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“The blockchain world is really nothing but an application of classical distributed
computing where they’ve changed all the names to make it look different. [...] In classical

distributed computing our adversary is kind of cute and sort of harmless. [...] In the
modern world our adversary is much more frightening, an evil hacker.”

— Maurice Herlihy (1)
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Abstract

Permissionless distributed ledger technologies (DLTs) are gaining more and

more popularity, especially for trustless money transactions and smart con-

tracts, but have shortcomings in terms of performance, scalability, and energy

efficiency. Reputation-based DLTs have been proposed to overcome these limi-

tations of traditional DLTs and to enable feeless messages to power the machine-

to-machine economy. These DLTs allow machines with widely heterogeneous

capabilities to actively participate in message generation and consensus. How-

ever, the open nature of such DLTs can lead to centralization of decision-making

power, e.g., by implicitly excluding slow participants through fast operation,

thus defeating the purpose of building a decentralized network.

In this thesis, we introduce Healthor, a novel heterogeneity-aware flow-control

mechanism for permissionless reputation-based DLTs. Healthor formalizes node

heterogeneity by defining a health value as a function of its incoming message

queue occupancy. We show that health signals can be used effectively by neigh-

boring nodes to dynamically flow control messages while maintaining high de-

centralization. We perform extensive simulations, and show a 23% increase in

throughput, a 76% decrease in latency, and four times increased node partic-

ipation in consensus compared to state of the art. To the best of our knowl-

edge, Healthor is the first system to systematically explore the ramifications

of heterogeneity on DLTs and proposes a dynamic, heterogeneity-aware flow

control. Healthor’s source code (https://github.com/jonastheis/healthor)

and simulation result data set (https://zenodo.org/record/4573698) are

both publicly available.

https://github.com/jonastheis/healthor
https://zenodo.org/record/4573698
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Chapter 1

Introduction

With its inception in 2008, Bitcoin has sparked a whole new world of distributed ledger

technologies (DLTs) (4, 5). DLTs are gaining popularity ever since, especially for trustless

money transactions and code execution1 enabling the recent trend towards decentralized

finance with stablecoins, decentralized exchanges, and decentralized lending (6).

Conceptually, a distributed ledger is an immutable, replicated, and shared data structure

that keeps track of ledger state entries, e.g., monetary transactions, in a distributed system

without the need for a centralized authority but instead utilizes a distributed consensus

mechanism (5, 7). Ledger state updates are disseminated using a peer-to-peer (P2P)

network between ledger participating nodes (8, 9, 10). Theoretically, a permissionless DLT

is open for anyone to join and keep track of the ledger and participate in consensus (9).

However, in practice traditional DLTs present limitations in terms of not only decen-

tralization but also scalability, performance, and energy efficiency (11, 12, 13). Hence, a

number of alternatives have been proposed in the last few years (14, 15, 16).

1.1 Permissionless Reputation-based DLTs Enable Hetero-
geneity

In this thesis, we focus on permissionless reputation-based DLTs (10, 17, 18, 19, 20, 21),

which achieve consensus through voting instead of expensive mining races. Reputation-

based DLTs can enable a wide range of new application domains, such as the machine-to-

machine economy for the Internet of Things or public transparent supply chains (10, 20, 21),

by overcoming Bitcoin’s limitations: network throughput is not constrained at the protocol

level, feeless messages are possible, low-power devices can participate in the consensus, etc.

1Trustless code execution is usually referred to as smart contracts and enables decentralized applications
to be built.
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Consensus node

Ledger only node
Specialized
Hardware Server Laptop SmartphonePC

Proof of work based DLT Reputation-based DLT

Figure 1.1: Comparison of nodes participating in consensus and ledger only in proof of work
based DLTs (left) and reputation-based DLTs (right). In proof of work based DLTs practi-
cally only high-end nodes and specialized hardware can participate in consensus whereas in
reputation-based every node because participation in consensus is not dependent on process-
ing capabilities. Connections between nodes are not pictured out of brevity. The size of nodes
describes their processing capabilities.

This class of DLTs adds design complexity to the original Bitcoin’s blockchain and faces

several challenges which we describe and address throughout the thesis.

One of the primary challenges in the Bitcoin network is the centralization of power.

Miners typically use specialized hardware to compute a cryptographic puzzle faster than

other nodes and add messages into the blockchain. This mechanism creates a costly filter

formed by an elitist network (Figure 1.1 (left)) (13). Conversely, the permissionless nature

of the DLTs considered in this thesis allows nodes with widely heterogeneous capabilities to

participate in consensus and message generation (Figure 1.1 (right)). Such heterogeneity

can be manifold:

• Bandwidth, latency, availability, and processing capabilities can vary between mul-

tiple orders of magnitude, as in traditional peer-to-peer networks (22).

• Unsteady processing rates of a node due to competing tenant applications and per-

formance variability, especially in the public cloud environment (2, 23, 24).

• Protocols, geographical locations, node freshness, and software versions can differ

widely in DLTs (3).

2
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1.2 Challenges of Permissionless Reputation-based DLTs

Heterogeneity is a key feature of permissionless reputation-based DLTs but also introduces

multiple challenges (10, 21). First, who can vote? In order to start the voting procedure,

at least 51% of nodes must have received the most recent messages necessary to construct

and verify the ledger state. In reputation-based DLTs, a score (reputation) is assigned to

each node to determine nodes’ reserved throughput shares and weights used during voting.

Many DLTs assign reputation by linking it to a constrained resource, such as stake (e.g.,

proof of stake (PoS) DLTs (17, 25) or IOTA’s Mana (10)); more sophisticated technologies

try to evaluate whether nodes are well-behaving and contributing to the security of the

network (19). A good reputation system should prevent Sybil attacks, where colluding

nodes can gain disproportionate influence to manipulate the ledger state.

Second, unlike in Bitcoin, reputation-based DLTs require an explicit distributed flow-

control mechanism. If powerful nodes issue new messages too fast without any flow control,

then only high-end nodes will be able to keep up with the message processing and with the

latest ledger updates. Hence, only few nodes, the ones with an updated ledger, can vote,

thus increasing undesired DLT centralization.

Lastly, maintaining maximum decentralization with high performance. In DLTs, nodes

are required to process all messages generated. Hence, to avoid any loss of synchronization

or message drop, the network must operate at the speed of the slowest node, which can

lead to low throughput. An additional challenge is given by the fact that the node’s pro-

cessing speed is not static as it varies based on the operating environment and performance

fluctuations (2, 23, 24).

Though efforts have been put to tackle the issue of voting (10, 17, 25), limited attention

has been paid to tackle decentralization and performance due to heterogeneity in DLTs.

Such heterogeneity-related challenges are reminiscing of the early 2000s research in P2P

content distribution systems (22, 26, 27, 28, 29), but the need for quality of service, and

node reachability requirements sets modern DLTs apart from their P2P predecessors. We

take inspiration from these works and recent networking research (30), and make a case for

a dynamic flow-control protocol to react to the changing heterogeneity (i.e., computational

capabilities) for maximizing throughput without sacrificing DLT decentralization.

3
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1.3 Research Questions and Methodologies

Throughout this thesis we are discussing three main research questions regarding dynamic

flow control in the context of heterogeneity in permissionless reputation-based DLTs. To

answer the questions we make use of the following methodologies:

• (M1) Design, abstraction, prototyping (31, 32, 33)

• (M2) Experimental research, designing appropriate micro and workload-level bench-

marks, quantifying a running system prototype (34, 35, 36)

• (M3) Open-science, open-source software, community building, peer-reviewed scien-

tific publications, reproducible experiments (37, 38, 39, 40)

1. How to derive a right design for a dynamic, distributed flow-control
protocol?

Flow control in the permissionless DLT setting builds on many diverse topics from network-

ing research such as P2P systems, network security, congestion control, and flow control

in traditional as well as distributed networks. Therefore, it is fundamental to understand

these technologies (Chapter 2) and related work (Chapter 5) in-depth. Inspired by already

existing approaches a new protocol can be iteratively derived (M1).

2. What are the key challenges in designing a dynamic, distributed flow-
control protocol in the permissionless DLT setting?

Finding the key challenges in any system is non-trivial as there are many challenges espe-

cially in DLTs. In this thesis, we are establishing the key insights through prototyping and

designing targeted experiments as explained in Chapter 3 and Chapter 4 (M1, M2).

3. How efficient is such a dynamic flow-control protocol for permissionless
reputation-based DLTs?

Quantifying a system’s performance first requires an objective set of metrics (e.g., in terms

of latency and throughput). Additionally, in the context of permissionless DLTs, we need

to measure the degree of (de)centralization to establish the egalitarian nature of the net-

work. Then, the proposed solution can be compared against a baseline scenario to show

improvements which are discussed in Chapter 4 (M2, M3).
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1.4 Thesis Contributions

In this thesis, we present Healthor1, a novel heterogeneity-aware, lightweight flow-control

mechanism for permissionless reputation-based DLT networks. Healthor captures hetero-

geneity by defining a node’s health as a function of its processing power and the current

network activity. The health updates of neighboring nodes are then used to calculate the

message forwarding rates, thus dynamically adjusting the flow control per node. This basic

mechanism allows high-end nodes to buffer messages for unhealthy nodes, thus protecting

weaker nodes from being overwhelmed with wasted processing and rapidly adapting net-

work load and bursts. With such a flow-control design more nodes are able to keep up with

ledger updates and participate in DLT consensus, therefore increasing decentralization and

network performance. Specifically, contributions of this thesis are as following:

1. We identify challenges (high centralization, poor performance, security) due to lack

of heterogeneity-aware flow control in permissionless reputation-based DLTs (Sec-

tion 2.4).

2. We propose Healthor, a lightweight distributed flow-control mechanism that leverages

a node’s health as a proxy of its heterogeneity and processing capabilities. We present

its design choices, implementation, and tradeoffs. In comparison to other DLTs,

which use leader election or fixed computation, we are among the first to introduce

networking concepts and optimizations to the DLT space (Chapter 3).

3. We evaluate Healthor in OMNeT++ simulations for up to 5,000 nodes. Our results

demonstrate that Healthor increases the degree of decentralization by 78%, improves

throughput by 23%, and 95 percentile message latency by 76% while staying resilient

against attacks (Chapter 4).

4. The preliminary idea of the thesis with initial results were published at a work-

shop: Jonas Theis, Luigi Vigneri, Lin Wang, and Animesh Trivedi. 2020. Healthor:

Protecting the Weak in Heterogeneous DLTs with Health-aware Flow Control. In Pro-

ceedings of the 4th Workshop on Scalable and Resilient Infrastructures for Distributed

Ledgers (41).

At the time of writing, an extended paper version is under review at a top conference.

1Union of the word health and the Germanic god Thor who is amongst other things associated with
great strength and the protection of mankind.
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5. Healthor’s source code and simulation configurations are available on GitHub at

https://github.com/jonastheis/healthor. Appendix 7.1 details how to compile,

run simulations and reproduce experiment results with Healthor either from scratch

or with the simulation result data set provided at https://zenodo.org/record/

4573698. We follow the state-of-the-practice reproducibility instructions provided

by the cTuning Foundation (42, 43), which is collaborating with ACM on a common

methodology, reproducibility checklist and tools.

Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment.
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Chapter 2

Background

In this chapter, we cover the fundamental concepts needed to follow this thesis. With

Healthor, we discuss a distributed, dynamic flow-control mechanism for DLTs which in-

volves a broad range of networking topics starting from traditional network concepts to

early P2P systems and network and system security. Therefore, first congestion-control

and flow-control concepts of traditional networks are explained. Second, we dive into P2P

systems, their overlay networks’ architecture, and some of their challenges. Then, basic

concepts of DLTs are outlined, and we observe similarities with traditional networks and

P2P systems. Finally, at the end of this chapter, we are fully equipped to understand the

challenges and opportunities of DLT heterogeneity.

2.1 Traditional Networks

Any networked system — local area network and wide area network — relies on physical in-

frastructure to interconnect nodes. Heterogeneous hardware renders too much dependence

on the underlying hardware impractical and thus pushes functionality to end hosts (44),

especially in wide area networks and the Internet. Therefore, most communication pro-

tocols need to implement some form of traffic control in order to avoid overloading the

network, i.e., congestion control (Section 2.1.1), and receiving nodes, i.e., flow control

(Section 2.1.2) (45).

2.1.1 Congestion Control

Congestion control is concerned with regulating the network traffic as a whole. As such it

prevents the network from becoming congested, i.e., being overloaded, by adapting sending

rates so that fewer packets enter the network. Generally, a signal (explicit or implicit) is
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2. BACKGROUND

used to detect congestion, and much of the efficacy of the mechanism depends on it.

Congestion signals can be hardware-assisted (30, 46) or purely end-to-end (45, 47, 48, 49).

For example, in the case of TCP, the signal is packet loss: The algorithm slowly increases

the sending rate (additive increase) to increase utilization. Once a loss event occurs, the

sending rate is significantly lowered (multiplicative decrease) to avoid congestion (45).

Today’s Internet’s congestion control mostly consists out of one or another flavor of

TCP (47). Newer, recently emerging protocols like BBR (49) and Copa (48), however,

suggest that a loss-based signal is suboptimal with today’s hardware and does not actually

avoid congestion but only fills up buffers and eventually detects packet loss. Therefore,

these protocols use other signals such as delay and congestion to improve throughput and

latency (48, 49).

2.1.2 Flow Control

In contrast to congestion control, flow control (also called backpressure in distributed

systems context) governs the transmission rate between two nodes, sender and receiver,

making sure that the receiver is not overwhelmed by the sender. As with congestion

control, the signal to regulate flows is paramount, and can be explicit or implicit as well

as hardware-assisted or purely end-to-end (50, 51).

Flow control can broadly be divided into credit-based and rate-based flow control. The

former being more frequently employed, e.g., in TCP, where a sliding window mechanism

is used to determine the packets in flight (45). Rate-based flow control incorporates feed-

back (explicit or implicit) by the receiver to directly adjust the rate. This can be either

differential (speed up/slow down) or absolute (new rate = value) (30, 50, 51).

2.2 P2P systems

P2P systems are a specific type of distributed system where interconnected peers (also

called nodes) cooperate and share resources such as storage, CPU cycles, and bandwidth

without a centralized entity. As such, the P2P design philosophy pushes all of its func-

tionality to the edge of the Internet, mostly to end hosts, i.e., the peers (44, 52, 53). P2P

systems have been popularized in the early 2000s (54), mainly through content distribution

networks (27) such as Napster (55), Gnutella (56), KaZaa (28), and BitTorrent (57).

The following subsections explain basic concepts of P2P computing starting from the

overlay network and its different architectures (Section 2.2.1) to incentives (Section 2.2.2)
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and challenges such as heterogeneity (Section 2.2.3) and scalability (Section 2.2.4). Specif-

ically, we focus on content distribution networks as these types of networks share many

similarities with DLTs’ underlying P2P overlay networks. The concepts and challenges of

P2P content distribution networks covered in this section resemble those of DLTs nowadays

(Section 2.3).

2.2.1 Overlay Network

P2P systems depend on a network of interconnected computers formed independently of

physical infrastructure which is referred to as overlay network managed at the application

level. Typically, overlay networks leverage standard internet protocols (TCP, UDP) for peer

communication. Often P2P networks utilize epidemic broadcast to disseminate information

throughout the network to all peers, i.e., a peer forwards messages to all or a subset of its

neighbors. Overlay networks can be grouped by degree of centralization and structure, as

detailed following (27).

Degree of centralization

Ideally, every node in a P2P overlay network is equally important and performs the same

tasks. In practice, however, this is not always possible, e.g., due to heterogeneity, legisla-

tion, or system design, and different degrees of centralization can be observed.

Fully decentralized. The network is totally distributed, all nodes act simultaneously

as server and client, performing the same tasks without any centralized coordination or

component. These types of networks are censorship resistant and do not have a single

point of failure. They suffer, however, from scalability issues and inefficiencies due to the

fact that every node acts as server and client. Thus, every action, e.g., search needs to be

executed in a distributed way (27, 52).

Partially centralized. Similar to fully decentralized, in partially centralized overlay

networks nodes act as servers and clients at the same time. However, some nodes are

dynamically selected — then called supernodes — to perform different actions, e.g., based

on capabilities. Generally, these supernodes are selected in a distributed manner, and if

a supernode fails the network topology adapts and selects another node. As fully decen-

tralized systems, these systems promise censorship resistance — though slightly weakened

due to more centralization — and do not have a single point of failure while targeting the

aforementioned scalability issues of fully decentralized systems (27, 52).

Hybrid decentralized. As the name suggests, these systems are a hybrid between cen-

tralized and decentralized. Usually, a central server facilitates connections between peers
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based on desired resources and capabilities. Only then do peers directly communicate with

each other. Evidently, these systems suffer from a single point of failure and are vulnerable

to censorship. On the other hand, a centralized server serves as a single source of truth

and can increase search speed and accuracy (27, 52).

Structure

P2P networks can be structured and unstructured based on how nodes are connected to

each other.

Unstructured. In an unstructured overlay network nodes randomly peer with each other

without any global rules imposed on them. This makes joining and constructing a network

easy, and the network as a whole resistant against churn, i.e., many nodes joining and

leaving the network frequently. However, due to the lack of structure, these networks often

suffer from scalability issues, e.g., a search query needs to be flooded through the whole

network (27, 52, 58). Examples: Gnutella (26, 59), KaZaA (28), Napster (55).

Structured. Structured overlay networks mainly developed to address the scalability

shortcomings of unstructured overlay networks. Hence, the topology is controlled via

global rules to create a mapping between content and its location, e.g., node identity. Via

distributed routing tables, e.g., in the form of a distributed hash table (60), queries can be

efficiently routed to content providers. However, these types of overlays create overhead

and are difficult to maintain when there is node churn (27, 52, 58). Examples: Chord (61),

Kademlia (60), Pastry (62), CAN (63).

2.2.2 Incentives

One of the key problems of P2P systems is the lack of cooperation (free-riding), and

providing proper incentives for users to adhere to the protocol (22, 29, 55, 64). As shown

in (22) users tend to intentionally misreport information, are selfish, and exploit other

users if there are no sufficient incentives to do otherwise. Many game-theoretic solutions,

e.g. based on tit-for-tat (65), deeply ingrained into the protocol have been proposed to

increase cooperation between peers and thus overall robustness, and efficiency of P2P

networks (29, 66, 67). Other approaches suggest the use of sophisticated reputation systems

to provide incentives to cooperate (68, 69).

2.2.3 Heterogeneity

Many studies have been conducted measuring public P2P networks in terms of topology,

network traffic, node behavior, and node capabilities (22, 54, 56, 64). In their landmark
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measurement study (22) Saroiu et al. show that P2P systems such as Gnutella and Nap-

ster are significantly heterogeneous. Bandwidth, latency, availability, degree of sharing,

and processing capabilities can vary between three and five orders of magnitude. This im-

plies that any P2P system needs to be careful when assigning special tasks to peers (e.g.,

supernodes), and that scalability problems can arise in fully decentralized systems where

every node is supposed to perform the same tasks.

2.2.4 Scalability

As already in Section 2.2.1 discussed, unstructured P2P systems suffer from scalability

issues which is why structured P2P systems emerged. These systems, however, experience

high overheads if there is much node churn. Alternative approaches adjusting the network

topology with supernodes have been proposed to get the best out of both worlds (26, 28,

56, 59). In (26) a scaling approach for the Gnutella network is proposed that leverages

heterogeneity to dynamically adjust the network topology and puts high capacity nodes

within short reach of most other nodes. Additionally, an active credit-based flow-control

mechanism based on available capacity is used to avoid overloaded hot-spots, i.e., nodes

hand out tokens to their neighbors where each token represents the willingness to accept

a query.

2.3 Distributed Ledger Technologies

In 2008 the inconspicuous Bitcoin paper (4) written by the anonymous entity Satoshi

Nakamoto sparked a revolution and ignited distributed ledger technologies. Though the

underlying technologies were not novel (70, 71, 72, 73, 74), Bitcoin combined them in

an ingenious way and created something that had been deemed impossible: consensus of

replicated, shared, and synchronized data without a central entity in a permissionless and

trustless setting where anyone can join and participate (4, 9). Since then many flavors

of DLTs have emerged, not only to enable monetary transactions but more so to enable

trustless code execution and thus paving the way for many more use cases and a dis-

tributed, trustless Internet, enabling parties to interact without trusting anyone (7, 75).

DLTs broadly can be distinguished into permissioned, i.e., a central authority grants per-

mission to participants, or permissionless, i.e., open access to anyone where participants

do not know each other but cooperate through game-theoretical incentives (76). The lat-

ter systems pose more challenges due to their open nature. In this thesis, we focus on

permissionless DLTs.
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#1 #2 #3 #4

Game-theoretic and economic incentives

Data Structure Consensus MechanismP2P Overlay Network

Cryptographic Hash

Figure 2.1: Permissionless DLTs comprise three main components: a P2P overlay network
(left), an immutable data structure (center), and a consensus mechanism (right) are deeply
fused via game-theoretic and economic incentives.

Generally, a DLT integrates three main components joining them together via its proto-

col and deeply ingrained game-theoretic and economic incentives as depicted in Figure 2.1.

First, a P2P overlay network is utilized to disseminate state updates (Section 2.3.1). Sec-

ond, every node keeps track of a shared, replicated, and immutable data structure (also

called ledger) which is based on cryptographic primitives (Section 2.3.2). Lastly, nodes use

a consensus mechanism to agree on a state in a distributed manner (Section 2.3.3).

Permissionless DLTs face similar challenges as P2P content distribution networks such

as providing proper incentives (Section 2.3.4), fair access (Section 2.3.5) and scalability

(Section 2.3.6).

