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Abstract

The oral microbiota has an enormous impact on human health, with oral dysbiosis now linked to many oral and systemic diseases.
Recent advancements in sequencing, mass spectrometry, bioinformatics, computational biology, and machine learning are revolu-
tionizing oral microbiome research, enabling analysis at an unprecedented scale and level of resolution using omics approaches. This
review contains a comprehensive perspective of the current state-of-the-art tools available to perform genomics, metagenomics, phy-
logenomics, pangenomics, transcriptomics, proteomics, metabolomics, lipidomics, and multi-omics analysis on (all) microbiomes,
and then provides examples of how the techniques have been applied to research of the oral microbiome, specifically. Key findings of
these studies and remaining challenges for the field are highlighted. Although the methods discussed here are placed in the context
of their contributions to oral microbiome research specifically, they are pertinent to the study of any microbiome, and the intended
audience of this includes researchers would simply like to get an introduction to microbial omics and/or an update on the latest
omics methods. Continued research of the oral microbiota using omics approaches is crucial and will lead to dramatic improvements

in human health, longevity, and quality of life.

Keywords: oral microbiome, genomics, metagenomics, pangenomics, transcriptomics, proteomics, metabolomics, lipidomics

Introduction

The oral microbiota is a unique and diverse community of bacte-
ria, viruses, fungi, and archaea that plays a major role in human
health (Baker et al. 2017). Distinct microenvironments within the
oral cavity, such as the hard surface of the tooth, keratinized hard
palate, or soft surface of the tongue, result in the establishment
of unique and highly structured communities at each site (Hu-
man Microbiome Project 2012, Lamont et al. 2018). The health-
associated oral microbiota exhibits colonization resistance and
plays an active role in preventing dysbiosis and associated dis-
ease (He et al. 2014, Radaic and Kapila 2021). Meanwhile, dys-
biosis of the oral microbiome, even on a highly localized scale,
is responsible for dental caries and periodontal disease, both ex-
tremely prevalent and costly (Bowen et al. 2018). Furthermore, the
majority of oral cancers are driven by oral infection with viruses
such as human papilloma virus (HPV) and Epstein-Barr virus (EBV,
formerly known as human gammaherpesvirus 4/HHV-4) (Tsao et
al. 2017, Economopoulou et al. 2020). In addition to oral diseases,
there are increasing lines of evidence linking the oral microbiota
to a myriad of extra-oral and systemic diseases, such as obesity, di-
abetes, cardiovascular disease, inflammatory bowel disease, non-
alcoholic fatty liver disease, rheumatoid arthritis, colorectal can-

cers, and Alzheimer’s disease (Hajishengallis and Chavakis 2021).
The oral microbiome has also served as an important model sys-
tem for researching microbiomes broadly, as diverse taxa across
all kingdoms of life co-exist and interact at a site that is easily
accessible to observe the processes of biofilm and community as-
sembly and succession (Baker et al. 2017).

Despite significant progress in our understanding of the human
oral microbiota, continued research is essential and will lead to
improvements in human health and overall quality of life.

Prior to the development of culture-independent analysis
methods such as untargeted (i.e. “shotgun”) sequencing and mass
spectrometry (MS), the study of the oral microbiome and its role in
human health was limited to taxa that could be isolated and cul-
tivated in the laboratory. Using these classic microbiological tech-
niques, key members of the community, including both pathogens
(e.g. Streptococcus mutans and Porphyromonas gingivalis) and com-
mensals (e.g. S. gordonii and S. sanguinis) were discovered, became
well-studied, and mechanisms of caries and periodontal disease
pathogenesis were elucidated. However, the overall picture of the
oral microbiota (and indeed all microbiomes) and its role in hu-
man health was still relatively incomplete and had a very narrow
focus.
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Over the past 20years, culture-independent analysis methods
have enabled the formation and subsequent explosive growth of
microbiome research, including that of the human oral micro-
biome. The development of these methods was due to major ad-
vancements in sequencing technology, MS, bioinformatics, com-
putational biology, and computer science/machine learning. In
concert with the development of microbiome research has been
the development of the omics fields of study. Especially perti-
nent to microbiome research are genomics, metagenomics, phy-
logenomics, pangenomics, and transcriptomics, which are based
on nucleic acid sequencing, as well as metabolomics, proteomics,
and lipidomics, which are based on MS. Traditional omics ana-
lyzes populations of cells within samples in aggregate, getting
an average for the population, which may not reflect the true
profiles of a given analyte across individual cells in the popula-
tion. Single-cell analysis techniques are rapidly addressing this is-
sue, already becoming a mainstay in eukaryotic transcriptomics.
Single-cell analysis is much more challenging in bacteria, as cells
and therefore the amount of input material are orders of mag-
nitude smaller. However, the first single-cell analyses of bacteria
have been described in the past several years. Meanwhile, multi-
omics research, examining datasets from two or more omics
fields, presents great potential for new discovery but also addi-
tional challenges. The continued evolution of these fields of re-
search has enabled the study of the oral microbiome at an un-
precedented scale and level of resolution. This review will pro-
vide an overview of these omics disciplines and explain some of
the most used and state-of-the-art technologies and techniques.
The review will then discuss how these approaches have been ap-
plied to the study of the oral microbiome, highlighting some of
the major recent discoveries that have been facilitated. Since sev-
eral recent reviews have excellently summarized the use of omics
techniques in both dental caries (Bostanci et al. 2021, Moussa et
al. 2022) and periodontal disease (Nguyen et al. 2020, Bostanci et
al. 2021, Kumar et al. 2021) research, this review will focus more
on the omics techniques and tools themselves, including histor-
ical context and the current state of the technology. While it is
not possible to include all of the technologies, tools, and research
worthy of inclusion, this review provides the reader with reference
to further comprehensive reviews on more specific topics where
possible. This review will also go into more depth on sequencing-
based omics rather than MS-based omics, mainly because the for-
mer approaches have been more extensively employed by the field
of microbiome research.

Sequencing-based omics

Historical background: next-generation
sequencing (NGS) revolutionizes the life sciences
and enables early microbiome research in the
2000s and early 2010s

NGS methods, including sequencing-by-synthesis ([llumina), py-
rosequencing (454 Life Sciences), and sequencing by oligonu-
cleotide ligation and detection (SOLiD; Applied Biosystems), revo-
lutionized the life sciences in the 2000s and early 2010s by en-
abling accurate, high-throughput, untargeted sequencing (Ben-
nett 2004, Margulies et al. 2005, Bentley et al. 2008, McKernan et
al. 2009). For the first time, microbiological samples could be ana-
lyzed for all microbial DNA or RNA content, regardless of the cul-
tivability of the taxa present (Venter et al. 2004, Ley et al. 2005,
Gill et al. 2006). This led to the establishment of microbiome re-
search as a scientific field and the subsequent explosion of micro-
biome studies, including large, concerted efforts such as the Hu-

man Microbiome Project (Human Microbiome Project 2012). The
vast majority of this early microbiome research was conducted
using amplicon sequencing-based analysis methods, largely of the
16S rRNA gene (termed “16S sequencing” or “16S analysis”). This
was because 16S analysis allows many more samples to be ana-
lyzed with a sufficient depth to acquire microbiome data on a se-
quencing run compared to metagenomics sequencing. As a result,
16S sequencing is higher throughput and significantly cheaper on
a per-sample basis. It is important to note that advancements dur-
ing this period were not limited to sequencing instrumentation
and that there were also major developments in MS, computer sci-
ence, and computational biology that were foundational to many
of the modern technologies discussed in this review. Among these
were the algorithms and suites of analysis tools that were the first
versions and/or predecessors of some of the tools still most widely
used in microbiome studies today, including the precursors to the
DADA? (Callahan et al. 2016), QIIME2 (Bolyen et al. 2019), Kraken
(Lu et al. 2022), bioBakery (Beghini et al. 2021), SEQUEST (Brodbelt
and Russell 2015), and SPAdes (Prjibelski et al. 2020) algorithms
and suites of software.

