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Abstract. We describe a syntactical proof-reconstruction approach to verifying derivations
generated by the automatic theorem prover Metis for classical, propositional logic. To verify
the derivations, we use Agda, a proof assistant for dependent type theory. We formalise in
Agda each inference rule of Metis reasoning, that is, we transform Metis derivations into Agda
proof-terms. In a future full-fledged integration of Agda with off-the-shelf automatic theorem
provers, proof-reconstruction shall be a necessary component.
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1 Introduction

An automatic theorem prover (henceforth ATP) is a program that intends to prove conjectures
from axioms and inference rules of some logical system. In the last decades, ATPS are quickly
becoming a key instrument in many disciplines and real applications (e.g., verifying a railway
interlocking system, an operating-system kernel, or a pseudo-random number generator). Since some
programming errors have been found in these programs (see, for example, [26, 6, 17]), researchers
and users from academia and industry have shown an increased interest in formally proving the
validity of ATPS’ results.

In order to give confidence to the users of the ATP, many of these systems have started to include
in their outputs the full derivations associated to the proved theorems. However, existing research
recognizes that in many cases these derivations encode non-trivial reasoning hard to reconstruct
and therefore hard to verify [32, 26].

Proof-reconstruction addresses this problem. Since many ATPS are poor-documented, this prob-
lem becomes a reverse engineering task to verify the prover reasoning. Usually, is the reconstruction
is made by another and not by the developers of the ATP. Therefore, the presentation of the
derivations generated by the prover plays an important role in proof-reconstruction.

To verify such automatically generated derivations by the prover, it is convenient to have them
in a consistent format, that is, a full script describing the derivation step-by-step with exhaustive
details and without ambiguities. For example, from a list of at least forty ATPSs for classical
propositional logic (henceforth CPL) —available from the Web service SystemOnTPTP of the TPTP
World®— just few of them show proofs when they find the conjecture of the problem is a theorem.

One approach to address the proof-reconstruction problem is proving each deduction of the
prover, the source system, with a formalization of the prover reasoning in a proof-assistant, the
target system. The target system is the proof-checker in charge of verifying the source system
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reasoning for each derivation. These proof-assistants allow us to formalize the logical system used
in the proofs, i.e., logical constants, axioms, inference rules, hypotheses, and theorems. A proof-
reconstruction tool provides such an integration, translating the derivation generated by the prover
into the formalism of the proof-assistant.

Previous studies have reported proof-reconstruction using proof-assistants based on higher-order
logic where the development is at a mature stage [31, 22, 23]. Another approaches has been proposed
for proof-reconstructing based on type theory in [4, 25, 26].

We describe a formal reconstruction of proofs generated by the Metis prover [20]—our source
system—in Martin-Lof type theory [29]. To do so, we only take into account the syntax rather
than the semantics of the subset of the Metis inference rules for the propositional logic fragment.
The Metis reasoning was formalized in Agda [42]—our target system—in two libraries [34, 36] and
we implemented a proof-reconstruction tool named Athena [35] written in Haskell that is able
to generate Agda proof-terms for Metis derivations. In the course of this work, we uncovered and
reported two programming errors in the ATP Metis: a bug® in the printing of the derivation and
a soundness bug® in the stripping of the goal.

This paper is organized in the following way: in Section 2, some limitations of type theory are
discussed from our proof-reconstruction point of view. In Section 3, we introduce the Metis prover.
In Section 4, we show our approach to reconstruct Metis derivations. Related work is described in
Section 5. Conclusions and suggestions for future work are presented in Section 6.

The source code accompanying this paper (programs, libraries, and examples) is available at
GitHub:

— The Athena program that translates proofs generated by Metis to Agda code: http://github.
com/jonaprieto/athena.

— The agda-prop library as a formalization in Agda for classical propositional logic: http://
github.com/jonaprieto/agda-prop.

— The agda-metis library as a formalization in Agda to justify Metis derivations of classical
propositional logic: http://github.com/jonaprieto/agda-prop.

The proof-reconstruction tool Athena was tested with GHC v8.6.5. Both libraries, agda-prop and
agda-metis were tested with Agda v2.6.0.1 and Agda standard library v1.1. Athena jointly with
agda-prop and agda-metis are able to reconstruct propositional proofs of Metis v2.4.20180810.
We successfully reconstructed eighty theorems in classical propositional logic from the TPTP collec-
tion [33] to test the developments and the formalization presented in this research.

2 Type Theory

Type theory is a formalism for the foundation of mathematics. It has become a key instrument to
study logic and proof theory, and follows the same basis of constructive mathematics where the
witnesses of a statement, the proofs, have a fundamental role as same as their statement.

Following the Curry-Howard correspondence (see, for example, [44]), a formula corresponds to a
type, and one proof of that formula is a term of the correspondent type. Therefore, inhabited types
are such formulas with proofs, they are theorems.

% Issue No. 2 at https://github.com/gilith/metis/issues/2
5 Issue No. 4 at https://github.com/gilith/metis/issues/4
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Type theory is a formal system with a syntax and a set of derivation rules. These rules enables
us to derive conclusions called judgments which can be seen as derivation trees [4]. Each term has
associated a derivation and we refer to these derivations as proof-terms.

Notation. We write the typing judgments as a : A to denote that the term a is of type A.

Type theory can be seen as typed A-calculus with dependent function types, evaluation of A-
terms also called normalization of the proof-terms, is a process of reductions with the system
inference rules. Therefore, the proof verification task becomes in type theory as verifying that the
proof-term has the correspondent type of the theorem. We refer to this process as type-checking.

This feature of type theory allow us to verify a proof generated by an ATP by reconstructing
its proof-term to type-check the proof. For such a purpose, we use a proof-assistant based on type
theory, Agda, to delegate this task as in [4]. Some limitations of the type theory point-of-view for
proof-reconstruction is described in Section 2.1 and Section 2.2.