2.3.1 P2P Overlay Network

Most DLTs build an unstructured decentralized P2P overlay network, either with manual

peering, i.e., node owner are required to exchange connection details, or some form of

automatic peer discovery and peer selection. Ledger state updates are disseminated in

the form of messages (also called transactions) via epidemic broadcast so that every node

eventually receives all ledger state updates (8, 9, 10).

In theory, all nodes have the possibility to exert the same functionality, thus making

the network fully decentralized. However, this is not always the case in practice. While

the overlay network topology might seem fully decentralized, multiple nodes might have

the same owner or are physically colocated. In both cases the degree of centralization is

increased (3, 12, 77).

To get an estimation of the level of centralization, we analyzed recently published lit-

erature on DLT deployments and decentralization (3, 12, 77). Our analysis shows that
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Figure 2.2: Data structures in DLTs. A blockchain groups messages into blocks and links
blocks together (left). The Tangle consists of messages that reference 2 other messages (right),
thus forming a DAG.

(Table 2.1) a significant amount of nodes in DLT networks run on only few big cloud

hosting providers. For example, 62% of publicly reachable Ethereum nodes are running

on cloud hosting providers. In the IOTA network this is even more extreme with 69% of

publicly reachable nodes running in the cloud.

2.3.2 Data Structure

The ledger state in a DLT is derived from an immutable data structure, that can be

compared with an append-only log. Every node in the network has a copy of the ledger

state and can thus verify the validity of new updates locally. Newly joining nodes can

bootstrap by simply downloading the ledger from their neighbors, and then make sure

that the ledger state is valid locally (5, 7, 9, 20, 21).

Blockchain. A blockchain is a linked list of blocks where each new block contains a cryp-

tographic hash of its predecessor’s content as shown in Figure 2.2 (left). A block mainly

consists of a number of state updates, e.g., in the case of Bitcoin monetary transactions.

This essentially creates an immutable chain of blocks where any change to a block invali-

dates all future blocks as well. The longer the chain, the harder it is to change any content

because all future blocks would be invalidated, hence it is tamperproof. A blockchain is

totally ordered: blocks are issued, e.g., with consensus on the longest chain, at regular

intervals and state updates within a block are deterministic (5, 7, 9).

Directed Acyclic Graph (DAG). A directed acyclic graph (DAG) is a graph without

directed cycles, i.e., it grows in one direction. IOTA’s Tangle (20) is a DAG where messages

are linked together via their cryptographic hashes instead of being grouped into blocks.

Figure 2.2 (right) shows this data structure. Similar to a blockchain, linking messages
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Name Date Size Hosting Top Providers

Bitcoin
(Bitnodes (78))

21/11/2020 11,122 4,195 (38%)

Tor Network: 2,827 (25%)†
Hetzner: 1,049 (9%)
Amazon: 803 (7%)
OVH: 490 (4%)
DigitalOcean: 455 (4%)
Google: 360 (3%)

Bitcoin
(Mariem et
al. (77))

07/05/2019 9,476 6,159 (65%)

Hetzner: 1,042 (11%)
Amazon: 805 (8.5%)
DigitalOcean: 616 (6.5%)
OVH: 550 (5.8%)
Comcast: 351 (3.7%)

Ethereum
(ethernodes.org (79))

21/11/2020 9,517 5,855 (62%)

Amazon: 1,778 (19%)
Alibaba: 1,106 (12%)
Hetzner: 541 (6%)
Google: 385 (4%)
DigitalOcean: 326 (3%)

Ethereum
(Kim et
al. (3))

08/05/2018 8,309 3,722 (44.8%)∗

Amazon
Alibaba
DigitalOcean
OVH
Hetzner
Google

IOTA
(thetangle.org (80))

21/11/2020 302 202 (69%)

Contabo: 66 (22%)
Hetzner: 63 (21%)
Netcup: 37 (12%)
Amazon: 10 (3%)
DigitalOcean: 6 (2%)

Table 2.1: Network size (publicly reachable) and distribution of nodes running on cloud
hosting providers.
∗ Only top 8 ASes, no exact values published in (3).
† Not included in Hosting due to unknown service provider.
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together via their cryptographic hashes makes the data structure immutable and tamper-

proof. The Tangle is not totally ordered as messages can be attached simultaneously by

multiple users which promises better scalability compared to blockchains. However, there

is added complexity for nodes to verify the ledger state and come to consensus. For ex-

ample, before a message can be verified it needs to be solid, i.e., its entire history needs

to be known to the node. In case a node is missing a message it can ask its neighbors via

solidification request (7, 20).

2.3.3 Consensus Mechanism

The consensus mechanism is at the core of every permissionless DLT. It is a set of rules that

combines the P2P overlay network, data structure as well as some form of leader election,

e.g. to select a block producer, and (virtual) voting with game-theoretical incentives and

bakes the results into the immutable ledger. In this way, the data structure does not only

serve as an immutable ledger database but also as a verifiable instrument of consensus. It

enables a Byzantine Fault Tolerant P2P network of anonymous nodes that are free to join

and leave at will (81, 82).

Leader election

Proof of Work (PoW). PoW was initially invented as an email spam protection mech-

anism. The principle is fairly straightforward. A probabilistic puzzle needs to be solved

usually producing a nonce (a non-negative integer) that is hard to find but easy to ver-

ify, thus a scarce resource — in this case computing power and energy — needs to be

invested (74).

In DLTs, specifically first with Bitcoin, PoW is used as a leader election mechanism. The

first node to solve the puzzle is able to produce a block and gets rewarded. In Bitcoin, it

works as follows: So-called miners (special types of nodes) take transactions and combine

them into a block’s essence. Additionally, the block contains a reference in form of the

cryptographic hash to the previous block. Then a miner needs to find a cryptographic hash

of the current block’s content such that the block hash starts with a specified number of

0s. Specifically, this means counting up the nonce and generating — via trial and error,

hence probabilistic — a valid block hash. The first miner to find a valid block broadcasts

it to the network (9, 81, 82).

Reputation-based. Reputation-based leader election works similar to leader election

with PoW in the sense that a scarce resource (e.g., reputation or stake) is necessary to

become the leader and produce a block. In contrast to PoW, no extensive calculation
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is necessary but instead, for example in the case of PoS, a validator (similar to a miner

in PoW) is selected weighted by its (delegated) stake. The selected validator can then

take transactions, chain it together with the previous block and broadcast it into the

network (81, 82).

(Virtual) Voting

Longest chain rule. A block producer implicitly casts a vote for all previous blocks by

appending its block to the chain. This is known as virtual voting as the vote is implicitly

cast. Generally, everyone follows the longest chain because it has the highest amount of

scarce resource accumulated (remember that consensus is encoded in the data structure).

For example, in PoW this means that an attacker needs on average more than 51% of the

hashing power of the entire network to produce a longer chain than the honest part of the

network. Only then can the attacker fool the entire network (81, 82).

Direct voting. In some reputation-based DLTs that do not employ a blockchain as

underlying data structure such as IOTA (10) and Nano (83) nodes are queried to cast a

vote. The weight of a vote is usually scaled by reputation.

2.3.4 Incentives

Game-theoretic and economic incentives are deeply ingrained into the consensus protocol to

resolve problems that plagued earlier permissionless P2P systems (84). In Bitcoin, miners

not only receive a reward for creating a block but also receive the so-called transaction

fee, i.e., the fee a user needs to pay to include their updates into a block. Only the miner

whose block is accepted (usually the first) gets the rewards, effectively creating sunk cost

for all others. In turn, the probability for a miner to be first increases the more computing

power and the longer it keeps mining and thus increases overall network security (4, 9).

However, this very incentive structure leads to centralization in practice. First, special-

ized hardware is more efficient at solving the puzzle, creating advantages for these usually

non-consumer friendly devices (13). Second, mining pools get together and share the

computational expense and subsequently potential rewards. Few mining pools constitute a

majority of the network’s hash rate, at worst putting the consensus at risk and endangering

censorship resistance (9).

Reputation-based DLTs utilizing PoS incentivize validators to act honestly similarly.

Though, instead of creating mining races, validators are encouraged to be honest because

their stake (monetary value) is at risk (17, 19, 25). Feeless reputation-based DLTs such as

IOTA (10) and Nano (83) often struggle to provide hardened incentives because there is
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no monetary reward for participation in the network. Here the only incentive to be honest

is the exclusion of the protocol.

2.3.5 Fair Access

As discussed in Section 2.3.4, in many DLTs a user needs to pay a small fee so that a

block producer includes the update into a block. While this fee is part of the intrinsic

incentives of consensus (rewarding the block producer), it also creates an access and spam

filter to the network. Block producers can decide which updates to pick, but generally the

one’s paying most get first included in a block. Therefore, a spam attack on the network

is costly. However, in times of high network load fees can grow extremely high and render

the network practically unusable for many use cases (9).

Specifically, in the case of micro-payments in the machine-to-machine economy fees are

often bigger than the transacted value itself. Feeless DLTs such as IOTA (10) and Nano (83)

do not have fees nor inflation. This creates the need to regulate network access and a spam

protection mechanism (21). IOTA’s Mana (10) (a measure of reputation) in combination

with a distributed congestion control (85) solves the problem for IOTA’s DLT.

2.3.6 Scalability

Popular DLTs nowadays suffer from poor scalability in terms of message confirmation

latency and throughput, e.g., the Bitcoin network is able to process a maximum of 10

messages per second (MPS) while blocks are only produced every 10 minutes (9). This

means that confirmation latency is at best the time to be included in the next block but

at worst, e.g., when the network utilization is high, it can happen that a transaction is not

confirmed for multiple blocks. This scaling problem exacerbates the previously mentioned

fees as users start a bidding competition (Section 2.3.5).

Efficient scaling of DLTs (also known as sharding) is, therefore, a major concern and

topic of a host of research, most of which focuses on the inherent scalability issues of DLT

consensus (9, 14, 15, 16, 19, 86, 87, 88). Since the consensus layer does not yet support

more throughput, little has been done in terms of optimizing the networking layer (86).
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Figure 2.3: Processing variability in cloud providers. Data from (2) measured hourly over a
period of 30 days. Normalized (mean=1) to show relative performance variability on a single
cloud provider.

2.4 Putting It All Together: Challenges and Opportunities
of Heterogeneity in DLTs

The previous sections covered the basics of congestion and flow control in traditional net-

works, introduced P2P networks, and explained DLT fundamentals. With this basic work-

ing model in mind, we now discuss what is the extent of heterogeneity in contemporary

DLT networks, what happens if heterogeneity is ignored, and what opportunities present

if we can leverage it.

The Nature of DLT Heterogeneity

Recall the analysis of DLT network centralization (Section 2.3.1), and that at least 62%

of publicly reachable Ethereum nodes run on only few big cloud hosting providers. In the

IOTA network, this is even more extreme with 69% of publicly reachable nodes running in

the cloud.