A notable advance in the study of the oral microbiome, specif-
ically, during this period was the development of the Human Oral
Microbiome Database (HOMD), first published in 2010 (Chen et al.
2010). This not only provided a free, public, large-scale database
of 16S rRNA sequences specific to microbes from the human oral
cavity but also began to illustrate how limited previous under-
standing of the oral microbiota had been, highlighting that 53%
of the 619 species-level taxa identified in the project had not been
properly named and 35% had never been isolated or cultivated
(Chen et al. 2010). The Human Microbiome Project also signifi-
cantly advanced our understanding of the inhabitants of the oral
microbiome at specific niches (Human Microbiome Project 2012).
Figure 1A is a timeline illustrating many of the major milestones
in omics, microbiome, and oral microbiome research over the last
several decades.

Current developments sequencing technologies

In the present day, new advancements in sequencing technol-
ogy are in the process of revolutionizing microbiome research
once more. Throughout the 2010s, [llumina emerged as the domi-
nant player in sequencing, holding about 80% of the market share
as of 2020, with improvements to their sequencing-by-synthesis
technology increasing throughput dramatically while greatly re-
ducing the cost of sequencing. This decrease in sequencing cost
has even eclipsed Moore’s Law (which posited that the number
of transistors on an integrated circuit doubles about every two
years, therefore dropping the cost of computer power to the con-
sumer in a log-linear manner), with the cost of sequencing one
million base pairs falling from $10million in 2001 to $0.10 by
2016 (Wetterstrand 2023, Muir et al. 2016). Interestingly, this phe-
nomenon has led some scientists to hypothesize that computing
power and storage will ultimately become the limiting cost fac-
tors in sequencing-based research rather than the sequencing it-
self (Muir et al. 2016). This dramatic reduction in sequencing cost
has enabled many more oral health and microbiome researchers
to perform larger-scale 16S sequencing projects, metagenomics,
whole genome sequencing, and RNA-seq.

At the same time, emerging third-generation sequencing
technologies, especially long-read technologies such as nanopore
sequencing (Oxford Nanopore [ONT]) (Jain et al. 2015), single-
molecule real-time sequencing (SMRT; Pacific Biosciences
[PacBio]) (Roberts et al. 2013), and LoopSeq (Element Biosciences)
(Callahan et al. 2021), are in the process of transforming the
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Figure 1. (A) Timeline of milestones in omics technologies and oral microbiome research. This timeline highlights milestones in microbiome/omics
research generally (yellow), major technological advances (green), and milestones in oral microbiome research specifically (blue) over the past

33 years. (B) Omics approaches and tools. For each of the seven omics approaches discussed here, a list of the most significant and/or commonly used
bioinformatics tools is provided. Note that this list is not exhaustive, and readers are referred in the main text to additional references on the specific

software and benchmarking. **denotes a particularly useful or “gold standard

landscape of sequencing yet again and are challenging Illumina’s
preeminence. Although Illumina sequencing is highly accurate,
the reads produced typically only 150 or 300bp in length. With
read lengths this short, repeat and nonspecific regions signif-
icantly hamper efforts to assemble complete genomes, with
[llumina-based genome (or metagenome) assemblies typically
being split into fragments, which are called contigs (Athana-

" tool. ONT, Oxford Nanopore Technologies.

sopoulou et al. 2021). Using ONT sequencing, the length of
reads produced is theoretically only limited by the length of the
input material, and single reads of over 1 mbp are now routinely
reported (Jain et al. 2015). These long reads span the entirety of
repeat regions, enabling the assembly of circular chromosomes
and complete genomes with much greater ease. RNA can also
be sequenced using ONT, where sequencing of the full-length
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transcripts easily provides transcriptome-wide information on
co-transcribed genes and the identification of novel RNA iso-
forms (Garalde et al. 2018). In addition, ONT sequencing can
sequence native molecules, reducing bias by sidestepping the
PCR and/or cDNA synthesis steps that are required in many
sequencing library preparation protocols (Garalde et al. 2018).
Crucially, sequencing native molecules also enables the detection
of base modifications and noncanonical bases (e.g. methylated
bases, inosine, pseudouridine, etc.), allowing these phenom-
ena to be studied on a genome, metagenome, transciptome, or
metatranscriptome scale for the first time (Garalde et al. 2018).
These epigenetic modifications have been particularly under-
studied in the context of microbiology. The most substantial
drawback to ONT sequencing is a relatively low accuracy. Errors
in ONT sequencing are not random but usually occur during
homopolymeric tracts, where the basecalling software has dif-
ficulty identifying how many consecutive iterations of a given
base or bases have passed through the nanopore, as the rate of
processivity through the channel is saltatory, not constant (Ama-
rasinghe et al. 2020). This leads to insertions or deletions, which
are nontrivial as they are likely to cause apparent frameshifts
and therefore impact downstream gene calling and annotation
(Watson and Warr 2019). As a result, ONT sequencing data
is frequently combined with Illumina sequencing data of the
same sample, where the long reads enable accurate large-scale
assembly of contigs and scaffolds, and the short reads are used to
polish out the errors inherent to the ONT reads (Koren et al. 2012).
Crucially, the accuracy of ONT sequencing has rapidly improved
in recent years, falling from 30%-40% in 2015 to <0.1% in raw
reads (or <0.001% in a consensus assembly with >20X coverage)
using current instrumentation and software (Sereika et al. 2022).
As a result of these recent, massive improvements in accuracy,
several recent studies have shown that the field is reaching an
inflection point where accurate genomics and metagenomics can
be performed using ONT sequencing alone (Faulk 2022, Liu et al.
2022b, Sereika et al. 2022).