2.1 Terminating functions

To reconstruct Metis inference rules in type theory, we observed that some rules or their inner
functions are implemented by general recursive functions (see the definition of these functions
in [9]).

Functions defined by a general recursion can not be directly translated in type theory since it
is not guaranteed that they terminate. For that reason, we follow the technique described in [3] to
avoid termination problems by modifying the recursive functions to be structurally recursive.

A recursive function is structurally recursive if it calls itself with only structurally smaller
arguments [1]. General recursive functions can sometimes be rewritten into structurally recursive
functions by using for instance, the bounded recursion technique or other methods as in [12, 1, 10].

The bounded recursion technique defines a new structural recursive function based on the general
recursive function by adding an argument. The new argument is the bound, a natural number given
by the function complexity. In other words, the added argument will represent the number of times
the function needs to call itself to get the expected outcome.

Notation. We define Prop for the type of propositions. A proposition is an expression of indivisible
propositional variables (e.g., symbols g, ¢1,...), and the logic constants: L, T, the binary con-
nectives (A, V, D), and the negation (—). We use the inductive definition for propositions presented
in [13]. The syntactical equality between two propositions ¢ and v is written using the symbol (=)
as ¢ = 1. This equality between propositions is precisely the Identity type ldprop(, %) in Martin-
Lof type theory. Therefore, it holds the reflexivity, symmetry and transitivity property for equality.
The type of natural numbers is called Nat, and it is defined as usual, i. e., zero and succ are its data
constructors. We use names and symbols for the arithmetic operations as usual (e.g., +, —, *). We
use syntax sugar for zero, succ, succ zero, ..., with the decimal representation 0, 1, 2, ... as well.

Hence, one approach to define a structural recursive function based on a general recursive
function fo : A — B is to formulate a new function f; : A — Nat — B where all of its recursive
calls are done with smaller values on its second argument [1].

Notation. In the latter definitions and theorems, we use a common notation in type theory,
pattern-matching [12] to define functions by cases on the inductive definition for the type of the
arguments.
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Example 1. Let us consider the following example to show the bounded recursion technique for
defining the uh function. This function is used for reconstructing a Metis inference rule in Sec-
tion 4.2.1.

uhg : Prop — Prop

uho (1 D (w2 D 3)) = uho ((1 A p2) D 3) (1)
uhg (¢1 D (w2 A w3)) = uhg (w1 D @2) Auhg (01 D ¥3)
uhg ¢ = .

In (1), the first two equations in the uhg function definition are not structurally recursive. As a
consequence, we could not use this function in Agda which would report a non-terminating error.
This happens because the formula used in the recursive calls are not subformulas of the input
formula in the function argument. Therefore, one way to define uhg in type theory is to define a
new function using a bounded recursion.

uhy : Prop — Nat — Prop

uh1 (¢1 D (p2 D p3)) (succ n) = uhy ((p1 Ap2) D ps) n
uhy (o1 D (p2 A ws)) (succ n) =uhy (¢1 D p2) nAuhy (91 D p3)n
uh; ¢ n = .

We bounded the recursion calls of the uhg function using its complexity measure. We refer to the
complexity measure of a function as the number of steps the function takes to finish. Since the uhg
function is recursive, we can define its complexity measure by defining a recursive function instead
of a closed formula for such a number. However, this function must to be structurally recursive
as well, and it can be defined by following the pattern-matching cases of its definition. Thus, the
complexity measure of the uhg function can be defined as follows.

uh¢p, : Prop — Nat

uherm (91 D (w2 D ¥3)) = uhem @3 + 2
uhem (01 D (02 A s)) = max (uhey, 92) (Uhem p3) +1
uhen, @ =0.

Finally, we are able to define the uh function which is the structural recursive definition of the
function uhg also suitable to use in Agda.

uh¢, : Prop — Prop
uh ¢ =uh; @ (uhem ©).

2.2 Intuitionistic logic

Type theory is foundation for constructive mathematics, and its internal language is the intuition-
istic logic. Proving propositions in this theory demands a witness construction for the proof. Tra-
ditionally, for example in classical logic, a witness is not always needed as we can prove arguments
by contraction, named reductio ad absurdum.
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To reconstruct proofs generated by Metis, we have formalized in type theory the classical
propositional logic in [34]. A briefly description of it is presented in [13]. In this formalization, we
have to assume the principle of excluded middle (henceforth PEM) as an axiom since Metis is a
prover for classical logic. Assuming PEM, we can justify refutation proofs by deriving from it the
reductio ad absurdum rule (henceforth RAA). The RAA rule is the formulation of the principle of
proof by contradiction, that is, a derivation of a contradiction, L, from the hypothesis = ¢, is a
derivation of ¢.

Notation. The LiST type is the usual inductive and parametric type for lists.

We formalize the syntactical consequence relation of CPL by an inductive family _F_ with two
indexes, a set of propositions (the premises) and a proposition (the conclusion), that is, I F ¢
represents that there is derivation with conclusion ¢ : Prop from the set of premises I : List Prop.
We implemented in [34] the syntactical consequence relation in a similar way as it was presented
in [11]. For that reason, we have included in Fig. 1 the valid inference rules: structural rules like
weaken, formation and elimination rules of the logical connectives and to reason classically, we add
the PEM axiom.

'y 'L

71“,90 F o assume mweaken TrET T-intro Fihp 1 -elim
Lok 1 I'kE—-op 'y 'k 't
——— - -intro - -elim A-intro
I'E=-¢yp I'=_1 I'EpAyY
I'EpA I'EpAN '+
# A-proji # A-proja S V-intro;
I'Foe I+ I'FoVvy
r=v . Iiok~y It~y ok
—— V-intros V-elim ——  D-intro
I'pvay LoV kEy I'EpDv
I'EpDv 'k ) - PEM
I'ro D-elim T'FoV-o

Fig. 1. Inference rules for classical propositional logic.