Though on the surface cloud hosting seems to offer a more homogeneous environment,

it is not the case in practice. First, cloud providers offer a bewildering array of choices in

terms of configurations, capabilities, and cost of systems resources like virtual machines

(VMs), which has lead to a series of work in workload optimizations for heterogeneous

cloud resources (89, 90, 91, 92). Such heterogeneous choices imply that there is no single

ideal VM that DLTs can choose to deploy. Moreover, even with the choice of a VM,

there is significant performance fluctuation over time (2, 23, 24, 93). For example, we

took cloud performance traces from (2), which has collected the performance of CPU-

intensive benchmarks over a period of 30 days from three cloud providers (AWS, Azure, and

Dimension Data), and normalized the performance to the mean value in the performance.

We plot the performance variation time series (on the y-axis) with respect to time (on
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Figure 2.6: Comparison of aided and unaided heterogeneity in voting-based DLTs in a
heterogeneous network with 100 nodes. (a) Mean throughput (processed messages) of all
nodes. Higher is better. (b) Centralization value (Section 4.2). Lower score indicates higher
degree of decentralization (desired).

the x-axis) in Figure 2.3. In that way, we can easily observe the performance variability

over time for a single VM of one of the cloud hosting providers. The key finding from

the figure is that there exists more than an order of magnitude performance variability in

hosted cloud providers. It is this variability that leads to processing heterogeneity even for

cloud-hosted DLTs.

What happens if we disregard heterogeneity in DLT processing?

Disregarding heterogeneity leads to centralization of voting power. To quantify the impact

of heterogeneity on centralization, we run an experiment with 100 nodes in OMNeT++.

In the experiment, the incoming rate of new messages is set to 200 messages per second

(MPS). The 100 nodes are modeled with a mean processing rate between 90-350 MPS with
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their message processing rate modeled after the traces from Figure 2.3 where 25% of nodes

are on AWS, 15% on Azure, and 10% on Dimension Data1. During the experiment, we

measure a metric called centralization value, which is calculated as a ratio of nodes which

are left behind and can not vote (due to their inability to process high rates of new ledger

update messages) and the total number of nodes (Section 4.2 for details). Hence, the

lower the score, the higher the participation in voting, thus, higher DLT decentralization

(desired). We further investigate two network scenarios: aided and unaided. In the aided

setup, a DLT can enforce a fixed throughput rate (i.e., flow control) which is calculated

keeping the slowest node(s) in mind (e.g., with a minimum DLT joining requirement),

thus ensuring a certain level of decentralization at the expense of resource utilization. The

current IOTA Coordicide solution proposes this (10). In the unaided setup there is no

network-level support for heterogeneity.

Figure 2.6 shows our results for aided and unaided cases. First, we look at the throughput

(the y-axis) with time (on the x-axis) of both cases as shown in 2.4. As expected, the

aided case leads to a stable throughput of 100 MPS while underutilizing the remaining

processing capability of the network. In comparison, in the unaided case the throughput

increases until around 200 MPS (the orange line), thus proving that the network has

spare, underutilized capacity. However, when we analyze the centralization values of aided

and unaided configurations we observe an opposite picture (Figure 2.5). As the unaided

configuration delivers higher performance, it leaves a large chunk of slow nodes out of sync

(up to 40% by the time 30 seconds), i.e., the incoming rate of new messages is greater

than the processing capabilities of a node. These out-of-sync nodes can not participate in

voting, thus, allowing only faster nodes to have full control of the consensus procedure. In

contrast, the fixed-rate aided DLT only leaves less than 10% nodes out of sync, though at

the cost of a poor, underutilized DLT network.

However, both previously shown scenarios are not optimal as they either statically trade

throughput for decentralization or decentralization for throughput. A desirable solution

should deliver high throughput at all times while guaranteeing a high degree of decentral-

ization, and this is exactly what we propose with our Healthor.

1For more details of how these values are calculated and modeled please see Section 4.1.
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Chapter 3

Design of Healthor

Healthor is a distributed flow-control protocol to improve the decentralization and perfor-

mance in a heterogeneous DLT network. Before we introduce the details of the Healthor

protocol, we first briefly present the network model and our assumptions in the following

section.

3.1 Network Model and Assumptions

We denote the set of all nodes participating in the network as M, where each node m ∈M

has a set of inbound and outbound neighbors denoted by Nm ⊂M. Figure 3.1 shows a node

model and its neighbors. A node and each of its neighbors are connected via bidirectional

channels over which they exchange messages. A message contains data, e.g., monetary

transactions, and a hashed reference to two previous messages as its parents, effectively

building an immutable directed acyclic graph like the Tangle (Section 2.3.2). Network

membership management and bootstrapping of nodes are handled using an external service.

A node can perform various operations, namely issuing, receiving, processing, and for-

warding messages. We assume that a node can issue new messages at a recommended

Filter Inboxm Scheduler
forward

process &
write

Ledgerm

receive

Node m

Figure 3.1: Model of a node m and its neighbors Nm.
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Figure 3.2: High-level design of Healthor. Nodes periodically send their health to their
neighbors (left). Node A adjusts its rate according to a neighbor’s health and buffers messages
in an outbox per neighbor (right).

rate which is enforced by the network congestion mechanisms (85). In this work, we focus

only on the end-host flow-control mechanism. On receipt of a message, the node filters

out duplicates and pushes unseen messages to its inbox, a buffer with limited size. Based

on the message’s cryptographic signature, the node can identify if it has processed all par-

ent messages for a new message, i.e., it is solid. In case of missing parent messages, it

requests the missing messages from its neighbors via an implementation-specific synchro-

nization mechanism like pull-action in Gossip-based networks (94). For any other message

for which the node has all parent messages (i.e, entire history), the message is scheduled

for processing which includes cryptographic signature verification, and then writing ledger

updates to persistent storage. After processing, the message is forwarded to the neighbors.

We distinguish between two different operating modes of a network, aided and unaided

heterogeneity. In the aided case, we assume that an overall processing rate νnet (typically

messages per second (MPS)) of the network is defined. This is the message rate at which

the network as a whole should operate (we will discuss more about it in Section 4.4). Let

νm be the variable message processing rate of a node m. Hence, node m would be able

to process and forward messages at rate min(νnet, νm). Ideally, νm = νnet at any time,

meaning that a node m is able to operate at the overall network rate. However, operating

conditions may lead to performance fluctuation, thus leading to accumulating messages in

the inbox. In case the inbox runs full a tail drop policy is used, i.e., new messages that

would cause the buffer to overflow are dropped. In the unaided case, a node m is free to

forward messages at its rate νm. The current Healthor protocol design is for the aided case,

but in Section 6.2.1 we discuss how we can relax knowing about νnet and what implications

it has.
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Figure 3.3: Model of a node m with Healthor. New components compared to Figure 3.1 are
highlighted in gray.

3.2 Workings of Healthor

The basic idea behind the protocol is to rate-limit message forwarding in a DLT network

based on a neighbor’s current message processing capacity, termed as its health. Intuitively,

the notion of health captures the dynamic heterogeneity of the DLT network, which might

be changing over time. Figure 3.2 presents an example showing the intuition behind

Healthor’s design at a high level. The figure shows a DLT network with 3 nodes (A, B,

and C). Node A has new messages to forward to nodes B and C. Before A calculates the

forwarding rate, it receives the health updates (0.5 for B, 1.0 for C), and then calculates

the rate based on the updates. Here in this example, node C gets all the messages, whereas

B only gets half, while the other half is buffered by node A on the behalf of node B. This

basic mechanism is the key insight in our flow-control protocol where more capable nodes

can buffer messages to accommodate performance fluctuations in weaker nodes.

Healthor operates at the application layer and maintains connections to neighbors in

a group communication setup. It is inefficient to rely on existing mechanisms such as

TCP-based backpressure because (1) TCP-based backpressure runs independently of the

application level and would need modifications to the TCP implementation which is not

feasible in public DLTs; and (2) TCP is a point-to-point protocol which cannot efficiently

handle group communication dynamics.

Figure 3.3 depicts an updated model of a nodem with the new components from Healthor

highlighted. Healthor is a framework encompassing four separate engines, inspired by

TIMELY (30), that uses local queue building and health updates as a signal. Additionally,

a node m has an Outboxn for every neighbor n ∈ Nm where references to messages for n

are stored before forwarding. In the following section we introduce these new engines and

associated design decisions.
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3.3 Health Measurement Engine

The Health Measurement Engine is at the heart of the mechanism. By introducing the

notion of health hm ∈ [0,∞), a node m can express its fitness regarding processing the

maximum number of messages as defined by the expected network’s processing rate νnet
(in the aided case). A node periodically calculates its health based on its inbox occupation

lm
def
= len(Inboxm) as following

hm =

{
νm
νnet

if lm < νnet,

1− lm
lcapacity

otherwise.
(3.1)

where lcapacity is the maximum size of the inbox, configured on the startup of node m.

3.3.1 Choosing a Signal

It is not trivial to find a reliable signal for rate control in a distributed, permissionless DLT

setting. Relying on special hardware support such as Explicit Congestion Notification or

changes to the operating system stack are infeasible in a public DLT. Due to the ever-

changing nature of available computing resources, an initial announcement of capabilities

is also not practical. Therefore, the solution must come from the end-host’s application

level.

Since all messages are delivered to all nodes and every node keeps track of received

messages in relation to νnet, every node knows the current health level of the network.

Therefore, the inbox occupation gives a reasonable assessment of how much a node is in

sync, i.e., whether it is able to receive and process state updates in a consistent and timely

manner. A low inbox occupation signals a node being able to process at the network’s

pace, being healthy. Conversely, a high inbox occupation conveys that it is struggling to

keep up with network activities. Thus, the node is unhealthy.

3.3.2 Different Means to Compute Health

As health is such a central component of the mechanism, we experimented with several

approaches before concluding on the one described in Eq. (3.1). Firstly, only using the

second branch of Eq. (3.1) leads to hm ∈ [0, 1] and a node m always being slightly un-

healthy as soon as there is any message in the inbox. Our initial simulation results showed

consistently poorer performance than the ideal aided case (i.e., νm = νnet) as the ideal case

represents the achievable theoretical maximum. By introducing the condition lm < νnet a

node can still be seen as healthy if its inbox is occupied with a few messages as long as they
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remain less than the maximum messages expected at the network rate, the performance

was equal to the aided case. Lastly, allowing a health rate greater than 1 enables nodes to

temporarily go faster than νnet, which we adopted as our final way to compute hm.

3.3.3 Health Messages

A health message is very lightweight, containing simply the health of the node m as a

double-precision floating-point number. It, therefore, is only 64 bits of data. Additionally,

in a real system, like any message, it should contain a node signature to verify a valid origin

of a message. If a health message is lost for any reason, a neighbor n simply continues

forwarding at its last known rate for a node m until it receives a new health message.

3.4 Rate Computation Engine

On receipt of a neighbor n’s health data the node’s Rate Computation Engine calculates

the message forwarding rate for this neighbor n as shown in

rn = νnet · hn. (3.2)

The node computes the forwarding rate rn linearly according to the neighbor’s health hn.

