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Preface

This book is a treatment of linear optimization meant for students who are reason-
ably comfortable with matrix algebra (or willing to get comfortable rapidly). It is not
a goal of mine to teach anyone how to solve small problems by hand. My goals are to
introduce: (i) the mathematics and algorithmics of the subject at a beginning mathe-
matical level, (ii) algorithmically-aware modeling techniques, and (iii) high-level com-
putational tools for studying and developing optimization algorithms (in particular,
Python/Gurobil).

Proofs are given when they are important in understanding the algorithmics. Imake
free use of the inverse of a matrix. But it should be understood, for example, that B ~1p
is meant as a mathematical expression for the solution of the square linear system of
equations Bz = b. I am not in any way suggesting that an efficient way to calculate the
solution of a large (often sparse) linear system is to calculate an inverse! Also, I avoid
the dual simplex algorithm (e.g., even in describing branch-and-bound and cutting-
plane algorithms), preferring to just think about the ordinary simplex algorithm ap-
plied to the dual problem. Again, my goal is not to describe the most efficient way to
do matrix algebra!

Conventional illustrations are woefully few. Though if Lagrange could not be both-
ered!, who am I to aim higher? Still, [ am gradually improving this aspect, and many
of the algorithms and concepts are illustrated and verified in the modern way, with com-
puter code.

The material that I present was mostly well known by the 1960’s. As a student at
Cornell in the late 70’s and early 80’s, I learned and got excited about linear optimiza-
tion from Bob Bland, Les Trotter and Lou Billera, using [1] and [5]. The present book
is a treatment of some of that material, with additional material on integer-linear op-
timization, mostly which I originally learned from George Nemhauser and Les. But
there is new material too; in particular, a “deconstructed post-modern” version of Go-
mory pure and mixed-integer cuts. There is nothing here on interior-point algorithms
and the ellipsoid algorithm; don’t tell Mike Todd!

Jon Lee

UNIVERSITY OF MICHIGAN
Ann Arbor, Michigan
started March 2013

(or maybe really in Ithaca, NY in 1979)

'New in the 4th Edition! But thanks for the very fond memories AMPL.
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The Nitty Gritty

You can always get the released edition of this book (in .pdf format) from my web
page or github and the materials to produce them (ITEX source, etc.) from me.
I make significant use of software. Everything seems to work with:

Python 3.8.3 (default, Jul 2 2020, 17:30:36) [MSC v.1916 64 bit (AMD64)]
(via Anaconda distribution)

Jupyter Notebook server 6.0.3 (via Anaconda distribution)

Gurobi Optimizer version 9.1.2 build v9.1.2rcO (winé4)

WinEdt 10.3

MiKTeX 2.9

Use of older versions is inexcusable. Newer versions will surely break things. Nonethe-
less, if you can report success or failure on newer versions, please let me know.

I use lots of IEX packages (which, as you may know, makes things rather fragile).
I could not possibly gather the version numbers of those — I do have a day job! (but
WinEdt does endeavor to keep the packages up to date).
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Chapter 1

Let’s Get Started

Our main goals in this chapter are as follows:

Introduce some terminology associated with linear optimization.

Describe elementary techniques for transforming any linear-optimization prob-
lems to one in a ‘standard form.’

e Introduce the Weak Duality Theorem.

Review ideas from linear algebra that we will make use of later.

1.1 Linear Optimization and Standard Form

Linear optimization is the study of the mathematics and algorithms associated with
minimizing or maximizing a real linear objective function of a finite number of real
variables, subject to a finite number of linear constraints, each being that a real linear
function on these variables be =, < or > a constant. A polyhedron is the solution

1



2 CHAPTER 1. LET’S GET STARTED

set of a finite number of linear constraints; so we are studying optimization of a linear
function on a polyhedron.

A solution of a linear-optimization problem is an assignment of real values to the
variables. A solution is feasible if it satisfies the linear constraints. A solution is optimal
if there is no feasible solution with better objective value. The set of feasible solutions
(which is a polyhedron) is the feasible region.

It is convenient to put a general linear-optimization problem into a standard form

min 'z
Ar = b;
z > 0,

wherec € R" ,b € R™ , A € R™*" has full row rank m , and x ia a vector of variables in
R™ . That is, minimization of a linear function on a finite number number of non-negative
real variables, subject to a non-redundant and consistent system of linear equations. Note
that even though the system of equations, Az = b, has a solution, the problem may not
have a feasible solution.
Through a finite sequence of simple transformations, every linear-optimization prob-

lem can be brought into an equivalent one in standard form. Specifically, we can apply
any of the follow steps, as needed, in the order presented.

o The maximum of ¢’z is the same as the negative of the minimum of —cx.

e We can replace any non-positive variable z; with a non-negative variables z ,
substituting —z; for z; . Additionally, we can replace any unrestricted variable
x; with the difference of a pair of non-negative variables x;L and z; . That is,

substituting x;r —x; for z; . In this way, we can make all variables constrained to
be non-negative.

e Next, if we have aninequality > 7, ajz; <y, wesimply replaceitwith > 7, ajz;+
s = v, where a real slack variable s is introduced which is constrained to be non-
negative. Similarly, we can replace > ", a;z; > ywith 3% aja;—s =, where
a real surplus variable s is introduced which is constrained to be non-negative.

e Applying these transformations as needed results in a standard-form problem,
except possibly for the condition that the matrix of coefficients of the systems of
equations have full row rank. But we can realize this last condition by carrying out
elementary row operations on the system of equations, resulting in the elimina-
tion of any redundant equations or the identification that the system of equations
is inconsistent. In the latter case, the linear-optimization problem is infeasible.

1.2 A Standard-Form Problem and its Dual

Letce R",be R™,and A € R™*"™ . Let x be a vector of variables in R" . Consider the
standard-form problem

min cz
Az = b; (P)
z > 0
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Let y be a vector of variables in R™ , and consider the linear-optimization problem

max y'b
yA < . (D)

It is worth emphasizing that (P) and (D) are both defined from the same data 4, b
and c¢ . We have the following very simple but key result, relating the objective values
of feasible solutions of the two linear-optimization problems.

Theorem 1.1 (Weak Duality Theorem)
If 7 is feasible in (P) and y is feasible in (D), then ¢’z > §'b .

Proof.
3> i Az,

because ' A < ¢ (feasibility of in (D)) and & > 0 (feasibility of z in (P)). Furthermore
i Ai = b,

because Az = b (feasibility of & in (P)). The result follows. O

1.3 Linear-Algebra Review
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For a matrix A € R™*" , we denote the entry in row i and column j as a;; . For a
matrix A € R™*" , we denote the transpose of A by A’ € R"*™ . That is, the entry in
row ¢ and column j of A’ is aj; .

Except when we state clearly otherwise, vectors are “column vectors.” That is, we
can view a vector z € R™ as a matrix in R"*! . Column j of A4 is denoted by A.; € R™ .
Row i of A is denoted by A;., and we view its transpose as a vector in R" . We will have
far greater occasion to reference columns of matrices rather than rows, so we will often
write A; as a shorthand for A.; , so as to keep notation less cluttered.

For matrices A € R™*P and B € RP*" , the (matrix) product AB € R™*" is defined
to be the matrix having Y 7 _, a;;bx; as the entry in row ¢ and column j . Note that for the
product AB to make sense, the number of columns of A and the number of rows of B
must be identical. It is important to emphasize that matrix multiplication is associative;
that is, (AB)C = A(BC) , and so we can always unambiguously write the product
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of any number of matrices without the need for any parentheses. Also, note that the
product and transpose behave nicely together. That is, (AB) = B'A’ .

The dot product or scalar product of vectors z, z € R"isthescalar (v, 2) == >, x;z2;,
which we can equivalently see as 2’z or 2’z , allowing ourselves to consider a 1 x 1 ma-
trix to be viewed as a scalar. Thinking about matrix multiplication again, and freely
viewing columns as vectors, the entry in row ¢ and column j of the product AB is the
dot product ((4;.)', B.;) .

Matrix multiplication extends to “block matrices” in a straightforward manner. If

A || Agp Bii |-+ | Bin

Agp | -+ | Agp By | -+ | By,
A= - - - and B := - - ,

At | | Amp Bp1 | - | Bon

where each of the A;; and B;; are matrices, and we assume that for all < and j the
number of columns of A;;, agrees with the number of rows of By; , then

dope1 AeBra | | 2h—y Ak B
AB — | 2Zh=1AwBra | -+ | 22—, AwBra
Zz:l Akakl e 22:1 Akakn

That is, block i, j of the product is 22:1 A Byj , and Ay, By is understood as ordinary
matrix multiplication.

For vectors z!,2%,... 2P € R", and scalars A1, Ag,..., A, , D b_; Nz’ is a linear
combination of 2!, 22, ..., 2P . The linear combination is trivial if all \; = 0 . The vec-
tors #1, 22,..., 2P € R™ are linearly independent if the only representation of the zero

vector in R” as a linear combination of !, 22, . . . , 2P is trivial. The set of all linear combi-

nations of z!, 22, ..., 2P is the vector-space span of {z',2?%,... 27} . The dimension of
a vector space V', denoted dim(V') , is the maximum number of linearly-independent
vectors in it. Equivalently, it is the minimum number of vectors needed to span the
space.

A set of dim(V') linearly-independent vectors that spans a vector space V is a ba-

sis for V. If V is the vector-space span of {z!,z2 ..., 2P} , then there is a subset of
{a',2%, ..., 2P} that is a basis for V . It is not hard to prove the following very useful
result.

Theorem 1.2 (Greedy Basis Extension Theorem)
Let V' be the vector-space span of {z',22,... 2P} . Then every linearly-independent
subset of {z!,72 ..., 2P} can be extended to a basis for V using vectors from

zh 22, 2P .
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The span of the rows of a matrix A € R™*" is the row space of A, denoted r.s.(A) :=
{y/A : y € R™} . Similarly, the span of the columns of a matrix A is the column space
of A, denoted c.s.(A) := {Az : 2 € R"}. Itis a simple fact that, for a matrix 4 ,
the dimension of its row space and the dimension of its column space are identical,
this common number being called the rank of A . The matrix A has full row rank if
its number of rows is equal to its rank. That is, if its rows are linearly independent.
Similarly, the matrix A has full column rank if its number of columns is equal to its
rank. That is, if its columns are linearly independent.

Besides the row and columns spaces of a matrix A € R"™*" , there is another very
important vector space associated with A . The null space of A is the set of vectors
having 0 dot product with all rows of A, denoted n.s.(A4) := {zx € R" : Az =0} .

An important result is the following theorem relating the dimensions of the row
and null spaces of a matrix.

Theorem 1.3 (Rank-Nullity Theorem)
If A is a matrix with n columns, then

dim(r.s.(4)) + dim(n.s.(4)) =n .

There are some simple operations on a matrix that preserve its row and null spaces.
The following operations are elementary row operations:

1. multiply a row by a non-zero scalar;

2. interchange a pair of rows;

3. add a scalar multiple of a row to another row;
4. delete a row that is identically zero.

There is one more operation that we allow, which is really one of convenience rather
than mathematics. It is convenient to be able to permute columns while also permuting
the corresponding column indices. That is, if A € R"™*" , we regard the columns as
labeled, in left-to-right order: 1,2,...,n . So we have

A=1[A1,Ag, ..., A,] .
It can be convenient to have a permutation o1, 02, ...,0, 0f 1,2,...,n, and then write
[Agy, Agyy ooy As]

This matrix is really equivalent to A , because we regard its columns as labeled by
o1,092,...,0, rather than 1,2,...,n . Put another way, when we write a matrix, the
order of the columns is at our convenience, but the labels of columns is determined by
the order that we choose for placing the columns.
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The identity matrix I, in R"*" is the matrix having 1 as every diagonal element and
0 as every off-diagonal element. Via elementary row operations, any matrix A , that is
not all zero, can be transformed, via elementary row operations, into one of the form

L, M] .

Using corresponding operations on the associated system of equations, this is known
as Gauss-Jordan elimination.

For an r x r matrix B of rank r , there is a unique r x r matrix “B~1” such that
BB =1, . For this reason, such a matrix B is called invertible, and B! is called the
inverse of B . According to the definition, B7'B =1, , but we also have BB~ =1, .
Also, (B")™! = (B~!), and if A and B are both invertible, then (AB)~! = B~tA~!.

Noting that,

B7'B,1,)=[1,,B7Y],

we see that there is a nice way to compute the inverse of a matrix B using elementary
row operations. That is, we perform elementary row operations on

[B,1,]

so that we have the form
I:IT’ M] M

and the resulting matrix M is B~!.
The Sherman-Morrison formula is a useful way to relate the inverse of a matrix to
the inverse of a rank-1 change to the matrix:

B luv'B~1
1+oB 1y’

1:B_1

(B+w')~
where the r x r matrix B is invertible, u,v € R", and it must be assumed that 1 +
v' B~ # 0 for otherwise B + uv’ would not be invertible.

Next, we define the determinant of a square » x r matrix B , which we denote
det(B) . We define the determinant in a non-standard but useful manner, via a recursive
formula known as Laplace expansion.’

If r=1,then B = (b11) , and we define det(B) := by; . For > 1, choose any fixed
column j of B, and we define

r

det(B) = Z(—l)iﬂ bij det(BY) ,

i=1

where BY is the (r — 1) x (r — 1) matrix obtained by deleting row i and column j of B .
It is a fact that this is well defined — that is, the value of det(B) does not depend on the
choice of j (taken at each step of the recursion). Moreover, we have det(B’) = det(B),
so we can could as well choose any fixed row i of B, and we have

det(B) = i(—l)iﬂ bij det(BY)

=1
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resulting in the same value for det(B) .
An interesting observation links det(B) with elementary row operations. Consider
performing elementary row operations on

(B, 1]

to obtain
[I.,B ’1] .

As we carry out the elementary row operations, we sometimes multiply a row by a
non-zero scalar. If we accumulate the product of all of these multipliers, the result is
det(B~!) ; equivalently, the reciprocal is det(B) .

Finally, for an invertible » x r matrix B and a vector b, we can express the unique
solution Z of the system Bz = b, via a formula involving determinants. Cramer’s rule
is the following formula:

__ det(B()) -
€ —W, for] = 1,2,...,7’,

where B(j) is defined to be the matrix B with its j-th column replaced by b . It is worth
emphasizing that direct application of Cramer’s rule is not to be thought of as a useful
algorithm for computing the solution of a system of equations. But it can be very useful
to have in the proof toolbox.*

1.4 Exercises

Exercise 1.0 (Learn IATEX)

Learn to use IZTEX for writing all of your homework solutions. Personally, I use MiKTEgX,
which is an implementation of ETEX for Windows. Specifically, within MiKTgX, I am
using pdfEETEX (it only matters for certain things like including graphics and also pdf
into a document). I find it convenient to use the editor WinEdt, which is very ETEX
friendly. A good book on I£TEX is

In Appendix A.1 there is a template to get started. Also, there are plenty of tutorials
and beginner’s guides on the web.

Exercise 1.1 (Convert to standard form)
Give an original example (i.e., with actual numbers) to demonstrate that you know
how to transform a general linear-optimization problem to one in standard form.


http://miktex.org/
http://www.winedt.com/
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Exercise 1.2 (Weak Duality example)
Give an original example to demonstrate the Weak Duality Theorem.

Exercise 1.3 (Convert to < form)
Describe a general recipe for transforming an arbitrary linear-optimization problem
into one in which all of the linear constraints are of < type.

Exercise 1.4 (m + 1 inequalities)

Prove that the system of m equations in n variables Az = b is equivalent to the system
Az < baugmented by only one additional linear inequality — that is, a total of only
m + 1 inequalities.

Exercise 1.5 (Weak duality for another form)
Give and prove a Weak Duality Theorem for

max czx

Ax < b; (P")
xr > 0.

HINT: Convert (P’) to a standard-form problem, and then apply the ordinary Weak
Duality Theorem for standard-form problems.

Exercise 1.6 (Weak duality for a complicated form)
Give and prove a Weak Duality Theorem for

min dr + flw

Ax 4+ Bw < b; /
Dz = 9; (P)
z>0 w<oO

HINT: Convert (P’) to a standard-form problem, and then apply the ordinary Weak
Duality Theorem for standard-form problems.

Exercise 1.7 (Weak duality for a complicated matrix form — with Python/Gurobi)
Python is an interpreted, general-purpose programming language. Anaconda is a free
and open-source distribution of Python (and R). Via the Anaconda distribution, one also
gets Jupyter Notebook, which is a convenient way to experiment with Python. Gurobi
is a state-of-the art commercial linear and integer linear optimization software, with
free temporary licensing for students. Gurobi can be easily accessed with gurobipy, a
Python module. The Jupyter notebook MatrixLP.ipynb (see Appendix A.2) sets up
and solves an instance of (P') from Exercise 1.6. Run the code and it, to see how it is
works. Now, extend the code to solve the dual of (P’). Also, after converting (P’) to
standard form (as indicated in the HINT for Exercise 1.6), use Python/Gurobi to solve
that problem and its dual. Make sure that you get the same optimal value for all of
these problems.



Chapter 2

Modeling

Our goals in this chapter are as follows:
e Learn some basic linear-optimization modeling techniques.

e Learn how to use an Python as an LP modeling language in connection with
Gurobi as an LP solver.

2.1 A Production Problem
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We suppose that a company has m resources, available in quantities b; ,< = 1,2,...,m,
and n production activities, with per-unit profits ¢; , j = 1,2,...,n . Each unit of ac-
tivity j consumes a;; units of resources i . Each production activity can be carried out
at any non-negative level, as long as the resources availabilities are respected. We as-
sume that any unused resource quantities have no value and can be disposed of at no
cost. The problem is to find a profit-maximizing production plan. We can formulate
this problem as the linear-optimization problem

max czx
Az < b (P)
z > 0,
where b := (b1, b2,...,bpn)" , ¢ := (c1,¢2,...,¢n)" , A € R™*" is the matrix of a;j, and x

is a vector of variables in R™ .

From the very same data, we can formulate a related linear-optimization problem.
The goal now is to set per-unit prices y; , for the resources i = 1,2, ..., m. The total cost
of purchasing the resources from the company is then y'b , and we wish to minimize
the total cost of obtaining the resources from the company. We want to set these prices
in such a way that the company would never have an incentive to carry out any of the
production activities versus selling the resources at the associated resources at these

prices. That is, we require that > ", y;a;; > ¢; , for j = 1,2,...,n . Because of our
assumption that the company can dispose of any unused quantities of resources at no
cost, we have y; > 0, fori = 1,2,...,m . All in all, we have the linear-optimization
problem
min b
YA > o (D)
y =20,

Comparing this pair of linear-optimization problem with what you discovered in Ex-
ercise 1.5, we see that a Weak Duality Theorem holds: that is, the profit of any feasible
production plan is bounded above by the cost of the resources determined by any set
of prices that would render all production activities non-profitable.

2.2 Norm Minimization

& Boston - oﬂﬁ 4
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“Norms” are very useful as a measure of the “size” of a vector. In some applica-
tions, we are interested in making the “size” small. There are many different “norms”
(for example, the Euclidean norm), but two are particularly interesting for linear opti-
mization.

For z € R", the co-norm (or max-norm) of x is defined as

2|0 = max{|z;| : j=1,2,...,n}.

We would like to formulate the problem of finding an co-norm minimizing solution of
the system of equations Az = b. This is quite easy, via the linear-optimization problem:

min ¢
t — x; > 0,1=1,2,...,n;
t + x; > 0,1=1,2,...,n;
Ar = b

)

where ¢ € R is an auxiliary variable. Notice how the minimization “pressure” ensures
that an optimal solution (z, ) has f = max?_;{|%;|} = [|2]~ . This would not work for
maximization!

The 1-norm of z is defined as

n
Izl =)l -
j=1

Now, we would like to formulate the problem of finding a 1-norm minimizing solu-
tion of the system of equations Az = b . This is quite easy, via the linear-optimization
problem:

min E?:l tj
tj - Zj

Z 0 ? j = 17 2) N 7n ;
t; + x; = 0,5=12,...,n;
Ar = b,
where t € R" is a vector of n auxiliary variables. Notice how the minimization “pres-
sure” ensures that an optimal solution (#,%) has t; = |#;| , for j = 1,2,...,n (again,

this would not work for maximization!), and so we will have 3 7, ti =121 -

2.3 Network Flow
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A finite network G is described by a finite set of nodes A/ and a finite set A of arcs.
Each arc e has two key attributes, namely its tail ¢(e) € A and its head h(e) € N'. We
think of K > 1 commodities as being allowed to “flow” along each arc, from its tail to
its head. Indeed, we have “flow” variables

z¥ := amount of flow of commodity k on arc e,
foreec A,and k =1,2,..., K . Formally, a flow 2 on G is simply an assignment of any
real numbers i“le“ to the variables a:’g ,foree A, and k = 1,2,..., K . We assume that

the total flow on arc e should not exceed
ue := the flow upper bound on arc e,

for e € A. Associated with each arc e and commodity % is a cost

cf := cost per-unit-flow of commodity k on arc e,

foree A,and k =1,2,..., K. The (total) cost of the flow & is defined to be

K
SOY T ckak

k=lecA

We assume that we have further data for the nodes. Namely,
b% = the net supply of commodity k at node v ,

for v € M. A flow is conservative if the net flow out of node v, minus the net flow into
node v , is equal to the net supply at node v, for all nodes v € NV, and all commodities
k=1,2,...,K.

The multi-commodity min-cost network-flow problem is to find a minimum-cost
conservative flow that is non-negative and respects the flow upper bounds on the arcs.
We can formulate this as follows:

K
min g E c]e“xl;

k=lecA

dab = N af = bk, VeeN k=12, ,K;
ecA : ecA :

t(e)=v h(e)=v

K

Zm’éﬁue, Vee A;

k=1

k>0, Vee A, k=1,2,..., K.
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2.4 Modeling in Software
MODELI NG Optimization modeling languages fa-
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In Exercise 1.7, we saw how to set up “matrix-style” optimization models, instantiate
them with data, and solve them. For models that relate to applications, it is often more
natural and convenient to specify models in a way that does not obscure the problem
being solved and is close to the way that we would naturally write the model mathe-
matically. We will do this in Python, making direct calls to Gurobi. As a first step in
this direction, we consider the Production problem of Section 2.1. For this problem, we

specify the model in Python/Gurobi as follows.
First, it is convenient to number the resources as M:= {0, 1, ..., m — 1} and the vari-
ables as N:= {0,1,...,n — 1}. We do this in Python via:

M=1list(range(O,m))
N=list(range(0,n))

We instantiate a Gurobi Model object via
model = gp.Model()

Note that model is the name that we have given Gurobi Model object in Python.
We create (continuous nonnegative) variables x[j], for j € N, attached to model, via:

x = model.addMVar (n)

These variable names x [j] are accessible to us in Python and are not used internally by Gurobi.
We define and attach our objective function, revenueobjective, to model via:

! Another is CPLEX


https://ampl.com/
https://www.gams.com/
http://www.pyomo.org/
https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer

14 CHAPTER 2. MODELING

revenueobjective = model.setObjective(sum(c[jI*x[j] for j in N), GRB.MAXIMIZE)

This objective name is accessible to us in Python and is not used internally by Gurobi.
Finally, we define our resource constraints and attach them to model via:

for i in M:
model.addConstr(sum(A[i,jl*x[j] for j in N) <= b[i], name=’r’+str(i))

Note that we have created names, rj, for j € N, for the constraints inside Gurobi. This enables
us to easily retrieve constraint “attributes” from Gurobi. A Juptyer notebook giving the full
Python/Gurobi implementation is Production.ipynb (see Appendix A.3).

Next, we consider the Network Flow problem of Section 2.3. The model is specified as:

x = model.addVars (ArcsCrossCommods)
model.setObjective (sum(sum(CapacityCosts[i,j] [k]1*x[(i,j),k] for (i,j) in Arcs)
for k in Commods), GRB.MINIMIZE)
model.addConstrs(sum(x[(i,j),k] for k in Commods) <= CapacityCostsl[i,j][0]
for (i,j) in Arcs)
model.addConstrs(
(sum(x[(i, j),k] for j in Nodes if (i, j) in Arcs) - sum(x[(j, 1i),k]
for j in Nodes if (j,i) in Arcs)
== Supplies[i][k-1] for i in Nodes for k in Commods))

A Python/Gurobi implementation is in the Jupyter notebook Multi-commodityFlow.ipynb
(see Appendix A.4).

Example 2.1

Figure 2.1 depicts an 8-node network for a K = 2 commodity example. Each arc e is labeled
[ue, ¢}, c2]. Figures 2.2 and 2.3 depict the node supply data and the optimal solutions. Figures
2.2 corresponds to commodity 1 and Figure 2.3 corresponds to commodity 2. Node v is labeled
v : b and arc e is labeled with the optimal value of % .
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1.0,1,11—>1' 8
X-\’\
oo

/

7

Figure 2.1: Arc data

»8:-1.0

Figure 2.2: Commodity 1: supplies and flows
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6: 0.0 0.0 » 8: 0.0

Figure 2.3: Commodity 2: supplies and flows

2.5 Exercises

Exercise 2.1 (Dual in Python/Gurobi)

Without changing the data specification in Production. ipynb (see Appendix A.3), use Python/Gurobi
to solve the dual of the Production Problem example, as described in Section 2.1. You will need

to modify the model in Production.ipynb appropriately.

Exercise 2.2 (Sparse solution for linear equations)
In some application areas, it is interesting to find a “sparse solution” — that is, one with few non-
zeros — to a system of equations Az = b, on say the domain —1 < z; < +1,forj =1,2,...,n.
It is empirically well known that a 1-norm minimizing solution is a good heuristic for finding
a sparse solution. The moral justification of this is as follows. We define the function indicator
function I : R — R by
Loty ={ g 020

Itis easy to see (make a graph) that f(w) := |w| is the “best convex function under-estimator” of
I40 on the domain [-1, 1]. So we can hope that minimizing >, |z|; comes close to minimizing
2 i1 Tzo(x;) -

Using Python/Gurobi try this idea out on several large examples, using 1-norm minimiza-
tion as a heuristic for finding a sparse solution.

HINT: To get an interesting example, try generating a random m x n matrix A of zeros
and ones, perhaps m = 50 equations and n = 500 variables, maybe with probability 1/2 of
an entry being equal to one. Next, choose a random 7 € R? satisfying —1 < z; < +1, for
j=12,...,m/2,and Z; = 0for j = m/2+1,...,n. Now let b := AZ. In this way, you will
know that there is a solution (i.e., Z) with only m/2 non-zeros (which is already pretty sparse).
Your 1-norm minimizing solution might in fact recover this solution (®), or it may be sparser
(©9), or perhaps less sparse (®).
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Exercise 2.3 (Bloody network)

A transportation problem is a special kind of (single-commodity min-cost) network-flow prob-
lem. There are certain nodes v called supply nodes which have net supply b, > 0. The other
nodes v are called demand nodes, and they have net supply b, < 0. There are no nodes with
b, = 0, and all arcs point from supply nodes to demand nodes.

A simplified example is for matching available supply and demand of blood, in types A, B,
AB and O . Suppose that we have s,, units of blood available, in types v € {4, B, AB,O} . Also,
we have requirements d,, by patients of different types v € {A, B, AB, O} . It is very important
to understand that a patient of a certain type can accept blood not just from their own type.
Do some research to find out the compatible blood types for a patient; don't make a mistake —
lives depend on this! In this spirit, if your model allocates any blood in an incompatible fashion, you
will receive a grade of F on this problem. A

Describe a linear-optimization problem that satisfies all of the patient demand with com-
patible blood. You will find that type O is the most versatile blood, then both A and B, followed
by AB. Factor in this point when you formulate your objective function, with the idea of having
the left-over supply of blood being as versatile as possible.

Using Multi-commodityFlow.ipynb (see Appendix A.4) with a single commodity only; that is,
K =1, set up and solve an example of a blood-distribution problem.

Exercise 2.4 (Mix it up)
“I might sing a gospel song in Arabic or do something in Hebrew. I want to mix it up and
do it differently than one might imagine.” — Stevie Wonder

We are given a set of ingredients 1, 2,. .., m with availabilities b; , measured in kilograms,
and per kilogram costs ¢; . We are given a set of products 1, 2, .. ., n with minimum production
requirements d; , measured in kilograms, and per kilogram revenues e; . It is required that
product j have at least a fraction (by weight) of [;; of ingredient ¢ and at most a fraction (by
weight) of u;; of ingredient ¢ . The goal is to devise a plan to maximize net profit.

Formulate, mathematically, as a linear-optimization problem. Then, model with Python/Gurobi,
make up some data, try some computations, and report on your results.

Exercise 2.5 (Task scheduling)

E i
1 HAVE TOO 8 EXPERTS SAY YOU | NOW I HAVE TOO MANY
g| ©SHOULD TACKLE THE ]} PROJECTS AND SOME
MANY PROTJECTS. £
I™ FREAKING OUT. 8| _MOST UNPLEASANT =] EXTRA ANXIETY THAT
2| TASKS FIRST, 50 YOU [Z] 1M DOING THEM IN THE
3 HAVE A FEELING OF H LJRONG ORDER.
E ACCOMPLISHMENT g
E AND CONTROL. z ) OFE YOU GO.
5 5 s
- 4
§ g
E z
2 2
o Lo
We are given a set of tasks, numbered 1,2, ..., n that should be completed in the minimum

amount of time. For convenience, task 0is a “start task” and task n+1is an “end task”. Each task,
except for the start and end task, has a known duration d; . For convenience, let dy := 0. Any
number of tasks can be carried out simultaneously, except that there are precedences between
tasks. Specifically, ¥; is the set of tasks that must be completed before task i can be started. Let
to := 0, and for all other tasks i, let ¢; be a decision variable representing its start time.
Formulate the problem, mathematically, as a linear-optimization problem. The objective
should be to minimize the start time ¢, 11 of the end task. Then, model the problem with
Python/Gurobi, make up some data, try some computations, and report on your results.
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Exercise 2.6 (Investing wisely)
Almost certainly, Albert Einstein did not say that “compound interest is the most powerful force
in the universe.”

A company wants to maximize their cash holdings at the end of T" time periods. They have
an external inflow of p, dollars at the start of time period ¢, for ¢t = 1,2,...,T . At the start
of each time period, available cash can be allocated to any of K different investment vehicles
(in any available non-negative amounts). Money allocated to investment-vehicle & at the start
of period ¢t must be held in that investment & for all remaining time periods, and it generates
income v,{f . vf, 41 s e vfj , per dollar invested. It should be assumed that money obtained
from cashing out the investment is incorporated into these parameters. For example, (v 4, v{ 5,
v, V7, Vs, g, V)10, v, v 1) = (0.1,0.1,0.1,1.1,0,0,0,0,0) can be interpreted as 1
dollar invested in investment vehicle #9 at the start of time period 4 yields 0.1 dollars of income
for times periods 4-7, and with the original dollar returned in time period 7, and no returns at
all in the remaining time periods 8-12.

Note that at the start of time period ¢, the cash available is the external inflow of p; , plus
cash accumulated from all investment vehicles in prior periods that was not reinvested. Finally,
assume that cash held over in any time period earns interest of ¢ percent.

Formulate the problem, mathematically, as a linear-optimization problem. Then, model the
problem with Python/Gurobi, make up some data, try some computations, and report on your
results.


http://www.snopes.com/quotes/einstein/interest.asp
http://www.snopes.com/quotes/einstein/interest.asp

Chapter 3

Algebra Versus Geometry

MY COLLEAGUE, PERFESSOR ALBERT, ANDI
OPENS OKEFENOKEE U., AN’ FIRST WE IS
GOT A PROBLEM IN ALGEBRA OR, AS US
MODERNS PRONOUNCE IT, G£E£-OMETRY.

iR

o

| 9-15

Our goals in this chapter are as follows:
e Develop the algebra needed later for our algorithms.

o Develop some geometric understanding of this algebra.

Throughout, we refer to the standard-form problem

min dz
Ax
x

b; (P)
0.

VAN

3.1 Basic Feasible Solutions and Extreme Points

A basic partition of A € R™*" is a partition of {1,2,...,n} into a pair of ordered sets, the
basis 8 = (1, 52, - .-, Bm) and the non-basis 7 = (11,72, ..., Mn—m), SO that the basis matrix

19
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Apg = [Ap,, Ap,, ..., Ap, ] is an invertible m x m matrix. The connection with the standard
“linear-algebra basis” is that the columns of Ag form a “linear-algebra basis” for R™. But for
us, “basis” almost always refers to 5.

We associate a basic solution z € R"™ with the basic partition via:

z, = 0 e R
Tp Ag'b eR™.

We can observe that zg = Aglb is equivalent to AgZ3 = b, which is the unique way to write b
as a linear combination of the columns of Ag . Of course this makes sense, because the columns
of Ag form a “linear-algebra basis” for R™ .

Note that every basic solution Z satisfies AT = b, because

Az = ZA]‘.’Z‘]' = ZA]‘.’Z‘J' + ZAji‘j = A,@{Z‘g + Ani‘n = Alg (Ag”)) + AU 0=5b.
Jj=1 JEB Jjen

A basic solution Z is a basic feasible solution if it is feasible for (P). That is, if Z3 = Aglb >0.

It is instructive to have a geometry for understanding the algebra of basic solutions, but for
standard-form problems, it is hard to draw something interesting in two dimensions. Instead,
we observe that the feasible region of (P) is the solution set, in R™ , of

x3 + AElAnzn = Aglb;
3 >0 Ty > 0.

Projecting this onto the space of non-basic variables x,, € R"™™ , we obtain
-1
(A 5 An) Ty

Notice how we can view the x4 variables as slack variables.

In the following example, because it is convenient in Python, we use “zero indexing”. In
particular, we use indices {0, 1,...,n — 1} for the variables z; and the columns 4;, and for the
basic partition we label 5 := (8o, 81, ..., Bm—1) and n := (00, 71, - - ., MT—m—1)-

Example 3.1

For this system, it is convenient to draw pictures when n — m = 2, for example n = 6 and
m = 4. In such a picture, the basic solution £ € R™ maps to the origin z,, = 0 € R*™™ , but
other basic solutions (feasible and not) will map to other points.

Suppose that we have the data:

1 21000
A 3 10100
~ [ 32320010
0 1000 1
b = (7,9,6,33/10)

6 = (ﬂ07 Bl 3 ﬁQ 5 ﬁ3) = (07173a5)7
no= (no,m) = (2,4).



3.1. BASIC FEASIBLE SOLUTIONS AND EXTREME POINTS 21

Then
1 2 0 0
3 1 1 0
Ag = e Aso A Agl = | 59 3,9 g o |
0 1 0 1
1 0
0 0
A77 == [AnovAnl] = 0 1 ’
0 0
rg = (wo,z1,73,T5)
Ty = ($2,$4)/-
We can calculate
-1 4/3
. 1 —2/3
Ag Ay = 2 —10/3 |
-1 2/3
A7 = (1,3,3,3/10)

and then we have plotted this in Figure 3.1. The plot has z,,, = x5 as the abscissa, and «,, = x4
as the ordinate. In the plot, besides the non-negativity of the variables x5 and x4, the four
inequalities of (AglAn) x,; < Aglb are labeled with their slack variables — these are the basic
variables xoy , 1, 3 , x5 . The correct matching of the basic variables to the inequalities of
(AglAn) Ty < Aglb is simply achieved by seeing that the i-th inequality has slack variable
Zp; -

The feasible region is colored cyan, while basic feasible solutions project to points and
basic infeasible solutions project to red points. We can see that the basic solution associate with
the current basis is feasible, because the origin (corresponding to the non-basic variables being
set to 0) is feasible.

A set S C R" is a convex set if it contains the entire line segment between every pair of
points in S . That is,

Azt + (1 —N)ax? € S, whenever 2!, 2% € Sand0 < A < 1.

It is simple to check that the feasible region of every linear-optimization problem is a convex set
—doit!

For a convex set S C R™, a point £ € S is an extreme point of S if it is not on the interior of
any line segment wholly contained in .S . That is, if we cannot write

=X+ (1 -N2?, witha' Z2° € Sand0 < A < 1.

Theorem 3.2
Every basic feasible solution of standard-form (P) is an extreme point of its feasible region.

Proof. Consider the basic feasible solution Z with

Z, = 0 e R»™;
jﬁ Aglb cR™.
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In the space of the non-basic variables

Figure 3.1: Feasible region projected into the space of non-basic variables

If

Kl

= Az' + (1 — N\)z? , with 2! and 2? feasible for (P)and 0 < A < 1,

then 0 = 7, = Az, + (1 — A\)z; and 0 < A < 1 implies that z; = 27 = 0. But then Agzj = b
implies that zj; = A5'b = Z , fori = 1,2. Hence Z = ' = 22 (but we needed z* # 2?), and
so we cannot find a line segment containing Z that is wholly contained in S . O

Theorem 3.3
Every extreme point of the feasible region of standard-form (P) is a basic solution.

Proof. Let 2 be an extreme point of the feasible region of (P). We define
p={j€{l,2,...,n} : 2; >0}.

That is, p is the list of indices for the positive variables of & . Also, we let
¢:={je{1,2,...,n} : 2; =0}.

That s, ( is the list of indices for the zero variables of & . Together, p and ¢ partition {1,2,...,n}.
Our goal is to construct a basic partition, 3,7 , so that the associated basic solution is pre-
cisely 2 .
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The first thing that we will establish is that the columns of A, are linearly independent. We
will do that by contradiction. Suppose that they are linearly dependent. That is, there exists
z, € RI?l different from the zero vector, such that A,z, = 0. Next we extend z, to a vector
z € R™, by letting 2z = 0. Clearly Az = A,z, + Acz¢ = 0+ A0 = 0; that is, z is in the null
space of A . Next, let

hi=F + ez

and
2

T =0 — ez,

with e chosen to be sufficiently small so that 2! and 2? are non-negative. Because z is only
non-zero on the p coordinates (where Z is positive), we can choose an appropriate ¢ . Notice
that ' # 2? , because z, and hence z is not the zero vector. Now, it is easy to verify that
Azt = A(Z + e2) = A% + €Az = b+ 0 = b and similarly Az?> = b. Therefore, z! and z? are
feasible solutions of (P). Also, 22! + 222 = 1(& + €2) + (2 — €z) = 2. So  is on the interior
(actually it is the midpoint) of the line segment between 2! and 22, in contradiction to # being
an extreme point of the feasible region of (P). Therefore, it must be that the columns of A4, are
linearly independent.

In particular, we can conclude that |[p| < m , since we assume that A € R”*" has full row
rank. If |p| < m , we choose (via Theorem 1.2) m — |p| columns of A, to append to A, in such
a way as to form a matrix Ag having m linearly-independent columns — we note that such a
choice is not unique. As usual, we let 1 be a list of the n — m indices not in 5 . By definition,
the associated basic solution z has z,, = 0, and we observe that it is the unique solution to the
system of equations Az = b having x, = 0. But &,, = 0 because &, is a subvector of - = 0.

Therefore, & = z . That is, % is a basic solution of (P). O
THE PROTECT MANAGE — onnot THE exTReme || A L \
MENT FRAMEWORK LEVEL OF ABSTRAC— |
EMBODIES A PROJECT [§] TIONHASMADEUS |
LIFE CYCLE AND FIVE i

MAJOR PROJECT
MANAGEMENT PROCESS
OUPS.

