = (ȳi − bȳic)︸ ︷︷ ︸

∈(0,1)

−(1 + α′ir︸︷︷︸
∈Z

),

so we see that: z1 < z2 precisely when α′ir ≥ 0; z2 < z1 precisely when α′ir ≤ −1. Moreover,
the slope of the line through the pair of points (z1, y1

i ) and (z2, y2
i ) is just

1

z1 − z2
=

1

(ȳi − bȳic)− (1 + α′ir)
.

Figure 8.7: (F-BMI) cut when α′ir ≥ 0

yi

z

(B1)

(B2)
(F-BMI)

We now define the inequality

((ȳi − bȳic)− (1 + α′ir)) (yi − bȳic) ≥ z − ȳ′Aβr + (α′ir)bȳic,

which has the more convenient form

((1 + α′ir)− (ȳi − bȳic)) yi + z ≤ ȳ′Aβr − (ȳi − bȳic − 1) bȳic. (F-BMI)

By construction, we have the following two results.

Lemma 8.24
(F-BMI) is satisfied at equality by both of the points (z1, y1

i ) and (z2, y2
i ).
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Figure 8.8: (F-BMI) cut when α′ir ≤ −1

yi

z

(B1)

(B2)

(F-BMI)

Lemma 8.25
(F-BMI) is valid for

{
(yi, z) ∈ R2 : (B1), yi ≥ dȳie

}
∪
{

(yi, z) ∈ R2 : (B2), yi ≤ bȳic
}
.

Lemma 8.26
(F-BMI) is violated by the point (y∗i , z

∗).

Proof. Plugging (y∗i , z
∗) into (F-BMI), andmaking some if-and-only-ifmanipulations, we obtain

(ȳi − bȳic − 1) (ȳi − bȳic) ≥ 0,

which is not satisfied. ut

Finally, translating (F-BMI) back to the original variables y ∈ Rm, we get

((1 + α′ir)− (ȳi − bȳic)) yi +
∑

j:j 6=i
(α′jr)yj ≤ ȳ′Aβr − (ȳi − bȳic − 1) bȳic,

or,
− (ȳi − bȳic − 1) yi + y′Aβr ≤ ȳ′Aβr − (ȳi − bȳic − 1) bȳic,

which, finally has the convenient form

y′ (Aβr − (ȳi − bȳic − 1) ei) ≤ c′βr − (ȳi − bȳic − 1) bȳic. (F-GMI)

We immediately have:
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Theorem 8.27
(F-GMI) is violated by the point ȳ.

Finally, we have:

Theorem 8.28
(F-GMI) is valid for the following relaxation of the feasible region of (D):

{y ∈ Rm : y′Aβ ≤ c′β , yi ≥ dȳie} ∪ {y ∈ Rm : y′Aβ ≤ c′β , yi ≤ bȳic}

Proof. The proof, maybe obvious, is by a simple disjunctive argument. We will argue that
(F-BMI) is valid for both S1 := {y ∈ Rm : y′Aβ ≤ c′β , −yi ≤ −bȳic − 1} and S2 := {y ∈
Rm : y′Aβ ≤ c′β , yi ≤ bȳic}.

The inequality (F-BMI) is simply the sum of (B1) and the scalar ȳi − bȳic times −yi ≤
−bȳic − 1. It follows than that taking (I1) plus ȳi − bȳic times −yi ≤ −bȳic − 1, we get an
inequality equivalent to (F-GMI).

Similarly, it is easy to check that the inequality (F-BMI) is simply (B2) plus 1 − (ȳi − bȳic)
times yi ≤ bȳic. It follows than that taking (I2) plus 1− (ȳi − bȳic) times yi ≤ bȳic, we also get
an inequality equivalent to (F-GMI). ut

In our algorithm, we append columns to (P), rather than cuts to (D). The column for (P)
corresponding to (F-GMI) is

Aβr − (ȳi − bȳic − 1) ei,

and the associated cost coefficient is
c′βr − (ȳi − bȳic − 1) bȳic.

So A−1
β times the column is

r − (ȳi − bȳic − 1)h·i .

Agreeing with what we calculated in Proposition 8.26, we have the following result.

Proposition 8.29
The reduced cost of the column for (P) corresponding to (F-GMI) is

(ȳi − bȳic − 1) (ȳi − bȳic) < 0.

Proof.

c′βr − (ȳi − bȳic − 1) bȳic − c′β (r − (ȳi − bȳic − 1)h·i)

= (ȳi − bȳic − 1)
(
c′βh·i − bȳic

)

= (ȳi − bȳic − 1) (ȳi − bȳic) .
ut

Next, we come to the choice of r.
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Theorem 8.30
Let r ∈ Zm be defined by

rk = max{0,−bhkic}, for k = 1, 2, . . . ,m, (∗=+)

and suppose that r̂ ∈ Zm satisfies (∗≥+) and r ≤ r̂. Then the cut determined by r dominates
the cut determined by r̂.

Proof. We simply rewrite (F-GMI) as

(c′β − y′Aβ)r ≥ (ȳi − bȳic − 1) (bȳic − yi).

Observing that c′β − y′Aβ ≥ 0 for y that are feasible for (D), we see that the tightest inequality
of this type, satisfying (∗≥+), arises by choosing a minimal r. The result follows. ut

8.5.3 Finite termination
Making a version of our Gomory cutting-plane scheme that we can prove is finitely terminating
is rather technical. Though it can be done in essentially the same manner for both pure and
mixed cases. We need to treat the objective-function value as an additional variable (numbered
first), employ the Simplex Algorithm adapted to the ε-perturbed problem, always choose the
least-index i ∈ I having ȳi /∈ Z and choose r via (∗=) or (∗=+) as appropriate to generate the
Gomory cuts. Details can be found in [2] and [4].

8.5.4 Branch-and-Cut
State-of-the-art algorithms for (mixed-)integer linear optimization (like Gurobi, Cplex and Express)
combine cuts with branch-and-bound. There are a lot of software design and tuning issues that
make this work successfully.

8.6 Exercises
Exercise 8.1 (Task scheduling, continued)
Consider again the “task scheduling” Exercise 2.5. Take the dual of the linear-optimization
problem that you formulated. Explain how this dual can be interpreted as a kind of network
problem. Using Python/Gurobi, solve the dual of the example that you created for Exercise 2.5
and interpret the solution.

Exercise 8.2 (Pivoting and total unimodularity)
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A pivot in anm× nmatrix Ameans choosing a row i and column j with aij 6= 0 , subtracting
akj
aij

times row i from all other rows k( 6= i) , and then dividing row i by aij . Note that after the
pivot, column j becomes the i-th standard-unit column. Prove that ifA is TU, then it is TU after
a pivot.
Exercise 8.3 (Comparing formulations for a toy problem)
Consider the systems:

S1 : 2x1 + 2x2 + x3 + x4 ≤ 2 ;

xj ≤ 1 ;

−xj ≤ 0 .

S2 : x1 + x2 + x3 ≤ 1 ;

x1 + x2 + x4 ≤ 1 ;

−xj ≤ 0 .

S3 : x1 + x2 ≤ 1 ;

x1 + x3 ≤ 1 ;

x1 + x4 ≤ 1 ;

x2 + x3 ≤ 1 ;

x2 + x4 ≤ 1 ;

−xj ≤ 0 .

Notice that each system has precisely the same set of integer solutions. In fact, each system
chooses, via its feasible integer (0/1) solutions, the “vertex packings” of the following graph.

A vertex packing of a graph is a set of vertices with no edges between them. For this particular
graph we can see that the packings are: ∅, {1}, {2}, {3}, {4}, {3, 4}.

Compare the feasible regionsSi of the continuous relaxations, for each pair of these systems.
Specifically, for each choice of pair i 6= j , demonstrate whether or not the solution set of Si is
contained in the solution set of Sj . HINT: To prove that the solution set of Si is contained in the
solution set of Sj , it suffices to demonstrate that every inequality of Sj is a non-negative linear
combination of the inequalities of Si . To prove that the solution set of Si is not contained in the
solution set of Sj , it suffices to give a solution of Si that is not a solution of Sj .
Exercise 8.4 (Comparing facility-location formulations)
We have seen two formulations of the forcing constraints for the uncapacitated facility-location
problem. We have a choice of the mn constraints: −yi + xij ≤ 0 , for i = 1, . . . ,m and
j = 1, . . . , n , or them constraints: −nyi +

∑n
j=1 xij ≤ 0 , for i = 1, . . . ,m . Which formulation

is stronger? That is, compare (both computationally and analytically) the strength of the two as-
sociated continuous relaxations (i.e., when we relax yi ∈ {0, 1} to 0 ≤ yi ≤ 1 , for i = 1, . . . ,m).
The Jupyter notebook UFL.ipynb can be used to perform experiments comparing the use of
(S) versus (W). (see Appendix A.11).



122 CHAPTER 8. INTEGER-LINEAR OPTIMIZATION

Exercise 8.5 (Comparing piecewise-linear formulations)
Wehave seen that the adjacency condition for piecewise-linear univariate functions can bemod-
eled by

λ1 ≤ y1 ;

λj ≤ yj−1 + yj , for j = 2, . . . , n− 1 ;

λn ≤ yn−1 .

An alternative formulation is
j∑

i=1

yi ≤
j+1∑

i=1

λi , for j = 1, . . . , n− 2 ;

n−1∑

i=j

yi ≤
n∑

i=j

λi , for j = 2, . . . , n− 1 .

Explain why this alternative formulation is valid, and compare its strength to the original for-
mulation, when we relax yi ∈ {0, 1} to 0 ≤ yi ≤ 1 , for i = 1, . . . , n − 1 . (Note that for both
formulations, we require λi ≥ 0, for i = 1, . . . , n ,∑n

i=1 λi = 1 , and∑n−1
i=1 yi = 1).

Exercise 8.6 (Variable fixing)
Prove Corollary 8.19.

Exercise 8.7 (Gomory cuts)
Prove that we need at least k Chvátal-Gomory cuts to solve Example 8.15. You can observe this
bad behavior specifically for Gomory cuts in pure_gomory_example_2.ipynb (see Appendix
A.12)

Exercise 8.8 (Solve pure integer problems using Gomory cuts)
Extend what you did for Exercise 4.1 to now solve pure integer problems using Gomory cuts.
pivot_tools.ipynb (seeAppendixA.6) contains two (additional) useful tools for this: pure_gomory( )

and dual_plot( , )Using only the functions in pivot_tools.ipynb, extend your code from Ex-
ercise 4.1 to solve pure integer problems using Gomory cuts. As before, do not worry about
degeneracy/anti-cycling. Make some small examples to fully illustrate your code.

Exercise 8.9 (Make amends)
Find an interesting applied problem, model it as a pure- ormixed- integer linear-optimization prob-
lem, and test your model with Python/Gurobi.

Creditwill be given for deftmodeling, sophisticateduse of Python/Gurobi, testing onmeaningfully-
large instances, and insightful analysis. Try to play with Gurobi integer solver options (they can
be set through Python) to get better behavior of the solver.

Your grade on this problem will replace your grades on up to 6 homework problems (i.e.,
up to 6 homework problems on which you have lower grades than you get on this one). I will
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not consider any re-grades on this one! If you already have all or mostly A’s (or not), do a good job
on this one because you want to impress me, and because you are ambitious, and because this
problem is what we have been working towards all during the course, and because you should
always finish strong.
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Take rest
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A.1 LATEX template



LATEX TEMPLATE

Your actual name (youremail@umich.edu)

This template can serve as a starting point for learning LATEX. You may download MiKTeX from
miktex.org to get started. Look at the source file for this document (in Section 5) to see how to get
all of the effects demonstrated.

1. This is the first section where we make some lists

It is easy to make enumerated lists:

(1) This is the first item
(2) Here is the second

And even enumerated sublists:

(1) This is the first item
(2) Here is the second with a sublist

(a) first sublist item
(b) and here is the second

2. Here is a second section where we typeset some math

You can typeset math inline, like
∑n

j=1 aijxj , by just enclosing the math in dollar signs.
But if you want to display the math, then you do it like this:

n∑

j=1

aijxj ∀ i = 1, . . . ,m.

And here is a matrix: 


1 π 2 1
2 ν

6.2 r 2 4 5

|y′| R R r R̂




Here is an equation array, with the equal signs nicely aligned:
n∑

j=1

xj = 5(2.1)

n∑

j=1

yj = 7(2.2)

∑

j∈S

xj = 29(2.3)

The equations are automatically numbered, like x.y, where x is the section number and y is the y-th
equation in section x. By tagging the equations with labels, we can refer to them later, like (2.3) and (2.1).

Theorem 2.1. This is my favorite theorem.

Proof. Unfortunately, the space here does not allow for including my ingenious proof of Theorem 2.1. �

3. Here is how I typset a standard-form linear-optimization problem

(P)
min c′x

Ax = b ;
x ≥ 0 .

Notice that in this example, there are 4 columns separated by 3 &’s. The ‘rrcl’ organizes justification
within a column. Of course, one can make more columns.

Date: October 31, 2020.

1



2 LATEX TEMPLATE

4. Graphics

This is how to include and refer to Figure 1 with pdfLaTeX.

Figure 1. Another duality

5. The LATEX commands to produce this document

Look at the LATEX commands in this section to see how each of the elements of this document was produced.
Also, this section serves to show how text files (e.g., programs) can be included in a LATEX document verbatim.

% LaTeX_Template.tex // J. Lee

%

% ----------------------------------------------------------------

% AMS-LaTeX ************************************************

% **** -----------------------------------------------------------

\documentclass{amsart}

\usepackage{graphicx,amsmath,amsthm}

\usepackage{hyperref}

\usepackage{verbatim}

\usepackage[a4paper,text={16.5cm,25.2cm},centering]{geometry}

% ----------------------------------------------------------------

\vfuzz2pt % Don’t report over-full v-boxes if over-edge is small

\hfuzz2pt % Don’t report over-full h-boxes if over-edge is small

% THEOREMS -------------------------------------------------------

\newtheorem{thm}{Theorem}[section]

\newtheorem{cor}[thm]{Corollary}

\newtheorem{lem}[thm]{Lemma}

\newtheorem{prop}[thm]{Proposition}

\theoremstyle{definition}

\newtheorem{defn}[thm]{Definition}

\theoremstyle{remark}

\newtheorem{rem}[thm]{Remark}

\numberwithin{equation}{section}

% MATH -----------------------------------------------------------

\newcommand{\Real}{\mathbb R}

\newcommand{\eps}{\varepsilon}

\newcommand{\To}{\longrightarrow}

\newcommand{\BX}{\mathbf{B}(X)}

\newcommand{\A}{\mathcal{A}}

% ----------------------------------------------------------------

\begin{document}

\title{\LaTeX~ Template}

\date{\today}



LATEX TEMPLATE 3

\maketitle

\href{mailto:youremail@umich.edu}

{Your actual name (youremail@umich.edu)}

%

%\medskip

%

%(this identifies your work and it \emph{greatly} help’s me in returning homework to you by email

%---- just plug in the appropriate replacements in the \LaTeX~ source; then when I click on the

%hyperlink above, my email program opens up starting a message to you)

\bigskip

% ----------------------------------------------------------------

This template can serve as a starting point for learning \LaTeX. You may download MiKTeX from

{\tt miktex.org}

to get started. Look at the source file for this

document (in Section \ref{sec:appendix})

to see how to get all of the effects demonstrated.

\section{This is the first section where we make some lists}

It is easy to make enumerated lists:

\begin{enumerate}

\item This is the first item

\item Here is the second

\end{enumerate}

And even enumerated sublists:

\begin{enumerate}

\item This is the first item

\item Here is the second with a sublist

\begin{enumerate}

\item first sublist item

\item and here is the second

\end{enumerate}

\end{enumerate}

\section{Here is a second section where we typeset some math}

You can typeset math inline, like $\sum_{j=1}^n a_{ij} x_j$, by just enclosing the math in dollar signs.

But if you want to \emph{display} the math, then you do it like this:

\[

\sum_{j=1}^n a_{ij} x_j~ \forall~ i=1,\ldots,m.

\]

And here is a matrix:

\[

\left(

\begin{array}{ccccc}

1 & \pi & 2& \frac{1}{2} & \nu \\

6.2 & r & 2 & 4 & 5 \\

|y’| & \mathcal{R} & \mathbb{R} & \underbar{r} & \hat{R} \\

\end{array}

\right)

\]

Here is an equation array, with the equal signs nicely aligned:

\begin{eqnarray}

\sum_{j=1}^n x_j &=& 5 \label{E1} \\

\sum_{j=1}^n y_j &=& 7 \label{E7} \\



4 LATEX TEMPLATE

\sum_{j\in S} x_j &=& 29 \label{E4}

\end{eqnarray}

The equations are automatically numbered, like $x.y$, where

$x$ is the section number and $y$ is the $y$-th equation in section $x$.

By tagging the equations

with labels, we can refer to them later, like (\ref{E4}) and (\ref{E1}).

\begin{thm}\label{Favorite}

This is my favorite theorem.

\end{thm}

\begin{proof}

Unfortunately, the space here does not allow for including my ingenious proof

of Theorem \ref{Favorite}.

\end{proof}

\section{Here is how I typset a standard-form linear-optimization problem}

\[

\tag{P}

\begin{array}{rrcl}

\min & c’x & & \\

& Ax & = & b~; \\

& x & \geq & \mathbf{0}~.

\end{array}

\]

Notice that in this example, there are 4 columns separated by 3 \&’s.

The ‘rrcl’ organizes justification within a column.

Of course, one can make more columns.

\section{Graphics}

This is how to include and refer to Figure \ref{nameoffigure} with pdfLaTeX.

\begin{figure}[h!!]

\includegraphics[width=0.4\textwidth]{yinyang.jpg}

\caption{Another duality}\label{nameoffigure}

\end{figure}

\section{The \LaTeX~ commands to produce this document}

\label{sec:appendix}

Look at the \LaTeX~ commands in this section to see how each of the elements

of this document was produced. Also, this section serves to show

how text files (e.g., programs) can be included in a \LaTeX~ document verbatim.