SMRT sequencing technology from PacBio represents a “mid-
dle ground” between Illumina and ONT sequencing technologies,
combining relatively long reads, averaging 10-25kb, and an er-
ror rate of <0.1% for raw reads and <0.003% for 25-30X con-
sensus assemblies (Wenger et al. 2019). While SMRT sequencing
was able to produce accurate genomes and metagenomes inde-
pendently of short-read polishing much earlier than nanopore
sequencing, the significantly higher cost per base of PacBio se-
quencing and the much higher cost of the PacBio sequenc-
ing machines themselves have remained a barrier for many re-
searchers (Sereika et al. 2022). Like ONT sequencing, PacBio se-
quencing can also sequence full-length RNAs (Leung et al. 2021)
and can detect methylation, enabling genome-wide epigenetic
studies (Beaulaurier et al. 2018). In addition to Oxford Nanopore
and PacBio, newcomers in the sequencing space, such as Ele-
ment Biosciences (developing both innovations to short-read se-
quencing and long read LoopSeq) and Stratos Genomics (now
owned by Roche, developing sequencing-by-expansion technolo-
gles), may indeed further disrupt the industry. In addition, syn-
thetic long-read and linked-read approaches, such as TELL-seq,
use labeling of short-reads adjacent on the genome to obtain con-
tiguity of short-read-based assemblies similar to those obtained
through long-read-based approaches (Wang et al. 2019). However,
limitations, including incompatibility with metagenomic assem-
blies, continue to limit widespread use of these approaches (Wang
et al. 2019).

Genomics

Figure 1B provides a list of bioinformatics tools, and their ref-
erences, that are discussed in the following sections. Obtaining
genomes that are both complete (i.e. contiguous chromosomes
and plasmids) and accurate is of prime importance to microbi-
ology research. High-quality, complete genomes (assuming they
are publicly available to researchers in a database) enable: (1) ac-
curate detection and quantification of a particular taxon, or its
RNA transcripts, in an isolate or microbiome sample (Venter et al.
2004), (2) prediction of the metabolic pathways and therefore pos-
sible ecological and pathogenic roles of the taxon—particularly
important for taxa that have not yet been isolated or cultivated
(Naito et al. 2016), and (3) guiding wet-lab research, such as mu-
tagenesis. Itis important to recognize that many genomes in pub-
lic repositories were assembled using short-read sequencing only,
meaning that they are probably at an incomplete or draft stage
and fragmented into contigs of various numbers and sizes. These
genomes are likely to be missing sequences and may contain con-
taminant contigs. Therefore, it is crucial that researchers are cog-
nizant of the limitations inherent with these assemblies if they
are used as a reference.

To obtain a genome, sequencing reads that have passed qual-
ity control must be assembled. Note that the assembly of multi-
species (i.e. microbiome) samples is discussed in the following sec-
tion on metagenomics. A range of assembly tools and algorithms
are available to assemble microbial genomes. For [llumina short
reads, these include ABySS (Simpson et al. 2009), Velvet (Zerbino
and Birney 2008), MEGAHIT (Li et al. 2015), and SPAdes (Prjibelski
et al. 2020). SPAdes tends to give the highest quality assemblies
butis more computationally expensive and time-consuming than
its competitors (van der Walt et al. 2017). The significantly longer
read length and higher error rate of ONT and PacBio sequenc-
ing datasets necessitate different assembly algorithms. Long-read
assemblers include Canu (Koren et al. 2017), HGAP (Chin et al.
2013), miniasm (Li 2016), MaSuRCA (Zimin et al. 2013), and Flye
(Kolmogorov et al. 2019). The innovative, repeat graph approach
employed by Flye performs well relative to its competitors and
is rapidly becoming a tool of choice for the field (Kolmogorov et
al. 2019). As mentioned above, long-read-only assemblies (partic-
ularly from ONT) have traditionally had higher error rates and
benefit from a complementary Illumina dataset (although the lat-
est ONT technology can produce accurate assemblies of microbial
taxa on its own, as mentioned above). For datasets where both
long-read and short-read sequencing data is available, Unicycler
(Wick et al. 2017), Trycycler (Wick et al. 2021), and hybridSPAdes
(Antipov et al. 2016) are available hybrid assembly tools; how-
ever, these were all developed for isolate (i.e. not metagenomic)
sequencing. Draft assemblies can also be polished to further re-
move errors using long reads via tools including nanopolish (Lo-
man et al. 2015) and medaka (https://github.com/nanoporetech/
medaka), and/or with short reads via tools including racon (Vaser
et al. 2017), pilon (Walker et al. 2014), and polypolish (Wick and
Holt 2022). Polypolish was a particularly helpful advance, greatly
improving short-read-based polishing in repeat and highly con-
served regions, such as the rRNA genes (Baker 2022). The combi-
nation of these bioinformatics tools with third-generation long-
read sequencing technologies has made it relatively easy and in-
expensive to obtain accurate and complete genomes, enabling re-
searchers to monitor reference strains for mutations and study
genome-wide evolution, physiology, and pathogenesis in novel
clinical and environmental isolates.
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Metagenomics

Metagenomics is the study of DNA recovered directly from envi-
ronmental or clinical samples, thereby containing multiple taxa
(i.e. multiple genomes), which of course includes microbiome
analysis. In-depth recommendations for the design and execu-
tion of a microbiome study have been expertly provided (Knight
et al. 2018). Metagenomics data can be analyzed to get diversity
metrics and abundance information on the taxa present. This can
be done on unassembled reads using tools like MetaPhlAn4 (http
s://huttenhower.sph.harvard.edu/metaphlan/), [based on marker
genes and part of the bioBakery suite of tools (Beghini et al. 2021)]
and the Kraken family of tools [based on k-mers (Lu et al. 2022)].
In addition to taxonomic abundance information, tools such as
HumanN3 (also a BioBakery tool) (Beghini et al. 2021) can obtain
information regarding the metabolic pathways present in a mi-
crobiome sample, enabling analyses such as contributional diver-
sity. This provides a significant advantage over 16S sequencing,
where the functional metagenomics are not directly examined
and may only be inferred linking a 16S sequence to a reference
genome in a database [using a tool such as PICRUSt2 (Douglas et
al. 2020)]. A species may have one 16S rRNA sequence but a signif-
icant amount of strain-to-strain intraspecies functional diversity,
which will be missed in any 16S sequencing analysis. A disad-
vantage to most methods analyzing unassembled metagenomic
reads is dependency on databases, where novel taxa or functions
are likely to end up in an “unknown” bucket, which is routinely
discarded by investigators (although this issue continues to de-
crease substantially with each subsequent version of the tools and
databases).