3 Metis Prover

Metis is an automatic theorem prover for first-order logic with equality developed by Hurd [20].
This prover is suitable for proof-reconstruction since it provides well-documented proofs to justify
its deduction steps from the basis of only six inference rules for first-order logic (see, for example,
[32, 16]). For the propositional fragment, Metis has three inference rules, see Fig. 2.
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axiom @1, ,Pn —  assume @
I'pi V-V, I'EpV-op

I'Eevep 'E=¢vay
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resolve ¢

Fig. 2. Metis inference rules for propositional logic.

3.1 Input language

The TPTP language is the input language to encode problems used by Metis. It includes the first-
order form (denoted by fof) and clause normal form (denoted by cnf) formats [39]. The TPTP
syntax® is a well-defined grammar to handle annotated formulas with the form:

language (name, role, formula).

where the language can be fof or cnf and the name serves to identify the formula within the
problem. Each annotated formula also assumes a role. Some roles frequently used are axiom,
conjecture, definition, plain and hypothesis. The reader can find the complete list in [39].

In the last field of the annotated formula we found the formula, a well-written expression using
the the constants $true and $false, the negation unary operator (~), and the binary connectives
(&, |, =>) that represent (T, L, =, A, V, D) respectively. To refer us to propositional variables, we
can use words composing by letters and numbers.

3.2 Output language

The TSTP language is an output language for derivations used by Metis and other ATPs [41]. A TSTP
derivation generated by Metis encodes a natural deduction proof using as valid deduction steps the
inference rules in Fig. 1. These derivations are directed acyclic graphs, trees of refutations. Each
node stands for an application of an inference rule to the formulas in the parent nodes. The leaves
in the tree represent formulas in the given TPTP input. Each node is labeled with a name of its
inference rule (e.g., canonicalize). Each edge in the tree links a premise with one conclusion.

Since Metis attempts to prove conjectures by refutation, and the root is the final derived formula
in these proof trees, we have at their roots the conclusion L. Such derivations are a list of annotated
formulas with the form:

language(name, role, formula, source [,useful info]).

The new field regarding the TPTP syntax is the source field that mainly intends to record the
inference rule of the deduction step. This field has the pattern

inference(rule, useful info, parents).

where the rule is the inference name, the next field includes supporting arguments to apply the
reasoning step, and the last field is a list of the parents nodes.

6 See the complete syntax grammar at http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF . html.
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For increasing the readability of this paper, we are not presenting these TSTP derivations using
the above description. Instead of it, we have adopted a customized TSTP syntax to keep as short
as possible the Metis derivations. For instance, we shortened some keywords, removed unnecessary
arguments, and replaced some symbols. The complete description of these customizations are showed
in Appendix A.

Example 2. We show in Fig. 3 the customized version of the Metis derivation of the theorem (2).
This derivation will be used in Section 4 to present the proof-reconstruction process.

r=aN@g=pFEVey=({@Nq (2)

fof (premise, axiom, (p D q) A (g D p)).

fof(goal, conjecture, (p V q) D (p A q)).

fof(sp, (p V @ D p, inf(strip, goal)).

fof(si, ((p V @ A p) D q, inf(strip, goal)).
fof(nego, = ((p V @) D p), inf(negate, sp)).

fof(ngo, (- pV @) A (= q V p), inf(canonicalize, premise)).
fof(ng1, = q V p, inf(conjunct, ngo)).

fof(np2, = p A (p V q), inf(canonicalize, negp)).
fof(nps, p V q, inf(conjunct, np2)).

fof(ngs, = p, inf(conjunct, ng2)).

fof(nos, q, inf(simplify, [ng3, no4l)).

cnf(roo, » q V p, inf(canonicalize, ng1)).

cnf(ro1, q, inf(canonicalize, nps)) .

cnf (ro2, p, inf(resolve, q, [ro1, rool)).

cnf(rp3, - p, inf(canonicalize, ngp4)).

cnf(ros, L, inf(resolve, p, [ro2, ros3l)).

fof(negi, = ((p V @ A p) D q, inf(negate, s1)).
fof(nip, = 9 A p A (p V @, inf(canonicalize, negi)).
fof(ni1, (- pV @ A (= qV p), inf(canonicalize, premise)).
fof(ni2, = p V q, inf(conjunct, nji1)).

fof(n13, L, inf(simplify, [nio, ni21)).

cnf(rig, L, inf(canonicalize, nj3)).

© o N o ¢ oA W N e

L N T
O © ® N O G A W N = O

N
)

Fig. 3. Customized Metis TSTP derivation of the theorem in (2).

3.3 Inference rules

We present the list of inference rules used by Metis in the TSTP derivations for propositional logic
in Table 1. We reconstruct these rules in Section 4 following the same order of this table.

In this table, strip is the first inference rule since is the first one in appearing in the TSTP
derivations. The other rules are sorted by a mix between their level of complexity of their main
purpose and their dependency with the reconstruction of other rules. For instance, the simplify rule
and the clausify rule need theorems developed for the reconstruction of the canonicalize rule.

Page 7 Compiled on 09/03,/2020 at 12:48 Noon



The canonicalize rule depends on the resolve reconstruction which depends on the reconstruction
of the conjunct rule.

An alert reader could also notice that the inference rules presented in Fig. 2 diverge from the
rules in aforementioned table. The former rules are implemented by the latter rules in the TSTP
derivations. For instance, as far as we know, in TSTP derivations, the axiom rule is implemented by
the rules canonicalize, clausify, conjunct, and simplify.

Table 1. Metis inference rules.