\bigskip

\hrule

\small

\verbatiminput{LaTeX_Template.tex}

\normalsize

% ----------------------------------------------------------------

\end{document}

% ----------------------------------------------------------------
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A.2 MatrixLP.ipynb



MatrixLP

August 23, 2021

Example: Setting up and solving a matrix-style LP with Python/Gurobi

min c′x + f ′w
Ax + Bw ≤ b
Dx = g
x ≥ 0, w ≤ 0

Note that we have the following dual, but we don’t model it:

max y′b + v′g
y′A + v′D ≤ c′

y′B ≥ f ′

y ≤ 0, v unrestricted

Rather, we recover its solution from Gurobi.

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License

Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR



OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

[1]: %reset -f

import numpy as np

import gurobipy as gp

from gurobipy import GRB

class StopExecution(Exception):

def _render_traceback_(self):

pass

[2]: # setting the matrix sizes and random data

n1=7

n2=15

m1=2

m2=4

np.random.seed(56) # set seed to be able to repeat the same random data

A=np.random.rand(m1,n1)

B=np.random.rand(m1,n2)

D=np.random.rand(m2,n1)

# Organize the situation (i.e., choose the right-hand side coefficients)

# so that the primal problem has a feasible solution

xs=np.random.rand(n1)

ws=-np.random.rand(n2)

b=np.matmul(A,xs)+np.matmul(B,ws)+0.01*np.random.rand(m1)

g=np.matmul(D,xs)

# Organize the situation (i.e., choose the objective coefficients)

# so that the dual problem has a feasible solution

ys=-np.random.rand(m1)

vs=np.random.rand(m2)-np.random.rand(m2)

c=np.matmul(np.transpose(A),ys)+np.matmul(np.transpose(D),vs)+0.01*np.random.

↪→rand(n1)

f=np.matmul(np.transpose(B),ys)-0.01*np.random.rand(n2)

[3]: model = gp.Model()

model.reset()

x = model.addMVar(n1) # default is a nonnegative continuous variable

w = model.addMVar(n2, ub=0.0, lb=-GRB.INFINITY)

objective = model.setObjective(c@x+f@w, GRB.MINIMIZE)

constraints1 = model.addConstr(A@x+B@w <= b)

constraints2 = model.addConstr(D@x == g)

--------------------------------------------



Warning: your license will expire in 10 days

--------------------------------------------

Using license file C:\Users\jonxlee\gurobi.lic

Academic license - for non-commercial use only - expires 2021-06-28

Discarded solution information

[4]: model.optimize()

if model.status != GRB.Status.OPTIMAL:

print("***** Gurobi solve status:", model.status)

print("***** This is a problem. Model does not have an optimal solution")

raise StopExecution

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 6 rows, 22 columns and 72 nonzeros

Model fingerprint: 0x734450bc

Coefficient statistics:

Matrix range [2e-03, 1e+00]

Objective range [1e-01, 1e+00]

Bounds range [0e+00, 0e+00]

RHS range [7e-01, 3e+00]

Presolve time: 0.01s

Presolved: 6 rows, 22 columns, 72 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time

0 -7.2547823e+30 1.946982e+31 7.254782e+00 0s

9 2.6453973e+00 0.000000e+00 0.000000e+00 0s

Solved in 9 iterations and 0.02 seconds

Optimal objective 2.645397253e+00

[5]: print("***** Primal solution:")

for j in range(0,n1): print("x[",j,"]=",

np.format_float_positional(np.ndarray.item(x[j].X),4,pad_right=4))

print(" ")

for j in range(0,n2): print("w[",j,"]=",

np.format_float_positional(np.ndarray.item(w[j].X),4,pad_right=4))

print(" ")

print("***** Dual solution:")

for i in range(0,m1): print("y[",i,"]=",

np.format_float_positional(constraints1[i].Pi,4,pad_right=4))

print(" ")

for i in range(0,m2): print("v[",i,"]=",

np.format_float_positional(constraints2[i].Pi,4,pad_right=4))

***** Primal solution:

x[ 0 ]= 0.2689



x[ 1 ]= 0.0080

x[ 2 ]= 1.3952

x[ 3 ]= 0.

x[ 4 ]= 0.4962

x[ 5 ]= 0.

x[ 6 ]= 0.

w[ 0 ]= 0.

w[ 1 ]= 0.

w[ 2 ]= 0.

w[ 3 ]= 0.

w[ 4 ]= 0.

w[ 5 ]= 0.

w[ 6 ]= 0.

w[ 7 ]= 0.

w[ 8 ]= 0.

w[ 9 ]= 0.

w[ 10 ]= -4.7348

w[ 11 ]= 0.

w[ 12 ]= -4.392

w[ 13 ]= 0.

w[ 14 ]= 0.

***** Dual solution:

y[ 0 ]= -0.4424

y[ 1 ]= -0.7261

v[ 0 ]= -0.8196

v[ 1 ]= -0.6668

v[ 2 ]= -0.0458

v[ 3 ]= 0.1904
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A.3 Production.ipynb



Production

June 25, 2021

Production model: constraint-style LP with Python/Gurobi

Notes: * This example is meant to show how to: * do constraint-style LP’s (as opposed to matrix
style), though the model we are setting up is max{c′x : Ax ≤ b, x ≥ 0}. * extract primal and dual
solutions, primal and dual slacks, and sensitivity information are printed * pass constraint names
to Gurobi and then retrieve constraints from Gurobi by these names

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License

Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

[1]: %reset -f

import numpy as np

import gurobipy as gp

from gurobipy import GRB

class StopExecution(Exception):

def _render_traceback_(self):

pass



[2]: # Some toy data

m=3

n=2

M=list(range(0,m))

N=list(range(0,n))

A = np.array([ [8, 5], [8, 6], [8, 7] ])

b = np.array([32, 33, 35])

c = np.array([3 ,2])

[3]: model = gp.Model()

model.reset()

x = model.addMVar(n)

revenueobjective = model.setObjective(sum(c[j]*x[j] for j in N), GRB.MAXIMIZE)

for i in M: # naming the constraints r0,r1,r2,... (inside Gurobi)

model.addConstr(sum(A[i,j]*x[j] for j in N) <= b[i], name='r'+str(i))

Using license file C:\Users\jonxlee\gurobi.lic

Academic license - for non-commercial use only - expires 2021-01-10

Discarded solution information

[4]: model.optimize()

if model.status != GRB.Status.OPTIMAL:

print("***** Gurobi solve status:", model.status)

print("***** This is a problem. Model does not have an optimal solution")

raise StopExecution

print(" ")

print("primal var, dual slack, obj delta-lb, obj delta-ub")

for j in N: print("x[",j,"]=",np.format_float_positional(np.ndarray.item(x[j].

↪→X),4,pad_right=4),

" t[",j,"]=", np.format_float_positional(np.ndarray.item(x[j].

↪→RC),4,pad_right=4),

" L[",j,"]=", np.format_float_positional(np.ndarray.item(x[j].

↪→SAObjLow-c[j]),4,pad_right=4),

" U[",j,"]=", np.format_float_positional(np.ndarray.item(x[j].

↪→SAObjUp-c[j]),4,pad_right=4))

print(" ")

print("dual vars, primal slack, rhs delta-lb, rhs delta-ub")

for i in M:

constr=model.getConstrByName('r'+str(i)) # retriving from Gurobi the 

↪→named constraints r0,r1,r2,...

print("y[",i,"]=",np.format_float_positional(constr.Pi,4,pad_right=4),

" s[",i,"]=", np.format_float_positional(constr.

↪→Slack,4,pad_right=4),

" L[",i,"]=", np.format_float_positional(constr.

↪→SARHSLow-b[i],4,pad_right=4),

" U[",i,"]=", np.format_float_positional(constr.

↪→SARHSUp-b[i],4,pad_right=4))



Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 3 rows, 2 columns and 6 nonzeros

Model fingerprint: 0x32d9daed

Coefficient statistics:

Matrix range [5e+00, 8e+00]

Objective range [2e+00, 3e+00]

Bounds range [0e+00, 0e+00]

RHS range [3e+01, 4e+01]

Presolve time: 0.00s

Presolved: 3 rows, 2 columns, 6 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time

0 5.0000000e+30 5.250000e+30 5.000000e+00 0s

3 1.2125000e+01 0.000000e+00 0.000000e+00 0s

Solved in 3 iterations and 0.01 seconds

Optimal objective 1.212500000e+01

primal var, dual slack, obj delta-lb, obj delta-ub

x[ 0 ]= 3.3750 t[ 0 ]= 0. L[ 0 ]= -0.3333 U[ 0 ]= 0.2

x[ 1 ]= 1. t[ 1 ]= 0. L[ 1 ]= -0.125 U[ 1 ]= 0.25

dual vars, primal slack, rhs delta-lb, rhs delta-ub

y[ 0 ]= 0.2500 s[ 0 ]= 0. L[ 0 ]= -1. U[ 0 ]= 1.

y[ 1 ]= 0.125 s[ 1 ]= 0. L[ 1 ]= -1. U[ 1 ]= 0.5

y[ 2 ]= 0. s[ 2 ]= 1.0000 L[ 2 ]= -1. U[ 2 ]= inf
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A.4 Multi-commodityFlow.ipynb



Multi-commodityFlow

June 25, 2021

Multi-Commodity Network-Flow model: constraint-style LP with Python/Gurobi

min
K

∑
k=1

∑
e∈A

ck
e xk

e

∑
e∈A : t(e)=v

xk
e − ∑

e∈A : h(e)=v
xk

e = bk
v, for v ∈ N , k = 1, 2, . . . , K;

K

∑
k=0

xk
e ≤ ue, for e ∈ A;

xk
e ≥ 0, for e ∈ A, k = 1, 2, . . . , K

Notes: * K=1 is ordinary single-commodity network flow. Integer solutions for free when node-
supplies and arc capacities are integer. * K=2 example below with integer data gives a fractional
basic optimum. This example doesn’t have any feasible integer flow at all.

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License

Copyright (c) 2021 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.



[1]: %reset -f

import itertools

import numpy as np

#%matplotlib notebook

%matplotlib inline

import matplotlib.pyplot as plt

import gurobipy as gp

from gurobipy import GRB

import networkx as nx

class StopExecution(Exception):

def _render_traceback_(self):

pass

[2]: # parameters

solveLPOnly=True # set False to solve as an IP

[3]: # # Some toy data: 1 commodity

# Supplies= {

# # node i: [supply commodity[1] ... supply commodity[K]],

# 1: [12.],

# 2: [6.],

# 3: [-2.],

# 4: [0.],

# 5: [-9.],

# 6: [-7.]}

# CapacityCosts = {

# # arc (i,j): [capacity, cost commodity[1] ... cost commodity[K]],

# (1,2): [6., 2],

# (1,3): [8., -5],

# (2,4): [5., 3],

# (2,5): [7., 12],

# (3,5): [5., -9],

# (4,5): [8., 2],

# (4,6): [5., 0],

# (5,6): [5., 4]}

# Some toy data: 2 commodities with a fractional LP basic optimum

Supplies= {

# node i: [supply commodity[1] ... supply commodity[K]],

1: [1., 0.],

2: [0., -1.],

3: [0., 0.],

4: [0., 0.],

5: [0., 0.],

6: [0., 0.],



7: [0., 1.],

8: [-1., 0.]}

CapacityCosts = {

# arc (i,j): [capacity, cost commodity[1] ... cost commodity[K]],

(1,2): [1., 1, 1],

(1,3): [1., 1, 1],

(2,5): [1., 1, 1],

(3,4): [1., 1, 1],

(4,1): [1., 1, 1],

(4,7): [1., 1, 1],

(5,6): [1., 1, 1],

(6,2): [1., 1, 1],

(6,8): [1., 1, 1],

(7,3): [1., 1, 1],

(7,8): [1., 1, 1],

(8,5): [1., 1, 1]}

[4]: Nodes=list(Supplies.keys()) # get node list from supply data

K=len(Supplies[Nodes[0]]) # get number of commodities from supply data

Commods=list(range(1,K+1)) # name the commodities 1,2,...,K

Arcs=list(CapacityCosts.keys()) # get arc list from Capacity/Cost data

ArcsCrossCommods=list(itertools.product(Arcs,Commods)) # make cross product of 

↪→Arcs and Commods for variable indexing

[5]: model = gp.Model()

if solveLPOnly==True:

x = model.addVars(ArcsCrossCommods)

else:

x = model.addVars(ArcsCrossCommods,vtype=GRB.INTEGER)

model.setObjective(sum(sum(CapacityCosts[i,j][k]*x[(i,j),k] for (i,j) in Arcs) 

↪→for k in Commods), GRB.MINIMIZE)

model.addConstrs(sum(x[(i,j),k] for k in Commods) <= CapacityCosts[i,j][0] for 

↪→(i,j) in Arcs)

model.addConstrs(

(sum(x[(i, j),k] for j in Nodes if (i, j) in Arcs) - sum(x[(j, i),k] for j in 

↪→Nodes if (j,i) in Arcs)

== Supplies[i][k-1] for i in Nodes for k in Commods))

model.update()

--------------------------------------------

Warning: your license will expire in 3 days

--------------------------------------------

Using license file C:\Users\jonxlee\gurobi.lic

Academic license - for non-commercial use only - expires 2021-06-28



[6]: model.optimize()

if model.status != GRB.Status.OPTIMAL:

print("***** Gurobi solve status:", model.status)

print("***** This is a problem. Model does not have an optimal solution")

raise StopExecution

print(" ")

print("***** Flows:")

for (i,j) in Arcs:

arcflow=""

for k in Commods:

arcflow += str(round(x[(i,j),k].X,4))

arcflow += " "

print("x[(",i,",",j,"), *]=", arcflow, "capacity:", CapacityCosts[i,j][0])

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 28 rows, 24 columns and 72 nonzeros

Model fingerprint: 0xf7e9da00

Coefficient statistics:

Matrix range [1e+00, 1e+00]

Objective range [1e+00, 1e+00]

Bounds range [0e+00, 0e+00]

RHS range [1e+00, 1e+00]

Presolve removed 26 rows and 22 columns

Presolve time: 0.01s

Presolved: 2 rows, 2 columns, 4 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time

0 8.0000000e+00 1.000000e+00 0.000000e+00 0s

1 8.0000000e+00 0.000000e+00 0.000000e+00 0s

Solved in 1 iterations and 0.01 seconds

Optimal objective 8.000000000e+00

***** Flows:

x[( 1 , 2 ), *]= 0.5 0.5 capacity: 1.0

x[( 1 , 3 ), *]= 0.5 0.0 capacity: 1.0

x[( 2 , 5 ), *]= 0.5 0.0 capacity: 1.0

x[( 3 , 4 ), *]= 0.5 0.5 capacity: 1.0

x[( 4 , 1 ), *]= 0.0 0.5 capacity: 1.0

x[( 4 , 7 ), *]= 0.5 0.0 capacity: 1.0

x[( 5 , 6 ), *]= 0.5 0.5 capacity: 1.0

x[( 6 , 2 ), *]= 0.0 0.5 capacity: 1.0

x[( 6 , 8 ), *]= 0.5 0.0 capacity: 1.0

x[( 7 , 3 ), *]= 0.0 0.5 capacity: 1.0

x[( 7 , 8 ), *]= 0.5 0.5 capacity: 1.0

x[( 8 , 5 ), *]= 0.0 0.5 capacity: 1.0



[7]: G = nx.DiGraph()

G.add_nodes_from(Nodes)

G.add_edges_from(Arcs)

plt.figure(figsize=(8,8))

edge_labels=nx.draw_networkx_edge_labels(G,edge_labels=CapacityCosts,

pos=nx.shell_layout(G), label_pos=0.3, font_size=10)

nx.draw_shell(G, with_labels=True, node_color='cyan', node_size=800,

font_size=20, arrowsize=20)

print("Network with node labels and capacities/costs on arcs")

Network with node labels and capacities/costs on arcs



[8]: #k=2

for k in Commods:

Supply1_label={}

for i in Nodes:

Supply1_label[i]= str(i)+': '+str(Supplies[i][k-1])

Flow0=np.zeros(len(Arcs))

Flow=dict(zip(list(Arcs), Flow0))

for (i,j) in Arcs: Flow[i,j]= str(round(x[(i,j),k].X,4))

H=nx.relabel_nodes(G, Supply1_label)

plt.figure(figsize=(8,8))

edge_labels=nx.draw_networkx_edge_labels(H,edge_labels=Flow,

pos=nx.shell_layout(G), label_pos=0.7, font_size=10)

nx.draw_shell(H, with_labels=True, node_color='cyan',

node_size=1200, font_size=10, arrowsize=15)

print("Network with supplies and flows for commodity ",k)

Network with supplies and flows for commodity 1

Network with supplies and flows for commodity 2









153

A.5 pivot_example.ipynb



pivot_example

June 25, 2021

Example: pivot tools for standard form linear-optimization problem P

For standard-form problems

z = min c′x (P)
Ax = b
x ≥ 0.