Therefore, it can even go faster than the target network rate νnet if its neighbors can

process messages at the forwarding rate of rn. Nevertheless, a node can only forward as

much as there is network activity (new messages are issued), and it is able to process itself.

3.5 Outboxes

As in Figure 3.3 illustrated, a node m has an Outboxn for every neighbor n ∈ Nm. When

a message is processed, a reference to it is added to every outbox. The original message is

stored in the node’s local ledger. The Pacing Engine takes care of forwarding messages to

neighbors at their respective rates.

Drop Policy

Similar to the inbox, an outbox is a buffer of limited size, defined on node startup. In case

an outbox runs full, a tail drop policy is used (Figure 3.4 top), i.e., new messages that

would cause the buffer to overflow are dropped while message requests are prioritized as

shown. We also experimented with random (Figure 3.4 bottom) and head drop (Figure 3.4

center) policies. However, these turned out to be unfavorable due to the fact that messages

are generally forwarded in order. If messages from the beginning of the buffer are dropped,
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Figure 3.4: Drop policies of outboxes.

the receiver needs this already dropped message to process later messages. It, therefore,

needs to request these dropped messages adding even more overhead.

3.6 Pacing Engine

The Pacing Engine fetches messages from an Outboxn for a neighbor n and forwards

them at the rate calculated by the Rate Computation Engine. It essentially controls each

flow of messages to every neighbor to achieve the given forwarding rate rn. A possible

implementation in a real-world system could make use of one thread per Outboxn that

pulls messages from the outbox and forwards them while inserting delays to match rn.

3.7 Defense Engine

It is essential to protect nodes against exploitation and adversarial behavior in a permis-

sionless DLT setting. Therefore, the Defense Engine locally monitors a node’s neighbors

behavior and initiates appropriate actions if a protocol violation is suspected. Fundamen-

tally, it provides incentives, hardens the flow-control mechanism, and makes nodes resilient

against attacks. There are two main attack vectors on Healthor, namely exceeding the al-

lowed forwarding rate and manipulation of health updates.
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3.8 Summary

3.7.1 Exceeding Allowed Forwarding Rate

The basic idea is that, in the aided case, the expected network rate νnet is known to all the

nodes in the network. Hence, a node’s neighbor n calculates the forwarding rate as defined

in Eq. (3.2) and its pacing engine forwards out messages at this rate (i.e., the allowed

rate). However, a neighbor may diverge from this rate because of being unhealthy itself,

connection issues, or adversarial behavior. In any case, an extremely large divergence of

the allowed rate cannot be tolerated. Therefore, every node m keeps track of the rates

of every neighbor n by simply counting the received messages per neighbor. The Defense

Engine of a node m periodically creates a moving average of the allowed rate within the

time window tw as well as a moving average within the same window for every neighbor’s

receive rate. If a neighbor exceeds the allowed rate β-times in a row, the neighbor is

dropped. Likewise, if a neighbor falls below the rate β-times.

3.7.2 Manipulation of Health Updates

A node m sends the same health update to all its neighbors. Therefore, health updates

can be absent or manipulated by an adversary. If no health updates are received, a node

m simply uses the known previous health of a neighbor n. At startup every node considers

all its neighbors to be healthy, i.e., hn = 1,∀n ∈ Nm. Generally, an adversary can only

influence its own view on the network traffic by manipulating its health. For example, if

she lies and sends different health messages to distinct neighbors, each neighbor will send

at different rates according to the protocol. However, this does not have any influence on

the neighbors.

On the other hand, an adversary could try to inflate outboxes of neighbors and to

slow them down by pretending to be unhealthy. Inflation of outboxes, however, is not

possible due to their limited size and drop policy. Nonetheless, a neighbor should not waste

resources and therefore the Defense Engine implements a similar strategy to the forwarding

rate. A nodem keeps track of the health of every neighbor n by simply recording the outbox

occupation. Recall that a node buffers messages for unhealthy neighbors. The unhealthier

a neighbor n the higher the occupation will be. If a neighbor n is unhealthy for too long,

Outboxn will run full, and eventually, the neighbor is dropped after β measurements.

3.8 Summary

In this chapter we first introduced our network model and assumptions (Section 3.1) and

then detailed Healthor’s design (Section 3.2) and its four engines, comprised of Health
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Measurement Engine (Section 3.3), Rate Computation Engine (Section 3.4), Pacing Engine

(Section 3.6) and Defense Engine (Section 3.7). Together with an outbox per neighbor

(Section 3.5) these engines form an application-level flow-control mechanism for DLTs that

uses health, a metric based on a neighbor’s current message processing capacity, as a

signal to rate control between peers. This signal is paramount for a dynamic, distributed

flow control as it needs to be resistant to cheating, capture heterogeneity as well as ever-

changing processing rates, and provide fair rates while utilizing available resources. In the

next chapter, we analyze Healthor with its health signal in depth.
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Chapter 4

Evaluation

We evaluate Healthor at two different scales. First, we explore node properties such as

throughput, latency, and individual load at a small scale. These microbenchmarks are

conducted simulating a network of 10 nodes such that tunable parameters of Healthor can

be separately investigated. Second, we examine global network properties. In macrobench-

marks, we shift focus on the overall performance of the network and study decentralization,

throughput, and tail latencies. Along with this evaluation, we discuss the following ques-

tions:

• Does Healthor take load away from unhealthy nodes and allow nodes to stay (longer)

in sync? Our findings in Section 4.3 suggest that Healthor reduces load on low-end

nodes and allows nodes to stay in sync when they could not with aided heterogeneity.

• What is the influence of processing heterogeneity on decentralization and throughput?

We observe in Section 4.3 that some nodes that fulfill the network requirements

nominally, i.e., νm is greater than νnet, fall out of sync because of heterogeneity, thus

increasing centralization.

• Can Healthor improve decentralization, throughput and/or latency? Our results in

Section 4.4 demonstrate that, indeed, Healthor can improve all three properties.

• Does Healthor provide the above improvements while staying resilient against attacks?

We show in Section 4.5 that nodes can detect protocol violations and protect them-

selves against attacks reliably.

4.1 Setup

We built a discrete-event simulator using OMNeT++ to simulate the permissionless,

voting-based DLT modeled in Section 3.1 and test our mechanism. In our experiments,
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we employ small-world networks of various sizes |M| where each node has between 2-4

random neighbors. Such random pairing is done in real-world applications that adopt a

Kademlia-like (60) peering mechanism such as Ethereum (8), IPFS (95), BitTorrent (96),

and Storj (97). The distance between two randomly chosen nodes is in the order of

log |M| (60). If a node gets out of sync, it goes offline and its neighbors repeer with

other random nodes that have less than 4 neighbors.

Parameters

We adopt a Poisson process as the network processing rate νnet = 100 MPS for our ex-

periments with aided heterogeneity and Healthor. Theoretically, νnet is not defined for

unaided. However, for simplicity, we assume νnet = 200 MPS for our experiments in this

case. A random subset of nodes issues messages following a Poisson distribution with pa-

rameter λm, so that
∑

m λm = νnet. Channels are assumed to have a delay between 50ms

and 150ms uniformly at random to simulate real network conditions (3, 12).

The variable processing rate νm of a node m is modeled according to the cloud perfor-

mance traces shown in Figure 2.3. As a conservative approximation of real-world DLT

P2P networks (3, 12, 77, 78, 79) (detailed in Section 2.3.1), we adopt a distribution of

50% constant, 25% AWS, 15% Azure, and 10% Dimension Data. Every νm is randomly

scaled between 0.9νnet and 3.5νnet (in the case of unaided, the original νnet value with

which is compared is used). For example, if a node m is of type AWS with 1.5νnet its mean

processing capabilities are ν̄m = 150 MPS but vary over time as pictured in Figure 2.3

where the x-axis is randomly shifted.

Every node’s Health Measurement Engine computes its health hm and sends it to its

neighbors every 1 second. Since we do not consider message priorities, a node’s scheduler

operates according to FIFO. A node’s Defense Engine calculates allowed rates at an interval

of 1 second and creates moving averages over a time window tw = 3 seconds. A neighbor

is dropped after violating the protocol β = 5 times in a row.

4.2 Metrics

4.2.1 Centralization Score: Quantifying (De)centralization

In P2P networks, decentralization is the property of not relying on any centralized com-

ponent. DLTs work, by definition, in a decentralized way. However, while in theory no

centralized components are present, to prevent Sybil attacks nodes have different influ-

ences on consensus. Hence, if a node assumes too much power (e.g., hashing power in
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Bitcoin (9), concentration on major cloud hosting providers (3, 12, 77)), we can conclude

it has exceeding control of the network. Decentralization is a fundamental property of

DLTs, and with the centralization score we introduce an easy way to compare the degree

of decentralization in a voting-based DLT with the ratio of nodes being able to participate

in voting.

The centralization value is the number of nodes that are not able to process all messages

within a defined time window d normalized by the total number of nodes and is defined as

cvalue(t) =

∑
m∈M unsyncm(t)

|M|
, (4.1)

where

unsyncm(t) =

{
1 if m processed all messages in [t, t+ d],

0 otherwise.

As such, a lower value is better because more nodes in the network are able to participate

in consensus. In our evaluation we adopt a time window d = 5 seconds, i.e., a node is

considered not being able to participate in consensus if at least one message has been

received by the node later than 5 seconds from the time the message has been issued, also

taking into account network delays. Considering that voting usually takes place in rounds

it is reasonable to assume that a node being a bit behind is still able to participate. In the

case of the IOTA Coordicide protocol voting rounds are initiated every 10 seconds (10).

Recent PoS DLTs like Polkadot (19) adopt block times of around 5 seconds. Also in

these systems, a node needs to be able to receive and process a transaction within this

bounded time window in order to be able to produce or validate a block, thus taking part

in consensus.

To show the evolution of centralization we plot the centralization value over time, which

in simulation can be easily determined and in real world scenarios can be inferred by the

voting participation of nodes. Accordingly, the centralization score is the mean of the

centralization value over a given duration D and expresses the degree of decentralization

in a single number. It is defined as

cscore(D) =

∑D
t=0 cvalue(t)

D
. (4.2)

4.2.2 Throughput: Measuring Network Performance

We measure the processing time of messages on a node and aggregate it by the granularity

of one second. This constitutes the throughput of a particular node at a given time. To

evaluate the network’s mean throughput we sum up the throughput of all nodes divided
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Figure 4.1: Processing rates νm in a network with 10 nodes. A node’s mean processing rate
νm ≥ νnet.

by the count of nodes. This calculation excludes out-of-sync nodes, i.e., only participating

nodes contribute to the network’s throughput.

4.2.3 Latency: Assessing Delays

Delays are important in every network where small delays correspond to quick response

times. In voting-based DLTs a small latency is crucial for nodes to be able to participate in

consensus. We measure the latency of any given node m as the duration between message

issuance time and processing time on node m. When assessing latency as global network

property, we consider the 95 percentile latency of all in-sync nodes.