Rule Purpose Theorem number
strip Strip a goal into subgoals 7
conjunct Take a formula from a conjunction 10
canonicalize Normalize a formula 21
clausify Perform clausification 23
simplify Simplify definitions and theorems 26
resolve Apply one form of the resolution theorem 28

4 Proof-Reconstruction

In this section, we describe our approach to reconstruct proofs from CPL derivations generated
by Metis. This reconstruction consists of a translation from a source system to the target system.
The system of origin is the automatic theorem prover Metis and the target system is the proof-
assistant Agda. We choose Agda but another proof-assistant with the same support of type theory
and inductive types could be used (e.g. Coq).

4.1 Workflow

The overview of the proof-reconstruction is presented as a workflow in Fig. 4 following the same
basis of the proposed workflow presented in [38].

The process begins assuming that the user posses a TPTP valid file that encodes a CPL conjec-
ture. If this conjecture is a theorem, by means of Metis, we obtain a derivation in TSTP format of
a proof for this conjecture. Now, we use the Athena tool to generate the Agda file that corresponds
to the proof-term for such TSTP derivation. Athena parses and prunes the proof-tree of the TSTP
derivation by removing some redundancies and steps that do not contribute to prove the conjecture.
When the translation process finishes, we end up with a proof-term in an Agda file with the natural
deduction proof. In this file, we make calls to theorems and lemmas in the Agda libraries, agda-prop
(classical propositional logic) and agda-metis (propositional reasoning for Metis derivations).

Using Agda as the proof-checker, we type-check the proof-terms of the Agda file previous gener-
ated. If this type-checking success, the TSTP derivation generated by Metis will be correct module
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TPTP file Metis theorem | TSTP file
[————

(CPL problem) (prover) (derivation)
J}no theorem
da-meti
Agda file Athena tool aagg daa n;erolps
- - -
(proof-term) (translator) (dictionaries)

!

agda-metis
agda-prop Agda failure | Invalid
agda-stdlib > (type-checker) Agda file
(imports)
l success
Interface
Agda file

Fig. 4. Proof-reconstruction overview. The rectangles nodes represent text files. The rhombus nodes repre-
sent a process with two possible outcomes.

the Agda correctness and the proposed formalisation. In such a case, Agda will output an interface
file. Otherwise, Agda will report where the type-checking fails, if so, the failure must be investigated
by the user. The possible causes can be due to many factors: completeness issues in our Agda li-
braries for the Metis reasoning, bugs in the translation by Athena, bugs in Agda, printing errors of
the TSTP derivation by Metis or soundness bugs in the Metis reasoning.

In the remainder part of this section, we present a formal description of definitions and theorems
necessary to reconstruct Metis inference rules. Through this description, we refer to the lines in
the Metis derivation presented in Fig. 3 of the theorem in (2) to show examples of each rule.

4.2 Reconstructing Metis inference rules

In this section, we reconstruct each Metis inference rule from Table 1. We begin describing the
reconstruction of the strip inference rule since this rule is the only one that closely follows the
Metis source code. To reconstruct the other rules, we follow a pattern showed in Example 8.

Notation. The function name written in typewriter font refers to a Metis inference rule in the
TSTP derivations. The same function name written using sans serif font refers to our formalized
version to reconstruct the rule and formally implemented in [36]. To increase the readability for
functions and theorems, we use the convention Premise and Conclusion as synonyms of the Prop
type. The Premise type in the reconstructed rule definition refers to the argument in the TSTP
derivation, i.e. the input formula of the inference rule. A formula of Conclusion type refers to the
expected result of the rule found in the TSTP derivation.

Page 9 Compiled on 09/03,/2020 at 12:48 Noon



4.2.1 Strip. To prove a goal, Metis splits the goal into disjoint cases. This process produces a
list of new subgoals, the conjunction of these subgoals implies the goal. Then, a proof of the goal
becomes into a set of smaller proofs, one refutation for each subgoal.

Example 3. In Fig. 3, we can see how the subgoals associated to a goal are introduced in the
TSTP derivation line 3 with the strip inference rule. The conjecture in line 2, (p V ¢) D (p A q),
is stripped into two subgoals (line 4 and 5): (pV ¢q) D p and ((p V ¢) A p) D q. Metis proves each
subgoal separately following the same order as they appeared in the TSTP derivation.

Remark 1. Metis does not make explicit in the TSTP derivation the way it uses the subgoals to
prove the goal. We show this approach in the correctness of the strip inference rule in Theorem 7.
To show this theorem, we prove Lemma 4 and Lemma 5. In the former, we introduce the auxiliary

function uh; to define the uh function used in in the latter in the definition of the strip function.

Notation. Bound is a synonym for Nat type to refer to a natural number that constrains the
number of recursive calls done by a function. We use this type mostly in the type of the function.

Lemma 4. Let be n: Bound. If I" - uh; ¢ n then I' F ¢ where

uhy : Prop — Bound — Prop

uh1 (1 D (2 D w3)) (succ n) = uhy ((p1 Ap2) D p3) n (3)
uhy (1 D (p2 Aps)) (succ n) =uhy (p1 D @a) nAuhy (91 D ws) n
Uh1 %) n = .

To provide such a number given a formula ¢, we call the uh.,, function defined in (4). For
the convenience in the following descriptions, we have the function uh : Prop — Prop for ¢ —
uhy ¢ (uhep, ).

uh¢p, : Prop — Bound

Uhcm (<P1 D) (%02 D) L)03)) = Uhcm Y3 + 2 (4)
uhem (91 D (P2 A w3)) = max (uheym 02) (Uhem @3) +1
uhen, =0.

Now, we define the strip function in (5) in a similar way as we did above for the uh function.
We have a definition of the strip; function in (6) and a function to find its bound for its recursive
calls by strip,,,, defined in [37].

strip : Prop — Prop
strip ¢ = stripy ¢ (strip,,, ©).