Notes: * Can work with ε perturbed right-hand side

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License

Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

[1]: %reset -f

[2]: %run ./pivot_tools.ipynb

pivot_tools loaded: pivot_perturb, pivot_algebra, N, pivot_ratios, pivot_swap,

pivot_plot, pure_gomory, mixed_gomory, dual_plot



[3]: A = sym.Matrix(([1, 2, 1, 0, 0, 0],

[3, 1, 0, 1, 0, 0],

[sym.Rational(3,2), sym.Rational(3,2), 0, 0, 1, 0],

[0, 1, 0, 0, 0, 1]))

m = A.shape[0]

n = A. shape[1]

c = sym.Matrix([6, 7, -2, 0, 4, sym.Rational(9,2)])

b = sym.Matrix([7, 9, 6, sym.Rational(33,10)])

beta = [0,1,3,5]

eta = list(set(list(range(n)))-set(beta))

A_beta = copy.copy(A[:,beta])

A_eta = copy.copy(A[:,eta])

c_beta = copy.copy(c[beta,0])

c_eta = copy.copy(c[eta,0])

Perturb=False ### do NOT change this!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! You 

↪→can perturb later

[4]: A

[4]: 


1 2 1 0 0 0
3 1 0 1 0 0
3
2

3
2 0 0 1 0

0 1 0 0 0 1




[5]: c

[5]: 


6
7
−2
0
4
9
2




[6]: #pivot_perturb() # uncomment to perturb the right-hand side

[7]: b

[7]: 


7
9
6
33
10




[8]: beta

[8]:
[0, 1, 3, 5]

[9]: eta

[9]:
[2, 4]



[10]: A_beta

[10]: 


1 2 0 0
3 1 1 0
3
2

3
2 0 0

0 1 0 1




[11]: A_eta

[11]: 


1 0
0 0
0 1
0 0




[12]: pivot_algebra()

pivot_algebra() done

[13]: sym.N(objval)

[13]:
28.35

[14]: xbar_beta

[14]: 


1
3
3
3
10




[15]: cbar_eta

[15]: [ 3
2
− 7

3

]

[16]: pivot_ratios(1)




3
4
∞
∞
9
20




x̄ + λz̄ :



1− 4λ
3

2λ
3 + 3

0
10λ

3 + 3
λ

3
10 − 2λ

3






[17]: c.dot(zbar) # agrees with cbar_eta(1)

[17]:
−7

3

[18]: pivot_plot()

[19]: pivot_swap(1,3)

swap accepted �- new partition:

eta: [2, 5]

beta: [0, 1, 3, 4]

*** MUST APPLY pivot_algebra()! ***



[20]: pivot_algebra()

pivot_algebra() done

[21]: sym.N(objval)

[21]:
27.3

[22]: xbar_beta

[22]: 


2
5
33
10
9
2
9
20




[23]: cbar_eta

[23]: [−2
7
2

]

[24]: pivot_ratios(0)




2
5
∞
∞
∞




x̄ + λz̄ :



2
5 − λ

33
10
λ

3λ + 9
2

3λ
2 + 9

20
0




[25]: c.dot(zbar) # agrees with cbar_eta(0)

[25]: −2

[26]: pivot_plot()



[27]: pivot_swap(0,0)

swap accepted �- new partition:

eta: [0, 5]

beta: [2, 1, 3, 4]

*** MUST APPLY pivot_algebra()! ***

[28]: pivot_algebra()

pivot_algebra() done

[29]: sym.N(objval)



[29]:
26.5

[30]: xbar_beta

[30]: 


2
5
33
10
57
10
21
20




[31]: cbar_eta

[31]: [ 2
− 1

2

]

[32]: pivot_ratios(1)




∞
33
10
∞
∞




x̄ + λz̄ :



0
33
10 − λ

2λ + 2
5

λ + 57
10

3λ
2 + 21

20
λ




[33]: c.dot(zbar) # agrees with cbar_eta(1)

[33]:
−1

2

[34]: pivot_plot()



[35]: pivot_swap(1,1)

swap accepted �- new partition:

eta: [0, 1]

beta: [2, 5, 3, 4]

*** MUST APPLY pivot_algebra()! ***

[36]: pivot_algebra()

pivot_algebra() done

[37]: sym.N(objval)



[37]:
24.85

[38]: xbar_beta

[38]: 


7
33
10
9
6




[39]: cbar_eta

[39]: [2
1
2

]

[40]: pivot_plot()



[41]: xbar

[41]: 


0
0
7
9
6
33
10




[42]: objval

[42]: 497
20

[43]: c.dot(xbar) # reality check

[43]: 497
20

[44]: c_beta.dot(xbar_beta) # reality check

[44]: 497
20

[45]: ybar.dot(b) # reality check

[45]: 497
20

[46]: sym.transpose(c)-sym.transpose(ybar)*A # reality check

[46]: [
2 1

2 0 0 0 0
]

[47]: b-A*xbar # reality check

[47]: 


0
0
0
0



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A.6 pivot_tools.ipynb



pivot_tools

June 25, 2021

Pivot tools for standard form linear-optimization problem P

For standard-form problems

z = min c′x (P)
Ax = b
x ≥ 0.

Notes: * Can work with ε perturbed right-hand side * β = (β0, β1, . . . , βm−1) has m entries from
{0, 1, . . . , n− 1}. * η = (η0, η1, . . . , ηn−m−1) has n− m entries from {0, 1, . . . , n− 1}. * So, for the
purpose of selecting j (corresponding to ηj entering the basis), we view c̄η = (c̄η0 , c̄η1 , . . . , c̄ηn−m−1).
* For pivot_ratios(j): j must be in {0, 1, . . . , n−m− 1}. The output of pivot_ratios(j) is m numbers,
and they correspond to the basic variables numbered β0, β1, . . . , βm−1. So, for the purpose of se-
lecting i (correspond to βi leaving the basis), i must be in {0, 1, . . . , m− 1}. * For pivot_swap(j,i): j
must be in {0, 1, . . . , n−m− 1} and i must be in {0, 1, . . . , m− 1}.
References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License

Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.



[ ]: import numpy as np

import sympy as sym

sym.init_printing()

import copy

import operator

eps = sym.symbols('epsilon')

lam = sym.symbols('lambda')

xlz = sym.Symbol('\\bar{x}+\\lambda \\bar{z} :')

from IPython.display import Latex, Math

#########################################################################

### CHOOSE A BACKEND --- IF YOU SWITCH, RESTART THE KERNEL

# evaluates faster than 'notebook':

%matplotlib inline

# evaluates slower than 'inline' (gives interactive plots, though delayed when 

↪→running all cells):

#%matplotlib notebook

#########################################################################

import matplotlib.pyplot as plt

from matplotlib.patches import Polygon

from matplotlib.ticker import AutoMinorLocator, MultipleLocator

from scipy.spatial import ConvexHull, convex_hull_plot_2d

import itertools

import seaborn as sns; sns.set(); sns.set_style("whitegrid"); color_list = sns.

↪→color_palette("muted")

[ ]: # perturb

def pivot_perturb():

global m, b, Perturb, eps

Perturb = True

for i in range(m):

for j in range(m):

b[i] += A_beta[i,j]*eps**(j+1)

print('pivot_perturb() done')

[ ]: # algebra

def pivot_algebra():

global m, n, objval, xbar, xbar_beta, xbar_eta, ybar, cbar_eta, ratios

xbar_beta = A_beta.solve(b)

xbar_eta = sym.zeros(n-m,1)

objval = c_beta.dot(xbar_beta)

xbar = sym.zeros(n,1)

for i in range(m): xbar[beta[i]]=xbar_beta[i]

for j in range(n-m): xbar[eta[j]]=xbar_eta[j]

ybar = A_beta.transpose().solve(c[beta,0])

#cbar_eta = c_eta.transpose()- ybar.transpose()*A_eta

cbar_eta = c_eta- A_eta.transpose()*ybar

ratios=sym.oo*sym.ones(m,1)



print('pivot_algebra() done')

[ ]: # numerical version of a d-by-1 array

def N(parray):

for i in range(parray.shape[0]): display(sym.N(parray[i]))

[ ]: # ratios (and direction) for a given nonbasic index eta_j

def pivot_ratios(j):

global ratios, zbar

if j>n-m-1:

display(Latex("error: $j$ is out of range."))

else:

A_etaj=copy.copy(A[:,eta[j]])

Abar_etaj = A_beta.solve(A_etaj)

for i in range(m):

if Abar_etaj[i] > 0:

ratios[i] = xbar_beta[i] / Abar_etaj[i]

else:

ratios[i] = sym.oo

display(ratios)

zbar=sym.zeros(n,1)

for i in range(m): zbar[beta[i]] = -Abar_etaj[i]

zbar[eta[j]] = 1

display(xlz,xbar+lam*zbar)

[ ]: # swap nonbasic eta_j in and basic beta_i out

def pivot_swap(j,i):

global A_beta, A_eta, c_beta, c_eta

if i>m-1 or j>n-m-1:

display(Latex("error: $j$ or $i$ is out of range. swap not accepted"))

else:

save = copy.copy(beta[i])

beta[i] = copy.copy(eta[j])

eta[j] = save

A_beta = copy.copy(A[:,beta])

A_eta = copy.copy(A[:,eta])

c_beta = copy.copy(c[beta,0])

c_eta = copy.copy(c[eta,0])

display(Latex("swap accepted --- new partition:"))

print('eta:',eta)

print('beta:',beta)

print('*** MUST APPLY pivot_algebra()! ***')

[ ]: # plot

def pivot_plot():

if n-m != 2 or Perturb == True:

display(Latex("Hey friend --- give me a break!"))



display(Latex("This plotting only works if there are $n-m=2$ nonbasic 

↪→variables and no rhs perturbation"))

return

A_beta_inv = A_beta.inv()

Abar_eta = A_beta_inv*A_eta

M = sym.zeros(n,n-m)

M[0:m,:] = Abar_eta

M[m:n,:] = -sym.eye(n-m)

h = sym.zeros(n,1)

h[0:m,0] = xbar_beta

feaspoints=np.empty((0,2))

infeaspoints=np.empty((0,2))

bbar=sym.zeros(2,1)

M2=sym.zeros(2,2)

for i in range(n-1):

for j in range(i+1,n):

bbar[0]=h[i]

bbar[1]=h[j]

M2[0,:]=M[i,:]

M2[1,:]=M[j,:]

if abs(sym.det(M2)) >0.0001:

xy = M2.solve(bbar)

if min(h - M*xy) >= -0.00001:

feaspoints=np.r_[feaspoints,np.transpose(xy)]

else:

infeaspoints=np.r_[infeaspoints,np.transpose(xy)]

hull = ConvexHull(feaspoints)

fig, ax = plt.subplots(figsize=(8,8))

ax.set(xlabel=r"$x_{}$".format(eta[0]), ylabel=r"$x_{}$".format(eta[1]))

ax.spines['left'].set_position(('data',0.0))

ax.spines['bottom'].set_position(('data',0.0))

ax.spines['right'].set_color('none')

ax.spines['top'].set_color('none')

ax.xaxis.set_ticks_position('bottom')

ax.yaxis.set_ticks_position('left')

plt.xlim(float(min(cbar_eta[0],min(feaspoints[:,0])))-1.25, 

↪→float(max(feaspoints[:,0]))+0.25)

plt.ylim(float(min(cbar_eta[1],min(feaspoints[:,1])))-0.25, 

↪→float(max(feaspoints[:,1]))+0.25)

plt.fill(feaspoints[hull.vertices,0], feaspoints[hull.vertices,1], 'cyan', 

↪→alpha=0.3)

x = np.linspace(float(min(feaspoints[:,0]))-0.5,float(max(feaspoints[:

↪→,0]))+0.5,100)

for i in range(m):

if Abar_eta[i,1] != 0:

y = (xbar_beta[i] - Abar_eta[i,0]*x) / Abar_eta[i,1]

plt.plot(x, y, linewidth=3, label=r"$x_{}$".format(beta[i]))



else:

plt.vlines(float(xbar_beta[i]/ Abar_eta[i,0]), 

↪→float(min(cbar_eta[1],min(feaspoints[:,1]))),

float(max(feaspoints[:,0])), label=r"$x_{}$".

↪→format(beta[i]))

for simplex in hull.simplices:

plt.fill(feaspoints[simplex, 0], feaspoints[simplex, 1], 'cyan', 

↪→alpha=0.5)

arrow=plt.arrow(0,0, float(cbar_eta[0]),float(cbar_eta[1]), color='magenta', 

↪→width = 0.02, head_width = 0.1, label=r"$\bar{c}_\eta$")

ax.scatter(feaspoints[:,0], feaspoints[:,1], color='green',zorder=8)

ax.scatter(infeaspoints[:,0], infeaspoints[:,1], color='red',zorder=7)

plt.legend(loc="upper left",title="slacks")

plt.title(r"In the space of the non-basic variables",size=18)

#ax.grid()

plt.show()

Gomory cutting-plane tool for dual-form pure-integer problem DI

For dual-form pure-integer problem

max y′b (DI )
y′A ≤ c′

y ∈ Zm.

Notes: * A and c MUST be integer * The variables are y0, y1, . . . , ym−1, so valid input arguments
for pure_gomory(i) are i ∈ {0, 1, . . . , m− 1}.
Reference: * Qi He, Jon Lee. Another pedagogy for pure-integer Gomory. RAIRO – Operations
Research, 51:189–197, 2017.

[ ]: # pure gomory cut

def pure_gomory(i):

global A, c, A_beta, A_eta, c_eta, cbar_eta, m, n, beta, eta

if i>m-1:

display(Latex("error: $i$ is out of range."))

else:

ei = sym.zeros(m,1)

ei[i]=1 # ei is the i-th standard unit column

hi = A_beta.solve(ei) # i-th column of basis inverse

#r = -sym.floor(hi) # best choice of r

r = -(hi.applyfunc(sym.floor))

btilde = ei + A_beta*r # new column for P

A = A.row_join(btilde)

c = c.col_join(sym.Matrix(([sym.floor(ybar.dot(btilde))])))

eta.insert(n-m,n)

n += 1



A_eta = copy.copy(A[:,eta])

c_eta = copy.copy(c[eta,0])

cbar_eta = c_eta - A_eta.transpose()*ybar

print('*** PROBABLY WANT TO APPLY pivot_algebra()! ***')

[ ]: # dual plot

def dual_plot(delta=None,center=None):

if delta==None: delta=2

if center==None: center=ybar

if m != 2 or Perturb == True:

display(Latex("Hey friend --- give me a break!"))

display(Latex("This plotting only works if there are $m=2$ dual 

↪→variables and no rhs perturbation"))

return

M=sym.transpose(A)

feaspoints=np.empty((0,2))

infeaspoints=np.empty((0,2))

c2=sym.zeros(2,1)

M2=sym.zeros(2,2)

for i in range(n-1):

for j in range(i+1,n):

c2[0]=c[i]

c2[1]=c[j]

M2[0,:]=M[i,:]

M2[1,:]=M[j,:]

if abs(sym.det(M2)) > 0.0001:

y0y1 = M2.solve(c2)

if min(c - M*y0y1) >= -0.00001:

feaspoints=np.r_[feaspoints,np.transpose(y0y1)]

else:

infeaspoints=np.r_[infeaspoints,np.transpose(y0y1)]

hull = ConvexHull(feaspoints)

fig, ax = plt.subplots(figsize=(8,8))

ax.xaxis.set_label_coords(1.05, 0.49)

ax.yaxis.set_label_coords(0.5, 1.05)

ax.set(xlabel=r"$y_{}$".format(0), ylabel=r"$y_{}$".format(1))

ax.spines['left'].set_position(('data',ybar[0]))

ax.spines['bottom'].set_position(('data',ybar[1]))

ax.spines['right'].set_color('none')

ax.spines['top'].set_color('none')

# set major ticks to show every 1 (integer)

ax.xaxis.set_major_locator(MultipleLocator(1))

ax.yaxis.set_major_locator(MultipleLocator(1))

ax.xaxis.set_ticks_position('bottom')

ax.yaxis.set_ticks_position('left')

plt.xlim(float(center[0])-delta,float(center[0])+delta)

plt.ylim(float(center[1])-delta,float(center[1])+delta)



plt.fill(feaspoints[hull.vertices,0], feaspoints[hull.vertices,1], 'cyan', 

↪→alpha=0.3)

y1 = np.linspace(float(min(feaspoints[:,0]))-0.5,float(max(feaspoints[:

↪→,0]))+0.5,100)

for j in range(n):

if M[j,1] != 0:

y2 = (c[j] - M[j,0]*y1) / M[j,1]

plt.plot(y1, y2, linewidth=2, label=r"constraint ${}$".format(j))

else:

plt.vlines(float(c[j]/ M[j,0]), float(center[1])-delta,

float(center[1])+delta, linewidth=2, label=r"constraint 

↪→${}$".format(j))

for simplex in hull.simplices:

plt.fill(feaspoints[simplex, 0], feaspoints[simplex, 1], 'cyan', 

↪→alpha=0.5)

arrow=plt.arrow(float(ybar[0]),float(ybar[1]),0.5*float(b[0]/(b.dot(b))**0.

↪→5),0.5*float(b[1]/(b.dot(b))**0.5), color='magenta', width = 0.01*delta, 

↪→head_width = 0.02*delta, label=r"$b$")

ax.scatter(feaspoints[:,0], feaspoints[:,1], color='green',zorder=8)

ax.scatter(infeaspoints[:,0], infeaspoints[:,1], color='red',zorder=7)

# the integer grid

xp = np.arange(np.floor(float(center[0])-delta)-1, np.

↪→ceil(float(center[0])+delta)+2)

yp = np.arange(np.floor(float(center[1])-delta)-1, np.

↪→ceil(float(center[1])+delta)+2)

pp = itertools.product(xp, yp)

plt.scatter(*zip(*pp), marker='o', s=5, color='black',zorder=9)

# sorting plot legend entries by label

handles, labels = ax.get_legend_handles_labels()

hl = sorted(zip(handles, labels), key=operator.itemgetter(1))

handles2, labels2 = zip(*hl)

ax.legend(handles2, labels2, loc="lower left",title="constraints")

ax.grid(which='major')

plt.show()

[ ]: print('pivot_tools loaded: pivot_perturb, pivot_algebra, N, pivot_ratios, 

↪→pivot_swap, pivot_plot, pure_gomory, mixed_gomory, dual_plot')
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A.7 Circle.ipynb



Circle

June 25, 2021

Hoffman’s circle

Reference: * Jon Lee. Hoffman’s circle untangled. SIAM Review, 39(1):98-105, 1997.