WEIGHTLESS!

THAT DOESN'T
EVEN MAKE SENSE.

Dilbert.com DilbertCartoonist@gmail.com

I+7-12. ©20§2 Scott Adams, Inc.n

Taken together, these last two results give us the main result of this section.

Corollary 3.4
For a feasible point z of standard-form (P), & is extreme if and only if Z is a basic solution.

3.2 Basic Feasible Directions
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For a point £ in a convex set S C R™, a feasible direction relative to the feasible solution
Zisa z € R" such that & + €2 € S, for sufficiently small positive ¢ € R . Focusing now on the
standard-form problem (P), for Z to be a feasible direction relative to the feasible solution  ,
weneed A(Z +€z) =b. But

b=A(T+e2)=Ai+ A2 =b+cAZ,

so we need AZ = 0. That is, £ must be in the null space of A .
Focusing on the standard-form problem (P), we associate a basic direction Z € R™ with the
basic partition /3,7 and a choice of non-basic index #; via

Zy, = ej e R*™
zg = —AglAm e R™.

Note that every basic direction Z is in the null space of A :
Az = Agzg + Ayzy = Ag (A5 Ay) + Ayes = — Ay, + Ay, = 0.

So
A(Z+ez)=0,

for every feasible £ and every € € R. Moving a positive amount in the direction Z corresponds
to increasing the value of z,;, , holding the values of all other non-basic variables constant, and
making appropriate changes in the basic variables so as to maintain satisfaction of the equation
system Az =b.

There is a related point worth making. We have just seen that for a given basic partition 5,7,
each of the n — m basic directions is in the null space of A — there is one such basic direction for
each of the n — m choices of 7; . It is very easy to check that these basic directions are linearly
independent — just observe that they are columns of the n x (n — m) matrix

(-aa,)
—AgtA, )

Because the dimension of the null space of A is n —m , these n —m basic directions form a basis
for the null space of A .

Now, we focus on the basic feasible solution z determined by the basic partition 3,7 . The
basic direction Z is a basic feasible direction relative to the basic feasible solution Z if Z + €Z
is feasible, for sufficiently small positive e € R . That is, if

Aglb—eAgtA, >0,

for sufficiently small positive ¢ € R ..
Recall that zg = Aglb ,and let A, = AEIA,U . So, we need that

Tg — EA,]J. >0,
for sufficiently small positive e € R . That is,
Tg, — €l >0,

fori=1,2,...,m.Ifa;,, <0, forsome i, then this imposes no restriction at all on €. So, the
only condition that we need for Z to be a basic feasible direction relative to the basic feasible solution
7 is that there exists € > 0 satisfying

Zga.
€< Bi , for all i such that a; ,, > 0.

QAi,n;
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Equivalently, we simply need that
Zg, > 0, forallisuch thata;,, >0.

So, we have the following result:

Theorem 3.5

For a standard-form problem (P), suppose that 7 is a basic feasible solution relative to the basic
partition 3,7 . Consider choosing a non-basic index 7; . Then the associated basic direction z
is a feasible direction relative to Z if and only if

Zg, > 0, forallisuch thata;,, >0.

3.3 Basic Feasible Rays and Extreme Rays

For a non-empty convex set S C R" ,aray of Sisa 2 # 0in R” such thatz + 72 € S, for all
& € S and all positive 7 € R.

Focusing on the standard-from problem (P), it is easy to see that 2 # 0 is a ray of the feasible
region if and only if A2 =0and Z > 0.

Recall from Section 3.2 that for a standard-form problem (P), a basic direction z € R" is
associated with the basic partition 3,7 and a choice of non-basic index n; via

Zy = €j e R»™;
Zg = —Ag'A, €R™.

If the basic direction Z is a ray, then we call it a basic feasible ray. We have already seen
that Az = 0. Furthermore, z > 0 if and only if A4, := AglAnj <0.
Therefore, we have the following result:

Theorem 3.6 ~
The basic direction Z is a ray of the feasible region of (P) if and only if A,, < 0.

Recall, further, that Z is a basic feasible direction relative to the basic feasible solution z if T 4 €z
is feasible, for sufficiently small positive e € R . Therefore, if Z is a basic feasible ray, relative to the
basic partition 5,7 and Z is the basic feasible solution relative to the same basic partition, then
Z is a basic feasible direction relative to Z .

A ray 2 of a convex set .S is an extreme ray if we cannot write

2 =2"4 2%, with 2! # pz® being rays of Sand y # 0 .

Similarly to the correspondence between basic feasible solutions and extreme points for standard-
form problems, we have the following two results.

Theorem 3.7
Every basic feasible ray of standard-form (P) is an extreme ray of its feasible region.
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Theorem 3.8
Every extreme ray of the feasible region of standard-form (P) is a positive multiple of a basic
feasible ray.

3.4 Exercises

Exercise 3.1 (Illustrate algebraic and geometric concepts)

Using the Jupyter notebook pivot_tools.ipynb (see Appendix A.6), make a small example,
say with six variables and four equations, to fully illustrate the concepts in this chapter. The
Jupyter notebook pivot_example.ipynb (see Appendix A.5) shows how to start to work with
pivot_tools.ipynb.

Exercise 3.2 (Basic feasible rays are extreme rays)
Prove Theorem 3.7.

Exercise 3.3 (Extreme rays are positive multiples of basic feasible rays)
If you are feeling very ambitious, prove Theorem 3.8.

Exercise 3.4 (Dual basic direction — do this if you will be doing Exercise 4.2)
Let 5, n be a basic partition for our standard-form problem (P). As you will see on the first page
of the next chapter, we can associate with the basis 3, a dual solution

T c},AEl

of
max y'b
yA < (.

(D)

It is easy to see that y satisfies the constraints y'Ag < cj; (of (D)) with equality; that is, the dual
constraints indexed from /3 are “active”.

Let us assume that § is feasible for (D). Now, let 5, be a basic index, and let w := Hy. be
row { of H := Agl . Consider y := y — Aw/, and explain (with algebraic justification) what is
happening to the activity of each constraint of (D), as A increases. HINT: Think about the cases
of (i)i=1¢, (ii)i € f,i+# ¢ and (iii) j € n.



Chapter 4

The Simplex Algorithm

Our goal in this chapter is as follows:

e Develop a mathematically-complete Simplex Algorithm for optimizing standard-form
problems.

4.1 A Sufficient Optimality Criterion

The dual solution of (D) associated with basis 3 is
¥ = c%AEl .
Lemma 4.1

If B is a basis, then the primal basic solution Z (feasible or not) and the dual solution g (feasible
or not) associated with 8 have equal objective value.

Proof. The objective Valule of zisc 5:1: CpTg + Ty = ) (Aglb) +¢,0 = c’ﬂAglb . The objective
value of yis §'b = (cyA; )b=cpA;b. O
The vector of reduced costs associated with basis 3 is

¢ =c — c’ﬁAglA =cd —yA.

27
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Lemma 4.2
The dual solution of (D) associated with basis 3 is feasible for (D) if

&y >0.

Proof. Using the definitions of § and ¢, the condition ¢, > 0 is equivalent to
7A, < c;] .
The definition of § gives us
yAg=cj (equivalently, ¢z = 0) .

So we have
or, equivalently,

Hence 7 is feasible for (D). O

Theorem 4.3 (Weak Optimal Basis Theorem)
If 3 is a feasible basis and ¢,, > 0, then the primal solution Z and the dual solution 7 associated
with f are optimal.

Proof. We have already observed that ¢’z = b for the pair of primal and dual solutions associ-
ated with the basis 3 . If these solutions z and g are feasible for (P) and (D), respectively, then
by weak duality these solutions are optimal. O

We can also take (P) and transform it into an equivalent form that is quite revealing. Clearly,
(P) is equivalent to

min Cprp  + CyTy
A/@Jiﬁ + ATIxTI = b
>0 , z,>0.

Next, multiplying the equations on the left by Agl , we see that they are equivalent to
xg + AglAnx77 = Aglb .

We can also see this as
rg = Aglb — AglAnw,7 .

Using this equation to substitute for x 3 in the objective function, we are led to the linear objective
function

c:,gA[;lb + min (C% - c’BAglAn) T, = c};Aglb + min &z, ,
which is equivalent to the original one on the set of points satisfying Az = b . In this equivalent
form, it is now solely expressed in terms of x,, . Now, if ¢, > 0, the best we could hope for in
minimizing is to set x,, = 0 . But the unique solution having z,, = 0 is the basic feasible solution
z . So that z is optimal.
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Example 4.4

This is a continuation of Example 3.1. In Figure 4.1, we have depicted the sufficient optimality
criterion, in the space of a particular choice of non-basic variables — not the choice previously
depicted. Specifically, we consider the equivalent problem

: =
min C l‘n

Apzy

IV IA

This plot demonstrates the optimality of 8 := (2,5,3,4) (n := (0,1)). The basic directions
available from the basic feasible solution Z appear as standard unit vectors in the space of the
non-basic variables. The solution Z is optimal because ¢, > 0 ; we can also think of this as
¢, having a non-negative dot product with each of the standard unit vectors, hence neither
direction is improving.

In the space of the non-basic variables

sncks T T IINN \

Figure 4.1: Sufficient optimality criterion
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4.2 The Simplex Algorithm with No Worries

Improving direction. Often it is helpful to directly refer to individual elements of the vector
¢y ; namely,
Cn, = Cn, _C/BAEIAW =y, — A, forj=1,2,...,n—m.
If the sufficient optimality criterion is not satisfied, then we choose an 7); such that ¢, is negative,
and we consider solutions that increase the value of x,, up from z,, = 0, changing the values
of the basic variables to insure that we still satisfy the equations Az = b, while holding the
other non-basic variables at zero.
Operationally, we take the basic direction Z € R™ defined by

Zn = € _ e R"T™
Zg = —Ag'A, =—A, eR™,

and we consider solutions of the form Z + Az, with A\ > 0. The motivation is based on the
observations that

o J(T+)2) -z =)Nz2= )¢, <0;
o AT+ A2)=Az+ M AZ=b0+X0=b.

That is, the objective function changes at the rate of ¢,, , and we maintain satisfaction of the
Az = b constraints.

Maximum step — the ratio test and a sufficient unboundedness criterion. By our
choice of direction Z, all variables that are non-basic with respect to the current choice of basis
remain non-negative (z,, increases from 0 and the others remain at 0). So the only thing that
restricts our movement in the direction Z from z is that we have to make sure that the current
basic variables remain non-negative. This is easy to take care of. We just make sure that we
choose A > 0 so that
Tg+AzZp=Ts—AA,, > 0.
Notice that fo; i such a;,, < 0, there is no limit on how large A can be. In fact, it can well
happen that A, < 0. In this case, 7 + )z is feasible for all A\ > 0 and ¢/(z + A\z) — —occ as
A — 400, so the problem is unbounded.
Otherwise, to insure that Z + Az > 0, we just enforce

X3,
A< % , for i such thata; ,;, > 0.

Qi,n,

Finally, to get the best improvement in the direction Z from z, we let A equal

_ , Ts
A= min _i .
7: aimj >0 aimj
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Non-degeneracy. There is a significant issue in even carrying out one iteration of this algo-
rithm. If Z5, = 0 for some i such that a;,, > 0, then A = 0, and we are not able to make any
change from Z in the direction z . Just for now, we will simply assume away this problem, using
the following hypothesis that every basic variable of every basic feasible solution is positive.
The problem (P) satisfies the non-degeneracy hypothesis if for every feasible basis 3, we have
Zg, > 0fori=1,2,...,m. Under the non-degeneracy hypothesis, A > 0.

Another basic feasible solution. By our construction, the new solution Z + AZ is feasible
and has lesser objective value than that of Z . We can repeat the construction as long as the new
solution is basic. If it is basic, there is a natural guess as to what an appropriate basis may be. The
variable z,, , formerly non-basic at value 0 has increased to A , so clearly it must become basic.
Also, at least one variable that was basic now has value 0 . In fact, under our non-degeneracy
hypothesis, once we establish that the new solution is basic, we observe that exactly one variable
that was basic now has value 0. Let

i* := argmin { Bi } .
i:z’zinw >0 ai,nj

If there is more than one ¢ that achieves the minimum (which can happen if we do not assume
the non-degeneracy hypothesis), then we will see that the choice of i* can be any of these. We
can see that z,. has value 0 in Z + Az . So it is natural to hope we can replace z4,. as a basic
variable with z,, .

Let

ﬁ = (ﬁlaﬁ?w"7Bi*—1777j7ﬁi*+17" -7B’m)
and
ﬁ = (77177723 R anj—laﬂi*anj-l-lv cee 777n—m) .

Lemma 4.5
A 3 is invertible.

Proof. Aj is invertible precisely when the following matrix is invertible:

—1 —1
AgiAp = A (A, Apys s A Ay Ay, Ag, |
= [615627'"7ei*—1aAnjaei*+17"~,em:l .
But the determinant of this matrix is precisely @;-,, # 0. O

Lemma 4.6 ~
The unique solution of Az = b having x5 = 0is T + A\Z .

Proof. (z+Az); =0, for j € 7. Moreover, Z + Az is the unique solution to Az = bhaving z; = 0
because Aj is invertible. O

Putting these two lemmata together, we have the following key result.
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Theorem 4.7 _
T + AZ is a basic solution; in fact, it is the basic solution determined by the basic partition 3,7 .

Passing from the partition /3,7 to the partition 3,7 is commonly referred to as a pivot.

Worry-Free Simplex Algorithm

Input: ce R”,b € R™, A € R™*" of full row rank m , for the standard-form problem:

min cdz
Az = b; (P)
z > 0,

where z is a vector of variables in R" .

0. Start with any basic feasible partition 3,7 .

1. Let Z and g be the primal and dual solutions associated with 5,7 .
If ¢, > 0, then STOP: T and % are optimal.

2. Otherwise, choose a non-basic index n; with ¢,, < 0.
3. If 4,, <0, then STOP: (P) is unbounded and (D) is infeasible.

4. Otherwise, let

1* := argmin {ﬁ} ,
[ a,‘nj >0 ai,nj

replace 8 with
(51752, coos Bir—1, 05 Bis s - -,@n)
and n with
(771,7)2, e ,77]-,1,&, Mgl .- ,nn,m) .
5. GOTO 1.
Example 4.8

This is a continuation of Example 3.1 / Example 4.4. In Figure 4.2, be have depicted the solution
one step after the initial solution depicted in Figure 3.1. The result of the next pivot is depicted
in Figure 4.3. Finally, in one more pivot, we reach the optimum depicted in Figure 4.1.

Theorem 4.9
Under the non-degeneracy hypothesis, the Worry-Free Simplex Algorithm terminates cor-
rectly.

Proof. Under the non-degeneracy hypothesis, every time we visit Step 1, we have a primal feasi-
ble solution with a decreased objective value. This implies that we never revisit a basic feasible
partition. But there are only a finite number of basic feasible partitions, so we must terminate,
after a finite number of pivots. But there are only two places where the algorithm terminates;
either in Step 1 where we correctly identify that z and § are optimal by our sufficient optimality
criterion, or in Step 3 because of our sufficient unboundedness criterion. O
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“The things that should bother me don’t—should I be worried?”

New Yorker 3/3/09

Remark 4.10
There are two very significant issues remaining;:

e How do we handle degeneracy? (see Section 4.3).

e How do we initialize the algorithm in Step 0? (see Section 4.4).

In the space of the non-basic variables

slac:ks‘ 50 _: / / /

30—

Figure 4.2: After one pivot



CHAPTER 4. THE SIMPLEX ALGORITHM

34

In the space of the non-basic variables
35— /

Figure 4.3: After two pivots

4.3 Anticycling

To handle degeneracy, we will eliminate it with an algebraic perturbation. It is convenient
to make the perturbation depend on an m x m non-singular matrix B — eventually we will

choose B in a convenient manner. We replace the problem (P) with

min 'z
Az = b(B); (P(B))
x > O,
where
o b(B):=b+ B¢, and €:= (¢,¢%,...,€™) (these are exponents not superscripts);
e the scalar ¢ is an arbitrarily small indeterminant; € is not given a numerical value; it is
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simply considered to be a quantity that is positive, yet smaller than any positive real
number;

e 0. denotes a vector in which all entries are the zero polynomial (in €);
e the variables z; are polynomials in e with real coefficients;

o the ordering of polynomials used to interpret the inequality >, is described next.

The ordering is actually quite simple, but for the sake of precision, we describe it formally.

An ordered ring. The set of polynomials in ¢, with real coefficients, form what is known in
mathematics as an “ordered ring”. The ordering <. is simple to describe. Let p(¢) := Z;'n:() pjel
and q(e) := Z;”:O g;€¢’ . Then p(e) <. q(e) if the least j for which p; # ¢, has p; < g; . Another
way to think about the ordering <. is that p(e) <. ¢(¢) if p(e) < g(¢) when ¢ is considered to be
an arbitrarily small positive number. Notice how the ordering <. is in a certain sense a more
refined ordering than < . That is, if p(0) < ¢(0), then p(e) <. g(€) , but we can have p(0) = ¢(0)
without having p(e¢) = ¢(¢) . Finally, we note that the zero polynomial “0.”(all coefficients
equal to 0) is the zero of this ordered ring, so we can speak, for example about polynomials that
are positive with respect to the ordering <. . Concretely, p(e) # 0. is positive if the least i for
which p; # 0 satisfies p; > 0 . Emphasizing that <. is a more refined ordering than < , we see
that p(e) >, 0. implies that p(0) =po > 0.

For an arbitrary basis 3, the associated basic solution z¢ has 7§ := Agl(b + Be) = T3 +
Angé' - It is evident that 7§, is a polynomial, of degree at most m, in €, foreachi =1,...,m.
Because the ordering <. refines the ordering <, we have that A implies thatZg > 0. That
is, any basic feasible partition for (P.(B)) is a basic feasible partition for (P). This implies that
applying the Worry-Free Simplex Algorithm to (P.(B)), using the ratio test to enforce feasibility
of Z in (P.(B)) at each iteration, implies that each associated g is feasible for (P). That is, the
choice of a leaving variable dictated by the ratio test when we work with (P.(B)) is valid if we
instead do the ratio test working with (P).

The objective value associated with z€ is c;jAgl (b+ Be€) = §'b+ §'Be, is a polynomial (of
degree at most m) in ¢ . Therefore, we can order basic solutions for (P.(B)) using <. , and
that ordering refines the ordering of the objective values of the corresponding basic solution of
(P). This implies that if z€ is optimal for (P.(B)) , then the Z associated with the same basis is
optimal for (P).

Lemma 4.11
The e-perturbed problem (P.(B)) satisfies the non-degeneracy hypothesis.
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Proof. For an arbitrary basis matrix A, the associated basic solution z“ has zj; :== A5 Y(b+Be) =
g+ Angé’ . As we have already pointed out, 7§, is a polynomial, of degree at most m, in €, for

eachi=1,...,m.zj = 0. implies that the i-th row of Ang is all zero. But this is impossible
for the invertible matrix Ang . O
Theorem 4.12

Let 3° be a basis that is feasible for (P). Then the Worry-Free Simplex Algorithm applied to
(Pc(Apo)), starting from the basis 3° , correctly demonstrates that (P) is unbounded or finds
an optimal basic partition for (P).

Proof. The first important point to notice is that we are choosing the perturbation of the original
right-hand side to depend on the choice of a basis that is feasible for (P). Then we observe that
Tho 1= Agul(b + Apo€) = Agolb + €. Now because z is feasible for (P), we have Agolb >0.
Then, the ordering <. implies that a’:;go = Agolb + € >. 0. Therefore, the basis /3° is feasible for
(Pc(Ago)), and the Worry-Free Simplex Algorithm can indeed be started for (P.(Ago)) on 3.
Notice that it is only in Step 4 of the Worry-Free Simplex Algorithm that really depends
on whether we are considering (P.(Ago)) or (P). The sufficient optimality criterion and the
sufficient unboundedness criterion are identical for (P.(Ago)) and (P). Because (P.(Ago)) sat-

isfies the non-degeneracy hypothesis, the Worry-Free Simplex Algorithm correctly terminates
for (Pc(Ago)). O

(Pivot.mp4)

Figure 4.4: With some .pdf viewers, you can click above to see or download a short
video. Or just see it on YouTube (probably with an ad) by clicking here.
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https://www.youtube.com/watch?v=n67RYI_0sc0
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4.4 Obtaining a Basic Feasible Solution

Next, we will deal with the problem of finding an initial basic feasible solution for the standard-
form problem

min 'z
Az = b; (P)
xr > 0.

MAYBE THE FIRST IDEA |;| THE MOST IMPORTANT
WONT WORK, BUT T1L THING IS THAT I NEED
KEEP PIVOTING UNTIL |:| TO KEEP MY OPTIMISM

SOMETHING DOES. AND ENTHUSIASM HIGH.

YOURE K k
DOOMED.

1 HAVE AN IDEA
FOR A START-UP,

YOURE K

DOOMED.

\

F—rr—

YOURE
DOOMED.

Dilbertcom DilbertCartoonist@gmail.com

B-4-[ ©2014 Scott Adams, Inc. D

4.4.1 Ignoring degeneracy

At first, we ignore the degeneracy issue — why worry about two things at once?! The idea is
rather simple. First, we choose any basic partition 5, 7} . If we are lucky, then Aﬁle >0.

Community. Chost
ADVANCE TO GO
(COLLECT $200)

Otherwise, we have some work to do. We define a new non-negative variable 1, which we
temporarily adjoin as an additional non-basic variable. So our basic indices remain as

B= (BB Bm)
while our non-basic indices are extended to

= (i 720 Ty T =+ 1)

This variable x,,; is termed an artificial variable. The column for the constraint matrix
associated with z,,y; is defined as A, ;1 := —A Bl .Hence A,,,; = —1. Finally, we temporarily
put aside the objective function from (P) and replace it with one of minimizing the artificial
variable z,, 1. That is, we consider the so-called phase-one problem

min Tn+t1
Azx + An+1xn+1 = b ; (@)
z Tpy1 = 0.

With this terminology, the original problem (P) is referred to as the phase-two problem.
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It is evident that any feasible solution Z of (®) with #,,+; = 0 is feasible for (P). Moreover,
if the minimum objective value of (®) is greater than 0, then we can conclude that (P) has no
feasible solution. So, toward establishing whether or not (P) has a feasible solution, we focus
our attention on (®). We will soon see that we can easily find a basic feasible solution of (®).

Finding a basic feasible solution of (®). Choose i* so that 7  is most negative. Then
we exchange B;+ with fin—m+1 = n + 1. That is, our new basic indices are

B = (/817/62a v 7Bi*—17n + 1) ﬂi*+17 e aﬂm,) )
and our new non-basic indices are

n= (ﬁlaﬁ%“wﬁn—mv@) .

Lemma 4.13
The basic solution of (®) associated with the basic partition 3, 7 is feasible for (®).

Proof. This pivot, from 8,17 to 3,n amounts to moving in the basic direction z € R"*! defined
by

Zi = ep—m+1 € Rr—mtl ;
Z; = —ABTlAnH =1 c€R™,
in the amount \ := —Z 5. > 0. That is, T + \Z is the basic solution associated with the basic

partition 8,7 . Notice how when we move in the direction z , all basic variables increase at
exactly the same rate that z,,1 does. So, using this direction to increase 1 from 0 to —2 G >
0 results in all basic variables increasing by exactly —z; = > 0. By the choice of i* , this causes
all basic variable to become non-negative, and z; , to become 0, whereupon it can leave the
basis in exchange for ;41 . a

The end game for (®). If (P) is feasible, then at the very last iteration of the Worry-Free
Simplex Algorithm on (@), the objective value will drop from a positive number to zero. As
this happens, x,,+1 will be eligible to leave the basis, but so may other variables also be eligible.
That is, there could be a tie in the ratio-test of Step 4 of the Worry-Free Simplex Algorithm.
As is the case whenever there is a tie, any of the tying indices can leave the basis — all of the
associated variables are becoming zero simultaneously. For our purposes, it is critical that if
there is a tie, we choose i* so that §;« = n + 1 ; that is, x,,+; must be selected to become non-
basic. In this way, we not only get a feasible solution to (P), we get a basis for it that does not use
the artificial variable x,,1 . Now, starting from this basis, we can smoothly shift to minimizing
the objective function of (P).
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4.4.2 Notignoring degeneracy

Anticycling for (®). There is one lingering issue remaining. We have not discussed anticy-
cling for (®).

THEN WE'LL SAY A
SOFTWARE PATCH IS
BEING INSTALLED.
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THAT THE SYSTEM
FAILURE WON'T
HAPPEN AGATIN.
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scottadams@aol.com
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A
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But this is relatively simple. We define an e-perturbed version

52909 ©2003Scott Adams, Inc./Dist. by UFS, Inc.

www.dilbert.com

min Tnt1
AJJ + An+1l'n+1 = bE(B) ] ((I)E)
x Tpt1 e Oc,
where b.(B) := b+ €,and €:= (¢,€%,...,€™)" . Then we choose i* so that T . is most negative

with respect to the ordering <., and exchange BZ* with 7,41 = n + 1 as before. Then, as in
Lemma 4.13, the resulting basis is feasible for (®.).

We do need to manage the final iteration a bit carefully. There are two different ways we
can do this.

“Early arrival”. If (P) has a feasible solution, at some point the value of z,, 1 will decrease to
a homogeneous polynomial in € . That is, the constant term will become 0. At this point, although
Zn+1 May not be eligible to leave the basis for (®.), it will be eligible to leave for (P). So, at this
point we let x,,11 leave the basis, and we terminate the solution process for (®.), having found
a feasible basis for (P). In fact, we have just constructively proved the following result.

Theorem 4.14
If standard form (P) has a feasible solution, then it has a basic feasible solution.

Note that because z,,, may not have been eligible to leave the basis for (®.) when we apply
the “early arrival’ idea, the resulting basis may not be feasible for (P.). So we will have to re-
perturb (P) .
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“Be patient”. Perhaps a more elegant way to handle the situation is to fully solve (®.). In
doing so, if (P) has a feasible solution, then the minimum objective value of (®.) will be 0 (i.e.,
the zero polynomial), and z,,41 will necessarily be non-basic. That is because, at every iteration,
every basic variable in (®.) is positive. Because x,+; legally left the basis for (®.) at the final
iteration, the resulting basis is feasible for (P.). So we do not re-perturb (P) , and we simply
revert to solving (P.) from the final basis of (®.) .

4.5 The Simplex Algorithm

Too budget-conscious for a Campy switch?
Fix that Simplex Prestige

Making Simplexes
Work

by Frank Leavitt

- Bika World Magazine

“This is a very complicated case,
Maude. You know, a lotta ins, a lotta
outs, a lotta what-have-yous. And,
uh, a lotta strands to keep in my head,
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man. Lotta strands in old Duder’s head.” — The Dude

Putting everything together, we get a mathematically complete algorithm for linear opti-
mization. That is:

1. Apply an algebraic perturbation to the phase-one problem;

2. Solve the phase-one problem using the Worry-Free Simplex Algorithm, adapted to alge-
braically perturbed problems, but always giving preference to x,,11 for leaving the basis
whenever it is eligible to leave for the unperturbed problem. Go to the next step, as soon
as x,,41 leaves the basis;

3. Starting from the feasible basis obtained for the original standard-form problem, apply
an algebraic perturbation (Note that the previous step may have left us with a basis that
is feasible for the original unperturbed problem, but infeasible for the original perturbed
problem — this is why we apply a perturbation anew (see the “Early arrival" paragraph
in Section 4.4.2);

4. Solve the problem using the Worry-Free Simplex Algorithm, adapted to algebraically per-
turbed problems.

It is important to know that the Simplex Algorithm will be used, later, to prove the cele-
brated Strong Duality Theorem. For that reason, it is important that our algorithm be math-
ematically complete. But from a practical computational viewpoint, there is substantial over-
head in working with the e-perturbed problems. Therefore, in practice, no computer code that
is routinely applied to large instances worries about the potential for cycling associated with the
very-real possibility of degeneracy.

4.6 Exercises

Exercise 4.1 (Carry out the Simplex Algorithm)

pivot_tools.ipynb (see Appendix A.6) implements the primitive steps of the simplex algo-
rithm. Using these primitives only, write a Python function to carry out the simplex algorithm.
Initialize your data as is done in pivot_example. ipynb. Do not worry about degeneracy/anti-
cycling. But I do want you to take care of algorithmically finding an initial feasible basis as
described in Section 4.4.1. Make some small examples to fully illustrate the different possibili-
ties for (P) (i.e., infeasible, optimal, unbounded).

Exercise 4.2 (Dual change — first do Exercise 3.4)
Let 8, 7 be any basic partition for the standard-form problem (P). The associated dual solution
isg = c’ﬁA/}1 . Now, suppose that we pivot, letting 7, enter the basis and 3, leave the basis,
so that the new partition 3,7 is also a basic partition (in other words, A 5 is invertible). Let y
be the dual solution associated with the basic partition B, 7 ,and let H;. be row £ of H := Agl .
Prove that _
=g+,

(7%7) N

HINT: Use the Sherman-Morrison formula; see Section 1.3.

<

Exercise 4.3 (Traditional phase one)
Instead of organizing the phase-one problem as (®), we could first scale rows of Az = b as
necessary so as to achieve b > 0. Then we can formulate the “traditional phase-one problem”

. m
min S s
pes ~
Az + Zj:l €jlnt; = b ] (‘b)
x ) Tn41s--sTntm > 0.
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Here we have m artificial variables: x,41, Tnt2,..., Tntm . 1t is easy to see that (i) § :=
{n+1, n+2,..., n+m} is feasible for (¥), and (ii) the optimal value of (®) is zero if and only
if (P) has a feasible solution.

It may be that the optimal value of (®) is zero, but the optimal basis discovered by the
Simplex Algorithm applied to (®) contains some of the indices {n + 1, n +2,..., n + m} of
artificial variables. Describe how we can take such an optimal basis and pass to a different
optimal basis that uses none of {n + 1, n+2,..., n+ m} (and is thus a feasible basis for (P)).
HINT: Use Theorem 1.2.

Exercise 4.4 (Worry-Free Simplex Algorithm can cycle)

Let 6 := 27 /k, with integer k > 5. The idea is to use the symmetry of the geometric circle,
and complete a cycle of the Worry-Free Simplex Algorithm in 2k pivots. Choose a constant
satisfying 0 < v < tan(6/2) . Let

() ()

cosf) —sinf
R'(sin& cos 6 ) ’

Let

Then, for j = 3,4,...,2k , let

A RU=D/2A; | forodd j;
771 RU=2/24,, foreveny.
We can observe that for odd j , A, is a rotation of A; by (j — 1)7/k radians, and for even j, A;
is a rotation of A by (j — 2)7/k radians.

Letc; :==1—aij; —agj/v,forj = 1,2,...,2k, and let b := (0,0)" . Because b = 0, the
problem is fully degenerate; that is, Z = 0 for all basic solutions Z . Notice that this implies that
either the problem has optimal objective value zero, or the objective value is unbounded on the
feasible region.

For k =5, you can choose v :=  tan(6/2) , and then check that the following is a sequence
of bases (3 that are legal for the Worry-Free Simplex Algorithm:

B8=0(01,2)—=(2,3) = (3,4) = ... =~ (2k —1,2k) — (2k,1) — (1,2) .

You need to check that for every pivot, the incoming basic variable x,, has negative reduced
cost, and that the outgoing variable is legally selected — that is that a; ,,, > 0 . Feel free to use
any software that you find convenient (e.g., Python, MATLAB, Mathematica, etc.).
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Note that it may seem hard to grasp the picture at all®. But see Section 6.1.3 and Figure 4.5;
you can look at it from different perspectives using the Jupyter notebook Circle.ipynb (see
Appendix A.7).

If you are feeling ambitious, check that for all k > 5, we get a cycle of the Worry-Free
Simplex Algorithm.

Exercise 4.5
Run the code pivot_example. ipynb, but with the following line uncommented:

#pivot_perturb() # uncomment to perturb the right-hand side

See how this carries out the algebraic-perturbation method from Section 4.3.

Now, using this code as your starting point, solve the example from Exercise 4.4 with k = 5
to optimality, using the algebraic-perturbation method. Just change the data to correspond to
the example that we want to solve, and do the pivots one at a time, following the rules of the
simplex method.
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—1.00
—=0.75
—0.50
—0.25
0.00
0.25
0.50
0.75 0.75
1.001.00

Figure 4.5: A picture of the cycle with k =5



Chapter 5

Duality

Our goals in this chapter are as follows:

e Establish the Strong Duality Theorem for the standard-form problem.

o Establish the Complementary Slackness Theorem for the standard-form problem.

e See how duality and complementarity carry over to general linear-optimization problems.
e Learn about “theorems of the alternative.”

As usual, we focus on the standard-form problem

min cdz
Az = b; P)
xr > 0
and its dual
max y'b
VA < o (D)

45
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5.1 The Strong Duality Theorem

We have already seen two simple duality theorems:
e Weak Duality Theorem. If 7 is feasible in (P) and 3 is feasible in (D), then ¢’z > ¢'b.

o Weak Optimal Basis Theorem. If 3 is a feasible basis and ¢,, > 0, then the primal solution
Z and the dual solution g associated with j are optimal.

The Weak Duality Theorem directly implies that if Z is feasible in (P) and 3 is feasible in (D),
and ¢’ = §'b, then & and ¢ are optimal. Thinking about it this way, we see that both the Weak
Duality Theorem and the Weak Optimal Basis Theorem assert conditions that are sufficient for
establishing optimality.

Theorem 5.1 (Strong Optimal Basis Theorem)
If (P) has a feasible solution, and (P) is not unbounded, then there exists a basis 3 such that the
associated basic solution z and the associated dual solution § are optimal. Moreover, ¢’z = §'b.

Proof. If (P) has a feasible solution and (P) is not unbounded, then the Simplex Algorithm
will terminate with a basis /5 such that the associated basic solution Z and the associated dual
solution y are optimal. O

As a direct consequence, we have a celebrated theorem.

Theorem 5.2 (Strong Duality Theorem)
If (P) has a feasible solution, and (P) is not unbounded, then there exist feasible solutions &
for (P) and ¢ for (D) that are optimal. Moreover, ¢’z = ¢'b .

It is important to realize that the Strong Optimal Basis Theorem and the Strong Duality
Theorem depend on the correctness of the Simplex Algorithm — this includes: (i) the correct-
ness of the phase-one procedure to find an initial feasible basis of (P), and (ii) the anti-cycling
methodology.

5.2 Complementary Slackness
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N

With respect to the standard-form problem (P) and its dual (D), the solutions & and ¢ are
complementary if

(Cj —@,A.j)i‘j = 0, fOI'j =1,2,...,n;
0i (A2 — b;)

0, fori=1,2,...,m.

Proof. Notice that if Z is a basic solution then AZ = b. Then we can see that complementarity of
Z and § amounts to
Eji‘j :0, fOI'j = 1,2,...,n.

It is clear then that Z and § are complementary, because if Z; > 0, then j is a basic index, and
¢; = 0 for basic indices.

O

dz—g'b=( —9§A)i+¢ (A2 —b),
which is 0 by complementarity.

O

Proof. This immedjiately follows from Theorem 5.4 and the Weak Duality Theorem.

O

Proof. If # and gy are optimal, then by the Strong Duality Theorem, we have ¢z — §'b = 0.
Therefore, we have

0 = (=7 A+ (Ai—b)

n

Z(Cj - Q/A.j)i'j + Z'gz(Azi' —b;).

j=1 i=1
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Next, observing that & and ¢ are feasible, we have

E (Cj — Q’A.j) QA?J‘ + E Ui (Ai.fi — bi)
"~ T —_————
j=1 >0 N =0

Clearly this expression is equal to a non-negative number. Finally, we observe that this expres-
sion can only be equal to 0 if

0,forj=1,2,...,n.

5.3 Duality for General Linear-Optimization Problems

Thus far, we have focused on duality for the standard-form problem (P). But we will see that
every linear-optimization problem has a natural dual. Consider the rather general linear mini-
mization problem

min cprp + N+ cyrTU
Agprp + Agnrn + Agury = bg;
Arpep + Apyzy + Apvazy < brg (9)
Agprp + Agnzn + Apvzy = bp;
zp >0, zn <0.

We will see in the next result that a natural dual for it is

max ysba + yrbr + ypbe
veAcp  + Y ALp 4+ YpAep < p;
veAen  + YLALN 4+ YpAen > Iy (H)
yeAcu + YA 4+ YpAru = <y
Yo 20, Y, <0.

Theorem 5.7
e Weak Duality Theorem: If (Zp, &y, 2y ) is feasible in (G) and (¢, 91, Ur) is feasible in
(H), then CSDQASP A ClNiN = CIUL%U > jl]é;bg 4= ?)’LbL 4= ﬂ};bE .
e Strong Duality Theorem: If (G) has a feasible solution, and (G) is not unbounded,

then there exist feasible solutions (Zp, Zxn,Zy) for (G) and (¢, 4L, 9r) for (#H) that are
optimal. Moreover, c¢p@p + cyIn + cyiv = §aba + U0 + Ibe -

Proof. The Weak Duality Theorem for general problems can be demonstrated as easily as it
was for the standard-form problem and its dual. But the Strong Duality Theorem for general
problems is most easily obtained by converting our general problem (G) to the standard-form

min dpxp — NEN F v — c’U%U
Agprp — Aenin + AcuTu — Aculu - sG ba ;
Apprp — Arpnin + Apwiv — Apviu +tL br ;
Apprp — ApnINn + Apuiv — Apulu be ;
zp >0, iy >0, iy >0, Iyr>0, sg>0, t,>0.
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Above, we substituted —z x for zx and Zy — Zy for xy . Taking the dual of this standard-form
problem, we obtain

max  ygba + ypbr  + Ygbe

vaAep + YLArp + ygAep < e

- yglAen — YLAILN — YpAen < -y
vaAeuv + YiAw + ypAeuv <y

— ygAcu — vy Aww — YpApuy < —cy
- Yg < 0 ;
+ L < 0

which is clearly equivalent to (#). O

With respect to (G) and its dual (#), the solutions (Zp, Zn,Zv) and (¢, 1., Yr) are com-
plementary if

(¢j —96Ac; — U AL; — UpAp;) 2, =0, forall j ;
Ui (Aiprp + Ainey + Ajpzy —b;) =0, foralli .

Theorem 5.8
e Weak Complementary Slackness Theorem: If (Zp, n,Zr) and (Y¢, 91, Ur) are feasible
and complementary with respect to (G) and (#), then (Zp, &, 2v) and (Ja, 1, JE) are
optimal.

o Strong Complementary Slackness Theorem: If (Zp, Zn,2y) and (¢, 91, Jr) are opti-
mal for (G) and (H), (Zp, &N, 2v) and (Y, Y1, YE) are complementary (with respect to

(G) and (H)).

Proof. Similarly to the proof for standard-form (P) and its dual (D), we consider the following
expression.