()

The strip function yields the conjunction of subgoals that implies the goal of the problem in the
Metis TSTP derivations. Its definition comes mainly from the reading of the Metis source code and
some examples from TSTP derivations.
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strip; : Prop — Bound — Prop

strip1 (1 A @2) (succ n) = uh (stripy 1 n) A uh (p1 D strip; @2 n)

stripy (1 V ©2) (succ n) = uh ((— 1) D strip; @2 n)

stripy (1 D ¥2) (succ n) = uh (¢ D strip; @2 n)

stripy (= (1 A 2)) (succ n) = uh (o1 D stripy (- ¢2) n)

strip1 (- (@1 V 92)) (succ n) = uh (strips (- 1) m) A uh (= @1) O stripy (~2) n)  (6)
strip1 (= (1 D ¢2)) (succ n) = uh (stripy ¢1 n) Auh (1 D stripy (= ¢2) n)

strip1 (- (— 1)) (succ n) = uh (stripy p1 n)

stripy (- L) (succ n) = T

strip; (= T) (succ n)=1

stripy ¢ =@

Lemma 5. Let n: Bound. If I"  strip; ¢ n then I F .

The following lemma is convenient to substitute in a theorem equals by equals in the conclusion
of the sequent. Recall the equality (=) is symmetric and transitive, and we use these properties
without any mention.

Lemma 6 (subst). If I'F ¢ and ¢ = ¢ then I' - 4.

We can now formulate the result that justifies the stripping strategy of Metis to prove goals.
For the sake of brevity, we state the following theorem for the strip function when the goal has
two subgoals. In other cases, we extend the theorem in the natural way.

Theorem 7. Let s; and s3 be the subgoals of the goal ¢, that is, strip ¢ = s1 A sg. If I'F 51 and
I't- s then I'- .

Remark 2. The user of Metis will probably note another rule in the derivations related with these
subgoals, the negate rule. Since Metis proves a conjecture by refutation, to prove a subgoal, Metis
assumes its negation using the negate rule. We will find this rule always after the strip rule per
each subgoal in the TSTP derivation.

The remainder of this section will be devoted to present a formal description in type theory
of the remaining Metis rules presented in Table 1 using the pattern presented in Example 8. We
follow the same order to present the rules as the table shows.

Example 8. Let metisRule be a Metis inference rule in the TSTP derivations. To reconstruct this
metisRule, we define in the type theory a function preserving the name of the original rule. This
function should follow the following pattern.

metisRule : Premise — Conclusion — Prop

1, if the conclusion i can be derived by applying certain inference
metisRule ¢ ¥ = rules to the premise y;

@, otherwise.
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To justify that all transformations performed by the metisRule rule are correct, we will provide
a theorem to show its soundness that says:

If I' - ¢ then I' - metisRule ¢ .

4.2.2 Conjunct. The conjunct rule extracts from a conjunction one of its conjuncts. This rule
is a generalization of the projection rules for the conjunction connective. See in as the following
TSTP excerpt shows.

Example 9. In Fig. 3 line 20, the conjunct rule acts as a left projection (A-proj;) taking = pV ¢
from (= pVq) A (= qVp) in line 19.

Theorem 10. Let ¢ : Conclusion. If I' - ¢ then I' - conjunct ¢ 1, where

conjunct : Premise — Conclusion — Prop
v, it p=1
¥, if p =1 A s and 1 = conjunct @1 Y;

¥, if ¢ = @1 A s and Y = conjunct @y P;
(p, otherwise.

conjunct ¢ 1 =

Before continuing with the remaining rules, let us mention the normal forms we are using for
propositions and one comment about their pertinence in the reconstruction process.

Definition 11. A literal is a propositional variable (positive literal) or a negation of a propositional
variable (negative literal).

Notation. Lit is a synonym of Prop to refer to literals.

Definition 12. The negative normal form of a formula is the logical equivalent version of it in
which negations appear only in the literals and the formula does not contain any implications.

Definition 13. The conjunctive normal form of a formula also called clausal normal form is the
logical equivalent version expressed as a conjunction of clauses where a clause is the disjunction of
zero or more literals.

Remark 3. The proof-reconstruction we are exposing needs a mechanism to test logic equivalence
between propositions in some cases. This task is not trivial since we left out the semantics to treat
only the syntax aspects of the propositional formulas, and therefore we have to manipulate in
somehow the formulas to see if they are logically equivalent.

We address this challenge by converting the formulas to their conjunctive normal. We check if
their normal forms are equal and if they are not, we try to reorder the first formula to match with
the second one to fulfill the syntactical equality. In [37], we make a description of a set of functions
and lemmas for such a purpose. For instance, we define functions of (Premise — Conclusion — Prop)
type following the pattern in Example 8 like the reorder,, function. This function try to fix the
order of a premise disjunction given by following the order of the conclusion disjunction. Similarly,
we define the function reorder, for conjunctions and the function reorder,y for conjunctive normal
forms.
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4.2.3 Canonicalize. The canonicalize rule is an inference that transforms a formula to its
negative normal form or its conjunctive normal form depending on the role that the formula plays
in the problem. This rule jointly with the clausify rule perform the so-called clausification process
mainly described in [40].

o . I'-pvVv L I'-pVvT I'FoeV-op I'EpVe
Disjunction: _
'ty re=T r'eT 'ty
. . I'tenl I'EpAT I'FoAgp I'FpA=op
Conjunction:
'+ 1 'k 'y I'r_1

Fig. 5. Theorems to remove inside of a formula by the canonicalize rule.

The canonicalize rule is mainly used by Metis to introduce the negation of a subgoal in its
refutation proof. When the input formula is an axiom, definition or hypothesis introduced in the
TPTP file of the problem, the canonicalize rule returns its negative normal form. In the remaining
cases, as far as we know, Metis uses the canonicalize rule to perform a sort of simplifications to
remove the tautologies listed in Fig. 5 from the conjunctive normal form of the input formula.