4.3 Microbenchmarks

We compare aided and Healthor in a network with 10 nodes with available processing

rates. Figure 4.1 depicts that each node’s mean processing rate νm is larger than or equal

to νnet. It can be seen that node[2] (ν̄2 = 170 MPS), node[4] (ν̄4 = 130 MPS), and

node[6] (ν̄6 = 170 MPS) sometimes fall below the network processing rate νnet = 100

MPS. Therefore, these nodes are of special interest. Due to the limiting nature of aided

the actual processing rates used are min(νnet, νm) and higher rates can not be leveraged.

4.3.1 Comparison of Aided and Healthor

Figure 4.2 details the throughput of aided (left) and Healthor (right). The x-axis shows

the throughput in messages per second, and the y-axis the time in seconds. Each node’s

throughput can be directly related to its available processing rate as depicted in Figure 4.1.
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Figure 4.2: Throughput.
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Figure 4.5: Experiment results in a network with 10 nodes with aided heterogeneity (left)
and Healthor (right).
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For aided, the throughput is capped at a maximum rate νnet (mean = 97.51 MPS), while

Healthor temporarily allows higher throughput (mean = 99.86 MPS) which fluctuates

around—instead of being limited by—the value νnet. In aided, node[4]’s throughput

drops to 0 around second 55. Similarly, node[6]’s throughput falls to 0 at 120 seconds.

This indicates that both nodes are out of sync, i.e., their inboxes are filled up with too

many messages without their known history, so that no newly received message can be

scheduled. node[4] and node[6] go offline from this point in time and cannot participate

in consensus anymore until a heavy re-sync operation is performed. In practice this could

mean manual intervention and restart with a trusted, previously downloaded ledger state

snapshot.

Figure 4.4 shows the CDFs of the latencies for aided and Healthor, respectively. In

aided, node[2] and node[6] have by far the largest latency, exceeding 5 seconds at the

tail. Recalling the definition of centralization score in Section 4.2, this indicates that these

nodes are too far behind to participate in consensus for some messages. Indeed, as shown

in Figure 4.2, node[4] and node[6] run out of sync. However, node[4]’s latency does

not exceed 5 seconds which implies that it got out of sync quickly. With Healthor, the

network latency is significantly lower by 73% compared to aided. Especially node[2]’s

and node[6]’s 95 percentile latencies stand out with an improvement of 91% and 89%,

respectively.

4.3.2 A Closer Look at Inbox Sizes

Figure 4.3 shows the number of messages stored at each node’s inbox over time, i.e.,

inbox occupation. Every node can store up to 250 messages. Generally, we observe that

buffers have higher occupation in aided, which leads to higher latencies and indicates higher

memory load. Messages reside longer in the inbox before they can be scheduled because of

the enforced processing rate limit. node[4]’s and node[6]’s inboxes run full around second

40 and 90, respectively. Once this happens for too long the node is non-recoverable out

of sync and, simultaneously, its throughput drops to 0, hence it goes offline. Temporarily,

also node[2]’s inbox runs full at ∼ 120 seconds, but it does not go out of sync. Instead,

it is able to recover via pull action and its inbox occupation drops towards the end of the

simulation. Inbox occupation with Healthor follows a different pattern: none of the nodes’

inbox runs full, thus all nodes stay in sync. Furthermore, the inbox fills and empties in

a zigzag pattern reacting to health changes. Recall that a node gets unhealthier when its

inbox grows, and its neighbors forward at slower rate until the node gets healthier again.

34



4.3 Microbenchmarks

Inbox cscore MI node[4] MI node[6]

aided Healthor aided Healthor aided Healthor

100 0.14 0 100 100 100 90
250 0.11 0 250 120 250 98
500 0.08 0 500 120 400 115

1,000 0.08 0 920 120 400 115
2,000 0.08 0 920 120 400 110

Table 4.1: Different inbox sizes with aided and Healthor. MI=maximum measured inbox
occupation. cscore = 0 means no node is out of sync (desired).

Table 4.1 shows the centralization score and the maximum inbox occupation of node[4]

and node[6] for various inbox sizes. The centralization score captures when a node is not

able to participate in consensus. Therefore, it is a reasonable tool to assess the effect of

various inbox sizes. On the one hand, a too small inbox can be easily fulfilled. Hence,

new messages are dropped with high probability up to the point where the node falls out

of sync. On the other hand, a too big inbox size might consume too much memory while

only increasing delays. Either way, a node is not able to vote.

We observe that node[4] and node[6] get out of sync in the aided case when the inbox

size is 100 because both nodes’ inboxes run full. With Healthor, the centralization score is

0 which signals that no nodes got out of sync, even though node[4]’s inbox reached 100.

In this case, node[4] could recover via a pull action and with the help of its neighbor’s

buffering while it is unhealthy. Larger inbox sizes seem to improve the centralization score

slightly for aided but the fundamental problem of node[4] and node[6] getting out of sync

remains. With Healthor this problem is already alleviated with an inbox size of 100, where

every node can stay in sync. However, node[4]’s inbox is at its maximum capacity, and

the node needed to recover via pull actions. Inbox sizes larger than 250 only let nodes look

healthier, but cannot improve the centralization score (which is already 0). Therefore, the

maximum inbox occupation measured is slightly higher. Henceforth, we adopt an inbox

size of 250 for all of our experiments as a reasonable tradeoff between memory consumption

and storing capacity.

4.3.3 A Closer Look at Outbox Sizes with Healthor

Recall that a node m has an Outboxn for every n ∈ Nm. It is therefore important to

establish a fitting outbox size so that enough messages can be stored, but no unnecessary

overhead is created. Table 4.2 shows the centralization score, maximum inbox occupation
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Outbox cscore MI node[4] MON node[4] MI node[6] MON node[6]

100 0 160 100 98 100
250 0 120 200 98 100
500 0 120 200 98 100

1,000 0 120 200 98 100
2,000 0 120 200 98 100

Table 4.2: Outbox sizes with Healthor. MI=maximum measured inbox occupation,
MON=maximum outbox occupation at neighbor node. cscore = 0 means no node is out
of sync (desired).
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Figure 4.6: Processing rates νm in a network with 10 nodes (additional scenario). A node’s
mean processing rate νm ≥ νnet.

of node[4] and node[6] as well as maximum outbox occupation of both nodes’ neighbors.

Larger outboxes indicate less pressure on an unhealthy node up to an outbox size of 250, as

is evident by the higher inbox occupation of node[4] with an outbox size of 100. However,

this trend can only be observed until an outbox size of 250, where the outbox occupation

at node[4]’s neighbors and its inbox occupation stabilize. An outbox size of 250 seems to

offer a good tradeoff between decreasing load on an unhealthy node and creating overhead

on its neighbors. We, therefore, adopt an outbox size of 250 for our experiments.

4.3.4 Additional Scenario

The previous analysis was done with the same network and node heterogeneity setup. To

gain a better intuition of Healthor’s behavior for different networks, we now take a look

at the same set of figures (Figure 4.10) for throughput, inbox occupation, and latencies

for a different 10 node network setup. Figure 4.6 shows the nodes’ processing rates νm,

where each node’s mean processing rate νm is larger than or equal to νnet. The network’s
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Figure 4.7: Throughput.
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Figure 4.8: Inbox occupation.

0 1 2 3 4 5 6
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

0 1 2 3 4 5 6
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

Figure 4.9: Latencies.

Figure 4.10: Experiment results in a network with 10 nodes (additional scenario) with aided
heterogeneity (left) and Healthor (right).
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parameter are as described in Section 4.1. We observe that the mean of vm for node[1],

node[2], and node[4] are equal to the network processing rate νnet = 100 MPS. Hence,

these nodes are of special interest.

Figure 4.7 details the throughput of aided (left) and Healthor (right). We show, for the

former, the throughput is capped at a maximum rate vnet, while the latter, temporarily

allows higher throughput, which fluctuates around — instead of being limited by — the

value vnet. In aided, node[2]’s throughput drops to 0 around second 45 which means

that the node is out of sync and offline from this point in time and cannot participate in

consensus anymore.

In Figure 4.8 the inbox occupation is displayed. At the same time, we observed node[2]’s

throughput dropping to 0, i.e., getting out of sync, we can see its inbox becoming full for

the aided case (left). Comparing to Healthor (right), node[2]’s inbox does not grow larger

than 145 and follows the zigzag pattern reacting to health changes, as we have seen for the

first scenario already. Overall, inboxes do not grow as full with Healthor as in aided.

The CDFs of the latencies for aided (left) and Healthor (right) are shown in Figure 4.9.

In aided, node[2]’s latency exceeds the 5s mark and indicates, once again, that this node

is getting out of sync. With Healthor the latency for node[2] is lower and this is not the

case. For all other nodes especially tail latencies are large in aided whereas this is not the

case with Healthor.

4.3.5 Overheads

In our evaluation, we configure Healthor to exchange health messages every 1 second.

Naturally, this adds message overheads compared to aided. The theoretical maximum

overhead of a node for a simulation of length T time can be calculated as omax(m) = |Nm|T .
Assuming that a node has |Nm| = 4 neighbors during a simulation of 180 seconds results

in omax = 720 health messages sent and received. In a flooding-based P2P network with

νnet = 100 MPS and the same configuration the maximum number of sent and received

messages is 72,000. It follows that Healthor incurs a maximum overhead of 1% in the

deployed configuration. However, we are aware that the overhead is a function of message

rate and can be high with low throughput.

4.3.6 Discussion

In two different scenarios, we have shown that Healthor enables lower latencies and re-

duces load on low-end nodes compared to aided mainly by allowing temporarily higher

throughput. It, therefore, unlocks enormous potential: nodes can make use of resources
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|M| aided unaided Healthor

cscore L T cscore L T cscore L T

100 0.04 1.93 98.24 0.40 0.83 198.38 0.02 0.73 101.10
500 0.09 4.24 97.15 0.38 1.17 196.20 0.02 0.95 100.81

1,000 0.07 4.47 97.82 0.38 1.45 195.20 0.03 0.99 100.12
2,000 0.06 3.17 97.79 0.41 1.61 196.98 0.03 1.06 100.82
5,000 0.07 4.26 97.00 0.40 1.73 197.21 0.03 1.19 100.60

Table 4.3: Decentralization vs. throughput experiment results. L=95 percentile latency,
T=mean throughput.

when they are available, irrespective of network activity. However, the mechanism does not

come without overheads as our calculations show.

4.4 Macrobenchmarks

In the previous section, we investigated Healthor closely and established sensible default pa-

rameters for inbox and outbox sizes. Following, we compare aided, unaided, and Healthor

at a larger scale. We present overall network-level results for heterogeneous networks with

up to 5,000 nodes in line with the description provided in Section 4.1.