Beyond the data generated by the unassembled reads, metage-
nomic datasets can be assembled to produce metagenome-
assembled genomes (MAGS). A recent review covers these prin-
ciples and methods in greater depth (Goussarov et al. 2022).
Most of the aforementioned assembly algorithms now have ver-
sions specifically designed to handle metagenomic read sets, with
metaSPAdes (Nurk et al. 2017) and MEGAHIT (Li et al. 2015) be-
ing the most commonly employed for short reads and metaFlye
(Kolmogorov et al. 2020) and strainFlye (Fedarko et al. 2022) be-
coming the standard for long reads. Following assembly, a prob-
lem inherent with metagenomic datasets is not knowing which
assembled contigs go together to form a given genome. Binning is
the process of solving this problem, placing metagenomic contigs
into discrete draft genomes, or “bins,” and binning typically uti-
lizes data like k-mer frequency, GC content, and coverage, and/or
alignment to references to do so. Many tools are available to per-
form binning or short-read-based assemblies, and several of the
mainstream binning programs include MaxBin2 (Wu et al. 2016),
Concoct (Alneberg et al. 2014), and MetaBat2 (Kang et al. 2019),
along with high-performance newcomers such as SemiBin2 (Pan
et al. 2023), Binny (Hickl et al. 2022), and MetaDecoder (Liu et al.
2022a). Recently, strategies for binning that leverage the methyla-
tion data provided by third-generation sequencing methods have
been reported (Wilbanks et al. 2022). Different binning algorithms
appear to produce better bins in different datasets, and indeed,
tools combining composite and/or iterative binning strategies are
available, including DAStool (Sieber et al. 2018), MetaWRAP (Urit-
skiy et al. 2018), and VEBA (Espinoza and Dupont 2022). Manual
bin inspection and refinement should be performed, where possi-
ble, and have been made much easier by the Anvi'o suite of mi-
crobiome analysis programs (Chen et al. 2020a, Eren et al. 2021).
There are far fewer tools to perform binning on long-read datasets,
with SemiBin?2 (has algorithms for both short- and long-read bin-
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ning) (Pan et al. 2023) and LRBinner being the most comprehensive
and recently developed (Wickramarachchi and Lin 2022). How-
ever, contigs in long-read assemblies are so much longer, and draft
genomes so much more contiguous, that manual binning is much
more feasible. In fact, circular (and therefore complete) chromo-
somes are routinely obtained using long-read metagenomic se-
quencing, and of course, these do not need to be binned. The abil-
ity to obtain complete and accurate genomes from metagenomic
samples represents a major advance and has only become pos-
sible in a high-throughput fashion following the development of
long-read sequencing (Chen et al. 2020b, Moss et al. 2020, Cusco
et al. 2021, Sereika et al. 2022).

Phylogenomics

Phylogenomics is the practice of inferring evolutionary history
and relatedness between different taxa and can be done using a
number of different strategies. DNA sequences, including whole
genome alignment, can be used and may be useful when study-
ing the evolution of gene regulation or when reconstructing evo-
lutionary relationships over shorter time scales. However, the use
of amino acid sequences is more widely used, as they are more di-
rectly affected by natural selection, less influenced by processes
such as gene duplication and horizontal gene transfer, and evolve
more slowly, making it easier to reconstruct evolutionary relation-
ships over longer time scales. PhyloSift (Darling et al. 2014), Phy-
loPhlAn3 (Asnicar et al. 2020), and Anvi'o (Eren et al. 2021) are
widely used pipelines for performing microbial phylogenomics.
These pipelines are underpinned by sequence alignment tools,
such as muscle (Edgar 2004), mafft (Nakamura et al. 2018), and
famsa (Deorowicz et al. 2016), as well as phylogenetic inference
software, such as RAXML (Stamatakis 2014), FastTree (Price et
al. 2009), and IQ-Tree (Nguyen et al. 2015). PhyloPhlAn3 [part of
BioBakery3 (Beghini et al. 2021)] can easily provide taxonomic as-
signment to newly assembled MAGs and can perform phyloge-
nomic analysis scalable from strain-level analysis using clade-
specific markers to widely disparate clades such as whole gut
microbiome phylogenomic analysis. Because phylogenomics de-
pends, in many cases, on the alignment of widely conserved ho-
mologous core genes, it inevitably intersects with pangenomics,
which is needed to identify these genes. Ideally, the lowest number
of genes that still allows accurate differentiation between each
taxon in the analysis should be used to reduce the computational
expense of the phylogenetic inference software. The most fre-
quent use of phylogenomics in oral microbiome research is de-
termining the species-level taxa of a newly assembled genome or
MAG. It is important to note that the concept of “species” in bacte-
ria is not one with universally accepted traits. For the sake of ease
when dealing examining massive numbers of MAGs, 95% average
nucleotide identity (ANI) is the cutoff used to estimate the species
level, which has been adopted by the field; however, this cutoff is
not absolute and remains controversial (Jain et al. 2018, Murray et
al. 2021).

Pangenomics

Pangenomics is the analysis of pangenomes, which are the col-
lections of genes across multiple genomes. Pangenomics analy-
sis typically identifies orthologous genes across a set of genomes
and provides a list of core genes (genes present in every genome
or 90%-100% of the genomes in the analysis), cloud genes (found
in only a minority of genomes in the analysis), and shell genes
(found in many but not all of the genomes, e.g. less than core genes
but more than cloud genes); however, there are no universally
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accepted thresholds to determine these groups. Pangenomics is
especially useful for tracing horizontal gene transfer and the evo-
lution of specific gene clusters, including pathogenicity islands
and antimicrobial resistance genes. Tools, such as Roary (Page et
al. 2015), PanPhlAn3 (Beghini et al. 2021), panOCT (Fouts et al.
2012), and Anvi'o (Eren et al. 2021), have allowed pangenomics
analysis at an exceptional scale and resolution. A pangenome
can be parsed to identify optimal genes for phylogenetic analy-
sis of a given dataset. These would typically be single-copy core
genes that also that have maximum sequence differences across
orthologs in the pangenome (so that as few genomes are identi-
cal or have a flat line in the resulting tree), but also have minimal
gaps in the alignment (because phylogenetic analysis tools strug-
gle with where to place gaps in the alignment) (described in detail
at anvio.org). This type of approach will yield a bespoke phyloge-
netic analysis that will maximize the phylogenetic data obtained
while minimizing the computational resources used and time re-
quired to perform the analysis.

Transcriptomics

Transcriptomics is the study of gene expression via sequencing
of RNA and may be performed on isolates of a given taxon or
multispecies samples (i.e. a metatranscriptome). For short-read-
based RNAseq, gene quantification can be performed by either
mapping reads to an annotated reference genome (or genomes,
in the case of a metatranscriptome) or mapping reads to an an-
notated de novo assembly of the transcriptome (useful when ref-
erence genomes are lacking). Commonly used mapping tools for
short reads include BWA-MEM (Li 2014), Bowtie2 (Langmead and
Salzberg 2012), and minimap? (Li 2018), while minimap? can also
map long reads. Common transcriptome assemblers include Trin-
ity (Grabherr et al. 2011), RockHopper?2 (Tjaden 2015), and rnas-
PAdes (Bushmanova et al. 2019). Once mapped, the number of
reads mapping to genes and other features can be analyzed using
featureCounts (Liao et al. 2014) or a similar tool. As described in
the section on Sequencing Technologies, major recent advance-
ments to transcriptomics have come in the form of long-read
RNA sequencing, the ability to detect RNA modifications and non-
canonical bases, and single-cell RNAseq (scRNAseq). At this time,
the application of these technologies to bacteria remains an area
of active development. Current out-of-the-box RNA library prepa-
ration protocols for ONT require polyA-tailed RNA as input (eu-
karyotic mRNA has polyA tails but prokaryotic mRNA does not);
therefore, polyA tails must be added in addition to the recom-
mended depletion of TRNAs. Several research groups have pio-
neered using ONT technology for bacterial RNA-seq, and their
publications provide protocols on how to do so (Pitt et al. 2020,
Baker et al. 2022, Grunberger et al. 2022). Tools used to detect
DNA and RNA modifications and noncanonical bases in ONT-
based transcriptomics include Tombo (Oxford Nanopore Tech-
nologies, Inc.), MetaCompore, EpiNano, and MasterofPores, which
have been recently benchmarked and reviewed (Wang et al. 2021,
White and Hesselberth 2022).