To reconstruct this rule, we guide its prensentation as follows. In Lemma 14 and Lemma 15, we
show how to simplify in disjunctions and conjunctions, respectively. The negative normal form is
stated in Lemma 16 and the conjunctive normal form in Lemma 18. Finally, the reconstruction of
the canonicalize rule is stated in Theorem 21.

Notation. In a disjunction, ¢ = 1 Vo V-V @,, we say ¢ €y o, if there is some ¢ =1,---,n
such that ¢ = ¢;. Note that ¥ €, ¢ is another representation for the equality ) = reordery ¢ .
We assume all disjunctions to be right-associative unless otherwise stated.

Lemma 14. If I' = ¢ then I' F simplify,, ¢, where

simplify,, : Prop — Prop

simplify,, (L V) = simplify,, ¢

simplifyy, (¢ vV L) = simplify,, ¢

simplify, (TVey) =T

simplify, (¢ VT) =T
T, if o1 = =9 for some ) : Prop and ¥ € o;
T, if (= 1) Ev ¥2; )

- simplify, 2, if @1 Ev 2;
simplif Y =
Plifyy (o1 V 02) T, if simplify,, 2 = T;

©1, if simplify,, o = L;
1 Vsimplify,, @2, otherwise,

simplify,, ¢ = .

Now, we have removed tautologies in disjunctions by applying the simplify,, function, we formu-
late in a similar way, the simplify,, function to simplify tautologies about conjunctions.
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Notation. In a conjunction, ¢ = @1 A pa A---

A @p, We say ¥ €x o, if there is some i =1,--- |n

such that ¥ = ;. Note that 1) €, ¢ is another representation of the equality ¥ = conjunct ¢ .
We assume all conjunctions to be right-associative unless otherwise stated.

Lemma 15. If I' = ¢ then I' F simplify, ¢, where

simplify , : Prop — Prop
simplify, (LAp) =1
simplify, (pAL) =1
simplify, (T Ap) = simplify, ¢
simplify, (o AT) = simplify, ¢
L’
J_’
simplify, (g1 A p2) = simplify, 2,
$1,
L7
1 A simplify , 2,

simplify,, ¢ = .

if oy = — 9 for some Y : Prop and 9 €5 po;

if (= 1) €n 2; ®)
if 1 €A po;

if simplify, w2 = T;

if simplify,, 2 = L;

otherwise,

Using the functions simplify,, and simplify, we formulate the functions that finds the normal
form based on the Metis source code used to normalize formulas. We use bounded recursion to

define the function nnf; in (9).

nnf; : Prop — Bound — Prop

nnfy (o1 A p2) (succ n) = simplify, (assocn (nnf; @1 1 A nnfy 2 n))
nnfy (o1 V ©2) (succ n) = simplify,, (assocy (nnf; @1 1V nnf; @ n))
nnfy (1 D @2) (succ n) = simplify,, (assocy (nnfy ((=¢1) V @2) n))
nnfy (= (1 A p2)) (succ n) = simplify,, (assocy (nnfy ((— 1) V (= ¢2)) n))
nnfy (= (p1 V @2)) (succ n) = simplify, (assocs (nnfy ((— @1) A (= @2)) n)) (9)
nnf; (= (1 D ¢2)) (succ n) = simplify,, (assoch (nnfy ((— @2) A @1) n))
nnf; (= (= ¢)) (succ n) = nnf; 1 n

nnf; (- T) (succn) = L

nnfy (= 1) (succn) =T

nnfy zero = .

The function nnf in (10) is defined by using the function nnf,,, encharges to find the bound for
the recursive calls of the nnf; function. The interested reader can find the complete definition from
Appendix in [37], we do not include it for the seek of brevity.

nnf : Prop — Prop

nnf ¢ = nnf; ¢ (nNnfemep).

Lemma 16. If ' ¢ then I' - nnf .
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To get the conjunctive normal form, we make sure the formula is a conjunction of disjunctions.
For such a purpose, we use distributive laws in Lemma 17 to get that form after applying the nnf
function.

Lemma 17. I' - ¢ then I' I dist ¢, where

dist : Prop — Prop

dist (¢1 A @2) = dist 1 A dist o
dist ((,01 V (,DQ) = disty, (diSt p1 V dist (,02)
dist ¢ =0

and
disty : Prop — Prop

diSt\/ ((g@l A\ 302) V 303) = diSt\/ (301 V QDQ) A\ diSt\/ ((pg V (pg)
disty, ((,01 V ((,02 AN 903)) = disty (ng \Y 4,02) A disty ((pl V (p3)
dist\/ %) = .

We get the conjunctive normal form by applying the nnf function follow by the dist function.

Lemma 18. If I' - ¢ then I' I enf ¢, where

cnf : Prop — Prop
enf @ = dist (nnf ).

Since all the transformations in Lemma 16 and Lemma 17 came from logical equivalences in
propositional logic, we state the following lemmas used in the reconstruction of the simplify rule
in Lemma 24 and in Theorem 21 for the canonicalize rule.

Lemma 19. If I" F nnf ¢ then I' - .
Lemma 20. If I' - cnf ¢ then I' - .

Now, we are ready to reconstruct the canonicalize rule. This inference rule defined in (11) per-
forms normalization for a proposition. That is, depending on the role of the formula in the problem,
it converts the formula to its negative normal form or its conjunctive normal form. In both cases,
the canonicalize rule simplifies the formula by removing tautologies inside of it.

Theorem 21. Let ¢ : Conclusion. If I ¢ then I' F canonicalize ¢ v, where

canonicalize : Premise — Conclusion — Prop

Y, it =g

¥, if ¢ = nnf ¢ (11)
¥, if cnf ¢ = reorderny (cnf @) (enf );

©, otherwise.

canonicalize p ¥ =
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4.2.4 Clausify. The clausify rule is a rule that transforms a formula into its clausal normal form
but without performing simplifications of tautologies. Recall, this kind of conversion was already
addressed by the canonicalize rule. It is important to notice that this kind of conversions between
one formula to its clausal normal form are not unique, and Metis has customized approaches to
perform such transformations.