4.4.1 Decentralization vs. Throughput

Figure 4.11 shows the centralization value for aided, unaided, and Healthor in a network

with 2,000 nodes. Clearly, unaided is the least decentralized whereas aided is significantly

more decentralized and Healthor even more so. Figure 4.12 shows the throughput. As

expected, aided is limited at νnet = 100, Healthor permits temporarily higher throughput

around νnet, and unaided is only limited by demand (here at νnet = 200). In Figure 4.13,

the CDF of 95th percentile delay of in-sync nodes details how delays are much higher

in aided than in unaided (∼ 2x higher) and Healthor (∼ 3x higher). Messages in aided

stay much longer in a buffer before being able to be processed and forwarded due to the

limited rate. It is interesting to see that while Healthor slightly increases throughput and

makes the network significantly more decentralized compared to aided, it still provides

comparable latencies to unaided.

A similar trend can be observed in Table 4.3. In various network settings, unaided allows

the highest throughput and has low latency, but it is also the least decentralized. Aided

guarantees a fair decentralization but has poor latency and a maximum fixed throughput.
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Figure 4.11: Centralization value.
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Figure 4.12: Throughput.
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Figure 4.13: 95 percentile latency.

Figure 4.14: Experiment results in a network with 2,000 nodes comparing aided, unaided
and Healthor. The graphs show differences in performance and decentralization tradeoff where
Healthor provides a reasonable middleground.
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|M| cscore
Latency Throughput

aided Healthor Dec. (↓) aided Healthor Inc. (↑)

100 0.04 1.93 0.76 61% 98.24 105.45 7%
500 0.09 4.24 1.06 75% 97.15 119.51 23%

1,000 0.07 4.47 1.08 76% 97.82 115.10 18%
2,000 0.06 3.17 1.12 65% 97.79 108.96 11%

Table 4.4: Comparing throughput and latency in aided and Healthor with same degree of
decentralization.

Healthor offers the best out of both worlds: almost complete decentralization (78% im-

provement compared to aided), a slightly better throughput than aided and its latency is

on par with unaided.

4.4.2 Sensitivity Analysis

Looking closer at the behavior of aided and Healthor with the same degree of decentraliza-

tion can reveal in which settings our mechanism improves throughput and latency. This is

shown in Figure 4.15, where throughput (left) and latency (right) are plotted on the y-axis

and centralization score on the x-axis. As expected, the throughput of aided converges

towards νnet and cannot exceed it with increasing centralization scores. We basically ob-

serve the system breaking down because there are more messages issued than the fixed

throughput νnet. With Healthor it looks decidedly different: the throughput correlates

almost linearly with the centralization score, hence is not limited at a fixed rate (desired).

The network remains functional, however, it is in a similar elitist mode as unaided, where

only high-end nodes can continue to participate. In Figure 4.15 (right) we observe a cor-

relation between rising latency and increasing centralization score in aided (undesired).

Conversely, with Healthor we see a flat latency, hovering around 1 second, regardless of

increasing centralization scores.

Table 4.4 shows by how much Healthor improves latency and throughput compared to

aided with the same degree of decentralization for networks of various sizes. Again, we can

observe much higher latencies with aided and a significant improvement of up to 76% with

Healthor. Similarly, Healthor improves the throughput by up to 23% compared to aided

in a network with 500 nodes.
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Figure 4.15: Sensitivity analysis of unaided compared to Healthor in a network with 100
nodes. Left: Correlation throughput and cscore (higher is better). Right: Correlation latency
and cscore (lower is better).

4.4.3 Discussion

Aided shows one side of the extreme and limits throughput to increase decentralization. In

light of processing heterogeneity, however, this is not very effective as our experiments have

shown. The problem is that nodes may experience temporary slowdowns below the network

processing rate νnet. As long as the throughput is close to νnet, these nodes lag behind

further and further as they experience slowdowns creating higher latency. On the other

hand, the limit on throughput prevents these nodes from falling out of sync completely

and therefore provides decentralization.

With unaided nodes can simply operate at their own speed at all times. This clearly offers

lower latency, but it creates an elite-network where only the strongest high-end nodes can

participate, thus reduces decentralization. Since throughput is only limited by demand, it

is practically only limited by the processing capabilities of the fastest participant(s) at the

cost of excluding slower devices and becoming more centralized.

Healthor provides the best out of both worlds by embracing heterogeneity. It allows

nodes to temporarily go faster than νnet and hence offers low latencies comparable to

unaided, higher throughput than aided, and most importantly improves decentralization

even more than aided.
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4.5 Attack Analysis

Permissionless P2P systems are required to face challenges posed by adversarial behavior.

In the case of DLTs, this is exacerbated through financial motives. Therefore, protocols

in permissionless DLTs should be tamperproof and resilient against exploitation. Healthor

employs several inherent defense mechanisms as described in Section 3.7. We evaluate how

the Defense Engine operates in targeted attacks.

4.5.1 Attack Model

In the presented attacks we assume an omniscient adversary. Hence, the adversary is aware

of every node’s health, can intercept both messages and health messages. She is able to

tamper with the aspects of Healthor’s protocol. Attacks on the network topology, such as

eclipse attacks, and the underlying ledger are out of scope of this thesis. We use the same

10 nodes network and parameters of Section 4.3 for the attacks shown in this section.

4.5.2 Manipulation of Health Updates

Not sending health updates. Recall that a node assumes a neighbor n to be healthy

hn = 1 when connecting to each other. Further, it uses the last known health status if a

neighbor does not report any health. Therefore, an adversary cannot cause any harm by

withholding health updates.

Lying about health. Since health is computed locally and then sent to the neighbors

a node can lie about its health and even send different health status to distinct neighbors.

From the viewpoint of a neighbor n of such an adversarial node ma, node ma behaves

normally as long as no other protocol violations are detected. In essence, an adversary has

only very limited capabilities which only affect itself.

Pretending to be unhealthy. An adversary could try to inflate outboxes on its

neighbors by pretending to be unhealthy. Healthor intrinsically averts this by employing

limited lengths for buffers. However, an adversary could make its neighbors waste resources

up to this limited amount which is not favorable. The Defense Engine implements a

mechanism to detect whether a node is unhealthy for too long indirectly via its outbox

occupation. If the outbox of a neighbor n is too full for too long, it is dropped. Figure 4.16

shows this scenario where node[1] attacks node[3]. Outboxnode[1] grows rapidly up to the

maximum capacity of 250. Eventually, node[3] drops node[1] because the outbox has

been full for too long. It can now repeer with another node.
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Figure 4.16: Node[3]’s outbox occupation. Node[1] attacks node[3] by pretending to be
unhealthy.

4.5.3 Manipulation of Forwarding Rate

Forwarding more than allowed rate to neighbor. An adversary can choose to diverge

from the allocated forwarding rate by sending more and trying to overload a victim. This

is displayed in Figure 4.17 where node[7] attacks node[2] without Defense Engine. The

figure shows the forwarding rates of node[2]’s neighbors as recorded on receipt by node[2].

The blue line on top indicates the maximum allowed forwarding rate for any neighbor. It

is clear that node[7] exceeds this rate starting around second 15. As node[7] continues

to send at high rate, node[2] gets unhealthier. Thus, the maximum allowed forwarding

rate drops, and other neighbors of node[2] reduce their rate accordingly. As a result, we

can see that without the Defense Engine an attacker can overload a node by forwarding

above the allowed rate.

Figure 4.18 shows the same attack but with the Defense Engine enabled. Node[2]

quickly detects node[7] divergence and drops the connection to it around second 20. This

results in node[2] staying healthy and being able to process messages by other nodes until

the end of the simulation.

Forwarding too little to neighbor. A node might receive none or very few messages

from a specific neighbor. This could be due to a neighbor very unhealthy or a targeted

attack to slow down and exclude the node from participating. Exactly this attack is

pictured in Figure 4.19. At second 40 node[7] slows down its forwarding rate to node[2]

to 10 MPS which is shortly after detected by node[2]. The connection is dropped and

node[2] can peer with another node.
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Figure 4.17: Disabled Defense Engine. Node[7] exceeds allowed forwarding rate.

0 10 20 30 40 50 60
time (s)

0

25

50

75

100

ra
te

 (M
PS

)

dropped

Figure 4.18: Enabled Defense Engine. Exceeding of forwarding rate is quickly detected.
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Figure 4.19: Enabled Defense Engine. Slowing down substantially is quickly detected.

Figure 4.20: Receiving rates of node[2]’s neighbors, measured locally. Node[7] attacks
node[2].
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4.6 Summary

In this chapter we introduced a new metric called the centralization score to quantify the

degree of centralization in DLTs (Section 4.2). We evaluated Healthor at micro (Section 4.3)

and macro (Section 4.4) scale, explored node and network properties and tested its behavior

when faced by adversaries (Section 4.5).

Microbenchmarks show that Healthor takes load away from low-end nodes and allows

these nodes to stay in sync longer compared with aided heterogeneity. In our macrobench-

marks, we find that Healthor is able to increase the degree of decentralization by 78%,

improve throughput by 23%, and decrease 95 percentile message latency by 4×. Finally,

we observe Healthor’s resiliency against malicious behavior in the in-depth attack analy-

sis. Overall, Healthor performs very well but adds message overhead as a function of the

message rate, i.e., a high network rate means low relative overhead whereas a low network

rate means higher relative overheads.
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Chapter 5

Related Work

Flow control in the permissionless DLT setting builds on many topics from networking

research such as P2P systems, network security, and distributed flow control. However, to

the best of our knowledge Healthor is the first system to systematically combine a health-

based, heterogeneity-aware distributed flow-control protocol in permissionless DLTs.

5.1 Traditional Networks

Congestion and flow control in traditional networks and data centers is a deeply studied

topic (30, 46, 47, 48, 49, 98). In traditional networks, mostly end-to-end communication

settings rather than group communication is considered. However, with Healthor we focus

on message flow control in a group communication setting. Due to the open nature of

permissionless DLTs, it is not feasible to rely on hardware or operating system support.

Therefore, Healthor operates on the application level.

Generally, congestion control protocols employ specific signals such as delay measure-

ments or packet loss to detect congestion. Especially protocols designed for data centers

often require hardware support, e.g., switch support in DCTCP (46) and NIC support in

TIMELY (30). Other protocols such as TCP Cubic (47), Copa (48), and BBR (49) are

entirely software-based, often provide kernel modules or are shipped and integrated into

popular operating systems.

In Healthor we use explicit health messages from neighbors as a flow-control signal with-

out needing any hardware assistance. The Healthor architecture converts these messages

to a forwarding rate per neighbor, thus Healthor is a rate-based mechanism. The engine

framework is inspired by TIMELY (30), which itself is a rate-based congestion control

mechanism (in contrast to window-based TCP variants (46, 47)).
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5.2 P2P Systems

P2P systems and specifically content distribution systems such as Gnutella, KaZaA and

BitTorrent were studied widely in the early 2000s (27, 28, 29, 55, 56, 57). Similar to modern

DLTs, these systems are highly heterogeneous (22) and faced challenges with scalability

and performance (27). In (26, 59) Gia, a scaling approach for the Gnutella network,

is proposed that leverages heterogeneity. It dynamically changes the network topology

and puts high capacity nodes within short reach of most nodes. Additionally, an active

flow-control mechanism based on available capacity is used to avoid overloaded hot-spots.