In addition to the many free and open-source sequencing-
based bioinformatics tools mentioned above, it is worth men-
tioning that there are also several comprehensive software suites
available from vendors, such as Geneious Prime (Dotmatics,
Inc.) and CLC Genomics Workbench (Qiagen, Inc.), that can
do many types of the above sequencing analyses in a user-
friendly graphical user interface (GUI) format (in many cases us-
ing the aforementioned individual bioinformatics tools “under the
hood”), which may benefit end users with limited experience with
Linux/command line-based computing skills.

The impact of sequencing-based omics on oral
microbiome research

The sequencing-based omics approaches detailed above have had
an extraordinary impact on our understanding of the oral micro-
biome. Complete genomes of oral taxa are being published at an
ever-accelerating rate, making databases such as NCBI and HOMD
even more useful to researchers and allowing for in-depth and ac-
curate downstream phylogenomics and pangenomics. A number
of studies have now described the oral microbiome in the context
of dental caries and/or periodontal disease using shotgun metage-
nomics (Belda-Ferre et al. 2012, Shi et al. 2015, Yost et al. 2015, Bel-
strom et al. 2017, Al-Hebshi et al. 2019, Baker et al. 2021). Further-
more, several recent studies have released large numbers of oral
MAGs into the public domain (Escapa et al. 2018, Pasolli et al. 2019,
Baker et al. 2021, Zhu et al. 2022). While the MAGs in these large-
scale, short-read-based studies are draft genomes, they represent
significant progress toward identifying all of the taxa within the
microbiome, as the largest study allowed mapping of ~95% of all
oral microbiome reads to the draft genomes, with only <5% of the
reads being unmapped and coming from an unknown bacterial
genome (Zhu et al. 2022). Crucially, between 30% and 77% of the
species identified in these studies had no genomes in public repos-
itories, illustrating that our understanding of the oral microbiota
is still limited and thousands of novel taxa are still awaiting study
and naming (Pasolli et al. 2019, Baker et al. 2021, Zhu et al. 2022).
It is likely that many of these unknown taxa have been observed
and perhaps even given a designation at the 16S level. Unfortu-
nately, the 16S rRNA gene, due to the highly conserved elements,
is only very rarely recovered in MAGs derived using short-read se-
quencing. Long-read metagenomic sequencing will be useful to
link MAGs of novel species with their respective 16S sequences,
allowing for previous 16S-based data to be leveraged for addi-
tional functional and taxonomic insight, with fewer data ending
up in the “unknown taxa” bucket. Long-read-based metagenomics
of the oral microbiome has been limited, but the studies that have
used it were highly successful in identifying novel oral phages and
examining phage pangenomics (Yahara et al. 2021), as well as ob-
taining complete genomes straight from saliva (Baker 2021, Baker
2022).

As these new oral genomes become available, phylogenomics
analyses have identified many new species and have led to the
several major phylogenetic reorganizations of taxa in the oral mi-
crobiome. Most prominent was perhaps the 2020 reorganization
of the family, Lactobacillaceae (Zheng et al. 2020). This effort reclas-
sified over 300 species in 7 genera and 2 families into one family
Lactobacillaceae, which contains 31 genera, including 23 new gen-
era that were all formerly classified as the genus Lactobacillus. The
reclassification was only possible after high-quality genome se-
quences became available for all the type strains, as the 16S se-
quences were inadequate to illustrate the real phylogenetic rela-
tionships (Zheng et al. 2020). Similarly, the phylum Actinobacteria
was re-classified in 2018 to include 2 orders, 10 families, and 17
genera, with over 100 species within the phylum being moved into
a different genus (Nouioui et al. 2018). Diverse phylogeny within
Saccharibacteria, a candidate phylum within the candidate phyla
radation (CPR), continues to be resolved as new genomes become
available to augment earlier 16S-based analysis (Cross et al. 2019,
McLean et al. 2020, Shaiber et al. 2020, Baker 2021). On a smaller
scale, phylogenomics has resolved the phylogeny of novel species
within important oral taxa such as S. dentisani (Camelo-Castillo et
al. 2014), Candidatus Bacteroides periocalifornicus (Torres et al. 2019),
Tannerella serpentiformis (Ansbro et al. 2020), and novel taxa within
Actinobacteridae (Treerat et al. 2022).
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Linked closely with phylogenomics is pangenomics, and there
has been no shortage of pangenome studies of oral taxa in re-
cent years. A highlight of early pangenomics of oral bacteria was
the analysis of 57 S. mutans strains to gain insight on the links
phylogeny and phenotypic/virulence traits (Cornejo et al. 2013,
Palmer et al. 2013). More recent work reported a detailed, updated
pangenome across 244 near-complete genomes of S. mutans (Baker
et al. 2022). Additional contemporary comparative genomics of S.
mutans and S. sobriunus indicated a lack of phylogeographic dif-
ferentiation for S. mutans but some for S. sobrinus (Achtman and
Zhou 2020). Another recent study used an S. mutans pangenome
to examine CRISPR spacers (Walker and Shields 2022). Beyond S.
mutans, several recent studies have analyzed other Streptococcus
pangenomes. A pangenome of 113 genomes from 10 Streptococ-
cus species was utilized to gain insight into ammonia production
via the arginine deiminase system and identified significant intra-
species phenotypic heterogeneity (Velsko et al. 2018). Site tropism
of streptococci in the oral microbiome was examined using an ap-
proach that leveraged phylogenetic and pangenomic analysis, il-
lustrating that even closely related species such as S. mitis, S. oralis,
and S. infantis specialized in different sites within the oral cav-
ity (McLean et al. 2022). There was also substantial overlap in the
core genomes of these 3 species, indicating that site-specialization
is likely determined by subtle differences across the pangenome
(McLean et al. 2022). Other pangenome studies examined S. in-
termedius and its relationship to virulence at various body sites
(Sinha et al. 2021), identified homologs of adhesion and immune
evasion across endocarditis and oral isolates of S. sanguinis and S.
gordonii (Iversen et al. 2020), identified genomic factors influenc-
ing defense from phage and mobile genetic elements in Dolosi-
granulum pigrum (Flores Ramos et al. 2021), and discovered that
carbohydrate utilization pathways are well-conserved across Veil-
lonella (Mashima et al. 2021). Pangenome-based approaches also
identified candidate genes involved in oral niche habitat adap-
tation for Rothia mucilaginosa and Haemophilus parainfluenzae (Ut-
ter et al. 2020), and illustrated niche partitioning and vast differ-
ences in metabolic repertoires between clades of oral Saccharibac-
teria (Shaiber et al. 2020, Baker 2021, Baker et al. 2021).