To address the reconstruction of this rule, we perform a reordering of the conjunctive normal
form given by the cnf function defined in Lemma 18 with the aforementioned function reorder,y to
the input formula of the rule.

Example 22. In the following TSTP derivation by Metis, the clausify rule transforms the ng
formula to get the n; formula, that is just the application of the distribution laws.

fof(ng, = p V (9 A 1)
fof(n;, (= pV @ A (= p V r), inf(clausify, ng)).

Theorem 23. Let v : Conclusion. If I" - ¢ then I' - clausify ¢ 1, where

clausify : Premise — Conclusion — Prop

P, if o = 9;

reorderny (cnf ) ¥,  otherwise.

clausify ¢ ¢ = {

4.2.5 Simplify. The simplify rule is an inference that performs simplification of tautologies in a
list of derivations. This rule simplifies such a list by transversing the list while applying Lemma 14,
Lemma 15, among others theorems presented in the following description. The goal of this rule
despites simplifying the list of derivations to a new formula (often smaller than its input formulas),
consists of finding a contradiction.

We observe based on the analysis of different cases in the TSTP derivations that simplify can
be modeled by a function with three arguments: two source formulas and the target formula.

Since the main purpose of the simplify rule is to simplify formulas to get L, we have defined
the reduce, function to help removing the negation of a given literal £ from a input formula.

reducey : Prop — Lit — Prop
reducey (p1 A @2) £ = simplify, (reducey w1 £ A reduce; @ £)

reduce; (1 V 2) £ = simplify,, (reduce, 1 £ V reduce; p2 {) (12)
reducey ) = {J—> if ¢ is ?'L literal and £ = nnf(— );
¢, otherwise.

Lemma 24. Let ¢ be a literal and ¢ : Prop. If I' ¢ and I' F ¢ then I" + reducey ¢ £.

The simplify function is defined in (13). If some input formula is equal to the target formula, we
derive that formula. If any formula is |, we derive the target formula by using the L-elim inference
rule. Otherwise, we proceed by cases on the structure of the formula. For example, when the second
source formula is a literal, we use the reduce; function and Lemma 24.
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simplify : Premise — Premise — Conclusion — Prop

simplify 1 @2 ¥ =

Y, if o; = L for some i = 1, 2;

Y, if p; =1 for some ¢ =1, 2; (13)
simplify . (simplify 1 @21 ) @22 ¥, if 2 = 21 A pa2;

simplify,, (simplify w1 @21 9 V simplify ©1 @22 1) if w2 = @21 V p22;

reducey 1 P2, if 9 is a literal;

$1, otherwise.

Lemma 25. Let ® : Conclusion. If I' F 7 and I' F @9 then I' F simplify ¢1 @2 1.

Theorem 26. Let ¢ : Conclusion. Let ¢; : Premise such that I" - ¢; for ¢ = 1,--- ,n and n > 2.
Then I' & simplify v,—1 ¢, ¥ where v1 = 1, and y; = simplify v;_1 ©; .

Remark. Besides the fact that List Prop — Prop is the type that mostly fit with the simplify
rule, we choose a different option. In the translation from TSTP to Agda, we take the list of derivations
and we apply the rule by using a left folding (the foldl function in functional programming) with
the simplify function over the list of 1, @2, -, @,. This design decision avoids us to define a new
theorem type to support List Prop type in the premise side.

Example 27. Let us review the following TSTP excerpt where simplify was used twice.

fof(ng, (= pV P A" T A= gA(PV (= sVm),
fof(ny, p V (= s V r), inf(conjunct, ngp)).

fof (no, p V q, inf(conjunct, ng)).
fof (n3, q, inf(conjunct, np)).
fof (ny, p, inf(simplify, [ng, nsl)).

fof(ns, - r, inf(conjunct, ng)).
fof(ng, L, inf(simplify, [n;, ng4, nsl)).

1. The simplify rule derives — p in ny4 from ny and ngz derivations.
simplify (=pVq) (mq) (mp)=-p.
2. We use Theorem 26 to derive L in ng, the following is a proof.

I'FpVv(=sAr) I'=p
e o snr Theorem 26 o
I'+_1

Theorem 26

4.2.6 Resolve. The resolve inference rule in combination with the simplify rule are the respon-
sable rules to perform resolution, in particular, the resolve rule is is the version of the resolution
theorem showed in Fig. 2.
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Ezxample 4. In the TSTP derivation in Fig. 2, there are two ocurrences in line 14 and line 16 of the
resolve rule. This rule has two inputs in the following order: the resolvent which is the literal
denoted by ¢ in Fig. 2 and a list formed by two formulas to resolve.

In [37], we describe our first attempt to reconstruct this rule that performs reordering of formulas
jointly with the application of a customized version of the resolution theorem to reconstruct the
rule. Unfortunately, that approach suffers of an exponential computational cost for each searching
to reorder the formulas. Therefore, we propose in (14) an alternative formulation to reconstruct
this rule by using the simplify rule. This observation was taken from the TSTP derivations and we
check that improves significantly the timing of the type-checking.

Theorem 28. Let ¢ be a literal, ¢ : Lit, and ¢ : Conclusion. If I' -+ ¢ and I' F (o then
I' F resolve ¢y @ £ 1), where

resolve : Premise — Premise — Lit — Conclusion — Prop

resolve p1 2 £ ¢ = simplify (w1 A wa) (2 £V L) . (14)

The above theorem finishes the formalization of the Metis inference rules. At this point, we
are able to justify step-by-step any proof in propositional logic generated by Metis. Actually, we
tested successfully the translation by Athena jointly with the Agda formalizations of this section
against more than eighty representative theorems in propositional logic. The interested reader can
reproduce the testing of all problems from [33] with the sources of the Athena tool repository [35].

