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Abstract 
Spam messages in the United States costs approximately $20 billion annually, compared with 
approximately $200 million in surplus generated by the spam to users. Spamming is a big 
problem that is not an easy problem to solve manually. With the booming age of technology, 
spams are generated and sent at an unprecedented rate and this calls for a more innovative 
way of blocking out spam emails. 
 
Luckily, we also happen to live in an age where Neural Networks and Natural Language 
Processing methods can be implemented to build a classification network to distinguish 
whether a given email is a spam or not. 
 
Data Overview 
The data that will be utilized was taken from Enron. The dataset contains ~33k messages, 
approximately evenly split between spam and not spam. However, the data is not clean and 
needs a lot of pre-processing before any data manipulation can be done. 
 
Data Cleaning 
The raw format of the dataset contains two folders filled with .txt files; one for spam 
messages and another for non-spam messages. Figure 1 shows a sample .txt file 
 
 
 
 
 
 
 
 
 
 
The steps to clean each .txt files are as follows: 

1. Extract first line and record as ‘subject’. 
2. Everything else besides the first line will be part of the message. 
3. Utilizing regular expression (REGEX), extract first date encountered based on 

format. 
 

Figure 1. Sample Raw Data .txt 



After applying these steps to all .txt files, a DataFrame will be generated by Pandas with the 
format shown on Figure 2. 

 
Exploratory Data Analysis 
The dataset is relatively balanced with a discrepancy of around 1.8% of the total messages. 
Figure 3 shows a bar plot of the division between spam and non-spam messages. 

 
It is shown that the dataset that will be used to train is a well-balanced one. Figure 4 shows 
the time frame of these messages. Most of the messages being sent are between 2000-2001 
and 2004-2005. There seems to be a gap between 2002-2003, but this should not create any 
significant error. 

 

Figure 2. Cleaned DataFrame 

Figure 3. Bar Plot Count Figure 4. Timeframe of messages 

Figure 5. Word Cloud for genuine messages Figure 6. Word Cloud for spam messages 



Figure 5 and 6 shows word-clouds for genuine and spam messages, respectively. Notice that 
official and formal words are likely to be found on the genuine word-cloud, whereas words 
on the second word-cloud are typically found in spam messages. 
 
Data Preprocessing 
Each row (message) from the DataFrame goes through a flow of data pre-processing before it 
is used to train models. The flow is depicted in Figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The raw data consists of the Message column of the DataFrame. The next step is to convert to 
lowercase and tokenize word-per-word. Unique words will then be put inside an index, 
denoted by an integer. Each message is then converted to an array of integers based on the 
word index. Lastly, the sequences are padded in the front so that all messages have the same 
length. Now, since the text is converted to a numerical representation, it can be quantified 
and used to train the models later on.  
 
The word index is used to filter out rare words. In order to detect spam messages, the words 
that the model will look for in messages would be common words that appear in spam 
messages; hence the need to record rare words are insignificant. Other than converting to 
lowercase, punctuations are also removed. 
 

Figure 8. Tokenizer Parameters. 

In Figure 8, we utilize Keras’s Tokenizer to create the word index. The size that was chosen 
for the index is 1000 words, meaning 1000 unique words will be loaded into the index. 
char_level is set to False since we are evaluating word-per-word not letter-per-letter. The 
oov_token parameter is to specify that we want to take into account words that do not get 
added into the word index corpus. After the tokenizing above, the messages are sequenced 
and padded accordingly. The feature length of each message will be limited to the first 50 
words. 

Figure 7. Pre-processing data flowchart. 



Model Training 
Three different neural models will be trained with the pre-processed dataset. Each model is 
built with Keras’s sequential model. Layers will be added sequentially according to what 
each model specifies for. 
 
1. Dense Model 

• The first layer of the dense model will be the embedding layer which is useful for 
algorithms involving NLP to convert the padded sequence of length 50, into an array 
of 16 numbers. This involves one-hot encoding as well as dimensionality reduction. 
Also, the input_length will be 50 as it is the length of our padded sequence. 

• The second layer involves a global average pooling layer to reduce the parameters 
used in the model to avoid overfitting. 

• The third layer is a dense layer with Rectified Linear Unit as its activation function, 
along with 24 neurons 

• The fourth layer is a dropout layer to further prevent overfitting. The parameter is 0.2 
which randomly assigns input as 0 every (1/0.2=) 5 steps. 

• The final layer uses Sigmoid as its activation function, outputs probability between 0 
and 1, and only has 1 neuron since it is a binary label (Spam/Not Spam). 

 
 
 
 
 
 
 
2. Long Short-Term Memory (LSTM) Model 

• The first layer of the LSTM model will be the embedding layer, same as the previous 
model. 

• The second and third layers are LSTM layers stuck horizontally. The point of stacking 
two LSTM layers as to create a hierarchical feature representation. LSTM is a 
Recurrent Neural Network, which is useful in sequenced data types, such as words in 
a sentence in this case. Having multiple layers of LSTM will uncover features derived 
from the position of words in a sentence relative to other words. It has an integrated 
Dropout to prevent overfitting which is crucial due to the high complexity nature of 
LSTM layers. 

• The final layer uses Sigmoid as its activation function, outputs probability between 0 
and 1, and only has 1 neuron since it is a binary label (Spam/Not Spam). 

  

Figure 9. Dense Architecture. 

Figure 10. LSTM Architecture. 



3. Bidirectional Long Short-Term Memory (Bi-LSTM) Model 
• The first layer will be the embedding layer, same as the previous models. 
• The second layer is an LSTM layer wrapped with Bidirectional. The point of using 

the Bidirectional wrapper is to allow the LSTM nature to propagate both forwards and 
backwards. It is natural to extract features that relate to the position of word in a 
sentence, and also incorporating whether a word is before or after another word. It has 
an integrated Dropout to prevent overfitting which is crucial due to the high 
complexity nature of Bi-LSTM. 