0 = E (¢j —UgAc; — U AL; — UpAE;)
JEP ~
>0 >0
+ E (¢j —icAc; — UL AL; — IpAE;)

JEN

i
<0

<0

+> (¢ —iigAcs — 1AL — T AEs) &

jeu ~5

+> i (Aipzp + Ainzy + Ay — bi)
Lo
i€G >0 >0

+> i (Aipzp+ Ainoy + Aivzy — b))
Lt
€L <0 <0

+> G (Aipzp + Ainzy + Awzy — b;) -
i€E

=0

The results follows easily using the Weak and Strong Duality Theorems for (G) and (#). O
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The table below summarizes the duality relationships between the type of each primal con-
straint and the type of each associated dual variable. Highlighted in yellow are the relation-

ships for the standard-form (P) and its dual (D). It is important to note that the columns are
labeled “min” and “max”, rather than primal and dual — the table is not correct if “min” and
“max” are interchanged.

min max
> >0
constraints < <0 variables
= unres
>0 <
variables <0 > constraints
unres. | =

5.4 Theorems of the Alternative

In this section, we use linear-optimization duality to understand when a linear-optimization
problem has a feasible solution. This fundamental result, expounded by Farkas®, opened the
door for studying linear inequalities and optimization.

Theorem 5.9 (Farkas Lemma)
Let A € R™*" and b € R™ be given. Then exactly one of the following two systems has a
solution.

Ax = b;

x > 0. (@)
b > 0;
A = (1m)

Proof. 1t is easy to see that there cannot simultaneously be a solution Z to (I) and ¢ to (II).
Otherwise we would have
0>49A 2 =4b>0,
—
<0 >0
which is a clear inconsistency.
Next, suppose that (I) has no solution. Then the following problem is infeasible:

min 0’z

; (P)
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Its dual is
max y'b

Because (P) is infeasible, then (D) is either infeasible or unbounded. But § := 0 is a feasible
solution to (D), therefore (D) must be unbounded. Therefore, there exists a feasible solution
g to (D) having objective value greater than zero (or even any fixed constant). Such a § is a
solution to (II). O

1 I‘\LS 1
Remark 5.10

Geometrically, the Farkas Lemma asserts that exactly one of the following holds:

(I) bisin the “cone generated by the columns of A” (i.e., b is a non-negative linear combina-
tion of the columns of A), or

(I) there is § € R™ that makes an acute angle with b and a non-acute (i.e., right or obtuse)
angle with every column of A .

In the case of (II), considering the hyperplane H containing the origin having ¢ as its normal
vector, this H separates b from the cone generated by the columns of A . So, the Farkas Lemma
has the geometric interpretation as a”Separating-Hyperplane Theorem.” See Figure 5.1 for an
example with m = 2 and n = 4. The cone is red and the point b that we separate from the
cone is blue. The green point is a solution y for (II), and the dashed green line is the separating
hyperplane. Notice how the (solid) green vector makes an acute angle with the blue vector and
a non-acute angle with all points in the cone.



52 CHAPTER 5. DUALITY

Figure 5.1: Case (II) of the Farkas Lemma

In a similar fashion to the Farkas Lemma, we can develop theorems of this type for feasible
regions of other linear-optimization problems.

Proof. 1t is easy to see that there cannot simultaneously be a solution 2 to (I) and ¢ to (II).
Otherwise we would have

~—

0=9A&>9b>0,
=0

which is a clear inconsistency.
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Next, suppose that (I) has no solution. Then the following problem is infeasible:

min 0’z
Ax > b (P)
Its dual is
max y'b
yA = 0; (D)
Y > 0.

Because (P) is infeasible, then (D) is either infeasible or unbounded. But § := 0 is a feasible
solution to (D), therefore (D) must be unbounded. Therefore, there exists a feasible solution §
to (D) having objective value greater than zero (or even greater than any fixed constant). Such
a ¢ is a solution to (II). O

5.5 Exercises

Exercise 5.1 (Dual picture)
For the standard-form problem (P) and its dual (D), explain aspects of duality and comple-
mentarity using this picture:

Exercise 5.2 (Reduced costs as dual values)
In this exercise, we will see that we can regard reduced costs (corresponding to an optimal basic
partition) as (optimal) values of dual variables for non-negativity constraints.

Consider the ordinary standard-form problem

z:=min cdz dual variables
Az = by y (P)
z > 0,
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and let 3, ) be an optimal basic partition for (P).
We can equivalently see (P) as

z:= min =z dual variables .
Ax = b; y (P)
z > 0, w

where in (P), we regard the non-negativity constraints of (P) as ordinary structural constraints
— with dual variables.
Define w € R" by
wg = 0 €R™;

T o— n—m
w, = ¢; €R .

Prove that together, 7' := C/BA,El and w are optimal for the dual of (P).

Exercise 5.3 (Duality and complementarity with Python/Gurobi)

After optimization using Python/Gurobi, it is easy to get more information regarding primal
and dual problems. In particular, we can obtain optimal primal and dual solutions, and slacks
for these solutions in the primal and dual constraints. See how this is done in Production.ipynb
(Appendix A.3), and verify the concepts of duality and complementarity developed in this
chapter.

Exercise 5.4 (Complementary slackness)
Construct an example where we are given Z and § and asked to check whether Z is optimal
using complementary slackness. I want your example to have the property that 2 is optimal, &
and gy are complementary, but § is not feasible.

The idea is to see an example where there is not a unique dual solution complementary to
%, and so £ is optimal, but we only verify it with another choice of .

Exercise 5.5 (Over complementarity)
With respect to the standard-form problem (P) and its dual (D), complementary solutions &
and y are overly complementary if exactly one of

¢;—9yAjand &;is0, forj=1,2,...,n.

Prove that if (P) has an optimal solution, then there are always optimal solutions for (P) and
(D) that are overly complementary.
HINT: Let v be the optimal objective value of (P). Foreach j = 1,2,...,n, consider

max
dr <w
Ar = b (P;)
x > 0.

(P;) seeks an optimal solution of (P) that has x; positive. Using the dual of (P;), show that
if no optimal solution & of (P) has Z; positive, then there is an optimal solution g of (D) with
c; — §' A.; positive. Once you do this you can conclude that, for any fixed j, there are optimal
solutions & and ¢ with the property that exactly one of

Cj — g/A.j and (fj is 0.

Take all of these n pairs of solutions £ and y§ and combine them appropriately to construct
optimal & and ¢ that are overly complementary.
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Exercise 5.6 (Another proof of a Theorem of the Alternative)

5708 ©2008Scott Adams, Inc./Dist. by UFS, Inc.

CAN YOU

AVERAGE SURE.I CAN
THEM? MULTIPLY

THEM TOO.

Prove the Theorem of the Alternative for Linear Inequalities directly from the Farkas Lemma,
without appealing to linear-optimization duality. HINT: Transform (I) of the Theorem of the
Alternative for Linear Inequalities to a system of the form of (I) of the Farkas Lemma.

Exercise 5.7 (A general Theorem of the Alternative)

State and prove a “Theorem of the Alternative” for the system:

AQzp + ASxn + ASay

ALbzp + Abay 4+ Abay

AIE;J}P + Aﬁ.’I}N + Ag.’EU
Tp > 0 3 zny < 0.

Exercise 5.8 (Dual ray)
Consider the linear-optimization problem

min dz
Ar > b,
r > 0.

[VANAY

bG.

bl :

(P)

a) Suppose that (P) is infeasible. Then, by a “Theorem of the Alternative’ there is a solution

to what system?

b) Suppose, further, that the dual (D) of (P) is feasible. Take a feasible solution g of (D) and
a solution § to your system of part (a) and combine them appropriately to prove that (D)

is unbounded.






Chapter 6

Sensitivity Analysis

Our goal in this chapter is as follows:

e Learn how the optimal value of a linear-optimization problem behaves when the right-
hand side vector and objective vector are varied.

6.1 Right-Hand Side Changes

LEFT

ON MONDAY

RIGHT

ON TUESDAY

We define a function f : R™ — R via

f(b) = min (dx
Ar = b; (Ps)
x > 0.

Thatis, (P;) is simply (P) with the optimal objective value viewed as a function of its right-hand
side vector b .

57
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6.1.1 Local analysis

Brinrsilthaca

Consider a fixed basis f for (Py). Associated with that basis is the basic solution Z3 = Aglb

and the corresponding dual solution §' = c%A*1 . Let us assume that g is feasible for the dual
of (P,) — or, equivalently, ¢; — §'A,, > 0" . Considering the set B of b € R™ such that 3 is an
optimal basis, is it easy to see that B is just the set of b such that 5 := Aglb > 0. That is,
B C R™ is the solution set of m linear inequalities (in fact, it is a “simplicial cone” — we will
return to this point in Section 6.1.3). Now, for b € B, we have f(b) = 3'b. Therefore, f is a
linear function on b € B . Moreover, as long as b is in the interior of B, we have gbf = 7; . So we
have that 7 is the gradient of f, as long as b is in the interior of B . Now what does it mean for
b to be in the interior of B ? It just means that Z3, > 0fori=1,2,...,m.

Let us focus our attention on changes to a single right-hand side element b; . Suppose that
B is an optimal basis of (P) , and consider the problem

min 'z
Ax + A€ ; (Pi)

b
0,

8
V1l

where A; € R . The basis f is feasible (and hence still optimal) for (P;) if Agl(b + Aje;) >0.
Let ! := Aglei . So
Y A S P
Then, the condition Agl (b+ Ase;) > 0 can be re-expressed as T + A;h' > 0. It is straightfor-
ward to check that § is feasible (and hence still optimal) for (P;) as long as A; is in the interval
[Li, Ul] ’ where
Li:= max {-zg,/h}},

k: hi>0
and
U; .= . rr}1L11n<O { xﬁk/hk}
It is worth noting that it can be the case that h}C < 0 for all k£, in which case we define L; := —o0,

and it could be the case that h?C > 0 for all k, in which case we define U; := +oo,

In summary, for all A; satistying L; < A; < U;, 8 is an optimal basis of (P) . It is important
to emphasize that this result pertains to changing one right-hand side element and holding all
others constant. For a result on simultaneously changing all right-hand side elements, we refer
to Exercise 6.3.

6.1.2 Global analysis

THINK GLOBALLY,
ACTLOCALLY,
PANIC INTERNALLY

Copyright 2005 by Randy Glasbergen. www.glasbergen.com
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The domain of f is the set of b for which (P;) has an optimal solution. Assuming that the
dual of (P}) is feasible (note that this just means that ¥’ A < ¢’ has a solution), then (P}) is never
unbounded. So the domain of f is just the set of b € R™ such that (P;) is feasible.

Theorem 6.1
The domain of f is a convex set.

Proof. Suppose that b’ is in the domain of f, for j = 1,2 . Therefore, there exist 27 that are
feasible for (P;) , for j = 1,2. Forany 0 < A < 1,1letb := Ab' + (1 — A\)b?, and consider
&= Az’ + (1 — N)a? . Itis easy to check that 2 is feasible for (P;) , so we can conclude that bis
in the domain of f . a

Before going further, we need a few definitions. We consider functions f : R™ — R. The
domain of f is the subset S of R™ on which f is defined. We assume that S is a convex set. A
function f : R™ — R is a convex function on its domain S, if

FOw + (1= Nu?) <Af(uh) + (1= N f(u?),

forallu',u? € Sand 0 < A < 1. That s, f is never underestimated by linear interpolation.

A function f : R™ — R is an affine function, if it has the form f(uq,...,um) = ap +
Z:’il a;u; , for constants ag, a1, ..., e, € R. If ag = 0, then we say that f is a linear function.
Affine (and hence linear) functions are easily seen to be convex.

A function f : R™ — R having a convex set as its domain is a convex piecewise-linear
function if, on its domain, it is the pointwise maximum of a finite number of affine functions.

It would be strange to refer to a function as being “convex piecewise-linear” if it were not convex!
The next result justifies the moniker.

Theorem 6.2
If f is a convex piecewise-linear function, then it is a convex function.

Proof. Let

for v in the domain of f , where each f; is an affine function. Thatis, f is the pointwise maximum
of a finite number (k) of affine functions.
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Then, for 0 < A < 1and u! ,u? € R™,

fOul +(1=Mu?) = max {f; ! + (1= N)u?)}
= max {Afi(u') + (1 — A) fi(u®)} (using the definition of affine)
< max (M)} + max {(1-0)fi(?)}
= Amax {fi(u')} + (1 - A) max {fi(u*)}

= M)+ (1= Nf?).

O
Theorem 6.3
f is a convex piecewise-linear function on its domain.
Proof. We refer to the dual
b) = max y'b
F(0) sz/A _ (Dy)

of (Pb)
A basis {3 is feasible or not for (D), independent of b . Thinking about it this way, we can
see that
f(b) = max { (c%A?) b : f3isa dual feasible basis} ,

and so f is a convex piecewise-linear function, because it is the pointwise maximum of a finite
number of affine (even linear) functions. O

6.1.3 A brief detour: the column geometry for the Simplex Algorithm

In this section, we will describe a geometry for visualizing the Simplex Algorithm.” The
ordinary geometry for a standard-form problem, in the space of the non-basic variables for
same choice of basis, can be visualized when n — m = 2 or 3. The “column geometry” that we
will describe is in R™*! | so it can be visualized when m + 1 = 2 or 3. Note that the graph of
the function f(b) (introduced at the start of this chapter) is also in R™*! , which is why we take
the present detour.
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(%)

forj =1,2,...,n,and the additional so-called requirement line

((3) =5}

We think of the first component of these points and of the line as the vertical dimension; so the
requirement line is thought of as vertical. It of particular interest to think of the cone generated

by the n points. That is,
dx
K = ER™ . 2>0%.
Ax

Notice how the top coordinate of a point in the cone gives the objective value of the associated x
for (P). So the goal of solving (P) can be thought of as that of finding a point on the intersection
of the requirement line and the cone that is as low as possible.

Restricting ourselves to a basis /5, we have the cone

chx
KBSZ e GRerl :33520 .
Apzg

The cone K is an “m-dimensional simplicial cone.” Next, we observe that if 3 is a feasible basis,
then K intersects the requirement line uniquely at the point

ApZp

where Z is the basic solution associated with /3 .

In a pivot of the Simplex Algorithm from basis /3 to basis 3, we do so with the goal of having
K intersect the requirement line at a lower point than did K . In Figure 6.1 (m = 2 and the
coordinate axes are the red lines), we see an example depicting a single pivot. K is the yellow
cone, intersecting the blue requirement line at the red point. After the pivot (with one cone
generator exchanged), we have the green cone K; intersecting the requirement line at the pink
point.
So at each iteration of the Simplex Algorithm, we exchange a single “generator” of the simplicial
cone K associated with our basis 3, to descend along the requirement line, ultimately finding
a point of K that meets the requirement at its lowest point.

We think of the n points

6.2 Objective Changes

“Here is what is needed for Occupy Wall Street to become a force for change: a clear, and
clearly expressed, objective. Or two.” — Elayne Boosler
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Figure 6.1: A simplex pivot

We define a function g : R” — R via

glc) := min dz
Az = b; (P%)
xr > 0.

That is, (P°) is simply (P) with the optimal objective value viewed as a function of its objective
vector c¢.

6.2.1 Local analysis

Consider a fixed basis 3 for (P¢). Associated with that basis is the basic solution Zg = Aglb
and the corresponding dual solution ' = c’ﬁ Agl . Let us assume that z is feasible for (P°) — or,
equivalently, Aglb > 0. Considering the set C of ¢ € R™ such that 3 is an optimal basis, is it easy

to see that this is just the set of ¢ such that c;] — c’ﬁ AglAn > 0’ . Thatis, C C R" is the solution
set of n — m linear inequalities (in fact, it is a cone). Now, for ¢ € C, we have g(c) = ¢ .

Therefore, g is a linear functionon c € C .

6.2.2 Global analysis

The domain of g is the set of ¢ for which (P) has an optimal solution. Assuming that (P°) is
feasible, then the domain of g is just the set of ¢ € R™ such that (P°) is not unbounded.

Similarly to the case of variations in the right-hand side vector b, we have the following two
results.

Theorem 6.4
The domain of g is a convex set.
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A function g : R™ — R is a concave function on its domain S5, if
gt + (1= N)u?) > Ag(u') + (1 = N)g(u?) ,

forall u',u? € Sand 0 < A < 1. Thatis, f is never overestimated by linear interpolation.
The function g is a concave piecewise-linear function if it is the pointwise minimum of a finite
number of affine functions.

Theorem 6.5
g is a concave piecewise-linear function on its domain.

6.3 Exercises

Exercise 6.1 (Local sensitivity analysis with Python/Gurobi)

We can easily carry out some local sensitivity analysis with Python/Gurobi. See how this is done
in Production.ipynb (Appendix A.3). Verify the calculations of Python/Gurobi by ‘hand’,
using the ideas and formulas in Section 6.1.1 to make the calculations yourself; you may use
any convenient software (e.g., Python, MATLAB, Mathematica, etc.) to assist you, but only for
doing arithmetic on scalars, vector and matrices.

Exercise 6.2 (Illustrate global sensitivity analysis using Python/Gurobi)

Using Python/Gurobi, make an original example, with at least three constraints, graphing the
objective value of (P), as a single b[i] is varied from —oco to +00 . As you work on this, bear in
mind Theorem 6.3, using local analysis to identify successive ranges where the optimal value is
linear.

Exercise 6.3 (“I feel that I know the change that is needed.” — Mahatma Gandhi)
We are given 2m numbers satisfying L; <0 < U; ,i=1,2,...,m . Let § be an optimal basis for
all of the m problems

min 'z

Ar = b+ Aje;; ()
z > 0,

for all A; satisfying L; < A; < U; . Let’s be clear on what this means: For each i individually,
the basis ( is optimal when the ith right-hand side component is changed from b; to b; + A, , as
long as A; is in the interval [L;, U;] (see Section 6.1.1).

The point of this problem is to be able to say something about simultaneously changing all
of the b; . Prove that we can simultaneously change b; to

- L;
bj,.—bi—")\i{ U },
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where \; > 0, when >, \; < 1. [Note that in the formula above, for each i we can pick either
L; (a decrease) or U; (an increase) |.

Exercise 6.4 (Domain for objective variations)
Prove Theorem 6.4.

Exercise 6.5 (Concave piecewise-linear function)
Prove Theorem 6.5.



Chapter 7

Large-Scale Linear Optimization

Our goals in this chapter are as follows:
o To see some approaches to large-scale linear-optimization problems

e In particular, to learn about decomposition, Lagrangian relaxation and column genera-
tion.

e Also, via a study of the “cutting-stock problem,” we will have a first glimpse at some
issues associated with integer-linear optimization.

7.1 Decomposition

65
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In this section we describe what is usually known as Dantzig-Wolfe Decomposition. It is
an algorithm aimed at efficiently solving certain kinds of structured linear-optimization prob-
lems. The general viewpoint is that we might have a very efficient way to solve a certain type
of structured linear-optimization problem, if it were not for a small number of constraints that
break the structure. For example, the constraint matrix might have the form in Figure 7.1, where
if it were not for the top constraints, the optimization problem would separate into many small
problems®.

Figure 7.1: Nearly separates

7.1.1 The master reformulation

Theorem 7.1 (The Representation Theorem)

Let
min 'z
Az = b; (P)
r > 0.

Suppose that (P) has a non-empty feasible region. Let X := {#’ : j € J} be the set of basic-
feasible solutions of (P), and let Z := {2¥ : k € K} be the set of basic-feasible rays of (P).
Then the feasible region of (P) is equal to

SONE Y et > N =15020,5€T; Mkzo,keic}.

JjET kex JjET

Proof. Let S be the feasible region of (P) . Let

S’:{Z)\jij—&—Zukék’ tY N =1:020,5€7; uk207keK}.

jeT keK JjeET

We will demonstrate that S = S’ . It is very easy to check that S’ C S, and we leave that to the
reader. For the other direction, suppose that £ € S, and consider the system

SoNE 4> et = a

jeJ kex

S Ty n

jeT
N>0,jeTJ; m>0,kek.

Keep in mind that in (I), & is fixed as well as are the 27 and the 2¥ — the variables are the ),
and the py, . By way of establishing that S C S’ , suppose that & ¢ S’ — that is, suppose that (I)
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has no solution. Applying the Farkas Lemma to (I) , we see that the system

w'i + t > 0;
wil + t < 0, VjieJ; (1)
w' 3k < 0, VkeKk

has a solution, say @, # . Now, consider the linear-optimization problem

min —W'z
Ax
T

b; (P)
0.

VAN

(P) cannot be unbounded, because —1i/2¥ > 0, for all k € K . In addition, every basic feasible
solution of (P) has objective value at least # . By Theorem 5.1 (the Strong Optimal Basis Theo-
rem), this implies that the optimal value of (P) is at least . But the objective value —'z of & is
less than ¢ . Therefore, & cannot be feasible. That is, & ¢S. O

Proof. Using the Representation Theorem, we just substitute the expression
jeg kex

for z in ¢’z and in Ez > h of (Q), and it is easy to see that (M) is equivalent to (Q). O

Decomposition is typically applied in a way such that the constraints defining (S) are some-
how relatively “nice,” and the constraints Ez > h somehow are “complicating” the situation.
For example, we may have a problem where the overall constraint matrix has the form depicted
in Figure 7.1. In such a scenario, we would let

B
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.. .

We note that there is nothing special here about the “nice” constraints being “=", and the

complicating constraints being “>". The method, with small modifications, can handle any
types of constraints; we take the particular form that we do for some convenience.

and

A=

7.1.2 Solution of the Master via the Simplex Algorithm

Next, we describe how to solve (M) using the Simplex Algorithm. Our viewpoint is that we
cannot write out (M) explicitly; there are typically far too many variables. But we can reasonably
maintain a basic solution of (M), the standard-form problem obtained from (M) by adding slack
variables for the Ex > 0 constraints, because the number of constraints of (M), is just one more
than the number of constraints in Ex < h .

The only part of the Simplex Algorithm that is sensitive to the total number of variables is
the step in which we check whether there is a variable with a negative reduced cost. So rather
than checking this directly, we will find an indirect way to carry it out.

Toward this end, we define dual variables y and o for (M) .

min Y (@) N+ > (<2F) dual variables

jeJ keK
ADW sk .

Z(Ex))\]—FZ(Ez)uk > h; y>0 (M)

JjeJ kex

Z Aj = 1; o unrestricted

JjE€ET

)\320736\77 IU/]CZO7I€EIC

While ¢ is a scalar variable, y is a vector with a component for each row of .
Using a vector of slack variables s, we obtain the standard-from problem
min Z (d27) A + Z (/%) e
j€T keK
APV sk — = . _

Z(Ex))\]JrZ(Ez),uk Is = h; (M)
JjeJ ke
2N = L
JjeTg

)\]207.76;77 /.LkZO,kEK:

We will temporarily put aside how we calculate values for y and o , but for now we suppose
that we have a basic partition of (M) and an associated dual solution j and & .

Entering variable. Notice that nonnegativity of the dual variables y in (M), is is equivalently
realized in (M) via the reduced costs of the slack variables being nonnegative. Therefore, a slack
variable s; is eligible to enter the basis if g; < 0.

The reduced cost of a variable \; is

(di7) -y (B37) -6 = -6+ (/ —yE)#7.
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It is noteworthy that with the dual solution fixed (at j and ), the reduced cost of \; is a constant
(—0o) plus a linear function of &7 . A variable ); is eligible to enter the basis if its reduced cost
is negative. So we formulate the following optimization problem:

—0+min (¢ —§FE)x
Az
x

b (SUB)
0.

AVAN|

If the “subproblem” (SUB) has as optimal solution, then it has a basic optimal solution — that
is, an 7 . In such a case, if the optimal objective value of (SUB) is negative, then the \; corre-
sponding to the optimal #7 is eligible to enter the current basis of (M). On the other hand, if
the optimal objective value of (SUB) is non-negative, then we have a proof that no non-basic \;
is eligible to enter the current basis of (M).

If (SUB) is unbounded, then (SUB) has a basic feasible ray z* having negative objective
value. Thatis, (¢ —§'E)2F < 0. Amazingly, the reduced cost of y, is precisely (c'2%) —
y (Ez*) = (¢ —y'E) 2%, so, in fact, p1;, is then eligible to enter the current basis of (M).

Leaving variable. To determine the choice of leaving variable, let us suppose that B is the
basis matrix for (M). Note that B consists of at least one column of the form

(%)
(% Y ()

With respect to the current basis, to carry out the ratio test of the Simplex Algorithm, we
simply need

and columns of the form

and:
if \; is entering the basis, or
if py, is entering the basis, or

if s; is entering the basis.

Calculation of basic primal and dual solutions. It is helpful to explain a bit about the
calculation of basic primal and dual solutions. As we have said, B consists of at least one column

of the form _
EgI
1

(% Y ()

and columns of the form
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So organizing the basic variables \;, 1 and s; into a vector ¢, with their order appropriately
matched with the columns of B, the vector ¢ of values of ( is precisely the solution of

se- ().
(1)

Finally, organizing the costs ¢'#7, ¢/ 2k and 0 of the basic variables \ j, 1 and s; into a vector &,
with their order appropriately matched with the columns of B, the associated dual solution
(g,0) is precisely the solution of

That is,

(ylv U)B = 5/ .
That is,
(7,0)=¢B"".

Starting basis. It is not obvious how to construct a feasible starting basis for (M); after all,
we may not have at hand any basic feasible solutions and rays of (S). Next, we give a simple
recipe. First, we take as 2! any basic feasible solution of (P) . Such a solution can be readily
obtained by using our usual (phase-one) methodology of the Simplex Algorithm. Our initial
basic variables are all of the slack variables s; and also Ay, associated with #!. So we have the

initial basis matrix )
—I | Ez
B= ( =S ) .

It is very easy to see that this is an invertible matrix.

It is very important to realize that we have given a recipe for finding an initial basic solution
of (M). This basic solution is feasible precisely when z'! satisfies the Exz > h constraints. If
this solution is not feasible, then we would introduce an artificial variable and do a phase-
one procedure. Following the methodology of Section 4.4.1, we introduce the single artificial

column
1- FE3!
1 b

with cost 1. We let the artificial variable enter the basis, removing the slack variable that is the
most negative from the basis. This yields a feasible basis for the phase-one problem, with pos-
itive objective value. Now we carry out phase-one of the simplex method, using Decomposition,
minimizing the artificial variable, seeking to drive it down to zero.

A demonstration implementation.

£ Y
8] NOW IT ISBLOATED |: ARE I'VE MEVER
I ASKED THE OTHER |2
ENGINEERS TO HELP ME | 2| WITH USELESS FEATURES [f|  You  BEEN A BIG
DEVELOP MY DOUBLE— |&| AND NOT DISHWASHER =] oOKAY  FAN OF THE
HANDLED COFFEE MUG |Z SAFE. MAYBE YOU Z| WITH  IMPLEMEN-—
INVENTION, §| SHOULD CANCEL THE = THAT?  TATION
3 PROJECT. g ) PHASE.
H - f
: 1
£ ]
8 3
g @
5 g

It is not completely trivial to write a small Python/Gurobi) code for the Decomposition Algo-
rithm. First of all, we solve the subproblems (SUB) using functionality of Gurobi. Another
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point is that rather than carry out the simplex method at a detailed level on (M), we just ac-
cumulate all columns of (M) that we generate, and always solve linear-optimization problems,
using functionality of Gurobi, with all of the columns generated thus far. In this way, we do not
maintain bases ourselves, and we do not carry out the detailed pivots of the Simplex Algorithm.
Note that the linear-optimization functionality of Gurobi does give us a dual solution, so we do

not compute that ourselves. Our code is in the Jupyter notebook Decomp . ipynb (see Appendix
A8)

In Figures 7.2 and 7.3, we see quite good behavior for the Decomposition Algorithm, for
a problem with 100 variables, 200 “complicating” constraints (i.e., rows of E), and 50 “nice”
constraints (i.e., rows of A).

0.012 4

0.010 4

0.008 4

0.006

LP objective value

0.004 4

0.002 4

0.000 4

01 2 3 4 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29
iteration

Figure 7.2: Example: Phase-one objective values with Decomposition
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LP objective value
|
.
(%2}

=5.0

—5.5 1

50 100 150 200 250 300 350 400
iteration

Figure 7.3: Example: Phase-two objective values with Decomposition

Convergence and lower bounds. Practically speaking, the convergence behavior of the
Decomposition Algorithm can suffer from a tailing-off effect. That is, while the sequence of
objective values for successive iterates is non-increasing, at some point improvements can be-
come quite small. It would be helpful to know when we already have a very good but possibly
non-optimal solution. If we could rapidly get a good lower bound on z , then we could stop the
Decomposition when the its objective value is close to such a lower bound. Lower bounds on
z can be obtained from feasible solutions to the dual of (Q) . But there is another way, closely
related to the dual of (Q), to rapidly get good lower bounds. We develop this in the next section.
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7.2 Lagrangian Relaxation

Again, we consider

z:=min cz
Ezx
Ax

X

b (Q

VIV

but our focus now is on efficiently getting a good lower bound on z , with again the view that
we are able to quickly solve many linear-optimization problems having only the constraints:
Ar=b,x>0.

7.2.1 Lagrangian bounds

For any fixed choice of j > 0, consider the following “Lagrangian” optimization problem
v(§) == ¢ h+ min (¢ — §'E)x

Az
x

b (Lyg)
0.

IVl

Note that the only variables in the minimization are « , because we consider g to be fixed.

Theorem 7.3
v(y) < z, for all § in the domain of v.

Proof. Let z* be an optimal solution for (Q). Clearly z* is feasible for (L;). Therefore
v(y) < Yht(d -y E)”
dx* — ¢ (Ex* —h)
< z.

The last equation uses the fact that z* is optimal for (Q), so z = ¢/z*, and also that Ez* > h and
7>0. O
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From what we learned in studying sensitivity analysis, it can be seen that v is a concave
(piecewise-linear) function on its domain (see Theorem 6.5). Because of this nice behavior, it is
plausible that we could calculate the maximum of v as a means of getting a good lower bound
on z . Before doing that, we examine the precise relationship between primal and dual solutions
of (Q), minimizers of v , and primal and dual solutions of the Lagrangian.

Theorem 7.4

Suppose that z* is optimal for (Q) , and suppose that § and 7 are optimal for the dual of (Q) .
Then z* is optimal for (L;) , 7 is optimal for the dual of (L;) , § is a maximizer of v(y) over
y > 0, and the maximum value of v(y) over y > 0is z .

In the theorem above, we refer to two duals. The dual of (Q) is:

min y'h+7'b
yE+1mALc;
y=>0.

The dual of (Ly) is:

g’h 4+ max 7'b
A< -§E.

Proof. x* is clearly feasible for (Ly) . Because § and 7 are feasible for the dual of (Q) , we have
g >0,and §'E + 7’ A < ¢’ . The latter implies that 7 is feasible for the dual of (L) .

Using the Strong Duality Theorem for (Q) implies that ¢'z* = §’h+7'b. Using that EZ* > h
(feasibility of * in (Q) ), we then have that (¢ — §'E') z* < #’b. Finally, using the Weak Duality
Theorem for (L;) , we have that z* is optimal for (L;) and # is optimal for the dual of (Ly) .

Next,

z > v(9) (by Theorem 7.3)

7h+ (-9 E)z* (because z* is optimal for (Ly))
= da*+ 9y (BEx* —h)

da* (because Ez* > hand y > 0)

zZ.

%

Therefore the all of the inequalities are equations, and so ¢ is a maximizer of v and the maximum
valueis z . 0

Theorem 7.5
Suppose that § is a maximizer of v(y) over y > 0, and suppose that 7 is optimal for the dual
of (Lg) . Then g and 7 are optimal for the dual of (Q) , and the optimal value of (Q) is v(7) .
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Proof.

v(g) = max {v(y)}

_ ’ . r . _ >

;?géc{yh+rr¥n{(c yE)x : Ax b,x_O}}

— ’ "y A< —of
y;lgac{yh—i—mgx{wb mTA<e yE}}

= max {yh+7'b : YyE+7 AL}

y>0,m
= z.

The third equation follows from taking the dual of the inner (minimization) problem. The last
equation follows from seeing that the final maximization (over y > 0 and 7 simultaneously) is
just the dual of (Q).

So, we have established that the optimal value z of (Q) is v(y) . Looking a bit more closely,
we have established that z = §'h + 7’b, and because 7'A < ¢/ — ' E and y > 0, we have that ¢
and 7 are optimal for the dual of (Q) . O

Note that the conclusion of Theorem 7.5 gives us an optimal § and 7 for the dual of (Q), but
not an optimal z* for (Q) itself.

7.2.2 Solving the Lagrangian Dual

Theorem 7.3 gives us a simple way to calculate a lower bound on z , by solving a potentially
much-easier linear-optimization problem. But the bound depends on the choice of § > 0. Can
we find the best such  ? This would entail solving the so-called Lagrangian Dual problem of
maximizing v(y) over all y > 0 in the domain of v . It should seem that there is hope for doing
this — because v is a concave function. But v is not a smooth function (it is piecewise linear),
so we cannot rely on calculus-based techniques.

Theorem 7.6
Suppose that we fix § , and solve for v(y) . Let & be the solution of (L;) . Let¥y := h — E% .
Then

v(G) <v(@) + (G- D)7,

for all § in the domain of v .

Proof.
@)+ @G -9F = Jh+(-§E)E+ G- (h- E)
= ¢gh+(d—-JE)
> v(g)-

The inequality follows from the fact that  is feasible (but possible not optimal) for (Lyz). O

Subgradient. What is v(9) + (g — §)’4 ? It is a linear estimation of v(y) starting from the
actual value of v at §j . The direction § — ¢ is what we add to § to move to . The choice of
4 := h— EZ is made so that Theorem 7.6 holds. That is, 7 is chosen in such a way that the linear
estimation is always an upper bound on the value v(g) of the function, for all § in the domain of
f . The nice property of 4 demonstrated with Theorem 7.6 has a name: we say that 4 := h — EZ
is a subgradient of (the concave function) v at § (because it satisfies the inequality of Theorem
7.6).
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Subgradient Optimization. Next, we describe a simple “Projected Subgradient Optimiza-
tion Algorithm” for solving the Lagrangian Dual. The general idea is to iteratively move in the
direction of a subgradient.

Projected Subgradient Optimization Algorithm

. Start withany §' € R™ . Letk :=1.
. Solve (L) to get & .

0
1
2. Calculate the subgradient 4* := h — E3* .
3. Let gFt1 « Projg,. (G* + MeAF) .

4

. Letk <~ k+1,and GOTO 1.

Above, ProjRT () means project onto the nonnegative orthant. That is, we take the closest

point (in Euclidean norm) to the argument of the function. In fact, this means just zeroing-out
the negative entries.

Convergence. We have neglected, thus far, to fully specify the Subgradient Optimization
Algorithm. We can stop if, at some iteration k£ , we have 4% = 0 (or, more generally, if ¢ =
ProjRT (9% + AeA")), because the algorithm will make no further progress if this happens, and

indeed we will have found that §* is a maximizer of v(y) over y > 0 . But this is actually very
unlikely to happen. In practice, we may stop if k reaches some pre-specified iteration limit, or
if after many iterations, v is barely increasing.

We are interested in mathematically analyzing the convergence behavior of the algorithm,
letting the algorithm iterate infinitely. We will see that the method converges (in a certain
sense), if we take a sequence of Ay > 0 that in some sense slowly diverges; Specifically, we
will require that > ;2 ; A7 < 400 and Y p-; Ay = 400 . That is, “square summable, but not
summable.” For example, taking Ay := a/(8 + k) , with @ > 0 and 8 > 0, we get a sequence
of step sizes satisfying this property; in particular, for « = 1 and 8 = 0 we have the harmonic
series Y ;- | 1/k which satisfies In(k + 1) < >_;2, 1/k <In(k) + 1and >, 1/k* = n%/6 .

To prove convergence of the algorithm, we must first establish a key technical lemma.

Lemma 7.7
Let y* be any maximizer of v(y) over y > 0. Suppose that A\, > 0, for all & . Then

k k
ly™ =512 = lly* = 312 < DOAZIAIP =2 i (oly™) — (@) -
=1

i=1

Proof. Let w**1 := gk + A\ 4% ; that is, the unprojected k + 1-st iterate. For k > 1, we have

A R [

< ly* — TP — Iy — 9" |12

=" =) = MA 1P = lly* = 91
. NN

= A I8%I =2 (v = 9) 4"

< MR = 2X% (v(y™) = v(5)) -

lly
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The first inequality uses that fact that the projection of a point onto a convex set is no further to
any point in that convex set than the unprojected point. The final inequality uses the assumption
that A, > 0 and the subgradient inequality:
v(g) < o)+ G- 99'5",

plugging in y* for §.

Finally, adding up the established inequality over k yields the result. O

Now, let

vp :==maxt_, {v(g)} , fork=1,2,...

That is, v}, is the best value seen up through the k-th iteration.

Theorem 7.8 (“Square summable, but not summable” convergence)

Let y* be any maximizer of v(y) over y > 0. Assume that we take a basic solution as the
solution of each Lagrangian subproblem. Suppose that A, > 0, for all £ . Suppose further
that Y77 | A2 < +ooand Y ;7 A\p = +00 . Then limy_, o0 v} = v(y*) .

Proof. Because the left-hand side of the inequality in the statement of Lemma 7.7 is non-negative,
we have

k k
23"\ (v(y") —v(@) < lly* - 3"+ S XA
i=1 i=1

Because v}, > v(9?) for all i < k , we then have

k k
2 (Z A) (i) — o) < Iy — 317+ SR
=1 1=1

or
Iy = 51 + Sy NI
2 Z?:l Ai .
Next, we observe that ||§?||? is bounded by some constant I' , independent of i , because our

algorithm takes 4 := h — E& , where £ is a basic solution of a Lagrangian subproblem. There
are only a finite number of bases. Therefore, we can take

o(y") —up <

I' = max {||h — EZ||* : & is a basic solution of Az = b,z > 0} .

So, we have

% ~ k
* ly —91||2+FD:1 )‘z2
Vg S % .
221‘:1 Ai

Now, we get our result by observing that ||y* — §'||? is a constant, Zle \? is converging to a

v(y*) -

constant and Zle Ai goes to 400 (as k increases without limit), and so the right-hand side of
the final inequality converges to zero. The result follows. 0

A simple implementation. It is very easy to write a small Gurobi/Python code for Subgra-
dient Optimization. Our code is in the Jupyter notebook SubgradProj.ipynb (see Appendix
A.9). Typical behavior is a very bad first iteration, then some iterations to recover from that,
and then a slow and steady convergence to an optimum. The method is usually stopped after
a predetermined number of iterations or after progress becomes very slow. In Figure 7.4, we
see this typical behavior, for a problem with 100 variables, 200 “complicating” constraints (i.e.,
rows of E), and 50 “nice” constraints (i.e., rows of A).
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-10 4

-15 4

-20 4

v(y)

—-25 4

—30 4

-35 4

T T T T
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iteration

Figure 7.4: Example: Projected subgradient optimization with harmonic step sizes

Practical steps. Practically speaking, in order to get a j with a reasonably high value of v(j) ,
it can be better to choose a sequence of \;, that depends on a “good guess” of the optimal value
of v(y), taking bigger steps when one is far away, and smaller steps when one is close (try to
develop this idea in Exercise 7.3). A further idea is take shorter steps when the subgradient has
a big norm. With these ideas, we can achieve faster practical convergence of the algorithm; see
Figure 7.5

Dual estimation. From Theorem 7.5, we see that the Subgradient Optimization Method is a
way to try and quickly find an estimate of an optimal solution to the dual of (Q). At each step,
7 together with the 7 that is optimal for the dual of (L;) give a feasible solution of (Q) with
objective value v(7). But note that we give something up — we do not get an =* that solves (Q)
from a g that maximizes v and a 7 that is optimal for the dual of (L;) . There is no guarantee
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Figure 7.5: Example: Projected subgradient optimization with better step sizes

that a & that is optimal for (L) will be feasible for (Q) .