Gia is similar to Healthor in spirit as both mechanisms leverage heterogeneity to increase

utilization. However, the way Gia is designed is unsuitable for permissionless DLTs as

topology changes can lead to cliques construction of powerful nodes, thus defeating the

aim of decentralization in DLTs. Also, in Gnutella, it is not essential for nodes to retrieve

every search query whereas in DLTs state updates need to be propagated to every node

eventually.

Next to challenges around scalability and performance, content distribution systems have

been shown to suffer from free-riding, i.e., the lack of cooperation between peers (22, 29,

55, 64). If no proper incentives are provided, users tend to misreport information, act self-

ishly and even exploit other users (22). Therefore, many P2P systems like BitTorrent (29)

incorporate game-theoretic incentives, e.g., based on tit-for-tat (65), or reputation sys-

tems (68, 69) to preclude such malicious behavior. In Healthor, we provide incentives to

follow the protocol through the Defense Engine. Deviations from allowed forwarding rates

lead to exclusion of the network eventually, because neighbors will drop peers that do not

adhere to the allowed rates. In future work, behavior on the network level within Healthor’s

protocol could be integrated into the underlying DLT’s reputation and thus provide much

more incentives to be honest and penalize malicious actions.

5.3 DLT

More recent research on DLTs focuses more on the aspects and security of consensus (9),

decentralization (3, 12, 77), and scalability (87). Scalability research in DLTs is mainly

concerned with scaling consensus, often called sharding, where not all network participants

need to process all ledger state updates to save resources and lower cost. Only little research

has been done concerning the network layer (86). There are some proposals to improve

transaction and block dissemination such as Kadcast (99) and Erlay (100).
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Heterogeneity, however, is often not considered at all in many DLTs’ protocols but, e.g.,

in PoW DLTs where mining races exist, often not beneficial for users (9). Studies that

investigate the decentralization of the underlying P2P network of DLTs do not take het-

erogeneity into account in terms of who is capable of participating, instead it is merely

considered a by-product caused by performance variability of cloud providers (2, 23, 24).

With Healthor, we provide a solution to this emerging problem and show that this hetero-

geneity can be harmful for decentralization if not taken into account. However, it can be

leveraged as we show with Healthor.

As an alternative to public permissionless DLTs, there are also permissioned DLT de-

signs (101) that can potentially give more control over participants and their network

activities.
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Chapter 6

Conclusion

In this thesis, we have presented Healthor, one of the first distributed flow-control mecha-

nisms to leverage node heterogeneity to dynamically improve performance and decentral-

ization in a permissionless DLT network. Healthor achieves this by rate-controlling message

forwarding rates based on a node’s health. Health is defined as a function of a node’s mes-

sage inbox occupancy. With extensive simulation of Healthor on DLT networks of up to

5,000 nodes, we have shown that this simple health-based signal can increase the degree of

decentralization by 78%, improves throughput by 23%, and decreases 95 percentile mes-

sage latency by 4×. Healthor’s source code (https://github.com/jonastheis/healthor)
and simulation result data set (https://zenodo.org/record/4573698) are both publicly

available.

6.1 Answering Research Questions

1. How to derive a right design for a dynamic, distributed flow-control
protocol?

In Chapter 2 and Chapter 5 we reviewed fundamentals and related work, respectively.

Inspired by TIMELY’s (30) rate-control framework with separate engines and Gia (26)

we designed Healthor. In iterative steps the engines evolved into their final form while

being prototyped in the simulator. In small-scale simulations the behavior was inspected,

reiterated, and the design adjusted accordingly.

2. What are the key challenges in designing a dynamic, distributed flow-
control protocol in the permissionless DLT setting?

Distributed protocols pose hard challenges due to limited knowledge of individual nodes,

especially in the permissionless DLT setting where adversaries have lucrative monetary
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6. CONCLUSION

incentives to attack the protocol. It is therefore important to design a resilient and tam-

perproof protocol. In the case of a dynamic, distributed flow-control mechanism the signal

to rate control is paramount. On the one hand, it needs to be resistant to cheating and

capture heterogeneity as well as ever-changing processing capabilities of nodes. On the

other hand, it should provide fair rates and utilize available resources fully. Identifying

these parameters, measuring them, and finally finding the right balance is the key chal-

lenge when designing a dynamic, distributed flow-control protocol in the permissionless

DLT setting.

In Healthor, health covers most of these aspects as we describe in Chapter 3 and evaluate

in Chapter 4. However, the notion of health and its translation to a forwarding rate does

not guarantee full utilization as some nodes might not be able to send at their allocated,

fair rate.

3. How efficient is such a dynamic flow-control protocol for permissionless
reputation-based DLTs?

In Chapter 4 we compare Healthor against the baseline scenario with aided heterogeneity

in networks of up to 5,000 nodes. Healthor is able to increase the degree of decentralization

by 78%, improve throughput by 23%, and decrease 95 percentile message latency by 4×
while staying resilient against attacks. Healthor adds message overhead as a function of the

message rate, i.e., a high network rate means low relative overhead whereas a low network

rate means higher relative overheads.

6.2 Limitations and Future Work

6.2.1 Operating Without Network Processing Rate

The fewer parameters need to be specified in a protocol a priori, the more efficient and

resilient the protocol becomes. This also applies to the network processing rate νnet. The

capabilities of participating nodes can change over time and an optimal solution would

not assume a target rate. Instead, a self-stabilizing mechanism where nodes dynamically

smooth network activity to an equilibrium based on network health and network partici-

pants would be more powerful. Such a solution allows network components to be upgraded

over time without the daunting exercise to change the protocol. A protocol update inher-

ently bears the risk of a network split if participants do not upgrade or refuse to upgrade,

and can therefore be problematic in the permissionless setting.
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6.2.2 Right Incentives

Like early P2P designs, targeted incentives are needed to promote protocol-following good

behavior in DLTs. However, unlike classical DLTs such as Bitcoin, feeless reputation-

based DLTs by-design do not offer any monetary incentives such as mining or minting

fees. Similarly, Healthor does not provide hardened incentives for nodes to follow the

protocol except risking being dropped by a neighbor when not adhering to the protocol.

One potential future design is to incorporate Healthor’s neighbor-assisting behavior into a

DLT’s reputation system incentives. In that way, nodes can be rewarded for good behavior

and penalized for bad behavior in terms of their score for consensus.

6.2.3 Variable Forwarding Rate

The Rate Computation Engine as described in Section 3.4 calculates the same rate rn
on every neighbor of node n. While this provides an easy way of distributing the rate

equally, it might lead to underutilization if a neighbor of n is not able to send at its fair

share. Therefore, a dynamic rate-allocation mechanism between neighbors is an interesting

avenue to explore. This, however, is not trivial since such a mechanism needs to work in

a distributed setting without opening new attack vectors.

6.2.4 Real-world Deployment

In this thesis experiments and results are produced using a simulator written in OMNeT++.

While many aspects like peering and a distributed ledger are modeled, others are not cov-

ered by the simulation environment. For example, the actual computational overhead

created by Healthor is not measurable in the simulator. Many of the operations seem to

be lightweight but time-based measurements in a real-world setting could clarify concerns

while utilizing concurrency.

6.2.5 Other Use Cases

Healthor can not only be deployed in a DLT setting. Other use cases where devices have

limited capabilities such as Internet of things and edge computing could benefit from it as

well. However, currently Healthor relies on a chain-like data structure to avoid consistency

issues when messages are dropped.
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Chapter 7

Appendix

7.1 Artifact Description: Healthor’s Simulator

7.1.1 Abstract

This artifact description contains information to set up and run simulations with Healthor

as well as reproducing results shown in this thesis. We describe how to obtain the software

and data set, the necessary prerequisites to build, and finally, run the OMNeT++-based

simulator with the help of the Python plotting framework. The software consists out of

two parts: a plotting framework to automatically run sets of experiments, process raw data

and plot results, and an event-based simulator that implements Healthor’s design as well

as the aided and unaided heterogeneity network models.

7.1.2 Artifact Check-list (Meta-information)

• Algorithm: Aided, unaided heterogeneity and Healthor.

• Program: Healthor simulator (https://github.com/jonastheis/healthor).

• Compilation: C++11, Python3

• Data set: https://zenodo.org/record/4573698

• Experiments: See file omnetpp.ini for available experiment configurations.

• How much disk space required (approximately)?: 12.5 GB for all experiments shown
in the thesis.

• Publicly available?: Source code and data sets are publicly available.

• Code licenses (if publicly available)?: Apache License 2.0

• Data licenses (if publicly available)?: Apache License 2.0

7.1.3 Description

How to Access

The software can be obtained from GitHub https://github.com/jonastheis/healthor:

$ git clone https://github.com/jonastheis/healthor.git
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7. APPENDIX

Software Dependencies

Prerequisites to run Healthor are as follows:

• OMNeT++ 5.6.2

• Python 3

• rocksdb 6.15.*

Data Sets

The results in this thesis can be reproduced by running the experiments from scratch using the
simulator, i.e., generating the necessary data. The raw data generated from the experiments shown
in this thesis is additionally available on Zenodo https://zenodo.org/record/4573698.

7.1.4 Installation

Healthor’s framework consists out of the OMNeT++-based simulator and a Python plotting frame-
work for processing the raw data and creating results and plots. This Python framework builds
the single entry point to the simulator. It compiles and runs the simulator, shows progress, and
runs multiple sets of experiments at once.

# set up Python venv
$ cd healthor/plot
$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -r requirements.txt

To see all running options and experiments available use

$ python thesismain.py --help

7.1.5 Experiment Workflow

The plotting framework provides run options for all experiments shown in this thesis. Each one
runs a (set of) simulations with OMNeT++ and processes the data resulting in printed output
and plots. If run with –run-simulation false, the plotting framework expects the raw data to
be located in simulation/results/. This is useful if the experiments have already been executed
before or when using the data set provided on Zenodo. The following command line options are
available:

• microbenchmarks: run simulation series and plot results of microbenchmarks with 2 different
10 node networks (Section 4.3).

• macrobenchmarks: run simulation series and plot results of macrobenchmarks (Section 4.4).

• attack-analysis: run simulations and plot results of attack analysis (Section 4.5).

• centralization-sensitivity-analysis: run and plot results of centralization score sen-
sitivity analysis (Section 4.4.2).

• initial-experiment: run simulation and plot results of the initial experiment aided vs
unaided (Chapter 2).

• processing-variability: plot processing variability of various cloud hosting provider
(Chapter 2).
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7.1 Artifact Description: Healthor’s Simulator

7.1.6 Evaluation and Expected Results
The plotting framework provides information about the progress and some aggregated results di-
rectly on the console. Raw data is saved by the OMNeT++-based simulator to simulation/results/.
Plots are written to plot/out/ and plot/out/t/plots/.

7.1.7 Experiment Customization
Experiments can be easily customized using the omnetpp.ini configuration file for simulation runs.
All configurations of simulations conducted in this thesis can be found in this file.
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