5 Related Work

Many approaches have been proposed for proof-reconstruction and some tools have been imple-
mented in the last decades. We first mention some tools in type theory and later we listed some
proof-reconstruction tools for classical logic.

Kanso in [24, 25] shows a proof-reconstruction in Agda using semantics for logic equivalences for
derivations in propositional logic generated by EProver and Z3. In [18] Foster and Struth describe
another proof-reconstruction in Agda but for pure equational logic of derivations generated by
Waldmeister [19]. No other proof-reconstruction has been carried out neither in Agda nor with
Metis prover as far as we know.

In Coq [43], other proof-assistant closes to Agda, we found the SMTCoq [2, 15] tool which provides
a certified checker for proof witness coming from the SMT solver veriT [8] and adds a new tactic
named verit, that calls veriT on any Coq goal. Bezem, Hendriks, and Nivelle in [4] transform a
proof produced by the first-order automatic theorem prover Bliksem [28] in a Coq proof-term given
a fixed but arbitrary first-order signature.

There are other successful attempts to reconstruct proofs from ATPS but using proof-assistants
for classical logic instead of type theory. Let us mention some representative tools.

The Isabelle proof-assistant has the Sledgehammer tool. This program provides a full inte-
gration between automatic theorem provers [5, 17, 7] and Isabelle/HOL [27], the specialization of
Isabelle for higher-order logic. A modular proof-reconstruction workflow is presented jointly with
the full integration of Leo-II and Satallax provers with Isabelle/HOL in Eén and Sorensson [14].

Hurd [21] integrates the first-order resolution prover Gandalf with the high-order theorem prover
HOL [30]. Its GANDALF_TAC tactic is able to reconstruct Gandalf proofs by using a LCF model. For
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HOL Light, a version of HOL but with a simpler logic core, the SMT solver CVC4 was integrated.
Kaliszyk and Urban [23] reconstruct proofs from different ATPs with the PRocH tool by replaying
detailed inference steps from the ATPs with internal inference methods implemented in HOL Light.

6 Conclusions

We presented a proof-reconstruction approach in type theory for the propositional fragment of the
Metis prover. In Section 4.2, we provided for each Metis inference rule a formal description in type
theory following a syntactical approach type-checked in the proof-assistant Agda in [34, 36]. With
this formalization, we were able to type-check Agda proof-terms for TSTP derivations generated
by Metis. The Agda proof-terms were generated by the Athena translator [35], a tool written in
Haskell.

Our approach to reconstruct the proofs for Metis TSTP derivations only used syntactical aspects
of the logic. We chose that syntactical treatment instead of using semantics to extend this work
towards the support of first-order logic or other non-classical logics. For instance, let us recall that
for first-order logic, satisfiability is undecidable and its syntactical aspect plays an important role
to reconstruct its proofs.

Lastly, we strongly believe that by justifying proofs by theorem provers, we help to increase their
trustworthiness. In this work, we increased the trustworthiness for the automatic prover Metis. The
reverse engineering to grasp the reasoning of a theorem prover can help to reveal issues in these
systems maybe unkwon even for their own developers. During this research, we had the opportunity
to contribute to Metis by reporting some bugs—see Issues No. 2, No. 4, and commit 8a3flle in
Metis’ official repository.” Fortunately, all these problems were fixed quickly by Hurd in Metis 2.3
(release 20170822).
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Appendix A Customized TSTP syntax

We adopted a special TSTP syntax to improve the readability of the TSTP examples shown in this
document. Some of the modifications to the original presentation of TSTP syntax in Section 3.2 are
the following.

— The formulas names are sub indexed (e. g., instead of axiom_0, we write axiomy).
— We use inf instead of inference field.
— We shorten names generated automatically by Metis, (e.g., so instead of subgoal_0 or ny
instead of normalize_0).
— We remove the plain role.
— We remove empty fields in the inference information.
— The brackets in the argument of a unary inference are removed (e. g., instead of inf (rule, [1, [nol)),
we write inf (rule, [1, ng))).
— If the inference rule does not need arguments except its parent nodes, we remove the field of use-
ful information (e.g., inf (canonicalize, premise) instead of inf (canonicalize, [], premise)).
— We use the symbols (T, L, =, A, V, D) for formulas instead of ($false, $true, ~, &, |, =>)
TPTP symbols.
— When the purpose to show a TSTP derivation does not include some parts of the derivation we
use the ellipsis (. ..) to avoid such unnecessary parts.

For example, let us consider the TSTP derivation generated by Metis in Fig. 6 and its customized
version in Fig. 7

fof (premise, axiom, p).
fof(goal, conjecture, p).
fof (subgoal_0, plain, p, inference(strip, [], [goall)).
fof (negate_0_0, plain, ~ p, inference(negate, [], [subgoal_01)).
fof (normalize_0_0, plain, ~ p,

inference(canonicalize, [], [negate_0_01)).
fof (normalize_0_1, plain, p,

inference(canonicalize, [], [premise])).
fof (normalize_0_2, plain, $false,

inference(simplify, [], [normalize_0_0, normalize_0_1]))
cnf (refute_0_0, plain, $false,

inference(canonicalize, [], [mnormalize_0_2])).

Fig. 6. Metis’ TSTP derivation for the problem p F p.
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fof (premise, axiom, p).

fof(goal, conjecture, p).

fof(sp, p, inf(strip, goal)).

fof(nego, — p, inf(negate, sp)).
fof(np, = p, inf(canonicalize, negop)).
fof(ni, p, inf(canonicalize, premise)).
fof(nz, L, inf(simplify, [no, nil))
cnf(ro, L, inf(canonicalize, ns)).

Fig. 7. Metis’ TSTP derivation using a customized syntax
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