79
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7.3 The Cutting-Stock Problem

The cutting-stock problem is a nice concrete topic at this point. We will develop a technique
for it, using column generation, but the context is different than for decomposition. Moreover,
the topic is a nice segue into integer linear optimization — the topic of the next chapter.

The story is as follows. We have stock rolls of some type of paper of (integer) width W.
But we encounter (integer) demand d; for rolls of (integer) width w; < W, fori =1,2,...,m.
The cutting-stock problem is to find a plan for satisfying demand, using as few stock rolls as
possible.’

7.3.1 Formulation via cutting patterns

There are several different ways to formulate the cutting-stock problem mathematically. A par-

ticularly useful way is based on a consideration of the problem from the point of view of the

worker who has to adjust the cutting machine. What she dearly hopes for is that a plan can be

formulated that does not require that the machine be adjusted for (different cutting patterns)

too many times. That is, she hopes that there are a relatively small number of ways that will be

utilized for cutting a stock roll, and that these good ways can each be repeated many times.
With this idea in mind, we define a cutting pattern to be a solution of

Siwia; < W
a; > Ointeger,s=1,...,m,

where a; is the number of pieces of width w; that the pattern yields.

Conceptually, we could form a matrix A with m rows, and an enormous number of columns,
where each column is a distinct pattern. Then, letting z; be the number of times that we use
pattern A; , we can conceptually formulate the cutting-stock problem as

z := min T

Zj Ajl’j 2 d ’ (CSP)
z; 2> 0 integer, Vj.

7.3.2 Solution via continuous relaxation

Our approach to getting a good solution to (CSP) is to solve its continuous relaxation and then
round. Toward this end, we subtract surplus variables and consider the linear-optimization
problem

Z := min T
Z'ijj -t = d;
’ z; >0,Vj; (C5E)

t >0.
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We endeavor to compute a basic optimum (Z, ) . Because of the nature of the formulation, we
can see that [Z] is feasible for (CSP). Moreover, we have produced a solution using 1’'[Z] stock
rolls, and we can give an a priori bound on its quality. Specifically, as we will see in the next
theorem, the solution that we obtain wastes at most m — 1 stock rolls, in comparison with an
optimal solution. Moreover, we have a practically-computable bound on the number of wasted
rolls, which is no worse than the worst-case bound of m — 1. That is, our waste is at worst

1Tz - [2].

Theorem 7.9

2] <z < 1V[z] < [z]+(m—1).

Proof. Because (CSP) is a relaxation of (CSP) and because z is an integer, we have [z] < z.
Because [ 7] is a feasible solution of (CSP), we have = < 1'[z]. Now, 1'[z] = >_I" ,(Zs, + fi),
with each f; < 1. But }.\" (Tp, + fi) = Uz + >0, fi < [1'Z] + 312, fi . Therefore, 1'[Z] <
[1'z] + Y~ fi - Now the left-hand side of this last inequality is an integer, so we may round
down the right-hand side. So we can conclude that 1'[z] < [z] + (m — 1) . O

7.3.3 The knapsack subproblem

Toward describing how we can solve (CSP) by the Simplex Algorithm, we introduce a vector
y € R™ of dual variables.

z := min 2T dual variables
Zj Ajl’j —t = d ; Yy
P
t >0.

We suppose that we have a feasible basis of (CSP) and that we have, at hand, the associated
dual solution 3 . For eachi,1 <1 < m, the reduced cost of ¢; is simply ¢, . Therefore, if j; < 0,
then t; is eligible to enter the basis.

So, moving forward, we may assume that §; > 0 for all i . We now want to examine the
reduced cost of an z; variable. The reduced cost is simply

1 71,_1/Aj = 1 72?“17'4' .

i=1

The variable z; is eligible to enter the basis then if 1 — Z:’;l ¥ia;; < 0. Therefore, to check
whether there is some column z; with negative reduced cost, we can solve the so-called knap-
sack problem

max Yo, Ui
Y wia; < W
a; > Ointeger,i=1,...,m,
and check whether the optimal value is greater than one. If it is, then the new variable that we

associate with this solution pattern (i.e., column of the constraint matrix) is eligible to enter the
basis.
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HIKING AND CAMPING 143

Our algorithmic approach for the knapsack problem is via recursive optimization (known
popularly as dynamic programming'). We will solve this problem for all positive integers up
through W. That is, we will solve

f(s) ==max 337, gia;
m
Yo wia; <S5
a; > Ointeger,i=1,...,m,

starting with f(s) =0, for 0 < s < min}*, {w;}, and proceeding from s = min/*, {w;} — 1 by
incrementing the argument of f by 1 at each step. Then, we have the recursion
f(s) = ,max {9; + f(s —w,;)} , for s > min", {w;} .

It is important to note that we can always calculate f(s) provided that we have already calcu-
lated f(s') for all s < s . Why does this work? It follows from a very simple observation: If
we have optimally filled a knapsack of capacity s and we remove any item ¢, then what remains
optimally fills a knapsack of capacity s — w; . If there were a better way to fill the knapsack of
capacity s — w; , then we could take such a way, replace the item ¢ , and we would have found
a better way to fill a knapsack of capacity s . Of course, we do not know even a single item that
we can be sure is in an optimally filled knapsack of capacity s, and this is why in the recursion,
we maximize over all items that can fit in (i.e., i : w; < s).

The recursion appears to calculate the value of f(s) , but it is not immediate how to recover
optimal values of the a; . Actually, this is rather easy.

Recover the Solution of a Knapsack Problem

0. Lets:=W ,andleta; :==0,fori=1,...,m.
1. While (s > 0)

(a) Findi : f(s) =y + f(s— w;).

(b) Leta; :=a; +1.

(c) Lets:=s—w;.
2. Returna; ,fori=1,...,m.

Note that in Step 1.a, there must be such an ¢, by virtue of the recursive formula for calcu-
lating f(s) . In fact, if we like, we can save an appropriate # associated with each s at the time
that we calculate f(s) .

7.3.4 Applying the Simplex Algorithm

An initial feasible basis. It is easy to get an initial feasible basis. We just consider the m
patterns A, := |[W/w;|e; , fori = 1,2,...,m . The values of the m basic variables associated
with the basis of these patterns are Z; = d;/|W/w;]| , which are clearly non-negative.
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Basic solutions: dual and primal. At any iteration, the basis matrix B has some columns
corresponding to patterns and possibly other columns for ¢; variables. The column correspond-
ing to ¢; is —e; .

Organizing the basic variables z; and ¢; into a vector ¢ , with their order appropriately
matched with the columns of B, the vector ¢ of values of ( is precisely the solution of

BC=d.

That is, )
(=B'4.

The cost of an «; is 1, while the cost of a t; is 0. Organizing the costs of the basic variables
into a vector £ , with their order appropriately matched with the columns of B, the associated
dual solution 7 is precisely the solution of

That is,
g/ — ngfl .

7.3.5 A demonstration implementation

We can use Python/Gurobi, in a somewhat sophisticated manner, to implement our algorithm
for the cutting-stock problem. As we did for the Decomposition Algorithm, rather than carry
out the simplex method at a detailed level on (CSP), we just accumulate all columns of (CSP)
that we generate, and always solve linear-optimization problems, using functionality of Gurobi,
with all of the columns generated thus far. In this way, we do not maintain bases ourselves,
and we do not carry out the detailed pivots of the Simplex Algorithm. Note that the linear-
optimization functionality of Gurobi does give us a dual solution, so we do not compute that
ourselves. Our full code is in the Jupyter notebook CSP. ipynb (see Appendix A.10).

On the example provided, our algorithm gives a lower bound of 1378 on the minimum num-
ber of stock rolls needed to cover demand, and it gives us an upper bound (feasible solution)
of 1380.

**xxx Solving LP...

kkkkk A

[[1. 0. 0. 0. 0.]
[0. 2. 0. 0. 0.]
[0. 0. 2. 0. 0.]
[0. 0. 0. 4. 0.]
[0. 0. 0. 0. 3.11
kokkokk X

x[ 0 1= 205.0

x[ 1 ]= 1160.5

x[ 2 1=71.5

x[ 3 1= 272.25

x[ 4 1= 39.0
sokkkk y2 o [1, 0.5 0.5 0.25  0.3333]

*x*x%* Solving Knapsack...

**xx* Gurobi Knap objval: 1.5
**x*xkx DP Knap objval: 1.5
*kkkk Column: [1. 1. 0. 0. 0.]
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*fkkk Solving LP...

kkkkk A

[[1. 0. 0. 0. 0. 1.]
[0. 2. 0. 0. 0. 1.]
[0. 0. 2. 0. 0. 0.]
[0. 0. 0. 4. 0. 0.]
[0. 0. 0. 0. 3. 0.1]

kkkkk Yo

x[ 0 1= 0.0

x[ 1 ]= 1058.0

x[ 2 1= 71.5

x[ 3 1= 272.25

x[ 4 1= 39.0

x[ 5 1= 205.0

xkxkx y2: [0.5 0.5 0.5 0.25 0.3333]

**k*x*k Solving Knapsack...

****x*k Gurobi Knap objval: 1.25
****x*% DP Knap objval: 1.25
*x*xkk*x Column: [0. 2. 0. 1. 0.]

*fkkk Solving LP...

sfokkkk A

[[1.
(0.
(0.
[0.
[0.

kkkkk X

x[ 0 1=

x[ 1

x[ 2 ]=

x[ 31=7.75

x[ 4 1= 39.0

x[ 5 ]= 205.0

x[ 6 1= 1058.0

*kxxx y2: [0.625 0.375 0.5 0.25 0.3333]

eeebde
eevere
eroee
weeere
eeoerr
erede
—_ e e

**xk*xk Solving Knapsack...

*fk*x*k Gurobi Knap objval: 1.0833333333333333
**xxxx DP Knap objval: 1.0833333333333333
*x*x**k*x Column: [0. 0. 0. 3. 1.]

*fkxk Solving LP...

kkskokk A

[[1.
(0.
(0.
(0.
(0.

kkkokk X

eeede
eevee
eHreee
woeoeee
eeoerr
erede
mweoee
—_
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x[ 0 1=0.0
x[11=0.0

x[ 2 1=171.5

x[ 3 1=0.0

x[ 4 ]= 35.5556
x[ 5 1= 205.0
x[ 6 1= 1058.0

x[ 7 1= 10.3333
**x*kxx y?: [0.6111 0.3889 0.5 0.2222 0.3333]

*x*x%*% Solving Knapsack...

*fk*kk Gurobi Knap objval: 1.0555555555555556
*xx%* DP Knap objval: 1.0555555555555556
*k%kk Column: [0. 1. 0. 0. 2.]

*x*x%*k Solving LP...
*okokokk A
[[1. O.
[0. 2.
[0. 0.
[0. 0.
[0. 0.
kokkkk Xo
x[ 0 ]=
x[
x[
x[
x[
x[

eevee
ereee
woeee
eecerr
erenve
mweee
NMeore
| Ny W [y Ny Ny " |

= 205.0

x[ = 1033.3846

x[ 7 1= 18.5385

x[ 8 ]= 49.2308

*xxxx y2: [0.6154 0.3846 0.5 0.2308 0.3077]

~N O O WN
Il

*fk*x*k Solving Knapsack...

*%%xx Gurobi Knap objval: 1.0

*%*%x*% DP Knap objval: 1.0

**xxx No more improving columns

*fxkxk Pattern generation complete. Main LP solved to optimality.
*xkxk Total number of patterns generated: 9

kokskokok A

T oomvoo
omooo0
woooo
Soorkr
oroNnoO
- wo oo
SIS
e e e b L



86 CHAPTER 7. LARGE-SCALE LINEAR OPTIMIZATION

205.0

1033.3846

= 18.5385

x[ 8 1= 49.2308

*xxxx Optimal LP objective value: 1377.6538461538462
x***%*x rounds up to: 1378.0 (lower bound on rolls needed)
***%kk x rounded up:

x[ 5]
x[ 6 1]
x[ 71

x[ 0 1= 0.0
x[ 1 1=0.0
x[ 2 ]= 72.0
x[ 3 ]= 0.0
x[ 4 1= 0.0
x[ 5 1= 205.0
x[ 6 1= 1034.0
x[ 7 1= 19.0
x[ 8 1= 50.0

*x*%* Number of rolls used: 1380.0

By solving a further integer-linear optimization problem to determine the best way to cover
demand using all patterns generated in the course of our algorithm, we improve the upper
bound to 1379.

*xxxx Now solve the ILP over all patterns generated to try and get a better soution...

sokokkok X
x[ 0 1= 0.0
x[ 1 1=0.0
x[ 2 1= 72.0
x[ 3 1=1.0
x[ 4 ]=1.0
x[ 5 ]= 205.0
x[ 6 1= 1034.0
x[ 7 1= 17.0
x[ 8 ]= 49.0

*x*k%x*k Number of rolls used: 1379.0

It remains unknown as to whether the optimal solution to this instance is 1378 or 1379.

7.4 Exercises

Exercise 7.1 (Dual solutions)
Refer to (Q) and (M) defined in the Decomposition Theorem (i.e., Corollary 7.2) What is the
relationship between optimal dual solutions of (Q) and (M) ?

Exercise 7.2 (Lagrangian value function)
Using Theorem 6.5, prove that v (from Section 7.2.1) is a concave piecewise-linear function on
its domain.

Exercise 7.3 (Play with subgradient optimization)

Play with the Gurobi/Python code in the Jupyter notebook SubgradProj . ipynb (see Appendix
A9). Try bigger examples. Try different ideas for the step size, with the goal of gaining faster
convergence — be a real engineer and think ‘outside of the box” (you can use any information
you like: e.g., the current subgradient ¥, the current function value v(4*), an estimate v of the
maximum value of v, etc.).
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Exercise 7.4 (Cutting it closer to reality)

Real cutting machines may have a limited number, say K , of blades. This means that we can cut
at most K + 1 pieces for patterns that leave no scrap (i.e, > ., wia; =W = > 1" a; < K +1)
and at most K pieces for patterns that leave scrap (i.e., > .o wia; < W = > a; < K).
Describe how to modify our algorithm for the cutting-stock problem to account for this. Modify
CSP. ipynb that I provided (see Appendix A.10) to try this out.

Exercise 7.5 (Another kind of question)
Print is dying, right? Why should we care about the cutting-stock problem?






Chapter 8

Integer-Linear Optimization

Our goals in this chapter are as follows:
e to develop some elementary facility with modeling using integer variables;

e to learn how to recognize when we can expect solutions of linear-optimization problems
to be integer automatically;

e to learn the fundamentals of the ideas that most solvers employ to handle integer vari-
ables;

e to learn something about solver-aware modeling in the context of integer variables.

8.1 Integrality for Free

8.1.1 Some structured models

Network-flow problem. Recapitulating a bit from Section 2.3, a finite network G is de-
scribed by a finite set of nodes N and a finite set .A of arcs. Each arc e has two key attributes,
namely its tail ¢(e) € N and its head h(e) € N, both nodes. We think of a single commodity
as being allowed to “flow” along each arc, from its tail to its head. Indeed, we have “flow”
variables

2. := amount of flow on arc e ,

for e € A . Formally, a flow 2 on G is simply an assignment of any real numbers &, to the
variables z. , for all e € A . We assume that the flow on arc e should be non-negative and
should not exceed

u. = the flow upper bound on arc e ,

for e € A. Associated with each arc e is a cost

¢ce := cost per-unit-flow on arc e ,

89
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for e € A . The (total) cost of the flow & is defined to be

E Cele -

ecA

We assume that we have further data for the nodes. Namely,
b, := the net supply at node v,

for v € . A flow is conservative if the net flow out of node v , minus the net flow into node
v, is equal to the net supply at node v, for all nodes v € N.

The single-commodity min-cost network-flow problem is to find a minimum-cost conser-
vative flow that is non-negative and respects the flow upper bounds on the arcs. This is the
K =1 commodity version of the multi-commodity min-cost network-flow problem from Sec-
tion 2.3.

We can formulate the single-commodity min-cost network-flow problem as follows:

min E Cele

ec A
Zme—er:bv,VveN;
ecA : ec A :

t(e)=v h(e)=v

0<z. <u, Veec A.

As we have stated this, it is just a structured linear-optimization problem. But there are many
situations where the given net supplies at the nodes and the given flow capacities on the arcs
are integer, and we wish to constrain the flow variables to be integers.

We will see that it is useful to think of the network-flow problem in matrix-vector language.
We define the network matrix of G to be a matrix A having rows indexed from N, columns
indexed from A, and entries

1, ifv=t(e);
ape == ¢ —1, ifv=nh(e);
0, ifv¢{te),h(e)},
forv € N', e € A. With this notation, and organizing the b, in a column-vector indexed

accordingly with the rows of A, and organizing the c. , z. and u. as three column-vectors
indexed accordingly with the columns of A , we can rewrite the network-flow formulation as

min 'z
Axr = b;
r < u;
z > 0.

Assignment problem on a graph.

AS T UNDERSTAND IT,
YOUR JOB IS TO MATCH
EMPLOYEES WITH THE
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NONE OF MY PROJECTS
TURNED OUT WJELL,

| WHICH MEANS YOU DID

A TERRIBLE JOB.

)

I™M NOT ASKING FOR
AN APOLOGY. JUST
FOLLOW YOUR
CONSCIENCE.

Dilbert.com DilbertCartoonist@gmail.com

11-20-13 ©2013 Scott Adams, Inc. /. by Unversal Uik
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A finite bipartite graph G is described by two finite sets of vertices V; and V5 , and a set
E of ordered pairs of edges, each one of which is of the form (¢, j) with: € Viand j € V5. A
perfect matching M of G is a subset of E such that each vertex of the graph meets exactly one
edge in M . We assume that there are given edge weights

¢ij = for (i,j) € E,

and our goal is to find a perfect matching that has minimum (total) weight.
We can define

z;; = indicator variable for choosing edge (i, j) to bein M ,

for all (i,j) € E . Then we can model the problem of finding a perfect matching of G having
minimum weight via the formulation:

min E CijTij

(i,4)EE

E zy; = 1, VieV;
JEVa
(i,J)€EE

> owi; o= 1, VjeVa;
i€Vy
(i,j)EE

z; € {0,1}, VY (i,j)€E.

It will be useful to think of this assignment-problem formulation in matrix-vector language.
We define the vertex-edge incidence matrix of the bipartite graph G to be a matrix A having
rows indexed from V; U V5 , columns indexed from E , and entries

W 1, ifv=iorv=3j;
v,(4,9) = Y 0 , otherwise,

forv e V1 UV,, (4,j) € E . With this notation, and organizing the ¢;; , z;; and as column-
vectors indexed accordingly with the columns of A , we can rewrite the assignment-problem
formulation as

min 'z
Ar = 1;
r € {0,1}F,
Staffing problem. In this problem, we have discrete time periods numbered 1,2, ...,m,and
we are given
b; := the minimum number of workers required at time period 7 ,

foreachi = 1,2,...,m . Additionally, there is an allowable set of “shifts.” An allowable shift
is simply a given collection of time periods that a worker is allowed to staff. It may well be that
not all subsets of {1,2,...,m} are allowable; e.g., we may not want to allow too many or too
few time periods, and we may not want to allow idle time to be interspersed between non-idle
times. We suppose that the allowable shifts are numbered 1,2, ...,n , and we have

¢; := the per worker cost to staff shift j ,
foreach j = 1,2,...,n. Itis convenient to encode the shifts as a 0, 1-valued matrix A , where

| 1, ifshift j contains time period i ;
ij 0, otherwise,
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fori=1,2,...,m,j=1,2,...,n. Letting « be an n-vector of variables, with z; representing
the number of workers assigned to shift j , we can formulate the staffing problem as

min 'z
Ax > b;
rz > Ointeger.

CATBERT: H.R. DIRECTOR IT SOUNDED LIKE

THE STAFFING
LEVELS SOUND
ABOUT RIGHT,

WHEN YOU DUMPED MORE THIS ... AAOO- MUW
AAHH - OW-0W !

WORK ON WALLY, DID
HE MOAN? OR DID HE

www.dilbert.com

S[i3jag © 1998 United Feature Syndicate, Inc.

As we have stated it, this staffing problem is really a very general type of integer-linear-
optimization problem because we have not restricted the form of A beyond it being 0, 1-valued.
In some situations, however, it may may be reasonable to assume that shifts must consist of a
consecutive set of time periods. In this case, the 1’s in each column of A occur consecutively, so
we call A a consecutive-ones matrix.

8.1.2 Unimodular basis matrices and total unimodularity

TOTALLY

UNPREPARED

In this section we explore the essential properties of a constraint matrix so that basic solu-
tions are guaranteed to be integer. This has important implications for the network-flow, assign-
ment, and staffing problems that we introduced.

Let Abe an m x n real matrix. A basis matrix Ag is unimodular if det(43) = +1. Checking
whether a large unstructured matrix has all of its basis matrices unimodular is not a simple mat-
ter. Nonetheless, we will see that this property is very useful for guaranteeing integer optimal
of linear-optimization problems, and certain structured constraint matrices have this property.

Theorem 8.1
If Ais an integer matrix, all basis matrices of A are unimodular, and b is an integer vector, then
every basic solution Z of

Ax = b;
x > 0
is an integer vector.
Proof. Of course 7,, = 0, an integer, for j = 1,2,...,n —m, so we concentrate now on the basic
variables. By Cramer’s rule, the basic variables take on the values
det(Ag(7
= M yfori=1,2,...,m,

AT T det(Ap)
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where Ag(i) is defined to be the matrix A with its i-th column, Ag, , replaced by b . Because
we assume that A and b are all integer, the numerator above is the determinant of an integer
matrix, which is an integer. Next, the fact that A has unimodular basis matrices tells us that the
determinant of the invertible matrix Ag is £1 . That is, the denominator above is £1 . So, we
have an integer divided by £1 , which results in an integer value for Zg, . O

We note that Theorem 8.1 asserts that all basic solutions are integer, whether or not they are
feasible. There is a converse to this theorem.

Theorem 8.2
Let A be an integer matrix in R™*™ . If the system

Az

b;
T 0

IVl

has integer basic feasible solutions for every integer vector b € R™ , then all basis matrices of
A are unimodular.

It is important to note that the hypothesis of Theorem 8.2 is weaker than the conclusion of
Theorem 8.1. For Theorem 8.2, we only require integrality for basic feasible solutions.

Proof. (Theorem 8.2). Let 8 be an arbitrary basis, choose an arbitrary i (1 < ¢ < m), and consider
the associated basic solution when b := e; + AAz1. The basic solution Z has Zg equal to the i-th
column of Ag ! plus Al. Note that if we choose A to be an integer, then b is integer. Furthermore,
if we choose A to be sufficiently large, then Z 3 is non-negative. Therefore, we can chose A so
that b is integer and 7 is a basic feasible solution. Therefore, by our hypothesis, 7 is integer.
So the i-th column of Agl plus Al is an integer vector . But this clearly implies that the i-th

column of AEI is an integer vector . Now, because i was arbitrary, we conclude that Agl is an
integer matrix . Of course Ag is an integer matrix as well. Now, it is a trivial observation that
an integer matrix has an integer determinant. Furthermore, the determinants of Az and A3'
are reciprocals. Of course the only integers with integer reciprocal are 1 and —1 . Therefore, the
determinant of Agis1lor —1. O

Before turning to specific structured linear-optimization problems, we introduce a stronger
property than unimodularity of basis matrices. The main reason for introducing it is that for
the structured linear-optimization problems that we will look at, the constraint matrices satisfy
this stronger property, and the inductive proofs that we would deploy for proving the weaker
property naturally prove the stronger property as well.

Let A be an m x n real matrix. A is totally unimodular (TU) if every square non-singular
submatrix B of A has det(B) = +1.

Obviously every entry of a TU matrix must be 0 , =1, because the determinant ofa 1 x 1
submatrix is just its single entry. It is quite easy to make an example of even a 2 x 2 non-TU
matrix with all entries 0, £1:

1 -1
()

It is trivial to see that if A is TU, then every basis matrix of A is unimodular. But note that
even for integer A , every basis matrix of A could be unimodular, but A need not be TU. For

example,
< L] >
1 1
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has only itself as a basis matrix, and its determinant is 1, but there is a 1 x 1 submatrix with
determinant 2, so A is not TU. Still, as the next result indicates, there is a way to get the TU
property from unimodularity of basis matrices.

Theorem 8.3
If every basis matrix of [4, L] is unimodular, then A is TU.

Proof. Let B be an r x r invertible submatrix of A, with r < m . It is an easy matter to choose a
(m x m) basis matrix H of [A,1,,] that includes all » columns of A that include columns of B,
and then the m — r identity columns that have their ones in rows other than those used by B .
If we permute the rows of A so that B is within the first  rows, then we can put the identity
columns to the right, in their natural order, and the basis we construct is

H = .
X Im—r

Clearly B and H have the same determinant. Therefore, the fact that every basis matrix has
determinant 1 or —1 implies that B does as well. O

Next, we point out some simple transformations that preserve the TU property.

Theorem 8.4
If Ais TU, then all of the following leave A TU.

(i) multiplying any rows or columns of Aby —1;
(ii) duplicating any rows or columns of A4 ;

(ili) appending standard-unit columns (that is, all entries equal to 0 except a single entry of
1);

(iv) taking the transpose of A .

We leave the simple proof to the reader.

Remark 8.5
Relationship with transformations of linear-optimization problems. The significance of The-
orem 8.4 for linear-optimization problems can be understood via the following observations:

o (i) allows for reversing the sense of an inequality (i.e., switching between “<” and “>") or
variable (i.e., switching between non-negative and non-positive) in a linear-optimization
problem with constraint matrix A .

o (i) together with (¢) allows for replacing an equation with a pair of oppositely senses
inequalities and for replacing a sign-unrestricted variable with the difference of a pair of
non-negative variables.

e (iii) allows for adding a non-negative slack variable for a “<” inequality, to transform
it into an equation. Combining (4i¢) with (¢) , we can similarly subtract a non-negative
surplus variable for a “>" inequality, to transform it into an equation.

o (iv) allows for taking the dual of a linear-optimization problem with constraint matrix A .
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8.1.3 Consequences of total unimodularity

Network flow.

Theorem 8.6
If A is a network matrix, then A is TU.

Proof. A network matrix is simply a 0 , +-1-valued matrix with exactly one +1 and one —1 in
each column.

Let B be an r x r invertible submatrix of the network matrix A . We will demonstrate that
det(B) = £1, by induction on r . For the base case, r = 1, the invertible submatrices have a
single entry which is £1 , which of course has determinant +1 . Now suppose that ~ > 1, and
we inductively assume that all (r — 1) x (r — 1) invertible submatrices of A have determinant
+1.

Because we assume that B is invertible, it cannot have a column that is a zero-vector.

Moreover, it cannot be that every column of B has exactly one +1 and one —1 . Because, by
simply adding up all the rows of B, we have a non-trivial linear combination of the rows of B
which yields the zero vector. Therefore, B is not invertible in this case.

So, we only need to consider the situation in which B has a column with a single non-
zero £1 . By expanding the determinant along such a column, we see that, up to a sign, the
determinant of B is the same as the determinant of an (r — 1) x (r — 1) invertible submatrix of
A . By the inductive hypothesis, this is £1 . 0

Corollary 8.7
The single-commodity min-cost network-flow formulation

min g Cee

ec A

er—er = b,, YveN;
ecA : ecA :

i(e)=v h(e)=uv

0<z <u, Veec A.

has an integer optimal solution if: (i) it has an optimal solution, (ii) each b, is an integer, and
(iii) each u. is an integer or is infinite.

Proof. Recall that we can rewrite the single-commodity min-cost network-flow formulation as

min cdz
Arx = b;
r < u;
z > 0,

where A is a network matrix. For the purpose of proving the theorem, we may as well assume
that the linear-optimization problem has an optimal solution. Next, we transform the formula-

tion into standard form:
min 'z

Az = b;
T + S U
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The constraint matrix has the form ( j} (; ) This matrix is TU, by virtue of the fact that A

is TU, and that it arises from A using operations that preserve the TU property. Finally, we
delete any redundant equations from this system of equations, and we delete any rows that
have infinite right-hand side . . The resulting constraint matrix is TU, and the right-hand side
is integer, so an optimal basic solution exists and will be integer. O

Remark 8.8
Considering Example 2.1, we can see that Corollary 8.7 does not extend to more than one com-
modity.

Assignments.

Theorem 8.9
If A is the vertex-edge incidence matrix of a bipartite graph, then A is TU.

Proof. The constraint matrix A for the formulation has its rows indexed by the vertices of G .
With each edge having exactly one vertex in V; and exactly one vertex in V5 , the constraint
matrix has the property that for each column, the only non-zeros are a single 1 in a row indexed
from V; and a single 1 in a row indexed from V5 .

Certainly multiplying any rows (or columns) of a matrix does not bear upon whether or
not it is TU. It is easy to see that by multiplying the rows of A indexed from V; , we obtain a
network matrix, thus by Theorem 8.6, the result follows. O

Corollary 8.10
The continuous relaxation of the following formulation for finding a minimum-weight perfect
matching of the bipartite graph G has an 0, 1-valued solution whenever it is feasible.

min E CijTij

(i.5)eE
Z Ty = 1, VieVi;
JEV :
(i,j)EE
dowmy =1, Vjie;
i€V
(i,4)€E
Lij 2 O, V(’L,])EE

Proof. After deleting any redundant equations, the resulting formulation as a TU constraint
matrix and integer right-hand side. Therefore, its basic solutions are all integer. The constraints
imply that no variable can be greater than 1, therefore the optimal value is not unbounded, and
the only integer solutions have all z;; € {0,1} . The result follows. O

A matching M of G is a subset of I/ such that each vertex of the graph is met by no more
that one edge in M. An interesting variation on the problem of finding a perfect matching of G
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having minimum weight, is to find a maximum-cardinality matching of G . This problem is
always feasible, because M := ) is always a matching.

How big can a matching of a finite graph G be? A vertex cover of G is a set W of vertices
that touches all of the edges of G . Notice that if M is a matching and W is a vertex cover, then
|M| < |W], because each element of W touches at most one element of M/ . Can we always find a
matching M and a vertex cover W so that | M| = |IW| ? The next result, due to the mathematician
Kénig!!, tells us that the answer is 'yes” when G is bipartite.

Corollary 8.11 (K6nig’s Theorem)
If G is a bipartite graph, then the maximum cardinality of a matching of G is equal to the
minimum cardinality of a vertex cover of G .

Proof. We can formulate the problem of finding the maximum cardinality of a matching of G

as follows:
max Z Lij

(i.j)eE

> wi; <1, VieVi;
jevy
()er

Z Ty <1, Vjely;
ievy :
(i,j)EE

xz;; > 0 integer, V (i,j) € E.

It is easy to see that we can relax integrality, and the optimal value will be unchanged, because
A is TU, and the constraint matrix will remain TU after introducing slack variables. The dual
of the resulting linear-optimization problem is

min Z Yo

veV

yi+yj 2 17 V(Z,])EE,
Y > 0, VveV.

It is easy to see that after putting this into standard form via the subtraction of surplus variables,
the constraint matrix has the form [A’, —I] , where A is the vertex-edge incidence matrix of G .
This matrix is TU, therefore an optimal integer solution exists.

Next, we observe that because of the minimization objective and the form of the constraints,
an optimal integer solution will be 0, 1-valued; just observe that if § is an integer feasible solution
and g, > 1, for some v € V , then decreasing 7, to 1 (holding the other components of y
constant, produces another integer feasible solution with a lesser objective value. This implies
that every integer feasible solution 3 with any g, > 1 is not optimal.

Next, let y be an optimal 0, 1-valued solution. Let

Wi={veV :g,=1}.

It is easy to see that W is a vertex cover of G and that [W| = _, 9, . The result now follows
from the strong duality theorem. O

For studying matching in non-bipartite graphs, one can have a look at [3, Chapter 4].
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Staffing.

Theorem 8.12
If A is a consecutive-ones matrix, then A is TU.

Proof. Let B be an r x r invertible submatrix of a consecutive-ones matrix A . We will demon-
strate that det(B) = +1, by induction on r . We take care that we preserve the ordering of the
rows of Ain B . In this way, B is also a consecutive-ones matrix. Note that only the sign of the
determinant of B depends on the ordering of its rows (and columns).

For the base case, r = 1, the invertible submatrix B has a single entry which is 1 , which
of course has determinant 1 . Now suppose that » > 1, and we inductively assume that all
(r — 1) x (r — 1) invertible submatrices of all consecutive-ones matrices have determinant +1 .
(We will see that the “all” in the inductive hypothesis will be needed — it will not be enough to
consider just (r — 1) x (r — 1) invertible submatrices of our given matrix A).

Next, we will reorder the columns of B so that all columns with a 1 in the first row come
before all columns with a 0 in the first row. Note that there must be a column with a 1 in the
first row, otherwise B would not be invertible. Next, we further reorder the columns, so that
among all columns with a 1 in the first row, a column of that type with the fewest number of 1s
is first.

CAM T SEE
THIS ALLEGED
MATRIN

Our matrix B now has this form

0
where F' and G are the submatrices indicated. Note that F' and G are each consecutive-ones
matrices.

[ YOU KNOW IT WILL

‘ BE A GOOD DAY
WHEN THERE IS NO <

HUMAN INTERACTION
ON THE SCHEDULE.

; YAY! THAVE =

ANOTHER FULL DAY [
(" OF DOING NOTHING
BUT REARRANGING
ZEROS AND ONES,

Dilbert.com  DilbertCartocnist@gmail com

2-16-15 & M5 Scoft Adams, Inc. Dt by Usiersal Uckck
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Next, we subtract the top row from all other rows that have a 1 in the first column. Such
row operations do not change the determinant of B , and we get a matrix of the form

8 0---0 G

Note that this resulting matrix need not be a consecutive-ones matrix — but that is not
needed. By expanding the determinant of this latter matrix along the first column, we see that
the determinant of this matrix is the same as that of the matrix obtained by striking out its first

row and column,

o-3|

But this matrix is an (r — 1) x (r — 1) invertible consecutive-ones matrix (note that it is not
necessarily a submatrix of A). So, by our inductive hypothesis, its determinant is £1 .

O

Corollary 8.13

Let A be a shift matrix such that each shift is a contiguous set of time periods, let ¢ be a vector
of non-negative costs, and let b be a vector of non-negative integer demands for workers in the
time periods. Then there is an optimal solution Z of the continuous relaxation

min 'z
Axr > b;
r > 0

of the staffing formulation that has Z integer, whenever the relaxation is feasible.

Proof. Ais a consecutive-ones matrix when each shift is a contiguous set of time periods. There-
fore A is TU. After subtracting surplus variables to put the problem into standard form, the
constraint matrix takes the form [A, —I] , which is also TU . The result follows. O
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8.2 Modeling Techniques

8.2.1 Disjunctions
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Example 8.14
Suppose that we have a single variable z € R, and we want to model the disjunction

—12<z<2o0or 5<z<20.
By introducing a binary variable y € {0,1} , we can model the disjunction as

X S 2+M1y,
s+ My(l—y) > 5,

where the constant scalars M; and M, (so-called big M’s) are chosen to be appropriately large.
A little analysis tell us how large. Considering our assumption that 2 could be as large as 20,
we see that A, should be at least 18 . Considering our assumption that  could be as small as
—12 , we see that M, should be at least 17 . In fact, we should choose these constants to be as
small as possible so as make the feasible region with y € {0,1} relaxed to 0 < y < 1 as small as
possible. So, the best model for us is:

x+17(1 —y)

It is interesting to see a two-dimensional graph of this in « — y space; see Figures 8.1 and 8.2.

Figure 8.1: Optimal choice of “big M’s”

8.2.2 Forcing constraints

The uncapacitated facility-location problem involves n customers, numbered 1,2, ... ,nand m
facilities, numbered 1,2 ..., m . Associated with each facility, we have

fi == fixed cost for operating facility ¢ ,
fori=1,...,m . Associated with each customer/facility pair, we have

c;j := cost for satisfying all of customer j’s demand from facility 7 ,
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/

Figure 8.2: Comparing optimal vs non-optimal “big M’s”

fori =1,...,m,j = 1,...,n. The goal is to determine a set of facilities to operate and an
allocation of each customers demand across operation facilities, so as to minimize the total cost.
The problem is “uncapacitated” in the sense that each facility has no limit on its ability to satisfy
demand from even all customers.

We formulate this optimization problem with

y; := indicator variable for operating facility ¢ ,

fori=1,...,m,and

x;5 := fraction of customer j demand satisfied by facility ¢ ,

fori=1,....m,j=1,...,n.
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Our formulation is as follows:

min 3 fiye + 300 D05 i

Sitixy; = 1, forj=1,...,n;
fori=1,...,m,

o Trgo =0 j=1...,n;
yzE{O,l}, fori:L...,m,‘
fori=1,....,m,

zij 20, j=1,....n.

All of these constraints are self-explanatory except for the mn constraints:
-y + x; <0fori=1,...,m, j=1,...,n. (S)

These constraints simply enforce that for any feasible solution z, § , we have that §; = 1 when-
ever #;; > 0. Itis an interesting point that this could also be enforced via the m constraints:

—nyi+ Y i <0, fori=1,....m. (W)
Jj=1

We can view the coefficient —n of y; as a “big M”, rendering the constraint vacuous when y; = 1.
Despite the apparent parsimony of the latter formulation, it turns out that the original formu-
lation is preferred. The Python/Gurobi code is in Jupyter notebook UFL. ipynb can be used to
compare the use of (S) versus (W). (see Appendix A.11).

8.2.3 Piecewise-linear univariate functions

Of course many useful functions are non-linear. Integer-linear optimization affords a good way
to approximate well-behaved univariate non-linear functions. Suppose that f : R — R has
domain the interval [I, u] , with | < u . For some n > 2, we choose n breakpoints | = ¢! < £2 <
<o < gl < ¢ =y . Then, we approximate f linearly between adjacent pairs of breakpoints.
That is, we approximate f by

fl@) =3 A f(E),

where we require that

Z A= 1
Aj > 0,forj=1,...,n,
and the adjacency condition:
Aj and ;1 may be positive for only one value of j .

This adjacency condition means that we “activate” the interval [¢7,&771] for approximating
f(x) . That is, we will approximate f(z) by

Mf(E) + A f(E7H),
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with

AjF A = 1
A A > 0.