MIT License

Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

[1]: import numpy as np

#%matplotlib notebook

%matplotlib inline

import mpl_toolkits.mplot3d as a3

import matplotlib.colors as colors

import pylab as pl

t = 2 * np.pi/5

c = np.cos(t)

s = np.sin(t)

M = np.array([[c, -s, 0], [s, c, 0], [(c - 1)/c, s/c, 1]])

x = np.array((1,0,0))

y = np.array((0, 0.5*np.tan(t/2), 0))

T=np.row_stack((x,y, M.dot(x), M.dot(y), M.dot(M.dot(x)), M.dot(M.dot(y)),

M.dot(M.dot(M.dot(x))), M.dot(M.dot(M.dot(y))),

M.dot(M.dot(M.dot(M.dot(x)))), M.dot(M.dot(M.dot(M.dot(y)))), x))



ax = a3.Axes3D(pl.figure(figsize=(5,8)),azim=42,elev=15)

for i in range(10):

vtx = np.row_stack(([0,0,0],T[i],T[i+1]))

tri = a3.art3d.Poly3DCollection([vtx])

tri.set_color(colors.rgb2hex(np.random.rand(3)))

tri.set_edgecolor('k')

ax.add_collection3d(tri)

ax.set_xlim3d(-1,1)

ax.set_ylim3d(-1,1)

ax.set_zlim3d(-3,4)

pl.show()
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A.8 Decomp.ipynb



Decomp

June 25, 2021

Decomposition Algorithm with Python/Gurobi

Apply the (Dantzig-Wolfe) Decomposition Algorithm to:

z = min c′x (Q)
Ex ≥ h
Ax = b
x ≥ 0,

treating Ex ≥ h as the “complicating constraints’ ’.

Notes: * In this implementaion, we never delete generated columns

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License

Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

[1]: %reset -f

import numpy as np

#%matplotlib notebook



%matplotlib inline

import matplotlib.pyplot as plt

import gurobipy as gp

from gurobipy import GRB

class StopExecution(Exception):

def _render_traceback_(self):

pass

[2]: MAXIT = 500

# generate a random example

n = 100 # number of variables

m1 = 200 # number of equations to relax

m2 = 50 # number of equations to keep

np.random.seed(25) # change the seed for a differemt example

E=0.01*np.random.randint(-5,high=5,size=(m1,n)).astype(float) #np.random.

↪→randn(m1,nt)

A=0.01*np.random.randint(-2,high=3,size=(m2,n)).astype(float) #np.random.

↪→randn(m2,nt)

# choose the right-hand sides so that Q will be feasible

xfeas=0.1*np.random.randint(0,high=5,size=n).astype(float)

h=E.dot(xfeas) - 0.1*np.random.randint(0,high=10,size=m1).astype(float)

b=A.dot(xfeas)

# choose the objective function so that the dual of Q will be feasible

yfeas=0.1*np.random.randint(0,high=5,size=m1).astype(float)

pifeas=0.1*np.random.randint(-5,high=5,size=m2).astype(float)

c=np.transpose(E)@yfeas + np.transpose(A)@pifeas + 0.1*np.random.

↪→randint(0,high=1,size=n).astype(float)

[3]: print("***** Solve as one big LP --- for comparison purposes")

modelQ = gp.Model()

modelQ.reset()

xQ = modelQ.addMVar(n)

objective = modelQ.setObjective(c@xQ, GRB.MINIMIZE)

constraintsQ1 = modelQ.addConstr(E@xQ >= h)

constraintsQ2 = modelQ.addConstr(A@xQ == b)

modelQ.optimize()

if modelQ.status != GRB.Status.OPTIMAL:

print("***** Gurobi solve status:", modelQ.status)

print("***** This is a problem. Stopping execution.")

raise StopExecution

print(" ")

print("***** Proceed to Decomposition")

# initialization for Decomposition



results1=[]

results2=[]

ITER=0

xgen=0

zgen=0

y=np.zeros(m1)

# set up the Subproblem model and get one basic feasible solution

modelS = gp.Model()

#modelS.setParam('OutputFlag', 0) # quiet the Gurobi output

x = modelS.addMVar(n)

constraintsS = modelS.addConstr(A@x == b)

#modelS.setObjective(c@x, GRB.MINIMIZE)

modelS.optimize()

if modelS.status != GRB.Status.OPTIMAL:

print("***** Gurobi (initial) Subproblem solve status:", modelS.status)

print("***** This is a problem. Stopping execution.")

raise StopExecution

xgen += 1

# construct a basis

XZ=np.reshape(x.X,(n,1))

#Z=np.r_[np.zeros((n-m1,m1)),np.eye(m1)]

#Z=np.empty((n,0), dtype=float)

h1=np.r_[h,(1)]

#B=np.c_[np.r_[np.eye(m1),np.zeros((1,m1))],np.r_[E@x.X,(1)]]

B=np.c_[-np.r_[np.eye(m1),np.zeros((1,m1))],np.r_[E@x.X,(1)]]

# set up the Main Phase-2 model

modelM2 = gp.Model()

s = modelM2.addMVar(m1+1)

modelM2.setObjective(c@x.X*s[m1], GRB.MINIMIZE)

modelM2.addConstrs((-s[i] + E[i,:]@x.X*s[m1] == h[i] for i in range(m1)))

modelM2.addConstr(s[m1]==1)

modelM2.update()

constraintsM2=modelM2.getConstrs()

# Identify if the constructed basis is feasible to see if Phase 1 is needed

if min(np.linalg.solve(B, h1)) >= -1e-10:

print('***** Phase I not needed')

Phase=2

modelM=modelM2

else:

print('***** Phase I needed')

Phase=1

ITERphaseI=1



modelM1=modelM2.copy()

#modelM1.setParam('OutputFlag', 0) # quiet the Gurobi output

constraintsM1=modelM1.getConstrs()

# create the artificial variable

newcol=gp.Column(-np.r_[E@x.X-np.ones(m1),(1)],constraintsM1)

modelM1.setObjective(0.0, GRB.MINIMIZE)

modelM1.addVar(obj=1.0, column=newcol, name='artificial')

modelM=modelM1

while True:

ITER += 1

print(" ")

print("***** Currently in Phase", Phase, ". Iteration number", ITER)

print("***** Solving Main LP...")

modelM.optimize()

if modelM.status != GRB.Status.OPTIMAL:

print("***** Gurobi Main solve status:", modelM.status)

print("***** This is a problem. Stopping execution.")

raise StopExecution

results1=np.append(results1,ITER-1)

results2=np.append(results2,modelM.Objval)

if Phase==1 and modelM.Objval < 0.0000001:

print("***** Phase I succeeded")

print("LP iter", " LP val")

print("--------- ---------")

for j in range(ITER):

print(np.int(results1[j]), " ", np.round(results2[j],9))

fig, ax = plt.subplots(figsize=(10,10))

ax.plot(results1[0:ITER], results2[0:ITER])

ax.set(xlabel='iteration', ylabel='LP objective value')

ax.set_xticks(ticks=results1, minor=False)

ax.grid()

plt.show()

ITERphaseI=ITER

Phase=2

# switch to the Phase II model

modelM=modelM2

modelM.optimize()

# overwrite last iteration result with phase-II objective value

results2[ITER-1]=modelM.Objval

if ITER == MAXIT: break

constraintsM=modelM.getConstrs()

for i in range(m1):

y[i]=constraintsM[i].Pi

sigma=constraintsM[m1].Pi

if Phase==1: modelS.setObjective((-y.dot(E))@x, GRB.MINIMIZE)



else: modelS.setObjective((c-y.dot(E))@x, GRB.MINIMIZE)

print(" ")

print("***** Solving Subproblem LP...")

modelS.optimize()

if modelS.status != GRB.Status.OPTIMAL and modelS.status != GRB.Status.

↪→UNBOUNDED:

print("***** Gurobi Subproblem solve status:", modelS.status)

print("***** This is a problem. Stopping execution.")

raise StopExecution

if modelS.status == GRB.Status.OPTIMAL:

print("***** Gurobi Subproblem solve status:", modelS.status)

reducedcost = -sigma + modelS.Objval

print("***** sigma=",sigma)

print("***** reduced cost=",reducedcost)

if reducedcost < -0.0001:

xnew=x.X

if Phase==1:

newcol=gp.Column(np.r_[E@xnew,(1)],constraintsM1)

modelM1.addVar(obj=0.0, column=newcol)

newcol=gp.Column(np.r_[E@xnew,(1)],constraintsM2)

modelM2.addVar(obj=c@xnew, column=newcol)

XZ=np.c_[XZ,xnew]

xgen += 1

else:

if Phase==1:

print("***** No more improving columns for Main")

print("***** Phase I finished without a feasible solution")

print("***** Phase I objective", modelM.Objval)

break

else: # Phase 2

print("***** No more improving columns for Main")

print("***** Phase II finished")

print("***** Phase II objective", modelM.Objval)

break

if modelS.status == GRB.Status.UNBOUNDED:

print("***** Gurobi Subproblem solve status:", modelS.status)

znew=x.UnbdRay

if Phase==1:

newcol=gp.Column(np.r_[E@znew,(0)],constraintsM1)

modelM1.addVar(obj=0.0, column=newcol)

reducedcost = -y.dot(E)@znew

newcol=gp.Column(np.r_[E@znew,(0)],constraintsM2)

modelM2.addVar(obj=c@znew, column=newcol)

if Phase==2:

reducedcost = (c-y.dot(E))@znew

print("***** reduced cost=", reducedcost)

#if reducedcost > 0.0001: input()



XZ=np.c_[XZ,znew]

zgen += 1

print("LP iter", " LP val")

print("--------- ---------")

for j in range(ITERphaseI-1,ITER):

print(np.int(results1[j]), " ", np.round(results2[j],9))

# recover the solution in the original variables x

greekvar=modelM2.getVars()[m1:ITER+m1]

greekval=np.zeros(ITER)

for i in range(ITER):

greekval[i] = greekvar[i].X

xhat=XZ@greekval

print("***** Reality check: recover the optimal x found by decomposition.")

print("***** Its objective value is:", np.round(c@xhat,9))

print(" ")

print("***** Compare with LP value calculated without decomposition:",np.

↪→round(modelQ.Objval,9))

if ITER > ITERphaseI:

fig, ax = plt.subplots(figsize=(10,10))

ax.plot(results1[ITERphaseI-1:ITER], results2[ITERphaseI-1:ITER])

ax.plot(results1[ITERphaseI-1:ITER], modelQ.Objval*np.

↪→ones(ITER-ITERphaseI+1))

ax.set(xlabel='iteration', ylabel='LP objective value')

ax.set_xticks(ticks=results1[ITERphaseI-1:ITER], minor=True)

ax.grid()

plt.show()

print(" ")

print("***** Number of basic-feasible solutions generated:", xgen)

print(" ")

print("***** Number of basic-feasible rays generated:", zgen)

***** Solve as one big LP --- for comparison purposes

--------------------------------------------

Warning: your license will expire in 3 days

--------------------------------------------

Using license file C:\Users\jonxlee\gurobi.lic

Academic license - for non-commercial use only - expires 2021-06-28

Discarded solution information

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 250 rows, 100 columns and 21957 nonzeros

Model fingerprint: 0xd5eae979

Coefficient statistics:



Matrix range [1e-02, 5e-02]

Objective range [2e-02, 5e-01]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 1e+00]

Presolve time: 0.01s

Presolved: 250 rows, 100 columns, 21957 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time

0 -4.2122000e+31 1.799360e+33 4.212200e+01 0s

211 -5.6119344e+00 0.000000e+00 0.000000e+00 0s

Solved in 211 iterations and 0.04 seconds

Optimal objective -5.611934358e+00

***** Proceed to Decomposition

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Model fingerprint: 0x3f5107c3

Coefficient statistics:

Matrix range [1e-02, 2e-02]

Objective range [0e+00, 0e+00]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]

Presolve time: 0.01s

Presolved: 50 rows, 100 columns, 3992 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time

0 0.0000000e+00 1.271200e+01 0.000000e+00 0s

74 0.0000000e+00 0.000000e+00 0.000000e+00 0s

Solved in 74 iterations and 0.02 seconds

Optimal objective 0.000000000e+00

***** Phase I needed

***** Currently in Phase 1 . Iteration number 1

***** Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 201 rows, 202 columns and 602 nonzeros

Model fingerprint: 0x29dd1f2e

Coefficient statistics:

Matrix range [2e-04, 1e+00]

Objective range [1e+00, 1e+00]

Bounds range [0e+00, 0e+00]

RHS range [2e-03, 1e+00]

Presolve removed 201 rows and 202 columns

Presolve time: 0.00s



Presolve: All rows and columns removed

Iteration Objective Primal Inf. Dual Inf. Time

0 1.1729795e-02 0.000000e+00 0.000000e+00 0s

Solved in 0 iterations and 0.01 seconds

Optimal objective 1.172979517e-02

***** Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [1e-02, 2e-02]

Objective range [1e-02, 5e-02]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]

Iteration Objective Primal Inf. Dual Inf. Time

0 -5.6353739e+30 5.468380e+31 5.635374e+00 0s

Solved in 112 iterations and 0.02 seconds

Unbounded model

***** Gurobi Subproblem solve status: 5

***** reduced cost= -2.901800799665117

***** Currently in Phase 1 . Iteration number 2

***** Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 201 rows, 203 columns and 802 nonzeros

Coefficient statistics:

Matrix range [2e-04, 2e+01]

Objective range [1e+00, 1e+00]

Bounds range [0e+00, 0e+00]

RHS range [2e-03, 1e+00]

Iteration Objective Primal Inf. Dual Inf. Time

0 -3.6272510e+29 1.241503e+32 3.627251e-01 0s

4 9.9780072e-03 0.000000e+00 0.000000e+00 0s

Solved in 4 iterations and 0.01 seconds

Optimal objective 9.978007225e-03

***** Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [1e-02, 2e-02]

Objective range [5e-04, 5e-02]



Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]

Iteration Objective Primal Inf. Dual Inf. Time

0 -7.8114845e+30 0.000000e+00 3.124594e+01 0s

Solved in 0 iterations and 0.01 seconds

Unbounded model

***** Gurobi Subproblem solve status: 5

***** reduced cost= -7.811484455526056

***** Currently in Phase 1 . Iteration number 3

***** Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 201 rows, 204 columns and 1002 nonzeros

Coefficient statistics:

Matrix range [2e-04, 4e+03]

Objective range [1e+00, 1e+00]

Bounds range [0e+00, 0e+00]

RHS range [2e-03, 1e+00]

Iteration Objective Primal Inf. Dual Inf. Time

0 -6.1027222e+28 3.537703e+30 6.102722e-02 0s

1 9.9592529e-03 0.000000e+00 0.000000e+00 0s

Solved in 1 iterations and 0.01 seconds

Optimal objective 9.959252945e-03

***** Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [1e-02, 2e-02]

Objective range [4e-04, 5e-02]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]

Iteration Objective Primal Inf. Dual Inf. Time

0 -1.5688147e+30 0.000000e+00 6.275259e+00 0s

Solved in 0 iterations and 0.01 seconds

Unbounded model

***** Gurobi Subproblem solve status: 5

***** reduced cost= -1.5688147347327117

***** Currently in Phase 1 . Iteration number 4

***** Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads



Optimize a model with 201 rows, 205 columns and 1202 nonzeros

Coefficient statistics:

Matrix range [2e-04, 4e+03]

Objective range [1e+00, 1e+00]

Bounds range [0e+00, 0e+00]

RHS range [2e-03, 1e+00]

Iteration Objective Primal Inf. Dual Inf. Time

0 -2.4512730e+28 1.720162e+30 2.451273e-02 0s

1 9.9527969e-03 0.000000e+00 0.000000e+00 0s

Solved in 1 iterations and 0.01 seconds

Optimal objective 9.952796903e-03

***** Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [1e-02, 2e-02]

Objective range [3e-04, 5e-02]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]

Iteration Objective Primal Inf. Dual Inf. Time

0 -1.8823585e+30 5.931674e+34 7.529434e+00 0s

Solved in 77 iterations and 0.02 seconds

Unbounded model

***** Gurobi Subproblem solve status: 5

***** reduced cost= -0.1282899745878549

.

.

.

.

.

.