Dozens of studies have utilized transcriptomics (i.e. RNAseq)
to study both individual oral bacteria under various conditions as
well as communities and the entire microbiome. Early analysis of
the oral metatranscriptome was provided through several studies
examining both caries (Peterson et al. 2014, Do et al. 2015) and
periodontal disease (Duran-Pinedo et al. 2014, Jorth et al. 2014,
Yost et al. 2015, Belstrom et al. 2017, Nowicki et al. 2018), illus-
trating changes in both the taxonomy and functional expression
in the microbiome in health versus disease. These findings were
summarized in a recent review (Duran-Pinedo 2021). Metatran-
scriptome changes following scaling and root planning as treat-
ment for periodontal disease were examined, showing that there
was a significant effect on progressing sites but not so much in
stable and fluctuating sites (Duran-Pinedo et al. 2022). Transcrip-
tomics was used to examine the relationship between the epibiont
Saccharibacteria, Nanosynbacter lyticus, and its host, Schaalia odon-
tolytica (Hendrickson et al. 2022). A transcriptomic time course
of an in vitro dental plaque biofilm maturation provided insight
of transcriptional inflection points in the community associated
with pH drops and blooms of acidophilic taxa such as Limosilacto-
bacillus fermentum (Edlund et al. 2018). Recent work has illustrated
the transcriptome in periodontitis in a nonhuman primate model,
which supported a significant role of the adaptive immune re-
sponse in the kinetics of periodontal disease progression and that
aging effects on the repertoire of immunoglobulin genes are likely
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to contribute to an increased prevalence and severity of periodon-
tal disease with age (Gonzalez et al. 2022). Furthermore, that the
same bacterial taxa interface with host immunology differently
at a healthy site compared to a diseased site (Ebersole et al. 2021).
Other recent work explored the role of health-associated oral bac-
teria on the transcriptome of oral squamous cell carcinoma cell
lines (Baraniya et al. 2022). As the oral microbiology field begins
to adopt third-generation RNA sequencing, a wealth of data re-
garding transcriptional isoforms and RNA modification will soon
become available. Several additional studies using sequencing-
based omics as part of multi-omics are discussed in the Multi-
omics section below.

MS-based omics

In addition to all the advances described above, which are depen-
dent on nucleic acid sequencing, there have also been major im-
provements to MS-based omics analyses over the last decade. Re-
cent innovations have made MS analyses significantly more sen-
sitive, accurate, high-throughput, and able to detect a wider range
of molecules. These have occurred via advancements at every
stage of the analysis pipeline: sample preparation, ionization, sep-
aration, mass detection, and data analysis (Shuken 2023). Readers
are pointed to an in-depth recent review for biological MS, broadly
(Pade et al. 2023). MS-based analyses are typically either untar-
geted, measuring all possible analytes detectable with the given
workflow, or targeted, where analysis is tailored to molecules
with specific characteristics such as molecular weight and charge.
Simultaneous quantitation and discovery (SQUAD) analysis, re-
cently developed at Thermo Fisher Scientific, combines both tar-
geted and untargeted workflows into a single-injection protocol,
combining the strengths of each approach (Amer et al. 2023).

Imaging mass spectrometry (IMS) includes techniques such
as matrix assisted laser desorption/ionization (MALDI), time-
of-flight secondary ion mass spectrometry (TOF-SIMS), and
electrospray-based desorption (DESI), which are utilized to visu-
alize the spatial distribution and biogeography of analytes, and
is at this point a mature field worthy of its own review (Chen
et al. 2020a). MALDI imaging, in particular, has been widely ap-
plied to rapid clinical and diagnostic microbiology (Croxatto et al.
2012, Jang and Kim 2018). Tools such as PySM (Palmer et al. 2017),
MSiReader (Nurk et al. 2017), and Ili (Protsyuk et al. 2018) have
been developed to analyze and visualize IMS data.

Like sequencing-based omics, where both individual open-
source tools and comprehensive vendor software suites are avail-
able, MS-based omics has individual tools as well as comprehen-
sive software suites from vendors are options, with prime exam-
ples being Proteome Discoverer, Compound Discoverer, and Lipid
Search from Thermo Fisher Scientific, and Proteoscape and Meta-
boscape from Brucker. Although proteomics, metabolomics, and
lipidomics represent a more complete and “current” state of a
given sample (i.e. rather than whatis encoded for by DNA or soon-
to-be translated RNA), there are unique challenges facing these
omics approaches.

Proteomics

Proteins are typically higher molecular weight and more complex
than metabolomic or lipidomic analytes; however, the relative
wealth of proteome database data via translated RNA sequences,
combined with the fact that proteins themselves are “sequences”
from a finite pool of amino acids, makes proteomics datasets
somewhat easier to annotate than untargeted metabolomics and
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lipidomics datasets. The current state of the proteomics field, in-
cluding current approaches and challenges was excellently sum-
marized recently (Shuken 2023), and bioinformatics tools for pro-
teomics, recently comprehensively reviewed (Chen et al. 2020a).
Briefly, proteomics is typically conducted with either a “bottom
up” approach, which breaks proteins down into peptides prior to
MS analysis, or a “top down” approach, which analyzes whole, na-
tive proteins to detect discrete proteoforms and chemical modifi-
cations (Donnelly et al. 2019). Peptide sequences are either queried
in a database using an algorithm such as the workhorses SE-
QUEST (Eng et al. 1994) or Andromeda (Tyanova et al. 2016) or se-
quenced de novo using tools such as UniNovo (Jeong et al. 2013) or
DeepNovo (Tran et al. 2017). Proteomics approaches can also be di-
vided into data dependent analysis (DDA) and data-independent
analysis (DIA) methods. DDA selects the most abundant peptides
in each peak of the MS1 scan for the MS2 scan. Meanwhile, in DIA,
ions are continuously collected and fragmented by collecting MS?2
scans in overlapping m/z windows, thereby producing a complete
record of all peptides in a sample (Xin et al. 2022). PEAKS Studio
is a software that leverages all three techniques (peptide search,
spectral library search, and de novo sequencing) (Xin et al. 2022).
Proteins can be quantified using the area under the MS1 chro-
matogram (i.e.label-free quantification [LFQ]), which is somewhat
problematic due to the compositional nature of sample-to-sample
MS data, as discussed below. Alternatively, various labeling tech-
niques such as stable isolate labeling by amino acids in cell cul-
ture (SILAC) or tandem mass tags (TMT) improve quantitative
sample-to-sample reproducibility and increase throughput by al-
lowing for multiplexing (Shuken 2023). In addition to the vendor
suites of software, the MaxQuant (Wichmann et al. 2019) family
of tools and MZmine 3 (Schmid et al. 2023) are free and open-
source software able to perform various proteomics quantifica-
tion workflows (Wichmann et al. 2019). Going forward, the appli-
cation of machine learning and will further improve the sensi-
tivity and dynamic range of proteomics via the implementation
of deep learning-based spectral prediction and spectrum-centric
DIA analysis (Zeng et al. 2022, Cox 2023, Neely et al. 2023).