We can enforce the adjacency condition using 0, 1-variables. Let

. [ 1, iftheinterval [¢7,&1] is activated;
Yi 0, otherwise,

forj=1,2,...,n—1.
The situation is depicted in Figure 8.3, where the red curve graphs the non-linear function

f.
F@)

@)
5

éwr e

?g

Figure 8.3: Piecewise-linear approximation

We only want to allow one of the n — 1 intervals to be activated, so we use the constraint

We only want to allow \; > 0 if the first interval [¢!, £2] is activated. For an internal breakpoint
& ,1 < j <n,weonly want to allow \; > 0 if either [¢/71,&7] or [¢7,&7T1] is activated. We
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only want to allow \,, > 0 if the last interval [¢"7!,£"] is activated. We can accomplish these
restrictions with the constraints

A1 <oy
A < yjituy,forj=2,...,n—-1;
A < Yn—1 -

Notice how if y; is 1, for some k (1 < k < n), and necessarily all of the other y; are 0 (j # k),
then only A\, and A, can be positive.

How do we actually use this? If we have a model involving such a non-linear f(z), then
wherever we have f(z) in the model, we simply substitute >-7_, A; f(§7) , and we incorporate
the further constraints:

i)\j = 1 N
j=1

<. 3
I M I
= =

&

Il

—_

A<y

Aj < yjaty,forj=2,...,n-1;
N

Aj > 0,forj=1,...,n;

y; € {0,1},forj=1,...,n—1.

Of course a very non-linear f(z) will demand an f(z) := 3.7, \; f(¢/) with a high value for 7,
so as to get an accurate approximation. And higher values for n imply more binary variables
y; , which come at a high computational cost.

8.3 A Prelude to Algorithms

For reasons that will become apparent, for the purpose of developing algorithms for linear-
optimization problems in which some variable are required to be integer, it is convenient to
assume that our problem has the form

z:=max ¥'b

yA <
Yy € R™; (Dz)
Yi integer, fori € 7 .

ThesetZ C {1,2,...,m} allows for a given subset of the variables to be constrained to be integer.

This linear-optimization problem has a non-standard form, but it is convenient that the dual of
the continuous relaxation has the standard form

min 'z
Az = b; P)
r > 0.

To prove that an algorithm for (D7) is finite, it is helpful to assume that the feasible region
of the continuous relaxation (D) of (Dz) is non-empty and bounded.

We saw in Section 7.3.2 that there are situations in which rounding the solution of a continu-
ous relaxation can yield a good solution to an optimization problem involving integer variables.
But generally, this is not the case.
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Example 8.15

Consider the problem
max Yo
2kyr + y2 < 2k
- 2ky1 + y2 < 0
- 52 < 0;
U1 , Y2 integer,

where k£ > 1 is a possibly large positive integer. It is easy to check that (y1,y2) = (0,0) and
(y1,92) = (1,0) are both optimal solutions of this problem, but the optimal solution of the con-
tinuous relaxation is (y1,y2) = (3, k). If we consider rounding y; up or down in the continuous
solution, we do not get a feasible solution, and moreover we are quite far from the optimal

solutions.

Example 8.16
Consider the problem

max Y.,
yit+ye < 1, foralll <i</{<m;
—y; < 0, foralll <i<m;

Yi integer, forall1 <i <m,

where m > 3 is a possibly large positive integer. It is easy to check that each integer optimal
solution sets any single variable to one and the rest to zero, achieving objective value 1. While
the (unique) continuous optimal solution sets all variables to %, achieving objective value 4.
We can see that the continuous solution is not closely related to the integer solutions.

8.4 Branch-and-Bound
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Next, we look at a rudimentary framework called branch-and-bound, which aims at finding
an optimal solution of (D7), a linear-optimization problem having some integer variables. We
assume that (P), the dual of the continuous relaxation of (D7), has a feasible solution. Hence,
even the continuous relaxation (D) of (Dz) is not unbounded.

Our algorithm maintains a list £ of optimization problems that all have the general form of
(Dz). Keep in mind that problems on the list have integer variables. We maintain alower bound
LB, satisfying LB < z. Put simply, LB is the objective value of the best (objective maximizing)
feasible solution g of (D7) that we have seen so far. Initially, we set LB = —oco , and we update
it in an increasing fashion.

The algorithm maintains the key invariant for branch-and-bound:
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Every feasible solution of the original problem (Dz) with greater objective value than LB is feasible
for a problem on the list.

We stop when the list is empty, and because of the property that we maintain, we correctly
conclude that the optimal value of (D7) is LB when we do stop.

At a general step of the algorithm, we select and remove a problem (Dz) on the list, and
we solve its continuous relaxation (D). If this continuous relaxation is infeasible, then we do
nothing further with this problem. Otherwise, we let § be its optimal solution, and we proceed
as follows.

e If b < LB, then no feasible solution to the selected problem can have objective value
greater than LB, so we are done processing this selected problem.

e If y; is integer for all ¢ € Z , then we have solved the selected problem. In this case, if
i'b > LB, then we

- reset LBto b ;

— resetygtoy.

o Finally, if b > LB and g; is not integer for all ¢ € 7, then (it is possible that this selected
problem has a feasible solution that is better than 5 , so) we

— select some ¢ € T such that g; is not integer;

- place two new “child” problems on the list, one with the constraint y; < |g;| ap-
pended (the so-called down branch), and the other with the constraint y; > [g;]
appended (the so-called up branch).

(observe that every feasible solution to a parent is feasible for one of its children, if
it has children.)

Because the key invariant for branch-and-bound is maintained by the processing rules, the
following result is evident.

Theorem 8.17
Suppose that the original (P) is feasible. Then at termination of branch-and-bound, we have
LB= —o0 if (D7) is infeasible or with g5 being an optimal solution of (Dz).

Finite termination. If the feasible region of the continuous relaxation (D) of (Dz) is abounded
set, then we can guarantee finite termination. If we do not want to make such an assumption,
then if we assume that the data for the formulation is rational, it is possible to bound the region
that needs to be searched, and we can again assure finite termination.

Solving continuous relaxations. Some remarks are in order regarding the solution of con-
tinuous relaxations. Conceptually, we apply the Simplex Algorithm to the dual (P) of the con-
tinuous relaxation (D) of a problem (D7) selected and removed from the list. At the outset, for
an optimal basis 3 of (P), the optimal dual solution is given by 7' := (:’BA;1 . If i € 7 is chosen,
such that ; is not an integer, then we replace the selected problem (D7) with one child having
the additional constraint y; < | ;] (the down branch) and another with the constraint y; > [7;]
appended (the up branch).

Adding a constraint to (D) adds a variable to the standard-form problem (P). So, a basis
for (P) remains feasible after we introduce such a variable.
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e The down branch: The constraint y; < |;| , dualizes to a new variable x 4,4y in (P). The
variable z40,, has a new column A4y, := €; and a cost coefficient of c4oun := |7i] - Notice
that the fact that ; is not an integer (and hence y violates y; < |¥;]) translates into the
fact that the reduced cost Gqown Of Taown 1S Caown = Cdown — ¥’ Adown = | Fi] — Ti < 0, SO Zdown

is eligible to enter the basis.

e The up branch: Similarly, the constrainty; > [7;], or equivalently —y; < —[7;], dualizes
to a new variable z, in (f’). The variable z,, has a new column A,, := —e; and a cost
coefficient of c,, := —[7;| . Notice that the fact that ; is not an integer (and hence 3
violates y; > [7;]) translates into the fact that the reduced cost ¢,, of xp, is ¢y = cup —

¥ Awp = —[7i] + 7 <0, 50z, is eligible to enter the basis.

In either case, provided that we have kept the optimal basis for the (P) associated with a
problem (Dz), the Simplex Algorithm picks up on the (P) associated with a child (Dz) of that

problem , with the new variable of the child’s (P) entering the basis.
Notice that the (P) associated with a problem (Dz) on the list could be unbounded. But
this just implies that the problem (D7) is infeasible.

Partially solving continuous relaxations. Notice that as the Simplex Algorithm is applied
to the (P) associated with any problem (D7) from the list, we generate a sequence of non-
increasing objective values, each one of which is an upperbound on the optimal objective value
of (Dz). That s, for any such (P), we start with the upperbound value of its parent, and then we
gradually decrease it, step-by-step of the Simplex Algorithm. At any point in this process, if the
objective value of the Simplex Algorithm falls at or below the current LB, we can immediately
terminate the Simplex Algorithm on such a (P) — its optimal objective value will be no greater
than LB — and conclude that the optimal objective value of (D7) is no greater than LB.

A global upper bound. As the algorithm progresses, if we let UBpy., be the maximum, over
all problems on the list, of the objective value of the continuous relaxations, then any feasible
solution § with objective value greater than that LB satisfies §'b < UBpeyer . Of course, it may be
that no optimal solution is feasible to any problem on the list — for example if it happens that
LB = z . But we can see that

z < UB := max {UByeyer, LB} .

It may be useful to have UB at hand, because we can always stop the computation early, say
when UB—LB < 7, returning the feasible solution g5 , with the knowledge that z—g{ ;b < 7. But
notice that we do not readily have the objective value of the continuous relaxation for problems
on the list — we only solve the continuous relaxation for such a problem after it is selected
(for processing). But, for every problem on the list, we can simply keep track of the optimal
objective value of its parent’s continuous relaxation, and use that instead. Alternatively, we can
re-organize our computations a bit, solving continuous relaxations of subproblems before we
put them on the list.

Selecting a subproblem from the list. Which subproblem from the list should we process
next?

o A strategy of last-in/first-out, known as diving, often results in good increases in LB. To
completely specify such a strategy, one would have to decide which of the two children
of a subproblem is put on the list last (i.e., the down branch or the up branch). A good
choice can affect the performance of this rule, and such a good choice depends on the
type of model being solved.
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o A strategy of first-in/first-out is very bad. It can easily result in an explosion in the size of
the list of subproblems.

o A strategy of choosing a subproblem to branch on having objective value for its contin-
uous relaxation equal to UB, known as best bound, is a sound strategy for seeking a
decrease in UB. If such a rule is desired, then it is best to solve continuous relaxations of
subproblems before we put them on the list.

A hybrid strategy, doing mostly diving at the start (to get a reasonable value of LB) and shifting
more and more to best bound (to work on proving that LB is at or near the optimal value) has
rather robust performance.

Selecting a branching variable. Probably very many times, we will need to chooseani € Z
for which g; is fractional, in order to branch and create the child subproblems. Which such ¢
should we choose? Naive rules such as choosing randomly or the so-called most fractional rule
of choosing an i that maximizes min{g; — |¥;] , [¥:] —%:} seem to have rather poor performance.
Better rules are based on estimates of how the objective value of the children will change relative
to the parent.

Using dual variables to bound the “other side” of an inequality. =~ Our constraint
system y' A < ¢/ can be viewed as y’A; < ¢;, for j = 1,2,...,n; thatis, ¢; is an upper bound on
y'A; . We may wonder if we can also derive lower bounds on y'A; .

Theorem 8.18
Let LB be the objective value of any feasible solution of (Dz). Let Z be an optimal solution of
(P), and assume that Z; > 0 for some j . Then

LB -z
=27 <

C]‘ S ylAj

W

is satisfied by every optimal solution of (Dz).

Proof. We consider a parametric version of (Dz). For A; € R, consider

z(Aj) :=max y'b
YA < J+Ajer; ‘
sl (Dz(8,)

Yi integer, fori € 7 .
Let 2z (A;) be defined the same way as z(A;), but with integrality relaxed. Using ideas from

Chapters 6 and 7, we can see that zp is a concave (piecewise-linear) function on its domain, and
Z; is a subgradient of zr at A; = 0. It follows that

Z(AJ) < ZR(AJ') < ZR(O) + Aj.fj =cdz+ Ajfj .
So, we can observe that for
LB -z
< —
Ty
we will have z(A;) < LB. Therefore, every g that is feasible for (Dz(A;)) with A; < (LB —
d'z)/z; will have §'b < LB . So such a g cannot be optimal for (Dz). O

A

] I
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It is interesting to consider two special cases of Theorem 8.18:

Corollary 8.19 (Variable fixing)

Let LB be the objective value of any feasible solution of (Dz). Let Z be an optimal solution of
(P). Assume that z; > 0 is the optimal dual variable for a constraint of the form: y; < 1 (or
—yr < 0).IfdzZ — LB < Z;, then y, = 1 (respectively, y, = 0) is satisfied by every optimal
solution of (Dz).

Because of Exercise 5.2, this is known as reduced-cost fixing.

8.5 Cutting Planes

This section is adapted from material in [2] and [4]. In fact, those papers were developed
to achieve versions of Gomory cutting-plane algorithms (with finiteness proofs) that would
mesh with our column-generation treatment of many topics in this book (i.e., cutting stock,
decomposition, and branch-and-bound).

8.5.1 Pure

In this section, we assume that all y; variables are constrained to be integer. That is, 7 =
{1,2,...,m}
We can choose any non-negative w € R" , and we see that

w>0and y A< = y/'(Aw) < dw.

Note that this inequality is valid for all solutions of y’ A < ¢’ , integer or not. Next, if Aw is integer,
we can exploit the integrality of y . We see that

AweZ™ |, yeZ™ = y'(Aw) < |dw],

for all integer solutions of y'A < ¢’ .

The inequality y'(Aw) < |cw] is called a Chvatal-Gomory cut. The condition Aw € Z™
may seem a little awkward, but usually we have that A is integer, so we can get Aw € Z™ by
then just choosing w € Z™. In fact, for the remained of this section, we will assume that A and
c are integer.

Of course, it is by no means clear how to choose appropriate w, and this is critical for getting
useful inequalities. We should also bear in mind that there are examples for which Chvétal-
Gomory are rather ineffectual. Trying to apply such cuts to Example 8.15 reveals that infeasi-
ble integer points can “guard” Chvatal-Gomory cuts from getting close to any feasible integer
points.

We would like to develop a concrete algorithmic scheme for generating Chvatal-Gomory
cuts. We will do this via basic solutions. Let 3 be any basis for P. The associated dual basic
solution (for the continuous relaxation (D)) is §’ := cj Agl. Suppose that y; is not an integer.
Our goal is to derive a valid cut for (Dz) that is violated by .

Let

b:=e + A 87,

where r € Z™, and, as usual, e’ denotes the i-th standard unit vector in R™. Note that by
construction, b € Z™.
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Theorem 8.20 _ _
¢'bis not an integer, and so y'b < |§'b| cuts off 7.

Proof. 7'b=7'(e' + Agr) =i + (C%AEI)AW = Ti_ +chr ¢ L =
~~
¢z €7

At this point, we have an inequality y'b < | 7'b| which cuts off 7, but we have not established
its validity for (Dz).
Let H,; := Aglei, the i-th column of Agl. Now let

w:=H,;+r.
Clearly we can choose r € Z™ so that w > 0; we simply choose r € Z™ so that

TkZ_LhkiJ,fOI'k:L...,m. (*Z)

Theorem 8.21 ~ _
Choosing r € Z™ satisfying (x> ), we have that y'b < |§'b]| is valid for (Dz).

Proof. Because w > 0 and 3y’ A < ¢/, we have the validity of
y’Ag(Aglei +7r) < c/’B(AElei +7),
even for the continuous relaxation (D) of (Dz). Simplifying this, we have
y'(e' + Agr) < g + cr
The left-hand side is clearly y'b, and the right-hand side is
Ui+ cgr =y +y Agr =/ (e' + Apr) = 7'b.

So we have thaty’b < 7/'bis valid even for (D). Finally, observing that b € Z™ and y is constrained
to be in Z™ for (Dz), we can round down the right-hand side and get the result. O

So, given any non-integer basic dual solution g, we have a way to produce a valid inequality
for (D7) that cuts it off. This cut for (D7) is used as a column for (P): the column is b with objec-
tive coefficient |'b|. Taking /3 to be an optimal basis for (P), the new variable corresponding to
this column is the unique variable eligible to enter the basis in the context of the primal simplex
algorithm applied to (P) — the reduced cost is precisely

|7'b] — §'b < 0.

The new column for A is b which is integer. The new objective coefficient for c is |7'b]
which is an integer. So the original assumption that A and c are integer is maintained, and we
can repeat. In this way, we get a legitimate cutting-plane framework for (Dz) — though we
emphasize that we do our computations as column generation with respect to (P).

There is clearly a lot of flexibility in how r can be chosen. Next, we demonstrate that in a
very concrete sense, it is always best to choose a minimal r € Z™ satisfying (*>).



112 CHAPTER 8. INTEGER-LINEAR OPTIMIZATION

Theorem 8.22
Let r € Z™ be defined by
rk:—[hkij,forkzl,...,m, (*:)

and suppose that 7 € Z™ satisfies (*>) and r < 7. Then the cut determined by  dominates
the cut determined by 7.

Proof. 1t is easy to check that our cut can be re-expressed as
yi < 15i] + (5 — ' Ag)

Noting that cj; —y'Ag > 0 for all y that are feasible for (D), we see that the strongest inequality
is obtained by choosing r € Z™ to be minimal. O

Example 8.23

We work through an example in pure_gomory_example_1.ipynb (see Appendix A12) which
uses again pivot_tools.ipynb (see Appendix A.6). The function library pivot_tools.ipynb
contains two (additional) useful tools for this: pure_gomory( ) and dual_plot( , )

Let
7 8 -1 1 3 26
A_<56—121>’ b‘<19>
andc’=(126 141 —-10 5 67).

So, the integer program (Dz) which we seek to solve is defined by five inequalities in the two
variables yo and y;. For the basis of (P), 8 = (0, 1), we have

Agz(g 2>,andhenceA§1:(§)/2 ;/42 )

It is easy to check that for this choice of basis, we have

xﬁ:(?)?z)’

and for the non-basis = (2,3, 4,5), we have ¢, = ( 5 1/2 1 ), which are both non-negative,
and so this basis is optimal for (P). The associated dual basic solution depicted in Figure 8.4 is

g =(51/2 —21/2 ), and the objective value is z = 463 1/2.

Because both 3; and 7, are not integer, we can derive a cut for (Dz) from either. Recalling
the procedure, for any fraction g;, we start with the i-th column H.; of H := Agl, and we get a

new A.; := e+ Apgr. Throughout we will choose r via (). So we have,

ma= () =r=()=5=(0) < (5 §) () =(5) =
) oo ()0 (1) (o) (5 )= (5)

In fact, for this iteration of this example, we get the same cut for either choice of i. To calculate
the right-hand side of the cut, we have

t

gb=(51/2 —21/2) < g ) =701/2,
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-
==

constraints
— constrint 0
constraint 1
— coflstraint 2 - -12 - . .
— constraint 3

— constmint 4

Figure 8.4:

so the cut for (D) is
dyo + 3y1 < 70.

Now, we do our simplex-method calculations with respect to (P).
The new column for (P) is A.5 (above) with objective coefficient ¢5 := 70. Following the
ratio test, when index 5 enters the basis, index 2 leaves the basis, and so the new basis is 8 =

(0,5), with
7 4
AB - < 5 3 ) )

with objective value 462, a decrease. At this point, index 4 has a negative reduced cost, and
index 0 leaves the basis. So we now have 8 = (4, 5), which turns out to be optimal.
The associated dual basic solution depicted in Figure 8.5 is

y = ( 131/5 —58/5 ), and the objective value is z = 460 4/5.

We observe that the objective function has decreased, but unfortunately both gy and ¥, are
not integers. So we must continue. We have

Ag = ( 3 ;1 ), andhenceAE1 = ( _31//55 _;%_)5 )
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=

consiraints
—— constraint 0
constraint 1

— constraint 2 3 -
— constraint 3

—— constraint 4

— constmint 5

Figure 8.5:

We observe that the objective function has decreased, but because both g, and gy, are not
integers, we can again derive a cut for (Dz) from either. We calculate

e ()= (1) (1) ) () ()
= (58) == (1) (1) (1 ) (3)-(2) o

Correspondingly, we have §’A.s = 96 1/5 and §’' A.7 = 55 2/5, giving us ¢ := 96 and ¢7 := 55.
So, we have two possible cuts for (Dz):

5y0 + 3y1 S 96 and 3y0 -+ 2y1 S 55.

Choosing to incorporate both as columns for (P), and letting index 7 enter the basis, index
5 leaves (according to the ratio test), and it turns out that we reach an optimal basis 8 = (7, 5)
after this single pivot. The associated dual basic solution is depicted in Figure 8.6 (the second
graphic is zoomed in)

g = (25 —10 ), and the objective value is z = 460.

Not only has the objective decreased, but now all of the g; are integers, so we have an optimal
solution for (Dz).
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constraints

constraints

constraint 0
constrint 1
constraint 2
constraint 3
constraint 4
constrint 5
constraint &

constrint 7

constraint 0
constraint 1
constraint 2
constraint 3
constraint 4
constraint 5
constraint 6
constraint 7

—~
=

-1+

2 -

¥1

Figure 8.6:
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8.5.2 Mixed

In this section, we no longer assume that all y; variables are constrained to be integer. That is,
we only assume that non-empty Z C {1,2,...,m}. The cuts from the previous section cannot
be guaranteed to be valid, so we start anew.
Let 3 be any basis partition for(P), and let 3 be the associated dual basic solution. Suppose
that ; ¢ Z, for some i € Z. We aim to find a cut, valid for (Dz) and violated by .
Let
bli=e + A 87,

and r € R™ will be determined later. We will accumulate the conditions we need to impose on
r, as we go.

Let w' be the basic solution associated with the basis 3 and the “right-hand side” b'. So
w}i = h.; + r, where h.; is defined as the i-th column of Agl, and w), = 0. Choosing r > —h.;,
we can make w! > 0. Moreover, cw! = y(h.i + 1) = cgh.i + cgr = Fi + cjyr, so because we
assume that ij; ¢ Z, we can choose r € Z™, and we have that c/w! ¢ Z.

Next, let

b2 = Agr.

Let w? be the basic solution associated with the basis 5 and the “right-hand side” 5. So, now
further choosing r > 0, we have w% =r>0,w}=0,and dw? = cyr.
So, we choose r € Z™ so that:

ri > max{—|hx;|,0}, fork =1,...,m, (%>4)
Because we have chosen w' and w? to be non-negative, forming (v’ A)w! < c/w!, forl = 1,2,

we get a pair of valid inequalities for D. They have the form y'b' < ¢'w', for | = 1,2. Let o
denote the j-th row of Ag. Then our inequalities have the form:

(L+afr)yi + Y (r)y; < i+ 7' Agr, (11)
JijFi

(afr)y; + Z (ar)y; < ¥ Agr. (12)
JijFi

Now, defining 2 := > .., (a7)y;, we have the following inequalities in the two variables y;
and z:

slope
(I+air)y; +2 <y +§ Agr —1/(1 + alr) (B1)
(ar)y; + 2 <y Agr —1/alr (B2)

Note that the intersection point (y;, z*) of the lines associated with these inequalities (subtract
the second equation from the first) has y; = y; and 2* = 3, .,(a)7r)y;. Also, the “slopes”
indicated regard y; as the ordinate and z as the abscissa.

Bearing in mind that we choose r € Z™ and that A is assumed to be integer, we have that
afr € Z. There are now two cases to consider:

e ajr > 0, in which case the first line has negative slope and the second line has more
negative slope (or infinite o7 = 0);

e o;r < —1, in which case the second line has positive slope and the first line has more
positive slope (or infinite a/jr = —1).
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See Figures 8.7 and 8.8.

In both cases, we are interested in the point (2!, y}) where the first line intersects the line
yi = |7i] + 1 and the point (22, y?) where the second line intersects the line y; = |7; |.

We can check that

2=+ y Agr — L+ o) (L] + 1),
2* =i Agr — (ajr) |3

Subtracting, we have
2=z =0 5l) -1+ air),
- ——
€(0,1) EZL
so we see that: 2! < 22 precisely when ojr > 0; 22 < z! precisely when a/r < —1. Moreover,
the slope of the line through the pair of points (z',y}) and (2?,y?) is just
1 1

=22 (- ]) - (L4 o)

Figure 8.7: (F-BMI) cut when o/r > 0
v (F-BMI)
(B2)

(B1)

We now define the inequality
(@i = o)) = L+ air)) (v = [9:)) = 2 = ' Agr + (air) i),
which has the more convenient form
(L4 afr) = (@ = o)) vi + 2 <5 Agr — (5 — [5:) = 1) [9:]- (F-BMI)

By construction, we have the following two results.

Lemma 8.24
(F-BMI) is satisfied at equality by both of the points (z!,y}) and (22, y?).
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Figure 8.8: (F-BMI) cut when or < —1

/

Proof. Plugging (v}, z*) into (F-BMI), and making some if-and-only-if manipulations, we obtain

(@i — o) = 1) (@i — [9:]) >0,

which is not satisfied. o
Finally, translating (F-BMI) back to the original variables y € R™, we get
(Ut afr) = @ = B)) yi + D (fr)y; <7 Agr = @i = (7] = 1) |5l
jiii
or,
=i = 5] = Dy + v/ Agr < g’ Agr — (5 = [5:] = 1) 7],
which, finally has the convenient form
Y (Apr — (5 — L9:] — 1) es) < cgr — (55 — 5] = 1) 5] (F-GMI)

We immediately have:



8.5. CUTTING PLANES 119

Finally, we have:

Proof. The proof, maybe obvious, is by a simple disjunctive argument. We will argue that
(F-BMI) is valid for both S1 := {y € R™ : y'Ag < cj, —y; < —|g] —1}and S == {y €
R™ @ y'Ag < cf, vi < il }-

The inequality (F-BMI) is simply the sum of (B1) and the scalar §; — |g;| times —y; <
—|9:] — 1. It follows than that taking (I1) plus g; — |y, times —y; < —|7;] — 1, we get an
inequality equivalent to (F-GMI).

Similarly, it is easy to check that the inequality (F-BMI) is simply (B2) plus 1 — (g; — [¥:])
times y; < |7;]. It follows than that taking (I12) plus 1 — (g; — [¥;]) times y; < |¥;], we also get

an inequality equivalent to (F-GMI). O

In our algorithm, we append columns to (P), rather than cuts to (D). The column for (P)
corresponding to (F-GMI) is
Agr — (1 — 9] — Des,
and the associated cost coefficient is
cr — (5 = [9:) = 1) ).

So Agl times the column is

r— % — 5] =1 h.
Agreeing with what we calculated in Proposition 8.26, we have the following result.

cgr— (Ui — g =) w:) — c(r—(Gi— 5] —1) ha)
= (@i — ] = 1) (chhai — |wi))
=G — ) =) (@ — |w:]) -

O

Next, we come to the choice of r.
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Theorem 8.30
Let r € Z™ be defined by

rr = max{0, —| hx;] }, fork =1,2,...,m, (%=+)

and suppose that 7 € Z™ satisfies (x> ) and r < 7. Then the cut determined by r dominates
the cut determined by 7.

Proof. We simply rewrite (F-GMI) as
(s —y'Ag)r = (i — [9:] = 1) (9] — wa)-

Observing that cj; —y’Ag > 0 for y that are feasible for (D), we see that the tightest inequality
of this type, satisfying (x>, ), arises by choosing a minimal r. The result follows. O

8.5.3 Finite termination

Making a version of our Gomory cutting-plane scheme that we can prove is finitely terminating
is rather technical. Though it can be done in essentially the same manner for both pure and
mixed cases. We need to treat the objective-function value as an additional variable (numbered
first), employ the Simplex Algorithm adapted to the e-perturbed problem, always choose the
least-index i € 7 having §; ¢ Z and choose r via (*=) or (*—4) as appropriate to generate the
Gomory cuts. Details can be found in [2] and [4].

8.5.4 Branch-and-Cut

State-of-the-art algorithms for (mixed-)integer linear optimization (like Gurobi, Cplex and Express)
combine cuts with branch-and-bound. There are a lot of software design and tuning issues that
make this work successfully.

8.6 Exercises

Exercise 8.1 (Task scheduling, continued)

Consider again the “task scheduling” Exercise 2.5. Take the dual of the linear-optimization
problem that you formulated. Explain how this dual can be interpreted as a kind of network
problem. Using Python/Gurobi, solve the dual of the example that you created for Exercise 2.5
and interpret the solution.

Exercise 8.2 (Pivoting and total unimodularity)

!i WHAT IS 1T : WHAT 15 IT LIKE \F'(?LT.;_EEE
= égﬁ%g’%ﬂg:gshé? 4 TO BE TOTALLY YOUR CON—
> ?
% UNIMPORTANT? SCIOUSNESS
]

Dilbert.com

112315 € 2015 Scott Adams, Ine. foue by Uniene Leksk
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A pivot in an m x n matrix A means choosing a row i and column j with a;; # 0, subtracting
2k times row ¢ from all other rows k(+# i) , and then dividing row i by a;; . Note that after the
ij

pivot, column j becomes the i-th standard-unit column. Prove that if A is TU, then it is TU after
a pivot.

Exercise 8.3 (Comparing formulations for a toy problem)
Consider the systems:

Sy 201 + 229 + 13 + 24

Lj

INIAIA

Sy xr1 + 2o+ x3

r1+ X+ 24

INIACIA

S5 - xr1 + o
T+ T3
xr1 + T4
To + T3

To + T4

VAN VAN VAN VAN VAN VAN

Notice that each system has precisely the same set of integer solutions. In fact, each system
chooses, via its feasible integer (0/1) solutions, the “vertex packings” of the following graph.

A vertex packing of a graph is a set of vertices with no edges between them. For this particular
graph we can see that the packings are: 0, {1}, {2}, {3}, {4}, {3,4}.

Compare the feasible regions .S; of the continuous relaxations, for each pair of these systems.
Specifically, for each choice of pair i # j , demonstrate whether or not the solution set of \S; is
contained in the solution set of S; . HINT: To prove that the solution set of S; is contained in the
solution set of S; , it suffices to demonstrate that every inequality of .S; is a non-negative linear
combination of the inequalities of S; . To prove that the solution set of \S; is not contained in the
solution set of S; , it suffices to give a solution of S; that is not a solution of S; .

Exercise 8.4 (Comparing facility-location formulations)

We have seen two formulations of the forcing constraints for the uncapacitated facility-location
problem. We have a choice of the mn constraints: —y; + z;; < 0, fori = 1,...,m and
j=1,...,n,or the m constraints: —ny; + 2?21 xi; <0,fori=1,...,m. Which formulation
is stronger? That is, compare (both computationally and analytically) the strength of the two as-
sociated continuous relaxations (i.e., when we relax y; € {0,1} to0 <y; <1,fori=1,...,m).
The Jupyter notebook UFL. ipynb can be used to perform experiments comparing the use of
(S) versus (W). (see Appendix A.11).
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Exercise 8.5 (Comparing piecewise-linear formulations)
We have seen that the adjacency condition for piecewise-linear univariate functions can be mod-
eled by

At <oy
A < yj,1+yj7forj:2,...,n—1;
)\n S Yn—1 -

An alternative formulation is

j+1

iyz‘SZ)\i, forj=1,....,n—2;
=1 1=1

n—1 n
ZiyiSZAi, forj=2,....,n—1.
i=j i=j

Explain why this alternative formulation is valid, and compare its strength to the original for-
mulation, when we relax y; € {0,1}to0 < y; < 1,fori =1,...,n — 1. (Note that for both
formulations, we require \; >0, fori=1,...,n,> ;A\, =1,and Z?;ll y; = 1).

Exercise 8.6 (Variable fixing)
Prove Corollary 8.19.

Exercise 8.7 (Gomory cuts)

Prove that we need at least £ Chvatal-Gomory cuts to solve Example 8.15. You can observe this
bad behavior specifically for Gomory cuts in pure_gomory_example_2.ipynb (see Appendix
A12)

Exercise 8.8 (Solve pure integer problems using Gomory cuts)

Extend what you did for Exercise 4.1 to now solve pure integer problems using Gomory cuts.
pivot_tools.ipynb (see Appendix A.6) contains two (additional) useful tools for this: pure_gomory( )
and dual_plot( , ) Usingonly the functions in pivot_tools.ipynb, extend your code from Ex-

ercise 4.1 to solve pure integer problems using Gomory cuts. As before, do not worry about
degeneracy/anti-cycling. Make some small examples to fully illustrate your code.

Exercise 8.9 (Make amends)
Find an interesting applied problem, model it as a pure- or mixed- integer linear-optimization prob-
lem, and test your model with Python/Gurobi.

OKAY, THIS NEXT ACCORDING TO THE

DECISION INVOLVES DOGBERT COMPLEXITY I FOUND OUT
SIX VARIABLES, FOUR ALGORITHM, IT IS I™M A BRILLIANT
TIMPOSSIBLE TO MAKE A ENGINEER.
RATIONAL DECISION IN
THIS STTUATION. ALL
IN FAVOR OF GIVING

IMBECILES, AND ONE
BRILLIANT ENGINEER.

Dilbert.com DilbertCartoonist@gmail.com

10-13-11 ©2011 Scott Adams, Inc. /Dist. by

Credit will be given for deft modeling, sophisticated use of Python/Gurobi, testing on meaningfully-
large instances, and insightful analysis. Try to play with Gurobi integer solver options (they can
be set through Python) to get better behavior of the solver.

Your grade on this problem will replace your grades on up to 6 homework problems (i.e.,
up to 6 homework problems on which you have lower grades than you get on this one). I will
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not consider any re-grades on this one! If you already have all or mostly A’s (or not), do a good job
on this one because you want to impress me, and because you are ambitious, and because this
problem is what we have been working towards all during the course, and because you should
always finish strong.
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Take rest
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YOUR

CUSTOM
TEXT
HERE




BTEX TEMPLATE

Your actual name (youremail@umich.edu)

This template can serve as a starting point for learning I#TEX. You may download MiKTeX from
miktex.org to get started. Look at the source file for this document (in Section 5) to see how to get
all of the effects demonstrated.

1. THIS IS THE FIRST SECTION WHERE WE MAKE SOME LISTS

It is easy to make enumerated lists:

(1) This is the first item
(2) Here is the second
And even enumerated sublists:
(1) This is the first item
(2) Here is the second with a sublist
(a) first sublist item
(b) and here is the second

2. HERE IS A SECOND SECTION WHERE WE TYPESET SOME MATH

You can typeset math inline, like Z?zl a;;;, by just enclosing the math in dollar signs.
But if you want to display the math, then you do it like this:

n
E aijiji:L...,m.
j=1

And here is a matrix:

1 7« 2 % v
62 r 2 4 5
¥ R R r R

Here is an equation array, with the equal signs nicely aligned:

(2.2) Zyj = 7

(2.3) doxp o= 29

jes
The equations are automatically numbered, like z.y, where x is the section number and y is the y-th
equation in section z. By tagging the equations with labels, we can refer to them later, like (2.3) and (2.1).

Theorem 2.1. This is my favorite theorem.

Proof. Unfortunately, the space here does not allow for including my ingenious proof of Theorem 2.1. [

3. HERE 1S HOW I TYPSET A STANDARD-FORM LINEAR-OPTIMIZATION PROBLEM

min 'z
(P) Az = b;
x > 0.

Notice that in this example, there are 4 columns separated by 3 &’s. The ‘rrcl’ organizes justification
within a column. Of course, one can make more columns.

Date: October 31, 2020.



2 INTEX TEMPLATE

4. GRAPHICS

This is how to include and refer to Figure 1 with pdfLaTeX.

FIGURE 1. Another duality

5. THE BTEX COMMANDS TO PRODUCE THIS DOCUMENT

Look at the WTEX commands in this section to see how each of the elements of this document was produced.
Also, this section serves to show how text files (e.g., programs) can be included in a WTEX document verbatim.

% LaTeX_Template.tex // J. Lee

% AMS-LaTeX s ksksokskokkokkokokokokskokskokskokkokdokokokokskokskok ok kol dokdokokok ok kok ok
% Hxkk

\documentclass{amsart}

\usepackage{graphicx,amsmath,amsthm}

\usepackage{hyperref}

\usepackage{verbatim}

\usepackage [a4paper,text={16.5cm,25.2cn}, centering] {geometry}
h
\vfuzz2pt % Don’t report over-full v-boxes if over-edge is small
\hfuzz2pt % Don’t report over-full h-boxes if over-edge is small
% THEOREMS
\newtheorem{thm}{Theorem} [section]
\newtheorem{cor} [thm] {Corollary}
\newtheorem{lem} [thm] {Lemma}
\newtheorem{prop} [thm] {Proposition}
\theoremstyle{definition}
\newtheorem{defn} [thm] {Definition}
\theoremstyle{remark}
\newtheorem{rem} [thm] {Remark}
\numberwithin{equation}{section}

% MATH -
\newcommand{\Real}{\mathbb R}
\newcommand{\eps}{\varepsilon}
\newcommand{\To}{\longrightarrow}
\newcommand{\BX}{\mathbf{B} (X)}
\newcommand{\A}{\mathcal{A}}

h
\begin{document}

\title{\LaTeX~ Template}

\date{\today}



INTEX TEMPLATE 3

\maketitle

\href{mailto:youremail@umich.edu}
{Your actual name (youremail@umich.edu)}

h

%\medskip

h

%(this identifies your work and it \emph{greatlyl} help’s me in returning homework to you by email
%---- just plug in the appropriate replacements in the \LaTeX”~ source; then when I click on the

%hyperlink above, my email program opens up starting a message to you)
\bigskip

%

This template can serve as a starting point for learning \LaTeX. You may download MiKTeX from
{\tt miktex.org}

to get started. Look at the source file for this

document (in Section \ref{sec:appendix})

to see how to get all of the effects demonstrated.

\section{This is the first section where we make some lists}

It is easy to make enumerated lists:
\begin{enumerate}

\item This is the first item

\item Here is the second
\end{enumerate}

And even enumerated sublists:
\begin{enumerate}

\item This is the first item

\item Here is the second with a sublist
\begin{enumerate}

\item first sublist item

\item and here is the second
\end{enumerate}

\end{enumerate}

\section{Here is a second section where we typeset some math}
You can typeset math inline, like $\sum_{j=1}"n a_{ij} x_j$, by just enclosing the math in dollar signs.

But if you want to \emph{display} the math, then you do it like this:

\ [
\sum_{j=1}"n a_{ij} x_j~ \forall™ i=1,\ldots,m.
\]
And here is a matrix:
\ [
\left(
\begin{array}{ccccc}
1 & \pi & 2& \frac{1}{2} & \nu \\
6.28&r&2&4&5\\
|y’ & \mathcal{R} & \mathbb{R} & \underbar{r} & \hat{R} \\
\end{array}
\right)
\]

Here is an equation array, with the equal signs nicely aligned:
\begin{eqgnarray}
\sum_{j=1}"n x_j &=& 5 \label{E1} \\
\sum_{j=1}"n y_j &=& 7 \label{E7} \\



4 INTEX TEMPLATE

\sum_{j\in S} x_j &=& 29 \label{E4}
\end{egnarray}

The equations are automatically numbered, like $x.y$, where

$x$ is the section number and $y$ is the $y$-th equation in section $x$.
By tagging the equations

with labels, we can refer to them later, like (\ref{E4}) and (\ref{E1}).

\begin{thm}\label{Favorite}

This is my favorite theorem.

\end{thm}

\begin{proof}

Unfortunately, the space here does not allow for including my ingenious proof
of Theorem \ref{Favorite}.