***** Currently in Phase 1 . Iteration number 30

***** Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 201 rows, 231 columns and 6413 nonzeros

Coefficient statistics:

Matrix range [9e-05, 4e+03]

Objective range [1e+00, 1e+00]

Bounds range [0e+00, 0e+00]

RHS range [2e-03, 1e+00]



Iteration Objective Primal Inf. Dual Inf. Time

0 -2.0978320e+29 3.303289e+30 2.097832e-01 0s

14 0.0000000e+00 0.000000e+00 0.000000e+00 0s

Solved in 14 iterations and 0.01 seconds

Optimal objective 0.000000000e+00

***** Phase I succeeded

LP iter LP val

--------- ---------

0 0.011729795

1 0.009978007

2 0.009959253

3 0.009952797

4 0.009540816

5 0.009489317

6 0.009481518

7 0.009476081

8 0.009465465

9 0.009463658

10 0.009004181

11 0.008995995

12 0.008995994

13 0.008988601

14 0.007936928

15 0.007613552

16 0.006527189

17 0.005966359

18 0.005907057

19 0.005898025

20 0.005897971

21 0.00589796

22 0.005852746

23 0.005221517

24 0.000209534

25 0.00019799

26 0.000195965

27 0.000166034

28 5.2869e-05

29 0.0



Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 201 rows, 230 columns and 6212 nonzeros

Model fingerprint: 0x5fffefb2

Coefficient statistics:

Matrix range [9e-05, 4e+03]

Objective range [3e+00, 4e+04]

Bounds range [0e+00, 0e+00]

RHS range [2e-03, 1e+00]

Presolve removed 55 rows and 200 columns

Presolve time: 0.01s

Presolved: 146 rows, 30 columns, 4362 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time

0 -5.5652233e+02 5.013465e+02 0.000000e+00 0s



12 -3.3379333e+00 0.000000e+00 0.000000e+00 0s

Solved in 12 iterations and 0.02 seconds

Optimal objective -3.337933307e+00

***** Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [1e-02, 2e-02]

Objective range [3e-03, 1e+00]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]

Iteration Objective Primal Inf. Dual Inf. Time

0 -2.0980458e+32 2.924022e+32 2.098046e+02 0s

Solved in 90 iterations and 0.03 seconds

Unbounded model

***** Gurobi Subproblem solve status: 5

***** reduced cost= -1800.0217056372962

***** Currently in Phase 2 . Iteration number 31

***** Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 201 rows, 231 columns and 6412 nonzeros

Coefficient statistics:

Matrix range [9e-05, 4e+03]

Objective range [3e+00, 4e+04]

Bounds range [0e+00, 0e+00]

RHS range [2e-03, 1e+00]

Iteration Objective Primal Inf. Dual Inf. Time

0 -1.1250136e+32 5.581086e+31 1.125014e+02 0s

8 -3.3480733e+00 0.000000e+00 0.000000e+00 0s

Solved in 8 iterations and 0.01 seconds

Optimal objective -3.348073342e+00

***** Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [1e-02, 2e-02]

Objective range [2e-02, 1e+00]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]



Iteration Objective Primal Inf. Dual Inf. Time

0 -2.7250898e+32 2.809026e+35 2.725090e+02 0s

Solved in 71 iterations and 0.02 seconds

Unbounded model

***** Gurobi Subproblem solve status: 5

***** reduced cost= -246.04454754170908

***** Currently in Phase 2 . Iteration number 32

***** Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 201 rows, 232 columns and 6612 nonzeros

Coefficient statistics:

Matrix range [9e-05, 4e+03]

Objective range [3e+00, 4e+04]

Bounds range [0e+00, 0e+00]

RHS range [2e-03, 1e+00]

Iteration Objective Primal Inf. Dual Inf. Time

0 -6.1511137e+31 3.580951e+31 6.151114e+01 0s

8 -3.3880381e+00 0.000000e+00 0.000000e+00 0s

Solved in 8 iterations and 0.01 seconds

Optimal objective -3.388038102e+00

***** Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [1e-02, 2e-02]

Objective range [2e-03, 2e+00]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]

Iteration Objective Primal Inf. Dual Inf. Time

0 -1.0613914e+32 0.000000e+00 1.061391e+02 0s

Solved in 0 iterations and 0.01 seconds

Unbounded model

***** Gurobi Subproblem solve status: 5

***** reduced cost= -106.13913722403913

***** Currently in Phase 2 . Iteration number 33

***** Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 201 rows, 233 columns and 6812 nonzeros

Coefficient statistics:



Matrix range [9e-05, 4e+03]

Objective range [3e+00, 4e+04]

Bounds range [0e+00, 0e+00]

RHS range [2e-03, 1e+00]

Iteration Objective Primal Inf. Dual Inf. Time

0 -1.6584240e+30 2.503175e+30 1.658424e+00 0s

1 -3.3883900e+00 0.000000e+00 0.000000e+00 0s

Solved in 1 iterations and 0.01 seconds

Optimal objective -3.388390009e+00

***** Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [1e-02, 2e-02]

Objective range [4e-03, 2e+00]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]

Iteration Objective Primal Inf. Dual Inf. Time

0 -7.6231335e+31 6.759435e+34 7.623134e+01 0s

Solved in 53 iterations and 0.01 seconds

Unbounded model

***** Gurobi Subproblem solve status: 5

***** reduced cost= -3.3419183360137676

.

.

.

.

.

.

***** Currently in Phase 2 . Iteration number 402

***** Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 201 rows, 602 columns and 80835 nonzeros

Coefficient statistics:

Matrix range [1e-06, 9e+04]

Objective range [3e+00, 9e+05]

Bounds range [0e+00, 0e+00]

RHS range [2e-03, 1e+00]

Iteration Objective Primal Inf. Dual Inf. Time

0 -4.5864905e+27 2.680439e+30 4.586490e-03 0s

12 -5.6119344e+00 0.000000e+00 0.000000e+00 0s



Solved in 12 iterations and 0.02 seconds

Optimal objective -5.611934358e+00

***** Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [1e-02, 2e-02]

Objective range [2e-03, 6e-01]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]

Iteration Objective Primal Inf. Dual Inf. Time

0 -1.0996308e+00 0.000000e+00 0.000000e+00 0s

Solved in 0 iterations and 0.01 seconds

Optimal objective -1.099630761e+00

***** Gurobi Subproblem solve status: 2

***** sigma= -1.0996307611968144

***** reduced cost= -2.886579864025407e-15

***** No more improving columns for Main

***** Phase II finished

***** Phase II objective -5.611934358015313

LP iter LP val

--------- ---------

29 -3.337933307

30 -3.348073342

31 -3.388038102

32 -3.388390009

33 -3.389532342

34 -3.390085393

35 -3.392675548

36 -3.396216294

37 -3.397063091

38 -3.397096763

39 -3.397100656

40 -3.399325683

41 -3.399516444

42 -3.403298253

43 -3.404126621

44 -3.404216698

45 -3.408199788

46 -3.427992646

47 -3.428853489

48 -3.428915332

49 -3.430004579

50 -3.434533448



51 -3.434578091

52 -3.435023422

53 -3.438204684

54 -3.464591303

55 -3.482106764

56 -3.490610142

57 -3.490932305

58 -3.501570718

59 -3.502282783

60 -3.502396016

61 -3.50255097

62 -3.502559503

63 -3.50255961

64 -3.550147616

65 -3.551899073

66 -3.551960331

67 -3.551969951

68 -3.551974273

69 -3.552126815

70 -3.553304142

71 -3.559367309

72 -3.585686828

73 -3.591579287

74 -3.592097794

75 -3.592099263

76 -3.592106236

77 -3.592166783

78 -3.592167111

79 -3.592260832

80 -3.596953678

81 -3.647858835

82 -3.648322636

83 -3.648823441

84 -3.648949993

85 -3.652426765

86 -3.652868367

87 -3.653271957

88 -3.653291285

89 -3.653357576

90 -3.653383423

91 -3.653470503

92 -3.65349083

93 -3.653526157

94 -3.653531168

95 -3.653533577

96 -3.653739817

97 -3.653741749

98 -3.653769089



99 -3.653784884

100 -3.653787571

101 -3.653789803

102 -3.65379341

103 -3.653852793

104 -3.654009584

105 -3.658634444

106 -3.658687275

107 -3.65871201

108 -3.658712204

109 -3.658814114

110 -3.65885407

111 -3.658860826

112 -3.658860967

113 -3.65925888

114 -3.659299173

115 -3.659304181

116 -3.659369008

117 -3.65937317

118 -3.659571116

119 -3.659591636

120 -3.662523932

121 -3.663623479

122 -3.690648603

123 -3.691647171

124 -3.691920471

125 -3.692219149

126 -3.692226784

127 -3.692227667

128 -3.69224252

129 -3.692262591

130 -3.692263321

131 -3.692280862

132 -3.69685685

133 -3.696945712

134 -3.696946859

135 -3.696994546

136 -3.698976225

137 -3.70918171

138 -3.710432304

139 -3.712114723

140 -3.712283978

141 -3.712284316

142 -3.712505779

143 -3.712494631

144 -3.712494764

145 -3.712494922

146 -3.712495897



147 -3.712496908

148 -3.712496927

149 -3.712496993

150 -3.712638233

151 -3.712645067

152 -3.712645222

153 -3.713073043

154 -3.714257511

155 -3.714998487

156 -3.715013073

157 -3.715280387

158 -3.717719529

159 -3.728594886

160 -3.729083702

161 -3.72921576

162 -3.729824162

163 -3.744162516

164 -3.746749996

165 -3.77967583

166 -3.781225932

167 -3.781468171

168 -3.781479385

169 -3.781487726

170 -3.782062008

171 -3.788729529

172 -3.972231302

173 -3.975517219

174 -3.975557851

175 -3.975558722

176 -3.976423564

177 -3.986095797

178 -4.258082375

179 -4.259585372

180 -4.260048104

181 -4.260287583

182 -4.260424079

183 -4.260467422

184 -4.260468281

185 -4.260522077

186 -4.260526128

187 -4.263706418

188 -4.277614201

189 -4.277885813

190 -4.409400967

191 -4.424280887

192 -4.43257427

193 -4.43473067

194 -4.435537701



195 -4.438437738

196 -4.438457408

197 -4.438590262

198 -4.438593435

199 -4.440856242

200 -4.440958833

201 -4.440996679

202 -4.440997645

203 -4.440998211

204 -4.442302585

205 -4.45460487

206 -4.455341733

207 -4.455354671

208 -4.456026423

209 -4.456211001

210 -4.461281822

211 -4.469839164

212 -4.496361478

213 -4.497160806

214 -4.498120496

215 -4.498468493

216 -4.499015464

217 -4.499138373

218 -4.500065923

219 -4.500068586

220 -4.50008956

221 -4.500082092

222 -4.500070377

223 -4.500071096

224 -4.501173911

225 -4.501176912

226 -4.501399887

227 -4.513787235

228 -4.519158959

229 -4.521410536

230 -4.52145703

231 -4.52172698

232 -4.521732696

233 -4.523604918

234 -4.527626001

235 -4.528792498

236 -4.528966128

237 -4.529101321

238 -4.52910312

239 -4.529107607

240 -4.52912014

241 -4.529120881

242 -4.530701735



243 -4.537670426

244 -4.543712819

245 -4.543776577

246 -4.543786349

247 -4.543843701

248 -4.552229795

249 -4.562895646

250 -4.566556559

251 -4.569979955

252 -4.570164845

253 -4.576497467

254 -4.631658441

255 -4.631948951

256 -4.63426494

257 -4.642431515

258 -4.647712706

259 -4.650776229

260 -4.717520442

261 -4.725017172

262 -4.750776754

263 -4.763716149

264 -4.772849804

265 -4.822353057

266 -4.859152509

267 -4.887218111

268 -4.900392368

269 -4.905109795

270 -4.913457592

271 -4.950264681

272 -4.958831288

273 -4.967308956

274 -4.968549952

275 -4.970439999

276 -4.973099586

277 -4.97367364

278 -5.08041008

279 -5.103975181

280 -5.153945381

281 -5.16617746

282 -5.18042044

283 -5.306079391

284 -5.325503408

285 -5.339985574

286 -5.340005494

287 -5.340323655

288 -5.345260503

289 -5.346623869

290 -5.357443756



291 -5.359033035

292 -5.359033066

293 -5.359033826

294 -5.360459676

295 -5.365110233

296 -5.365571553

297 -5.365658649

298 -5.366202814

299 -5.368920728

300 -5.369390306

301 -5.377392993

302 -5.381176444

303 -5.396181952

304 -5.400643055

305 -5.401286148

306 -5.407390193

307 -5.418281105

308 -5.431235833

309 -5.440408885

310 -5.442246726

311 -5.44295267

312 -5.44666539

313 -5.447514456

314 -5.447957295

315 -5.450120679

316 -5.460446866

317 -5.462434463

318 -5.466522923

319 -5.466532795

320 -5.471456194

321 -5.472807558

322 -5.473479812

323 -5.474296092

324 -5.476893335

325 -5.47831061

326 -5.47844126

327 -5.478470585

328 -5.479990089

329 -5.480742118

330 -5.483757895

331 -5.488471497

332 -5.489758502

333 -5.489930413

334 -5.492845731

335 -5.505524974

336 -5.506461579

337 -5.513494955

338 -5.51693178



339 -5.524576569

340 -5.526151153

341 -5.527584181

342 -5.530487668

343 -5.533704324

344 -5.53799806

345 -5.549260521

346 -5.550891687

347 -5.552268263

348 -5.560029132

349 -5.567472165

350 -5.569508323

351 -5.570169625

352 -5.574374383

353 -5.57526478

354 -5.575745448

355 -5.57853413

356 -5.579312536

357 -5.579508418

358 -5.58225834

359 -5.582374154

360 -5.584805914

361 -5.584957514

362 -5.585573266

363 -5.586538647

364 -5.587187136

365 -5.589449889

366 -5.590118166

367 -5.592863859

368 -5.594737779

369 -5.595086263

370 -5.595586761

371 -5.596032289

372 -5.599250818

373 -5.59996404

374 -5.600327908

375 -5.601578421

376 -5.602616138

377 -5.603063199

378 -5.60359981

379 -5.603868388

380 -5.606775329

381 -5.606968038

382 -5.607355782

383 -5.607960439

384 -5.608439572

385 -5.609511875

386 -5.609740755



387 -5.610708933

388 -5.61093085

389 -5.610956345

390 -5.61118588

391 -5.611261848

392 -5.611352693

393 -5.611479619

394 -5.61151479

395 -5.611620436

396 -5.611689574

397 -5.611735221

398 -5.611799514

399 -5.611839283

400 -5.611860504

401 -5.611934358

***** Reality check: recover the optimal x found by decomposition.

***** Its objective value is: -5.611934358

***** Compare with LP value calculated without decomposition: -5.611934358



***** Number of basic-feasible solutions generated: 235

***** Number of basic-feasible rays generated: 167
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Subgradient Optimization with Python/Gurobi

Apply Subgradient Optimization to:

z = min c′x (Q)
Ex ≥ h
Ax = b
x ≥ 0,

relaxing Ex ≥ h in the Lagrangian.

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License

Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

[1]: %reset -f

import numpy as np

#%matplotlib notebook

%matplotlib inline



import matplotlib.pyplot as plt

import gurobipy as gp

from gurobipy import GRB

class StopExecution(Exception):

def _render_traceback_(self):

pass

[2]: MAXIT = 500

HarmonicStepSize = False # If you choose False, then you have to guess a 

↪→'target value'

GUESS = -5.6 # but don't guess a target value higher than z!!

↪→!!

SmartInitialization = True # Set 'False' to initialize with y=0.

# generate a random example

n = 100 # number of variables

m1 = 200 # number of equations to relax

m2 = 50 # number of equations to keep

np.random.seed(25) # change the seed for a differemt example

E=0.01*np.random.randint(-5,high=5,size=(m1,n)).astype(float) #np.random.

↪→randn(m1,nt)

A=0.01*np.random.randint(-2,high=3,size=(m2,n)).astype(float) #np.random.

↪→randn(m2,nt)

# choose the right-hand sides so that Q will be feasible

xfeas=0.1*np.random.randint(0,high=5,size=n).astype(float)

h=E.dot(xfeas) - 0.1*np.random.randint(0,high=10,size=m1).astype(float)

b=A.dot(xfeas)

# choose the objective function so that the dual of Q will be feasible

yfeas=0.1*np.random.randint(0,high=5,size=m1).astype(float)

pifeas=0.1*np.random.randint(-5,high=5,size=m2).astype(float)

c=np.transpose(E)@yfeas + np.transpose(A)@pifeas + 0.1*np.random.

↪→randint(0,high=1,size=n).astype(float)

[3]: # solve the problem as one big LP --- for comparison purposes

modelQ = gp.Model()

modelQ.reset()

x = modelQ.addMVar(n)

objective = modelQ.setObjective(c@x, GRB.MINIMIZE)

constraintsQ1 = modelQ.addConstr(E@x >= h)

constraintsQ2 = modelQ.addConstr(A@x == b)

modelQ.optimize()

if modelQ.status != GRB.Status.OPTIMAL:

print("***** Gurobi solve status:", modelQ.status)

print("***** This is a problem. Model Q does not have an optimal solution")



raise StopExecution

--------------------------------------------

Warning: your license will expire in 3 days

--------------------------------------------

Using license file C:\Users\jonxlee\gurobi.lic

Academic license - for non-commercial use only - expires 2021-06-28

Discarded solution information

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 250 rows, 100 columns and 21957 nonzeros

Model fingerprint: 0xd5eae979

Coefficient statistics:

Matrix range [1e-02, 5e-02]

Objective range [2e-02, 5e-01]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 1e+00]

Presolve time: 0.01s

Presolved: 250 rows, 100 columns, 21957 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time

0 -4.2122000e+31 1.799360e+33 4.212200e+01 0s

211 -5.6119344e+00 0.000000e+00 0.000000e+00 0s

Solved in 211 iterations and 0.03 seconds

Optimal objective -5.611934358e+00

[4]: # 'SmartInitialization' chooses the initial y so that the dual of the Lagrangian 

↪→Subproblem has (pi=0 as)

# a feasible solution, thus making sure that the initial Lagrangian Subproblem 

↪→is not unbounded.

if SmartInitialization:

modelY = gp.Model()

modelY.reset()

yvar = modelY.addMVar(m1)

constraintsY = modelY.addConstr(np.transpose(E)@yvar <= c)

modelY.optimize()

y=yvar.X

else: y=np.zeros(m1)

# initialization

k=1

bestlb = -np.Inf

# set up the Lagrangian relaxation



modelL = gp.Model()

modelL.reset()

modelL.setParam('OutputFlag', 0) # quiet the Gurobi output

x = modelL.addMVar(n)

constraintsL = modelL.addConstr(A@x == b)

objective = modelL.setObjective((c-y.dot(E))@x, GRB.MINIMIZE)

modelL.optimize()

if modelL.status != GRB.Status.OPTIMAL:

print("***** Gurobi solve status:", modelL.status)

print("***** This is a problem. Lagrangian Subproblem is unbounded.")

print("***** The algorithm cannot work with this starting y.")

raise StopExecution

v = y.dot(h) + modelL.Objval

results1=[0]

results2=[v]

bestlb = v

Discarded solution information

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 100 rows, 200 columns and 17965 nonzeros

Model fingerprint: 0x64395335

Coefficient statistics:

Matrix range [1e-02, 5e-02]

Objective range [0e+00, 0e+00]

Bounds range [0e+00, 0e+00]

RHS range [2e-02, 5e-01]

Presolve time: 0.01s

Presolved: 100 rows, 200 columns, 17965 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time

0 0.0000000e+00 1.684880e+02 0.000000e+00 0s

79 0.0000000e+00 0.000000e+00 0.000000e+00 0s

Solved in 79 iterations and 0.02 seconds

Optimal objective 0.000000000e+00

Discarded solution information

[5]: while k < MAXIT:

k += 1

g = h - E.dot(x.X)

if HarmonicStepSize:

stepsize = 1/k # This one converges in theory, but it is 

↪→slow.

else: # Instead, you can make a GUESS at the max

stepsize = (GUESS - v)/(g@g) # and then use this 'Polyak' stepsize



y = np.maximum(y + stepsize*g, np.zeros(m1)) # The projection keeps y>=0.

objective = modelL.setObjective((c-y.dot(E))@x, GRB.MINIMIZE)

modelL.optimize()

if modelL.status != GRB.Status.OPTIMAL:

k -= 1

print("***** Gurobi solve status:", GRB.OPTIMAL)

print("***** This is a problem. Lagrangian Subproblem is unbounded.")

print("***** The algorithm cannot continue after k =",k)

break

v = y.dot(h) + modelL.Objval

bestlb = np.max((bestlb,v))

results1=np.append(results1,k-1)

results2=np.append(results2,v)

print("***** z:", modelQ.Objval)

print("***** first lower bound:", results2[0])

print("***** best lower bound:", bestlb)

***** z: -5.611934358015312

***** first lower bound: -35.97487470911054

***** best lower bound: -6.309166317427381

[6]: if k > 1:

fig, ax = plt.subplots(figsize=(10,10))

ax.plot(results1, results2)

ax.plot(results1, modelQ.Objval*np.ones(k))

ax.set(xlabel='iteration', ylabel='v(y)')

ax.grid()

plt.show()
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Cutting-Stock model: column generation with Python/Gurobi

min e′x
Ax− t = d
x, t ≥ 0,

where the columns of A are cutting patterns, and d is the demand vector.