Metabolomics and lipidomics

Several recent reviews have provided metabolomics best prac-
tices guidelines (Alseekh et al. 2021) and summarized lipidomics
informatics (Ni et al. 2022), metabolomics/lipidomics separation
methods (Harrieder et al. 2022), metabolite discovery (Giera et
al. 2022), and the specific application of metabolomics in micro-
biome data (Bauermeister et al. 2022) in more depth than is pro-
vided here. In addition to vendor-specific tools such as Compound
Discoverer, Lipid Search, and Metaboscape, a wealth of alterna-
tive tools (many of which are free and/or open source) are avail-
able for metabolomics analysis. These include platforms such
as MetaboAnalyst 5.0 (Pang et al. 2022) and XCMS Online (Fors-
berg et al. 2018), which are web-based GUIs, as well as MZmine3
(Schmid et al. 2023), an open source tool to examine raw spectral
files and perform custom downstream analysis, MS-DIAL (Tsug-
awa et al. 2020), and OpenMS (Rost et al. 2016). Unlike proteomics,
metabolomics, and lipidomics data do not generate “sequences,”
with the molecules being detected occupying a comparatively un-
limited chemical space. Furthermore, many of the databases used
for dereplication (i.e. identification of known compounds) are not
freely available. As a result, a much higher percentage of the
features detected in metabolomics and lipidomics datasets are
unknown, with annotation rates <10% routine (de Jonge et al.
2022). In silico analyses such as molecular networking and ma-

chine learning-based annotation have been instrumental in be-
ginning to address this challenge (de Jonge et al. 2022). Molecular
networking is a visualization of spectral alignment and correla-
tion, which enables the prediction of the chemical structure of
unknown features. One such landmark tool is the Global Natu-
ral Products Social Molecular Networking (GNPS), first published
in 2016, created an open-access knowledge base for organizations
and enabled the sharing of MS data, which is reanalyzed as the
database grows, leveraging molecular networking to help iden-
tify novel spectra (Wang et al. 2016). The GNPS led to the de-
velopment of a host of integrated analysis tools to further im-
prove annotation and analysis. The first iteration of the GNPS uti-
lized MS-MS data exclusively, while a subsequent improvement
deploys “feature-based molecular networking,” an approach that
combines quantitative chromatographic peak data with qualita-
tive MS/MS data (Nothias et al. 2020). Originally developed for
liquid chromatography MS (LC-MS), the GNPS was also recently
updated to enable the analysis of gas chromatography MS (GC-
MS), which expands its utility to many GC-MS-based lipidomics
and metabolomics analyses (Aksenov et al. 2021). Other recent
innovations to MS-based omics include the use of metadata to
enhance annotation of metabolomics (Gauglitz et al. 2022), na-
tive spray metal metabolomics to identify novel siderophores and
other metal-binding compounds (Aron et al. 2022), and ion iden-
tity molecular networking (IIMN) to integrate chromatographic
peak shape into molecular networking, enhancing annotation
with molecular networks (Schmid et al. 2021). MS2Query is an-
other recently developed tool that utilizes machine learning to
identify potential analogs to unknown spectra (de Jonge et al.
2023). SIRIUS5 (Duhrkop et al. 2019) predicts the chemical formula
and molecular structure of query compounds, while Qemistree
is a data exploration strategy using hierarchical organization of
molecular fingerprints to visualize molecular relationships as a
tree, enabling the use of many further analysis tools originally
designed to analyze and visualize the relatedness of DNA, such
as QIIME2 (Tripathi et al. 2021). Efforts to standardize MS data
and databases, such as PeakForest (Paulhe et al. 2022) and Chem-
FONT (Wishart et al. 2023), seek to address that major issues of
data reporting and reproducibility facing the MS field (Alseekh
et al. 2021). Finally, MASST is a search tool that enables uses to
query spectra against all small molecule tandem-MS data in pub-
licrepositories, similar to how users can query NCBI-BLAST for the
source of DNA sequences (Wang et al. 2020). Going forward, these
advancements in MS analysis methods are poised to increase the
scale and pace of discovery in the oral microbiota and lead to
novel approaches to benefit human oral health.

Impact of MS-based omics on oral microbiome
research

Proteomics was utilized to study stress responses of the caries
pathogen S. mutans as early as 2004 (Len et al. 2004), and many
other studies have examined single oral taxa using proteomics
and metabolomics. A recent study examined the S. mutans pro-
teome during acid and oxidative stress, illustrating modules of
co-expressed proteins under various stress conditions (Tinder et
al. 2022). A landmark metaproteomics study of the oral micro-
biome identified potential biomarkers for caries (Belda-Ferre et
al. 2015). Beyond the strictly microbial constituents of the oral
microbiota, saliva has great diagnostic potential due to its acces-
sibility and the large number biomarkers that can be measured
using proteomics and/or metabolomics (Dawes and Wong 2019).
Along those lines, the Human Salivary Proteome Wiki was recently
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developed and serves as a public data platform for researching
and retrieving custom-curated data knowledge of the salivary pro-
teome (Lau et al. 2021). Although lipidomics of single species, such
as S. mutans (Fozo and Quivey 2004), have been performed and
used to study physiology, the lipidome of the oral microbiota as a
community is in need of further study. Several studies that have
used MS-based omics in oral microbiome research are also men-
tioned in the multi-omics section below.

Compositional analysis, single-cell omics,
and multi-omics

A note on compositional data and analysis tools

Nearly all omics data is compositional in nature, meaning that
it is a quantitative description of parts of some whole, therefore
conveying relative information. The limitations of compositional
data have been excellently reviewed (Gloor et al. 2017, Morton et
al. 2017, Knight et al. 2018, Morton et al. 2019b), and it is impera-
tive that researchers are aware that omics data is compositional,
perform analysis using tools designed to handle compositional
data, and be cognizant of the limitations inherent to composi-
tional data. Determining correlation is particularly intractable
with compositional data, with conventional methods producing
unacceptably high false discovery rates. Numerous approaches
have been developed to address these problems, including ALDEx2
(Fernandes et al. 2014), ANCOM (Mandal et al. 2015), and Songbird
(Morton et al. 2019b); however, none are ‘perfect’. Ultimately, it is
generally best to analyze compositional data using multiple ap-
proaches and take all results with a grain of salt when forming
hypotheses.