\end{proof}

\section{Here is how I typset a standard-form linear-optimization problem}

\ [
\tag{P}
\begin{array}{rrcl}
\min & c’x & &\
& Ax & = & Db7; \\
& x & \geq & \mathbf{0}~.
\end{array}
\]

Notice that in this example, there are 4 columns separated by 3 \&’s.
The ‘rrcl’ organizes justification within a column.
0f course, one can make more columns.

\section{Graphics}

This is how to include and refer to Figure \ref{nameoffigure} with pdfLaTeX.
\begin{figure}[h!!]

\includegraphics [width=0.4\textwidth]{yinyang. jpg}

\caption{Another duality}\label{nameoffigure}

\end{figure}

\section{The \LaTeX~ commands to produce this document}
\label{sec:appendix}

Look at the \LaTeX~ commands in this section to see how each of the elements
of this document was produced. Also, this section serves to show

how text files (e.g., programs) can be included in a \LaTeX~ document verbatim.
\bigskip

\hrule

\small

\verbatiminput{LaTeX_Template.tex}
\normalsize

% _ _

\end{document}
A
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A.2 MatrixLP.ipynb



MatrixLP
August 23, 2021

Example: Setting up and solving a matrix-style LP with Python/Gurobi

minc'x + f'w
Ax+Bw <b
Dx =g
x>0, w<0

Note that we have the following dual, but we don’t model it:

maxy'b+v'g
yA+9D </

y'B > f

y <0, v unrestricted

Rather, we recover its solution from Gurobi.

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License
Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR



OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

[1]: %reset -f
import numpy as np
import gurobipy as gp
from gurobipy import GRB

class StopExecution(Exception):
def _render_traceback_(self):
pass

[2]:  # setting the matriz sizes and random data

nl=7

n2=15

ml=2

m2=4

np.random.seed(56) # set seed to be able to repeat the same random data
A=np.random.rand(ml,nl)

B=np.random.rand(ml,n2)

D=np.random.rand(m2,nl)

# Organize the situation (i.e., choose the right-hand side coefficients)
# so that the primal problem has a feastble solution
xs=np.random.rand(nl)

ws=-np.random.rand(n2)

b=np.matmul (A,xs)+np.matmul (B,ws)+0.01l*np.random.rand(ml)
g=np.matmul(D,xs)

# Organize the situation (i.e., choose the objective coefficients)

# so that the dual problem has a feasible solution

ys=-np.random.rand (ml)

vs=np.random.rand(m2) -np.random.rand (m2)

c=np.matmul (np.transpose(A),ys)+np.matmul (np.transpose(D),vs)+0.01l*np.random.
—rand(nl)

f=np.matmul (np.transpose(B),ys)-0.01*np.random.rand(n2)

[3]: model = gp.Model()
model .reset ()
x = model.addMVar(n1l) # default ©7s a nonnegative continuous wvartable
w = model.addMVar(n2, ub=0.0, 1b=-GRB.INFINITY)
objective = model.set(Objective(cO@x+f0w, GRB.MINIMIZE)
constraintsl = model.addConstr(AGx+BCw <= b)
constraints2 = model.addConstr(DOx == g)



Warning: your license will expire in 10 days

Using license file C:\Users\jonxlee\gurobi.lic
Academic license - for non-commercial use only - expires 2021-06-28
Discarded solution information

[4]: model.optimize()
if model.status !'= GRB.Status.OPTIMAL:
print ("x**** Gurobi solve status:", model.status)
print ("x***x* This is a problem. Model does not have an optimal solution")
raise StopExecution

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 6 rows, 22 columns and 72 nonzeros

Model fingerprint: 0x734450bc

Coefficient statistics:

Matrix range [2e-03, 1e+00]
Objective range [1e-01, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [7e-01, 3e+00]

Presolve time: 0.01s
Presolved: 6 rows, 22 columns, 72 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0  -7.2547823e+30  1.946982e+31  7.254782e+00 Os
9 2.6453973e+00  0.000000e+00  0.000000e+00 Os

Solved in 9 iterations and 0.02 seconds
Optimal objective 2.645397253e+00

[6]: print("s***x Primal solution:")
for j in range(O,nl): print("x[",j,"1=",
np.format_float_positional(np.ndarray.item(x[j].X),4,pad_right=4))
print (" ")
for j in range(0,n2): print("w[",j,"]=",
np.format_float_positional (np.ndarray.item(w[j].X),4,pad_right=4))
print(" ")
print ("***x* Dual solution:'")
for i in range(O,m1): print("y[",i,"]=",
np.format_float_positional (constraintsl[i] .Pi,4,pad_right=4))
print(" ")
for i in range(O,m2): print("v[",i,"]=",
np.format_float_positional(constraints2[i] .Pi,4,pad_right=4))

*%x*x* Primal solution:
x[ 0 1= 0.2689
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10 1= -
11 1=0
12 1= -

4.7348

4.392

13 1= 0.
14 1= 0.

***xx Dual

y[
yL

v[
vl
v[
v[

0 1= -0.
1 1= -0.

0 1= -0.
11=-0.
2 1= -0.
3

1= 0.

solution:
4424
7261

8196
6668
0458
1904
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A.3 Production.ipynb



[1]:

Production
June 25, 2021

Production model: constraint-style LP with Python/Gurobi

Notes: * This example is meant to show how to: * do constraint-style LP’s (as opposed to matrix
style), though the model we are setting up is max{c’x : Ax < b, x > 0}. * extract primal and dual
solutions, primal and dual slacks, and sensitivity information are printed * pass constraint names
to Gurobi and then retrieve constraints from Gurobi by these names

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License
Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

hreset -f

import numpy as np
import gurobipy as gp
from gurobipy import GRB

class StopExecution(Exception):
def _render_traceback_(self):
pass



[2]: | # Some toy data
m=3
n=2
M=list(range(0,m))
N=list(range(0,n))

A = np.array([ [8, 5], [8, 6], [8, 71 1)
b = np.array([32, 33, 35])
¢ = np.array([3 ,2])

[3]: model = gp.Model()
model.reset ()
x = model.addMVar(n)
revenueobjective = model.setObjective(sum(c[jl*x[j] for j in N), GRB.MAXIMIZE)
for i in M: # naming the constraints r0,71,72,... (inside Gurobi)
model.addConstr(sum(A[i,jl*x[j] for j in N) <= b[i], name='r'+str(i))

Using license file C:\Users\jonxlee\gurobi.lic
Academic license - for non-commercial use only - expires 2021-01-10
Discarded solution information

[4] : model.optimize()

if model.status != GRB.Status.OPTIMAL:
print ("#**** Gurobi solve status:", model.status)
print ("x**x* This is a problem. Model does not have an optimal solution")
raise StopExecution

print(" ")

print("primal var, dual slack, obj delta-1b, obj delta-ub")

for j in N: print("x[",j,"]=",np.format_float_positional (np.ndarray.item(x[j].

~X),4,pad_right=4),

" t[",j,"]=", np.format_float_positional(np.ndarray.item(x[j].
~RC) ,4,pad_right=4),
" L[",j,"]=", np.format_float_positional(np.ndarray.item(x[j].
~SAObjLow-c[jl),4,pad_right=4),
" Ul",j,"]=", np.format_float_positional(np.ndarray.item(x[j].
~.SAObjUp-c[j1),4,pad_right=4))
print (" ")
print("dual vars, primal slack, rhs delta-1b, rhs delta-ub")
for i in M:
constr=model.getConstrByName('r'+str(i)) # retriving from Gurobi the,

—named constraints ro,r1,r2,...
print("y[",i,"]=",np.format_float_positional(constr.Pi,4,pad_right=4),

" os[",i,"]=", np.format_float_positional(constr.
~Slack,4,pad_right=4),

" L[",i,"]=", np.format_float_positional(constr.
~SARHSLow-b[i],4,pad_right=4),

" U[",i,"]1=", np.format_float_positional (constr.

~SARHSUp-b[i] ,4,pad_right=4))



Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 3 rows, 2 columns and 6 nonzeros

Model fingerprint: 0x32d9daed

Coefficient statistics:

Matrix range [5e+00, 8e+00]
Objective range [2e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [3e+01, 4e+01]

Presolve time: 0.00s
Presolved: 3 rows, 2 columns, 6 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 5.0000000e+30  5.250000e+30  5.000000e+00 Os
3 1.2125000e+01  0.000000e+00  0.000000e+00 Os

Solved in 3 iterations and 0.01 seconds
Optimal objective 1.212500000e+01

primal var, dual slack, obj delta-1b, obj delta-ub
x[ 0 1= 3.37560 t[ 0 1= 0. LL 0 ]=-0.3333 U[ 0 1=0.2
x[11=1. t[ 1 1= 0. L[ 1 1= -0.125 UL 11=0.25
dual vars, primal slack, rhs delta-1b, rhs delta-ub
y[ 0 J= 0.2500 sL 0 ]= 0. LL O 1= -1. UL 0 1=1.

y[ 1 1= 0.125 s[ 11=0. LL1 1= -1. UL 11=0.5

y[ 2 1= 0. s[ 2 1=1.0000 L[ 2]1]=-1. U[ 2 ]= inf
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A4 Multi-commodityFlow.ipynb



Multi-commodityFlow

June 25, 2021

Multi-Commodity Network-Flow model: constraint-style LP with Python/Gurobi

K
min Z Z c]gxle‘

k=1ecA
Z xk — Z XK =bF, forve N, k=1,2,...,K;
ecA : t(e)=v ecA : h(e)=v

K
lee‘ < u, foreec A
k=0

x'e‘ZO, forec A, k=1,2,...,K

Notes: * K=1 is ordinary single-commodity network flow. Integer solutions for free when node-
supplies and arc capacities are integer. * K=2 example below with integer data gives a fractional
basic optimum. This example doesn’t have any feasible integer flow at all.

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License
Copyright (c) 2021 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.



[1]:

[2]:

[3]:

hreset -f
import itertools

import numpy as np

#/matplotlib notebook
Jmatplotlib inline

import matplotlib.pyplot as plt
import gurobipy as gp

from gurobipy import GRB

import networkx as nx

class StopExecution(Exception):
def _render_traceback_(self):
pass

# parameters

solveLPOnly=True

# Some toy data:

# set False to solve as an IP

# # Some toy data: 1 commodity

# Supplies= {

# # node %: [supply commodity[1] ... supply commodity[K]],
# 1: [12.],

# 2: [6.]7,

# 3: [-2.]7,

# 4: [0.],

# 5: [-9.]7,

# 6: [-7.]}

# CapacityCosts = {

# # arc (i,j5): [capacity, cost commodity[1] ... cost commodityl[K]],
# (1,2): [6., 2],

# (1,3): [8., -5],

# (2,4): [5., 3],

# (2,5): [7., 12],

# (3,5): [5., -9],

# (4,5): [8., 2],

# (4,6): [5., 0],

# (5,6): [5., 4]}

2 commodities with a fractional LP basic optimum

Supplies= {
# node %: [supply commodity[1] ... supply commodity[K]],
1: [1., 0.1,
2: [0., -1.1,
3: [0., 0.1,
4: [0., 0.1,
5: [0., 0.7,
6: [0., 0.1,



[4]:

[5]:

: [0., 1.7,
8: [-1., 0.]

CapacityCosts = {

# arc (7,7): [capacity, cost commodity[1] ... cost commodity[K]],

(1,2): [1., 1, 17,
(1,3): [1., 1, 1],
(2,5): [1., 1, 11,
(3,4): [1., 1, 1],
(4,1): [1., 1, 11,
(4,7): [1., 1, 1],
(5,6): [1., 1, 1],
6,2): [1., 1, 11,
(6,8): [1., 1, 1],
(7,3): [1., 1, 17,
(7,8): [1., 1, 1],
(8,5): [1., 1, 11}

Nodes=list (Supplies.keys()) # get node list from supply data

K=len(Supplies[Nodes[0]]) # get number of commodities from supply data

Commods=1ist(range(l,K+1)) # name the commodities 1,2,...,K

Arcs=list(CapacityCosts.keys()) # get arc list from Capactity/Cost data

ArcsCrossCommods=1list (itertools.product (Arcs,Commods)) # make cross product of
—drcs and Commods for variable indezing

model = gp.Model()
if solvelPOnly==True:
x = model.addVars(ArcsCrossCommods)
else:
x = model.addVars(ArcsCrossCommods,vtype=GRB.INTEGER)
model.setObjective (sum(sum(CapacityCosts[i,j] [kl*x[(i,j),k] for (i,j) in Arcs),
—~for k in Commods), GRB.MINIMIZE)
model .addConstrs(sum(x[(i,j),k] for k in Commods) <= CapacityCosts[i,j][0] for,
~(i,j) in Arcs)
model . addConstrs (
(sum(x[(i, j),k] for j in Nodes if (i, j) in Arcs) - sum(x[(j, i),k] for j iny,
~Nodes if (j,i) in Arcs)
== Supplies[i][k-1] for i in Nodes for k in Commods))
model.update ()

Using license file C:\Users\jonxlee\gurobi.lic
Academic license - for non-commercial use only - expires 2021-06-28



[6]:

model.optimize ()
if model.status !'= GRB.Status.OPTIMAL:
print ("x**** Gurobi solve status:", model.status)
print ("x**x* This is a problem. Model does not have an optimal solution")
raise StopExecution
print (" ")
print ("x**x* Flows:")
for (i,j) in Arcs:
arcflow=""
for k in Commods:
arcflow += str(round(x[(i,j),k] .X,4))
arcflow += " "
print("x[(",1,",",]j,"), *]1=", arcflow, "capacity:", CapacityCosts[i,j][0])

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 28 rows, 24 columns and 72 nonzeros

Model fingerprint: 0xf7e9da00

Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [1e+00, 1e+00]

Presolve removed 26 rows and 22 columns
Presolve time: 0.01s
Presolved: 2 rows, 2 columns, 4 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 8.0000000e+00  1.000000e+00  0.000000e+00 Os
1 8.0000000e+00  0.000000e+00  0.000000e+00 Os

Solved in 1 iterations and 0.01 seconds
Optimal objective 8.000000000e+00

*xx*k*x Flows:

x[(1,2), *x]=0.5 0.5 capacity: 1.0
x[C1,3), *x]I=0.5 0.0 capacity: 1.0
x[(2,5), *x]=0.5 0.0 capacity: 1.0
x[(3, 4), ¥x]=0.5 0.5 capacity: 1.0
x[(4, 1), *x]=0.0 0.5 capacity: 1.0
x[(4,7), *xI=0.5 0.0 capacity: 1.0
x[( 5,6 ), *x]=0.5 0.5 capacity: 1.0
x[(6, 2 ), ¥]=0.0 0.5 capacity: 1.0
x[( 6 ,8), *x]=0.5 0.0 capacity: 1.0
x[(C7,3), ¥x]=0.0 0.5 capacity: 1.0
x[(7,8), *x]=0.5 0.5 capacity: 1.0
x[( 8, 5), *x]=0.0 0.5 capacity: 1.0



[7]: G = nx.DiGraph()

G.add_nodes_from(Nodes)

G.add_edges_from(Arcs)

plt.figure(figsize=(8,8))

edge_labels=nx.draw_networkx_edge_labels(G,edge_labels=CapacityCosts,
pos=nx.shell_layout(G), label_pos=0.3, font_size=10)

nx.draw_shell(G, with_labels=True, node_color='cyan', node_size=800,
font_size=20, arrowsize=20)

print("Network with node labels and capacities/costs on arcs")

Network with node labels and capacities/costs on arcs

\

10,11 —>1 8

0
,/’"/

oo




[(8]: #k=2
for k in Commods:
Supplyl_label={}
for i in Nodes:
Supplyl_label[i]l= str(i)+': '+str(Supplies[i] [k-11)

FlowO=np.zeros(len(Arcs))

Flow=dict(zip(list (Arcs), Flow0))

for (i,j) in Arcs: Flowl[i,jl= str(round(x[(i,j),k].X,4))

H=nx.relabel_nodes(G, Supplyl_label)

plt.figure(figsize=(8,8))

edge_labels=nx.draw_networkx_edge_labels(H,edge_labels=Flow,
pos=nx.shell_layout(G), label_pos=0.7, font_size=10)

nx.draw_shell(H, with_labels=True, node_color='cyan',

node_size=1200, font_size=10, arrowsize=15)
print("Network with supplies and flows for commodity ",k)

Network with supplies and flows for commodity 1
Network with supplies and flows for commodity 2
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A.5 pivot_example.ipynb



[1]:

[2]:

pivot_example

June 25, 2021

Example: pivot tools for standard form linear-optimization problem P
For standard-form problems

z = min ¢'x (P)
Ax=1b
x> 0.

Notes: * Can work with € perturbed right-hand side

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License
Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Jreset -f
Jrun ./pivot_tools.ipynb

pivot_tools loaded: pivot_perturb, pivot_algebra, N, pivot_ratios, pivot_swap,
pivot_plot, pure_gomory, mixed_gomory, dual_plot



[3]:

[4]:
[4]:

[5]:
[5]:

[6]:

[7]:
[7]:

[8l:

(8]

[9]:
[9]:

2, 1, 0, 0, 0],

1, 0, 1, 0, 0],

[sym.Rational(3,2), sym.Rational(3,2), 0, 0, 1, 0],

A = sym.Matrix(([1,
(3,
(o,

m = A.shape[0]

n = A. shape[1]

c =

b =

beta = [0,1,3,5]

1, 0, 0, 0, 11))

sym.Matrix([6, 7, -2, 0, 4, sym.Rational(9,2)1)
sym.Matrix([7, 9, 6, sym.Rational(33,10)])

eta = list(set(list(range(n)))-set(beta))
A_beta = copy.copy(A[:,betal)

A_eta = copy.copy(A[:,etal)

c_beta = copy.copy(c[beta,0])

c_eta

—can perturb later

A
121000
310100
3 3
830010
010001
C
6

7

-2

0

4

9
L 7

#pivot_perturd ()

b

=[O WNeIRN |

beta

"0, 1, 3, 5]

eta

copy . copy(cleta,0])

# uncomment to perturb the right-hand stde



[10]:

[10]:

[11]:
[11]:

[12]:

[13]:

[13]

[14]:

[14]:

[15]:

[15]:

[16]:

A_beta

ONIW W
=N = N
oo R O
—_ o O O

A_eta

S O O
o= O O

pivot_algebra()

pivot_algebra() done

sym.N(objval)

© 28.35

xbar_beta

Slww w e~

cbar_eta

&

pivot_ratios(1)




[17]: | c.dot(zbar) # agrees with cbar_eta(1)

(171: 7

3
[18]: pivot_plot()

In the space of the non-basic variables

slacks [~
Xo
_xl
— K =
—x:
4 -
3 -
3]
-‘I_
* [ [ [
-1 0 3 4 i
X3
- -

[19]: pivot_swap(l,3)

swap accepted -- new partition:

eta: [2, 5]
beta: [0, 1, 3, 4]
**x MUST APPLY pivot_algebra()! **x



[20]: pivot_algebra()

pivot_algebra() done

[21]: sym.N{objval)

[21]: 273

[22]: xbar_beta

[22]:

NN RSN

[23]: cbar_eta

7]

2

[24]: pivot_ratios(0)

>
N

=i
oo + 8 8 o

W
N
_|_ ol

>

N
Nororo

[25]: |c.dot(zbar) # agrees with cbar_eta(0)

[25]: 5

[26]: pivot_plot()



In the space of the non-basic variables

[27]: pivot_swap(0,0)

swap accepted -- new partition:

eta: [0, 5]
beta: [2, 1, 3, 4]
**%x MUST APPLY pivot_algebra()! **x

[28]: pivot_algebra()

pivot_algebra() done

[29]: sym.N(objval)



[29]: 26.5

[30]: xbar_beta

[30]:

SR SRSIRTY

[31]: cbar_eta

&

2

[32]: pivot_ratios(1l)

3

33
10

g 8

X+ AzZ:

C o -

B2

2A+§
5

2t

72 T
A

[33]: |c.dot(zbar) # agrees with cbar_eta(1)

[331: 1

2
[34]: pivot_plot()



In the space of the non-basic variables

35—
slacks
A x: .
——
' 3.0 -
— x:
A x_q
|
-1.0

[35]: pivot_swap(i,1)

swap accepted -- new partition:

eta: [0, 1]
beta: [2, 5, 3, 4]
*xx MUST APPLY pivot_algebra()! *k%

[36]: pivot_algebra()

pivot_algebra() done

[37]: sym.N(objval)



[37]

[38]:

[38]:

[39]:

[39]:

[40]:

" 24.85

xbar_beta

S NININ AN

cbar_eta

H

pivot_plot()

In the space of the non-basic variables




[41]:

[41]:

[42]:

[42]:

[43]:

[43]:

[44]:

[44]:

[45]:

[45]:

[46]:

[46]:

[47]:

[47]:

xbar

0
0
7
9
6

3

L7104
objval

497
20
c.dot(xbar) # reality check

497
20
c_beta.dot (xbar_beta) # reality check

97
20
ybar.dot(b) # reality check

497

20

sym.transpose(c)-sym.transpose(ybar)*A # reality check
2 2 00 0 0

b-Axxbar # reality check

o O O O
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A.6 pivot_tools.ipynb



pivot_tools

June 25, 2021

Pivot tools for standard form linear-optimization problem P
For standard-form problems

z = min ¢'x (P)
Ax=1b
x> 0.

Notes: * Can work with € perturbed right-hand side * B = (Bo, B1,- - ., Bm—1) has m entries from
{0,1,...,n—=1}. *1.= (0,1, -, n—m—1) has n — m entries from {0,1,...,n — 1}. * So, for the
purpose of selecting j (corresponding to #; entering the basis), we view &, = (Cyy, s+ G-
* For pivot_ratios(j): j mustbe in {0,1,...,n —m — 1}. The output of pivot_ratios(j) is m numbers,
and they correspond to the basic variables numbered By, 81, ..., Bm—1. So, for the purpose of se-
lecting i (correspond to B; leaving the basis), i must be in {0,1,...,m — 1}. * For pivot_swap(j,i): j
mustbein {0,1,...,n —m —1} and i mustbe in {0,1,...,m —1}.

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License
Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.



[ J: import numpy as np
import sympy as sym
sym.init_printing()
import copy
import operator
eps = sym.symbols('epsilon')
lam = sym.symbols('lambda')
x1lz = sym.Symbol('\\bar{x}+\\lambda \\bar{z} :')
from IPython.display import Latex, Math
BEARERERR R ER AR RR R R R AR AR R R RR AR AR RE AR R AR AR AR 1 Y
### CHOOSE 4 BACKEND --- IF YOU SWITCH, RESTART THE KERNEL
# evaluates faster than 'notebook’:
Jmatplotlib inline

# evaluates slower than 'inline' (gives interactive plots, though delayed whemn,
srunning all cells):

#/matplotlib notebook

HARRRRERAA AR R ERA AR R R AR RRR R R AR RAR R R AR R R AR RER R AR RER R AR E RS

import matplotlib.pyplot as plt

from matplotlib.patches import Polygon

from matplotlib.ticker import AutoMinorLocator, MultipleLocator

from scipy.spatial import ConvexHull, convex_hull_plot_2d

import itertools

import seaborn as sns; sns.set(); sns.set_style("whitegrid"); color_list = sms.
—color_palette("muted")

[ 1: # perturd
def pivot_perturb():
global m, b, Perturb, eps
Perturb = True
for i in range(m):
for j in range(m):
b[i] += A_betali,jl*eps**(j+1)
print('pivot_perturb() done')

[1: # algebra
def pivot_algebra():
global m, n, objval, xbar, xbar_beta, xbar_eta, ybar, cbar_eta, ratios
xbar_beta = A_beta.solve(b)
xbar_eta = sym.zeros(n-m,1)
objval = c_beta.dot(xbar_beta)
xbar = sym.zeros(n,1)
for i in range(m): xbar[betal[i]]=xbar_betali]
for j in range(n-m): xbar[etal[j]ll=xbar_etalj]
ybar = A_beta.transpose().solve(c[beta,0])
#cbar_eta = c_eta.transpose()- ybar.transpose()*4_eta
cbar_eta = c_eta- A_eta.transpose()*ybar
ratios=sym.oo*sym.ones(m,1)



print('pivot_algebra() done')

[ J: # numerical wversion of a d-by-1 array
def N(parray):
for i in range(parray.shape[0]): display(sym.N(parray[i]))

[ 1: # ratios (and direction) for a given monbasic indez eta_j
def pivot_ratios(j):

global ratios, zbar
if j>n-m-1:

display(Latex("error: $j$ is out of range."))
else:

A_etaj=copy.copy(A[:,etaljl])

Abar_etaj = A_beta.solve(A_etaj)

for i in range(m):

if Abar_etajl[i] > O:
ratios[i] = xbar_betal[i] / Abar_etaj[il

else:
ratios[i] = sym.oo0
display(ratios)
zbar=sym.zeros(n,1)
for i in range(m): zbar[betal[i]] = -Abar_etajl[il

zbar[etal[j]] = 1
display(xlz,xbar+lam*zbar)

[ 1: # swap nonbasic eta_j in and basic beta_i out
def pivot_swap(j,i):

global A_beta, A_eta, c_beta, c_eta

if i>m-1 or j>n-m-1:
display(Latex("error: $j$ or $i$ is out of range. swap not accepted"))

else:
save = copy.copy(betalil)
betal[i] = copy.copy(etaljl)
etalj]l = save
A_beta = copy.copy(A[:,betal)
A_eta = copy.copy(A[:,etal)
c_beta = copy.copy(c[beta,0])
c_eta = copy.copy(cleta,0])
display(Latex("swap accepted --- new partition:"))
print('eta:',eta)
print('beta:',beta)
print ('#** MUST APPLY pivot_algebra()! x*x')

L1: # plot
def pivot_plot():
if n-m !'= 2 or Perturb == True:

display(Latex("Hey friend --- give me a break!"))



display(Latex("This plotting only works if there are $n-m=2$ nonbasic,
—variables and no rhs perturbation"))
return
A_beta_inv = A_beta.inv()
Abar_eta = A_beta_inv*A_eta
M = sym.zeros(n,n-m)
M[O:m,:] = Abar_eta
M[m:n, :] -sym.eye(n-m)
h = sym.zeros(n,1)
h[0:m,0] = xbar_beta
feaspoints=np.empty((0,2))
infeaspoints=np.empty((0,2))
bbar=sym.zeros(2,1)
M2=sym.zeros(2,2)
for i in range(n-1):
for j in range(i+i,n):
bbar [0]=h[i]
bbar[1]1=h[j]
M2[0,:1=M[1,:]
M2[1,:1=M[j,:]
if abs(sym.det(M2)) >0.0001:
xy = M2.solve(bbar)
if min(h - M*xy) >= -0.00001:
feaspoints=np.r_[feaspoints,np.transpose(xy)]
else:

infeaspoints=np.r_[infeaspoints,np.transpose(xy)]
hull = ConvexHull (feaspoints)
fig, ax = plt.subplots(figsize=(8,8))
ax.set(xlabel=r"$x_{}$".format (etal0]), ylabel=r"$x_{}$".format(etall]l))
ax.spines['left'].set_position(('data',0.0))
ax.spines['bottom'].set_position(('data',0.0))
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
plt.x1lim(float(min(cbar_etal0] ,min(feaspoints[:,0]1)))-1.25,,
~float (max(feaspoints[:,0]))+0.25)
plt.ylim(float(min(cbar_etall] ,min(feaspoints[:,1]1)))-0.25,
~float (max(feaspoints[:,1]1))+0.25)
plt.fill(feaspoints[hull.vertices,0], feaspoints[hull.vertices,1], 'cyan',,
—alpha=0.3)
x = np.linspace(float(min(feaspoints[:,0]))-0.5,float(max(feaspointsl(:
~,01))+0.5,100)
for i in range(m):
if Abar_etal[i,1] != O:
y = (xbar_betal[i] - Abar_etali,0]*x) / Abar_etali,1]
plt.plot(x, y, linewidth=3, label=r"$x_{}$".format(betali]))



[]:

else:
plt.vlines(float(xbar_betalil/ Abar_etal[i,0]),
~float(min(cbar_etall] ,min(feaspoints[:,1]1))),
float (max(feaspoints[:,0])), label=r"$x_{}$".
~format (betal[i]))
for simplex in hull.simplices:
plt.fill(feaspoints[simplex, 0], feaspoints[simplex, 1], 'cyan',
—alpha=0.5)
arrow=plt.arrow(0,0, float(cbar_etal[0]),float(cbar_etal[l]l), color='magenta',
owidth = 0.02, head_width = 0.1, label=r"$\bar{cr_\eta$")
ax.scatter(feaspoints[:,0], feaspoints[:,1], color='green',zorder=8)
ax.scatter(infeaspoints[:,0], infeaspoints[:,1], color='red',zorder=7)
plt.legend(loc="upper left",title="slacks")
plt.title(r"In the space of the non-basic variables",size=18)
#az.grid()
plt.show()

Gomory cutting-plane tool for dual-form pure-integer problem D7

For dual-form pure-integer problem
max y'b (D1)
y/A S C/
yezZ".

Notes: * A and ¢ MUST be integer * The variables are yo,y1,...,Ym—1, so valid input arguments
for pure_gomory(i) arei € {0,1,...,m —1}.

Reference: * Qi He, Jon Lee. Another pedagogy for pure-integer Gomory. RAIRO — Operations
Research, 51:189-197, 2017.

# pure gomory cut
def pure_gomory(i):
global A, ¢, A_beta, A_eta, c_eta, cbar_eta, m, n, beta, eta

if i>m-1:
display(Latex("error: $i$ is out of range."))
else:
ei = sym.zeros(m,1)
eilil=1 # ei 1s the i-th standard unit column
hi = A_beta.solve(ei) # i-th column of bastis inverse
#r = -sym. floor(hi) # best choice of r

r = -(hi.applyfunc(sym.floor))

btilde = ei + A_betaxr # new column for P

A = A.row_join(btilde)

¢ = c.col_join(sym.Matrix(([sym.floor(ybar.dot(btilde))])))
eta.insert(n-m,n)

n+=1



[]1:

A_eta = copy.copy(A[:,etal)

c_eta = copy.copy(cleta,0])

cbar_eta = c_eta - A_eta.transpose()*ybar

print ('=** PROBABLY WANT TO APPLY pivot_algebra()! *x*')

# dual plot
def dual_plot(delta=None,center=None):

if delta==None: delta=2

if center==None: center=ybar

if m != 2 or Perturb == True:
display(Latex("Hey friend --- give me a break!"))
display(Latex("This plotting only works if there are $m=2$ dual,,

wvariables and no rhs perturbation"))

return
M=sym.transpose (A)
feaspoints=np.empty((0,2))
infeaspoints=np.empty((0,2))
c2=sym.zeros(2,1)
M2=sym.zeros(2,2)
for i in range(n-1):
for j in range(i+l,n):
c2[0]=c[i]
c2[1]=c[j]
M2[0,:1=M[1, :]
M2[1,:1=M[j,:]
if abs(sym.det(M2)) > 0.0001:
yOyl = M2.solve(c2)
if min(c - MxyOyl) >= -0.00001:
feaspoints=np.r_[feaspoints,np.transpose(yOyl)]
else:
infeaspoints=np.r_[infeaspoints,np.transpose(yOy1)]
hull = ConvexHull(feaspoints)
fig, ax = plt.subplots(figsize=(8,8))
ax.xaxis.set_label_coords(1.05, 0.49)
ax.yaxis.set_label_coords(0.5, 1.05)
ax.set(xlabel=r"$y_{}$".format(0), ylabel=r"$y_{}$".format (1))
ax.spines['left'].set_position(('data',ybar[0]))
ax.spines['bottom'].set_position(('data',ybar([1]))
ax.spines['right'] .set_color('none')
ax.spines['top'].set_color('none')
# set major ticks to show every ! (integer)
ax.xaxis.set_major_locator(MultipleLocator(1))
ax.yaxis.set_major_locator(MultipleLocator(1))
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
plt.xlim(float(center[0])-delta,float(center[0])+delta)
plt.ylim(float(center[1])-delta,float(center[1])+delta)



plt.fill(feaspoints[hull.vertices,0], feaspoints[hull.vertices,1], 'cyan',,
—alpha=0.3)
y1l = np.linspace(float(min(feaspoints[:,0]))-0.5,float (max(feaspoints[:
-,0]1))+0.5,100)
for j in range(n):
if M[j,1] !'= O:
y2 = (c[j] - M[j,01*y1) / M[j,1]
plt.plot(yl, y2, linewidth=2, label=r"constraint ${}$".format(j))
else:
plt.vlines(float(c[jl/ M[j,0]1), float(center[1])-delta,
float (center[1])+delta, linewidth=2, label=r"constraint,
~${}$" .format (j))
for simplex in hull.simplices:
plt.fill(feaspoints[simplex, 0], feaspoints[simplex, 1], 'cyan',
—alpha=0.5)
arrow=plt.arrow(float(ybar[0]) ,float(ybar[1]),0.5+«float(b[0]/(b.dot(b))**0.
~5),0.5*%float(b[1]/(b.dot(b))**0.5), color='magenta', width = 0.01*delta,,
~head_width = 0.02*delta, label=r"$b$")
ax.scatter(feaspoints[:,0], feaspoints[:,1], color='green',zorder=8)
ax.scatter(infeaspoints[:,0], infeaspoints[:,1], color='red',zorder=7)
# the integer grid
xp = np.arange(np.floor(float(center[0])-delta)-1, np.
—ceil(float(center[0])+delta)+2)
yp = np.arange(np.floor(float(center[1])-delta)-1, np.
—ceil(float(center[1])+delta)+2)
pp = itertools.product(xp, yp)
plt.scatter (*zip(*pp), marker='o', s=5, color='black',zorder=9)
# sorting plot legend entries by label
handles, labels = ax.get_legend_handles_labels()
hl = sorted(zip(handles, labels), key=operator.itemgetter(l))
handles2, labels2 = zip(*hl)
ax.legend(handles2, labels2, loc="lower left",title="constraints")
ax.grid(which="major"')
plt.show()

[ J: print('pivot_tools loaded: pivot_perturb, pivot_algebra, N, pivot_ratios,
—pivot_swap, pivot_plot, pure_gomory, mixed_gomory, dual_plot')
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A.7 Circle.ipynb



[1]:

Circle
June 25, 2021

Hoffman’s circle

Reference: * Jon Lee. Hoffman’s circle untangled. SIAM Review, 39(1):98-105, 1997.
MIT License
Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

import numpy as np

#matplotlib notebook

Jmatplotlib inline

import mpl_toolkits.mplot3d as a3
import matplotlib.colors as colors
import pylab as pl

t =2 * np.pi/6

¢ = np.cos(t)

s = np.sin(t)

M = np.array([[c, -s, 0], [s, c, 0], [(c - 1)/c, s/c, 111)
X

y

T=

= np.array((1,0,0))

= np.array((0, 0.5*np.tan(t/2), 0))

np.row_stack((x,y, M.dot(x), M.dot(y), M.dot(M.dot(x)), M.dot(M.dot(y)),
M.dot(M.dot(M.dot(x))), M.dot(M.dot(M.dot(y))),
M.dot(M.dot(M.dot (M.dot(x)))), M.dot(M.dot(M.dot(M.dot(y)))), x))



ax = a3.Axes3D(pl.figure(figsize=(5,8)),azim=42,elev=15)
for i in range(10):
vtx = np.row_stack(([0,0,0],T[1i],T[i+1]))
tri = a3.art3d.Poly3DCollection([vtx])
tri.set_color(colors.rgb2hex(np.random.rand(3)))
tri.set_edgecolor('k')
ax.add_collection3d(tri)
ax.set_x1im3d(-1,1)
ax.set_ylim3d(-1,1)
ax.set_zlim3d(-3,4)
pl.show()
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A.8 Decomp.ipynb



[1]:

Decomp

June 25, 2021

Decomposition Algorithm with Python/Gurobi

Apply the (Dantzig-Wolfe) Decomposition Algorithm to:

z =min c'x Q)
Ex>h
Ax=1b
x>0,

treating Ex > h as the “complicating constraints’’.
Notes: * In this implementaion, we never delete generated columns

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License
Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Jreset -f
import numpy as np
#/matplotlib notebook



[2]:

[3]:

Jmatplotlib inline

import matplotlib.pyplot as plt
import gurobipy as gp

from gurobipy import GRB

class StopExecution(Exception):
def _render_traceback_(self):
pass

MAXIT = 500

# generate a rTandom example

n = 100 # number of wartables

ml = 200 # number of equations to relazx

m2 = 50 # number of equations to keep

np.random.seed(25) # change the seed for a differemt exzample

E=0.01*np.random.randint (-5,high=5,size=(ml1,n)) .astype(float) #np.random.
<randn(ml,nt)

A=0.01#np.random.randint (-2,high=3,size=(m2,n)) .astype (float) #np.random.
<randn(m2,nt)

# choose the right-hand sides so that { will be feastible
xfeas=0.1#np.random.randint (0,high=5,size=n) .astype(float)
h=E.dot(xfeas) - O.l*np.random.randint(0,high=10,size=ml).astype(float)
b=A.dot (xfeas)

# choose the objective function so that the dual of § will be feastible

yfeas=0.1#np.random.randint(0,high=5,size=ml) .astype(float)

pifeas=0.1*np.random.randint (-5,high=5,size=m2) .astype(float)

c=np.transpose(E)0@yfeas + np.transpose(A)Qpifeas + O.l*np.random.
—randint (0,high=1,size=n) .astype(float)

print("x**** Solve as one big LP --- for comparison purposes')

modelQ = gp.Model()

modelQ.reset ()

xQ = modelQ.addMVar (n)

objective = modelQ.setObjective(c0xQ, GRB.MINIMIZE)

constraintsQl = modelQ.addConstr (E@xQ >= h)

constraintsQ2 = modelQ.addConstr (AGx(Q == b)

modelQ.optimize ()

if modelQ.status !'= GRB.Status.0OPTIMAL:
print ("x***x* Gurobi solve status:", modelQ.status)
print ("x***x* This is a problem. Stopping execution.")
raise StopExecution

print(" ")

print ("x**** Proceed to Decomposition")

# initralization for Decomposition



resultsi=[]
results2=[]
ITER=0

xgen=0

zgen=0
y=np.zeros(ml)

# set up the Subproblem model and get one basic feasible solution
modelS = gp.Model()
#modelS.setParam('OutputFlag’, 0) # quiet the Gurobi output
x = modelS.addMVar (n)
constraintsS = modelS.addConstr(A0x == b)
#modelS.setObjective(c@r, GRB.MINIMIZE)
modelS.optimize ()
if modelS.status != GRB.Status.OPTIMAL:
print ("x**** Gurobi (initial) Subproblem solve status:", modelS.status)
print ("x***x* This is a problem. Stopping execution.")
raise StopExecution
xgen += 1

# construct a basts

XZ=np.reshape(x.X, (n,1))
#Z=np.r_[np.zeros((n-m1,m1)),np.eye(m1)]

#Z=np.empty((n,0), dtype=float)

hi=np.r_[h,(1)]
#B=np.c_[np.r_[np.eye(ml),np.zeros((1,m1))],np.7r_[ECz.X, (1)]]
B=np.c_[-np.r_[np.eye(ml) ,np.zeros((1,m1))],np.r_[E0x.X, (1)]]

# set up the Main Phase-2 model

modelM2 = gp.Model ()

s = modelM2.addMVar (ml+1)

modelM2.setObjective (cOx.X*s[ml1], GRB.MINIMIZE)

modelM2.addConstrs((-s[i] + E[i,:]0x.X*s[m1] == h[i] for i in range(ml)))
modelM2.addConstr(s[ml]==1)

modelM2.update ()

constraintsM2=modelM2.getConstrs()

# Identify 1f the constructed basis ©s feasible to see if Phase 1 1s needed
if min(np.linalg.solve(B, h1l)) >= -1e-10:

print ('x**** Phase I not needed')

Phase=2

modelM=modelM2
else:

print ('x**** Phase I needed')

Phase=1

ITERphaseI=1



modelMi=modelM2.copy ()

#modelM1.setParam('OutputFlag', 0) # quiet the Gurobi output
constraintsMl=modelM1.getConstrs()

# create the artifictal wvartable
newcol=gp.Column(-np.r_[EO@x.X-np.ones(ml),(1)],constraintsMl)
modelM1.setObjective(0.0, GRB.MINIMIZE)
modelM1.addVar(obj=1.0, column=newcol, name='artificial')
modelM=modelM1

while True:

ITER += 1

print(" ™)

print ("x**** Currently in Phase", Phase, ". Iteration number", ITER)
print ("#**** Solving Main LP...")

modelM.optimize ()

if modelM.status != GRB.Status.OPTIMAL:
print ("#**** Gurobi Main solve status:", modelM.status)
print ("#**** This is a problem. Stopping execution.")
raise StopExecution

resultsl=np.append(resultsl,ITER-1)

results2=np.append (results2,modelM.0Objval)

if Phase==1 and modelM.0Objval < 0.0000001:
print ("#**** Phase I succeeded")

print("LP iter", " LP val")
print("--------- ——---———- ")
for j in range(ITER):
print{(np.int (resultsi[j]l), " ", np.round(results2[j],9))

fig, ax = plt.subplots(figsize=(10,10))
ax.plot(resultsl1[0:ITER], results2[0:ITER])
ax.set(xlabel='iteration', ylabel='LP objective value')
ax.set_xticks(ticks=resultsl, minor=False)
ax.grid()
plt.show()
ITERphaseI=ITER
Phase=2
# switch to the Phase II model
modelM=modelM2
modelM.optimize ()
# overwrite last tteration result with phase-II objective value
results2[ITER-1]=modelM.0Objval

if ITER == MAXIT: break

constraintsM=modelM.getConstrs()
for i in range(mi):
y[i]l=constraintsM[i] .Pi
sigma=constraintsM[ml] .Pi
if Phase==1: modelS.setObjective((-y.dot(E))0x, GRB.MINIMIZE)



else: modelS.setObjective((c-y.dot(E))@x, GRB.MINIMIZE)
print(" ")
print ("#**** Solving Subproblem LP...")
modelS.optimize ()
if modelS.status != GRB.Status.OPTIMAL and modelS.status != GRB.Status.
—UNBOUNDED:
print ("x**x* Gurobi Subproblem solve status:", modelS.status)
print ("x***x* This is a problem. Stopping execution.")
raise StopExecution
if modelS.status == GRB.Status.OPTIMAL:
print ("x**x* Gurobi Subproblem solve status:", modelS.status)
reducedcost = -sigma + modelS.0bjval
print ("#**** sigma=",sigma)
print ("#**** reduced cost=",reducedcost)
i1f reducedcost < -0.0001:
xnew=x.X
if Phase==1:
newcol=gp.Column(np.r_[EOxnew, (1)],constraintsM1i)
modelM1.addVar (obj=0.0, column=newcol)
newcol=gp.Column(np.r_[EOxnew, (1)],constraintsM2)
modelM2.addVar (obj=c@xnew, column=newcol)
XZ=np.c_[XZ,xnew]
xgen += 1
else:
if Phase==1:
print ("#**** No more improving columns for Main")
print ("x**** Phase I finished without a feasible solution")
print ("x**x* Phase I objective", modelM.0Objval)
break
else: # Phase 2
print ("x**** No more improving columns for Main')
print ("x**x* Phase II finished")
print ("x**x* Phase II objective", modelM.Objval)

break
if modelS.status == GRB.Status.UNBOUNDED:
print ("x**x* Gurobi Subproblem solve status:", modelS.status)
znew=x.UnbdRay
if Phase==1:

newcol=gp.Column(np.r_[EOznew, (0)],constraintsM1i)

modelM1.addVar (obj=0.0, column=newcol)

reducedcost = -y.dot(E)Qznew
newcol=gp.Column(np.r_[EQznew, (0)],constraintsM2)
modelM2.addVar (obj=c@znew, column=newcol)

if Phase==2:
reducedcost = (c-y.dot(E))Qznew
print ("x**** reduced cost=", reducedcost)

#if reducedcost > 0.0001: input()



XZ=np.c_[XZ,znew]
zgen += 1

print("LP iter", " LP val")

for j in range(ITERphaseI-1,ITER):
print(np.int(resultsi[j]l), " ", np.round(results2([j],9))
# recover the solution in the original variables
greekvar=modellM2.getVars() [ml:ITER+m1]
greekval=np.zeros(ITER)
for i in range(ITER):
greekval[i] = greekvar[i] .X
xhat=XZ0greekval
print ("x**** Reality check: recover the optimal x found by decomposition.")
print (MHkkxk Its objective value is:", np.round(c@xhat,9))
print(" ")
print ("***x*x Compare with LP value calculated without decomposition:",np.
—~round(modelQ.0bjval,9))

if ITER > ITERphasel:
fig, ax = plt.subplots(figsize=(10,10))
ax.plot(resultsi [ITERphaseI-1:ITER], results2[ITERphaseI-1:ITER])
ax.plot(resultsi [ITERphaseI-1:ITER], modelQ.0bjval*np.