Notes: * In this implementaion, we never delete generated columns (i.e., patterns) * Knapsack
subproblems solved by DP or ILP (Gurobi) or both [user options] * At the end, we solve the ILP
over all columns generated, aiming to improve on the rounded-up LP solution from column-
generation

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License

Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

[1]: %reset -f

import numpy as np

#%matplotlib notebook

%matplotlib inline



import matplotlib.pyplot as plt

import seaborn as sns; sns.set(); sns.set_style("whitegrid"); color_list = sns.

↪→color_palette("muted")

import gurobipy as gp

from gurobipy import GRB

class StopExecution(Exception):

def _render_traceback_(self):

pass

[2]: # set at least one of the following two parameters to 'True'

# if both are set to 'True', then DP overwrites what IP calculates (but we can 

↪→still compare)

IP=True # set True for solution of knapsack problem by IP (i.e., Gurobi)

DP=True # set True for solution of knapsack problem by DP

results1=[]

results2=[]

ITER=0

[3]: # Some toy data

W=110

m=5; M=range(m)

Widths=np.array([70.0,40.0,55.0,25.0,35.0])

Demands=np.array([205,2321,143,1089,117])

[4]: # set up the Main LP model

LP = gp.Model()

LP.setParam('OutputFlag', 0) #comment out to see more Gurobi output

minsum = LP.setObjective(0, GRB.MINIMIZE)

s=LP.addVars(m)

for i in M:

LP.addConstr(-s[i] == Demands[i])

LP.update()

demandconstraints=LP.getConstrs()

# initialize with elementary patterns

nPAT=0

A = np.zeros((m,m))

for i in M:

nPAT += 1

A[i,nPAT-1] = np.floor(W/Widths[i])

newcol=gp.Column(A[:,i],demandconstraints)

LP.addVar(obj=1.0, column=newcol)

LP.update()

--------------------------------------------

Warning: your license will expire in 3 days



--------------------------------------------

Using license file C:\Users\jonxlee\gurobi.lic

Academic license - for non-commercial use only - expires 2021-06-28

The Knapsack model for generating an improving column

max
m

∑
i=1

ȳiai

m

∑
i=1

wiai ≤W

ai ≥ 0 and integer, for i = 1, . . . m.

[5]: # set up for solving the knapsack subproblems: either by DP or IP (or both)

#

y=np.zeros(m)

if IP==True:

# set up the Subproblem ILP knapsack model for Gurobi

Knap = gp.Model()

Knap.setParam('OutputFlag', 0) #comment out to see more Gurobi output

a = Knap.addMVar(m,vtype=GRB.INTEGER)

knapsackobjective = Knap.setObjective(y@a, GRB.MAXIMIZE)

knapsackconstraint = Knap.addConstr(Widths@a <= W)

if DP==True:

# DP for knapsack. Local notation: max c'x, s.t. a'x <= b, x>=0 int.

def Knapf(a,b,c):

m=np.size(a)

f=np.zeros(b+1)

i=-np.ones(b+1,dtype=int)

v=-np.Inf*np.ones(m)

for s in range(min(a),b+1):

for j in range(m):

if a[j]<=s: v[j]=c[j] + f[s-a[j]]

else: v[j]=-np.Inf

f[s]=max(v)

i[s]=np.argmax(v) # save the index j where the max occured for 

↪→that s

#

x=np.zeros(m)

s=b+0

while s>=min(a):

x[i[s]] += 1

s=s-a[i[s]]

return f[b], x



[6]: # fancy output function

def fancyoutput():

plt.figure()

print("***** Patterns / Widths:", Widths, "Stock roll width:", W)

Aw=np.zeros((m,nPAT))

for i in M:

for j in range(nPAT):

Aw[i,j]=A[i,j]*Widths[i]

Aw=np.c_[ Aw, np.zeros(m) ]

wlist=[''] * m

for i in M:

wlist[i]='w'+str(i)

K=np.diagflat(Widths)

Bw=np.c_[Aw,K]

T = np.arange(Bw.shape[1])

for i in range(Bw.shape[0]):

plt.bar(T, Bw[i],

tick_label = np.concatenate((np.arange(nPAT),np.array([' ']),wlist)),

bottom = np.sum(Bw[:i], axis = 0),

color = color_list[i % len(color_list)])

plt.show()

print("***** A:")

print(A)

[7]: while True:

print(" ")

print("***** Solving LP...")

ITER += 1

LP.optimize()

if LP.status != GRB.Status.OPTIMAL:

print("***** Gurobi solve status:", LP.status)

print("***** This is a problem. LP does not have an optimal solution")

raise StopExecution

results1=np.append(results1,ITER-1)

results2=np.append(results2,LP.Objval)

print("***** A:")

print(A)

print("***** x:")

x = LP.getVars()

for j in range(nPAT):

print("x[",j,"]=",round(x[j+m].X,4))

for i in M:

y[i]=demandconstraints[i].Pi

print("***** y':",np.round(y,4))

#

if IP==True:



knapsackobjective = Knap.setObjective(y@a, GRB.MAXIMIZE)

print(" ")

print("***** Solving Knapsack...")

Knap.optimize()

if Knap.status != GRB.Status.OPTIMAL:

print("***** Gurobi solve status:", Knap.status)

print("***** This is a problem. Knapsack IP does not have an optimal 

↪→solution")

raise StopExecution

print("***** Gurobi Knap objval:",Knap.Objval)

reducedcost = 1.0-Knap.Objval

pattern=a.X+np.zeros(m)

#

if DP==True:

results = Knapf(Widths.astype(int),W,y)

print("***** DP Knap objval: ",results[0])

reducedcost = 1.0-results[0]

pattern=results[1]

#

if reducedcost < -0.0001:

print("***** Column:",pattern)

A=np.c_[ A, pattern ]

nPAT += 1

newcol=gp.Column(pattern,demandconstraints)

LP.addVar(obj=1.0, column=newcol)

else:

print("***** No more improving columns")

break

print("***** Pattern generation complete. Main LP solved to optimality.")

print("***** Total number of patterns generated: ", nPAT)

print("***** A:")

print(A)

print("***** x:")

x = LP.getVars()

for j in range(nPAT):

print("x[",j,"]=",round(x[j+m].X,4))

print("***** Optimal LP objective value:", LP.Objval)

print("***** rounds up to: ", np.ceil(LP.Objval), "(lower bound on rolls 

↪→needed)")

print("***** x rounded up:")

for j in range(nPAT):

print("x[",j,"]=",np.ceil(x[j+m].X))

print("***** Number of rolls used:", sum(np.ceil(x[j+m].X) for j in range(nPAT)))

fancyoutput()

fig, ax = plt.subplots(figsize=(10, 10))

ax.plot(results1[0:ITER], results2[0:ITER])



ax.plot(results1, np.ceil(LP.Objval)*np.ones(ITER))

ax.plot(results1, sum(np.ceil(x[j+m].X) for j in range(nPAT))*np.ones(ITER))

ax.set(xlabel='LP iteration', ylabel='LP objective value')

ax.set_xticks(ticks=results1, minor=False)

ax.grid()

plt.show()

print("LP iter", " LP val")

print("--------- ---------")

for j in range(ITER):

print(np.int(results1[j]), " ", np.round(results2[j],4))

print(" ")

***** Solving LP...

***** A:

[[1. 0. 0. 0. 0.]

[0. 2. 0. 0. 0.]

[0. 0. 2. 0. 0.]

[0. 0. 0. 4. 0.]

[0. 0. 0. 0. 3.]]

***** x:

x[ 0 ]= 205.0

x[ 1 ]= 1160.5

x[ 2 ]= 71.5

x[ 3 ]= 272.25

x[ 4 ]= 39.0

***** y': [1. 0.5 0.5 0.25 0.3333]

***** Solving Knapsack...

***** Gurobi Knap objval: 1.5

***** DP Knap objval: 1.5

***** Column: [1. 1. 0. 0. 0.]

***** Solving LP...

***** A:

[[1. 0. 0. 0. 0. 1.]

[0. 2. 0. 0. 0. 1.]

[0. 0. 2. 0. 0. 0.]

[0. 0. 0. 4. 0. 0.]

[0. 0. 0. 0. 3. 0.]]

***** x:

x[ 0 ]= 0.0

x[ 1 ]= 1058.0

x[ 2 ]= 71.5

x[ 3 ]= 272.25

x[ 4 ]= 39.0

x[ 5 ]= 205.0



***** y': [0.5 0.5 0.5 0.25 0.3333]

***** Solving Knapsack...

***** Gurobi Knap objval: 1.25

***** DP Knap objval: 1.25

***** Column: [0. 2. 0. 1. 0.]

***** Solving LP...

***** A:

[[1. 0. 0. 0. 0. 1. 0.]

[0. 2. 0. 0. 0. 1. 2.]

[0. 0. 2. 0. 0. 0. 0.]

[0. 0. 0. 4. 0. 0. 1.]

[0. 0. 0. 0. 3. 0. 0.]]

***** x:

x[ 0 ]= 0.0

x[ 1 ]= 0.0

x[ 2 ]= 71.5

x[ 3 ]= 7.75

x[ 4 ]= 39.0

x[ 5 ]= 205.0

x[ 6 ]= 1058.0

***** y': [0.625 0.375 0.5 0.25 0.3333]

***** Solving Knapsack...

***** Gurobi Knap objval: 1.0833333333333333

***** DP Knap objval: 1.0833333333333333

***** Column: [0. 0. 0. 3. 1.]

***** Solving LP...

***** A:

[[1. 0. 0. 0. 0. 1. 0. 0.]

[0. 2. 0. 0. 0. 1. 2. 0.]

[0. 0. 2. 0. 0. 0. 0. 0.]

[0. 0. 0. 4. 0. 0. 1. 3.]

[0. 0. 0. 0. 3. 0. 0. 1.]]

***** x:

x[ 0 ]= 0.0

x[ 1 ]= 0.0

x[ 2 ]= 71.5

x[ 3 ]= 0.0

x[ 4 ]= 35.5556

x[ 5 ]= 205.0

x[ 6 ]= 1058.0

x[ 7 ]= 10.3333

***** y': [0.6111 0.3889 0.5 0.2222 0.3333]

***** Solving Knapsack...



***** Gurobi Knap objval: 1.0555555555555556

***** DP Knap objval: 1.0555555555555556

***** Column: [0. 1. 0. 0. 2.]

***** Solving LP...

***** A:

[[1. 0. 0. 0. 0. 1. 0. 0. 0.]

[0. 2. 0. 0. 0. 1. 2. 0. 1.]

[0. 0. 2. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 4. 0. 0. 1. 3. 0.]

[0. 0. 0. 0. 3. 0. 0. 1. 2.]]

***** x:

x[ 0 ]= 0.0

x[ 1 ]= 0.0

x[ 2 ]= 71.5

x[ 3 ]= 0.0

x[ 4 ]= 0.0

x[ 5 ]= 205.0

x[ 6 ]= 1033.3846

x[ 7 ]= 18.5385

x[ 8 ]= 49.2308

***** y': [0.6154 0.3846 0.5 0.2308 0.3077]

***** Solving Knapsack...

***** Gurobi Knap objval: 1.0

***** DP Knap objval: 1.0

***** No more improving columns

***** Pattern generation complete. Main LP solved to optimality.

***** Total number of patterns generated: 9

***** A:

[[1. 0. 0. 0. 0. 1. 0. 0. 0.]

[0. 2. 0. 0. 0. 1. 2. 0. 1.]

[0. 0. 2. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 4. 0. 0. 1. 3. 0.]

[0. 0. 0. 0. 3. 0. 0. 1. 2.]]

***** x:

x[ 0 ]= 0.0

x[ 1 ]= 0.0

x[ 2 ]= 71.5

x[ 3 ]= 0.0

x[ 4 ]= 0.0

x[ 5 ]= 205.0

x[ 6 ]= 1033.3846

x[ 7 ]= 18.5385

x[ 8 ]= 49.2308

***** Optimal LP objective value: 1377.6538461538462

***** rounds up to: 1378.0 (lower bound on rolls needed)

***** x rounded up:



x[ 0 ]= 0.0

x[ 1 ]= 0.0

x[ 2 ]= 72.0

x[ 3 ]= 0.0

x[ 4 ]= 0.0

x[ 5 ]= 205.0

x[ 6 ]= 1034.0

x[ 7 ]= 19.0

x[ 8 ]= 50.0

***** Number of rolls used: 1380.0

***** Patterns / Widths: [70. 40. 55. 25. 35.] Stock roll width: 110

***** A:

[[1. 0. 0. 0. 0. 1. 0. 0. 0.]

[0. 2. 0. 0. 0. 1. 2. 0. 1.]

[0. 0. 2. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 4. 0. 0. 1. 3. 0.]

[0. 0. 0. 0. 3. 0. 0. 1. 2.]]



LP iter LP val

--------- ---------

0 1748.25

1 1645.75

2 1381.25

3 1380.3889

4 1377.6538

[8]: print(" ")

print("***** Now solve the ILP over all patterns generated to try and get a 

↪→better soution...")

for var in LP.getVars():

var.vtype=GRB.INTEGER



LP.optimize()

if LP.status != GRB.Status.OPTIMAL:

print("***** Gurobi solve status:", LP.status)

print("***** This is a problem. Hit enter to continue")

input()

print("***** x:")

for j in range(nPAT):

print("x[",j,"]=",round(x[j+m].X+0,4))

print("***** Number of rolls used:", sum(np.ceil(x[j+m].X) for j in range(nPAT)))

fancyoutput()

***** Now solve the ILP over all patterns generated to try and get a better

soution...

***** x:

x[ 0 ]= 0.0

x[ 1 ]= 0.0

x[ 2 ]= 72.0

x[ 3 ]= 1.0

x[ 4 ]= 1.0

x[ 5 ]= 205.0

x[ 6 ]= 1034.0

x[ 7 ]= 17.0

x[ 8 ]= 49.0

***** Number of rolls used: 1379.0

***** Patterns / Widths: [70. 40. 55. 25. 35.] Stock roll width: 110



***** A:

[[1. 0. 0. 0. 0. 1. 0. 0. 0.]

[0. 2. 0. 0. 0. 1. 2. 0. 1.]

[0. 0. 2. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 4. 0. 0. 1. 3. 0.]

[0. 0. 0. 0. 3. 0. 0. 1. 2.]]
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Uncapacitated-Facility-Location models with Python/Gurobi

The base model that we work with is

min ∑
i∈M

fiyi + ∑
i∈M

∑
j∈N

cijxij

∑
i∈M

xij = 1, for j ∈ N;

xij ≥ 0, for i ∈ M, j ∈ N;

0 ≤ yi ≤ 1, and integer, for i ∈ M.

Notes: * We make two solves, first with the weak forcing constraints

∑
j∈N

xij ≤ n yi, for i ∈ M,

and then with the strong forcing constraints

xij ≤ yi, for i ∈ M, j ∈ N.

* Random instances with m facilities and n customers. Play with m, n and possibly with demand
and scale factor in f .

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License

Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL



THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

[1]: %reset -f

import numpy as np

#%matplotlib notebook

%matplotlib inline

import matplotlib.pyplot as plt

from scipy.spatial import Voronoi, voronoi_plot_2d

import gurobipy as gp

from gurobipy import GRB

class StopExecution(Exception):

def _render_traceback_(self):

pass

[2]: # parameters

m=75 # number of facilities

n=4000 # number of customers

M=list(range(0,m))

N=list(range(0,n))

np.random.seed(10) # set seed to be able to repeat the same random data

solveLPsOnly=False # set True to only solve LP relaxations

# random locations in the unit square

fPx=np.random.rand(m)

fPy=np.random.rand(m)

cPx=np.random.rand(n)

cPy=np.random.rand(n)

# cost data

demand=10*np.random.rand(n) # these will be 'baked' into the shipping costs

f=200*np.random.rand(m) # facility costs

c=np.zeros((m,n))

for i in range(0,m):

for j in range(0,n):

c[i,j]=demand[j]*np.sqrt(np.square(fPx[i]-cPx[j])+np.