• The final layer uses Sigmoid as its activation function, outputs probability between 0 
and 1, and only has 1 neuron since it is a binary label (Spam/Not Spam). 

 
Evaluation / Model Selection 
While training the three neural models, accuracy was above 96% and all models perform 
similarly with each other. Figure 12 shows the test set accuracy for each of the three models. 
Figures 13.a-c depicts the train and test set accuracy through epochs of training for all 
models. 

Figure 11. Bi-LSTM Architecture 

Figure 12. Model Results 

Figure 13a. Dense Model Loss 

Figure 13b. LSTM Model Loss Figure 13c. Bi-LSTM Model Loss 



The results from each of three models are strikingly similar and highly accurate. The models 
that are built from the message dataset seems to be possessing features that are extractable 
and recognized by all three neural network models above. As a matter of fact, it seems that 
both the LSTM and Bi-LSTM models are high in complexity due to the validation error being 
more steeply increasing than the Dense model. This is crucial to note as the data that was fed 
into the models comes from one source, specifically a single company. It is likely that the 
models will be overfitting to features like formal language and company jargons. 
 
In Figure 14, sample messages are passed on to each model to predict. The results are shown 
on the table. The values shown denote the probability that the message is a spam, classified 
by each model. 
 
 
 
 
 
 
 
 
 
Precision as Metric 
The neural networks trained above utilizes accuracy as its metric. This means that through 
every run of the training step, it will reconfigure weights of the neurons with the objective of 
increasing accuracy. Sometimes accuracy is not the perfect metric to use when training. An 
unbalanced dataset might introduce a bias in the algorithm to predict a label as the more 
dominant one. Having multiple-class labels may result in only a few of the labels being 
considered in the labeling process.  
 
Precision is an alternative to Accuracy. Precision is defined as the ratio between True 
Positives and All Predicted Positives. In other words, it measures how many percent of the 
messages that are tagged as spam, are actually spam. If precision is used as the metric in 
training the models, then the classifier will maximize the percentage of actual spam messages 
of all the predicted spams. This minimizes the amount of genuine messages labeled as spam. 
 
Another alternative is Recall. Recall is defined as the ratio between True Positives and All 
Positive Observations. In other words, it measures the percentage of spam message 
observations that are labeled by the model as spam. If recall is used as the metric in training 
the models, then the classifier will maximize the percentage of correctly predicted spam 
messages of all spam message observations. This minimizes the amount of spam messages 
that are labeled as genuine.  
 
Notice how Precision and Recall are somehow two sides of the same coin. An example where 
Precision is used would be identifying a good stock to purchase. In this case, the algorithm 
would rather make a mistake identifying a good stock to buy as bad, rather than misleading 

Figure 14. Sample Predictions 



users by labeling a bad stock to buy as good. The algorithm cannot afford to make the 
mistake of labeling a stock as a good one (predicting True, when False) and would play it 
safe in identifying good stocks when it is certain. An example where Recall is used would be 
identifying criminals at security checkpoints. In this case, officers would rather make a 
mistake of identifying a normal person as a criminal than identifying a criminal as a normal 
person. They can afford to make the mistake of being too careful (predicting True, when 
False) rather than letting a criminal go through. 
 
In the case of spam detection, precision should be used. Would a person rather receive a 
spam promotional email in his/her primary inbox or have a very important document sent 
into the spam inbox? The former should be the more desirable outcome. The algorithm 
cannot afford to predict a message as spam when it is genuine and should rather predict a 
message as genuine when it is spam. 
 
Adversarial Attacks 
Neural network models can be considered the epitome of machine learning. Although it is a 
new discipline that has outperformed most machine learning models, it has some serious 
flaws. In 2014, NYU and Google conducted a research into fooling Convolution Neural 
Networks. The neural network that they tinkered around with was an image detection 
network that can properly identify the subject of the image.  
 
 
 
 
 
 
 
 
 
 
 
In Figure 15, the attack starts with a clear picture of a panda. The neural network classifies it 
as “panda” with 57.7% confidence. However, when the image is altered with noise, the 
model classifies it as a “gibbon” with 99.3 confidence. The odd fact here is that the image 
after tampered with the noise seems to not have changed since initially, to the human eye; 
one can clearly see that it is still a picture of a panda. On top of that, it misclassifies the 
image as “gibbon” with a confidence level of being close to 100%.  
 
In the case of adversarial attacks to spam filters, a carefully constructed sequence of words 
might be able to have the same effect as the noise did on the neural network above. 
Adversarial attacks are much simpler to execute with text since there are more loopholes to 
watch. For instance, one way to get around the filtering of a spam message would be to 
convert spam “trigger” words by putting spaces between letters of the word. With this 

Figure 15. Adversarial Attack 



technique, the tokenizer of the pre-processing stage will miss the fact that these letters are 
part of the same word and will lead to a spam message being classified as genuine.  
 
The brute-force technique of preventing adversarial attacks is to be the attacker and generate 
“noise” examples that might mess up the model. The model will then be “told” to not be 
fooled by manual override and learn not to misclassify with that specific adversarial attack. 
However, this becomes taxing as it turns into a race between the pseudo-attacker and the 
attacker. 
 
The intuition behind why neural networks are vulnerable relies on some of its activation 
functions. It depends on a certain threshold that can easily be manipulated through small 
tweaks in the datum’s features. It also lies on the fact that most neural network models train 
on a very small subset of data that it might encounter. Considering that there are usually tens 
of thousands of parameters in a neural network, a small discrepancy might lead to a large 
change in its output and overall robustness.  