—ones (ITER-ITERphaseI+1))

ax.set(xlabel='iteration', ylabel='LP objective value')
ax.set_xticks(ticks=resultsl [ITERphaseI-1:ITER], minor=True)
ax.grid()
plt.show()

print(" ")

print ("#**** Number of basic-feasible solutions generated:", xgen)

print (" ")

print ("#**** Number of basic-feasible rays generated:'", zgen)

*xxxx Solve as one big LP --- for comparison purposes

Using license file C:\Users\jonxlee\gurobi.lic

Academic license - for non-commercial use only - expires 2021-06-28
Discarded solution information

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 250 rows, 100 columns and 21957 nonzeros

Model fingerprint: Oxdbeae9d79

Coefficient statistics:



Matrix range [1e-02, 5e-02]
Objective range [2e-02, 5e-01]
Bounds range [0e+00, 0e+00]
RHS range [3e-18, 1e+00]
Presolve time: 0.01s
Presolved: 250 rows, 100 columns, 21957 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -4.2122000e+31  1.799360e+33  4.212200e+01 Os
211  -5.6119344e+00  0.000000e+00  0.000000e+00 Os

Solved in 211 iterations and 0.04 seconds
Optimal objective -5.611934358e+00

*xxxx Proceed to Decomposition

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Model fingerprint: 0x3£5107c¢3

Coefficient statistics:

Matrix range [le-02, 2e-02]
Objective range [0e+00, 0e+00]
Bounds range [0e+00, 0e+00]
RHS range [3e-18, 8e-02]

Presolve time: 0.01s
Presolved: 50 rows, 100 columns, 3992 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 0.0000000e+00  1.271200e+01  0.000000e+00 Os
74 0.0000000e+00  0.000000e+00  0.000000e+00 Os

Solved in 74 iterations and 0.02 seconds
Optimal objective 0.000000000e+00
*xx** Phase I needed

*xxxx Currently in Phase 1 . Iteration number 1

*x¥kkk Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 201 rows, 202 columns and 602 nonzeros

Model fingerprint: 0x29dd1lf2e

Coefficient statistics:

Matrix range [2e-04, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e-03, 1e+00]

Presolve removed 201 rows and 202 columns
Presolve time: 0.00s



Presolve: All rows and columns removed
Iteration Objective Primal Inf. Dual Inf. Time
0 1.1729795e-02 0.000000e+00 0.000000e+00 Os

Solved in O iterations and 0.01 seconds
Optimal objective 1.172979517e-02

*xxxx Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [le-02, 2e-02]

Objective range [1e-02, 5e-02]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]
Iteration Objective Primal Inf. Dual Inf. Time
0 -5.6353739e+30  5.468380e+31 5.635374e+00 Os

Solved in 112 iterations and 0.02 seconds
Unbounded model

*%kkk Gurobi Subproblem solve status: 5
**xx* reduced cost= -2.901800799665117

*xxxx Currently in Phase 1 . Iteration number 2

*x*xk Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 201 rows, 203 columns and 802 nonzeros

Coefficient statistics:

Matrix range [2e-04, 2e+01]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e-03, 1e+00]
Iteration Objective Primal Inf. Dual Inf. Time
0 -3.6272510e+29 1.241503e+32  3.627251e-01 Os
4 9.9780072e-03  0.000000e+00  0.000000e+00 Os

Solved in 4 iterations and 0.01 seconds
Optimal objective 9.978007225e-03

*¥*x*x*x Solving Subproblem LP...
Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 50 rows, 100 columns and 3992 nonzeros
Coefficient statistics:
Matrix range [1e-02, 2e-02]
Objective range [5e-04, 5e-02]



Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]
Iteration Objective Primal Inf. Dual Inf. Time
0 -7.8114845e+30  0.000000e+00  3.124594e+01 Os

Solved in O iterations and 0.01 seconds
Unbounded model

*%%%*k Gurobi Subproblem solve status: 5
***xx* reduced cost= -7.811484455526056

xxxx% Currently in Phase 1 . Iteration number 3

*x*kkk Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 201 rows, 204 columns and 1002 nonzeros

Coefficient statistics:

Matrix range [2e-04, 4e+03]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e-03, 1e+00]
Iteration Objective Primal Inf. Dual Inf. Time
0 -6.1027222e+28  3.537703e+30 6.102722e-02 Os
1 9.9592529e-03  0.000000e+00  0.000000e+00 Os

Solved in 1 iterations and 0.01 seconds
Optimal objective 9.959252945e-03

*xxxx Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [1e-02, 2e-02]

Objective range [4e-04, 5e-02]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]
Iteration Objective Primal Inf. Dual Inf. Time
0 -1.5688147e+30 0.000000e+00  6.275259e+00 Os

Solved in O iterations and 0.01 seconds
Unbounded model

*xxxx Gurobi Subproblem solve status: 5
***xx* reduced cost= -1.5688147347327117

*xxxx Currently in Phase 1 . Iteration number 4

xx*x*x*x Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads



Optimize a model with 201 rows, 205 columns and 1202 nonzeros
Coefficient statistics:

Matrix range [2e-04, 4e+03]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e-03, 1e+00]
Iteration Objective Primal Inf. Dual Inf. Time
0 -2.4512730e+28 1.720162e+30 2.451273e-02 Os
1 9.9527969e-03  0.000000e+00  0.000000e+00 Os

Solved in 1 iterations and 0.01 seconds
Optimal objective 9.952796903e-03

xxxxx Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [le-02, 2e-02]

Objective range [3e-04, 5e-02]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]
Iteration Objective Primal Inf. Dual Inf. Time
0 -1.8823585e+30 5.931674e+34  7.529434e+00 Os

Solved in 77 iterations and 0.02 seconds
Unbounded model

*%kkx Gurobi Subproblem solve status: 5
*x*xx* reduced cost= -0.1282899745878549

****xk Currently in Phase 1 . Iteration number 30

*x*x*xk Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 201 rows, 231 columns and 6413 nonzeros

Coefficient statistics:

Matrix range [9e-05, 4e+03]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]

RHS range [2e-03, 1e+00]



Iteration Objective Primal Inf. Dual Inf. Time
0 -2.0978320e+29  3.303289e+30  2.097832e-01 Os
14 0.0000000e+00  0.000000e+00  0.000000e+00 Os

Solved in 14 iterations and 0.01 seconds
Optimal objective 0.000000000e+00
*xx** Phase I succeeded

LP iter LP val

0 0.011729795

1 0.009978007

2 0.009959253

3 0.009952797

4 0.009540816

5 0.009489317

6 0.009481518

7 0.009476081

8 0.009465465

9 0.009463658

10 0.009004181
11 0.008995995
12 0.008995994
13 0.008988601
14 0.007936928
15 0.007613552
16 0.006527189
17 0.005966359
18 0.005907057
19 0.005898025
20 0.005897971
21 0.00589796

22 0.005852746
23 0.005221517
24 0.000209534
25 0.00019799

26 0.000195965
27 0.000166034
28 5.2869e-05

29 0.0
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Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 201 rows, 230 columns and 6212 nonzeros

Model fingerprint: Oxbfffefb2

Coefficient statistics:

Matrix range [9e-05, 4e+03]
Objective range [3e+00, 4e+04]
Bounds range [0e+00, 0e+00]
RHS range [2e-03, 1e+00]

Presolve removed 55 rows and 200 columns
Presolve time: 0.01s
Presolved: 146 rows, 30 columns, 4362 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -5.5652233e+02 5.013465e+02  0.000000e+00 Os



12 -3.3379333e+00  0.000000e+00  0.000000e+00 Os

Solved in 12 iterations and 0.02 seconds
Optimal objective -3.337933307e+00

xxxxx Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [le-02, 2e-02]

Objective range [3e-03, 1e+00]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]
Iteration Objective Primal Inf. Dual Inf. Time
0 -2.0980458e+32 2.924022e+32 2.098046e+02 Os

Solved in 90 iterations and 0.03 seconds
Unbounded model

*%kkk Gurobi Subproblem solve status: 5
***xx* reduced cost= -1800.0217056372962

*xxxx Currently in Phase 2 . Iteration number 31

*x**kk Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 201 rows, 231 columns and 6412 nonzeros

Coefficient statistics:

Matrix range [9e-05, 4e+03]
Objective range [3e+00, 4e+04]
Bounds range [0e+00, 0e+00]
RHS range [2e-03, 1e+00]
Iteration Objective Primal Inf. Dual Inf. Time
0 -1.1250136e+32 5.581086e+31 1.125014e+02 Os
8 -3.3480733e+00  0.000000e+00  0.000000e+00 Os

Solved in 8 iterations and 0.01 seconds
Optimal objective -3.348073342e+00

*x*x*x*x Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [1e-02, 2e-02]
Objective range [2e-02, 1e+00]
Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]



Iteration Objective Primal Inf. Dual Inf. Time
0 -2.7250898e+32  2.809026e+35  2.725090e+02 Os

Solved in 71 iterations and 0.02 seconds
Unbounded model

*%%%*% Gurobi Subproblem solve status: 5
**xxx* reduced cost= -246.04454754170908

*xxx% Currently in Phase 2 . Iteration number 32

*x¥kkk Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 201 rows, 232 columns and 6612 nonzeros

Coefficient statistics:

Matrix range [9e-05, 4e+03]
Objective range [3e+00, 4e+04]
Bounds range [0e+00, 0e+00]
RHS range [2e-03, 1e+00]
Iteration Objective Primal Inf. Dual Inf. Time
0 -6.1511137e+31 3.580951e+31 6.151114e+01 Os
8 -3.3880381e+00  0.000000e+00  0.000000e+00 Os

Solved in 8 iterations and 0.01 seconds
Optimal objective -3.388038102e+00

*xxxx Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [1e-02, 2e-02]

Objective range [2e-03, 2e+00]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]
Iteration Objective Primal Inf. Dual Inf. Time
0 -1.0613914e+32  0.000000e+00 1.061391e+02 Os

Solved in O iterations and 0.01 seconds
Unbounded model

*xxxx Gurobi Subproblem solve status: 5
*%%*%*% reduced cost= -106.13913722403913

**%*xk Currently in Phase 2 . Iteration number 33

*x*x*xk Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 201 rows, 233 columns and 6812 nonzeros

Coefficient statistics:



Matrix range [9e-05, 4e+03]
Objective range [3e+00, 4e+04]

Bounds range [0e+00, 0e+00]
RHS range [2e-03, 1e+00]
Iteration Objective Primal Inf. Dual Inf. Time
0 -1.6584240e+30 2.503175e+30 1.658424e+00 Os
1 -3.3883900e+00  0.000000e+00  0.000000e+00 Os

Solved in 1 iterations and 0.01 seconds
Optimal objective -3.388390009e+00

xxxxx Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [le-02, 2e-02]

Objective range [4e-03, 2e+00]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]
Iteration Objective Primal Inf. Dual Inf. Time
0 -7.6231335e+31 6.759435e+34  7.623134e+01 Os

Solved in 53 iterations and 0.01 seconds
Unbounded model

*%kkx Gurobi Subproblem solve status: 5
sx*xx* reduced cost= -3.3419183360137676

*xxx% Currently in Phase 2 . Iteration number 402

*x¥kkk Solving Main LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 201 rows, 602 columns and 80835 nonzeros

Coefficient statistics:

Matrix range [le-06, 9e+04]

Objective range [3e+00, 9e+05]

Bounds range [0e+00, 0e+00]

RHS range [2e-03, 1e+00]
Iteration Objective Primal Inf. Dual Inf. Time
0 -4.5864905e+27  2.680439e+30 4.586490e-03 Os

12 -5.6119344e+00 0.000000e+00  0.000000e+00 Os



Solved in 12 iterations and 0.02 seconds
Optimal objective -5.611934358e+00

**¥*x*%*x Solving Subproblem LP...

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 50 rows, 100 columns and 3992 nonzeros

Coefficient statistics:

Matrix range [1e-02, 2e-02]

Objective range [2e-03, 6e-01]

Bounds range [0e+00, 0e+00]

RHS range [3e-18, 8e-02]
Iteration Objective Primal Inf. Dual Inf. Time
0 -1.0996308e+00  0.000000e+00  0.000000e+00 Os

Solved in O iterations and 0.01 seconds
Optimal objective -1.099630761e+00

*xxxx Gurobi Subproblem solve status: 2
**%kkk gigma= -1.0996307611968144

*xxxk reduced cost= -2.886579864025407e-15
*x*xk No more improving columns for Main
*x*x*x* Phase II finished

*x%x%*% Phase II objective -5.611934358015313

LP iter LP val

29 -3.337933307
30 -3.348073342
31 -3.388038102
32 -3.388390009
33 -3.389532342
34 -3.390085393
35 -3.392675548
36 -3.396216294
37 -3.397063091
38 -3.397096763
39 -3.397100656
40 -3.399325683
41 -3.399516444
42 -3.403298253
43 -3.404126621
44 -3.404216698
45 -3.408199788
46 -3.427992646
47 -3.428853489
43 -3.428915332
49 -3.430004579

50 -3.434533448



51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

.434578091
.435023422
.438204684
.464591303
.482106764
.490610142
.490932305
.501570718
.502282783
.502396016
.50255097

.502559503
.50255961

.550147616
.551899073
.5561960331
.551969951
.551974273
.552126815
.5563304142
.559367309
.585686828
.591579287
.592097794
.592099263
.592106236
.592166783
.592167111
.592260832
.596953678
.647858835
.648322636
.648823441
.648949993
.652426765
.652868367
.653271957
.653291285
.653357576
.653383423
.653470503
.65349083

.653526157
.653531168
.653533577
.653739817
.653741749
.653769089



99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

-3.653784884

.6563787571
.653789803
.656379341

.653852793
.654009584
.658634444
.6568687275
.65871201

.668712204
.658814114
.65885407

.658860826
.658860967
.65925888

.659299173
.659304181
.659369008
.65937317

.659571116
.659591636
.662523932
.663623479
.690648603
.691647171
.691920471
.692219149
.692226784
.692227667
.69224252

.692262591
.692263321
.692280862
.69685685

.696945712
.696946859
.696994546
.698976225
.70918171

.710432304
.712114723
.712283978
. 712284316
.712505779
. 712494631
.712494764
. 712494922
. 712495897



147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

. 712496908
. 712496927
.712496993
. 712638233
.712645067
. 712645222
.713073043
. 714257511
.714998487
.715013073
. 715280387
.717719529
. 728594886
. 729083702
.72921576

. 729824162
.744162516
. 746749996
.77967583

. 781225932
.781468171
. 781479385
. 781487726
. 782062008
. 788729529
.972231302
.975517219
.975557851
.975558722
.976423564
.986095797
.258082375
.2595856372
.260048104
.260287583
.260424079
.260467422
.260468281
.260522077
.260526128
.263706418
.277614201
.277885813
.409400967
.424280887
.43257427

.43473067

.435537701



195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

.438437738
.438457408
.438590262
.438593435
.440856242
.440958833
.440996679
.440997645
.440998211
.442302585
.45460487

.455341733
.455354671
.456026423
.456211001
.461281822
.469839164
.496361478
.497160806
.498120496
.498468493
.499015464
.499138373
.500065923
.500068586
.50008956

.500082092
.500070377
.500071096
.501173911
.501176912
.501399887
.513787235
.519158959
.521410536
.52145703

.52172698

.521732696
.523604918
.527626001
.528792498
.528966128
.529101321
.52910312

.529107607
.52912014

.529120881
.530701735



243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

.537670426
.543712819
.543776577
.543786349
.543843701
.552229795
.562895646
.566556559
.569979955
.570164845
.576497467
.631658441
.631948951
.63426494

.642431515
.647712706
.650776229
. 717520442
.725017172
. 750776754
.763716149
. 772849804
.822353057
.859152509
.887218111
.900392368
.905109795
.913457592
.950264681
.958831288
.967308956
.968549952
.970439999
.973099586
.97367364

.08041008

.103975181
.153945381
.16617746

.18042044

.306079391
.325503408
.3399856574
.340005494
.340323655
.345260503
.346623869
.357443756



291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

.359033035
.3569033066
.359033826
.360459676
.365110233
.3655715563
.365658649
.366202814
.368920728
.369390306
.377392993
.381176444
.396181952
.400643055
.401286148
.407390193
.418281105
.431235833
.440408885
442246726
.44295267

.44666539

.447514456
.447957295
.450120679
.460446866
.462434463
.466522923
.466532795
.471456194
.472807558
.473479812
.474296092
.476893335
.47831061

.47844126

.478470585
.479990089
.480742118
.483757895
.488471497
.489758502
.489930413
.492845731
.505524974
.506461579
.513494955
.51693178



339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

.524576569
.526151153
.527584181
.530487668
.533704324
.563799806

.549260521
.560891687
.552268263
.560029132
.567472165
.569508323
.570169625
.574374383
.57526478

.575745448
.57853413

.579312536
.579508418
.58225834

.582374154
.584805914
.584957514
.585573266
.586538647
.587187136
.589449889
.590118166
.592863859
.594737779
.595086263
.595586761
.596032289
.599250818
.59996404

.600327908
.601578421
.602616138
.603063199
.60359981

.603868388
.606775329
.606968038
.607355782
.607960439
.608439572
.609511875
.609740755



387 -5.610708933

388 -5.61093085

389 -5.610956345
390 -5.61118588

391 -5.611261848
392 -5.611352693
393 -5.611479619
394 -5.61151479

395 -5.611620436
396 -5.611689574
397 -5.611735221
398 -5.611799514
399 -5.611839283
400 -5.611860504
401 -5.611934358

xxxxx Reality check: recover the optimal x found by decomposition.
KKKk K Its objective value is: -5.611934358

xxxxx Compare with LP value calculated without decomposition: -5.611934358
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*xxkk Number of basic-feasible solutions generated: 235
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A.9 SubgradProj.ipynb



[1]:

SubgradProj

June 25, 2021

Subgradient Optimization with Python/Gurobi

Apply Subgradient Optimization to:

z = min c'x Q)
Ex>h
Ax=1b
x>0,

relaxing Ex > h in the Lagrangian.

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License
Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

hreset -f

import numpy as np
#/matplotlib notebook
Jmatplotlib inline



import matplotlib.pyplot as plt
import gurobipy as gp
from gurobipy import GRB

class StopExecution(Exception):
def _render_traceback_(self):
pass

[2]: MAXIT = 500
HarmonicStepSize = False # If you choose False, then you have to guess ay
< 'target value'
GUESS = -5.6 # but don't guess a target wvalue higher than z!!
=44

SmartInitialization = True # Set 'False' to inttialize with y=0.

# generate a random example

n = 100 # number of variables

ml = 200 # number of equations to relazx

m2 = 50 # number of equations to keep

np.random.seed(25)  # change the seed for a differemt example

E=0.01#np.random.randint (-5,high=5,size=(m1,n)) .astype(float) #np.random.
—randn(m1,nt)

A=0.01*np.random.randint (-2,high=3,size=(m2,n)) .astype(float) #np.random.
—randn (m2,nt)

# choose the right-hand sides so that { will be feastible
xfeas=0.1#np.random.randint (0,high=5,size=n) .astype(float)
h=E.dot(xfeas) - 0.l*np.random.randint(0,high=10,size=ml).astype(float)
b=A.dot (xfeas)

# choose the objective function so that the dual of § will be feastible

yfeas=0.1#np.random.randint(0,high=5,size=ml) .astype(float)

pifeas=0.1*np.random.randint(-5,high=5,size=m2) .astype(float)

c=np.transpose(E)Q@yfeas + np.transpose(A)Opifeas + O.l*np.random.
—randint (0,high=1,size=n) .astype(float)

[3]: # solve the problem as one big LP --- for comparison purposes
modelQ = gp.Model()
modelQ.reset ()
x = modelQ.addMVar (n)
objective = modelQ.setObjective(cOx, GRB.MINIMIZE)
constraintsQl = modelQ.addConstr (E@x >= h)
constraintsQ2 = model(.addConstr (AQ@x == b)
modelQ.optimize ()
if modelQ.status !'= GRB.Status.OPTIMAL:
print ("***x*x Gurobi solve status:", modelQ.status)
print ("x**x* This is a problem. Model Q does not have an optimal solution")



raise StopExecution

Using license file C:\Users\jonxlee\gurobi.lic

Academic license - for non-commercial use only - expires 2021-06-28
Discarded solution information

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 250 rows, 100 columns and 21957 nonzeros

Model fingerprint: Oxdb5eae979

Coefficient statistics:

Matrix range [1e-02, 5e-02]
Objective range [2e-02, 5e-01]
Bounds range [0e+00, 0e+00]
RHS range [3e-18, 1e+00]

Presolve time: 0.01s
Presolved: 250 rows, 100 columns, 21957 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -4.2122000e+31  1.799360e+33  4.212200e+01 Os
211  -5.6119344e+00  0.000000e+00  0.000000e+00 Os

Solved in 211 iterations and 0.03 seconds
Optimal objective -5.611934358e+00

[4]:  # 'SmartInitialization' chooses the initial y so that the dual of the Lagrangiam,
=Subproblem has (pi=0 as)
# a feasible solution, thus making sure that the inittal Lagrangian Subproblem,
—18 not unbounded.
if SmartInitialization:
modelY = gp.Model()
modelY.reset ()
yvar = modelY.addMVar (m1)
constraintsY = modelY.addConstr(np.transpose(E)Qyvar <= c)
modelY.optimize ()
y=yvar.X
else: y=np.zeros(ml)

# initialization
k=1
bestlb = -np.Inf

# set up the Lagrangian relazration



[5]:

modell = gp.Model()

modelL.reset ()

modell.setParam('OutputFlag', 0)  # quiet the Gurobi output
x = modellL.addMVar (n)

constraintsL = modelL.addConstr(AQ0x == b)

objective = modell.setObjective((c-y.dot(E))0x, GRB.MINIMIZE)

modelL.optimize ()
if modell.status != GRB.Status.OPTIMAL:
print ("#**** Gurobi solve status:", modelL.status)
print ("#**** This is a problem. Lagrangian Subproblem is unbounded.")
print ("#***x The algorithm cannot work with this starting y.")
raise StopExecution
v = y.dot(h) + modelL.Objval
resultsi=[0]
results2=[v]
bestlb = v

Discarded solution information

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 100 rows, 200 columns and 17965 nonzeros

Model fingerprint: 0x64395335

Coefficient statistics:

Matrix range [le-02, 5e-02]
Objective range [0e+00, 0e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e-02, 5e-01]

Presolve time: 0.01s
Presolved: 100 rows, 200 columns, 17965 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 0.0000000e+00  1.684880e+02  0.000000e+00 Os
79 0.0000000e+00  0.000000e+00  0.000000e+00 Os

Solved in 79 iterations and 0.02 seconds
Optimal objective 0.000000000e+00
Discarded solution information

while k < MAXIT:

k+=1

g =h - E.dot(x.X)

if HarmonicStepSize:
stepsize = 1/k # Thts one converges in theory, but @t s,

—slow.

else: # Instead, you can make a GUESS at the maw

stepsize = (GUESS - v)/(gQg) # and then use this 'Polyak' stepsize



y = np.maximum(y + stepsize*g, np.zeros(ml)) # The projection keeps y>=0.
objective = modell.setObjective((c-y.dot(E))0x, GRB.MINIMIZE)
modell.optimize ()
if modell.status !'= GRB.Status.OPTIMAL:
k-=1
print ("***x*x Gurobi solve status:", GRB.OPTIMAL)
print ("#**** This is a problem. Lagrangian Subproblem is unbounded.")
print ("#*+*** The algorithm cannot continue after k =",k)
break
v = y.dot(h) + modelL.Objval
bestlb = np.max((bestlb,v))
resultsl=np.append(resultsl,k-1)
results2=np.append (results2,v)

print ("s**x* z:"  modelQ.0bjval)
print ("x**x* first lower bound:", results2[0])
print ("x**** best lower bound:", bestlb)

*xxxx z: -5.6119343580156312
*xxxx first lower bound: -35.97487470911054
*xxxx best lower bound: -6.309166317427381

[6]: if k > 1:
fig, ax = plt.subplots(figsize=(10,10))
ax.plot(resultsl, results2)
ax.plot(resultsl, modelQ.0Objval*np.ones(k))
ax.set(xlabel='iteration', ylabel='v(y)')
ax.grid()
plt.show()
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A.10 CSP.ipynb



[1]:

CSP
June 25, 2021

Cutting-Stock model: column generation with Python/Gurobi

min e’x

Ax —t=d
x,t >0,

where the columns of A are cutting patterns, and d is the demand vector.

Notes: * In this implementaion, we never delete generated columns (i.e., patterns) * Knapsack
subproblems solved by DP or ILP (Gurobi) or both [user options] * At the end, we solve the ILP
over all columns generated, aiming to improve on the rounded-up LP solution from column-
generation

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License
Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

hreset -f

import numpy as np
#/matplotlib notebook
Jmatplotlib inline



import matplotlib.pyplot as plt

import seaborn as sns; sns.set(); sns.set_style("whitegrid"); color_list = sms.
—color_palette("muted")

import gurobipy as gp

from gurobipy import GRB

class StopExecution(Exception):
def _render_traceback_(self):
pass

[2]: # set at least ome of the following two parameters to 'True'’
# if both are set to 'True’, then DP overwrites what IP calculates (but we cang,
~sttll compare)
IP=True # set True for solution of knapsack problem by IP (i.e., Gurobi)
DP=True # set True for solution of knapsack problem by DP
resultsi=[]
results2=[]
ITER=0

[3]: | # Some toy data
W=110
m=5; M=range (m)
Widths=np.array([70.0,40.0,55.0,25.0,35.0])
Demands=np.array([205,2321,143,1089,117])

[4]:  # set up the Main LP model
LP = gp.Model()
LP.setParam('OutputFlag', 0) #comment out to see more Gurobi output
minsum = LP.setObjective (0, GRB.MINIMIZE)
s=LP.addVars(m)
for i in M:
LP.addConstr(-s[i] == Demands[il)
LP.update()
demandconstraints=LP.getConstrs()
# wnitialize with elementary patterns
nPAT=0
A = np.zeros((m,m))
for i in M:
nPAT += 1
A[i,nPAT-1] = np.floor(W/Widths[i])
newcol=gp.Column(A[:,i] ,demandconstraints)
LP.addVar(obj=1.0, column=newcol)
LP.update()

Warning: your license will expire in 3 days



Using license file C:\Users\jonxlee\gurobi.lic
Academic license - for non-commercial use only - expires 2021-06-28

The Knapsack model for generating an improving column

m
max Zyiai
i=1
m
Zwiai < W
i=1

a; > 0 and integer, fori =1,...m.

[6]:  # set up for solving the knapsack subproblems: either by DP or IP (or both)

#
y=np.zeros (m)
if IP==True:

# set up the Subproblem ILP knapsack model for Gurobz
Knap = gp.Model()
Knap.setParam('QOutputFlag', 0) #comment out to see more Gurobi output
a = Knap.addMVar (m,vtype=GRB.INTEGER)
knapsackobjective = Knap.setObjective(y©a, GRB.MAXIMIZE)
knapsackconstraint = Knap.addConstr(WidthsQa <= W)
if DP==True:
# DP for knapsack. Local notation: maz c'z, s.t. a'z <= b, z>=0 wnt.
def Knapf(a,b,c):
m=np.size(a)
f=np.zeros(b+1)
i=-np.ones(b+1,dtype=int)
=-np.Inf*np.ones(m)
for s in range(min(a),b+1):
for j in range(m):
if a[jl<=s: v[jl=c[j]l + fls-aljl]
else: v[jl=-np.Inf
f[s]=max(v)
i[s]=np.argmax(v) # save the index j where the maz occured for,
~that s
#
x=np.zeros(m)
s=b+0
while s>=min(a):
x[i[s]] += 1
s=s-alil[s]]
return f[b], x



[6]: # fancy output function
def fancyoutput():
plt.figure()
print ("x**** Patterns / Widths:", Widths, "Stock roll width:", W)
Aw=np.zeros((m,nPAT))
for i in M:
for j in range(nPAT):
Awli,jl=A[1,j]l*Widths[i]
Aw=np.c_[ Aw, np.zeros(m) ]
wlist=[''] * m
for i in M:
wlist[i]='w'+str(i)
K=np.diagflat(Widths)
Bw=np.c_[Aw,K]
T = np.arange(Bw.shape[1])
for i in range(Bw.shape[0]):
plt.bar(T, Bwl[i],
tick_label = np.concatenate((np.arange(nPAT),np.array([' ']),wlist)),
bottom = np.sum(Bw[:i], axis = 0),
color = color_list[i % len(color_list)])
plt.show()

print (Mxkkxk A:')
print(4)

[7]: while True:

print (n ||)
print ("#**** Solving LP...")
ITER += 1

LP.optimize()

if LP.status !'= GRB.Status.0OPTIMAL:
print ("x**** Gurobi solve status:", LP.status)
print ("x***x* This is a problem. LP does not have an optimal solution")
raise StopExecution

resultsl=np.append(resultsl,ITER-1)

results2=np.append(results2,LP.0bjval)

print (Mxkkxk A:')

print(4)

print (Mxkkxk x:M")

x = LP.getVars()

for j in range(nPAT):

print("x[",j,"]1=",round (x[j+m] .X,4))

for i in M:
y[i]=demandconstraints[i] .Pi

print ("x**x* y':" np.round(y,4))

#

if IP==True:



knapsackobjective = Knap.setObjective(y©a, GRB.MAXIMIZE)
print(" ")
print ("#**** Solving Knapsack...")
Knap.optimize()
if Knap.status !'= GRB.Status.OPTIMAL:
print ("#**** Gurobi solve status:", Knap.status)
print ("x**x* This is a problem. Knapsack IP does not have an optimaly
—solution")
raise StopExecution
print ("x**** Gurobi Knap objval:",Knap.Objval)
reducedcost = 1.0-Knap.0Objval
pattern=a.X+np.zeros(m)

#

if DP==True:
results = Knapf (Widths.astype(int),W,y)
print ("x***x* DP Knap objval: ",results[0])
reducedcost = 1.0-results[0]
pattern=results[1]

#

if reducedcost < -0.0001:
print ("x***x* Column:",pattern)
A=np.c_[ A, pattern ]
nPAT += 1
newcol=gp.Column(pattern,demandconstraints)
LP.addVar(obj=1.0, column=newcol)

else:
print ("x**** No more improving columns")
break

print ("#**** Pattern generation complete. Main LP solved to optimality.")
print ("x***x* Total number of patterns generated: ", nPAT)
print (Mxkkkk A:')
print(4)
print (Mxkkxk x:M)
x = LP.getVars()
for j in range(nPAT):
print("x[",j,"]1=",round (x[j+m] .X,4))
print ("x**** Optimal LP objective value:", LP.Objval)
print ("x***x* rounds up to: ", np.ceil(LP.0Objval), "(lower bound on rolls,
wneeded)")
print ("***x*x x rounded up:")
for j in range(nPAT):
print("x[",j,"]=",np.ceil(x[j+m] .X))
print ("#**** Number of rolls used:", sum(np.ceil(x[j+m].X) for j in range(nPAT)))
fancyoutput ()
fig, ax = plt.subplots(figsize=(10, 10))
ax.plot(resultsl1[0:ITER], results2[0:ITER])



ax.plot(resultsl, np.ceil(LP.0Objval)*np.ones(ITER))

ax.plot(resultsl, sum(np.ceil(x[j+m].X) for j in range(nPAT))#*np.ones({ITER))
ax.set(xlabel='LP iteration', ylabel='LP objective value')
ax.set_xticks(ticks=resultsl, minor=False)

ax.grid()

plt.show()

print("LP iter", " LP val")

for j in range(ITER):

print(np.int(resultsi[jl), " ", np.round(results2[j],4))
print(“‘@

*xxxx Solving LP...

*okkkk A

[[1. 0. 0. 0. 0.]
[0. 2. 0. 0. 0.]
[0. 0. 2. 0. 0.]
[0. 0. 0. 4. 0.]
[0. 0. 0. 0. 3.]1]

*okkkk X :

x[ 0 1= 205.0

x[ 1 J= 1160.5

x[ 2 1=171.5

x[ 3 J= 272.25

x[ 4 1= 39.0

*ekkk vl [1, 0.5 0.5 0.25 0.3333]

**¥*k*xk Solving Knapsack...
**%%%*k Gurobi Knap objval: 1.
xx**xx DP Knap objval: 1
k%kkx Column: [1. 1. 0. 0. 0.]

*xx*x*x Solving LP...

kokokkkx A

[[1. 0. 0. 0. 0. 1.]
[0. 2. 0. 0. 0. 1.]
[0. 0. 2. 0. 0. 0.]
[0. 0. 0. 4. 0. 0.]
[0. 0. 0. 0. 3. 0.]1]

kkkkk X

x[ 0 1= 0.0

x[ 1 ]= 1058.0

x[ 21=171.5

x[ 3 1= 272.25

x[ 4 1= 39.0

x[ 5 1= 205.0



%k kk %k

XKk kX%
kK k ok k

y': [0.5 0.5 0.5 0.25  0.3333]

Solving Knapsack...
Gurobi Knap objval: 1.25

*xxxx%x DP Knap objval: 1.25
x*k*k%x Column: [0. 2. 0. 1. 0.]
*x*kkk Solving LP...
kkkkk A
[[1. 0. 0. 0. 0. 1. 0.]
[0. 2. 0. 0. 0. 1. 2.]
[0. 0. 2. 0. 0. 0. 0.]
[0. 0. 0. 4. 0. 0. 1.]
[0. 0. 0. 0. 3. 0. 0.1]
kkkkk X
x[ 01=0.0
x[1]1=0.0
x[ 2 1=171.5
x[ 3]1=7.75
x[ 4 1= 39.0
x[ 5 ]= 205.0
x[ 6 1= 1058.0

xkxxx y': [0.625 0.375 0.5 0.25 0.3333]

*okokkk
*okokkk
$okokkk
*okokkk

Solving Knapsack...