↪→square(fPy[i]-cPy[j]))

# = demand times per-unit transportation costs (distance)

[3]: # set up the weak model

model = gp.Model()

model.reset()

#model.setParam('Threads', 1) # uncomment to ask for 1 thread



if solveLPsOnly==True:

y=model.addVars(m,ub=1.0)

else:

y=model.addVars(m,vtype=GRB.BINARY)

x=model.addVars(m,n)

model.setObjective(sum(f[i]*y[i] for i in M) + sum(sum(c[i,j]*x[i,j] for i in M) 

↪→for j in N), GRB.MINIMIZE)

demandconstraints = model.addConstrs((sum(x[i,j] for i in M) == 1 for j in N))

weakforceconstraints = model.addConstrs((sum(x[i,j] for j in N) <= n*y[i] for i 

↪→in M))

Using license file C:\Users\jonxlee\gurobi.lic

Academic license - for non-commercial use only - expires 2021-08-26

Discarded solution information

[4]: # solve the weak model

model.optimize()

if model.status != GRB.Status.OPTIMAL:

print("***** Gurobi solve status:", model.status)

print("***** This is a problem. Model does not have an optimal solution")

raise StopExecution

for i in M: print("y[",i,"]=",round(y[i].X,4))

ytot=round(sum (y[i].X for i in M))

print("y total =",ytot)

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 4075 rows, 300075 columns and 600075 nonzeros

Model fingerprint: 0xfc880efe

Variable types: 300000 continuous, 75 integer (75 binary)

Coefficient statistics:

Matrix range [1e+00, 4e+03]

Objective range [3e-04, 2e+02]

Bounds range [1e+00, 1e+00]

RHS range [1e+00, 1e+00]

Found heuristic solution: objective 17544.136375

Presolve time: 0.64s

Presolved: 4075 rows, 300075 columns, 600075 nonzeros

Variable types: 300000 continuous, 75 integer (75 binary)

Root relaxation: objective 1.229656e+03, 597 iterations, 0.08 seconds

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 1229.65553 0 75 17544.1364 1229.65553 93.0% - 1s

H 0 0 8324.6715293 1229.65553 85.2% - 1s



H 0 0 4673.5132638 1229.65553 73.7% - 1s

H 0 0 4419.8133391 1229.65553 72.2% - 2s

H 0 0 4368.5310262 1229.65553 71.9% - 2s

0 0 1391.46920 0 70 4368.53103 1391.46920 68.1% - 4s

H 0 0 4063.1409361 1391.46920 65.8% - 7s

0 0 1558.72879 0 72 4063.14094 1558.72879 61.6% - 7s

H 0 0 4037.6172963 1558.72879 61.4% - 13s

0 0 1753.61158 0 73 4037.61730 1753.61158 56.6% - 13s

0 0 1795.39708 0 72 4037.61730 1795.39708 55.5% - 15s

0 0 1795.39708 0 72 4037.61730 1795.39708 55.5% - 15s

H 0 0 3862.9299415 1795.39708 53.5% - 27s

H 0 0 3799.1987178 1795.39708 52.7% - 27s

H 0 0 3668.9696315 1795.39708 51.1% - 27s

0 0 1921.17962 0 70 3668.96963 1921.17962 47.6% - 27s

H 0 0 3635.6910048 1921.17962 47.2% - 42s

H 0 0 3535.7603537 1921.17962 45.7% - 42s

H 0 0 3444.3909501 1921.17962 44.2% - 42s

H 0 0 3328.5221017 1921.17962 42.3% - 42s

H 0 0 3252.1304013 1921.17962 40.9% - 42s

0 0 2074.95883 0 71 3252.13040 2074.95883 36.2% - 42s

H 0 0 3190.2555864 2074.95883 35.0% - 57s

H 0 0 3085.7395476 2074.95883 32.8% - 57s

H 0 0 3083.1364083 2074.95883 32.7% - 57s

H 0 0 3067.7311804 2074.95883 32.4% - 57s

H 0 0 3066.7687696 2074.95883 32.3% - 57s

H 0 0 2958.9643419 2074.95883 29.9% - 57s

H 0 0 2946.5871499 2074.95883 29.6% - 57s

H 0 0 2921.4140285 2074.95883 29.0% - 57s

H 0 0 2842.0681101 2074.95883 27.0% - 57s

H 0 0 2802.9809811 2074.95883 26.0% - 57s

H 0 0 2792.0637739 2074.95883 25.7% - 57s

H 0 0 2779.7296742 2074.95883 25.4% - 57s

H 0 0 2763.1285431 2074.95883 24.9% - 57s

H 0 0 2760.9864797 2074.95883 24.8% - 57s

H 0 0 2745.1240381 2074.95883 24.4% - 57s

H 0 0 2735.8698677 2074.95883 24.2% - 57s

H 0 0 2727.9013440 2074.95883 23.9% - 57s

H 0 0 2714.4940747 2074.95883 23.6% - 57s

H 0 0 2714.1367239 2074.95883 23.5% - 57s

H 0 0 2708.3760559 2074.95883 23.4% - 57s

H 0 0 2704.6679993 2074.95883 23.3% - 57s

0 0 2185.58189 0 71 2704.66800 2185.58189 19.2% - 58s

0 0 2186.20338 0 68 2704.66800 2186.20338 19.2% - 58s

0 0 2297.87203 0 67 2704.66800 2297.87203 15.0% - 75s

0 0 2392.45333 0 66 2704.66800 2392.45333 11.5% - 90s

0 0 2392.51043 0 66 2704.66800 2392.51043 11.5% - 91s

0 0 2493.21367 0 66 2704.66800 2493.21367 7.82% - 109s

H 0 0 2689.2832904 2493.21367 7.29% - 116s



0 0 2504.48700 0 62 2689.28329 2504.48700 6.87% - 116s

0 0 2504.50603 0 62 2689.28329 2504.50603 6.87% - 117s

H 0 0 2683.5226224 2504.50603 6.67% - 126s

H 0 0 2671.7945495 2504.50603 6.26% - 126s

H 0 0 2670.9772972 2504.50603 6.23% - 126s

H 0 0 2666.7624678 2504.50603 6.08% - 126s

0 0 2532.96155 0 43 2666.76247 2532.96155 5.02% - 126s

H 0 0 2565.6289184 2532.96155 1.27% - 127s

0 0 2533.15328 0 37 2565.62892 2533.15328 1.27% - 128s

0 0 2537.72352 0 21 2565.62892 2537.72352 1.09% - 130s

H 0 0 2538.4262791 2537.72352 0.03% - 131s

0 0 cutoff 0 2538.42628 2538.42628 0.00% - 132s

Cutting planes:

Implied bound: 11142

Explored 1 nodes (14761 simplex iterations) in 133.17 seconds

Thread count was 8 (of 8 available processors)

Solution count 10: 2538.43 2565.63 2666.76 ... 2745.12

Optimal solution found (tolerance 1.00e-04)

Best objective 2.538426279075e+03, best bound 2.538426279075e+03, gap 0.0000%

y[ 0 ]= 0.0

y[ 1 ]= 0.0

y[ 2 ]= 0.0

y[ 3 ]= 0.0

y[ 4 ]= 0.0

y[ 5 ]= 0.0

y[ 6 ]= 0.0

y[ 7 ]= 0.0

y[ 8 ]= 0.0

y[ 9 ]= 1.0

y[ 10 ]= 0.0

y[ 11 ]= 0.0

y[ 12 ]= 0.0

y[ 13 ]= 1.0

y[ 14 ]= 0.0

y[ 15 ]= 0.0

y[ 16 ]= 0.0

y[ 17 ]= 0.0

y[ 18 ]= 1.0

y[ 19 ]= 1.0

y[ 20 ]= 1.0

y[ 21 ]= 1.0

y[ 22 ]= 0.0

y[ 23 ]= 1.0

y[ 24 ]= 0.0



y[ 25 ]= 0.0

y[ 26 ]= 1.0

y[ 27 ]= 0.0

y[ 28 ]= 0.0

y[ 29 ]= 0.0

y[ 30 ]= 0.0

y[ 31 ]= 0.0

y[ 32 ]= 0.0

y[ 33 ]= 1.0

y[ 34 ]= 0.0

y[ 35 ]= 0.0

y[ 36 ]= 1.0

y[ 37 ]= 0.0

y[ 38 ]= 1.0

y[ 39 ]= 1.0

y[ 40 ]= 0.0

y[ 41 ]= 0.0

y[ 42 ]= 1.0

y[ 43 ]= 0.0

y[ 44 ]= 0.0

y[ 45 ]= 0.0

y[ 46 ]= 1.0

y[ 47 ]= 0.0

y[ 48 ]= 0.0

y[ 49 ]= 0.0

y[ 50 ]= -0.0

y[ 51 ]= 0.0

y[ 52 ]= 1.0

y[ 53 ]= 0.0

y[ 54 ]= 1.0

y[ 55 ]= 0.0

y[ 56 ]= 0.0

y[ 57 ]= 0.0

y[ 58 ]= 0.0

y[ 59 ]= 0.0

y[ 60 ]= 0.0

y[ 61 ]= 1.0

y[ 62 ]= 0.0

y[ 63 ]= 0.0

y[ 64 ]= 0.0

y[ 65 ]= 0.0

y[ 66 ]= 0.0

y[ 67 ]= 1.0

y[ 68 ]= 0.0

y[ 69 ]= 1.0

y[ 70 ]= 0.0

y[ 71 ]= 0.0

y[ 72 ]= 0.0



y[ 73 ]= 0.0

y[ 74 ]= 0.0

y total = 19

[5]: # set up and solve the strong model

model.reset()

model.remove(weakforceconstraints)

strongforceconstraints = model.addConstrs((x[i,j] <= y[i] for i in M for j in 

↪→N))

model.optimize()

if model.status != GRB.Status.OPTIMAL:

print("***** Gurobi solve status:", model.status)

print("***** This is a problem. Model does not have an optimal solution")

raise StopExecution

for i in M: print("y[",i,"]=",round(y[i].X,4))

print("y total =", round(sum (y[i].X for i in M),4))

Discarded solution information

Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 304000 rows, 300075 columns and 900000 nonzeros

Model fingerprint: 0xdcd5646b

Variable types: 300000 continuous, 75 integer (75 binary)

Coefficient statistics:

Matrix range [1e+00, 1e+00]

Objective range [3e-04, 2e+02]

Bounds range [1e+00, 1e+00]

RHS range [1e+00, 1e+00]

Found heuristic solution: objective 17544.136375

Presolve time: 1.02s

Presolved: 304000 rows, 300075 columns, 900000 nonzeros

Variable types: 300000 continuous, 75 integer (75 binary)

Deterministic concurrent LP optimizer: primal and dual simplex

Showing first log only...

Warning: Markowitz tolerance tightened to 0.5

Concurrent spin time: 0.00s

Solved with dual simplex

Root relaxation: objective 2.538426e+03, 11556 iterations, 1.09 seconds

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

* 0 0 0 2538.4262791 2538.42628 0.00% - 2s



Explored 0 nodes (11556 simplex iterations) in 2.80 seconds

Thread count was 8 (of 8 available processors)

Solution count 2: 2538.43 17544.1

Optimal solution found (tolerance 1.00e-04)

Best objective 2.538426279075e+03, best bound 2.538426279075e+03, gap 0.0000%

y[ 0 ]= -0.0

y[ 1 ]= -0.0

y[ 2 ]= -0.0

y[ 3 ]= -0.0

y[ 4 ]= -0.0

y[ 5 ]= -0.0

y[ 6 ]= -0.0

y[ 7 ]= -0.0

y[ 8 ]= -0.0

y[ 9 ]= 1.0

y[ 10 ]= -0.0

y[ 11 ]= -0.0

y[ 12 ]= -0.0

y[ 13 ]= 1.0

y[ 14 ]= -0.0

y[ 15 ]= -0.0

y[ 16 ]= -0.0

y[ 17 ]= -0.0

y[ 18 ]= 1.0

y[ 19 ]= 1.0

y[ 20 ]= 1.0

y[ 21 ]= 1.0

y[ 22 ]= -0.0

y[ 23 ]= 1.0

y[ 24 ]= -0.0

y[ 25 ]= -0.0

y[ 26 ]= 1.0

y[ 27 ]= -0.0

y[ 28 ]= -0.0

y[ 29 ]= -0.0

y[ 30 ]= -0.0

y[ 31 ]= -0.0

y[ 32 ]= -0.0

y[ 33 ]= 1.0

y[ 34 ]= -0.0

y[ 35 ]= -0.0

y[ 36 ]= 1.0

y[ 37 ]= -0.0

y[ 38 ]= 1.0

y[ 39 ]= 1.0

y[ 40 ]= -0.0



y[ 41 ]= -0.0

y[ 42 ]= 1.0

y[ 43 ]= -0.0

y[ 44 ]= -0.0

y[ 45 ]= -0.0

y[ 46 ]= 1.0

y[ 47 ]= -0.0

y[ 48 ]= -0.0

y[ 49 ]= -0.0

y[ 50 ]= -0.0

y[ 51 ]= -0.0

y[ 52 ]= 1.0

y[ 53 ]= -0.0

y[ 54 ]= 1.0

y[ 55 ]= -0.0

y[ 56 ]= -0.0

y[ 57 ]= -0.0

y[ 58 ]= -0.0

y[ 59 ]= -0.0

y[ 60 ]= -0.0

y[ 61 ]= 1.0

y[ 62 ]= -0.0

y[ 63 ]= -0.0

y[ 64 ]= -0.0

y[ 65 ]= -0.0

y[ 66 ]= -0.0

y[ 67 ]= 1.0

y[ 68 ]= -0.0

y[ 69 ]= 1.0

y[ 70 ]= -0.0

y[ 71 ]= -0.0

y[ 72 ]= -0.0

y[ 73 ]= -0.0

y[ 74 ]= -0.0

y total = 19.0

[6]: # plot the results

#

if solveLPsOnly == False:

fxopen=np.zeros(ytot)

fyopen=np.zeros(ytot)

count=-1

for i in M:

if round(y[i].X)==1:

count += 1

fxopen[count]=fPx[i]

fyopen[count]=fPy[i]



# Get current figure size

fig_size = plt.rcParams["figure.figsize"]

#print("Current size:", fig_size)

fig_size[0] = 10

fig_size[1] = 10

plt.rcParams["figure.figsize"] = fig_size

# vornoi diagram for the open facilities

points=np.column_stack((fxopen,fyopen))

vor = Voronoi(points)

fig = voronoi_plot_2d(vor,show_vertices=False)

# open facilities are blue, closed failities are opaque red,

# vornoi cells capture the customers assigned to each open facility

plt.scatter(cPx,cPy,s=1)

plt.scatter(fPx,fPy,c='red',alpha=0.3)

plt.scatter(fxopen,fyopen,c='blue')
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Example 1: Gomory cutting-planes for dual-form pure-integer problem
DI

For dual-form pure-integer problem

max y′b (DI )
y′A ≤ c′

y ∈ Zm.

Notes: * A and c MUST be integer

Reference: * Qi He, Jon Lee. Another pedagogy for pure-integer Gomory. RAIRO – Operations
Research, 51:189–197, 2017.

MIT License

Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

[1]: %reset -f

[2]: %run ./pivot_tools.ipynb

pivot_tools loaded: pivot_perturb, pivot_algebra, N, pivot_ratios, pivot_swap,

pivot_plot, pure_gomory, mixed_gomory, dual_plot



[3]: A = sym.Matrix(([7, 8,-1, 1, 3],

[5, 6, -1, 2, 1]))

m = A.shape[0]

n = A. shape[1]

c = sym.Matrix([126, 141, -10, 5, 67])

b = sym.Matrix([26, 19])

beta = [0,1]

eta = list(set(list(range(n)))-set(beta))

A_beta = copy.copy(A[:,beta])

A_eta = copy.copy(A[:,eta])

c_beta = copy.copy(c[beta,0])

c_eta = copy.copy(c[eta,0])

Perturb=False ### do NOT change this!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! You 

↪→can perturb later

[4]: A

[4]: [7 8 −1 1 3
5 6 −1 2 1

]

[5]: c

[5]: 


126
141
−10

5
67




[6]: #pivot_perturb()

[7]: b

[7]: [26
19

]

[8]: pivot_algebra()

pivot_algebra() done

[9]: xbar_beta

[9]: [2
3
2

]

[10]: cbar_eta

[10]: 


5
1
2
1






[11]: ybar

[11]: [ 51
2
− 21

2

]

[12]: dual_plot()

[13]: pure_gomory(1)

*** PROBABLY WANT TO APPLY pivot_algebra()! ***

[14]: pivot_algebra()

pivot_algebra() done



[15]: A

[15]: [7 8 −1 1 3 4
5 6 −1 2 1 3

]

[16]: c

[16]: 


126
141
−10

5
67
70




[17]: eta

[17]:
[2, 3, 4, 5]

[18]: cbar_eta

[18]: 


5
1
2
1
− 1

2




[19]: pivot_ratios(3)

[
∞
3

]

x̄ + λz̄ :



2
3
2 − λ

2
0
0
0
λ




[20]: pivot_swap(3,1)

swap accepted �- new partition:

eta: [2, 3, 4, 1]

beta: [0, 5]

*** MUST APPLY pivot_algebra()! ***

[21]: pivot_algebra()

pivot_algebra() done



[22]: xbar_beta

[22]: [2
3

]

[23]: cbar_eta

[23]: 


4
5
−3
1




[24]: pivot_ratios(2)

[ 2
5
∞

]

x̄ + λz̄ :



2− 5λ
0
0
0
λ

8λ + 3




[25]: pivot_swap(2,0)

swap accepted �- new partition:

eta: [2, 3, 0, 1]

beta: [4, 5]

*** MUST APPLY pivot_algebra()! ***

[26]: pivot_algebra()

pivot_algebra() done

[27]: xbar_beta

[27]: [ 2
5

31
5

]

[28]: cbar_eta

[28]: 


23
5
2
3
5
1




[29]: ybar



[29]: [ 131
5
− 58

5

]

[30]: dual_plot()

[31]: pure_gomory(0)

*** PROBABLY WANT TO APPLY pivot_algebra()! ***

[32]: pure_gomory(1)

*** PROBABLY WANT TO APPLY pivot_algebra()! ***

[33]: pivot_algebra()



pivot_algebra() done

[34]: cbar_eta

[34]: 


23
5
2
3
5
1
− 1

5
− 2

5




[35]: pivot_ratios(5)

[
2
31
3

]

x̄ + λz̄ :



0
0
0
0

2
5 − λ

5
31
5 − 3λ

5
0
λ




[36]: pivot_swap(5,0)

swap accepted �- new partition:

eta: [2, 3, 0, 1, 6, 4]

beta: [7, 5]

*** MUST APPLY pivot_algebra()! ***

[37]: pivot_algebra()

pivot_algebra() done

[38]: xbar_beta

[38]: [2
5

]

[39]: cbar_eta

[39]:






5
0
1
1
1
2




[40]: ybar

[40]: [ 25
−10

]

[41]: dual_plot()



[42]: dual_plot(.1)
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pure_gomory_example_2
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Example 2: Gomory cutting-planes for dual-form pure-integer problem
DI

For dual-form pure-integer problem

max y′b (DI )
y′A ≤ c′

y ∈ Zm.