Single-cell omics

Single-cell analysis is a transformational technology, allowing
for the omics analysis of individual cells and the identification
of discrete biological dynamics that are obscured by the aver-
ages obtained by traditional bulk analysis. Single-cell proteomics,
lipidomics, and metabolomics, based on MS, is an advancing field;
however, it is still at a nascent stage even for eukaryotes and
therefore will not be discussed (Couvillion et al. 2019, Perkel 2021,
Tajik et al. 2022). Meanwhile, driven by advancements in microflu-
idics, sample handling, labeling, imaging, bioinformatics, com-
putational biology, and machine learning, companies like 10X
Genomics and Standard Biotools are making single-cell analy-
sis of eukaryotic genomes and transcriptomes (scRNA-seq) com-
monplace. Challenges facing scRNA-seq in bacteria include low
content of mRNA, lack of a polyA tail on mRNAs, diverse cell
walls, and small size hindering microfluidic single-cell isolation
(Kuchina et al. 2021). Early attempts at bacterial scRNA-seq in-
volved using fluorescence-activated cell sorting (FACS) to dis-
tribute individual cells to wells in 96-well plates; however, this
technique is low throughput, with a very high cost to examine
only several hundred bacterial cells (Imdahl et al. 2020). Two con-
currently developed, yet technically similar, approaches to deal
with these issues are MicroSPLIiT (Kuchina et al. 2021) and PETRI-
seq (Blattman et al. 2020), which do not depend on single-cell
isolation. Cells are permeabilized and then labeled with several
rounds of split-pool barcoding of cDNA to ensure that nearly ev-
ery cell has a unique barcode prior to sequencing (Blattman et
al. 2020, Kuchina et al. 2021). These approaches were able to dif-
ferentiate multiple transcriptional states in Bacillus subtilis and
Escherichia coli, respectively (Blattman et al. 2020, Kuchina et al.
2021). More recent approaches have modified other eukaryotic
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scRNA-seq protocols such as multiple annealing and dC-tailing-
based quantitative single-cell RNA-seq (MATQ-seq) (Homberger et
al. 2023) and made use of the 10X Genomics Chromium microflu-
idic device (Brennan and Rosenthal 2021) to perform bacterial
scRNA-seq.

In oral microbiome research, single-cell techniques have been
used to isolate cells and amplify DNA to generate single-cell am-
plified assembled genomes (SAGs) of Saccharibacteria (Cross et al.
2019), Chloroflexi and Chlorobi (Campbell et al. 2014), Tannerella
(Beall et al. 2014), Porphyromonas (McLean et al. 2013), and Desul-
fouibrio and Desulfobulbus (Campbell et al. 2013), and these tech-
niques and findings were recently reviewed (Balachandran et al.
2020). Most of these organisms were present in such low num-
bers in the original sample that getting a substantial portion
of the respective genome sequence would have been impossi-
ble without the single-cell methods. Although at this time, no
studies have leveraged single-cell technology to study oral bac-
teria at the transcriptional level, a recent landmark study gener-
ated an atlas of human oral mucosa cells using scRNA-seq, ex-
amining healthy individuals versus periodontitis, revealing exag-
gerated responsiveness of stromal cells and enhanced immune
cell infiltration in periodontitis (Williams et al. 2021). A recent
study used also scRNA-seq to examine the expression of peri-
odontitis susceptibility genes in human gingival cells (Caetano
et al. 2022).

Multi-omics

While integrating multiple types of omics analysis is critical for
microbiome research, this type of analysis introduces several ad-
ditional statistical challenges as now multiple datasets that are
each compositional are now being compared. Crucially, many
tools specifically developed for handling compositional data lose
scale invariance when applied to multi-omics datasets (Morton et
al. 2019a). mmuvec, a recently developed approach for analyzing
multi-omics data, uses co-occurrence probabilities rather than
correlations (Morton et al. 2019a). When applied to metagenome
and metabolome data, it allowed researchers to identify the most
likely microbe-metabolite interactions (Morton et al. 2019a). An-
other tool, iNetModels2, was recently developed for interactively
visualizing multi-omics data (Arif et al. 2021). A recent review also
comprehensively discussed tools for proteomics-centric multi-
omics analyses (Rajczewski et al. 2022).

Several examples exist of published research used multi-omics
data to examine the oral microbiota in various contexts. Multi-
omics analysis of an in vitro oral biofilm community follow-
ing a glucose pulse revealed temporal regulation of fermenta-
tion pathways affected the pH of the culture and subsequent
microecology (Edlund et al. 2015). Multi-omics of dental plaque
from patients with diabetes and periodontal disease identified
both proteins and lipids that were associated with disease and
also showed that Lautropia mirabilis synthesizes monomethyl
phosphatidylethanolamine, which is rarely produced by bacte-
ria (Overmyer et al. 2021). Multi-omics of germ-free and spe-
cific pathogen-free mice indicated that the oral microbiota in-
fluenced the permeability of the oral epithelial barrier, vis-a-vis
keratinization and cell adhesion (Long et al. 2022). The relation-
ship between the oral microbiome and chronic sleep depriva-
tion was examined in rats, observing both taxonomic changes
in the microbiota, as well as modulation of host immunological
molecules (Chen et al. 2022). Finally, a recent study examined
the proteome and microbiome of diseased gingival tissue (Bao
et al. 2020).
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Perspectives

Omics approaches have transformed our understanding of the
oral microbiome and its relationship to human health, allowing
for studies with a scale and resolution unimaginable 20 years ago.
The HOMD now contains genomes in addition to 16S sequences
and now includes the taxa from the aerodigestive tract and the
oral cavity (Escapa et al. 2018). Some of the main challenges cur-
rently facing omics-based microbiome research are standardiza-
tion and deposition of data in public repositories, as well as re-
analysis of old data with updated reference databases. Although
repositories such as the Sequence Read Archive (SRA), RefSeq, and
GenBank are highly useful and do enforce some level of standard-
ization, journals and reviewers do not always enforce the deposi-
tion of published data into these databases. Furthermore, unified
repositories and data file formats are significantly more limited
(and many times are vendor-specific/proprietary) for MS data. Ef-
forts to make public databases into “living data” will also be highly
useful. For example, as more and more accurate and complete
genomes get deposited into the databases used to analyze the tax-
onomy of sequencing reads, older raw microbiome datasets can be
periodically re-analyzed, and reads representing newly identified
taxa can be moved from the “unknown taxa” to the proper newly
identified taxa (which may change the interpretation of the re-
sults and/or identify new data trends). This is being implemented
to some extent in the SRA, with entries now having a “Taxonomy
Analysis” tab included in the Run Browser (Katz et al. 2021). The
same is true for MS datasets, as new reference spectra get identi-
fied and added to public databases. The GNPS already has imple-
mented “living data” using periodic reanalysis of metabolomics
data stored in its repository (Wang et al. 2016). Additionally, to
help reduce some of the issues in equity and reproducibility fac-
ing the field, enforcement of the publication of all analysis tools,
settings, and code used in omics-based research on public reposi-
tories such as GitHub would be helpful. Continued research of the
oral microbiome using omics-based approaches is needed, espe-
cially those sampling more diverse populations and performing
longitudinal analysis. The discoveries enabled by this type of re-
search will significantly improve human health.
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