Gurobi Knap objval: 1.0833333333333333
DP Knap objval: 1.0833333333333333
Column: [0. 0. 0. 3. 1.]

*xxx*x Solving LP...

kokokkk A

[([1. 0. 0. 0. 0. 1. 0. 0.]
[0. 2. 0. 0. 0. 1. 2. 0.]
[0. 0. 2. 0. 0. 0. 0. 0.]
[0. 0. 0. 4. 0. 0. 1. 3.]
[0. 0. 0. 0. 3. 0. 0. 1.]]

kkkkk x:

x[ 0 1= 0.0

x[ 1 1=0.0

x[ 21=71.5

x[ 3 1= 0.0

x[ 4 ]= 35.5556

x[ 5 1= 205.0

x[ 6 J= 1058.0

x[ 7 1= 10.3333

xkxx*x y': [0.6111 0.3889 0.5 0.2222 0.3333]

*x*¥*xk Solving Knapsack...



*xxx*x Gurobi Knap objval: 1.0555555555555556
**x*xx DP Knap objval: 1.055555555565565556
%%k Column: [0. 1. 0. 0. 2.]

*xxkk Solving LP...

kokkkk A

[[1. 0. 0. 0. 0. 1. 0. 0. 0.]
[0. 2. 0. 0. 0. 1. 2. 0. 1.]
[0. 0. 2. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 4. 0. 0. 1. 3. 0.]
[0. 0. 0. 0. 3. 0. 0. 1. 2.7]

kkkkk X

x[ 0 1= 0.0

x[ 1 1= 0.0

x[ 21=71.5

x[ 3 1=0.0

x[ 4 1= 0.0

x[ 5 1= 205.0

x[ 6 ]= 1033.3846

x[ 7 1= 18.5385

x[ 8 1= 49.2308
*x*kxx*x y': [0.6154 0.3846 0.5 0.2308 0.3077]

*xxxx Solving Knapsack. ..

*xxxx Gurobi Knap objval: 1.0

*x**xk DP Knap objval: 1.0

*x*%*xk No more improving columns

*xxxx Pattern generation complete. Main LP solved to optimality.
*x*k*x*k Total number of patterns generated: 9

kokkkx A

[[1. 0. 0. 0. 0. 1. 0. 0. 0.]
[0. 2. 0. 0. 0. 1. 2. 0. 1.]
[0. 0. 2. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 4. 0. 0. 1. 3. 0.]
[0. 0. 0. 0. 3. 0. 0. 1. 2.7]

kkkkk X

x[ 01=0.0

x[1]1=0.0

x[ 2 1=71.5

x[ 3]1=0.0

x[ 4 1= 0.0

x[ 5 ]= 205.0

x[ 6 1= 1033.3846

x[ 7 1= 18.5385

x[ 8 1= 49.2308

*x*x*xk Optimal LP objective value: 1377.6538461538462
**%xx* rounds up to: 1378.0 (lower bound on rolls needed)
*¥k*k*x x rounded up:



x[ 0 1= 0.0
x[ 1 1=0.0
x[ 2 1=72.0
x[ 3]=0.0
x[ 4 ]1=0.0
x[ 5 ]= 205.0
x[ 6 ]J= 1034.0
x[ 7 ]=19.0
x[ 8 1= 50.0

*xx*x* Number of rolls used: 1380.0
xkkxxx Patterns / Widths: [70. 40. 55. 25. 35.] Stock roll width: 110

2 3 4 5 6 T 8 wil owl w2 wd wd

100

80

60

40

20

0
0 1

kokkkkx A

[[1. 0. 0. 0. 0. 1. 0. 0. 0.]
[0. 2. 0. 0. 0. 1. 2. 0. 1.]
[0. 0. 2. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 4. 0. 0. 1. 3. 0.]
[0. 0. 0. 0. 3. 0. 0. 1. 2.7]



1750

1700
1650
o 1600
5
2
£
E
= 1550
=]
5
1500
1450
1400
0 1 2 3 4
LP iteration
LP iter LP val
0 1748.25
1 1645.75
2 1381.25
3 1380.3889
4 1377.6538

[8]: print(" ")
print ("x**x* Now solve the ILP over all patterns generated to try and get a;,
—better soution...")
for var in LP.getVars():
var.vtype=GRB.INTEGER



LP.optimize()
if LP.status !'= GRB.Status.0OPTIMAL:
print ("x**** Gurobi solve status:", LP.status)
print ("x***x* This is a problem. Hit enter to continue")
input ()
print ("Mxkkxk x:")
for j in range(nPAT):
print("x[",j,"]1=",round(x[j+m] .X+0,4))
print ("#**** Number of rolls used:", sum(np.ceil(x[j+m].X) for j in range(nPAT)))
fancyoutput ()

*xxx*x Now solve the ILP over all patterns generated to try and get a better
soution...

*kkkk X
x[ 0 1= 0.0
x[ 1 1=0.0
x[ 2 1= 72.0
x[ 31=1.0
x[4]=1.0
x[ 5 ]= 205.0
x[ 6 1= 1034.0
x[ 7 1=17.0
x[ 8 1= 49.0

*x*x* Number of rolls used: 1379.0
**xxx* Patterns / Widths: [70. 40. 55. 25. 35.] Stock roll width: 110

100 I
80
60
40
001 2 3 4

3 6 7 8 wil owl w2 wd wd

=



xkkkk A

[[1.

1. 0. 0. 0.1

0. 0. 0. 0.

1.]

2. 0.
[0. 0. 2. 0. 0. 0. 0. 0. 0.]

1.

[0. 2. 0. 0. O.

3. 0.]

1.

[0. 0. 0. 4. 0. 0.

2.]1]

1.

[0. 0. 0. 0. 3. 0. 0.
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Uncapacitated-Facility-Location models with Python/Gurobi

The base model that we work with is

min Y fiyi+ ) ) ciij

ieM ieMjeN
Z Xij = 1, fOI‘j € N;
icM

xi]'ZO, fOI'iEM,jEN;
0 <y; <1, andinteger, fori € M.

Notes: * We make two solves, first with the weak forcing constraints
in]- <ny; fori € M,
jEN
and then with the strong forcing constraints
Xij Sy,‘, fori e M, je N.
* Random instances with m facilities and n customers. Play with m,n and possibly with demand
and scale factor in f.

References: * Jon Lee, “A First Course in Linear Optimization”, Fourth Edition (Version 4.0), Reex
Press, 2013-20.

MIT License
Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL



THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

[1]: Yreset -f
import numpy as np
#/matplotlib notebook
Jmatplotlib inline
import matplotlib.pyplot as plt
from scipy.spatial import Voromnoi, voronoi_plot_2d
import gurobipy as gp
from gurobipy import GRB

class StopExecution(Exception):
def _render_traceback_(self):
pass

[2]: # parameters
m=75 # number of facilities
n=4000 # number of customers
M=list(range(0,m))
N=list(range(0,n))
np.random.seed(10) # set seed to be able to repeat the same random data
solvelLPsOnly=False # set True to only solve LP relazations

# random locations in the unit square
fPx=np.random.rand (m)
fPy=np.random.rand (m)
cPx=np.random.rand (n)
cPy=np.random.rand (n)

# cost data
demand=10*np.random.rand(n) # these will be 'baked' into the shipping costs
£=200*np.random.rand(m) # facility costs
c=np.zeros((m,n))
for i in range(O,m):
for j in range(0O,n):
cli,jl=demand[j]*np.sqrt(np.square(fPx[i]-cPx[j])+np.
—square(fPy[i]l-cPy[j1))
# = demand times per-unit transportation costs (distance)

[3]: # set up the weak model
model = gp.Model()
model.reset ()
#model.setParam('Threads’, 1) # uncomment to ask for 1 thread



[4]:

if solvelPsOnly==True:
y=model . addVars (m,ub=1.0)
else:
y=model .addVars (m,vtype=GRB.BINARY)
x=model .addVars(m,n)
model.setObjective (sum(f[i]l*y[i] for i in M) + sum(sum(c[i,jl#*x[i,j] for i in M),
~for j in N), GRB.MINIMIZE)
demandconstraints = model.addConstrs((sum(x[i,j] for i in M) == 1 for j in N))
weakforceconstraints = model.addConstrs((sum(x[i,j] for j in N) <= nxy[i] for i,
~in M))

Using license file C:\Users\jonxlee\gurobi.lic
Academic license - for non-commercial use only - expires 2021-08-26
Discarded solution information

# solve the weak model

model . optimize ()

if model.status !'= GRB.Status.OPTIMAL:
print ("#**** Gurobi solve status:", model.status)
print ("x**x* This is a problem. Model does not have an optimal solution")
raise StopExecution

for i in M: print("y[",i,"]=",round(y[i].X,4))

ytot=round(sum (y[i].X for i in M))

print("y total =",ytot)

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 4075 rows, 300075 columns and 600075 nonzeros

Model fingerprint: Oxfc880efe

Variable types: 300000 continuous, 75 integer (75 binary)

Coefficient statistics:

Matrix range [1e+00, 4e+03]
Objective range [3e-04, 2e+02]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]

Found heuristic solution: objective 17544.136375
Presolve time: 0.64s

Presolved: 4075 rows, 300075 columns, 600075 nonzeros
Variable types: 300000 continuous, 75 integer (75 binary)

Root relaxation: objective 1.229656e+03, 597 iterations, 0.08 seconds

Nodes [ Current Node I Objective Bounds I Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 1229.65553 0 75 17544.1364 1229.65553 93.0% - 1s
H 0 0 8324.6715293 1229.65553 85.2% - 1s
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O O OO O O OO OO OO OO OO OO OO O OO OO OO OO OO0 O OO0 OO0ODODOOOOOOOOO

1391.

1558.

1753.
1795.
1795.

1921.

2074.

2185.
2186.
2297.
2392.
2392.
2493.

46920

72879

61158
39708
39708

17962

95883

58189
20338
87203
45333
51043
21367

O

O O O O O O

4673.5132638
4419.8133391
4368.5310262
70 4368.53103
4063.1409361
72 4063.14094
4037.6172963
73 4037.61730
72 4037.61730
72 4037.61730
3862.9299415
3799.1987178
3668.9696315
70 3668.96963
3635.6910048
3535.7603537
3444 .3909501
3328.5221017
3252.1304013
71 3252.13040
3190.2555864
3085.7395476
3083.1364083
3067.7311804
3066.7687696
2958.9643419
2946.5871499
2921.4140285
2842.0681101
2802.9809811
2792.0637739
2779.7296742
2763.1285431
2760.9864797
2745.1240381
2735.8698677
2727.9013440
2714.4940747
2714.1367239
2708.3760559
2704.6679993
71 2704.66800
68 2704.66800
67 2704.66800
66 2704.66800
66 2704.66800
66 2704.66800
2689.2832904

1229.
1229.
1229.
1391.
1391.
1558.
1558.
1753.
1795.
1795.
1795.
1795.
1795.
1921.
1921.
1921.
1921.
1921.
1921.
2074.
2074 .
2074.
2074.
2074.
2074.
2074.
2074 .
2074.
2074 .
2074.
2074.
2074.
2074.
2074.
2074.
2074.
2074.
2074.
2074.
2074 .
2074.
2185.
2186.
2207.
2392.
2392.
2493.
2493.

65553
65553
65553
46920
46920
72879
72879
61158
39708
39708
39708
39708
39708
17962
17962
17962
17962
17962
17962
95883
95883
95883
95883
95883
95883
95883
95883
95883
95883
95883
95883
95883
95883
95883
95883
95883
95883
95883
95883
95883
95883
58189
20338
87203
45333
51043
21367
21367

73.7%
72.2%
71.9%
68.1%
65.8%
61.6%
61.4Y
56.6%
55.5%
55.5%
53.5%
52.7%
51.1%
47 .6%
47.2Y%
45.7%
44 .2y,
42.3Y,
40.9Y%
36.2%
35.0%
32.8%
32.7%
32.4Y%
32.3Y%
29.9%
29.6%
29.0%
27.0%
26.0%
25.7%
25.4Y%
24.9%
24.8Y,
24 .4,
24.2%
23.9%
23.6%
23.5%
23.4Y
23.3%
19.2%
19.2%
15.0%
11.5%
11.5%
7.82%
7.29%

1s
2s
2s
4s
7s
Ts
13s
13s
15s
15s
27s
27s
27s
27s
42s
42s
42s
42s
42s
42s
57s
57s
57s
57s
57s
57s
57s
57s
57s
57s
57s
57s
57s
57s
57s
57s
57s
57s
57s
b57s
57s
58s
58s
75s
90s
91s
109s
116s



0 0 2504.48700 0 62 2689.28329 2504.48700 6.87% - 116s
0 0 2504.50603 0 62 2689.28329 2504.50603 6.87% - 117s
H 0 0 2683.5226224 2504.50603 6.67% - 126s
H 0 0 2671.7945495 2504.50603 6.26Y% - 126s
H 0 0 2670.9772972 2504.50603 6.23% - 126s
H 0 0 2666.7624678 2504.50603 6.08% - 126s
0 0 2532.96155 0 43 2666.76247 2532.96155 5.02% - 126s
H 0 0 2565.6289184 2532.96155 1.27Y% - 127s
0 0 2533.15328 0 37 2565.62892 2533.15328 1.27% - 128s
0 0 2537.72352 0 21 2565.62892 2537.72352 1.09% - 130s
H 0 0 2538.4262791 2537.72352 0.03% - 131s
0 0 cutoff 0 2538.42628 2538.42628 0.00% - 132s

Cutting planes:
Implied bound: 11142

Explored 1 nodes (14761 simplex iterations) in 133.17 seconds
Thread count was 8 (of 8 available processors)

Solution count 10: 2538.43 2565.63 2666.76 ... 2745.12

Optimal solution found (tolerance 1.00e-04)

Best objective 2.538426279075e+03, best bound 2.538426279075e+03, gap 0.0000%
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[6]:

y[ 73 1= 0.0
y[ 74 1= 0.0
y total = 19

# set up and solve the strong model

model.reset ()

model.remove (weakforceconstraints)

strongforceconstraints = model.addConstrs((x[i,j] <= y[i] for i in M for j iny

<N))

model . optimize ()

if model.status !'= GRB.Status.OPTIMAL:
print ("#**** Gurobi solve status:", model.status)
print ("x**** This is a problem. Model does not have an optimal solution")
raise StopExecution

for i in M: print("y[",i,"]=",round(y[i].X,4))

print("y total =", round(sum (y[i].X for i in M),4))

Discarded solution information

Gurobi Optimizer version 9.1.0 build v9.1.0rcO (win64)

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 304000 rows, 300075 columns and 900000 nonzeros

Model fingerprint: Oxdcd5646b

Variable types: 300000 continuous, 75 integer (75 binary)

Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [3e-04, 2e+02]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]

Found heuristic solution: objective 17544.136375
Presolve time: 1.02s

Presolved: 304000 rows, 300075 columns, 900000 nonzeros
Variable types: 300000 continuous, 75 integer (75 binary)

Deterministic concurrent LP optimizer: primal and dual simplex
Showing first log only...

Warning: Markowitz tolerance tightened to 0.5
Concurrent spin time: 0.00s

Solved with dual simplex
Root relaxation: objective 2.538426e+03, 11556 iterations, 1.09 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

* 0 0 0 2538.4262791 2538.42628 0.00% - 2s



Explored O nodes (11556 simplex iterations) in 2.80 seconds
Thread count was 8 (of 8 available processors)

Solution count 2: 2538.43 17544.1

Optimal solution found (tolerance 1.00e-04)
Best objective 2.538426279075e+03, best bound 2.538426279075e+03, gap 0.0000%

y[L 0 1= -0.0
y[ 1 1= -0.0
y[L 2 1= -0.0
y[ 3 1= -0.0
y[ 4 1= -0.0
y[ 5 1= -0.0
y[L 6 1= -0.0
y[L 7 1= -0.0
y[ 8 1= -0.0
yL91=1.0
y[ 10 1= -0.0
y[ 11 ]J= -0.0
y[ 12 1= -0.0
y[ 13 1= 1.0
y[ 14 1= -0.0
y[ 15 1= -0.0
y[ 16 1= -0.0
y[ 17 1= -0.0
y[ 18 1= 1.0
y[ 19 1= 1.0
y[ 20 1= 1.0
y[ 21 1= 1.0
y[ 22 1= -0.0
y[ 23 1= 1.0
y[ 24 = -0.0
y[ 25 1= -0.0
y[ 26 1= 1.0
y[ 27 1= -0.0
y[ 28 J= -0.0
y[ 29 1= -0.0
y[ 30 ]= -0.0
y[ 31 1= -0.0
y[ 32 1= -0.0
y[ 33 1=1.0
y[ 34 J= -0.0
y[ 35 1= -0.0
y[ 36 1= 1.0
y[ 37 1= -0.0
y[ 38 1= 1.0
y[ 39 1= 1.0

y[ 40 1= -0.0



[6]:

y[
yl
yl
yL
yl
yL
yl
yL
yl
yL
yl
yL
yl
yl
yl
yL
yl
yL
yl
yL
yl
yL
yl
yL
yl
yL
yl
y
yl
yl
yL
yl
yL
yl

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

1= -0.0
1=1.0
1= -0.0
= -0.0
1= -0.0
1=1.0
1= -0.0
1= -0.0
1= -0.0
1= -0.0
1= -0.0
1=1.0
1= -0.0
1=1.0
1= -0.0
1= -0.0
1= -0.0
1= -0.0
1= -0.0
= -0.0
1=1.0
= -0.0
1= -0.0
= -0.0
1= -0.0
= -0.0
1=1.0
= -0.0
1=1.0
1= -0.0
= -0.0
= -0.0
1= -0.0
1= -0.0

y total = 19.0

# plot the results

#

if solvelPsOnly == False:
fxopen=np.zeros(ytot)
fyopen=np.zeros(ytot)
count=-1

for i in M:

if round(y[i].X)==1:
count += 1
fxopen[count]=£fPx[i]
fyopen[count]=fPy[i]



# Get current figure size

fig_size = plt.rcParams["figure.figsize"]
#print ("Current size:", fig_stize)
fig_size[0] = 10

fig_size[1] = 10
plt.rcParams["figure.figsize"] = fig_size

# vornot dtagram for the open factlities
points=np.column_stack((fxopen,fyopen))

vor = Voronoi(points)

fig = voronoi_plot_2d(vor,show_vertices=False)

# open facilities are blue, closed failities are opaque red,

# wornot cells capture the customers assigned to each open facility
plt.scatter(cPx,cPy,s=1)

plt.scatter(fPx,fPy,c='red',alpha=0.3)
plt.scatter(fxopen,fyopen,c='blue')
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A2 pure_gomory_example_1.ipynb



[1]:

[2]:

pure_gomory_example_1

June 25, 2021

Example 1: Gomory cutting-planes for dual-form pure-integer problem
Dz

For dual-form pure-integer problem

max y'b (D7)
y/A S Cl
yezZ".

Notes: * A and ¢ MUST be integer

Reference: * Qi He, Jon Lee. Another pedagogy for pure-integer Gomory. RAIRO — Operations
Research, 51:189-197, 2017.

MIT License
Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

hreset -f
Jrun ./pivot_tools.ipynb

pivot_tools loaded: pivot_perturb, pivot_algebra, N, pivot_ratios, pivot_swap,
pivot_plot, pure_gomory, mixed_gomory, dual_plot



[3]: A = sym.Matrix(([7, 8,-1, 1, 3],
(5, 6, -1, 2, 11))
m = A.shape[0]
n = A. shape[1]
c = sym.Matrix([126, 141, -10, 5, 67])
b = sym.Matrix([26, 19])

beta = [0,1]

eta = list(set(list(range(n)))-set(beta))
A_beta = copy.copy(AL:,betal)

A_eta = copy.copy(A[:,etal)

c_beta = copy.copy(c[beta,0])

c_eta = copy.copy(cleta,0])

—can perturb later
[4]: A

[4]:[7 8 -1 1 3]

56 -1 21
[5]: ¢
141
—10
5
67

[6]: | #pivot_perturb()
[71: ©

i
[8]: pivot_algebra()

pivot_algebra() done

[9]: xbar_beta

H
2

[10]: cbar_eta

[10]:

NI~ Q1



[11]: ybar

[11]: [ 51
2
2

[12]: dual_plot()

—i
-,

constraints
constraint O
constraint 1
coflstraint 2 ' -12 =
constraint 3

constraint 4

[13]: pure_gomory(1)

*x*%*x PROBABLY WANT TO APPLY pivot_algebra()! *x*x

[14]: pivot_algebra()

pivot_algebra() done

Yo



[15]: A

(1557 g —1 1 3 4
56 -1 2 1 3
[16]: ¢
[16]: '126'
141
~10
5
67
—70—
[17]: eta
110, 3, 4, 5]

[18]: cbar_eta

[18]:

—NI= Q1

_1
2

[19]: pivot_ratios(3)

5

X+ AzZ:

1
N
1

NI
N[>

> o oo |

[20]: pivot_swap(3,1)

swap accepted -- new partition:

eta: [2, 3, 4, 1]
beta: [0, 5]
*xx MUST APPLY pivot_algebra()! * kK

[21]: pivot_algebra()

pivot_algebra() done



[22]:

[22]:

[23]:

[23]:

[24]:

[25]:

[26]:

[27]:

[27]:

[28]:

[28]:

[29]:

xbar_beta

g

cbar_eta

-3
1

pivot_ratios(2)

4

X+ AzZ:
[2 — 5A]
0
0
0
A
|8A 4 3]

pivot_swap(2,0)

swap accepted -- new partition:

eta: [2, 3, 0, 1]
beta: [4, 5]
*x*x MUST APPLY pivot_algebra()! **x

pivot_algebra()

pivot_algebra() done

xbar_beta

cbar_eta

—aiw N B3

ybar



[29]: 131
s
5

[30]: dual_plot()

—i
-,

constraints
constraint O
constraint 1
constraint 2
constraint 3
constraint 4

constraint 5

[31]: pure_gomory(0)
**%*x PROBABLY WANT TO APPLY pivot_algebra()! **x
[32]: pure_gomory(1)

**xx PROBABLY WANT TO APPLY pivot_algebra()! *x

[33]: pivot_algebra()

¥o



pivot_algebra() done
[34]: cbar_eta

[34]:

1
—ailw N olh3
1

Q1IN =

[35]: pivot_ratios(5)

B
gl

> o |

[36]: pivot_swap(5,0)

swap accepted -- new partition:

eta: [2, 3, 0, 1, 6, 4]
beta: [7, 5]
*x*xx MUST APPLY pivot_algebra()! **x

[37]: pivot_algebra()

pivot_algebra() done

[38]: xbar_beta

§

[39]: cbar_eta

[39]:



N = = = O Ul

[40]: ybar
o

[41]: dual_plot()

constraints

constraint 0
constraint 1
constraint 2
constraint 3
constraint 4
constraint 5
constraint &

constraint 7

2 —

-1 =

-1z -




[42]: dual_plot(.1)

constraints

constraint O
constraint 1
constraint 2
constraint 3
constraint 4
constraint 5
constraint 6

constraint 7

¥1

¥o
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A.13 pure_gomory_example_2.ipynb



[1]:

[2]:

pure_gomory_example_2

June 25, 2021

Example 2: Gomory cutting-planes for dual-form pure-integer problem
Dz

For dual-form pure-integer problem

max y'b (D7)
y/A S Cl
yezZ".

Notes: * A and ¢ MUST be integer

Reference: * Qi He, Jon Lee. Another pedagogy for pure-integer Gomory. RAIRO — Operations
Research, 51:189-197, 2017.

MIT License
Copyright (c) 2020 Jon Lee

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

hreset -f
Jrun ./pivot_tools.ipynb

pivot_tools loaded: pivot_perturb, pivot_algebra, pivot_ratios, pivot_swap,
pivot_plot, pure_gomory, dual_plot



[3]:

[4]:
[4] :

[6]:
[6]:

[6]:

[7]:
[7]:

[8l:

[9]:

k=3

A = sym.Matrix(([2xk, -2xk, 0],
(1, 1, -11)N

m = A.shape[0]

n = A. shape[1]

c = sym.Matrix([2*k, O, 11)

b = sym.Matrix([0,1]1)

beta = [0,1]

eta = list(set(list(range(n)))-set(beta))
A_beta = copy.copy(A[:,betal)

A_eta = copy.copy(A[:,etal)

c_beta = copy.copy(c[beta,0])

c_eta = copy.copy(cleta,0])

—can perturdb later

6 —6 0
1 1 -1

o

#pivot_perturd ()
b

i

1
pivot_algebra()

pivot_algebra() done

dual_plot (2%k+1)



[10]:

[10]:

[11]:

[12]:

[13]:

T 1 T T 1

-5 -5 - -3 -2
constraints

= constraint O

— cpnstmiptl | . .

— gonstraint 2

ybar

1

2

i
pure_gomory (0)

*x*%+x PROBABLY WANT TO APPLY pivot_algebra()! xx*x

pivot_algebra()

pivot_algebra() done

dual_plot()



constraints

[14]: cbar_eta

[14]: 4 1]

Nl

constraint O
constraint 1
constraint 2

constraint 3

[15]: pivot_ratios(1l)

¥o



[16]:

[17]:

[18]:

[18]:

[19]:

[19]:

[20]:

pivot_swap(l,1)

swap accepted -- new partition:

eta: [2, 1]
beta: [0, 3]
*x*x MUST APPLY pivot_algebra()! **x

pivot_algebra()

pivot_algebra() done

cbar_eta

& 1]

xbar_beta

32
6
11

dual_plot()



[21]:

[21]:

[22]:

[23]:

constraints

ybar

H

constraint O
constraint 1
cgnstraint 2

constraint 3

pure_gomory (1)

*x*%*x PROBABLY WANT TO APPLY pivot_algebra()! *x*x

dual_plot()

—
=

¥o



[24] :

[25]:

[25]:

[26]:

—
=

constraints

constraint O

constraint 1

constraint 2

cgnstraint 3 .

constraint 4

pivot_algebra()

pivot_algebra() done

cbar_eta

[4_

pivot_ratios(2)

i

X+ AZ:

—_

-4

=
—
»—\lo‘
—

¥o



[27]:

[28]:

[29]:

[29]:

[30]:

[30]:

[31]:

H
=
o o |

6
11

> |
=k

pivot_swap(2,0)

swap accepted -- new partition:

eta: [2, 1, 0]
beta: [4, 3]
*xx MUST APPLY pivot_algebra()! *k%

pivot_algebra()

pivot_algebra() done

cbar_eta

]

xbar_beta

b

dual_plot()

33

Ullco



[32]:

[32]:

[33]:

[34]:

constramits

ybar

H

constraint O
constraint 1
constraint 2
constraint 3

constraint 4

pure_gomory (0)

**x PROBABLY WANT TO APPLY pivot_algebra()! =*x

dual_plot()

¥o



[35]:

[36]:

[36]:

[37]:

pivot_

constraints

constaint O
constraint 1
constraint 2
constraint 3
constraint 4

constraint 5

algebra()

pivot_algebra() done

cbar_e

3

[6]18)

pivot_

g

X+ AZ:

ta

8 2

5 _3}
ratios(3)

¥o



[38]:

[39]:

[40]:

[40]:

[41]:

[41]:

[42]:

[42]:

[43]:

rO OO

E28
5

1

>

A

pivot_swap(3,1)

swap accepted -- new partition:

eta: [2, 1, 0, 3]
beta: [4, 5]
**%x MUST APPLY pivot_algebra()! **x

pivot_algebra()

pivot_algebra() done

cbar_eta

xbar_beta

b

ybar

:

dual_plot()



[44]:

[45]:

[46] :

[46] :

[47]:

constraints

constraint O
constraint 1
constraint 2
constraint 3
constraint 4

constraint 5

pure_gomory (0)
%% PROBABLY WANT TO

pivot_algebra()

pivot_algebra() done

cbar_eta

311} -y

pivot_ratios(4)

APPLY pivot_algebra()! =*x

¥o



[48]: pivot_swap(4,1)

swap accepted -- new partition:

eta: [2, 1, 0, 3, 5]
beta: [4, 6]
*xx MUST APPLY pivot_algebra()! *k %

[49]: pivot_algebra()

pivot_algebra() done
[50]: cbar_eta

[51]: xbar_beta

o
[52]: ybar
[52]: r2

3

H

[63]: pure_gomory(0)

*x*%*x PROBABLY WANT TO APPLY pivot_algebra()! *x*x

[54]: pivot_algebra()

pivot_algebra() done

[65]: cbar_eta

[65]:
p20i3 4

QWIN



[56]: pivot_ratios(5)

[67]: pivot_swap(5,1)

swap accepted -- new partition:

eta: [2, 1, 0, 3, 5, 6]
beta: [4, 7]
**%x MUST APPLY pivot_algebra()! **x

[68]: pivot_algebra()

pivot_algebra() done
[69]: cbar_eta

B9y 23 2 1]

[60]: pivot_ratios(2)

OO O > >

1—4A
0
0
3A

[61]: pivot_swap(2,0)

swap accepted -- new partition:



eta: [2, 1, 4, 3, 5, 6]
beta: [0, 7]
**xx MUST APPLY pivot_algebra()! **x

[62]: pivot_algebra()

pivot_algebra() done
[63]: cbar_eta

[63]:
[

N1
[eS]

1 9 3
3 2 1 2

]

[64]: xbar_beta

[64]: [éll}

4

[65]: dual_plot()



[66]:

[66]:

[67]:

[68]:

[69]:

¥1

wonstraints . 15 .
constraint O
constraint 1
constraint 2 I
constraint 3
constraint 4
constraint 5 Uk
constraint 6

ERSEEEE

constraint 7

ybar

3

H

2
pure_gomory (1)

*x*%*x PROBABLY WANT TO APPLY pivot_algebra()! *x*x

pivot_algebra()

pivot_algebra() done

dual_plot()

¥o



¥1

L

constraints
constraint O

constraint 1
constraint 2
constraint 3
constraint 4
constraint 5
constraint &
constraint 7

ERSREERY

constraint 8

[70]: cbar_eta

[70]: [ 3

N1
N[—

NIV
NI
INI)
Nl
| —

[71]: pivot_ratios(6)

1

X+ AZ:



[72]:

[73]:

[74]:

[74]:

[75]:

TSN
NP

coocooco o |

31
1

s
> |

pivot_swap(6,1)

swap accepted -- new partition:

eta: [2, 1, 4, 3, 5, 6, 7]
beta: [0, 8]
*xx MUST APPLY pivot_algebra()! k%K

pivot_algebra()

pivot_algebra() done
cbar_eta

19 7 3 2
241 % 5 3 3]

dual_plot()



[76]:

[76]:

[771:

[78]:

[79]:

!
-1

oonstraints

constraint O
constraint 1
constraint 2
constraint 3
constraint 4
constraint 5

constraint &

AEREENN

constraint 7

constraint 8
o -

ybar

5

6

i
pure_gomory (0)

**x PROBABLY WANT TO APPLY pivot_algebra()! =*x

pivot_algebra()

pivot_algebra() done

cbar_eta

¥o



[79] 19 7
241 2 7

NI
WIN
NG
P

[80]: pivot_ratios(7)

[81]: pivot_swap(7,0)

swap accepted -- new partition:

eta: [2, 1, 4, 3, 5, 6, 7, 0]
beta: [9, 8]
**xx MUST APPLY pivot_algebra()! **x

[82]: pivot_algebra()

pivot_algebra() done
[83]: cbar_eta

B 11 o1 -1 21 -1 5]

[84] : xbar_beta

i

[85]: dual_plot()



r
-2

oonstraints

constraint 0
constraint 1
constraint 2
constraint 3
constraint 4
constaint 5
constraint &
constraint 7
constraint 8

constraint 9

[86]: pivot_ratios(6)

i

X+ AZ:

-1

Yo



[87]:

[88]:

[89]:

[89]:

[90]:

PN N eNoNoNo ol

1-3A
2A

pivot_swap(6,1)

swap accepted -- new partition:

eta: [2, 1, 4, 3, 5, 6, 8, 0]
beta: [9, 7]
**%x MUST APPLY pivot_algebra()! **x

pivot_algebra()

pivot_algebra() done

cbar_eta
[5 4 4 1 2 1 1 lQ]
3 3 3 3 3 3 3

dual_plot()



[91]:

[91]:

[92]:

[93]:

[94]:

constraints

ybar

i

constraint O
constraint 1
constraint 2
constraint 3
constraint 4
constraint 5
constraint &
constraint 7
constrAint 8

constraint 9

pure_gomory (1)

**x PROBABLY WANT TO APPLY pivot_algebra()! =*x

pivot_algebra()

pivot_algebra() done

cbar_eta

¥1

¥o



3 3 3

W=
w

1
3

w1

[95]: pivot_ratios(8)

:

Ny

DO OO OO >

WIN Gy
o |
G el

> |

[96]: pivot_swap(8,1)

swap accepted -- new partition:

eta: [2, 1, 4, 3, 5, 6, 8, 0, 7]
beta: [9, 10]
*x*xx MUST APPLY pivot_algebra()! **x

[97]: pivot_algebra()

pivot_algebra() done
[98]: cbar_eta

8t 6254310 2

[99]: xbar_beta

i

[100]: ybar

o

[101]: dual_plot()



r
-1

constraints

Y1

[

constraint 0 !

constraint 1

constraint 10

constraint 2

constraint 3

oofs trilk i, 1
constraint 5

constraint &

constraint 7

constraint 8

constraint 9
rri - _2 —

Yo
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End Notes

! “The reader will find no figures in this work. The methods which I set forth do not require either
constructions or geometrical or mechanical reasonings: but only algebraic operations, subject to a regular
and uniform rule of procedure.” — Joseph-Louis Lagrange, Preface to “Mécanique Analytique,” 1815.

2 “The testing of this hypothesis, however, will be postponed until it is programmed for an electronic
computer.” — Ailsa H. Land and Alison G. Doig (inventors of branch-and-bound), last line of: An
Automatic Method of Solving Discrete Programming Problems, Econometrica, 1960, Vol. 28, No. 3, pp.
497-520.

”ou

3“1 est facile de voir que...”, “il est facile de conclure que...”, etc. — Pierre-Simon Laplace, frequently
in “Traité de Mécanique Céleste.”

*“One would be able to draw thence well some corollaries that I omit for fear of boring you.” — Gabriel
Cramer, Letter to Nicolas Bernoulli, 21 May 1728. Translated from “Die Werke von Jakob Bernoulli,” by
R.J. Pulskamp.



https://en.wikipedia.org/wiki/M�canique_analytique

274 END NOTES

> “Two months after I made up the example, I lost the mental picture which produced it. I really regret
this, because a lot of people have asked me your question, and I can’t answer.” — Alan J. Hoffman, private
communication with ]. Lee, August, 1994.

¢ “Fourier hat sich selbst vielfach um Ungleichungen bemiiht, aber ohne erheblichen Erfolg.” — Gyula
Farkas, “Uber die Theorie der Einfachen Ungleichungen,” Journal fiir die Reine und Angewandte Mathematik,
vol. 124:1-27.

7“The particular geometry used in my thesis was in the dimension of the columns instead of the rows.
This column geometry gave me the insight that made me believe the Simplex Method would be a very
efficient solution technique for solving linear programs. This I proposed in the summer of 1947 and by
good luck it worked!” — George B. Dantzig, “Reminiscences about the origins of linear programming,”
Operations Research Letters vol. 1 (1981/82), no. 2, 43-48.

-
-

)

N



END NOTES 275

8”George would often call me in and talk about something on his mind. One day in around 1959,
he told me about a couple of problem areas: something that Ray Fulkerson worked on, something else
whose details I forget. In both cases, he was using a linear programming model and the simplex method
on a problem that had a tremendous amount of data. Dantzig in one case, Fulkerson in another, had
devised an ad hoc method of creating the data at the moment it was needed to fit into the problem. I
reflected on this problem for quite awhile. And then it suddenly occurred to me that they were all doing
the same thing! They were essentially solving a linear programming problem whose data - whose columns
- being an important part of the data, were too many to write down. But you could devise a procedure
for creating one when you needed it, and creating one that the simplex method would choose to work
with at that moment. Call it the column-generation method. The immediate, lovely looking application
was to the linear programming problem, in which you have a number of linear programming problems
connected only by a small number of constraints. That fit in beautifully with the pattern. It was a way
of decomposing such a problem. So we referred to it as the decomposition algorithm. And that rapidly
became very famous.” — Philip Wolfe, interviewed by Irv Lustig ~2003.

%“So they have this assortment of widths and quantities, which they are somehow supposed to make
out of all these ten-foot rolls. So that was called the cutting stock problem in the case of paper. So Paul
[Gilmore] and I got interested in that. We struck out (failed) first on some sort of a steel cutting problem,
but we seemed to have some grip on the paper thing, and we used to visit the paper mills to see what
they actually did. And I can tell you, paper mills are so impressive. I mean they throw a lot of junk in at
one end, like tree trunks or something that’s wood, and out the other end comes — swissssssh — paper! It’s
one damn long machine, like a hundred yards long. They smell a lot, too. We were quite successful. They
didn’t have computers; believe me, no computer in the place. So we helped the salesman to sell them the
first computer.” — Ralph E. Gomory, interviewed by William Thomas, New York City, July 19, 2010.
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10T spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision
processes. An interesting question is, Where did the name, dynamic programming, come from? The
1950s were not good years for mathematical research. We had a very interesting gentleman in Washington
named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the
word research. I'm not using the term lightly; I'm using it precisely. His face would suffuse, he would
turn red, and he would get violent if people used the term research in his presence. You can imagine
how he felt, then, about the term mathematical. The RAND Corporation was employed by the Air Force,
and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do something to shield Wilson
and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. What
title, what name, could I choose? In the first place I was interested in planning, in decision making, in
thinking. But planning, is not a good word for various reasons. I decided therefore to use the word
‘programming’. I wanted to get across the idea that this was dynamic, this was multistage, this was time-
varying I thought, lets kill two birds with one stone. Lets take a word that has an absolutely precise
meaning, namely dynamic, in the classical physical sense. It also has a very interesting property as an
adjective, and that is its impossible to use the word dynamic in a pejorative sense. Try thinking of some
combination that will possibly give it a pejorative meaning. It’s impossible. Thus, I thought dynamic
programming was a good name. It was something not even a Congressman could object to. So I used it as
an umbrella for my activities.” — Richard E. Bellman, “Eye of the Hurricane: An Autobiography,” 1984.

EYE OF THE HURRICANE

an autobiography

~ %
3
j il F
World Scientific f o

“Vielleicht noch mehr als der Berithrung der Menschheit mit der Natur verdankt die Graphentheorie
der Bertihrung der Menschen untereinander.” — Dénes Konig, “Theorie Der Endlichen Und Unendlichen
Graphen,” 1936.
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