Notes: * A and c MUST be integer

Reference: * Qi He, Jon Lee. Another pedagogy for pure-integer Gomory. RAIRO – Operations
Research, 51:189–197, 2017.

MIT License

Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

[1]: %reset -f

[2]: %run ./pivot_tools.ipynb

pivot_tools loaded: pivot_perturb, pivot_algebra, pivot_ratios, pivot_swap,

pivot_plot, pure_gomory, dual_plot



[3]: k=3

A = sym.Matrix(([2*k, -2*k, 0],

[1, 1, -1]))

m = A.shape[0]

n = A. shape[1]

c = sym.Matrix([2*k, 0, 1])

b = sym.Matrix([0,1])

beta = [0,1]

eta = list(set(list(range(n)))-set(beta))

A_beta = copy.copy(A[:,beta])

A_eta = copy.copy(A[:,eta])

c_beta = copy.copy(c[beta,0])

c_eta = copy.copy(c[eta,0])

Perturb=False ### do NOT change this!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! You 

↪→can perturb later

[4]: A

[4]: [6 −6 0
1 1 −1

]

[5]: c

[5]: 


6
0
1




[6]: #pivot_perturb()

[7]: b

[7]: [0
1

]

[8]: pivot_algebra()

pivot_algebra() done

[9]: dual_plot(2*k+1)



[10]: ybar

[10]: [ 1
2
3

]

[11]: pure_gomory(0)

*** PROBABLY WANT TO APPLY pivot_algebra()! ***

[12]: pivot_algebra()

pivot_algebra() done

[13]: dual_plot()



[14]: cbar_eta

[14]: [
4 − 1

2

]

[15]: pivot_ratios(1)

[
6
6

11

]

x̄ + λz̄ :



1
2 − λ

12
1
2 − 11λ

12
0
λ






[16]: pivot_swap(1,1)

swap accepted �- new partition:

eta: [2, 1]

beta: [0, 3]

*** MUST APPLY pivot_algebra()! ***

[17]: pivot_algebra()

pivot_algebra() done

[18]: cbar_eta

[18]: [ 41
11

6
11

]

[19]: xbar_beta

[19]: [ 5
11
6

11

]

[20]: dual_plot()



[21]: ybar

[21]: [ 6
11
30
11

]

[22]: pure_gomory(1)

*** PROBABLY WANT TO APPLY pivot_algebra()! ***

[23]: dual_plot()



[24]: pivot_algebra()

pivot_algebra() done

[25]: cbar_eta

[25]: [ 41
11

6
11 − 8

11

]

[26]: pivot_ratios(2)

[
1
1

]

x̄ + λz̄ :






5
11 − 5λ

11
0
0

6
11 − 6λ

11
λ




[27]: pivot_swap(2,0)

swap accepted �- new partition:

eta: [2, 1, 0]

beta: [4, 3]

*** MUST APPLY pivot_algebra()! ***

[28]: pivot_algebra()

pivot_algebra() done

[29]: cbar_eta

[29]: [
3 2

5
8
5

]

[30]: xbar_beta

[30]: [1
0

]

[31]: dual_plot()



[32]: ybar

[32]: [ 2
5
2

]

[33]: pure_gomory(0)

*** PROBABLY WANT TO APPLY pivot_algebra()! ***

[34]: dual_plot()



[35]: pivot_algebra()

pivot_algebra() done

[36]: cbar_eta

[36]: [
3 2

5
8
5 − 2

5

]

[37]: pivot_ratios(3)

[
5
0

]

x̄ + λz̄ :






0
0
0
− 4λ

5
1− λ

5
λ




[38]: pivot_swap(3,1)

swap accepted �- new partition:

eta: [2, 1, 0, 3]

beta: [4, 5]

*** MUST APPLY pivot_algebra()! ***

[39]: pivot_algebra()

pivot_algebra() done

[40]: cbar_eta

[40]: [
3 1 1 1

2

]

[41]: xbar_beta

[41]: [1
0

]

[42]: ybar

[42]: [ 1
2
2

]

[43]: dual_plot()



[44]: pure_gomory(0)

*** PROBABLY WANT TO APPLY pivot_algebra()! ***

[45]: pivot_algebra()

pivot_algebra() done

[46]: cbar_eta

[46]: [
3 1 1 1

2 − 1
2

]

[47]: pivot_ratios(4)



[
4
0

]

x̄ + λz̄ :



0
0
0
0

1− λ
4

− 3λ
4

λ




[48]: pivot_swap(4,1)

swap accepted �- new partition:

eta: [2, 1, 0, 3, 5]

beta: [4, 6]

*** MUST APPLY pivot_algebra()! ***

[49]: pivot_algebra()

pivot_algebra() done

[50]: cbar_eta

[50]: [
3 2 0 4

3
2
3

]

[51]: xbar_beta

[51]: [1
0

]

[52]: ybar

[52]: [ 2
3
2

]

[53]: pure_gomory(0)

*** PROBABLY WANT TO APPLY pivot_algebra()! ***

[54]: pivot_algebra()

pivot_algebra() done

[55]: cbar_eta

[55]: [
3 2 0 4

3
2
3 − 2

3

]



[56]: pivot_ratios(5)

[
3
0

]

x̄ + λz̄ :



0
0
0
0

1− λ
3

0
− 2λ

3
λ




[57]: pivot_swap(5,1)

swap accepted �- new partition:

eta: [2, 1, 0, 3, 5, 6]

beta: [4, 7]

*** MUST APPLY pivot_algebra()! ***

[58]: pivot_algebra()

pivot_algebra() done

[59]: cbar_eta

[59]: [
3 4 −2 3 2 1

]

[60]: pivot_ratios(2)

[ 1
4
∞

]

x̄ + λz̄ :



λ
0
0
0

1− 4λ
0
0

3λ




[61]: pivot_swap(2,0)

swap accepted �- new partition:



eta: [2, 1, 4, 3, 5, 6]

beta: [0, 7]

*** MUST APPLY pivot_algebra()! ***

[62]: pivot_algebra()

pivot_algebra() done

[63]: cbar_eta

[63]: [ 5
2 3 1

2
9
4

3
2

3
4

]

[64]: xbar_beta

[64]: [ 1
4
3
4

]

[65]: dual_plot()



[66]: ybar

[66]: [ 3
4
3
2

]

[67]: pure_gomory(1)

*** PROBABLY WANT TO APPLY pivot_algebra()! ***

[68]: pivot_algebra()

pivot_algebra() done

[69]: dual_plot()



[70]: cbar_eta

[70]: [ 5
2 3 1

2
9
4

3
2

3
4 − 1

2

]

[71]: pivot_ratios(6)

[
1
1

]

x̄ + λz̄ :






1
4 − λ

4
0
0
0
0
0
0

3
4 − 3λ

4
λ




[72]: pivot_swap(6,1)

swap accepted �- new partition:

eta: [2, 1, 4, 3, 5, 6, 7]

beta: [0, 8]

*** MUST APPLY pivot_algebra()! ***

[73]: pivot_algebra()

pivot_algebra() done

[74]: cbar_eta

[74]: [
2 4 1 19

6
7
3

3
2

2
3

]

[75]: dual_plot()



[76]: ybar

[76]: [ 5
6
1

]

[77]: pure_gomory(0)

*** PROBABLY WANT TO APPLY pivot_algebra()! ***

[78]: pivot_algebra()

pivot_algebra() done

[79]: cbar_eta



[79]: [
2 4 1 19

6
7
3

3
2

2
3 − 5

6

]

[80]: pivot_ratios(7)

[
0
6
5

]

x̄ + λz̄ :



−λ
6

0
0
0
0
0
0
0

1− 5λ
6

λ




[81]: pivot_swap(7,0)

swap accepted �- new partition:

eta: [2, 1, 4, 3, 5, 6, 7, 0]

beta: [9, 8]

*** MUST APPLY pivot_algebra()! ***

[82]: pivot_algebra()

pivot_algebra() done

[83]: cbar_eta

[83]: [
2 −1 1 −1 −1 −1 −1 5

]

[84]: xbar_beta

[84]: [0
1

]

[85]: dual_plot()



[86]: pivot_ratios(6)

[
∞
1
3

]

x̄ + λz̄ :






0
0
0
0
0
0
0
λ

1− 3λ
2λ




[87]: pivot_swap(6,1)

swap accepted �- new partition:

eta: [2, 1, 4, 3, 5, 6, 8, 0]

beta: [9, 7]

*** MUST APPLY pivot_algebra()! ***

[88]: pivot_algebra()

pivot_algebra() done

[89]: cbar_eta

[89]: [ 5
3

4
3

4
3 1 2

3
1
3

1
3

10
3

]

[90]: dual_plot()



[91]: ybar

[91]: [ 1
3
2
3

]

[92]: pure_gomory(1)

*** PROBABLY WANT TO APPLY pivot_algebra()! ***

[93]: pivot_algebra()

pivot_algebra() done

[94]: cbar_eta



[94]: [ 5
3

4
3

4
3 1 2

3
1
3

1
3

10
3 − 2

3

]

[95]: pivot_ratios(8)

[
1
1

]

x̄ + λz̄ :



0
0
0
0
0
0
0

1
3 − λ

3
0

2
3 − 2λ

3
λ




[96]: pivot_swap(8,1)

swap accepted �- new partition:

eta: [2, 1, 4, 3, 5, 6, 8, 0, 7]

beta: [9, 10]

*** MUST APPLY pivot_algebra()! ***

[97]: pivot_algebra()

pivot_algebra() done

[98]: cbar_eta

[98]: [
1 6 2 5 4 3 1 0 2

]

[99]: xbar_beta

[99]: [0
1

]

[100]: ybar

[100]: [1
0

]

[101]: dual_plot()
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End Notes

1 “The reader will find no figures in this work. The methods which I set forth do not require either
constructions or geometrical or mechanical reasonings: but only algebraic operations, subject to a regular
and uniform rule of procedure.” — Joseph-Louis Lagrange, Preface to “Mécanique Analytique,” 1815.

2 “The testing of this hypothesis, however, will be postponed until it is programmed for an electronic
computer.” — Ailsa H. Land and Alison G. Doig (inventors of branch-and-bound), last line of: An
Automatic Method of Solving Discrete Programming Problems, Econometrica, 1960, Vol. 28, No. 3, pp.
497–520.

3“Il est facile de voir que...”, “il est facile de conclure que...”, etc. — Pierre-Simon Laplace, frequently
in “Traité de Mécanique Céleste.”

4“Onewould be able to draw thencewell some corollaries that I omit for fear of boring you.” —Gabriel
Cramer, Letter to Nicolas Bernoulli, 21 May 1728. Translated from “Die Werke von Jakob Bernoulli,” by
R.J. Pulskamp.

https://en.wikipedia.org/wiki/M�canique_analytique
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5 “Twomonths after I made up the example, I lost the mental picture which produced it. I really regret
this, because a lot of people have askedme your question, and I can’t answer.” —Alan J. Hoffman, private
communication with J. Lee, August, 1994.

6 “Fourier hat sich selbst vielfach umUngleichungen bemüht, aber ohne erheblichen Erfolg.” —Gyula
Farkas, “Über die Theorie der Einfachen Ungleichungen,” Journal für die Reine und AngewandteMathematik,
vol. 124:1–27.

7“The particular geometry used in my thesis was in the dimension of the columns instead of the rows.
This column geometry gave me the insight that made me believe the Simplex Method would be a very
efficient solution technique for solving linear programs. This I proposed in the summer of 1947 and by
good luck it worked!” — George B. Dantzig, “Reminiscences about the origins of linear programming,”
Operations Research Letters vol. 1 (1981/82), no. 2, 43–48.
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8“George would often call me in and talk about something on his mind. One day in around 1959,
he told me about a couple of problem areas: something that Ray Fulkerson worked on, something else
whose details I forget. In both cases, he was using a linear programming model and the simplex method
on a problem that had a tremendous amount of data. Dantzig in one case, Fulkerson in another, had
devised an ad hoc method of creating the data at the moment it was needed to fit into the problem. I
reflected on this problem for quite awhile. And then it suddenly occurred to me that they were all doing
the same thing! Theywere essentially solving a linear programming problemwhose data -whose columns
- being an important part of the data, were too many to write down. But you could devise a procedure
for creating one when you needed it, and creating one that the simplex method would choose to work
with at that moment. Call it the column-generation method. The immediate, lovely looking application
was to the linear programming problem, in which you have a number of linear programming problems
connected only by a small number of constraints. That fit in beautifully with the pattern. It was a way
of decomposing such a problem. So we referred to it as the decomposition algorithm. And that rapidly
became very famous.” — Philip Wolfe, interviewed by Irv Lustig ∼2003.

9“So they have this assortment of widths and quantities, which they are somehow supposed to make
out of all these ten-foot rolls. So that was called the cutting stock problem in the case of paper. So Paul
[Gilmore] and I got interested in that. We struck out (failed) first on some sort of a steel cutting problem,
but we seemed to have some grip on the paper thing, and we used to visit the paper mills to see what
they actually did. And I can tell you, paper mills are so impressive. I mean they throw a lot of junk in at
one end, like tree trunks or something that’s wood, and out the other end comes – swissssssh – paper! It’s
one damn long machine, like a hundred yards long. They smell a lot, too. We were quite successful. They
didn’t have computers; believe me, no computer in the place. So we helped the salesman to sell them the
first computer.” — Ralph E. Gomory, interviewed by William Thomas, New York City, July 19, 2010.
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10“I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision
processes. An interesting question is, Where did the name, dynamic programming, come from? The
1950s were not good years for mathematical research. We had a very interesting gentleman inWashington
named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the
word research. I’m not using the term lightly; I’m using it precisely. His face would suffuse, he would
turn red, and he would get violent if people used the term research in his presence. You can imagine
how he felt, then, about the term mathematical. The RAND Corporation was employed by the Air Force,
and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson
and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What
title, what name, could I choose? In the first place I was interested in planning, in decision making, in
thinking. But planning, is not a good word for various reasons. I decided therefore to use the word
‘programming’. I wanted to get across the idea that this was dynamic, this was multistage, this was time-
varying I thought, lets kill two birds with one stone. Lets take a word that has an absolutely precise
meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an
adjective, and that is its impossible to use the word dynamic in a pejorative sense. Try thinking of some
combination that will possibly give it a pejorative meaning. It’s impossible. Thus, I thought dynamic
programming was a good name. It was something not even a Congressman could object to. So I used it as
an umbrella for my activities.” — Richard E. Bellman, “Eye of the Hurricane: An Autobiography,” 1984.

11“Vielleicht noch mehr als der Berührung der Menschheit mit der Natur verdankt die Graphentheorie
der Berührung derMenschen untereinander.” —DénesKönig, “Theorie Der EndlichenUndUnendlichen
Graphen,” 1936.
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1-norm, 11
∞-norm, 11
(matrix) product, 3
concave piecewise-linear function, 63
convex piecewise-linear function, 59

affine function, 59
algebraic perturbation, 34
arcs, 12, 89
artificial variable, 37

basic direction, 24
basic feasible direction relative to the basic

feasible solution, 24
basic feasible ray, 25
basic feasible solution, 20
basic partition, 19
basic solution, 20
basis, 4, 19
basis matrix, 19
best bound, 109
big M, 101
bipartite graph, 91
branch-and-bound, 106
breakpoints, 103

Chvátal-Gomory cut, 110
column space, 5
complementary, 47, 49
concave function, 63
consecutive-ones matrix, 92
conservative, 12, 90
convex function, 59
convex set, 21
cost, 12, 90
Cramer’s rule, 7
cutting pattern, 80
cutting-stock problem, 80

Dantzig-Wolfe Decomposition, 66
demand nodes, 17
determinant, 6
dimension, 4
diving, 108
dot product, 4
down branch, 107
dual solution, 27

edge weights, 91
edges, 91

elementary row operations, 5
extreme point, 21
extreme ray, 25
feasible, 2
feasible direction relative to the feasible

solution, 24
feasible region, 2
flow, 12, 89
full column rank, 5
full row rank, 5
Gauss-Jordan elimination, 6
head, 12, 89
identity matrix, 6
inverse, 6
invertible, 6
key invariant for branch-and-bound, 106
knapsack problem, 81
Lagrangian Dual, 75
Laplace expansion, 6
linear combination, 4
linear constraints, 1
linear function, 59
Linear optimization, 1
linearly independent, 4
lower bound, 106
Master Problem, 67
matching, 96
max-norm, 11
most fractional, 109
multi-commodity min-cost network-flow

problem, 12
network, 12, 89
network matrix, 90
nodes, 12, 89
non-basis, 19
non-degeneracy hypothesis, 31
null space, 5
objective function, 1
optimal, 2
overly complementary, 54
perfect matching, 91
phase-one problem, 37
phase-two problem, 37
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pivot, 32, 121
polyhedron, 1

rank, 5
ratio test, 30
ray, 25
recursive optimization, 82
reduced costs, 27
reduced-cost fixing, 110
row space, 5

scalar product, 4
Sherman-Morrison formula, 6
single-commodity min-cost network-flow

problem, 90
slack variable, 2
solution, 2
span, 4
standard form, 2
subgradient, 75

sufficient unboundedness criterion, 30
supply nodes, 17
surplus variable, 2

tail, 12, 89
the adjacency condition, 103
totally unimodular (TU), 93
transportation problem, 17
trivial, 4

uncapacitated facility-location problem,
101

unimodular, 92
up branch, 107

vertex cover, 97
vertex packing, 121
vertex-edge incidence matrix of the

bipartite graph, 91
vertices, 91
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